1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
12 //===----------------------------------------------------------------------===//
16 #include "ABIInfoImpl.h"
19 #include "CGCleanup.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/AttributeMask.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/InlineAsm.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Transforms/Utils/Local.h"
45 using namespace clang
;
46 using namespace CodeGen
;
50 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC
) {
52 default: return llvm::CallingConv::C
;
53 case CC_X86StdCall
: return llvm::CallingConv::X86_StdCall
;
54 case CC_X86FastCall
: return llvm::CallingConv::X86_FastCall
;
55 case CC_X86RegCall
: return llvm::CallingConv::X86_RegCall
;
56 case CC_X86ThisCall
: return llvm::CallingConv::X86_ThisCall
;
57 case CC_Win64
: return llvm::CallingConv::Win64
;
58 case CC_X86_64SysV
: return llvm::CallingConv::X86_64_SysV
;
59 case CC_AAPCS
: return llvm::CallingConv::ARM_AAPCS
;
60 case CC_AAPCS_VFP
: return llvm::CallingConv::ARM_AAPCS_VFP
;
61 case CC_IntelOclBicc
: return llvm::CallingConv::Intel_OCL_BI
;
62 // TODO: Add support for __pascal to LLVM.
63 case CC_X86Pascal
: return llvm::CallingConv::C
;
64 // TODO: Add support for __vectorcall to LLVM.
65 case CC_X86VectorCall
: return llvm::CallingConv::X86_VectorCall
;
66 case CC_AArch64VectorCall
: return llvm::CallingConv::AArch64_VectorCall
;
67 case CC_AArch64SVEPCS
: return llvm::CallingConv::AArch64_SVE_VectorCall
;
68 case CC_AMDGPUKernelCall
: return llvm::CallingConv::AMDGPU_KERNEL
;
69 case CC_SpirFunction
: return llvm::CallingConv::SPIR_FUNC
;
70 case CC_OpenCLKernel
: return CGM
.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
71 case CC_PreserveMost
: return llvm::CallingConv::PreserveMost
;
72 case CC_PreserveAll
: return llvm::CallingConv::PreserveAll
;
73 case CC_Swift
: return llvm::CallingConv::Swift
;
74 case CC_SwiftAsync
: return llvm::CallingConv::SwiftTail
;
75 case CC_M68kRTD
: return llvm::CallingConv::M68k_RTD
;
79 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
80 /// qualification. Either or both of RD and MD may be null. A null RD indicates
81 /// that there is no meaningful 'this' type, and a null MD can occur when
82 /// calling a method pointer.
83 CanQualType
CodeGenTypes::DeriveThisType(const CXXRecordDecl
*RD
,
84 const CXXMethodDecl
*MD
) {
87 RecTy
= Context
.getTagDeclType(RD
)->getCanonicalTypeInternal();
89 RecTy
= Context
.VoidTy
;
92 RecTy
= Context
.getAddrSpaceQualType(RecTy
, MD
->getMethodQualifiers().getAddressSpace());
93 return Context
.getPointerType(CanQualType::CreateUnsafe(RecTy
));
96 /// Returns the canonical formal type of the given C++ method.
97 static CanQual
<FunctionProtoType
> GetFormalType(const CXXMethodDecl
*MD
) {
98 return MD
->getType()->getCanonicalTypeUnqualified()
99 .getAs
<FunctionProtoType
>();
102 /// Returns the "extra-canonicalized" return type, which discards
103 /// qualifiers on the return type. Codegen doesn't care about them,
104 /// and it makes ABI code a little easier to be able to assume that
105 /// all parameter and return types are top-level unqualified.
106 static CanQualType
GetReturnType(QualType RetTy
) {
107 return RetTy
->getCanonicalTypeUnqualified().getUnqualifiedType();
110 /// Arrange the argument and result information for a value of the given
111 /// unprototyped freestanding function type.
112 const CGFunctionInfo
&
113 CodeGenTypes::arrangeFreeFunctionType(CanQual
<FunctionNoProtoType
> FTNP
) {
114 // When translating an unprototyped function type, always use a
116 return arrangeLLVMFunctionInfo(FTNP
->getReturnType().getUnqualifiedType(),
117 FnInfoOpts::None
, std::nullopt
,
118 FTNP
->getExtInfo(), {}, RequiredArgs(0));
121 static void addExtParameterInfosForCall(
122 llvm::SmallVectorImpl
<FunctionProtoType::ExtParameterInfo
> ¶mInfos
,
123 const FunctionProtoType
*proto
,
125 unsigned totalArgs
) {
126 assert(proto
->hasExtParameterInfos());
127 assert(paramInfos
.size() <= prefixArgs
);
128 assert(proto
->getNumParams() + prefixArgs
<= totalArgs
);
130 paramInfos
.reserve(totalArgs
);
132 // Add default infos for any prefix args that don't already have infos.
133 paramInfos
.resize(prefixArgs
);
135 // Add infos for the prototype.
136 for (const auto &ParamInfo
: proto
->getExtParameterInfos()) {
137 paramInfos
.push_back(ParamInfo
);
138 // pass_object_size params have no parameter info.
139 if (ParamInfo
.hasPassObjectSize())
140 paramInfos
.emplace_back();
143 assert(paramInfos
.size() <= totalArgs
&&
144 "Did we forget to insert pass_object_size args?");
145 // Add default infos for the variadic and/or suffix arguments.
146 paramInfos
.resize(totalArgs
);
149 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
150 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
151 static void appendParameterTypes(const CodeGenTypes
&CGT
,
152 SmallVectorImpl
<CanQualType
> &prefix
,
153 SmallVectorImpl
<FunctionProtoType::ExtParameterInfo
> ¶mInfos
,
154 CanQual
<FunctionProtoType
> FPT
) {
155 // Fast path: don't touch param info if we don't need to.
156 if (!FPT
->hasExtParameterInfos()) {
157 assert(paramInfos
.empty() &&
158 "We have paramInfos, but the prototype doesn't?");
159 prefix
.append(FPT
->param_type_begin(), FPT
->param_type_end());
163 unsigned PrefixSize
= prefix
.size();
164 // In the vast majority of cases, we'll have precisely FPT->getNumParams()
165 // parameters; the only thing that can change this is the presence of
166 // pass_object_size. So, we preallocate for the common case.
167 prefix
.reserve(prefix
.size() + FPT
->getNumParams());
169 auto ExtInfos
= FPT
->getExtParameterInfos();
170 assert(ExtInfos
.size() == FPT
->getNumParams());
171 for (unsigned I
= 0, E
= FPT
->getNumParams(); I
!= E
; ++I
) {
172 prefix
.push_back(FPT
->getParamType(I
));
173 if (ExtInfos
[I
].hasPassObjectSize())
174 prefix
.push_back(CGT
.getContext().getSizeType());
177 addExtParameterInfosForCall(paramInfos
, FPT
.getTypePtr(), PrefixSize
,
181 /// Arrange the LLVM function layout for a value of the given function
182 /// type, on top of any implicit parameters already stored.
183 static const CGFunctionInfo
&
184 arrangeLLVMFunctionInfo(CodeGenTypes
&CGT
, bool instanceMethod
,
185 SmallVectorImpl
<CanQualType
> &prefix
,
186 CanQual
<FunctionProtoType
> FTP
) {
187 SmallVector
<FunctionProtoType::ExtParameterInfo
, 16> paramInfos
;
188 RequiredArgs Required
= RequiredArgs::forPrototypePlus(FTP
, prefix
.size());
190 appendParameterTypes(CGT
, prefix
, paramInfos
, FTP
);
191 CanQualType resultType
= FTP
->getReturnType().getUnqualifiedType();
194 instanceMethod
? FnInfoOpts::IsInstanceMethod
: FnInfoOpts::None
;
195 return CGT
.arrangeLLVMFunctionInfo(resultType
, opts
, prefix
,
196 FTP
->getExtInfo(), paramInfos
, Required
);
199 /// Arrange the argument and result information for a value of the
200 /// given freestanding function type.
201 const CGFunctionInfo
&
202 CodeGenTypes::arrangeFreeFunctionType(CanQual
<FunctionProtoType
> FTP
) {
203 SmallVector
<CanQualType
, 16> argTypes
;
204 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes
,
208 static CallingConv
getCallingConventionForDecl(const ObjCMethodDecl
*D
,
210 // Set the appropriate calling convention for the Function.
211 if (D
->hasAttr
<StdCallAttr
>())
212 return CC_X86StdCall
;
214 if (D
->hasAttr
<FastCallAttr
>())
215 return CC_X86FastCall
;
217 if (D
->hasAttr
<RegCallAttr
>())
218 return CC_X86RegCall
;
220 if (D
->hasAttr
<ThisCallAttr
>())
221 return CC_X86ThisCall
;
223 if (D
->hasAttr
<VectorCallAttr
>())
224 return CC_X86VectorCall
;
226 if (D
->hasAttr
<PascalAttr
>())
229 if (PcsAttr
*PCS
= D
->getAttr
<PcsAttr
>())
230 return (PCS
->getPCS() == PcsAttr::AAPCS
? CC_AAPCS
: CC_AAPCS_VFP
);
232 if (D
->hasAttr
<AArch64VectorPcsAttr
>())
233 return CC_AArch64VectorCall
;
235 if (D
->hasAttr
<AArch64SVEPcsAttr
>())
236 return CC_AArch64SVEPCS
;
238 if (D
->hasAttr
<AMDGPUKernelCallAttr
>())
239 return CC_AMDGPUKernelCall
;
241 if (D
->hasAttr
<IntelOclBiccAttr
>())
242 return CC_IntelOclBicc
;
244 if (D
->hasAttr
<MSABIAttr
>())
245 return IsWindows
? CC_C
: CC_Win64
;
247 if (D
->hasAttr
<SysVABIAttr
>())
248 return IsWindows
? CC_X86_64SysV
: CC_C
;
250 if (D
->hasAttr
<PreserveMostAttr
>())
251 return CC_PreserveMost
;
253 if (D
->hasAttr
<PreserveAllAttr
>())
254 return CC_PreserveAll
;
256 if (D
->hasAttr
<M68kRTDAttr
>())
262 /// Arrange the argument and result information for a call to an
263 /// unknown C++ non-static member function of the given abstract type.
264 /// (A null RD means we don't have any meaningful "this" argument type,
265 /// so fall back to a generic pointer type).
266 /// The member function must be an ordinary function, i.e. not a
267 /// constructor or destructor.
268 const CGFunctionInfo
&
269 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl
*RD
,
270 const FunctionProtoType
*FTP
,
271 const CXXMethodDecl
*MD
) {
272 SmallVector
<CanQualType
, 16> argTypes
;
274 // Add the 'this' pointer.
275 argTypes
.push_back(DeriveThisType(RD
, MD
));
277 return ::arrangeLLVMFunctionInfo(
278 *this, /*instanceMethod=*/true, argTypes
,
279 FTP
->getCanonicalTypeUnqualified().getAs
<FunctionProtoType
>());
282 /// Set calling convention for CUDA/HIP kernel.
283 static void setCUDAKernelCallingConvention(CanQualType
&FTy
, CodeGenModule
&CGM
,
284 const FunctionDecl
*FD
) {
285 if (FD
->hasAttr
<CUDAGlobalAttr
>()) {
286 const FunctionType
*FT
= FTy
->getAs
<FunctionType
>();
287 CGM
.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT
);
288 FTy
= FT
->getCanonicalTypeUnqualified();
292 /// Arrange the argument and result information for a declaration or
293 /// definition of the given C++ non-static member function. The
294 /// member function must be an ordinary function, i.e. not a
295 /// constructor or destructor.
296 const CGFunctionInfo
&
297 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl
*MD
) {
298 assert(!isa
<CXXConstructorDecl
>(MD
) && "wrong method for constructors!");
299 assert(!isa
<CXXDestructorDecl
>(MD
) && "wrong method for destructors!");
301 CanQualType FT
= GetFormalType(MD
).getAs
<Type
>();
302 setCUDAKernelCallingConvention(FT
, CGM
, MD
);
303 auto prototype
= FT
.getAs
<FunctionProtoType
>();
305 if (MD
->isImplicitObjectMemberFunction()) {
306 // The abstract case is perfectly fine.
307 const CXXRecordDecl
*ThisType
= TheCXXABI
.getThisArgumentTypeForMethod(MD
);
308 return arrangeCXXMethodType(ThisType
, prototype
.getTypePtr(), MD
);
311 return arrangeFreeFunctionType(prototype
);
314 bool CodeGenTypes::inheritingCtorHasParams(
315 const InheritedConstructor
&Inherited
, CXXCtorType Type
) {
316 // Parameters are unnecessary if we're constructing a base class subobject
317 // and the inherited constructor lives in a virtual base.
318 return Type
== Ctor_Complete
||
319 !Inherited
.getShadowDecl()->constructsVirtualBase() ||
320 !Target
.getCXXABI().hasConstructorVariants();
323 const CGFunctionInfo
&
324 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD
) {
325 auto *MD
= cast
<CXXMethodDecl
>(GD
.getDecl());
327 SmallVector
<CanQualType
, 16> argTypes
;
328 SmallVector
<FunctionProtoType::ExtParameterInfo
, 16> paramInfos
;
330 const CXXRecordDecl
*ThisType
= TheCXXABI
.getThisArgumentTypeForMethod(GD
);
331 argTypes
.push_back(DeriveThisType(ThisType
, MD
));
333 bool PassParams
= true;
335 if (auto *CD
= dyn_cast
<CXXConstructorDecl
>(MD
)) {
336 // A base class inheriting constructor doesn't get forwarded arguments
337 // needed to construct a virtual base (or base class thereof).
338 if (auto Inherited
= CD
->getInheritedConstructor())
339 PassParams
= inheritingCtorHasParams(Inherited
, GD
.getCtorType());
342 CanQual
<FunctionProtoType
> FTP
= GetFormalType(MD
);
344 // Add the formal parameters.
346 appendParameterTypes(*this, argTypes
, paramInfos
, FTP
);
348 CGCXXABI::AddedStructorArgCounts AddedArgs
=
349 TheCXXABI
.buildStructorSignature(GD
, argTypes
);
350 if (!paramInfos
.empty()) {
351 // Note: prefix implies after the first param.
352 if (AddedArgs
.Prefix
)
353 paramInfos
.insert(paramInfos
.begin() + 1, AddedArgs
.Prefix
,
354 FunctionProtoType::ExtParameterInfo
{});
355 if (AddedArgs
.Suffix
)
356 paramInfos
.append(AddedArgs
.Suffix
,
357 FunctionProtoType::ExtParameterInfo
{});
360 RequiredArgs required
=
361 (PassParams
&& MD
->isVariadic() ? RequiredArgs(argTypes
.size())
362 : RequiredArgs::All
);
364 FunctionType::ExtInfo extInfo
= FTP
->getExtInfo();
365 CanQualType resultType
= TheCXXABI
.HasThisReturn(GD
)
367 : TheCXXABI
.hasMostDerivedReturn(GD
)
368 ? CGM
.getContext().VoidPtrTy
370 return arrangeLLVMFunctionInfo(resultType
, FnInfoOpts::IsInstanceMethod
,
371 argTypes
, extInfo
, paramInfos
, required
);
374 static SmallVector
<CanQualType
, 16>
375 getArgTypesForCall(ASTContext
&ctx
, const CallArgList
&args
) {
376 SmallVector
<CanQualType
, 16> argTypes
;
377 for (auto &arg
: args
)
378 argTypes
.push_back(ctx
.getCanonicalParamType(arg
.Ty
));
382 static SmallVector
<CanQualType
, 16>
383 getArgTypesForDeclaration(ASTContext
&ctx
, const FunctionArgList
&args
) {
384 SmallVector
<CanQualType
, 16> argTypes
;
385 for (auto &arg
: args
)
386 argTypes
.push_back(ctx
.getCanonicalParamType(arg
->getType()));
390 static llvm::SmallVector
<FunctionProtoType::ExtParameterInfo
, 16>
391 getExtParameterInfosForCall(const FunctionProtoType
*proto
,
392 unsigned prefixArgs
, unsigned totalArgs
) {
393 llvm::SmallVector
<FunctionProtoType::ExtParameterInfo
, 16> result
;
394 if (proto
->hasExtParameterInfos()) {
395 addExtParameterInfosForCall(result
, proto
, prefixArgs
, totalArgs
);
400 /// Arrange a call to a C++ method, passing the given arguments.
402 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
404 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
406 /// PassProtoArgs indicates whether `args` has args for the parameters in the
407 /// given CXXConstructorDecl.
408 const CGFunctionInfo
&
409 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList
&args
,
410 const CXXConstructorDecl
*D
,
411 CXXCtorType CtorKind
,
412 unsigned ExtraPrefixArgs
,
413 unsigned ExtraSuffixArgs
,
414 bool PassProtoArgs
) {
416 SmallVector
<CanQualType
, 16> ArgTypes
;
417 for (const auto &Arg
: args
)
418 ArgTypes
.push_back(Context
.getCanonicalParamType(Arg
.Ty
));
420 // +1 for implicit this, which should always be args[0].
421 unsigned TotalPrefixArgs
= 1 + ExtraPrefixArgs
;
423 CanQual
<FunctionProtoType
> FPT
= GetFormalType(D
);
424 RequiredArgs Required
= PassProtoArgs
425 ? RequiredArgs::forPrototypePlus(
426 FPT
, TotalPrefixArgs
+ ExtraSuffixArgs
)
429 GlobalDecl
GD(D
, CtorKind
);
430 CanQualType ResultType
= TheCXXABI
.HasThisReturn(GD
)
432 : TheCXXABI
.hasMostDerivedReturn(GD
)
433 ? CGM
.getContext().VoidPtrTy
436 FunctionType::ExtInfo Info
= FPT
->getExtInfo();
437 llvm::SmallVector
<FunctionProtoType::ExtParameterInfo
, 16> ParamInfos
;
438 // If the prototype args are elided, we should only have ABI-specific args,
439 // which never have param info.
440 if (PassProtoArgs
&& FPT
->hasExtParameterInfos()) {
441 // ABI-specific suffix arguments are treated the same as variadic arguments.
442 addExtParameterInfosForCall(ParamInfos
, FPT
.getTypePtr(), TotalPrefixArgs
,
446 return arrangeLLVMFunctionInfo(ResultType
, FnInfoOpts::IsInstanceMethod
,
447 ArgTypes
, Info
, ParamInfos
, Required
);
450 /// Arrange the argument and result information for the declaration or
451 /// definition of the given function.
452 const CGFunctionInfo
&
453 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl
*FD
) {
454 if (const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
))
455 if (MD
->isImplicitObjectMemberFunction())
456 return arrangeCXXMethodDeclaration(MD
);
458 CanQualType FTy
= FD
->getType()->getCanonicalTypeUnqualified();
460 assert(isa
<FunctionType
>(FTy
));
461 setCUDAKernelCallingConvention(FTy
, CGM
, FD
);
463 // When declaring a function without a prototype, always use a
464 // non-variadic type.
465 if (CanQual
<FunctionNoProtoType
> noProto
= FTy
.getAs
<FunctionNoProtoType
>()) {
466 return arrangeLLVMFunctionInfo(noProto
->getReturnType(), FnInfoOpts::None
,
467 std::nullopt
, noProto
->getExtInfo(), {},
471 return arrangeFreeFunctionType(FTy
.castAs
<FunctionProtoType
>());
474 /// Arrange the argument and result information for the declaration or
475 /// definition of an Objective-C method.
476 const CGFunctionInfo
&
477 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl
*MD
) {
478 // It happens that this is the same as a call with no optional
479 // arguments, except also using the formal 'self' type.
480 return arrangeObjCMessageSendSignature(MD
, MD
->getSelfDecl()->getType());
483 /// Arrange the argument and result information for the function type
484 /// through which to perform a send to the given Objective-C method,
485 /// using the given receiver type. The receiver type is not always
486 /// the 'self' type of the method or even an Objective-C pointer type.
487 /// This is *not* the right method for actually performing such a
488 /// message send, due to the possibility of optional arguments.
489 const CGFunctionInfo
&
490 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl
*MD
,
491 QualType receiverType
) {
492 SmallVector
<CanQualType
, 16> argTys
;
493 SmallVector
<FunctionProtoType::ExtParameterInfo
, 4> extParamInfos(
494 MD
->isDirectMethod() ? 1 : 2);
495 argTys
.push_back(Context
.getCanonicalParamType(receiverType
));
496 if (!MD
->isDirectMethod())
497 argTys
.push_back(Context
.getCanonicalParamType(Context
.getObjCSelType()));
499 for (const auto *I
: MD
->parameters()) {
500 argTys
.push_back(Context
.getCanonicalParamType(I
->getType()));
501 auto extParamInfo
= FunctionProtoType::ExtParameterInfo().withIsNoEscape(
502 I
->hasAttr
<NoEscapeAttr
>());
503 extParamInfos
.push_back(extParamInfo
);
506 FunctionType::ExtInfo einfo
;
507 bool IsWindows
= getContext().getTargetInfo().getTriple().isOSWindows();
508 einfo
= einfo
.withCallingConv(getCallingConventionForDecl(MD
, IsWindows
));
510 if (getContext().getLangOpts().ObjCAutoRefCount
&&
511 MD
->hasAttr
<NSReturnsRetainedAttr
>())
512 einfo
= einfo
.withProducesResult(true);
514 RequiredArgs required
=
515 (MD
->isVariadic() ? RequiredArgs(argTys
.size()) : RequiredArgs::All
);
517 return arrangeLLVMFunctionInfo(GetReturnType(MD
->getReturnType()),
518 FnInfoOpts::None
, argTys
, einfo
, extParamInfos
,
522 const CGFunctionInfo
&
523 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType
,
524 const CallArgList
&args
) {
525 auto argTypes
= getArgTypesForCall(Context
, args
);
526 FunctionType::ExtInfo einfo
;
528 return arrangeLLVMFunctionInfo(GetReturnType(returnType
), FnInfoOpts::None
,
529 argTypes
, einfo
, {}, RequiredArgs::All
);
532 const CGFunctionInfo
&
533 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD
) {
534 // FIXME: Do we need to handle ObjCMethodDecl?
535 const FunctionDecl
*FD
= cast
<FunctionDecl
>(GD
.getDecl());
537 if (isa
<CXXConstructorDecl
>(GD
.getDecl()) ||
538 isa
<CXXDestructorDecl
>(GD
.getDecl()))
539 return arrangeCXXStructorDeclaration(GD
);
541 return arrangeFunctionDeclaration(FD
);
544 /// Arrange a thunk that takes 'this' as the first parameter followed by
545 /// varargs. Return a void pointer, regardless of the actual return type.
546 /// The body of the thunk will end in a musttail call to a function of the
547 /// correct type, and the caller will bitcast the function to the correct
549 const CGFunctionInfo
&
550 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl
*MD
) {
551 assert(MD
->isVirtual() && "only methods have thunks");
552 CanQual
<FunctionProtoType
> FTP
= GetFormalType(MD
);
553 CanQualType ArgTys
[] = {DeriveThisType(MD
->getParent(), MD
)};
554 return arrangeLLVMFunctionInfo(Context
.VoidTy
, FnInfoOpts::None
, ArgTys
,
555 FTP
->getExtInfo(), {}, RequiredArgs(1));
558 const CGFunctionInfo
&
559 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl
*CD
,
561 assert(CT
== Ctor_CopyingClosure
|| CT
== Ctor_DefaultClosure
);
563 CanQual
<FunctionProtoType
> FTP
= GetFormalType(CD
);
564 SmallVector
<CanQualType
, 2> ArgTys
;
565 const CXXRecordDecl
*RD
= CD
->getParent();
566 ArgTys
.push_back(DeriveThisType(RD
, CD
));
567 if (CT
== Ctor_CopyingClosure
)
568 ArgTys
.push_back(*FTP
->param_type_begin());
569 if (RD
->getNumVBases() > 0)
570 ArgTys
.push_back(Context
.IntTy
);
571 CallingConv CC
= Context
.getDefaultCallingConvention(
572 /*IsVariadic=*/false, /*IsCXXMethod=*/true);
573 return arrangeLLVMFunctionInfo(Context
.VoidTy
, FnInfoOpts::IsInstanceMethod
,
574 ArgTys
, FunctionType::ExtInfo(CC
), {},
578 /// Arrange a call as unto a free function, except possibly with an
579 /// additional number of formal parameters considered required.
580 static const CGFunctionInfo
&
581 arrangeFreeFunctionLikeCall(CodeGenTypes
&CGT
,
583 const CallArgList
&args
,
584 const FunctionType
*fnType
,
585 unsigned numExtraRequiredArgs
,
587 assert(args
.size() >= numExtraRequiredArgs
);
589 llvm::SmallVector
<FunctionProtoType::ExtParameterInfo
, 16> paramInfos
;
591 // In most cases, there are no optional arguments.
592 RequiredArgs required
= RequiredArgs::All
;
594 // If we have a variadic prototype, the required arguments are the
595 // extra prefix plus the arguments in the prototype.
596 if (const FunctionProtoType
*proto
= dyn_cast
<FunctionProtoType
>(fnType
)) {
597 if (proto
->isVariadic())
598 required
= RequiredArgs::forPrototypePlus(proto
, numExtraRequiredArgs
);
600 if (proto
->hasExtParameterInfos())
601 addExtParameterInfosForCall(paramInfos
, proto
, numExtraRequiredArgs
,
604 // If we don't have a prototype at all, but we're supposed to
605 // explicitly use the variadic convention for unprototyped calls,
606 // treat all of the arguments as required but preserve the nominal
607 // possibility of variadics.
608 } else if (CGM
.getTargetCodeGenInfo()
609 .isNoProtoCallVariadic(args
,
610 cast
<FunctionNoProtoType
>(fnType
))) {
611 required
= RequiredArgs(args
.size());
615 SmallVector
<CanQualType
, 16> argTypes
;
616 for (const auto &arg
: args
)
617 argTypes
.push_back(CGT
.getContext().getCanonicalParamType(arg
.Ty
));
618 FnInfoOpts opts
= chainCall
? FnInfoOpts::IsChainCall
: FnInfoOpts::None
;
619 return CGT
.arrangeLLVMFunctionInfo(GetReturnType(fnType
->getReturnType()),
620 opts
, argTypes
, fnType
->getExtInfo(),
621 paramInfos
, required
);
624 /// Figure out the rules for calling a function with the given formal
625 /// type using the given arguments. The arguments are necessary
626 /// because the function might be unprototyped, in which case it's
627 /// target-dependent in crazy ways.
628 const CGFunctionInfo
&
629 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList
&args
,
630 const FunctionType
*fnType
,
632 return arrangeFreeFunctionLikeCall(*this, CGM
, args
, fnType
,
633 chainCall
? 1 : 0, chainCall
);
636 /// A block function is essentially a free function with an
637 /// extra implicit argument.
638 const CGFunctionInfo
&
639 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList
&args
,
640 const FunctionType
*fnType
) {
641 return arrangeFreeFunctionLikeCall(*this, CGM
, args
, fnType
, 1,
642 /*chainCall=*/false);
645 const CGFunctionInfo
&
646 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType
*proto
,
647 const FunctionArgList
¶ms
) {
648 auto paramInfos
= getExtParameterInfosForCall(proto
, 1, params
.size());
649 auto argTypes
= getArgTypesForDeclaration(Context
, params
);
651 return arrangeLLVMFunctionInfo(GetReturnType(proto
->getReturnType()),
652 FnInfoOpts::None
, argTypes
,
653 proto
->getExtInfo(), paramInfos
,
654 RequiredArgs::forPrototypePlus(proto
, 1));
657 const CGFunctionInfo
&
658 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType
,
659 const CallArgList
&args
) {
661 SmallVector
<CanQualType
, 16> argTypes
;
662 for (const auto &Arg
: args
)
663 argTypes
.push_back(Context
.getCanonicalParamType(Arg
.Ty
));
664 return arrangeLLVMFunctionInfo(GetReturnType(resultType
), FnInfoOpts::None
,
665 argTypes
, FunctionType::ExtInfo(),
666 /*paramInfos=*/{}, RequiredArgs::All
);
669 const CGFunctionInfo
&
670 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType
,
671 const FunctionArgList
&args
) {
672 auto argTypes
= getArgTypesForDeclaration(Context
, args
);
674 return arrangeLLVMFunctionInfo(GetReturnType(resultType
), FnInfoOpts::None
,
675 argTypes
, FunctionType::ExtInfo(), {},
679 const CGFunctionInfo
&
680 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType
,
681 ArrayRef
<CanQualType
> argTypes
) {
682 return arrangeLLVMFunctionInfo(resultType
, FnInfoOpts::None
, argTypes
,
683 FunctionType::ExtInfo(), {},
687 /// Arrange a call to a C++ method, passing the given arguments.
689 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
690 /// does not count `this`.
691 const CGFunctionInfo
&
692 CodeGenTypes::arrangeCXXMethodCall(const CallArgList
&args
,
693 const FunctionProtoType
*proto
,
694 RequiredArgs required
,
695 unsigned numPrefixArgs
) {
696 assert(numPrefixArgs
+ 1 <= args
.size() &&
697 "Emitting a call with less args than the required prefix?");
698 // Add one to account for `this`. It's a bit awkward here, but we don't count
699 // `this` in similar places elsewhere.
701 getExtParameterInfosForCall(proto
, numPrefixArgs
+ 1, args
.size());
704 auto argTypes
= getArgTypesForCall(Context
, args
);
706 FunctionType::ExtInfo info
= proto
->getExtInfo();
707 return arrangeLLVMFunctionInfo(GetReturnType(proto
->getReturnType()),
708 FnInfoOpts::IsInstanceMethod
, argTypes
, info
,
709 paramInfos
, required
);
712 const CGFunctionInfo
&CodeGenTypes::arrangeNullaryFunction() {
713 return arrangeLLVMFunctionInfo(getContext().VoidTy
, FnInfoOpts::None
,
714 std::nullopt
, FunctionType::ExtInfo(), {},
718 const CGFunctionInfo
&
719 CodeGenTypes::arrangeCall(const CGFunctionInfo
&signature
,
720 const CallArgList
&args
) {
721 assert(signature
.arg_size() <= args
.size());
722 if (signature
.arg_size() == args
.size())
725 SmallVector
<FunctionProtoType::ExtParameterInfo
, 16> paramInfos
;
726 auto sigParamInfos
= signature
.getExtParameterInfos();
727 if (!sigParamInfos
.empty()) {
728 paramInfos
.append(sigParamInfos
.begin(), sigParamInfos
.end());
729 paramInfos
.resize(args
.size());
732 auto argTypes
= getArgTypesForCall(Context
, args
);
734 assert(signature
.getRequiredArgs().allowsOptionalArgs());
735 FnInfoOpts opts
= FnInfoOpts::None
;
736 if (signature
.isInstanceMethod())
737 opts
|= FnInfoOpts::IsInstanceMethod
;
738 if (signature
.isChainCall())
739 opts
|= FnInfoOpts::IsChainCall
;
740 if (signature
.isDelegateCall())
741 opts
|= FnInfoOpts::IsDelegateCall
;
742 return arrangeLLVMFunctionInfo(signature
.getReturnType(), opts
, argTypes
,
743 signature
.getExtInfo(), paramInfos
,
744 signature
.getRequiredArgs());
749 void computeSPIRKernelABIInfo(CodeGenModule
&CGM
, CGFunctionInfo
&FI
);
753 /// Arrange the argument and result information for an abstract value
754 /// of a given function type. This is the method which all of the
755 /// above functions ultimately defer to.
756 const CGFunctionInfo
&CodeGenTypes::arrangeLLVMFunctionInfo(
757 CanQualType resultType
, FnInfoOpts opts
, ArrayRef
<CanQualType
> argTypes
,
758 FunctionType::ExtInfo info
,
759 ArrayRef
<FunctionProtoType::ExtParameterInfo
> paramInfos
,
760 RequiredArgs required
) {
761 assert(llvm::all_of(argTypes
,
762 [](CanQualType T
) { return T
.isCanonicalAsParam(); }));
764 // Lookup or create unique function info.
765 llvm::FoldingSetNodeID ID
;
766 bool isInstanceMethod
=
767 (opts
& FnInfoOpts::IsInstanceMethod
) == FnInfoOpts::IsInstanceMethod
;
769 (opts
& FnInfoOpts::IsChainCall
) == FnInfoOpts::IsChainCall
;
770 bool isDelegateCall
=
771 (opts
& FnInfoOpts::IsDelegateCall
) == FnInfoOpts::IsDelegateCall
;
772 CGFunctionInfo::Profile(ID
, isInstanceMethod
, isChainCall
, isDelegateCall
,
773 info
, paramInfos
, required
, resultType
, argTypes
);
775 void *insertPos
= nullptr;
776 CGFunctionInfo
*FI
= FunctionInfos
.FindNodeOrInsertPos(ID
, insertPos
);
780 unsigned CC
= ClangCallConvToLLVMCallConv(info
.getCC());
782 // Construct the function info. We co-allocate the ArgInfos.
783 FI
= CGFunctionInfo::create(CC
, isInstanceMethod
, isChainCall
, isDelegateCall
,
784 info
, paramInfos
, resultType
, argTypes
, required
);
785 FunctionInfos
.InsertNode(FI
, insertPos
);
787 bool inserted
= FunctionsBeingProcessed
.insert(FI
).second
;
789 assert(inserted
&& "Recursively being processed?");
791 // Compute ABI information.
792 if (CC
== llvm::CallingConv::SPIR_KERNEL
) {
793 // Force target independent argument handling for the host visible
795 computeSPIRKernelABIInfo(CGM
, *FI
);
796 } else if (info
.getCC() == CC_Swift
|| info
.getCC() == CC_SwiftAsync
) {
797 swiftcall::computeABIInfo(CGM
, *FI
);
799 getABIInfo().computeInfo(*FI
);
802 // Loop over all of the computed argument and return value info. If any of
803 // them are direct or extend without a specified coerce type, specify the
805 ABIArgInfo
&retInfo
= FI
->getReturnInfo();
806 if (retInfo
.canHaveCoerceToType() && retInfo
.getCoerceToType() == nullptr)
807 retInfo
.setCoerceToType(ConvertType(FI
->getReturnType()));
809 for (auto &I
: FI
->arguments())
810 if (I
.info
.canHaveCoerceToType() && I
.info
.getCoerceToType() == nullptr)
811 I
.info
.setCoerceToType(ConvertType(I
.type
));
813 bool erased
= FunctionsBeingProcessed
.erase(FI
); (void)erased
;
814 assert(erased
&& "Not in set?");
819 CGFunctionInfo
*CGFunctionInfo::create(unsigned llvmCC
, bool instanceMethod
,
820 bool chainCall
, bool delegateCall
,
821 const FunctionType::ExtInfo
&info
,
822 ArrayRef
<ExtParameterInfo
> paramInfos
,
823 CanQualType resultType
,
824 ArrayRef
<CanQualType
> argTypes
,
825 RequiredArgs required
) {
826 assert(paramInfos
.empty() || paramInfos
.size() == argTypes
.size());
827 assert(!required
.allowsOptionalArgs() ||
828 required
.getNumRequiredArgs() <= argTypes
.size());
831 operator new(totalSizeToAlloc
<ArgInfo
, ExtParameterInfo
>(
832 argTypes
.size() + 1, paramInfos
.size()));
834 CGFunctionInfo
*FI
= new(buffer
) CGFunctionInfo();
835 FI
->CallingConvention
= llvmCC
;
836 FI
->EffectiveCallingConvention
= llvmCC
;
837 FI
->ASTCallingConvention
= info
.getCC();
838 FI
->InstanceMethod
= instanceMethod
;
839 FI
->ChainCall
= chainCall
;
840 FI
->DelegateCall
= delegateCall
;
841 FI
->CmseNSCall
= info
.getCmseNSCall();
842 FI
->NoReturn
= info
.getNoReturn();
843 FI
->ReturnsRetained
= info
.getProducesResult();
844 FI
->NoCallerSavedRegs
= info
.getNoCallerSavedRegs();
845 FI
->NoCfCheck
= info
.getNoCfCheck();
846 FI
->Required
= required
;
847 FI
->HasRegParm
= info
.getHasRegParm();
848 FI
->RegParm
= info
.getRegParm();
849 FI
->ArgStruct
= nullptr;
850 FI
->ArgStructAlign
= 0;
851 FI
->NumArgs
= argTypes
.size();
852 FI
->HasExtParameterInfos
= !paramInfos
.empty();
853 FI
->getArgsBuffer()[0].type
= resultType
;
854 FI
->MaxVectorWidth
= 0;
855 for (unsigned i
= 0, e
= argTypes
.size(); i
!= e
; ++i
)
856 FI
->getArgsBuffer()[i
+ 1].type
= argTypes
[i
];
857 for (unsigned i
= 0, e
= paramInfos
.size(); i
!= e
; ++i
)
858 FI
->getExtParameterInfosBuffer()[i
] = paramInfos
[i
];
865 // ABIArgInfo::Expand implementation.
867 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
868 struct TypeExpansion
{
869 enum TypeExpansionKind
{
870 // Elements of constant arrays are expanded recursively.
872 // Record fields are expanded recursively (but if record is a union, only
873 // the field with the largest size is expanded).
875 // For complex types, real and imaginary parts are expanded recursively.
877 // All other types are not expandable.
881 const TypeExpansionKind Kind
;
883 TypeExpansion(TypeExpansionKind K
) : Kind(K
) {}
884 virtual ~TypeExpansion() {}
887 struct ConstantArrayExpansion
: TypeExpansion
{
891 ConstantArrayExpansion(QualType EltTy
, uint64_t NumElts
)
892 : TypeExpansion(TEK_ConstantArray
), EltTy(EltTy
), NumElts(NumElts
) {}
893 static bool classof(const TypeExpansion
*TE
) {
894 return TE
->Kind
== TEK_ConstantArray
;
898 struct RecordExpansion
: TypeExpansion
{
899 SmallVector
<const CXXBaseSpecifier
*, 1> Bases
;
901 SmallVector
<const FieldDecl
*, 1> Fields
;
903 RecordExpansion(SmallVector
<const CXXBaseSpecifier
*, 1> &&Bases
,
904 SmallVector
<const FieldDecl
*, 1> &&Fields
)
905 : TypeExpansion(TEK_Record
), Bases(std::move(Bases
)),
906 Fields(std::move(Fields
)) {}
907 static bool classof(const TypeExpansion
*TE
) {
908 return TE
->Kind
== TEK_Record
;
912 struct ComplexExpansion
: TypeExpansion
{
915 ComplexExpansion(QualType EltTy
) : TypeExpansion(TEK_Complex
), EltTy(EltTy
) {}
916 static bool classof(const TypeExpansion
*TE
) {
917 return TE
->Kind
== TEK_Complex
;
921 struct NoExpansion
: TypeExpansion
{
922 NoExpansion() : TypeExpansion(TEK_None
) {}
923 static bool classof(const TypeExpansion
*TE
) {
924 return TE
->Kind
== TEK_None
;
929 static std::unique_ptr
<TypeExpansion
>
930 getTypeExpansion(QualType Ty
, const ASTContext
&Context
) {
931 if (const ConstantArrayType
*AT
= Context
.getAsConstantArrayType(Ty
)) {
932 return std::make_unique
<ConstantArrayExpansion
>(
933 AT
->getElementType(), AT
->getSize().getZExtValue());
935 if (const RecordType
*RT
= Ty
->getAs
<RecordType
>()) {
936 SmallVector
<const CXXBaseSpecifier
*, 1> Bases
;
937 SmallVector
<const FieldDecl
*, 1> Fields
;
938 const RecordDecl
*RD
= RT
->getDecl();
939 assert(!RD
->hasFlexibleArrayMember() &&
940 "Cannot expand structure with flexible array.");
942 // Unions can be here only in degenerative cases - all the fields are same
943 // after flattening. Thus we have to use the "largest" field.
944 const FieldDecl
*LargestFD
= nullptr;
945 CharUnits UnionSize
= CharUnits::Zero();
947 for (const auto *FD
: RD
->fields()) {
948 if (FD
->isZeroLengthBitField(Context
))
950 assert(!FD
->isBitField() &&
951 "Cannot expand structure with bit-field members.");
952 CharUnits FieldSize
= Context
.getTypeSizeInChars(FD
->getType());
953 if (UnionSize
< FieldSize
) {
954 UnionSize
= FieldSize
;
959 Fields
.push_back(LargestFD
);
961 if (const auto *CXXRD
= dyn_cast
<CXXRecordDecl
>(RD
)) {
962 assert(!CXXRD
->isDynamicClass() &&
963 "cannot expand vtable pointers in dynamic classes");
964 llvm::append_range(Bases
, llvm::make_pointer_range(CXXRD
->bases()));
967 for (const auto *FD
: RD
->fields()) {
968 if (FD
->isZeroLengthBitField(Context
))
970 assert(!FD
->isBitField() &&
971 "Cannot expand structure with bit-field members.");
972 Fields
.push_back(FD
);
975 return std::make_unique
<RecordExpansion
>(std::move(Bases
),
978 if (const ComplexType
*CT
= Ty
->getAs
<ComplexType
>()) {
979 return std::make_unique
<ComplexExpansion
>(CT
->getElementType());
981 return std::make_unique
<NoExpansion
>();
984 static int getExpansionSize(QualType Ty
, const ASTContext
&Context
) {
985 auto Exp
= getTypeExpansion(Ty
, Context
);
986 if (auto CAExp
= dyn_cast
<ConstantArrayExpansion
>(Exp
.get())) {
987 return CAExp
->NumElts
* getExpansionSize(CAExp
->EltTy
, Context
);
989 if (auto RExp
= dyn_cast
<RecordExpansion
>(Exp
.get())) {
991 for (auto BS
: RExp
->Bases
)
992 Res
+= getExpansionSize(BS
->getType(), Context
);
993 for (auto FD
: RExp
->Fields
)
994 Res
+= getExpansionSize(FD
->getType(), Context
);
997 if (isa
<ComplexExpansion
>(Exp
.get()))
999 assert(isa
<NoExpansion
>(Exp
.get()));
1004 CodeGenTypes::getExpandedTypes(QualType Ty
,
1005 SmallVectorImpl
<llvm::Type
*>::iterator
&TI
) {
1006 auto Exp
= getTypeExpansion(Ty
, Context
);
1007 if (auto CAExp
= dyn_cast
<ConstantArrayExpansion
>(Exp
.get())) {
1008 for (int i
= 0, n
= CAExp
->NumElts
; i
< n
; i
++) {
1009 getExpandedTypes(CAExp
->EltTy
, TI
);
1011 } else if (auto RExp
= dyn_cast
<RecordExpansion
>(Exp
.get())) {
1012 for (auto BS
: RExp
->Bases
)
1013 getExpandedTypes(BS
->getType(), TI
);
1014 for (auto FD
: RExp
->Fields
)
1015 getExpandedTypes(FD
->getType(), TI
);
1016 } else if (auto CExp
= dyn_cast
<ComplexExpansion
>(Exp
.get())) {
1017 llvm::Type
*EltTy
= ConvertType(CExp
->EltTy
);
1021 assert(isa
<NoExpansion
>(Exp
.get()));
1022 *TI
++ = ConvertType(Ty
);
1026 static void forConstantArrayExpansion(CodeGenFunction
&CGF
,
1027 ConstantArrayExpansion
*CAE
,
1029 llvm::function_ref
<void(Address
)> Fn
) {
1030 CharUnits EltSize
= CGF
.getContext().getTypeSizeInChars(CAE
->EltTy
);
1031 CharUnits EltAlign
=
1032 BaseAddr
.getAlignment().alignmentOfArrayElement(EltSize
);
1033 llvm::Type
*EltTy
= CGF
.ConvertTypeForMem(CAE
->EltTy
);
1035 for (int i
= 0, n
= CAE
->NumElts
; i
< n
; i
++) {
1036 llvm::Value
*EltAddr
= CGF
.Builder
.CreateConstGEP2_32(
1037 BaseAddr
.getElementType(), BaseAddr
.getPointer(), 0, i
);
1038 Fn(Address(EltAddr
, EltTy
, EltAlign
));
1042 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty
, LValue LV
,
1043 llvm::Function::arg_iterator
&AI
) {
1044 assert(LV
.isSimple() &&
1045 "Unexpected non-simple lvalue during struct expansion.");
1047 auto Exp
= getTypeExpansion(Ty
, getContext());
1048 if (auto CAExp
= dyn_cast
<ConstantArrayExpansion
>(Exp
.get())) {
1049 forConstantArrayExpansion(
1050 *this, CAExp
, LV
.getAddress(*this), [&](Address EltAddr
) {
1051 LValue LV
= MakeAddrLValue(EltAddr
, CAExp
->EltTy
);
1052 ExpandTypeFromArgs(CAExp
->EltTy
, LV
, AI
);
1054 } else if (auto RExp
= dyn_cast
<RecordExpansion
>(Exp
.get())) {
1055 Address This
= LV
.getAddress(*this);
1056 for (const CXXBaseSpecifier
*BS
: RExp
->Bases
) {
1057 // Perform a single step derived-to-base conversion.
1059 GetAddressOfBaseClass(This
, Ty
->getAsCXXRecordDecl(), &BS
, &BS
+ 1,
1060 /*NullCheckValue=*/false, SourceLocation());
1061 LValue SubLV
= MakeAddrLValue(Base
, BS
->getType());
1063 // Recurse onto bases.
1064 ExpandTypeFromArgs(BS
->getType(), SubLV
, AI
);
1066 for (auto FD
: RExp
->Fields
) {
1067 // FIXME: What are the right qualifiers here?
1068 LValue SubLV
= EmitLValueForFieldInitialization(LV
, FD
);
1069 ExpandTypeFromArgs(FD
->getType(), SubLV
, AI
);
1071 } else if (isa
<ComplexExpansion
>(Exp
.get())) {
1072 auto realValue
= &*AI
++;
1073 auto imagValue
= &*AI
++;
1074 EmitStoreOfComplex(ComplexPairTy(realValue
, imagValue
), LV
, /*init*/ true);
1076 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1078 assert(isa
<NoExpansion
>(Exp
.get()));
1079 llvm::Value
*Arg
= &*AI
++;
1080 if (LV
.isBitField()) {
1081 EmitStoreThroughLValue(RValue::get(Arg
), LV
);
1083 // TODO: currently there are some places are inconsistent in what LLVM
1084 // pointer type they use (see D118744). Once clang uses opaque pointers
1085 // all LLVM pointer types will be the same and we can remove this check.
1086 if (Arg
->getType()->isPointerTy()) {
1087 Address Addr
= LV
.getAddress(*this);
1088 Arg
= Builder
.CreateBitCast(Arg
, Addr
.getElementType());
1090 EmitStoreOfScalar(Arg
, LV
);
1095 void CodeGenFunction::ExpandTypeToArgs(
1096 QualType Ty
, CallArg Arg
, llvm::FunctionType
*IRFuncTy
,
1097 SmallVectorImpl
<llvm::Value
*> &IRCallArgs
, unsigned &IRCallArgPos
) {
1098 auto Exp
= getTypeExpansion(Ty
, getContext());
1099 if (auto CAExp
= dyn_cast
<ConstantArrayExpansion
>(Exp
.get())) {
1100 Address Addr
= Arg
.hasLValue() ? Arg
.getKnownLValue().getAddress(*this)
1101 : Arg
.getKnownRValue().getAggregateAddress();
1102 forConstantArrayExpansion(
1103 *this, CAExp
, Addr
, [&](Address EltAddr
) {
1104 CallArg EltArg
= CallArg(
1105 convertTempToRValue(EltAddr
, CAExp
->EltTy
, SourceLocation()),
1107 ExpandTypeToArgs(CAExp
->EltTy
, EltArg
, IRFuncTy
, IRCallArgs
,
1110 } else if (auto RExp
= dyn_cast
<RecordExpansion
>(Exp
.get())) {
1111 Address This
= Arg
.hasLValue() ? Arg
.getKnownLValue().getAddress(*this)
1112 : Arg
.getKnownRValue().getAggregateAddress();
1113 for (const CXXBaseSpecifier
*BS
: RExp
->Bases
) {
1114 // Perform a single step derived-to-base conversion.
1116 GetAddressOfBaseClass(This
, Ty
->getAsCXXRecordDecl(), &BS
, &BS
+ 1,
1117 /*NullCheckValue=*/false, SourceLocation());
1118 CallArg BaseArg
= CallArg(RValue::getAggregate(Base
), BS
->getType());
1120 // Recurse onto bases.
1121 ExpandTypeToArgs(BS
->getType(), BaseArg
, IRFuncTy
, IRCallArgs
,
1125 LValue LV
= MakeAddrLValue(This
, Ty
);
1126 for (auto FD
: RExp
->Fields
) {
1128 CallArg(EmitRValueForField(LV
, FD
, SourceLocation()), FD
->getType());
1129 ExpandTypeToArgs(FD
->getType(), FldArg
, IRFuncTy
, IRCallArgs
,
1132 } else if (isa
<ComplexExpansion
>(Exp
.get())) {
1133 ComplexPairTy CV
= Arg
.getKnownRValue().getComplexVal();
1134 IRCallArgs
[IRCallArgPos
++] = CV
.first
;
1135 IRCallArgs
[IRCallArgPos
++] = CV
.second
;
1137 assert(isa
<NoExpansion
>(Exp
.get()));
1138 auto RV
= Arg
.getKnownRValue();
1139 assert(RV
.isScalar() &&
1140 "Unexpected non-scalar rvalue during struct expansion.");
1142 // Insert a bitcast as needed.
1143 llvm::Value
*V
= RV
.getScalarVal();
1144 if (IRCallArgPos
< IRFuncTy
->getNumParams() &&
1145 V
->getType() != IRFuncTy
->getParamType(IRCallArgPos
))
1146 V
= Builder
.CreateBitCast(V
, IRFuncTy
->getParamType(IRCallArgPos
));
1148 IRCallArgs
[IRCallArgPos
++] = V
;
1152 /// Create a temporary allocation for the purposes of coercion.
1153 static Address
CreateTempAllocaForCoercion(CodeGenFunction
&CGF
, llvm::Type
*Ty
,
1155 const Twine
&Name
= "tmp") {
1156 // Don't use an alignment that's worse than what LLVM would prefer.
1157 auto PrefAlign
= CGF
.CGM
.getDataLayout().getPrefTypeAlign(Ty
);
1158 CharUnits Align
= std::max(MinAlign
, CharUnits::fromQuantity(PrefAlign
));
1160 return CGF
.CreateTempAlloca(Ty
, Align
, Name
+ ".coerce");
1163 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1164 /// accessing some number of bytes out of it, try to gep into the struct to get
1165 /// at its inner goodness. Dive as deep as possible without entering an element
1166 /// with an in-memory size smaller than DstSize.
1168 EnterStructPointerForCoercedAccess(Address SrcPtr
,
1169 llvm::StructType
*SrcSTy
,
1170 uint64_t DstSize
, CodeGenFunction
&CGF
) {
1171 // We can't dive into a zero-element struct.
1172 if (SrcSTy
->getNumElements() == 0) return SrcPtr
;
1174 llvm::Type
*FirstElt
= SrcSTy
->getElementType(0);
1176 // If the first elt is at least as large as what we're looking for, or if the
1177 // first element is the same size as the whole struct, we can enter it. The
1178 // comparison must be made on the store size and not the alloca size. Using
1179 // the alloca size may overstate the size of the load.
1180 uint64_t FirstEltSize
=
1181 CGF
.CGM
.getDataLayout().getTypeStoreSize(FirstElt
);
1182 if (FirstEltSize
< DstSize
&&
1183 FirstEltSize
< CGF
.CGM
.getDataLayout().getTypeStoreSize(SrcSTy
))
1186 // GEP into the first element.
1187 SrcPtr
= CGF
.Builder
.CreateStructGEP(SrcPtr
, 0, "coerce.dive");
1189 // If the first element is a struct, recurse.
1190 llvm::Type
*SrcTy
= SrcPtr
.getElementType();
1191 if (llvm::StructType
*SrcSTy
= dyn_cast
<llvm::StructType
>(SrcTy
))
1192 return EnterStructPointerForCoercedAccess(SrcPtr
, SrcSTy
, DstSize
, CGF
);
1197 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1198 /// are either integers or pointers. This does a truncation of the value if it
1199 /// is too large or a zero extension if it is too small.
1201 /// This behaves as if the value were coerced through memory, so on big-endian
1202 /// targets the high bits are preserved in a truncation, while little-endian
1203 /// targets preserve the low bits.
1204 static llvm::Value
*CoerceIntOrPtrToIntOrPtr(llvm::Value
*Val
,
1206 CodeGenFunction
&CGF
) {
1207 if (Val
->getType() == Ty
)
1210 if (isa
<llvm::PointerType
>(Val
->getType())) {
1211 // If this is Pointer->Pointer avoid conversion to and from int.
1212 if (isa
<llvm::PointerType
>(Ty
))
1213 return CGF
.Builder
.CreateBitCast(Val
, Ty
, "coerce.val");
1215 // Convert the pointer to an integer so we can play with its width.
1216 Val
= CGF
.Builder
.CreatePtrToInt(Val
, CGF
.IntPtrTy
, "coerce.val.pi");
1219 llvm::Type
*DestIntTy
= Ty
;
1220 if (isa
<llvm::PointerType
>(DestIntTy
))
1221 DestIntTy
= CGF
.IntPtrTy
;
1223 if (Val
->getType() != DestIntTy
) {
1224 const llvm::DataLayout
&DL
= CGF
.CGM
.getDataLayout();
1225 if (DL
.isBigEndian()) {
1226 // Preserve the high bits on big-endian targets.
1227 // That is what memory coercion does.
1228 uint64_t SrcSize
= DL
.getTypeSizeInBits(Val
->getType());
1229 uint64_t DstSize
= DL
.getTypeSizeInBits(DestIntTy
);
1231 if (SrcSize
> DstSize
) {
1232 Val
= CGF
.Builder
.CreateLShr(Val
, SrcSize
- DstSize
, "coerce.highbits");
1233 Val
= CGF
.Builder
.CreateTrunc(Val
, DestIntTy
, "coerce.val.ii");
1235 Val
= CGF
.Builder
.CreateZExt(Val
, DestIntTy
, "coerce.val.ii");
1236 Val
= CGF
.Builder
.CreateShl(Val
, DstSize
- SrcSize
, "coerce.highbits");
1239 // Little-endian targets preserve the low bits. No shifts required.
1240 Val
= CGF
.Builder
.CreateIntCast(Val
, DestIntTy
, false, "coerce.val.ii");
1244 if (isa
<llvm::PointerType
>(Ty
))
1245 Val
= CGF
.Builder
.CreateIntToPtr(Val
, Ty
, "coerce.val.ip");
1251 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1252 /// a pointer to an object of type \arg Ty, known to be aligned to
1253 /// \arg SrcAlign bytes.
1255 /// This safely handles the case when the src type is smaller than the
1256 /// destination type; in this situation the values of bits which not
1257 /// present in the src are undefined.
1258 static llvm::Value
*CreateCoercedLoad(Address Src
, llvm::Type
*Ty
,
1259 CodeGenFunction
&CGF
) {
1260 llvm::Type
*SrcTy
= Src
.getElementType();
1262 // If SrcTy and Ty are the same, just do a load.
1264 return CGF
.Builder
.CreateLoad(Src
);
1266 llvm::TypeSize DstSize
= CGF
.CGM
.getDataLayout().getTypeAllocSize(Ty
);
1268 if (llvm::StructType
*SrcSTy
= dyn_cast
<llvm::StructType
>(SrcTy
)) {
1269 Src
= EnterStructPointerForCoercedAccess(Src
, SrcSTy
,
1270 DstSize
.getFixedValue(), CGF
);
1271 SrcTy
= Src
.getElementType();
1274 llvm::TypeSize SrcSize
= CGF
.CGM
.getDataLayout().getTypeAllocSize(SrcTy
);
1276 // If the source and destination are integer or pointer types, just do an
1277 // extension or truncation to the desired type.
1278 if ((isa
<llvm::IntegerType
>(Ty
) || isa
<llvm::PointerType
>(Ty
)) &&
1279 (isa
<llvm::IntegerType
>(SrcTy
) || isa
<llvm::PointerType
>(SrcTy
))) {
1280 llvm::Value
*Load
= CGF
.Builder
.CreateLoad(Src
);
1281 return CoerceIntOrPtrToIntOrPtr(Load
, Ty
, CGF
);
1284 // If load is legal, just bitcast the src pointer.
1285 if (!SrcSize
.isScalable() && !DstSize
.isScalable() &&
1286 SrcSize
.getFixedValue() >= DstSize
.getFixedValue()) {
1287 // Generally SrcSize is never greater than DstSize, since this means we are
1288 // losing bits. However, this can happen in cases where the structure has
1289 // additional padding, for example due to a user specified alignment.
1291 // FIXME: Assert that we aren't truncating non-padding bits when have access
1292 // to that information.
1293 Src
= Src
.withElementType(Ty
);
1294 return CGF
.Builder
.CreateLoad(Src
);
1297 // If coercing a fixed vector to a scalable vector for ABI compatibility, and
1298 // the types match, use the llvm.vector.insert intrinsic to perform the
1300 if (auto *ScalableDst
= dyn_cast
<llvm::ScalableVectorType
>(Ty
)) {
1301 if (auto *FixedSrc
= dyn_cast
<llvm::FixedVectorType
>(SrcTy
)) {
1302 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
1303 // vector, use a vector insert and bitcast the result.
1304 bool NeedsBitcast
= false;
1306 llvm::ScalableVectorType::get(CGF
.Builder
.getInt1Ty(), 16);
1307 llvm::Type
*OrigType
= Ty
;
1308 if (ScalableDst
== PredType
&&
1309 FixedSrc
->getElementType() == CGF
.Builder
.getInt8Ty()) {
1310 ScalableDst
= llvm::ScalableVectorType::get(CGF
.Builder
.getInt8Ty(), 2);
1311 NeedsBitcast
= true;
1313 if (ScalableDst
->getElementType() == FixedSrc
->getElementType()) {
1314 auto *Load
= CGF
.Builder
.CreateLoad(Src
);
1315 auto *UndefVec
= llvm::UndefValue::get(ScalableDst
);
1316 auto *Zero
= llvm::Constant::getNullValue(CGF
.CGM
.Int64Ty
);
1317 llvm::Value
*Result
= CGF
.Builder
.CreateInsertVector(
1318 ScalableDst
, UndefVec
, Load
, Zero
, "cast.scalable");
1320 Result
= CGF
.Builder
.CreateBitCast(Result
, OrigType
);
1326 // Otherwise do coercion through memory. This is stupid, but simple.
1328 CreateTempAllocaForCoercion(CGF
, Ty
, Src
.getAlignment(), Src
.getName());
1329 CGF
.Builder
.CreateMemCpy(
1330 Tmp
.getPointer(), Tmp
.getAlignment().getAsAlign(), Src
.getPointer(),
1331 Src
.getAlignment().getAsAlign(),
1332 llvm::ConstantInt::get(CGF
.IntPtrTy
, SrcSize
.getKnownMinValue()));
1333 return CGF
.Builder
.CreateLoad(Tmp
);
1336 // Function to store a first-class aggregate into memory. We prefer to
1337 // store the elements rather than the aggregate to be more friendly to
1339 // FIXME: Do we need to recurse here?
1340 void CodeGenFunction::EmitAggregateStore(llvm::Value
*Val
, Address Dest
,
1341 bool DestIsVolatile
) {
1342 // Prefer scalar stores to first-class aggregate stores.
1343 if (llvm::StructType
*STy
= dyn_cast
<llvm::StructType
>(Val
->getType())) {
1344 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
1345 Address EltPtr
= Builder
.CreateStructGEP(Dest
, i
);
1346 llvm::Value
*Elt
= Builder
.CreateExtractValue(Val
, i
);
1347 Builder
.CreateStore(Elt
, EltPtr
, DestIsVolatile
);
1350 Builder
.CreateStore(Val
, Dest
, DestIsVolatile
);
1354 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1355 /// where the source and destination may have different types. The
1356 /// destination is known to be aligned to \arg DstAlign bytes.
1358 /// This safely handles the case when the src type is larger than the
1359 /// destination type; the upper bits of the src will be lost.
1360 static void CreateCoercedStore(llvm::Value
*Src
,
1363 CodeGenFunction
&CGF
) {
1364 llvm::Type
*SrcTy
= Src
->getType();
1365 llvm::Type
*DstTy
= Dst
.getElementType();
1366 if (SrcTy
== DstTy
) {
1367 CGF
.Builder
.CreateStore(Src
, Dst
, DstIsVolatile
);
1371 llvm::TypeSize SrcSize
= CGF
.CGM
.getDataLayout().getTypeAllocSize(SrcTy
);
1373 if (llvm::StructType
*DstSTy
= dyn_cast
<llvm::StructType
>(DstTy
)) {
1374 Dst
= EnterStructPointerForCoercedAccess(Dst
, DstSTy
,
1375 SrcSize
.getFixedValue(), CGF
);
1376 DstTy
= Dst
.getElementType();
1379 llvm::PointerType
*SrcPtrTy
= llvm::dyn_cast
<llvm::PointerType
>(SrcTy
);
1380 llvm::PointerType
*DstPtrTy
= llvm::dyn_cast
<llvm::PointerType
>(DstTy
);
1381 if (SrcPtrTy
&& DstPtrTy
&&
1382 SrcPtrTy
->getAddressSpace() != DstPtrTy
->getAddressSpace()) {
1383 Src
= CGF
.Builder
.CreatePointerBitCastOrAddrSpaceCast(Src
, DstTy
);
1384 CGF
.Builder
.CreateStore(Src
, Dst
, DstIsVolatile
);
1388 // If the source and destination are integer or pointer types, just do an
1389 // extension or truncation to the desired type.
1390 if ((isa
<llvm::IntegerType
>(SrcTy
) || isa
<llvm::PointerType
>(SrcTy
)) &&
1391 (isa
<llvm::IntegerType
>(DstTy
) || isa
<llvm::PointerType
>(DstTy
))) {
1392 Src
= CoerceIntOrPtrToIntOrPtr(Src
, DstTy
, CGF
);
1393 CGF
.Builder
.CreateStore(Src
, Dst
, DstIsVolatile
);
1397 llvm::TypeSize DstSize
= CGF
.CGM
.getDataLayout().getTypeAllocSize(DstTy
);
1399 // If store is legal, just bitcast the src pointer.
1400 if (isa
<llvm::ScalableVectorType
>(SrcTy
) ||
1401 isa
<llvm::ScalableVectorType
>(DstTy
) ||
1402 SrcSize
.getFixedValue() <= DstSize
.getFixedValue()) {
1403 Dst
= Dst
.withElementType(SrcTy
);
1404 CGF
.EmitAggregateStore(Src
, Dst
, DstIsVolatile
);
1406 // Otherwise do coercion through memory. This is stupid, but
1409 // Generally SrcSize is never greater than DstSize, since this means we are
1410 // losing bits. However, this can happen in cases where the structure has
1411 // additional padding, for example due to a user specified alignment.
1413 // FIXME: Assert that we aren't truncating non-padding bits when have access
1414 // to that information.
1415 Address Tmp
= CreateTempAllocaForCoercion(CGF
, SrcTy
, Dst
.getAlignment());
1416 CGF
.Builder
.CreateStore(Src
, Tmp
);
1417 CGF
.Builder
.CreateMemCpy(
1418 Dst
.getPointer(), Dst
.getAlignment().getAsAlign(), Tmp
.getPointer(),
1419 Tmp
.getAlignment().getAsAlign(),
1420 llvm::ConstantInt::get(CGF
.IntPtrTy
, DstSize
.getFixedValue()));
1424 static Address
emitAddressAtOffset(CodeGenFunction
&CGF
, Address addr
,
1425 const ABIArgInfo
&info
) {
1426 if (unsigned offset
= info
.getDirectOffset()) {
1427 addr
= addr
.withElementType(CGF
.Int8Ty
);
1428 addr
= CGF
.Builder
.CreateConstInBoundsByteGEP(addr
,
1429 CharUnits::fromQuantity(offset
));
1430 addr
= addr
.withElementType(info
.getCoerceToType());
1437 /// Encapsulates information about the way function arguments from
1438 /// CGFunctionInfo should be passed to actual LLVM IR function.
1439 class ClangToLLVMArgMapping
{
1440 static const unsigned InvalidIndex
= ~0U;
1441 unsigned InallocaArgNo
;
1443 unsigned TotalIRArgs
;
1445 /// Arguments of LLVM IR function corresponding to single Clang argument.
1447 unsigned PaddingArgIndex
;
1448 // Argument is expanded to IR arguments at positions
1449 // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1450 unsigned FirstArgIndex
;
1451 unsigned NumberOfArgs
;
1454 : PaddingArgIndex(InvalidIndex
), FirstArgIndex(InvalidIndex
),
1458 SmallVector
<IRArgs
, 8> ArgInfo
;
1461 ClangToLLVMArgMapping(const ASTContext
&Context
, const CGFunctionInfo
&FI
,
1462 bool OnlyRequiredArgs
= false)
1463 : InallocaArgNo(InvalidIndex
), SRetArgNo(InvalidIndex
), TotalIRArgs(0),
1464 ArgInfo(OnlyRequiredArgs
? FI
.getNumRequiredArgs() : FI
.arg_size()) {
1465 construct(Context
, FI
, OnlyRequiredArgs
);
1468 bool hasInallocaArg() const { return InallocaArgNo
!= InvalidIndex
; }
1469 unsigned getInallocaArgNo() const {
1470 assert(hasInallocaArg());
1471 return InallocaArgNo
;
1474 bool hasSRetArg() const { return SRetArgNo
!= InvalidIndex
; }
1475 unsigned getSRetArgNo() const {
1476 assert(hasSRetArg());
1480 unsigned totalIRArgs() const { return TotalIRArgs
; }
1482 bool hasPaddingArg(unsigned ArgNo
) const {
1483 assert(ArgNo
< ArgInfo
.size());
1484 return ArgInfo
[ArgNo
].PaddingArgIndex
!= InvalidIndex
;
1486 unsigned getPaddingArgNo(unsigned ArgNo
) const {
1487 assert(hasPaddingArg(ArgNo
));
1488 return ArgInfo
[ArgNo
].PaddingArgIndex
;
1491 /// Returns index of first IR argument corresponding to ArgNo, and their
1493 std::pair
<unsigned, unsigned> getIRArgs(unsigned ArgNo
) const {
1494 assert(ArgNo
< ArgInfo
.size());
1495 return std::make_pair(ArgInfo
[ArgNo
].FirstArgIndex
,
1496 ArgInfo
[ArgNo
].NumberOfArgs
);
1500 void construct(const ASTContext
&Context
, const CGFunctionInfo
&FI
,
1501 bool OnlyRequiredArgs
);
1504 void ClangToLLVMArgMapping::construct(const ASTContext
&Context
,
1505 const CGFunctionInfo
&FI
,
1506 bool OnlyRequiredArgs
) {
1507 unsigned IRArgNo
= 0;
1508 bool SwapThisWithSRet
= false;
1509 const ABIArgInfo
&RetAI
= FI
.getReturnInfo();
1511 if (RetAI
.getKind() == ABIArgInfo::Indirect
) {
1512 SwapThisWithSRet
= RetAI
.isSRetAfterThis();
1513 SRetArgNo
= SwapThisWithSRet
? 1 : IRArgNo
++;
1517 unsigned NumArgs
= OnlyRequiredArgs
? FI
.getNumRequiredArgs() : FI
.arg_size();
1518 for (CGFunctionInfo::const_arg_iterator I
= FI
.arg_begin(); ArgNo
< NumArgs
;
1520 assert(I
!= FI
.arg_end());
1521 QualType ArgType
= I
->type
;
1522 const ABIArgInfo
&AI
= I
->info
;
1523 // Collect data about IR arguments corresponding to Clang argument ArgNo.
1524 auto &IRArgs
= ArgInfo
[ArgNo
];
1526 if (AI
.getPaddingType())
1527 IRArgs
.PaddingArgIndex
= IRArgNo
++;
1529 switch (AI
.getKind()) {
1530 case ABIArgInfo::Extend
:
1531 case ABIArgInfo::Direct
: {
1532 // FIXME: handle sseregparm someday...
1533 llvm::StructType
*STy
= dyn_cast
<llvm::StructType
>(AI
.getCoerceToType());
1534 if (AI
.isDirect() && AI
.getCanBeFlattened() && STy
) {
1535 IRArgs
.NumberOfArgs
= STy
->getNumElements();
1537 IRArgs
.NumberOfArgs
= 1;
1541 case ABIArgInfo::Indirect
:
1542 case ABIArgInfo::IndirectAliased
:
1543 IRArgs
.NumberOfArgs
= 1;
1545 case ABIArgInfo::Ignore
:
1546 case ABIArgInfo::InAlloca
:
1547 // ignore and inalloca doesn't have matching LLVM parameters.
1548 IRArgs
.NumberOfArgs
= 0;
1550 case ABIArgInfo::CoerceAndExpand
:
1551 IRArgs
.NumberOfArgs
= AI
.getCoerceAndExpandTypeSequence().size();
1553 case ABIArgInfo::Expand
:
1554 IRArgs
.NumberOfArgs
= getExpansionSize(ArgType
, Context
);
1558 if (IRArgs
.NumberOfArgs
> 0) {
1559 IRArgs
.FirstArgIndex
= IRArgNo
;
1560 IRArgNo
+= IRArgs
.NumberOfArgs
;
1563 // Skip over the sret parameter when it comes second. We already handled it
1565 if (IRArgNo
== 1 && SwapThisWithSRet
)
1568 assert(ArgNo
== ArgInfo
.size());
1570 if (FI
.usesInAlloca())
1571 InallocaArgNo
= IRArgNo
++;
1573 TotalIRArgs
= IRArgNo
;
1579 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo
&FI
) {
1580 const auto &RI
= FI
.getReturnInfo();
1581 return RI
.isIndirect() || (RI
.isInAlloca() && RI
.getInAllocaSRet());
1584 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo
&FI
) {
1585 return ReturnTypeUsesSRet(FI
) &&
1586 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1589 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType
) {
1590 if (const BuiltinType
*BT
= ResultType
->getAs
<BuiltinType
>()) {
1591 switch (BT
->getKind()) {
1594 case BuiltinType::Float
:
1595 return getTarget().useObjCFPRetForRealType(FloatModeKind::Float
);
1596 case BuiltinType::Double
:
1597 return getTarget().useObjCFPRetForRealType(FloatModeKind::Double
);
1598 case BuiltinType::LongDouble
:
1599 return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble
);
1606 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType
) {
1607 if (const ComplexType
*CT
= ResultType
->getAs
<ComplexType
>()) {
1608 if (const BuiltinType
*BT
= CT
->getElementType()->getAs
<BuiltinType
>()) {
1609 if (BT
->getKind() == BuiltinType::LongDouble
)
1610 return getTarget().useObjCFP2RetForComplexLongDouble();
1617 llvm::FunctionType
*CodeGenTypes::GetFunctionType(GlobalDecl GD
) {
1618 const CGFunctionInfo
&FI
= arrangeGlobalDeclaration(GD
);
1619 return GetFunctionType(FI
);
1622 llvm::FunctionType
*
1623 CodeGenTypes::GetFunctionType(const CGFunctionInfo
&FI
) {
1625 bool Inserted
= FunctionsBeingProcessed
.insert(&FI
).second
;
1627 assert(Inserted
&& "Recursively being processed?");
1629 llvm::Type
*resultType
= nullptr;
1630 const ABIArgInfo
&retAI
= FI
.getReturnInfo();
1631 switch (retAI
.getKind()) {
1632 case ABIArgInfo::Expand
:
1633 case ABIArgInfo::IndirectAliased
:
1634 llvm_unreachable("Invalid ABI kind for return argument");
1636 case ABIArgInfo::Extend
:
1637 case ABIArgInfo::Direct
:
1638 resultType
= retAI
.getCoerceToType();
1641 case ABIArgInfo::InAlloca
:
1642 if (retAI
.getInAllocaSRet()) {
1643 // sret things on win32 aren't void, they return the sret pointer.
1644 QualType ret
= FI
.getReturnType();
1645 unsigned addressSpace
= CGM
.getTypes().getTargetAddressSpace(ret
);
1646 resultType
= llvm::PointerType::get(getLLVMContext(), addressSpace
);
1648 resultType
= llvm::Type::getVoidTy(getLLVMContext());
1652 case ABIArgInfo::Indirect
:
1653 case ABIArgInfo::Ignore
:
1654 resultType
= llvm::Type::getVoidTy(getLLVMContext());
1657 case ABIArgInfo::CoerceAndExpand
:
1658 resultType
= retAI
.getUnpaddedCoerceAndExpandType();
1662 ClangToLLVMArgMapping
IRFunctionArgs(getContext(), FI
, true);
1663 SmallVector
<llvm::Type
*, 8> ArgTypes(IRFunctionArgs
.totalIRArgs());
1665 // Add type for sret argument.
1666 if (IRFunctionArgs
.hasSRetArg()) {
1667 QualType Ret
= FI
.getReturnType();
1668 unsigned AddressSpace
= CGM
.getTypes().getTargetAddressSpace(Ret
);
1669 ArgTypes
[IRFunctionArgs
.getSRetArgNo()] =
1670 llvm::PointerType::get(getLLVMContext(), AddressSpace
);
1673 // Add type for inalloca argument.
1674 if (IRFunctionArgs
.hasInallocaArg())
1675 ArgTypes
[IRFunctionArgs
.getInallocaArgNo()] =
1676 llvm::PointerType::getUnqual(getLLVMContext());
1678 // Add in all of the required arguments.
1680 CGFunctionInfo::const_arg_iterator it
= FI
.arg_begin(),
1681 ie
= it
+ FI
.getNumRequiredArgs();
1682 for (; it
!= ie
; ++it
, ++ArgNo
) {
1683 const ABIArgInfo
&ArgInfo
= it
->info
;
1685 // Insert a padding type to ensure proper alignment.
1686 if (IRFunctionArgs
.hasPaddingArg(ArgNo
))
1687 ArgTypes
[IRFunctionArgs
.getPaddingArgNo(ArgNo
)] =
1688 ArgInfo
.getPaddingType();
1690 unsigned FirstIRArg
, NumIRArgs
;
1691 std::tie(FirstIRArg
, NumIRArgs
) = IRFunctionArgs
.getIRArgs(ArgNo
);
1693 switch (ArgInfo
.getKind()) {
1694 case ABIArgInfo::Ignore
:
1695 case ABIArgInfo::InAlloca
:
1696 assert(NumIRArgs
== 0);
1699 case ABIArgInfo::Indirect
:
1700 assert(NumIRArgs
== 1);
1701 // indirect arguments are always on the stack, which is alloca addr space.
1702 ArgTypes
[FirstIRArg
] = llvm::PointerType::get(
1703 getLLVMContext(), CGM
.getDataLayout().getAllocaAddrSpace());
1705 case ABIArgInfo::IndirectAliased
:
1706 assert(NumIRArgs
== 1);
1707 ArgTypes
[FirstIRArg
] = llvm::PointerType::get(
1708 getLLVMContext(), ArgInfo
.getIndirectAddrSpace());
1710 case ABIArgInfo::Extend
:
1711 case ABIArgInfo::Direct
: {
1712 // Fast-isel and the optimizer generally like scalar values better than
1713 // FCAs, so we flatten them if this is safe to do for this argument.
1714 llvm::Type
*argType
= ArgInfo
.getCoerceToType();
1715 llvm::StructType
*st
= dyn_cast
<llvm::StructType
>(argType
);
1716 if (st
&& ArgInfo
.isDirect() && ArgInfo
.getCanBeFlattened()) {
1717 assert(NumIRArgs
== st
->getNumElements());
1718 for (unsigned i
= 0, e
= st
->getNumElements(); i
!= e
; ++i
)
1719 ArgTypes
[FirstIRArg
+ i
] = st
->getElementType(i
);
1721 assert(NumIRArgs
== 1);
1722 ArgTypes
[FirstIRArg
] = argType
;
1727 case ABIArgInfo::CoerceAndExpand
: {
1728 auto ArgTypesIter
= ArgTypes
.begin() + FirstIRArg
;
1729 for (auto *EltTy
: ArgInfo
.getCoerceAndExpandTypeSequence()) {
1730 *ArgTypesIter
++ = EltTy
;
1732 assert(ArgTypesIter
== ArgTypes
.begin() + FirstIRArg
+ NumIRArgs
);
1736 case ABIArgInfo::Expand
:
1737 auto ArgTypesIter
= ArgTypes
.begin() + FirstIRArg
;
1738 getExpandedTypes(it
->type
, ArgTypesIter
);
1739 assert(ArgTypesIter
== ArgTypes
.begin() + FirstIRArg
+ NumIRArgs
);
1744 bool Erased
= FunctionsBeingProcessed
.erase(&FI
); (void)Erased
;
1745 assert(Erased
&& "Not in set?");
1747 return llvm::FunctionType::get(resultType
, ArgTypes
, FI
.isVariadic());
1750 llvm::Type
*CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD
) {
1751 const CXXMethodDecl
*MD
= cast
<CXXMethodDecl
>(GD
.getDecl());
1752 const FunctionProtoType
*FPT
= MD
->getType()->castAs
<FunctionProtoType
>();
1754 if (!isFuncTypeConvertible(FPT
))
1755 return llvm::StructType::get(getLLVMContext());
1757 return GetFunctionType(GD
);
1760 static void AddAttributesFromFunctionProtoType(ASTContext
&Ctx
,
1761 llvm::AttrBuilder
&FuncAttrs
,
1762 const FunctionProtoType
*FPT
) {
1766 if (!isUnresolvedExceptionSpec(FPT
->getExceptionSpecType()) &&
1768 FuncAttrs
.addAttribute(llvm::Attribute::NoUnwind
);
1770 if (FPT
->getAArch64SMEAttributes() & FunctionType::SME_PStateSMEnabledMask
)
1771 FuncAttrs
.addAttribute("aarch64_pstate_sm_enabled");
1772 if (FPT
->getAArch64SMEAttributes() & FunctionType::SME_PStateSMCompatibleMask
)
1773 FuncAttrs
.addAttribute("aarch64_pstate_sm_compatible");
1774 if (FPT
->getAArch64SMEAttributes() & FunctionType::SME_PStateZASharedMask
)
1775 FuncAttrs
.addAttribute("aarch64_pstate_za_shared");
1776 if (FPT
->getAArch64SMEAttributes() & FunctionType::SME_PStateZAPreservedMask
)
1777 FuncAttrs
.addAttribute("aarch64_pstate_za_preserved");
1780 static void AddAttributesFromAssumes(llvm::AttrBuilder
&FuncAttrs
,
1781 const Decl
*Callee
) {
1785 SmallVector
<StringRef
, 4> Attrs
;
1787 for (const AssumptionAttr
*AA
: Callee
->specific_attrs
<AssumptionAttr
>())
1788 AA
->getAssumption().split(Attrs
, ",");
1791 FuncAttrs
.addAttribute(llvm::AssumptionAttrKey
,
1792 llvm::join(Attrs
.begin(), Attrs
.end(), ","));
1795 bool CodeGenModule::MayDropFunctionReturn(const ASTContext
&Context
,
1796 QualType ReturnType
) const {
1797 // We can't just discard the return value for a record type with a
1798 // complex destructor or a non-trivially copyable type.
1799 if (const RecordType
*RT
=
1800 ReturnType
.getCanonicalType()->getAs
<RecordType
>()) {
1801 if (const auto *ClassDecl
= dyn_cast
<CXXRecordDecl
>(RT
->getDecl()))
1802 return ClassDecl
->hasTrivialDestructor();
1804 return ReturnType
.isTriviallyCopyableType(Context
);
1807 static bool HasStrictReturn(const CodeGenModule
&Module
, QualType RetTy
,
1808 const Decl
*TargetDecl
) {
1809 // As-is msan can not tolerate noundef mismatch between caller and
1810 // implementation. Mismatch is possible for e.g. indirect calls from C-caller
1811 // into C++. Such mismatches lead to confusing false reports. To avoid
1812 // expensive workaround on msan we enforce initialization event in uncommon
1813 // cases where it's allowed.
1814 if (Module
.getLangOpts().Sanitize
.has(SanitizerKind::Memory
))
1816 // C++ explicitly makes returning undefined values UB. C's rule only applies
1817 // to used values, so we never mark them noundef for now.
1818 if (!Module
.getLangOpts().CPlusPlus
)
1821 if (const FunctionDecl
*FDecl
= dyn_cast
<FunctionDecl
>(TargetDecl
)) {
1822 if (FDecl
->isExternC())
1824 } else if (const VarDecl
*VDecl
= dyn_cast
<VarDecl
>(TargetDecl
)) {
1825 // Function pointer.
1826 if (VDecl
->isExternC())
1831 // We don't want to be too aggressive with the return checking, unless
1832 // it's explicit in the code opts or we're using an appropriate sanitizer.
1833 // Try to respect what the programmer intended.
1834 return Module
.getCodeGenOpts().StrictReturn
||
1835 !Module
.MayDropFunctionReturn(Module
.getContext(), RetTy
) ||
1836 Module
.getLangOpts().Sanitize
.has(SanitizerKind::Return
);
1839 /// Add denormal-fp-math and denormal-fp-math-f32 as appropriate for the
1840 /// requested denormal behavior, accounting for the overriding behavior of the
1842 static void addDenormalModeAttrs(llvm::DenormalMode FPDenormalMode
,
1843 llvm::DenormalMode FP32DenormalMode
,
1844 llvm::AttrBuilder
&FuncAttrs
) {
1845 if (FPDenormalMode
!= llvm::DenormalMode::getDefault())
1846 FuncAttrs
.addAttribute("denormal-fp-math", FPDenormalMode
.str());
1848 if (FP32DenormalMode
!= FPDenormalMode
&& FP32DenormalMode
.isValid())
1849 FuncAttrs
.addAttribute("denormal-fp-math-f32", FP32DenormalMode
.str());
1852 /// Add default attributes to a function, which have merge semantics under
1853 /// -mlink-builtin-bitcode and should not simply overwrite any existing
1854 /// attributes in the linked library.
1856 addMergableDefaultFunctionAttributes(const CodeGenOptions
&CodeGenOpts
,
1857 llvm::AttrBuilder
&FuncAttrs
) {
1858 addDenormalModeAttrs(CodeGenOpts
.FPDenormalMode
, CodeGenOpts
.FP32DenormalMode
,
1862 static void getTrivialDefaultFunctionAttributes(
1863 StringRef Name
, bool HasOptnone
, const CodeGenOptions
&CodeGenOpts
,
1864 const LangOptions
&LangOpts
, bool AttrOnCallSite
,
1865 llvm::AttrBuilder
&FuncAttrs
) {
1866 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1868 if (CodeGenOpts
.OptimizeSize
)
1869 FuncAttrs
.addAttribute(llvm::Attribute::OptimizeForSize
);
1870 if (CodeGenOpts
.OptimizeSize
== 2)
1871 FuncAttrs
.addAttribute(llvm::Attribute::MinSize
);
1874 if (CodeGenOpts
.DisableRedZone
)
1875 FuncAttrs
.addAttribute(llvm::Attribute::NoRedZone
);
1876 if (CodeGenOpts
.IndirectTlsSegRefs
)
1877 FuncAttrs
.addAttribute("indirect-tls-seg-refs");
1878 if (CodeGenOpts
.NoImplicitFloat
)
1879 FuncAttrs
.addAttribute(llvm::Attribute::NoImplicitFloat
);
1881 if (AttrOnCallSite
) {
1882 // Attributes that should go on the call site only.
1883 // FIXME: Look for 'BuiltinAttr' on the function rather than re-checking
1884 // the -fno-builtin-foo list.
1885 if (!CodeGenOpts
.SimplifyLibCalls
|| LangOpts
.isNoBuiltinFunc(Name
))
1886 FuncAttrs
.addAttribute(llvm::Attribute::NoBuiltin
);
1887 if (!CodeGenOpts
.TrapFuncName
.empty())
1888 FuncAttrs
.addAttribute("trap-func-name", CodeGenOpts
.TrapFuncName
);
1890 switch (CodeGenOpts
.getFramePointer()) {
1891 case CodeGenOptions::FramePointerKind::None
:
1892 // This is the default behavior.
1894 case CodeGenOptions::FramePointerKind::NonLeaf
:
1895 case CodeGenOptions::FramePointerKind::All
:
1896 FuncAttrs
.addAttribute("frame-pointer",
1897 CodeGenOptions::getFramePointerKindName(
1898 CodeGenOpts
.getFramePointer()));
1901 if (CodeGenOpts
.LessPreciseFPMAD
)
1902 FuncAttrs
.addAttribute("less-precise-fpmad", "true");
1904 if (CodeGenOpts
.NullPointerIsValid
)
1905 FuncAttrs
.addAttribute(llvm::Attribute::NullPointerIsValid
);
1907 if (LangOpts
.getDefaultExceptionMode() == LangOptions::FPE_Ignore
)
1908 FuncAttrs
.addAttribute("no-trapping-math", "true");
1910 // TODO: Are these all needed?
1911 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1912 if (LangOpts
.NoHonorInfs
)
1913 FuncAttrs
.addAttribute("no-infs-fp-math", "true");
1914 if (LangOpts
.NoHonorNaNs
)
1915 FuncAttrs
.addAttribute("no-nans-fp-math", "true");
1916 if (LangOpts
.ApproxFunc
)
1917 FuncAttrs
.addAttribute("approx-func-fp-math", "true");
1918 if (LangOpts
.AllowFPReassoc
&& LangOpts
.AllowRecip
&&
1919 LangOpts
.NoSignedZero
&& LangOpts
.ApproxFunc
&&
1920 (LangOpts
.getDefaultFPContractMode() ==
1921 LangOptions::FPModeKind::FPM_Fast
||
1922 LangOpts
.getDefaultFPContractMode() ==
1923 LangOptions::FPModeKind::FPM_FastHonorPragmas
))
1924 FuncAttrs
.addAttribute("unsafe-fp-math", "true");
1925 if (CodeGenOpts
.SoftFloat
)
1926 FuncAttrs
.addAttribute("use-soft-float", "true");
1927 FuncAttrs
.addAttribute("stack-protector-buffer-size",
1928 llvm::utostr(CodeGenOpts
.SSPBufferSize
));
1929 if (LangOpts
.NoSignedZero
)
1930 FuncAttrs
.addAttribute("no-signed-zeros-fp-math", "true");
1932 // TODO: Reciprocal estimate codegen options should apply to instructions?
1933 const std::vector
<std::string
> &Recips
= CodeGenOpts
.Reciprocals
;
1934 if (!Recips
.empty())
1935 FuncAttrs
.addAttribute("reciprocal-estimates",
1936 llvm::join(Recips
, ","));
1938 if (!CodeGenOpts
.PreferVectorWidth
.empty() &&
1939 CodeGenOpts
.PreferVectorWidth
!= "none")
1940 FuncAttrs
.addAttribute("prefer-vector-width",
1941 CodeGenOpts
.PreferVectorWidth
);
1943 if (CodeGenOpts
.StackRealignment
)
1944 FuncAttrs
.addAttribute("stackrealign");
1945 if (CodeGenOpts
.Backchain
)
1946 FuncAttrs
.addAttribute("backchain");
1947 if (CodeGenOpts
.EnableSegmentedStacks
)
1948 FuncAttrs
.addAttribute("split-stack");
1950 if (CodeGenOpts
.SpeculativeLoadHardening
)
1951 FuncAttrs
.addAttribute(llvm::Attribute::SpeculativeLoadHardening
);
1953 // Add zero-call-used-regs attribute.
1954 switch (CodeGenOpts
.getZeroCallUsedRegs()) {
1955 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip
:
1956 FuncAttrs
.removeAttribute("zero-call-used-regs");
1958 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg
:
1959 FuncAttrs
.addAttribute("zero-call-used-regs", "used-gpr-arg");
1961 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR
:
1962 FuncAttrs
.addAttribute("zero-call-used-regs", "used-gpr");
1964 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg
:
1965 FuncAttrs
.addAttribute("zero-call-used-regs", "used-arg");
1967 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used
:
1968 FuncAttrs
.addAttribute("zero-call-used-regs", "used");
1970 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg
:
1971 FuncAttrs
.addAttribute("zero-call-used-regs", "all-gpr-arg");
1973 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR
:
1974 FuncAttrs
.addAttribute("zero-call-used-regs", "all-gpr");
1976 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg
:
1977 FuncAttrs
.addAttribute("zero-call-used-regs", "all-arg");
1979 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All
:
1980 FuncAttrs
.addAttribute("zero-call-used-regs", "all");
1985 if (LangOpts
.assumeFunctionsAreConvergent()) {
1986 // Conservatively, mark all functions and calls in CUDA and OpenCL as
1987 // convergent (meaning, they may call an intrinsically convergent op, such
1988 // as __syncthreads() / barrier(), and so can't have certain optimizations
1989 // applied around them). LLVM will remove this attribute where it safely
1991 FuncAttrs
.addAttribute(llvm::Attribute::Convergent
);
1994 // TODO: NoUnwind attribute should be added for other GPU modes HIP,
1995 // OpenMP offload. AFAIK, neither of them support exceptions in device code.
1996 if ((LangOpts
.CUDA
&& LangOpts
.CUDAIsDevice
) || LangOpts
.OpenCL
||
1997 LangOpts
.SYCLIsDevice
) {
1998 FuncAttrs
.addAttribute(llvm::Attribute::NoUnwind
);
2001 for (StringRef Attr
: CodeGenOpts
.DefaultFunctionAttrs
) {
2002 StringRef Var
, Value
;
2003 std::tie(Var
, Value
) = Attr
.split('=');
2004 FuncAttrs
.addAttribute(Var
, Value
);
2008 /// Merges `target-features` from \TargetOpts and \F, and sets the result in
2010 /// * features from \F are always kept
2011 /// * a feature from \TargetOpts is kept if itself and its opposite are absent
2014 overrideFunctionFeaturesWithTargetFeatures(llvm::AttrBuilder
&FuncAttr
,
2015 const llvm::Function
&F
,
2016 const TargetOptions
&TargetOpts
) {
2017 auto FFeatures
= F
.getFnAttribute("target-features");
2019 llvm::StringSet
<> MergedNames
;
2020 SmallVector
<StringRef
> MergedFeatures
;
2021 MergedFeatures
.reserve(TargetOpts
.Features
.size());
2023 auto AddUnmergedFeatures
= [&](auto &&FeatureRange
) {
2024 for (StringRef Feature
: FeatureRange
) {
2025 if (Feature
.empty())
2027 assert(Feature
[0] == '+' || Feature
[0] == '-');
2028 StringRef Name
= Feature
.drop_front(1);
2029 bool Merged
= !MergedNames
.insert(Name
).second
;
2031 MergedFeatures
.push_back(Feature
);
2035 if (FFeatures
.isValid())
2036 AddUnmergedFeatures(llvm::split(FFeatures
.getValueAsString(), ','));
2037 AddUnmergedFeatures(TargetOpts
.Features
);
2039 if (!MergedFeatures
.empty()) {
2040 llvm::sort(MergedFeatures
);
2041 FuncAttr
.addAttribute("target-features", llvm::join(MergedFeatures
, ","));
2045 void CodeGen::mergeDefaultFunctionDefinitionAttributes(
2046 llvm::Function
&F
, const CodeGenOptions
&CodeGenOpts
,
2047 const LangOptions
&LangOpts
, const TargetOptions
&TargetOpts
,
2048 bool WillInternalize
) {
2050 llvm::AttrBuilder
FuncAttrs(F
.getContext());
2051 // Here we only extract the options that are relevant compared to the version
2052 // from GetCPUAndFeaturesAttributes.
2053 if (!TargetOpts
.CPU
.empty())
2054 FuncAttrs
.addAttribute("target-cpu", TargetOpts
.CPU
);
2055 if (!TargetOpts
.TuneCPU
.empty())
2056 FuncAttrs
.addAttribute("tune-cpu", TargetOpts
.TuneCPU
);
2058 ::getTrivialDefaultFunctionAttributes(F
.getName(), F
.hasOptNone(),
2059 CodeGenOpts
, LangOpts
,
2060 /*AttrOnCallSite=*/false, FuncAttrs
);
2062 if (!WillInternalize
&& F
.isInterposable()) {
2063 // Do not promote "dynamic" denormal-fp-math to this translation unit's
2064 // setting for weak functions that won't be internalized. The user has no
2065 // real control for how builtin bitcode is linked, so we shouldn't assume
2066 // later copies will use a consistent mode.
2067 F
.addFnAttrs(FuncAttrs
);
2071 llvm::AttributeMask AttrsToRemove
;
2073 llvm::DenormalMode DenormModeToMerge
= F
.getDenormalModeRaw();
2074 llvm::DenormalMode DenormModeToMergeF32
= F
.getDenormalModeF32Raw();
2075 llvm::DenormalMode Merged
=
2076 CodeGenOpts
.FPDenormalMode
.mergeCalleeMode(DenormModeToMerge
);
2077 llvm::DenormalMode MergedF32
= CodeGenOpts
.FP32DenormalMode
;
2079 if (DenormModeToMergeF32
.isValid()) {
2081 CodeGenOpts
.FP32DenormalMode
.mergeCalleeMode(DenormModeToMergeF32
);
2084 if (Merged
== llvm::DenormalMode::getDefault()) {
2085 AttrsToRemove
.addAttribute("denormal-fp-math");
2086 } else if (Merged
!= DenormModeToMerge
) {
2087 // Overwrite existing attribute
2088 FuncAttrs
.addAttribute("denormal-fp-math",
2089 CodeGenOpts
.FPDenormalMode
.str());
2092 if (MergedF32
== llvm::DenormalMode::getDefault()) {
2093 AttrsToRemove
.addAttribute("denormal-fp-math-f32");
2094 } else if (MergedF32
!= DenormModeToMergeF32
) {
2095 // Overwrite existing attribute
2096 FuncAttrs
.addAttribute("denormal-fp-math-f32",
2097 CodeGenOpts
.FP32DenormalMode
.str());
2100 F
.removeFnAttrs(AttrsToRemove
);
2101 addDenormalModeAttrs(Merged
, MergedF32
, FuncAttrs
);
2103 overrideFunctionFeaturesWithTargetFeatures(FuncAttrs
, F
, TargetOpts
);
2105 F
.addFnAttrs(FuncAttrs
);
2108 void CodeGenModule::getTrivialDefaultFunctionAttributes(
2109 StringRef Name
, bool HasOptnone
, bool AttrOnCallSite
,
2110 llvm::AttrBuilder
&FuncAttrs
) {
2111 ::getTrivialDefaultFunctionAttributes(Name
, HasOptnone
, getCodeGenOpts(),
2112 getLangOpts(), AttrOnCallSite
,
2116 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name
,
2118 bool AttrOnCallSite
,
2119 llvm::AttrBuilder
&FuncAttrs
) {
2120 getTrivialDefaultFunctionAttributes(Name
, HasOptnone
, AttrOnCallSite
,
2122 // If we're just getting the default, get the default values for mergeable
2124 if (!AttrOnCallSite
)
2125 addMergableDefaultFunctionAttributes(CodeGenOpts
, FuncAttrs
);
2128 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
2129 llvm::AttrBuilder
&attrs
) {
2130 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
2131 /*for call*/ false, attrs
);
2132 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs
);
2135 static void addNoBuiltinAttributes(llvm::AttrBuilder
&FuncAttrs
,
2136 const LangOptions
&LangOpts
,
2137 const NoBuiltinAttr
*NBA
= nullptr) {
2138 auto AddNoBuiltinAttr
= [&FuncAttrs
](StringRef BuiltinName
) {
2139 SmallString
<32> AttributeName
;
2140 AttributeName
+= "no-builtin-";
2141 AttributeName
+= BuiltinName
;
2142 FuncAttrs
.addAttribute(AttributeName
);
2145 // First, handle the language options passed through -fno-builtin.
2146 if (LangOpts
.NoBuiltin
) {
2147 // -fno-builtin disables them all.
2148 FuncAttrs
.addAttribute("no-builtins");
2152 // Then, add attributes for builtins specified through -fno-builtin-<name>.
2153 llvm::for_each(LangOpts
.NoBuiltinFuncs
, AddNoBuiltinAttr
);
2155 // Now, let's check the __attribute__((no_builtin("...")) attribute added to
2160 // If there is a wildcard in the builtin names specified through the
2161 // attribute, disable them all.
2162 if (llvm::is_contained(NBA
->builtinNames(), "*")) {
2163 FuncAttrs
.addAttribute("no-builtins");
2167 // And last, add the rest of the builtin names.
2168 llvm::for_each(NBA
->builtinNames(), AddNoBuiltinAttr
);
2171 static bool DetermineNoUndef(QualType QTy
, CodeGenTypes
&Types
,
2172 const llvm::DataLayout
&DL
, const ABIArgInfo
&AI
,
2173 bool CheckCoerce
= true) {
2174 llvm::Type
*Ty
= Types
.ConvertTypeForMem(QTy
);
2175 if (AI
.getKind() == ABIArgInfo::Indirect
||
2176 AI
.getKind() == ABIArgInfo::IndirectAliased
)
2178 if (AI
.getKind() == ABIArgInfo::Extend
)
2180 if (!DL
.typeSizeEqualsStoreSize(Ty
))
2181 // TODO: This will result in a modest amount of values not marked noundef
2182 // when they could be. We care about values that *invisibly* contain undef
2183 // bits from the perspective of LLVM IR.
2185 if (CheckCoerce
&& AI
.canHaveCoerceToType()) {
2186 llvm::Type
*CoerceTy
= AI
.getCoerceToType();
2187 if (llvm::TypeSize::isKnownGT(DL
.getTypeSizeInBits(CoerceTy
),
2188 DL
.getTypeSizeInBits(Ty
)))
2189 // If we're coercing to a type with a greater size than the canonical one,
2190 // we're introducing new undef bits.
2191 // Coercing to a type of smaller or equal size is ok, as we know that
2192 // there's no internal padding (typeSizeEqualsStoreSize).
2195 if (QTy
->isBitIntType())
2197 if (QTy
->isReferenceType())
2199 if (QTy
->isNullPtrType())
2201 if (QTy
->isMemberPointerType())
2202 // TODO: Some member pointers are `noundef`, but it depends on the ABI. For
2203 // now, never mark them.
2205 if (QTy
->isScalarType()) {
2206 if (const ComplexType
*Complex
= dyn_cast
<ComplexType
>(QTy
))
2207 return DetermineNoUndef(Complex
->getElementType(), Types
, DL
, AI
, false);
2210 if (const VectorType
*Vector
= dyn_cast
<VectorType
>(QTy
))
2211 return DetermineNoUndef(Vector
->getElementType(), Types
, DL
, AI
, false);
2212 if (const MatrixType
*Matrix
= dyn_cast
<MatrixType
>(QTy
))
2213 return DetermineNoUndef(Matrix
->getElementType(), Types
, DL
, AI
, false);
2214 if (const ArrayType
*Array
= dyn_cast
<ArrayType
>(QTy
))
2215 return DetermineNoUndef(Array
->getElementType(), Types
, DL
, AI
, false);
2217 // TODO: Some structs may be `noundef`, in specific situations.
2221 /// Check if the argument of a function has maybe_undef attribute.
2222 static bool IsArgumentMaybeUndef(const Decl
*TargetDecl
,
2223 unsigned NumRequiredArgs
, unsigned ArgNo
) {
2224 const auto *FD
= dyn_cast_or_null
<FunctionDecl
>(TargetDecl
);
2228 // Assume variadic arguments do not have maybe_undef attribute.
2229 if (ArgNo
>= NumRequiredArgs
)
2232 // Check if argument has maybe_undef attribute.
2233 if (ArgNo
< FD
->getNumParams()) {
2234 const ParmVarDecl
*Param
= FD
->getParamDecl(ArgNo
);
2235 if (Param
&& Param
->hasAttr
<MaybeUndefAttr
>())
2242 /// Test if it's legal to apply nofpclass for the given parameter type and it's
2243 /// lowered IR type.
2244 static bool canApplyNoFPClass(const ABIArgInfo
&AI
, QualType ParamType
,
2246 // Should only apply to FP types in the source, not ABI promoted.
2247 if (!ParamType
->hasFloatingRepresentation())
2250 // The promoted-to IR type also needs to support nofpclass.
2251 llvm::Type
*IRTy
= AI
.getCoerceToType();
2252 if (llvm::AttributeFuncs::isNoFPClassCompatibleType(IRTy
))
2255 if (llvm::StructType
*ST
= dyn_cast
<llvm::StructType
>(IRTy
)) {
2256 return !IsReturn
&& AI
.getCanBeFlattened() &&
2257 llvm::all_of(ST
->elements(), [](llvm::Type
*Ty
) {
2258 return llvm::AttributeFuncs::isNoFPClassCompatibleType(Ty
);
2265 /// Return the nofpclass mask that can be applied to floating-point parameters.
2266 static llvm::FPClassTest
getNoFPClassTestMask(const LangOptions
&LangOpts
) {
2267 llvm::FPClassTest Mask
= llvm::fcNone
;
2268 if (LangOpts
.NoHonorInfs
)
2269 Mask
|= llvm::fcInf
;
2270 if (LangOpts
.NoHonorNaNs
)
2271 Mask
|= llvm::fcNan
;
2275 void CodeGenModule::AdjustMemoryAttribute(StringRef Name
,
2276 CGCalleeInfo CalleeInfo
,
2277 llvm::AttributeList
&Attrs
) {
2278 if (Attrs
.getMemoryEffects().getModRef() == llvm::ModRefInfo::NoModRef
) {
2279 Attrs
= Attrs
.removeFnAttribute(getLLVMContext(), llvm::Attribute::Memory
);
2280 llvm::Attribute MemoryAttr
= llvm::Attribute::getWithMemoryEffects(
2281 getLLVMContext(), llvm::MemoryEffects::writeOnly());
2282 Attrs
= Attrs
.addFnAttribute(getLLVMContext(), MemoryAttr
);
2286 /// Construct the IR attribute list of a function or call.
2288 /// When adding an attribute, please consider where it should be handled:
2290 /// - getDefaultFunctionAttributes is for attributes that are essentially
2291 /// part of the global target configuration (but perhaps can be
2292 /// overridden on a per-function basis). Adding attributes there
2293 /// will cause them to also be set in frontends that build on Clang's
2294 /// target-configuration logic, as well as for code defined in library
2295 /// modules such as CUDA's libdevice.
2297 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes
2298 /// and adds declaration-specific, convention-specific, and
2299 /// frontend-specific logic. The last is of particular importance:
2300 /// attributes that restrict how the frontend generates code must be
2301 /// added here rather than getDefaultFunctionAttributes.
2303 void CodeGenModule::ConstructAttributeList(StringRef Name
,
2304 const CGFunctionInfo
&FI
,
2305 CGCalleeInfo CalleeInfo
,
2306 llvm::AttributeList
&AttrList
,
2307 unsigned &CallingConv
,
2308 bool AttrOnCallSite
, bool IsThunk
) {
2309 llvm::AttrBuilder
FuncAttrs(getLLVMContext());
2310 llvm::AttrBuilder
RetAttrs(getLLVMContext());
2312 // Collect function IR attributes from the CC lowering.
2313 // We'll collect the paramete and result attributes later.
2314 CallingConv
= FI
.getEffectiveCallingConvention();
2315 if (FI
.isNoReturn())
2316 FuncAttrs
.addAttribute(llvm::Attribute::NoReturn
);
2317 if (FI
.isCmseNSCall())
2318 FuncAttrs
.addAttribute("cmse_nonsecure_call");
2320 // Collect function IR attributes from the callee prototype if we have one.
2321 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs
,
2322 CalleeInfo
.getCalleeFunctionProtoType());
2324 const Decl
*TargetDecl
= CalleeInfo
.getCalleeDecl().getDecl();
2326 // Attach assumption attributes to the declaration. If this is a call
2327 // site, attach assumptions from the caller to the call as well.
2328 AddAttributesFromAssumes(FuncAttrs
, TargetDecl
);
2330 bool HasOptnone
= false;
2331 // The NoBuiltinAttr attached to the target FunctionDecl.
2332 const NoBuiltinAttr
*NBA
= nullptr;
2334 // Some ABIs may result in additional accesses to arguments that may
2335 // otherwise not be present.
2336 auto AddPotentialArgAccess
= [&]() {
2337 llvm::Attribute A
= FuncAttrs
.getAttribute(llvm::Attribute::Memory
);
2339 FuncAttrs
.addMemoryAttr(A
.getMemoryEffects() |
2340 llvm::MemoryEffects::argMemOnly());
2343 // Collect function IR attributes based on declaration-specific
2345 // FIXME: handle sseregparm someday...
2347 if (TargetDecl
->hasAttr
<ReturnsTwiceAttr
>())
2348 FuncAttrs
.addAttribute(llvm::Attribute::ReturnsTwice
);
2349 if (TargetDecl
->hasAttr
<NoThrowAttr
>())
2350 FuncAttrs
.addAttribute(llvm::Attribute::NoUnwind
);
2351 if (TargetDecl
->hasAttr
<NoReturnAttr
>())
2352 FuncAttrs
.addAttribute(llvm::Attribute::NoReturn
);
2353 if (TargetDecl
->hasAttr
<ColdAttr
>())
2354 FuncAttrs
.addAttribute(llvm::Attribute::Cold
);
2355 if (TargetDecl
->hasAttr
<HotAttr
>())
2356 FuncAttrs
.addAttribute(llvm::Attribute::Hot
);
2357 if (TargetDecl
->hasAttr
<NoDuplicateAttr
>())
2358 FuncAttrs
.addAttribute(llvm::Attribute::NoDuplicate
);
2359 if (TargetDecl
->hasAttr
<ConvergentAttr
>())
2360 FuncAttrs
.addAttribute(llvm::Attribute::Convergent
);
2362 if (const FunctionDecl
*Fn
= dyn_cast
<FunctionDecl
>(TargetDecl
)) {
2363 AddAttributesFromFunctionProtoType(
2364 getContext(), FuncAttrs
, Fn
->getType()->getAs
<FunctionProtoType
>());
2365 if (AttrOnCallSite
&& Fn
->isReplaceableGlobalAllocationFunction()) {
2366 // A sane operator new returns a non-aliasing pointer.
2367 auto Kind
= Fn
->getDeclName().getCXXOverloadedOperator();
2368 if (getCodeGenOpts().AssumeSaneOperatorNew
&&
2369 (Kind
== OO_New
|| Kind
== OO_Array_New
))
2370 RetAttrs
.addAttribute(llvm::Attribute::NoAlias
);
2372 const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(Fn
);
2373 const bool IsVirtualCall
= MD
&& MD
->isVirtual();
2374 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
2375 // virtual function. These attributes are not inherited by overloads.
2376 if (!(AttrOnCallSite
&& IsVirtualCall
)) {
2377 if (Fn
->isNoReturn())
2378 FuncAttrs
.addAttribute(llvm::Attribute::NoReturn
);
2379 NBA
= Fn
->getAttr
<NoBuiltinAttr
>();
2383 if (isa
<FunctionDecl
>(TargetDecl
) || isa
<VarDecl
>(TargetDecl
)) {
2384 // Only place nomerge attribute on call sites, never functions. This
2385 // allows it to work on indirect virtual function calls.
2386 if (AttrOnCallSite
&& TargetDecl
->hasAttr
<NoMergeAttr
>())
2387 FuncAttrs
.addAttribute(llvm::Attribute::NoMerge
);
2390 // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
2391 if (TargetDecl
->hasAttr
<ConstAttr
>()) {
2392 FuncAttrs
.addMemoryAttr(llvm::MemoryEffects::none());
2393 FuncAttrs
.addAttribute(llvm::Attribute::NoUnwind
);
2394 // gcc specifies that 'const' functions have greater restrictions than
2395 // 'pure' functions, so they also cannot have infinite loops.
2396 FuncAttrs
.addAttribute(llvm::Attribute::WillReturn
);
2397 } else if (TargetDecl
->hasAttr
<PureAttr
>()) {
2398 FuncAttrs
.addMemoryAttr(llvm::MemoryEffects::readOnly());
2399 FuncAttrs
.addAttribute(llvm::Attribute::NoUnwind
);
2400 // gcc specifies that 'pure' functions cannot have infinite loops.
2401 FuncAttrs
.addAttribute(llvm::Attribute::WillReturn
);
2402 } else if (TargetDecl
->hasAttr
<NoAliasAttr
>()) {
2403 FuncAttrs
.addMemoryAttr(llvm::MemoryEffects::inaccessibleOrArgMemOnly());
2404 FuncAttrs
.addAttribute(llvm::Attribute::NoUnwind
);
2406 if (TargetDecl
->hasAttr
<RestrictAttr
>())
2407 RetAttrs
.addAttribute(llvm::Attribute::NoAlias
);
2408 if (TargetDecl
->hasAttr
<ReturnsNonNullAttr
>() &&
2409 !CodeGenOpts
.NullPointerIsValid
)
2410 RetAttrs
.addAttribute(llvm::Attribute::NonNull
);
2411 if (TargetDecl
->hasAttr
<AnyX86NoCallerSavedRegistersAttr
>())
2412 FuncAttrs
.addAttribute("no_caller_saved_registers");
2413 if (TargetDecl
->hasAttr
<AnyX86NoCfCheckAttr
>())
2414 FuncAttrs
.addAttribute(llvm::Attribute::NoCfCheck
);
2415 if (TargetDecl
->hasAttr
<LeafAttr
>())
2416 FuncAttrs
.addAttribute(llvm::Attribute::NoCallback
);
2418 HasOptnone
= TargetDecl
->hasAttr
<OptimizeNoneAttr
>();
2419 if (auto *AllocSize
= TargetDecl
->getAttr
<AllocSizeAttr
>()) {
2420 std::optional
<unsigned> NumElemsParam
;
2421 if (AllocSize
->getNumElemsParam().isValid())
2422 NumElemsParam
= AllocSize
->getNumElemsParam().getLLVMIndex();
2423 FuncAttrs
.addAllocSizeAttr(AllocSize
->getElemSizeParam().getLLVMIndex(),
2427 if (TargetDecl
->hasAttr
<OpenCLKernelAttr
>()) {
2428 if (getLangOpts().OpenCLVersion
<= 120) {
2429 // OpenCL v1.2 Work groups are always uniform
2430 FuncAttrs
.addAttribute("uniform-work-group-size", "true");
2432 // OpenCL v2.0 Work groups may be whether uniform or not.
2433 // '-cl-uniform-work-group-size' compile option gets a hint
2434 // to the compiler that the global work-size be a multiple of
2435 // the work-group size specified to clEnqueueNDRangeKernel
2436 // (i.e. work groups are uniform).
2437 FuncAttrs
.addAttribute(
2438 "uniform-work-group-size",
2439 llvm::toStringRef(getLangOpts().OffloadUniformBlock
));
2443 if (TargetDecl
->hasAttr
<CUDAGlobalAttr
>() &&
2444 getLangOpts().OffloadUniformBlock
)
2445 FuncAttrs
.addAttribute("uniform-work-group-size", "true");
2447 if (TargetDecl
->hasAttr
<ArmLocallyStreamingAttr
>())
2448 FuncAttrs
.addAttribute("aarch64_pstate_sm_body");
2450 if (TargetDecl
->hasAttr
<ArmNewZAAttr
>())
2451 FuncAttrs
.addAttribute("aarch64_pstate_za_new");
2454 // Attach "no-builtins" attributes to:
2455 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2456 // * definitions: "no-builtins" or "no-builtin-<name>" only.
2457 // The attributes can come from:
2458 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2459 // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2460 addNoBuiltinAttributes(FuncAttrs
, getLangOpts(), NBA
);
2462 // Collect function IR attributes based on global settiings.
2463 getDefaultFunctionAttributes(Name
, HasOptnone
, AttrOnCallSite
, FuncAttrs
);
2465 // Override some default IR attributes based on declaration-specific
2468 if (TargetDecl
->hasAttr
<NoSpeculativeLoadHardeningAttr
>())
2469 FuncAttrs
.removeAttribute(llvm::Attribute::SpeculativeLoadHardening
);
2470 if (TargetDecl
->hasAttr
<SpeculativeLoadHardeningAttr
>())
2471 FuncAttrs
.addAttribute(llvm::Attribute::SpeculativeLoadHardening
);
2472 if (TargetDecl
->hasAttr
<NoSplitStackAttr
>())
2473 FuncAttrs
.removeAttribute("split-stack");
2474 if (TargetDecl
->hasAttr
<ZeroCallUsedRegsAttr
>()) {
2475 // A function "__attribute__((...))" overrides the command-line flag.
2477 TargetDecl
->getAttr
<ZeroCallUsedRegsAttr
>()->getZeroCallUsedRegs();
2478 FuncAttrs
.removeAttribute("zero-call-used-regs");
2479 FuncAttrs
.addAttribute(
2480 "zero-call-used-regs",
2481 ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind
));
2484 // Add NonLazyBind attribute to function declarations when -fno-plt
2486 // FIXME: what if we just haven't processed the function definition
2487 // yet, or if it's an external definition like C99 inline?
2488 if (CodeGenOpts
.NoPLT
) {
2489 if (auto *Fn
= dyn_cast
<FunctionDecl
>(TargetDecl
)) {
2490 if (!Fn
->isDefined() && !AttrOnCallSite
) {
2491 FuncAttrs
.addAttribute(llvm::Attribute::NonLazyBind
);
2497 // Add "sample-profile-suffix-elision-policy" attribute for internal linkage
2498 // functions with -funique-internal-linkage-names.
2499 if (TargetDecl
&& CodeGenOpts
.UniqueInternalLinkageNames
) {
2500 if (const auto *FD
= dyn_cast_or_null
<FunctionDecl
>(TargetDecl
)) {
2501 if (!FD
->isExternallyVisible())
2502 FuncAttrs
.addAttribute("sample-profile-suffix-elision-policy",
2507 // Collect non-call-site function IR attributes from declaration-specific
2509 if (!AttrOnCallSite
) {
2510 if (TargetDecl
&& TargetDecl
->hasAttr
<CmseNSEntryAttr
>())
2511 FuncAttrs
.addAttribute("cmse_nonsecure_entry");
2513 // Whether tail calls are enabled.
2514 auto shouldDisableTailCalls
= [&] {
2515 // Should this be honored in getDefaultFunctionAttributes?
2516 if (CodeGenOpts
.DisableTailCalls
)
2522 if (TargetDecl
->hasAttr
<DisableTailCallsAttr
>() ||
2523 TargetDecl
->hasAttr
<AnyX86InterruptAttr
>())
2526 if (CodeGenOpts
.NoEscapingBlockTailCalls
) {
2527 if (const auto *BD
= dyn_cast
<BlockDecl
>(TargetDecl
))
2528 if (!BD
->doesNotEscape())
2534 if (shouldDisableTailCalls())
2535 FuncAttrs
.addAttribute("disable-tail-calls", "true");
2537 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes
2538 // handles these separately to set them based on the global defaults.
2539 GetCPUAndFeaturesAttributes(CalleeInfo
.getCalleeDecl(), FuncAttrs
);
2542 // Collect attributes from arguments and return values.
2543 ClangToLLVMArgMapping
IRFunctionArgs(getContext(), FI
);
2545 QualType RetTy
= FI
.getReturnType();
2546 const ABIArgInfo
&RetAI
= FI
.getReturnInfo();
2547 const llvm::DataLayout
&DL
= getDataLayout();
2549 // Determine if the return type could be partially undef
2550 if (CodeGenOpts
.EnableNoundefAttrs
&&
2551 HasStrictReturn(*this, RetTy
, TargetDecl
)) {
2552 if (!RetTy
->isVoidType() && RetAI
.getKind() != ABIArgInfo::Indirect
&&
2553 DetermineNoUndef(RetTy
, getTypes(), DL
, RetAI
))
2554 RetAttrs
.addAttribute(llvm::Attribute::NoUndef
);
2557 switch (RetAI
.getKind()) {
2558 case ABIArgInfo::Extend
:
2559 if (RetAI
.isSignExt())
2560 RetAttrs
.addAttribute(llvm::Attribute::SExt
);
2562 RetAttrs
.addAttribute(llvm::Attribute::ZExt
);
2564 case ABIArgInfo::Direct
:
2565 if (RetAI
.getInReg())
2566 RetAttrs
.addAttribute(llvm::Attribute::InReg
);
2568 if (canApplyNoFPClass(RetAI
, RetTy
, true))
2569 RetAttrs
.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts()));
2572 case ABIArgInfo::Ignore
:
2575 case ABIArgInfo::InAlloca
:
2576 case ABIArgInfo::Indirect
: {
2577 // inalloca and sret disable readnone and readonly
2578 AddPotentialArgAccess();
2582 case ABIArgInfo::CoerceAndExpand
:
2585 case ABIArgInfo::Expand
:
2586 case ABIArgInfo::IndirectAliased
:
2587 llvm_unreachable("Invalid ABI kind for return argument");
2591 // FIXME: fix this properly, https://reviews.llvm.org/D100388
2592 if (const auto *RefTy
= RetTy
->getAs
<ReferenceType
>()) {
2593 QualType PTy
= RefTy
->getPointeeType();
2594 if (!PTy
->isIncompleteType() && PTy
->isConstantSizeType())
2595 RetAttrs
.addDereferenceableAttr(
2596 getMinimumObjectSize(PTy
).getQuantity());
2597 if (getTypes().getTargetAddressSpace(PTy
) == 0 &&
2598 !CodeGenOpts
.NullPointerIsValid
)
2599 RetAttrs
.addAttribute(llvm::Attribute::NonNull
);
2600 if (PTy
->isObjectType()) {
2601 llvm::Align Alignment
=
2602 getNaturalPointeeTypeAlignment(RetTy
).getAsAlign();
2603 RetAttrs
.addAlignmentAttr(Alignment
);
2608 bool hasUsedSRet
= false;
2609 SmallVector
<llvm::AttributeSet
, 4> ArgAttrs(IRFunctionArgs
.totalIRArgs());
2611 // Attach attributes to sret.
2612 if (IRFunctionArgs
.hasSRetArg()) {
2613 llvm::AttrBuilder
SRETAttrs(getLLVMContext());
2614 SRETAttrs
.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy
));
2616 if (RetAI
.getInReg())
2617 SRETAttrs
.addAttribute(llvm::Attribute::InReg
);
2618 SRETAttrs
.addAlignmentAttr(RetAI
.getIndirectAlign().getQuantity());
2619 ArgAttrs
[IRFunctionArgs
.getSRetArgNo()] =
2620 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs
);
2623 // Attach attributes to inalloca argument.
2624 if (IRFunctionArgs
.hasInallocaArg()) {
2625 llvm::AttrBuilder
Attrs(getLLVMContext());
2626 Attrs
.addInAllocaAttr(FI
.getArgStruct());
2627 ArgAttrs
[IRFunctionArgs
.getInallocaArgNo()] =
2628 llvm::AttributeSet::get(getLLVMContext(), Attrs
);
2631 // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument,
2632 // unless this is a thunk function.
2633 // FIXME: fix this properly, https://reviews.llvm.org/D100388
2634 if (FI
.isInstanceMethod() && !IRFunctionArgs
.hasInallocaArg() &&
2635 !FI
.arg_begin()->type
->isVoidPointerType() && !IsThunk
) {
2636 auto IRArgs
= IRFunctionArgs
.getIRArgs(0);
2638 assert(IRArgs
.second
== 1 && "Expected only a single `this` pointer.");
2640 llvm::AttrBuilder
Attrs(getLLVMContext());
2643 FI
.arg_begin()->type
.getTypePtr()->getPointeeType();
2645 if (!CodeGenOpts
.NullPointerIsValid
&&
2646 getTypes().getTargetAddressSpace(FI
.arg_begin()->type
) == 0) {
2647 Attrs
.addAttribute(llvm::Attribute::NonNull
);
2648 Attrs
.addDereferenceableAttr(getMinimumObjectSize(ThisTy
).getQuantity());
2650 // FIXME dereferenceable should be correct here, regardless of
2651 // NullPointerIsValid. However, dereferenceable currently does not always
2652 // respect NullPointerIsValid and may imply nonnull and break the program.
2653 // See https://reviews.llvm.org/D66618 for discussions.
2654 Attrs
.addDereferenceableOrNullAttr(
2655 getMinimumObjectSize(
2656 FI
.arg_begin()->type
.castAs
<PointerType
>()->getPointeeType())
2660 llvm::Align Alignment
=
2661 getNaturalTypeAlignment(ThisTy
, /*BaseInfo=*/nullptr,
2662 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true)
2664 Attrs
.addAlignmentAttr(Alignment
);
2666 ArgAttrs
[IRArgs
.first
] = llvm::AttributeSet::get(getLLVMContext(), Attrs
);
2670 for (CGFunctionInfo::const_arg_iterator I
= FI
.arg_begin(),
2672 I
!= E
; ++I
, ++ArgNo
) {
2673 QualType ParamType
= I
->type
;
2674 const ABIArgInfo
&AI
= I
->info
;
2675 llvm::AttrBuilder
Attrs(getLLVMContext());
2677 // Add attribute for padding argument, if necessary.
2678 if (IRFunctionArgs
.hasPaddingArg(ArgNo
)) {
2679 if (AI
.getPaddingInReg()) {
2680 ArgAttrs
[IRFunctionArgs
.getPaddingArgNo(ArgNo
)] =
2681 llvm::AttributeSet::get(
2683 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg
));
2687 // Decide whether the argument we're handling could be partially undef
2688 if (CodeGenOpts
.EnableNoundefAttrs
&&
2689 DetermineNoUndef(ParamType
, getTypes(), DL
, AI
)) {
2690 Attrs
.addAttribute(llvm::Attribute::NoUndef
);
2693 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2694 // have the corresponding parameter variable. It doesn't make
2695 // sense to do it here because parameters are so messed up.
2696 switch (AI
.getKind()) {
2697 case ABIArgInfo::Extend
:
2699 Attrs
.addAttribute(llvm::Attribute::SExt
);
2701 Attrs
.addAttribute(llvm::Attribute::ZExt
);
2703 case ABIArgInfo::Direct
:
2704 if (ArgNo
== 0 && FI
.isChainCall())
2705 Attrs
.addAttribute(llvm::Attribute::Nest
);
2706 else if (AI
.getInReg())
2707 Attrs
.addAttribute(llvm::Attribute::InReg
);
2708 Attrs
.addStackAlignmentAttr(llvm::MaybeAlign(AI
.getDirectAlign()));
2710 if (canApplyNoFPClass(AI
, ParamType
, false))
2711 Attrs
.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts()));
2713 case ABIArgInfo::Indirect
: {
2715 Attrs
.addAttribute(llvm::Attribute::InReg
);
2717 if (AI
.getIndirectByVal())
2718 Attrs
.addByValAttr(getTypes().ConvertTypeForMem(ParamType
));
2720 auto *Decl
= ParamType
->getAsRecordDecl();
2721 if (CodeGenOpts
.PassByValueIsNoAlias
&& Decl
&&
2722 Decl
->getArgPassingRestrictions() ==
2723 RecordArgPassingKind::CanPassInRegs
)
2724 // When calling the function, the pointer passed in will be the only
2725 // reference to the underlying object. Mark it accordingly.
2726 Attrs
.addAttribute(llvm::Attribute::NoAlias
);
2728 // TODO: We could add the byref attribute if not byval, but it would
2729 // require updating many testcases.
2731 CharUnits Align
= AI
.getIndirectAlign();
2733 // In a byval argument, it is important that the required
2734 // alignment of the type is honored, as LLVM might be creating a
2735 // *new* stack object, and needs to know what alignment to give
2736 // it. (Sometimes it can deduce a sensible alignment on its own,
2737 // but not if clang decides it must emit a packed struct, or the
2738 // user specifies increased alignment requirements.)
2740 // This is different from indirect *not* byval, where the object
2741 // exists already, and the align attribute is purely
2743 assert(!Align
.isZero());
2745 // For now, only add this when we have a byval argument.
2746 // TODO: be less lazy about updating test cases.
2747 if (AI
.getIndirectByVal())
2748 Attrs
.addAlignmentAttr(Align
.getQuantity());
2750 // byval disables readnone and readonly.
2751 AddPotentialArgAccess();
2754 case ABIArgInfo::IndirectAliased
: {
2755 CharUnits Align
= AI
.getIndirectAlign();
2756 Attrs
.addByRefAttr(getTypes().ConvertTypeForMem(ParamType
));
2757 Attrs
.addAlignmentAttr(Align
.getQuantity());
2760 case ABIArgInfo::Ignore
:
2761 case ABIArgInfo::Expand
:
2762 case ABIArgInfo::CoerceAndExpand
:
2765 case ABIArgInfo::InAlloca
:
2766 // inalloca disables readnone and readonly.
2767 AddPotentialArgAccess();
2771 if (const auto *RefTy
= ParamType
->getAs
<ReferenceType
>()) {
2772 QualType PTy
= RefTy
->getPointeeType();
2773 if (!PTy
->isIncompleteType() && PTy
->isConstantSizeType())
2774 Attrs
.addDereferenceableAttr(
2775 getMinimumObjectSize(PTy
).getQuantity());
2776 if (getTypes().getTargetAddressSpace(PTy
) == 0 &&
2777 !CodeGenOpts
.NullPointerIsValid
)
2778 Attrs
.addAttribute(llvm::Attribute::NonNull
);
2779 if (PTy
->isObjectType()) {
2780 llvm::Align Alignment
=
2781 getNaturalPointeeTypeAlignment(ParamType
).getAsAlign();
2782 Attrs
.addAlignmentAttr(Alignment
);
2786 // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types:
2787 // > For arguments to a __kernel function declared to be a pointer to a
2788 // > data type, the OpenCL compiler can assume that the pointee is always
2789 // > appropriately aligned as required by the data type.
2790 if (TargetDecl
&& TargetDecl
->hasAttr
<OpenCLKernelAttr
>() &&
2791 ParamType
->isPointerType()) {
2792 QualType PTy
= ParamType
->getPointeeType();
2793 if (!PTy
->isIncompleteType() && PTy
->isConstantSizeType()) {
2794 llvm::Align Alignment
=
2795 getNaturalPointeeTypeAlignment(ParamType
).getAsAlign();
2796 Attrs
.addAlignmentAttr(Alignment
);
2800 switch (FI
.getExtParameterInfo(ArgNo
).getABI()) {
2801 case ParameterABI::Ordinary
:
2804 case ParameterABI::SwiftIndirectResult
: {
2805 // Add 'sret' if we haven't already used it for something, but
2806 // only if the result is void.
2807 if (!hasUsedSRet
&& RetTy
->isVoidType()) {
2808 Attrs
.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType
));
2812 // Add 'noalias' in either case.
2813 Attrs
.addAttribute(llvm::Attribute::NoAlias
);
2815 // Add 'dereferenceable' and 'alignment'.
2816 auto PTy
= ParamType
->getPointeeType();
2817 if (!PTy
->isIncompleteType() && PTy
->isConstantSizeType()) {
2818 auto info
= getContext().getTypeInfoInChars(PTy
);
2819 Attrs
.addDereferenceableAttr(info
.Width
.getQuantity());
2820 Attrs
.addAlignmentAttr(info
.Align
.getAsAlign());
2825 case ParameterABI::SwiftErrorResult
:
2826 Attrs
.addAttribute(llvm::Attribute::SwiftError
);
2829 case ParameterABI::SwiftContext
:
2830 Attrs
.addAttribute(llvm::Attribute::SwiftSelf
);
2833 case ParameterABI::SwiftAsyncContext
:
2834 Attrs
.addAttribute(llvm::Attribute::SwiftAsync
);
2838 if (FI
.getExtParameterInfo(ArgNo
).isNoEscape())
2839 Attrs
.addAttribute(llvm::Attribute::NoCapture
);
2841 if (Attrs
.hasAttributes()) {
2842 unsigned FirstIRArg
, NumIRArgs
;
2843 std::tie(FirstIRArg
, NumIRArgs
) = IRFunctionArgs
.getIRArgs(ArgNo
);
2844 for (unsigned i
= 0; i
< NumIRArgs
; i
++)
2845 ArgAttrs
[FirstIRArg
+ i
] = ArgAttrs
[FirstIRArg
+ i
].addAttributes(
2846 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs
));
2849 assert(ArgNo
== FI
.arg_size());
2851 AttrList
= llvm::AttributeList::get(
2852 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs
),
2853 llvm::AttributeSet::get(getLLVMContext(), RetAttrs
), ArgAttrs
);
2856 /// An argument came in as a promoted argument; demote it back to its
2858 static llvm::Value
*emitArgumentDemotion(CodeGenFunction
&CGF
,
2860 llvm::Value
*value
) {
2861 llvm::Type
*varType
= CGF
.ConvertType(var
->getType());
2863 // This can happen with promotions that actually don't change the
2864 // underlying type, like the enum promotions.
2865 if (value
->getType() == varType
) return value
;
2867 assert((varType
->isIntegerTy() || varType
->isFloatingPointTy())
2868 && "unexpected promotion type");
2870 if (isa
<llvm::IntegerType
>(varType
))
2871 return CGF
.Builder
.CreateTrunc(value
, varType
, "arg.unpromote");
2873 return CGF
.Builder
.CreateFPCast(value
, varType
, "arg.unpromote");
2876 /// Returns the attribute (either parameter attribute, or function
2877 /// attribute), which declares argument ArgNo to be non-null.
2878 static const NonNullAttr
*getNonNullAttr(const Decl
*FD
, const ParmVarDecl
*PVD
,
2879 QualType ArgType
, unsigned ArgNo
) {
2880 // FIXME: __attribute__((nonnull)) can also be applied to:
2881 // - references to pointers, where the pointee is known to be
2882 // nonnull (apparently a Clang extension)
2883 // - transparent unions containing pointers
2884 // In the former case, LLVM IR cannot represent the constraint. In
2885 // the latter case, we have no guarantee that the transparent union
2886 // is in fact passed as a pointer.
2887 if (!ArgType
->isAnyPointerType() && !ArgType
->isBlockPointerType())
2889 // First, check attribute on parameter itself.
2891 if (auto ParmNNAttr
= PVD
->getAttr
<NonNullAttr
>())
2894 // Check function attributes.
2897 for (const auto *NNAttr
: FD
->specific_attrs
<NonNullAttr
>()) {
2898 if (NNAttr
->isNonNull(ArgNo
))
2905 struct CopyBackSwiftError final
: EHScopeStack::Cleanup
{
2908 CopyBackSwiftError(Address temp
, Address arg
) : Temp(temp
), Arg(arg
) {}
2909 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2910 llvm::Value
*errorValue
= CGF
.Builder
.CreateLoad(Temp
);
2911 CGF
.Builder
.CreateStore(errorValue
, Arg
);
2916 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo
&FI
,
2918 const FunctionArgList
&Args
) {
2919 if (CurCodeDecl
&& CurCodeDecl
->hasAttr
<NakedAttr
>())
2920 // Naked functions don't have prologues.
2923 // If this is an implicit-return-zero function, go ahead and
2924 // initialize the return value. TODO: it might be nice to have
2925 // a more general mechanism for this that didn't require synthesized
2926 // return statements.
2927 if (const FunctionDecl
*FD
= dyn_cast_or_null
<FunctionDecl
>(CurCodeDecl
)) {
2928 if (FD
->hasImplicitReturnZero()) {
2929 QualType RetTy
= FD
->getReturnType().getUnqualifiedType();
2930 llvm::Type
* LLVMTy
= CGM
.getTypes().ConvertType(RetTy
);
2931 llvm::Constant
* Zero
= llvm::Constant::getNullValue(LLVMTy
);
2932 Builder
.CreateStore(Zero
, ReturnValue
);
2936 // FIXME: We no longer need the types from FunctionArgList; lift up and
2939 ClangToLLVMArgMapping
IRFunctionArgs(CGM
.getContext(), FI
);
2940 assert(Fn
->arg_size() == IRFunctionArgs
.totalIRArgs());
2942 // If we're using inalloca, all the memory arguments are GEPs off of the last
2943 // parameter, which is a pointer to the complete memory area.
2944 Address ArgStruct
= Address::invalid();
2945 if (IRFunctionArgs
.hasInallocaArg())
2946 ArgStruct
= Address(Fn
->getArg(IRFunctionArgs
.getInallocaArgNo()),
2947 FI
.getArgStruct(), FI
.getArgStructAlignment());
2949 // Name the struct return parameter.
2950 if (IRFunctionArgs
.hasSRetArg()) {
2951 auto AI
= Fn
->getArg(IRFunctionArgs
.getSRetArgNo());
2952 AI
->setName("agg.result");
2953 AI
->addAttr(llvm::Attribute::NoAlias
);
2956 // Track if we received the parameter as a pointer (indirect, byval, or
2957 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it
2958 // into a local alloca for us.
2959 SmallVector
<ParamValue
, 16> ArgVals
;
2960 ArgVals
.reserve(Args
.size());
2962 // Create a pointer value for every parameter declaration. This usually
2963 // entails copying one or more LLVM IR arguments into an alloca. Don't push
2964 // any cleanups or do anything that might unwind. We do that separately, so
2965 // we can push the cleanups in the correct order for the ABI.
2966 assert(FI
.arg_size() == Args
.size() &&
2967 "Mismatch between function signature & arguments.");
2969 CGFunctionInfo::const_arg_iterator info_it
= FI
.arg_begin();
2970 for (FunctionArgList::const_iterator i
= Args
.begin(), e
= Args
.end();
2971 i
!= e
; ++i
, ++info_it
, ++ArgNo
) {
2972 const VarDecl
*Arg
= *i
;
2973 const ABIArgInfo
&ArgI
= info_it
->info
;
2976 isa
<ParmVarDecl
>(Arg
) && cast
<ParmVarDecl
>(Arg
)->isKNRPromoted();
2977 // We are converting from ABIArgInfo type to VarDecl type directly, unless
2978 // the parameter is promoted. In this case we convert to
2979 // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2980 QualType Ty
= isPromoted
? info_it
->type
: Arg
->getType();
2981 assert(hasScalarEvaluationKind(Ty
) ==
2982 hasScalarEvaluationKind(Arg
->getType()));
2984 unsigned FirstIRArg
, NumIRArgs
;
2985 std::tie(FirstIRArg
, NumIRArgs
) = IRFunctionArgs
.getIRArgs(ArgNo
);
2987 switch (ArgI
.getKind()) {
2988 case ABIArgInfo::InAlloca
: {
2989 assert(NumIRArgs
== 0);
2990 auto FieldIndex
= ArgI
.getInAllocaFieldIndex();
2992 Builder
.CreateStructGEP(ArgStruct
, FieldIndex
, Arg
->getName());
2993 if (ArgI
.getInAllocaIndirect())
2994 V
= Address(Builder
.CreateLoad(V
), ConvertTypeForMem(Ty
),
2995 getContext().getTypeAlignInChars(Ty
));
2996 ArgVals
.push_back(ParamValue::forIndirect(V
));
3000 case ABIArgInfo::Indirect
:
3001 case ABIArgInfo::IndirectAliased
: {
3002 assert(NumIRArgs
== 1);
3003 Address ParamAddr
= Address(Fn
->getArg(FirstIRArg
), ConvertTypeForMem(Ty
),
3004 ArgI
.getIndirectAlign(), KnownNonNull
);
3006 if (!hasScalarEvaluationKind(Ty
)) {
3007 // Aggregates and complex variables are accessed by reference. All we
3008 // need to do is realign the value, if requested. Also, if the address
3009 // may be aliased, copy it to ensure that the parameter variable is
3010 // mutable and has a unique adress, as C requires.
3011 Address V
= ParamAddr
;
3012 if (ArgI
.getIndirectRealign() || ArgI
.isIndirectAliased()) {
3013 Address AlignedTemp
= CreateMemTemp(Ty
, "coerce");
3015 // Copy from the incoming argument pointer to the temporary with the
3016 // appropriate alignment.
3018 // FIXME: We should have a common utility for generating an aggregate
3020 CharUnits Size
= getContext().getTypeSizeInChars(Ty
);
3021 Builder
.CreateMemCpy(
3022 AlignedTemp
.getPointer(), AlignedTemp
.getAlignment().getAsAlign(),
3023 ParamAddr
.getPointer(), ParamAddr
.getAlignment().getAsAlign(),
3024 llvm::ConstantInt::get(IntPtrTy
, Size
.getQuantity()));
3027 ArgVals
.push_back(ParamValue::forIndirect(V
));
3029 // Load scalar value from indirect argument.
3031 EmitLoadOfScalar(ParamAddr
, false, Ty
, Arg
->getBeginLoc());
3034 V
= emitArgumentDemotion(*this, Arg
, V
);
3035 ArgVals
.push_back(ParamValue::forDirect(V
));
3040 case ABIArgInfo::Extend
:
3041 case ABIArgInfo::Direct
: {
3042 auto AI
= Fn
->getArg(FirstIRArg
);
3043 llvm::Type
*LTy
= ConvertType(Arg
->getType());
3045 // Prepare parameter attributes. So far, only attributes for pointer
3046 // parameters are prepared. See
3047 // http://llvm.org/docs/LangRef.html#paramattrs.
3048 if (ArgI
.getDirectOffset() == 0 && LTy
->isPointerTy() &&
3049 ArgI
.getCoerceToType()->isPointerTy()) {
3050 assert(NumIRArgs
== 1);
3052 if (const ParmVarDecl
*PVD
= dyn_cast
<ParmVarDecl
>(Arg
)) {
3053 // Set `nonnull` attribute if any.
3054 if (getNonNullAttr(CurCodeDecl
, PVD
, PVD
->getType(),
3055 PVD
->getFunctionScopeIndex()) &&
3056 !CGM
.getCodeGenOpts().NullPointerIsValid
)
3057 AI
->addAttr(llvm::Attribute::NonNull
);
3059 QualType OTy
= PVD
->getOriginalType();
3060 if (const auto *ArrTy
=
3061 getContext().getAsConstantArrayType(OTy
)) {
3062 // A C99 array parameter declaration with the static keyword also
3063 // indicates dereferenceability, and if the size is constant we can
3064 // use the dereferenceable attribute (which requires the size in
3066 if (ArrTy
->getSizeModifier() == ArraySizeModifier::Static
) {
3067 QualType ETy
= ArrTy
->getElementType();
3068 llvm::Align Alignment
=
3069 CGM
.getNaturalTypeAlignment(ETy
).getAsAlign();
3070 AI
->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment
));
3071 uint64_t ArrSize
= ArrTy
->getSize().getZExtValue();
3072 if (!ETy
->isIncompleteType() && ETy
->isConstantSizeType() &&
3074 llvm::AttrBuilder
Attrs(getLLVMContext());
3075 Attrs
.addDereferenceableAttr(
3076 getContext().getTypeSizeInChars(ETy
).getQuantity() *
3078 AI
->addAttrs(Attrs
);
3079 } else if (getContext().getTargetInfo().getNullPointerValue(
3080 ETy
.getAddressSpace()) == 0 &&
3081 !CGM
.getCodeGenOpts().NullPointerIsValid
) {
3082 AI
->addAttr(llvm::Attribute::NonNull
);
3085 } else if (const auto *ArrTy
=
3086 getContext().getAsVariableArrayType(OTy
)) {
3087 // For C99 VLAs with the static keyword, we don't know the size so
3088 // we can't use the dereferenceable attribute, but in addrspace(0)
3089 // we know that it must be nonnull.
3090 if (ArrTy
->getSizeModifier() == ArraySizeModifier::Static
) {
3091 QualType ETy
= ArrTy
->getElementType();
3092 llvm::Align Alignment
=
3093 CGM
.getNaturalTypeAlignment(ETy
).getAsAlign();
3094 AI
->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment
));
3095 if (!getTypes().getTargetAddressSpace(ETy
) &&
3096 !CGM
.getCodeGenOpts().NullPointerIsValid
)
3097 AI
->addAttr(llvm::Attribute::NonNull
);
3101 // Set `align` attribute if any.
3102 const auto *AVAttr
= PVD
->getAttr
<AlignValueAttr
>();
3104 if (const auto *TOTy
= OTy
->getAs
<TypedefType
>())
3105 AVAttr
= TOTy
->getDecl()->getAttr
<AlignValueAttr
>();
3106 if (AVAttr
&& !SanOpts
.has(SanitizerKind::Alignment
)) {
3107 // If alignment-assumption sanitizer is enabled, we do *not* add
3108 // alignment attribute here, but emit normal alignment assumption,
3109 // so the UBSAN check could function.
3110 llvm::ConstantInt
*AlignmentCI
=
3111 cast
<llvm::ConstantInt
>(EmitScalarExpr(AVAttr
->getAlignment()));
3112 uint64_t AlignmentInt
=
3113 AlignmentCI
->getLimitedValue(llvm::Value::MaximumAlignment
);
3114 if (AI
->getParamAlign().valueOrOne() < AlignmentInt
) {
3115 AI
->removeAttr(llvm::Attribute::AttrKind::Alignment
);
3116 AI
->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(
3117 llvm::Align(AlignmentInt
)));
3122 // Set 'noalias' if an argument type has the `restrict` qualifier.
3123 if (Arg
->getType().isRestrictQualified())
3124 AI
->addAttr(llvm::Attribute::NoAlias
);
3127 // Prepare the argument value. If we have the trivial case, handle it
3128 // with no muss and fuss.
3129 if (!isa
<llvm::StructType
>(ArgI
.getCoerceToType()) &&
3130 ArgI
.getCoerceToType() == ConvertType(Ty
) &&
3131 ArgI
.getDirectOffset() == 0) {
3132 assert(NumIRArgs
== 1);
3134 // LLVM expects swifterror parameters to be used in very restricted
3135 // ways. Copy the value into a less-restricted temporary.
3136 llvm::Value
*V
= AI
;
3137 if (FI
.getExtParameterInfo(ArgNo
).getABI()
3138 == ParameterABI::SwiftErrorResult
) {
3139 QualType pointeeTy
= Ty
->getPointeeType();
3140 assert(pointeeTy
->isPointerType());
3142 CreateMemTemp(pointeeTy
, getPointerAlign(), "swifterror.temp");
3143 Address
arg(V
, ConvertTypeForMem(pointeeTy
),
3144 getContext().getTypeAlignInChars(pointeeTy
));
3145 llvm::Value
*incomingErrorValue
= Builder
.CreateLoad(arg
);
3146 Builder
.CreateStore(incomingErrorValue
, temp
);
3147 V
= temp
.getPointer();
3149 // Push a cleanup to copy the value back at the end of the function.
3150 // The convention does not guarantee that the value will be written
3151 // back if the function exits with an unwind exception.
3152 EHStack
.pushCleanup
<CopyBackSwiftError
>(NormalCleanup
, temp
, arg
);
3155 // Ensure the argument is the correct type.
3156 if (V
->getType() != ArgI
.getCoerceToType())
3157 V
= Builder
.CreateBitCast(V
, ArgI
.getCoerceToType());
3160 V
= emitArgumentDemotion(*this, Arg
, V
);
3162 // Because of merging of function types from multiple decls it is
3163 // possible for the type of an argument to not match the corresponding
3164 // type in the function type. Since we are codegening the callee
3165 // in here, add a cast to the argument type.
3166 llvm::Type
*LTy
= ConvertType(Arg
->getType());
3167 if (V
->getType() != LTy
)
3168 V
= Builder
.CreateBitCast(V
, LTy
);
3170 ArgVals
.push_back(ParamValue::forDirect(V
));
3174 // VLST arguments are coerced to VLATs at the function boundary for
3175 // ABI consistency. If this is a VLST that was coerced to
3176 // a VLAT at the function boundary and the types match up, use
3177 // llvm.vector.extract to convert back to the original VLST.
3178 if (auto *VecTyTo
= dyn_cast
<llvm::FixedVectorType
>(ConvertType(Ty
))) {
3179 llvm::Value
*Coerced
= Fn
->getArg(FirstIRArg
);
3180 if (auto *VecTyFrom
=
3181 dyn_cast
<llvm::ScalableVectorType
>(Coerced
->getType())) {
3182 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
3183 // vector, bitcast the source and use a vector extract.
3185 llvm::ScalableVectorType::get(Builder
.getInt1Ty(), 16);
3186 if (VecTyFrom
== PredType
&&
3187 VecTyTo
->getElementType() == Builder
.getInt8Ty()) {
3188 VecTyFrom
= llvm::ScalableVectorType::get(Builder
.getInt8Ty(), 2);
3189 Coerced
= Builder
.CreateBitCast(Coerced
, VecTyFrom
);
3191 if (VecTyFrom
->getElementType() == VecTyTo
->getElementType()) {
3192 llvm::Value
*Zero
= llvm::Constant::getNullValue(CGM
.Int64Ty
);
3194 assert(NumIRArgs
== 1);
3195 Coerced
->setName(Arg
->getName() + ".coerce");
3196 ArgVals
.push_back(ParamValue::forDirect(Builder
.CreateExtractVector(
3197 VecTyTo
, Coerced
, Zero
, "cast.fixed")));
3203 Address Alloca
= CreateMemTemp(Ty
, getContext().getDeclAlign(Arg
),
3206 // Pointer to store into.
3207 Address Ptr
= emitAddressAtOffset(*this, Alloca
, ArgI
);
3209 // Fast-isel and the optimizer generally like scalar values better than
3210 // FCAs, so we flatten them if this is safe to do for this argument.
3211 llvm::StructType
*STy
= dyn_cast
<llvm::StructType
>(ArgI
.getCoerceToType());
3212 if (ArgI
.isDirect() && ArgI
.getCanBeFlattened() && STy
&&
3213 STy
->getNumElements() > 1) {
3214 llvm::TypeSize StructSize
= CGM
.getDataLayout().getTypeAllocSize(STy
);
3215 llvm::TypeSize PtrElementSize
=
3216 CGM
.getDataLayout().getTypeAllocSize(Ptr
.getElementType());
3217 if (StructSize
.isScalable()) {
3218 assert(STy
->containsHomogeneousScalableVectorTypes() &&
3219 "ABI only supports structure with homogeneous scalable vector "
3221 assert(StructSize
== PtrElementSize
&&
3222 "Only allow non-fractional movement of structure with"
3223 "homogeneous scalable vector type");
3224 assert(STy
->getNumElements() == NumIRArgs
);
3226 llvm::Value
*LoadedStructValue
= llvm::PoisonValue::get(STy
);
3227 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
3228 auto *AI
= Fn
->getArg(FirstIRArg
+ i
);
3229 AI
->setName(Arg
->getName() + ".coerce" + Twine(i
));
3231 Builder
.CreateInsertValue(LoadedStructValue
, AI
, i
);
3234 Builder
.CreateStore(LoadedStructValue
, Ptr
);
3236 uint64_t SrcSize
= StructSize
.getFixedValue();
3237 uint64_t DstSize
= PtrElementSize
.getFixedValue();
3239 Address AddrToStoreInto
= Address::invalid();
3240 if (SrcSize
<= DstSize
) {
3241 AddrToStoreInto
= Ptr
.withElementType(STy
);
3244 CreateTempAlloca(STy
, Alloca
.getAlignment(), "coerce");
3247 assert(STy
->getNumElements() == NumIRArgs
);
3248 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
3249 auto AI
= Fn
->getArg(FirstIRArg
+ i
);
3250 AI
->setName(Arg
->getName() + ".coerce" + Twine(i
));
3251 Address EltPtr
= Builder
.CreateStructGEP(AddrToStoreInto
, i
);
3252 Builder
.CreateStore(AI
, EltPtr
);
3255 if (SrcSize
> DstSize
) {
3256 Builder
.CreateMemCpy(Ptr
, AddrToStoreInto
, DstSize
);
3260 // Simple case, just do a coerced store of the argument into the alloca.
3261 assert(NumIRArgs
== 1);
3262 auto AI
= Fn
->getArg(FirstIRArg
);
3263 AI
->setName(Arg
->getName() + ".coerce");
3264 CreateCoercedStore(AI
, Ptr
, /*DstIsVolatile=*/false, *this);
3267 // Match to what EmitParmDecl is expecting for this type.
3268 if (CodeGenFunction::hasScalarEvaluationKind(Ty
)) {
3270 EmitLoadOfScalar(Alloca
, false, Ty
, Arg
->getBeginLoc());
3272 V
= emitArgumentDemotion(*this, Arg
, V
);
3273 ArgVals
.push_back(ParamValue::forDirect(V
));
3275 ArgVals
.push_back(ParamValue::forIndirect(Alloca
));
3280 case ABIArgInfo::CoerceAndExpand
: {
3281 // Reconstruct into a temporary.
3282 Address alloca
= CreateMemTemp(Ty
, getContext().getDeclAlign(Arg
));
3283 ArgVals
.push_back(ParamValue::forIndirect(alloca
));
3285 auto coercionType
= ArgI
.getCoerceAndExpandType();
3286 alloca
= alloca
.withElementType(coercionType
);
3288 unsigned argIndex
= FirstIRArg
;
3289 for (unsigned i
= 0, e
= coercionType
->getNumElements(); i
!= e
; ++i
) {
3290 llvm::Type
*eltType
= coercionType
->getElementType(i
);
3291 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType
))
3294 auto eltAddr
= Builder
.CreateStructGEP(alloca
, i
);
3295 auto elt
= Fn
->getArg(argIndex
++);
3296 Builder
.CreateStore(elt
, eltAddr
);
3298 assert(argIndex
== FirstIRArg
+ NumIRArgs
);
3302 case ABIArgInfo::Expand
: {
3303 // If this structure was expanded into multiple arguments then
3304 // we need to create a temporary and reconstruct it from the
3306 Address Alloca
= CreateMemTemp(Ty
, getContext().getDeclAlign(Arg
));
3307 LValue LV
= MakeAddrLValue(Alloca
, Ty
);
3308 ArgVals
.push_back(ParamValue::forIndirect(Alloca
));
3310 auto FnArgIter
= Fn
->arg_begin() + FirstIRArg
;
3311 ExpandTypeFromArgs(Ty
, LV
, FnArgIter
);
3312 assert(FnArgIter
== Fn
->arg_begin() + FirstIRArg
+ NumIRArgs
);
3313 for (unsigned i
= 0, e
= NumIRArgs
; i
!= e
; ++i
) {
3314 auto AI
= Fn
->getArg(FirstIRArg
+ i
);
3315 AI
->setName(Arg
->getName() + "." + Twine(i
));
3320 case ABIArgInfo::Ignore
:
3321 assert(NumIRArgs
== 0);
3322 // Initialize the local variable appropriately.
3323 if (!hasScalarEvaluationKind(Ty
)) {
3324 ArgVals
.push_back(ParamValue::forIndirect(CreateMemTemp(Ty
)));
3326 llvm::Value
*U
= llvm::UndefValue::get(ConvertType(Arg
->getType()));
3327 ArgVals
.push_back(ParamValue::forDirect(U
));
3333 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3334 for (int I
= Args
.size() - 1; I
>= 0; --I
)
3335 EmitParmDecl(*Args
[I
], ArgVals
[I
], I
+ 1);
3337 for (unsigned I
= 0, E
= Args
.size(); I
!= E
; ++I
)
3338 EmitParmDecl(*Args
[I
], ArgVals
[I
], I
+ 1);
3342 static void eraseUnusedBitCasts(llvm::Instruction
*insn
) {
3343 while (insn
->use_empty()) {
3344 llvm::BitCastInst
*bitcast
= dyn_cast
<llvm::BitCastInst
>(insn
);
3345 if (!bitcast
) return;
3347 // This is "safe" because we would have used a ConstantExpr otherwise.
3348 insn
= cast
<llvm::Instruction
>(bitcast
->getOperand(0));
3349 bitcast
->eraseFromParent();
3353 /// Try to emit a fused autorelease of a return result.
3354 static llvm::Value
*tryEmitFusedAutoreleaseOfResult(CodeGenFunction
&CGF
,
3355 llvm::Value
*result
) {
3356 // We must be immediately followed the cast.
3357 llvm::BasicBlock
*BB
= CGF
.Builder
.GetInsertBlock();
3358 if (BB
->empty()) return nullptr;
3359 if (&BB
->back() != result
) return nullptr;
3361 llvm::Type
*resultType
= result
->getType();
3363 // result is in a BasicBlock and is therefore an Instruction.
3364 llvm::Instruction
*generator
= cast
<llvm::Instruction
>(result
);
3366 SmallVector
<llvm::Instruction
*, 4> InstsToKill
;
3369 // %generator = bitcast %type1* %generator2 to %type2*
3370 while (llvm::BitCastInst
*bitcast
= dyn_cast
<llvm::BitCastInst
>(generator
)) {
3371 // We would have emitted this as a constant if the operand weren't
3373 generator
= cast
<llvm::Instruction
>(bitcast
->getOperand(0));
3375 // Require the generator to be immediately followed by the cast.
3376 if (generator
->getNextNode() != bitcast
)
3379 InstsToKill
.push_back(bitcast
);
3383 // %generator = call i8* @objc_retain(i8* %originalResult)
3385 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
3386 llvm::CallInst
*call
= dyn_cast
<llvm::CallInst
>(generator
);
3387 if (!call
) return nullptr;
3389 bool doRetainAutorelease
;
3391 if (call
->getCalledOperand() == CGF
.CGM
.getObjCEntrypoints().objc_retain
) {
3392 doRetainAutorelease
= true;
3393 } else if (call
->getCalledOperand() ==
3394 CGF
.CGM
.getObjCEntrypoints().objc_retainAutoreleasedReturnValue
) {
3395 doRetainAutorelease
= false;
3397 // If we emitted an assembly marker for this call (and the
3398 // ARCEntrypoints field should have been set if so), go looking
3399 // for that call. If we can't find it, we can't do this
3400 // optimization. But it should always be the immediately previous
3401 // instruction, unless we needed bitcasts around the call.
3402 if (CGF
.CGM
.getObjCEntrypoints().retainAutoreleasedReturnValueMarker
) {
3403 llvm::Instruction
*prev
= call
->getPrevNode();
3405 if (isa
<llvm::BitCastInst
>(prev
)) {
3406 prev
= prev
->getPrevNode();
3409 assert(isa
<llvm::CallInst
>(prev
));
3410 assert(cast
<llvm::CallInst
>(prev
)->getCalledOperand() ==
3411 CGF
.CGM
.getObjCEntrypoints().retainAutoreleasedReturnValueMarker
);
3412 InstsToKill
.push_back(prev
);
3418 result
= call
->getArgOperand(0);
3419 InstsToKill
.push_back(call
);
3421 // Keep killing bitcasts, for sanity. Note that we no longer care
3422 // about precise ordering as long as there's exactly one use.
3423 while (llvm::BitCastInst
*bitcast
= dyn_cast
<llvm::BitCastInst
>(result
)) {
3424 if (!bitcast
->hasOneUse()) break;
3425 InstsToKill
.push_back(bitcast
);
3426 result
= bitcast
->getOperand(0);
3429 // Delete all the unnecessary instructions, from latest to earliest.
3430 for (auto *I
: InstsToKill
)
3431 I
->eraseFromParent();
3433 // Do the fused retain/autorelease if we were asked to.
3434 if (doRetainAutorelease
)
3435 result
= CGF
.EmitARCRetainAutoreleaseReturnValue(result
);
3437 // Cast back to the result type.
3438 return CGF
.Builder
.CreateBitCast(result
, resultType
);
3441 /// If this is a +1 of the value of an immutable 'self', remove it.
3442 static llvm::Value
*tryRemoveRetainOfSelf(CodeGenFunction
&CGF
,
3443 llvm::Value
*result
) {
3444 // This is only applicable to a method with an immutable 'self'.
3445 const ObjCMethodDecl
*method
=
3446 dyn_cast_or_null
<ObjCMethodDecl
>(CGF
.CurCodeDecl
);
3447 if (!method
) return nullptr;
3448 const VarDecl
*self
= method
->getSelfDecl();
3449 if (!self
->getType().isConstQualified()) return nullptr;
3451 // Look for a retain call.
3452 llvm::CallInst
*retainCall
=
3453 dyn_cast
<llvm::CallInst
>(result
->stripPointerCasts());
3454 if (!retainCall
|| retainCall
->getCalledOperand() !=
3455 CGF
.CGM
.getObjCEntrypoints().objc_retain
)
3458 // Look for an ordinary load of 'self'.
3459 llvm::Value
*retainedValue
= retainCall
->getArgOperand(0);
3460 llvm::LoadInst
*load
=
3461 dyn_cast
<llvm::LoadInst
>(retainedValue
->stripPointerCasts());
3462 if (!load
|| load
->isAtomic() || load
->isVolatile() ||
3463 load
->getPointerOperand() != CGF
.GetAddrOfLocalVar(self
).getPointer())
3466 // Okay! Burn it all down. This relies for correctness on the
3467 // assumption that the retain is emitted as part of the return and
3468 // that thereafter everything is used "linearly".
3469 llvm::Type
*resultType
= result
->getType();
3470 eraseUnusedBitCasts(cast
<llvm::Instruction
>(result
));
3471 assert(retainCall
->use_empty());
3472 retainCall
->eraseFromParent();
3473 eraseUnusedBitCasts(cast
<llvm::Instruction
>(retainedValue
));
3475 return CGF
.Builder
.CreateBitCast(load
, resultType
);
3478 /// Emit an ARC autorelease of the result of a function.
3480 /// \return the value to actually return from the function
3481 static llvm::Value
*emitAutoreleaseOfResult(CodeGenFunction
&CGF
,
3482 llvm::Value
*result
) {
3483 // If we're returning 'self', kill the initial retain. This is a
3484 // heuristic attempt to "encourage correctness" in the really unfortunate
3485 // case where we have a return of self during a dealloc and we desperately
3486 // need to avoid the possible autorelease.
3487 if (llvm::Value
*self
= tryRemoveRetainOfSelf(CGF
, result
))
3490 // At -O0, try to emit a fused retain/autorelease.
3491 if (CGF
.shouldUseFusedARCCalls())
3492 if (llvm::Value
*fused
= tryEmitFusedAutoreleaseOfResult(CGF
, result
))
3495 return CGF
.EmitARCAutoreleaseReturnValue(result
);
3498 /// Heuristically search for a dominating store to the return-value slot.
3499 static llvm::StoreInst
*findDominatingStoreToReturnValue(CodeGenFunction
&CGF
) {
3500 // Check if a User is a store which pointerOperand is the ReturnValue.
3501 // We are looking for stores to the ReturnValue, not for stores of the
3502 // ReturnValue to some other location.
3503 auto GetStoreIfValid
= [&CGF
](llvm::User
*U
) -> llvm::StoreInst
* {
3504 auto *SI
= dyn_cast
<llvm::StoreInst
>(U
);
3505 if (!SI
|| SI
->getPointerOperand() != CGF
.ReturnValue
.getPointer() ||
3506 SI
->getValueOperand()->getType() != CGF
.ReturnValue
.getElementType())
3508 // These aren't actually possible for non-coerced returns, and we
3509 // only care about non-coerced returns on this code path.
3510 assert(!SI
->isAtomic() && !SI
->isVolatile());
3513 // If there are multiple uses of the return-value slot, just check
3514 // for something immediately preceding the IP. Sometimes this can
3515 // happen with how we generate implicit-returns; it can also happen
3516 // with noreturn cleanups.
3517 if (!CGF
.ReturnValue
.getPointer()->hasOneUse()) {
3518 llvm::BasicBlock
*IP
= CGF
.Builder
.GetInsertBlock();
3519 if (IP
->empty()) return nullptr;
3521 // Look at directly preceding instruction, skipping bitcasts and lifetime
3523 for (llvm::Instruction
&I
: make_range(IP
->rbegin(), IP
->rend())) {
3524 if (isa
<llvm::BitCastInst
>(&I
))
3526 if (auto *II
= dyn_cast
<llvm::IntrinsicInst
>(&I
))
3527 if (II
->getIntrinsicID() == llvm::Intrinsic::lifetime_end
)
3530 return GetStoreIfValid(&I
);
3535 llvm::StoreInst
*store
=
3536 GetStoreIfValid(CGF
.ReturnValue
.getPointer()->user_back());
3537 if (!store
) return nullptr;
3539 // Now do a first-and-dirty dominance check: just walk up the
3540 // single-predecessors chain from the current insertion point.
3541 llvm::BasicBlock
*StoreBB
= store
->getParent();
3542 llvm::BasicBlock
*IP
= CGF
.Builder
.GetInsertBlock();
3543 llvm::SmallPtrSet
<llvm::BasicBlock
*, 4> SeenBBs
;
3544 while (IP
!= StoreBB
) {
3545 if (!SeenBBs
.insert(IP
).second
|| !(IP
= IP
->getSinglePredecessor()))
3549 // Okay, the store's basic block dominates the insertion point; we
3550 // can do our thing.
3554 // Helper functions for EmitCMSEClearRecord
3556 // Set the bits corresponding to a field having width `BitWidth` and located at
3557 // offset `BitOffset` (from the least significant bit) within a storage unit of
3558 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
3559 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
3560 static void setBitRange(SmallVectorImpl
<uint64_t> &Bits
, int BitOffset
,
3561 int BitWidth
, int CharWidth
) {
3562 assert(CharWidth
<= 64);
3563 assert(static_cast<unsigned>(BitWidth
) <= Bits
.size() * CharWidth
);
3566 if (BitOffset
>= CharWidth
) {
3567 Pos
+= BitOffset
/ CharWidth
;
3568 BitOffset
= BitOffset
% CharWidth
;
3571 const uint64_t Used
= (uint64_t(1) << CharWidth
) - 1;
3572 if (BitOffset
+ BitWidth
>= CharWidth
) {
3573 Bits
[Pos
++] |= (Used
<< BitOffset
) & Used
;
3574 BitWidth
-= CharWidth
- BitOffset
;
3578 while (BitWidth
>= CharWidth
) {
3580 BitWidth
-= CharWidth
;
3584 Bits
[Pos
++] |= (Used
>> (CharWidth
- BitWidth
)) << BitOffset
;
3587 // Set the bits corresponding to a field having width `BitWidth` and located at
3588 // offset `BitOffset` (from the least significant bit) within a storage unit of
3589 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3590 // `Bits` corresponds to one target byte. Use target endian layout.
3591 static void setBitRange(SmallVectorImpl
<uint64_t> &Bits
, int StorageOffset
,
3592 int StorageSize
, int BitOffset
, int BitWidth
,
3593 int CharWidth
, bool BigEndian
) {
3595 SmallVector
<uint64_t, 8> TmpBits(StorageSize
);
3596 setBitRange(TmpBits
, BitOffset
, BitWidth
, CharWidth
);
3599 std::reverse(TmpBits
.begin(), TmpBits
.end());
3601 for (uint64_t V
: TmpBits
)
3602 Bits
[StorageOffset
++] |= V
;
3605 static void setUsedBits(CodeGenModule
&, QualType
, int,
3606 SmallVectorImpl
<uint64_t> &);
3608 // Set the bits in `Bits`, which correspond to the value representations of
3609 // the actual members of the record type `RTy`. Note that this function does
3610 // not handle base classes, virtual tables, etc, since they cannot happen in
3611 // CMSE function arguments or return. The bit mask corresponds to the target
3612 // memory layout, i.e. it's endian dependent.
3613 static void setUsedBits(CodeGenModule
&CGM
, const RecordType
*RTy
, int Offset
,
3614 SmallVectorImpl
<uint64_t> &Bits
) {
3615 ASTContext
&Context
= CGM
.getContext();
3616 int CharWidth
= Context
.getCharWidth();
3617 const RecordDecl
*RD
= RTy
->getDecl()->getDefinition();
3618 const ASTRecordLayout
&ASTLayout
= Context
.getASTRecordLayout(RD
);
3619 const CGRecordLayout
&Layout
= CGM
.getTypes().getCGRecordLayout(RD
);
3622 for (auto I
= RD
->field_begin(), E
= RD
->field_end(); I
!= E
; ++I
, ++Idx
) {
3623 const FieldDecl
*F
= *I
;
3625 if (F
->isUnnamedBitfield() || F
->isZeroLengthBitField(Context
) ||
3626 F
->getType()->isIncompleteArrayType())
3629 if (F
->isBitField()) {
3630 const CGBitFieldInfo
&BFI
= Layout
.getBitFieldInfo(F
);
3631 setBitRange(Bits
, Offset
+ BFI
.StorageOffset
.getQuantity(),
3632 BFI
.StorageSize
/ CharWidth
, BFI
.Offset
,
3633 BFI
.Size
, CharWidth
,
3634 CGM
.getDataLayout().isBigEndian());
3638 setUsedBits(CGM
, F
->getType(),
3639 Offset
+ ASTLayout
.getFieldOffset(Idx
) / CharWidth
, Bits
);
3643 // Set the bits in `Bits`, which correspond to the value representations of
3644 // the elements of an array type `ATy`.
3645 static void setUsedBits(CodeGenModule
&CGM
, const ConstantArrayType
*ATy
,
3646 int Offset
, SmallVectorImpl
<uint64_t> &Bits
) {
3647 const ASTContext
&Context
= CGM
.getContext();
3649 QualType ETy
= Context
.getBaseElementType(ATy
);
3650 int Size
= Context
.getTypeSizeInChars(ETy
).getQuantity();
3651 SmallVector
<uint64_t, 4> TmpBits(Size
);
3652 setUsedBits(CGM
, ETy
, 0, TmpBits
);
3654 for (int I
= 0, N
= Context
.getConstantArrayElementCount(ATy
); I
< N
; ++I
) {
3655 auto Src
= TmpBits
.begin();
3656 auto Dst
= Bits
.begin() + Offset
+ I
* Size
;
3657 for (int J
= 0; J
< Size
; ++J
)
3662 // Set the bits in `Bits`, which correspond to the value representations of
3664 static void setUsedBits(CodeGenModule
&CGM
, QualType QTy
, int Offset
,
3665 SmallVectorImpl
<uint64_t> &Bits
) {
3666 if (const auto *RTy
= QTy
->getAs
<RecordType
>())
3667 return setUsedBits(CGM
, RTy
, Offset
, Bits
);
3669 ASTContext
&Context
= CGM
.getContext();
3670 if (const auto *ATy
= Context
.getAsConstantArrayType(QTy
))
3671 return setUsedBits(CGM
, ATy
, Offset
, Bits
);
3673 int Size
= Context
.getTypeSizeInChars(QTy
).getQuantity();
3677 std::fill_n(Bits
.begin() + Offset
, Size
,
3678 (uint64_t(1) << Context
.getCharWidth()) - 1);
3681 static uint64_t buildMultiCharMask(const SmallVectorImpl
<uint64_t> &Bits
,
3682 int Pos
, int Size
, int CharWidth
,
3687 for (auto P
= Bits
.begin() + Pos
, E
= Bits
.begin() + Pos
+ Size
; P
!= E
;
3689 Mask
= (Mask
<< CharWidth
) | *P
;
3691 auto P
= Bits
.begin() + Pos
+ Size
, End
= Bits
.begin() + Pos
;
3693 Mask
= (Mask
<< CharWidth
) | *--P
;
3699 // Emit code to clear the bits in a record, which aren't a part of any user
3700 // declared member, when the record is a function return.
3701 llvm::Value
*CodeGenFunction::EmitCMSEClearRecord(llvm::Value
*Src
,
3702 llvm::IntegerType
*ITy
,
3704 assert(Src
->getType() == ITy
);
3705 assert(ITy
->getScalarSizeInBits() <= 64);
3707 const llvm::DataLayout
&DataLayout
= CGM
.getDataLayout();
3708 int Size
= DataLayout
.getTypeStoreSize(ITy
);
3709 SmallVector
<uint64_t, 4> Bits(Size
);
3710 setUsedBits(CGM
, QTy
->castAs
<RecordType
>(), 0, Bits
);
3712 int CharWidth
= CGM
.getContext().getCharWidth();
3714 buildMultiCharMask(Bits
, 0, Size
, CharWidth
, DataLayout
.isBigEndian());
3716 return Builder
.CreateAnd(Src
, Mask
, "cmse.clear");
3719 // Emit code to clear the bits in a record, which aren't a part of any user
3720 // declared member, when the record is a function argument.
3721 llvm::Value
*CodeGenFunction::EmitCMSEClearRecord(llvm::Value
*Src
,
3722 llvm::ArrayType
*ATy
,
3724 const llvm::DataLayout
&DataLayout
= CGM
.getDataLayout();
3725 int Size
= DataLayout
.getTypeStoreSize(ATy
);
3726 SmallVector
<uint64_t, 16> Bits(Size
);
3727 setUsedBits(CGM
, QTy
->castAs
<RecordType
>(), 0, Bits
);
3729 // Clear each element of the LLVM array.
3730 int CharWidth
= CGM
.getContext().getCharWidth();
3732 ATy
->getArrayElementType()->getScalarSizeInBits() / CharWidth
;
3734 llvm::Value
*R
= llvm::PoisonValue::get(ATy
);
3735 for (int I
= 0, N
= ATy
->getArrayNumElements(); I
!= N
; ++I
) {
3736 uint64_t Mask
= buildMultiCharMask(Bits
, MaskIndex
, CharsPerElt
, CharWidth
,
3737 DataLayout
.isBigEndian());
3738 MaskIndex
+= CharsPerElt
;
3739 llvm::Value
*T0
= Builder
.CreateExtractValue(Src
, I
);
3740 llvm::Value
*T1
= Builder
.CreateAnd(T0
, Mask
, "cmse.clear");
3741 R
= Builder
.CreateInsertValue(R
, T1
, I
);
3747 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo
&FI
,
3749 SourceLocation EndLoc
) {
3750 if (FI
.isNoReturn()) {
3751 // Noreturn functions don't return.
3752 EmitUnreachable(EndLoc
);
3756 if (CurCodeDecl
&& CurCodeDecl
->hasAttr
<NakedAttr
>()) {
3757 // Naked functions don't have epilogues.
3758 Builder
.CreateUnreachable();
3762 // Functions with no result always return void.
3763 if (!ReturnValue
.isValid()) {
3764 Builder
.CreateRetVoid();
3768 llvm::DebugLoc RetDbgLoc
;
3769 llvm::Value
*RV
= nullptr;
3770 QualType RetTy
= FI
.getReturnType();
3771 const ABIArgInfo
&RetAI
= FI
.getReturnInfo();
3773 switch (RetAI
.getKind()) {
3774 case ABIArgInfo::InAlloca
:
3775 // Aggregates get evaluated directly into the destination. Sometimes we
3776 // need to return the sret value in a register, though.
3777 assert(hasAggregateEvaluationKind(RetTy
));
3778 if (RetAI
.getInAllocaSRet()) {
3779 llvm::Function::arg_iterator EI
= CurFn
->arg_end();
3781 llvm::Value
*ArgStruct
= &*EI
;
3782 llvm::Value
*SRet
= Builder
.CreateStructGEP(
3783 FI
.getArgStruct(), ArgStruct
, RetAI
.getInAllocaFieldIndex());
3785 cast
<llvm::GetElementPtrInst
>(SRet
)->getResultElementType();
3786 RV
= Builder
.CreateAlignedLoad(Ty
, SRet
, getPointerAlign(), "sret");
3790 case ABIArgInfo::Indirect
: {
3791 auto AI
= CurFn
->arg_begin();
3792 if (RetAI
.isSRetAfterThis())
3794 switch (getEvaluationKind(RetTy
)) {
3797 EmitLoadOfComplex(MakeAddrLValue(ReturnValue
, RetTy
), EndLoc
);
3798 EmitStoreOfComplex(RT
, MakeNaturalAlignAddrLValue(&*AI
, RetTy
),
3803 // Do nothing; aggregates get evaluated directly into the destination.
3806 LValueBaseInfo BaseInfo
;
3807 TBAAAccessInfo TBAAInfo
;
3808 CharUnits Alignment
=
3809 CGM
.getNaturalTypeAlignment(RetTy
, &BaseInfo
, &TBAAInfo
);
3810 Address
ArgAddr(&*AI
, ConvertType(RetTy
), Alignment
);
3812 LValue::MakeAddr(ArgAddr
, RetTy
, getContext(), BaseInfo
, TBAAInfo
);
3814 Builder
.CreateLoad(ReturnValue
), ArgVal
, /*isInit*/ true);
3821 case ABIArgInfo::Extend
:
3822 case ABIArgInfo::Direct
:
3823 if (RetAI
.getCoerceToType() == ConvertType(RetTy
) &&
3824 RetAI
.getDirectOffset() == 0) {
3825 // The internal return value temp always will have pointer-to-return-type
3826 // type, just do a load.
3828 // If there is a dominating store to ReturnValue, we can elide
3829 // the load, zap the store, and usually zap the alloca.
3830 if (llvm::StoreInst
*SI
=
3831 findDominatingStoreToReturnValue(*this)) {
3832 // Reuse the debug location from the store unless there is
3833 // cleanup code to be emitted between the store and return
3835 if (EmitRetDbgLoc
&& !AutoreleaseResult
)
3836 RetDbgLoc
= SI
->getDebugLoc();
3837 // Get the stored value and nuke the now-dead store.
3838 RV
= SI
->getValueOperand();
3839 SI
->eraseFromParent();
3841 // Otherwise, we have to do a simple load.
3843 RV
= Builder
.CreateLoad(ReturnValue
);
3846 // If the value is offset in memory, apply the offset now.
3847 Address V
= emitAddressAtOffset(*this, ReturnValue
, RetAI
);
3849 RV
= CreateCoercedLoad(V
, RetAI
.getCoerceToType(), *this);
3852 // In ARC, end functions that return a retainable type with a call
3853 // to objc_autoreleaseReturnValue.
3854 if (AutoreleaseResult
) {
3856 // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3857 // been stripped of the typedefs, so we cannot use RetTy here. Get the
3858 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3859 // CurCodeDecl or BlockInfo.
3862 if (auto *FD
= dyn_cast
<FunctionDecl
>(CurCodeDecl
))
3863 RT
= FD
->getReturnType();
3864 else if (auto *MD
= dyn_cast
<ObjCMethodDecl
>(CurCodeDecl
))
3865 RT
= MD
->getReturnType();
3866 else if (isa
<BlockDecl
>(CurCodeDecl
))
3867 RT
= BlockInfo
->BlockExpression
->getFunctionType()->getReturnType();
3869 llvm_unreachable("Unexpected function/method type");
3871 assert(getLangOpts().ObjCAutoRefCount
&&
3872 !FI
.isReturnsRetained() &&
3873 RT
->isObjCRetainableType());
3875 RV
= emitAutoreleaseOfResult(*this, RV
);
3880 case ABIArgInfo::Ignore
:
3883 case ABIArgInfo::CoerceAndExpand
: {
3884 auto coercionType
= RetAI
.getCoerceAndExpandType();
3886 // Load all of the coerced elements out into results.
3887 llvm::SmallVector
<llvm::Value
*, 4> results
;
3888 Address addr
= ReturnValue
.withElementType(coercionType
);
3889 for (unsigned i
= 0, e
= coercionType
->getNumElements(); i
!= e
; ++i
) {
3890 auto coercedEltType
= coercionType
->getElementType(i
);
3891 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType
))
3894 auto eltAddr
= Builder
.CreateStructGEP(addr
, i
);
3895 auto elt
= Builder
.CreateLoad(eltAddr
);
3896 results
.push_back(elt
);
3899 // If we have one result, it's the single direct result type.
3900 if (results
.size() == 1) {
3903 // Otherwise, we need to make a first-class aggregate.
3905 // Construct a return type that lacks padding elements.
3906 llvm::Type
*returnType
= RetAI
.getUnpaddedCoerceAndExpandType();
3908 RV
= llvm::PoisonValue::get(returnType
);
3909 for (unsigned i
= 0, e
= results
.size(); i
!= e
; ++i
) {
3910 RV
= Builder
.CreateInsertValue(RV
, results
[i
], i
);
3915 case ABIArgInfo::Expand
:
3916 case ABIArgInfo::IndirectAliased
:
3917 llvm_unreachable("Invalid ABI kind for return argument");
3920 llvm::Instruction
*Ret
;
3922 if (CurFuncDecl
&& CurFuncDecl
->hasAttr
<CmseNSEntryAttr
>()) {
3923 // For certain return types, clear padding bits, as they may reveal
3924 // sensitive information.
3925 // Small struct/union types are passed as integers.
3926 auto *ITy
= dyn_cast
<llvm::IntegerType
>(RV
->getType());
3927 if (ITy
!= nullptr && isa
<RecordType
>(RetTy
.getCanonicalType()))
3928 RV
= EmitCMSEClearRecord(RV
, ITy
, RetTy
);
3930 EmitReturnValueCheck(RV
);
3931 Ret
= Builder
.CreateRet(RV
);
3933 Ret
= Builder
.CreateRetVoid();
3937 Ret
->setDebugLoc(std::move(RetDbgLoc
));
3940 void CodeGenFunction::EmitReturnValueCheck(llvm::Value
*RV
) {
3941 // A current decl may not be available when emitting vtable thunks.
3945 // If the return block isn't reachable, neither is this check, so don't emit
3947 if (ReturnBlock
.isValid() && ReturnBlock
.getBlock()->use_empty())
3950 ReturnsNonNullAttr
*RetNNAttr
= nullptr;
3951 if (SanOpts
.has(SanitizerKind::ReturnsNonnullAttribute
))
3952 RetNNAttr
= CurCodeDecl
->getAttr
<ReturnsNonNullAttr
>();
3954 if (!RetNNAttr
&& !requiresReturnValueNullabilityCheck())
3957 // Prefer the returns_nonnull attribute if it's present.
3958 SourceLocation AttrLoc
;
3959 SanitizerMask CheckKind
;
3960 SanitizerHandler Handler
;
3962 assert(!requiresReturnValueNullabilityCheck() &&
3963 "Cannot check nullability and the nonnull attribute");
3964 AttrLoc
= RetNNAttr
->getLocation();
3965 CheckKind
= SanitizerKind::ReturnsNonnullAttribute
;
3966 Handler
= SanitizerHandler::NonnullReturn
;
3968 if (auto *DD
= dyn_cast
<DeclaratorDecl
>(CurCodeDecl
))
3969 if (auto *TSI
= DD
->getTypeSourceInfo())
3970 if (auto FTL
= TSI
->getTypeLoc().getAsAdjusted
<FunctionTypeLoc
>())
3971 AttrLoc
= FTL
.getReturnLoc().findNullabilityLoc();
3972 CheckKind
= SanitizerKind::NullabilityReturn
;
3973 Handler
= SanitizerHandler::NullabilityReturn
;
3976 SanitizerScope
SanScope(this);
3978 // Make sure the "return" source location is valid. If we're checking a
3979 // nullability annotation, make sure the preconditions for the check are met.
3980 llvm::BasicBlock
*Check
= createBasicBlock("nullcheck");
3981 llvm::BasicBlock
*NoCheck
= createBasicBlock("no.nullcheck");
3982 llvm::Value
*SLocPtr
= Builder
.CreateLoad(ReturnLocation
, "return.sloc.load");
3983 llvm::Value
*CanNullCheck
= Builder
.CreateIsNotNull(SLocPtr
);
3984 if (requiresReturnValueNullabilityCheck())
3986 Builder
.CreateAnd(CanNullCheck
, RetValNullabilityPrecondition
);
3987 Builder
.CreateCondBr(CanNullCheck
, Check
, NoCheck
);
3990 // Now do the null check.
3991 llvm::Value
*Cond
= Builder
.CreateIsNotNull(RV
);
3992 llvm::Constant
*StaticData
[] = {EmitCheckSourceLocation(AttrLoc
)};
3993 llvm::Value
*DynamicData
[] = {SLocPtr
};
3994 EmitCheck(std::make_pair(Cond
, CheckKind
), Handler
, StaticData
, DynamicData
);
3999 // The return location should not be used after the check has been emitted.
4000 ReturnLocation
= Address::invalid();
4004 static bool isInAllocaArgument(CGCXXABI
&ABI
, QualType type
) {
4005 const CXXRecordDecl
*RD
= type
->getAsCXXRecordDecl();
4006 return RD
&& ABI
.getRecordArgABI(RD
) == CGCXXABI::RAA_DirectInMemory
;
4009 static AggValueSlot
createPlaceholderSlot(CodeGenFunction
&CGF
,
4011 // FIXME: Generate IR in one pass, rather than going back and fixing up these
4013 llvm::Type
*IRTy
= CGF
.ConvertTypeForMem(Ty
);
4014 llvm::Type
*IRPtrTy
= llvm::PointerType::getUnqual(CGF
.getLLVMContext());
4015 llvm::Value
*Placeholder
= llvm::PoisonValue::get(IRPtrTy
);
4017 // FIXME: When we generate this IR in one pass, we shouldn't need
4018 // this win32-specific alignment hack.
4019 CharUnits Align
= CharUnits::fromQuantity(4);
4020 Placeholder
= CGF
.Builder
.CreateAlignedLoad(IRPtrTy
, Placeholder
, Align
);
4022 return AggValueSlot::forAddr(Address(Placeholder
, IRTy
, Align
),
4024 AggValueSlot::IsNotDestructed
,
4025 AggValueSlot::DoesNotNeedGCBarriers
,
4026 AggValueSlot::IsNotAliased
,
4027 AggValueSlot::DoesNotOverlap
);
4030 void CodeGenFunction::EmitDelegateCallArg(CallArgList
&args
,
4031 const VarDecl
*param
,
4032 SourceLocation loc
) {
4033 // StartFunction converted the ABI-lowered parameter(s) into a
4034 // local alloca. We need to turn that into an r-value suitable
4036 Address local
= GetAddrOfLocalVar(param
);
4038 QualType type
= param
->getType();
4040 // GetAddrOfLocalVar returns a pointer-to-pointer for references,
4041 // but the argument needs to be the original pointer.
4042 if (type
->isReferenceType()) {
4043 args
.add(RValue::get(Builder
.CreateLoad(local
)), type
);
4045 // In ARC, move out of consumed arguments so that the release cleanup
4046 // entered by StartFunction doesn't cause an over-release. This isn't
4047 // optimal -O0 code generation, but it should get cleaned up when
4048 // optimization is enabled. This also assumes that delegate calls are
4049 // performed exactly once for a set of arguments, but that should be safe.
4050 } else if (getLangOpts().ObjCAutoRefCount
&&
4051 param
->hasAttr
<NSConsumedAttr
>() &&
4052 type
->isObjCRetainableType()) {
4053 llvm::Value
*ptr
= Builder
.CreateLoad(local
);
4055 llvm::ConstantPointerNull::get(cast
<llvm::PointerType
>(ptr
->getType()));
4056 Builder
.CreateStore(null
, local
);
4057 args
.add(RValue::get(ptr
), type
);
4059 // For the most part, we just need to load the alloca, except that
4060 // aggregate r-values are actually pointers to temporaries.
4062 args
.add(convertTempToRValue(local
, type
, loc
), type
);
4065 // Deactivate the cleanup for the callee-destructed param that was pushed.
4066 if (type
->isRecordType() && !CurFuncIsThunk
&&
4067 type
->castAs
<RecordType
>()->getDecl()->isParamDestroyedInCallee() &&
4068 param
->needsDestruction(getContext())) {
4069 EHScopeStack::stable_iterator cleanup
=
4070 CalleeDestructedParamCleanups
.lookup(cast
<ParmVarDecl
>(param
));
4071 assert(cleanup
.isValid() &&
4072 "cleanup for callee-destructed param not recorded");
4073 // This unreachable is a temporary marker which will be removed later.
4074 llvm::Instruction
*isActive
= Builder
.CreateUnreachable();
4075 args
.addArgCleanupDeactivation(cleanup
, isActive
);
4079 static bool isProvablyNull(llvm::Value
*addr
) {
4080 return isa
<llvm::ConstantPointerNull
>(addr
);
4083 /// Emit the actual writing-back of a writeback.
4084 static void emitWriteback(CodeGenFunction
&CGF
,
4085 const CallArgList::Writeback
&writeback
) {
4086 const LValue
&srcLV
= writeback
.Source
;
4087 Address srcAddr
= srcLV
.getAddress(CGF
);
4088 assert(!isProvablyNull(srcAddr
.getPointer()) &&
4089 "shouldn't have writeback for provably null argument");
4091 llvm::BasicBlock
*contBB
= nullptr;
4093 // If the argument wasn't provably non-null, we need to null check
4094 // before doing the store.
4095 bool provablyNonNull
= llvm::isKnownNonZero(srcAddr
.getPointer(),
4096 CGF
.CGM
.getDataLayout());
4097 if (!provablyNonNull
) {
4098 llvm::BasicBlock
*writebackBB
= CGF
.createBasicBlock("icr.writeback");
4099 contBB
= CGF
.createBasicBlock("icr.done");
4101 llvm::Value
*isNull
=
4102 CGF
.Builder
.CreateIsNull(srcAddr
.getPointer(), "icr.isnull");
4103 CGF
.Builder
.CreateCondBr(isNull
, contBB
, writebackBB
);
4104 CGF
.EmitBlock(writebackBB
);
4107 // Load the value to writeback.
4108 llvm::Value
*value
= CGF
.Builder
.CreateLoad(writeback
.Temporary
);
4110 // Cast it back, in case we're writing an id to a Foo* or something.
4111 value
= CGF
.Builder
.CreateBitCast(value
, srcAddr
.getElementType(),
4112 "icr.writeback-cast");
4114 // Perform the writeback.
4116 // If we have a "to use" value, it's something we need to emit a use
4117 // of. This has to be carefully threaded in: if it's done after the
4118 // release it's potentially undefined behavior (and the optimizer
4119 // will ignore it), and if it happens before the retain then the
4120 // optimizer could move the release there.
4121 if (writeback
.ToUse
) {
4122 assert(srcLV
.getObjCLifetime() == Qualifiers::OCL_Strong
);
4124 // Retain the new value. No need to block-copy here: the block's
4125 // being passed up the stack.
4126 value
= CGF
.EmitARCRetainNonBlock(value
);
4128 // Emit the intrinsic use here.
4129 CGF
.EmitARCIntrinsicUse(writeback
.ToUse
);
4131 // Load the old value (primitively).
4132 llvm::Value
*oldValue
= CGF
.EmitLoadOfScalar(srcLV
, SourceLocation());
4134 // Put the new value in place (primitively).
4135 CGF
.EmitStoreOfScalar(value
, srcLV
, /*init*/ false);
4137 // Release the old value.
4138 CGF
.EmitARCRelease(oldValue
, srcLV
.isARCPreciseLifetime());
4140 // Otherwise, we can just do a normal lvalue store.
4142 CGF
.EmitStoreThroughLValue(RValue::get(value
), srcLV
);
4145 // Jump to the continuation block.
4146 if (!provablyNonNull
)
4147 CGF
.EmitBlock(contBB
);
4150 static void emitWritebacks(CodeGenFunction
&CGF
,
4151 const CallArgList
&args
) {
4152 for (const auto &I
: args
.writebacks())
4153 emitWriteback(CGF
, I
);
4156 static void deactivateArgCleanupsBeforeCall(CodeGenFunction
&CGF
,
4157 const CallArgList
&CallArgs
) {
4158 ArrayRef
<CallArgList::CallArgCleanup
> Cleanups
=
4159 CallArgs
.getCleanupsToDeactivate();
4160 // Iterate in reverse to increase the likelihood of popping the cleanup.
4161 for (const auto &I
: llvm::reverse(Cleanups
)) {
4162 CGF
.DeactivateCleanupBlock(I
.Cleanup
, I
.IsActiveIP
);
4163 I
.IsActiveIP
->eraseFromParent();
4167 static const Expr
*maybeGetUnaryAddrOfOperand(const Expr
*E
) {
4168 if (const UnaryOperator
*uop
= dyn_cast
<UnaryOperator
>(E
->IgnoreParens()))
4169 if (uop
->getOpcode() == UO_AddrOf
)
4170 return uop
->getSubExpr();
4174 /// Emit an argument that's being passed call-by-writeback. That is,
4175 /// we are passing the address of an __autoreleased temporary; it
4176 /// might be copy-initialized with the current value of the given
4177 /// address, but it will definitely be copied out of after the call.
4178 static void emitWritebackArg(CodeGenFunction
&CGF
, CallArgList
&args
,
4179 const ObjCIndirectCopyRestoreExpr
*CRE
) {
4182 // Make an optimistic effort to emit the address as an l-value.
4183 // This can fail if the argument expression is more complicated.
4184 if (const Expr
*lvExpr
= maybeGetUnaryAddrOfOperand(CRE
->getSubExpr())) {
4185 srcLV
= CGF
.EmitLValue(lvExpr
);
4187 // Otherwise, just emit it as a scalar.
4189 Address srcAddr
= CGF
.EmitPointerWithAlignment(CRE
->getSubExpr());
4191 QualType srcAddrType
=
4192 CRE
->getSubExpr()->getType()->castAs
<PointerType
>()->getPointeeType();
4193 srcLV
= CGF
.MakeAddrLValue(srcAddr
, srcAddrType
);
4195 Address srcAddr
= srcLV
.getAddress(CGF
);
4197 // The dest and src types don't necessarily match in LLVM terms
4198 // because of the crazy ObjC compatibility rules.
4200 llvm::PointerType
*destType
=
4201 cast
<llvm::PointerType
>(CGF
.ConvertType(CRE
->getType()));
4202 llvm::Type
*destElemType
=
4203 CGF
.ConvertTypeForMem(CRE
->getType()->getPointeeType());
4205 // If the address is a constant null, just pass the appropriate null.
4206 if (isProvablyNull(srcAddr
.getPointer())) {
4207 args
.add(RValue::get(llvm::ConstantPointerNull::get(destType
)),
4212 // Create the temporary.
4214 CGF
.CreateTempAlloca(destElemType
, CGF
.getPointerAlign(), "icr.temp");
4215 // Loading an l-value can introduce a cleanup if the l-value is __weak,
4216 // and that cleanup will be conditional if we can't prove that the l-value
4217 // isn't null, so we need to register a dominating point so that the cleanups
4218 // system will make valid IR.
4219 CodeGenFunction::ConditionalEvaluation
condEval(CGF
);
4221 // Zero-initialize it if we're not doing a copy-initialization.
4222 bool shouldCopy
= CRE
->shouldCopy();
4225 llvm::ConstantPointerNull::get(cast
<llvm::PointerType
>(destElemType
));
4226 CGF
.Builder
.CreateStore(null
, temp
);
4229 llvm::BasicBlock
*contBB
= nullptr;
4230 llvm::BasicBlock
*originBB
= nullptr;
4232 // If the address is *not* known to be non-null, we need to switch.
4233 llvm::Value
*finalArgument
;
4235 bool provablyNonNull
= llvm::isKnownNonZero(srcAddr
.getPointer(),
4236 CGF
.CGM
.getDataLayout());
4237 if (provablyNonNull
) {
4238 finalArgument
= temp
.getPointer();
4240 llvm::Value
*isNull
=
4241 CGF
.Builder
.CreateIsNull(srcAddr
.getPointer(), "icr.isnull");
4243 finalArgument
= CGF
.Builder
.CreateSelect(isNull
,
4244 llvm::ConstantPointerNull::get(destType
),
4245 temp
.getPointer(), "icr.argument");
4247 // If we need to copy, then the load has to be conditional, which
4248 // means we need control flow.
4250 originBB
= CGF
.Builder
.GetInsertBlock();
4251 contBB
= CGF
.createBasicBlock("icr.cont");
4252 llvm::BasicBlock
*copyBB
= CGF
.createBasicBlock("icr.copy");
4253 CGF
.Builder
.CreateCondBr(isNull
, contBB
, copyBB
);
4254 CGF
.EmitBlock(copyBB
);
4255 condEval
.begin(CGF
);
4259 llvm::Value
*valueToUse
= nullptr;
4261 // Perform a copy if necessary.
4263 RValue srcRV
= CGF
.EmitLoadOfLValue(srcLV
, SourceLocation());
4264 assert(srcRV
.isScalar());
4266 llvm::Value
*src
= srcRV
.getScalarVal();
4267 src
= CGF
.Builder
.CreateBitCast(src
, destElemType
, "icr.cast");
4269 // Use an ordinary store, not a store-to-lvalue.
4270 CGF
.Builder
.CreateStore(src
, temp
);
4272 // If optimization is enabled, and the value was held in a
4273 // __strong variable, we need to tell the optimizer that this
4274 // value has to stay alive until we're doing the store back.
4275 // This is because the temporary is effectively unretained,
4276 // and so otherwise we can violate the high-level semantics.
4277 if (CGF
.CGM
.getCodeGenOpts().OptimizationLevel
!= 0 &&
4278 srcLV
.getObjCLifetime() == Qualifiers::OCL_Strong
) {
4283 // Finish the control flow if we needed it.
4284 if (shouldCopy
&& !provablyNonNull
) {
4285 llvm::BasicBlock
*copyBB
= CGF
.Builder
.GetInsertBlock();
4286 CGF
.EmitBlock(contBB
);
4288 // Make a phi for the value to intrinsically use.
4290 llvm::PHINode
*phiToUse
= CGF
.Builder
.CreatePHI(valueToUse
->getType(), 2,
4292 phiToUse
->addIncoming(valueToUse
, copyBB
);
4293 phiToUse
->addIncoming(llvm::UndefValue::get(valueToUse
->getType()),
4295 valueToUse
= phiToUse
;
4301 args
.addWriteback(srcLV
, temp
, valueToUse
);
4302 args
.add(RValue::get(finalArgument
), CRE
->getType());
4305 void CallArgList::allocateArgumentMemory(CodeGenFunction
&CGF
) {
4309 StackBase
= CGF
.Builder
.CreateStackSave("inalloca.save");
4312 void CallArgList::freeArgumentMemory(CodeGenFunction
&CGF
) const {
4314 // Restore the stack after the call.
4315 CGF
.Builder
.CreateStackRestore(StackBase
);
4319 void CodeGenFunction::EmitNonNullArgCheck(RValue RV
, QualType ArgType
,
4320 SourceLocation ArgLoc
,
4323 if (!AC
.getDecl() || !(SanOpts
.has(SanitizerKind::NonnullAttribute
) ||
4324 SanOpts
.has(SanitizerKind::NullabilityArg
)))
4327 // The param decl may be missing in a variadic function.
4328 auto PVD
= ParmNum
< AC
.getNumParams() ? AC
.getParamDecl(ParmNum
) : nullptr;
4329 unsigned ArgNo
= PVD
? PVD
->getFunctionScopeIndex() : ParmNum
;
4331 // Prefer the nonnull attribute if it's present.
4332 const NonNullAttr
*NNAttr
= nullptr;
4333 if (SanOpts
.has(SanitizerKind::NonnullAttribute
))
4334 NNAttr
= getNonNullAttr(AC
.getDecl(), PVD
, ArgType
, ArgNo
);
4336 bool CanCheckNullability
= false;
4337 if (SanOpts
.has(SanitizerKind::NullabilityArg
) && !NNAttr
&& PVD
) {
4338 auto Nullability
= PVD
->getType()->getNullability();
4339 CanCheckNullability
= Nullability
&&
4340 *Nullability
== NullabilityKind::NonNull
&&
4341 PVD
->getTypeSourceInfo();
4344 if (!NNAttr
&& !CanCheckNullability
)
4347 SourceLocation AttrLoc
;
4348 SanitizerMask CheckKind
;
4349 SanitizerHandler Handler
;
4351 AttrLoc
= NNAttr
->getLocation();
4352 CheckKind
= SanitizerKind::NonnullAttribute
;
4353 Handler
= SanitizerHandler::NonnullArg
;
4355 AttrLoc
= PVD
->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
4356 CheckKind
= SanitizerKind::NullabilityArg
;
4357 Handler
= SanitizerHandler::NullabilityArg
;
4360 SanitizerScope
SanScope(this);
4361 llvm::Value
*Cond
= EmitNonNullRValueCheck(RV
, ArgType
);
4362 llvm::Constant
*StaticData
[] = {
4363 EmitCheckSourceLocation(ArgLoc
), EmitCheckSourceLocation(AttrLoc
),
4364 llvm::ConstantInt::get(Int32Ty
, ArgNo
+ 1),
4366 EmitCheck(std::make_pair(Cond
, CheckKind
), Handler
, StaticData
, std::nullopt
);
4369 // Check if the call is going to use the inalloca convention. This needs to
4370 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged
4371 // later, so we can't check it directly.
4372 static bool hasInAllocaArgs(CodeGenModule
&CGM
, CallingConv ExplicitCC
,
4373 ArrayRef
<QualType
> ArgTypes
) {
4374 // The Swift calling conventions don't go through the target-specific
4375 // argument classification, they never use inalloca.
4376 // TODO: Consider limiting inalloca use to only calling conventions supported
4378 if (ExplicitCC
== CC_Swift
|| ExplicitCC
== CC_SwiftAsync
)
4380 if (!CGM
.getTarget().getCXXABI().isMicrosoft())
4382 return llvm::any_of(ArgTypes
, [&](QualType Ty
) {
4383 return isInAllocaArgument(CGM
.getCXXABI(), Ty
);
4388 // Determine whether the given argument is an Objective-C method
4389 // that may have type parameters in its signature.
4390 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl
*method
) {
4391 const DeclContext
*dc
= method
->getDeclContext();
4392 if (const ObjCInterfaceDecl
*classDecl
= dyn_cast
<ObjCInterfaceDecl
>(dc
)) {
4393 return classDecl
->getTypeParamListAsWritten();
4396 if (const ObjCCategoryDecl
*catDecl
= dyn_cast
<ObjCCategoryDecl
>(dc
)) {
4397 return catDecl
->getTypeParamList();
4404 /// EmitCallArgs - Emit call arguments for a function.
4405 void CodeGenFunction::EmitCallArgs(
4406 CallArgList
&Args
, PrototypeWrapper Prototype
,
4407 llvm::iterator_range
<CallExpr::const_arg_iterator
> ArgRange
,
4408 AbstractCallee AC
, unsigned ParamsToSkip
, EvaluationOrder Order
) {
4409 SmallVector
<QualType
, 16> ArgTypes
;
4411 assert((ParamsToSkip
== 0 || Prototype
.P
) &&
4412 "Can't skip parameters if type info is not provided");
4414 // This variable only captures *explicitly* written conventions, not those
4415 // applied by default via command line flags or target defaults, such as
4416 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would
4417 // require knowing if this is a C++ instance method or being able to see
4418 // unprototyped FunctionTypes.
4419 CallingConv ExplicitCC
= CC_C
;
4421 // First, if a prototype was provided, use those argument types.
4422 bool IsVariadic
= false;
4424 const auto *MD
= Prototype
.P
.dyn_cast
<const ObjCMethodDecl
*>();
4426 IsVariadic
= MD
->isVariadic();
4427 ExplicitCC
= getCallingConventionForDecl(
4428 MD
, CGM
.getTarget().getTriple().isOSWindows());
4429 ArgTypes
.assign(MD
->param_type_begin() + ParamsToSkip
,
4430 MD
->param_type_end());
4432 const auto *FPT
= Prototype
.P
.get
<const FunctionProtoType
*>();
4433 IsVariadic
= FPT
->isVariadic();
4434 ExplicitCC
= FPT
->getExtInfo().getCC();
4435 ArgTypes
.assign(FPT
->param_type_begin() + ParamsToSkip
,
4436 FPT
->param_type_end());
4440 // Check that the prototyped types match the argument expression types.
4441 bool isGenericMethod
= MD
&& isObjCMethodWithTypeParams(MD
);
4442 CallExpr::const_arg_iterator Arg
= ArgRange
.begin();
4443 for (QualType Ty
: ArgTypes
) {
4444 assert(Arg
!= ArgRange
.end() && "Running over edge of argument list!");
4446 (isGenericMethod
|| Ty
->isVariablyModifiedType() ||
4447 Ty
.getNonReferenceType()->isObjCRetainableType() ||
4449 .getCanonicalType(Ty
.getNonReferenceType())
4451 getContext().getCanonicalType((*Arg
)->getType()).getTypePtr()) &&
4452 "type mismatch in call argument!");
4456 // Either we've emitted all the call args, or we have a call to variadic
4458 assert((Arg
== ArgRange
.end() || IsVariadic
) &&
4459 "Extra arguments in non-variadic function!");
4463 // If we still have any arguments, emit them using the type of the argument.
4464 for (auto *A
: llvm::drop_begin(ArgRange
, ArgTypes
.size()))
4465 ArgTypes
.push_back(IsVariadic
? getVarArgType(A
) : A
->getType());
4466 assert((int)ArgTypes
.size() == (ArgRange
.end() - ArgRange
.begin()));
4468 // We must evaluate arguments from right to left in the MS C++ ABI,
4469 // because arguments are destroyed left to right in the callee. As a special
4470 // case, there are certain language constructs that require left-to-right
4471 // evaluation, and in those cases we consider the evaluation order requirement
4472 // to trump the "destruction order is reverse construction order" guarantee.
4474 CGM
.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
4475 ? Order
== EvaluationOrder::ForceLeftToRight
4476 : Order
!= EvaluationOrder::ForceRightToLeft
;
4478 auto MaybeEmitImplicitObjectSize
= [&](unsigned I
, const Expr
*Arg
,
4479 RValue EmittedArg
) {
4480 if (!AC
.hasFunctionDecl() || I
>= AC
.getNumParams())
4482 auto *PS
= AC
.getParamDecl(I
)->getAttr
<PassObjectSizeAttr
>();
4486 const auto &Context
= getContext();
4487 auto SizeTy
= Context
.getSizeType();
4488 auto T
= Builder
.getIntNTy(Context
.getTypeSize(SizeTy
));
4489 assert(EmittedArg
.getScalarVal() && "We emitted nothing for the arg?");
4490 llvm::Value
*V
= evaluateOrEmitBuiltinObjectSize(Arg
, PS
->getType(), T
,
4491 EmittedArg
.getScalarVal(),
4493 Args
.add(RValue::get(V
), SizeTy
);
4494 // If we're emitting args in reverse, be sure to do so with
4495 // pass_object_size, as well.
4497 std::swap(Args
.back(), *(&Args
.back() - 1));
4500 // Insert a stack save if we're going to need any inalloca args.
4501 if (hasInAllocaArgs(CGM
, ExplicitCC
, ArgTypes
)) {
4502 assert(getTarget().getTriple().getArch() == llvm::Triple::x86
&&
4503 "inalloca only supported on x86");
4504 Args
.allocateArgumentMemory(*this);
4507 // Evaluate each argument in the appropriate order.
4508 size_t CallArgsStart
= Args
.size();
4509 for (unsigned I
= 0, E
= ArgTypes
.size(); I
!= E
; ++I
) {
4510 unsigned Idx
= LeftToRight
? I
: E
- I
- 1;
4511 CallExpr::const_arg_iterator Arg
= ArgRange
.begin() + Idx
;
4512 unsigned InitialArgSize
= Args
.size();
4513 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
4514 // the argument and parameter match or the objc method is parameterized.
4515 assert((!isa
<ObjCIndirectCopyRestoreExpr
>(*Arg
) ||
4516 getContext().hasSameUnqualifiedType((*Arg
)->getType(),
4518 (isa
<ObjCMethodDecl
>(AC
.getDecl()) &&
4519 isObjCMethodWithTypeParams(cast
<ObjCMethodDecl
>(AC
.getDecl())))) &&
4520 "Argument and parameter types don't match");
4521 EmitCallArg(Args
, *Arg
, ArgTypes
[Idx
]);
4522 // In particular, we depend on it being the last arg in Args, and the
4523 // objectsize bits depend on there only being one arg if !LeftToRight.
4524 assert(InitialArgSize
+ 1 == Args
.size() &&
4525 "The code below depends on only adding one arg per EmitCallArg");
4526 (void)InitialArgSize
;
4527 // Since pointer argument are never emitted as LValue, it is safe to emit
4528 // non-null argument check for r-value only.
4529 if (!Args
.back().hasLValue()) {
4530 RValue RVArg
= Args
.back().getKnownRValue();
4531 EmitNonNullArgCheck(RVArg
, ArgTypes
[Idx
], (*Arg
)->getExprLoc(), AC
,
4532 ParamsToSkip
+ Idx
);
4533 // @llvm.objectsize should never have side-effects and shouldn't need
4534 // destruction/cleanups, so we can safely "emit" it after its arg,
4535 // regardless of right-to-leftness
4536 MaybeEmitImplicitObjectSize(Idx
, *Arg
, RVArg
);
4541 // Un-reverse the arguments we just evaluated so they match up with the LLVM
4543 std::reverse(Args
.begin() + CallArgsStart
, Args
.end());
4549 struct DestroyUnpassedArg final
: EHScopeStack::Cleanup
{
4550 DestroyUnpassedArg(Address Addr
, QualType Ty
)
4551 : Addr(Addr
), Ty(Ty
) {}
4556 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
4557 QualType::DestructionKind DtorKind
= Ty
.isDestructedType();
4558 if (DtorKind
== QualType::DK_cxx_destructor
) {
4559 const CXXDestructorDecl
*Dtor
= Ty
->getAsCXXRecordDecl()->getDestructor();
4560 assert(!Dtor
->isTrivial());
4561 CGF
.EmitCXXDestructorCall(Dtor
, Dtor_Complete
, /*for vbase*/ false,
4562 /*Delegating=*/false, Addr
, Ty
);
4564 CGF
.callCStructDestructor(CGF
.MakeAddrLValue(Addr
, Ty
));
4569 struct DisableDebugLocationUpdates
{
4570 CodeGenFunction
&CGF
;
4571 bool disabledDebugInfo
;
4572 DisableDebugLocationUpdates(CodeGenFunction
&CGF
, const Expr
*E
) : CGF(CGF
) {
4573 if ((disabledDebugInfo
= isa
<CXXDefaultArgExpr
>(E
) && CGF
.getDebugInfo()))
4574 CGF
.disableDebugInfo();
4576 ~DisableDebugLocationUpdates() {
4577 if (disabledDebugInfo
)
4578 CGF
.enableDebugInfo();
4582 } // end anonymous namespace
4584 RValue
CallArg::getRValue(CodeGenFunction
&CGF
) const {
4587 LValue Copy
= CGF
.MakeAddrLValue(CGF
.CreateMemTemp(Ty
), Ty
);
4588 CGF
.EmitAggregateCopy(Copy
, LV
, Ty
, AggValueSlot::DoesNotOverlap
,
4591 return RValue::getAggregate(Copy
.getAddress(CGF
));
4594 void CallArg::copyInto(CodeGenFunction
&CGF
, Address Addr
) const {
4595 LValue Dst
= CGF
.MakeAddrLValue(Addr
, Ty
);
4596 if (!HasLV
&& RV
.isScalar())
4597 CGF
.EmitStoreOfScalar(RV
.getScalarVal(), Dst
, /*isInit=*/true);
4598 else if (!HasLV
&& RV
.isComplex())
4599 CGF
.EmitStoreOfComplex(RV
.getComplexVal(), Dst
, /*init=*/true);
4601 auto Addr
= HasLV
? LV
.getAddress(CGF
) : RV
.getAggregateAddress();
4602 LValue SrcLV
= CGF
.MakeAddrLValue(Addr
, Ty
);
4603 // We assume that call args are never copied into subobjects.
4604 CGF
.EmitAggregateCopy(Dst
, SrcLV
, Ty
, AggValueSlot::DoesNotOverlap
,
4605 HasLV
? LV
.isVolatileQualified()
4606 : RV
.isVolatileQualified());
4611 void CodeGenFunction::EmitCallArg(CallArgList
&args
, const Expr
*E
,
4613 DisableDebugLocationUpdates
Dis(*this, E
);
4614 if (const ObjCIndirectCopyRestoreExpr
*CRE
4615 = dyn_cast
<ObjCIndirectCopyRestoreExpr
>(E
)) {
4616 assert(getLangOpts().ObjCAutoRefCount
);
4617 return emitWritebackArg(*this, args
, CRE
);
4620 assert(type
->isReferenceType() == E
->isGLValue() &&
4621 "reference binding to unmaterialized r-value!");
4623 if (E
->isGLValue()) {
4624 assert(E
->getObjectKind() == OK_Ordinary
);
4625 return args
.add(EmitReferenceBindingToExpr(E
), type
);
4628 bool HasAggregateEvalKind
= hasAggregateEvaluationKind(type
);
4630 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
4631 // However, we still have to push an EH-only cleanup in case we unwind before
4632 // we make it to the call.
4633 if (type
->isRecordType() &&
4634 type
->castAs
<RecordType
>()->getDecl()->isParamDestroyedInCallee()) {
4635 // If we're using inalloca, use the argument memory. Otherwise, use a
4637 AggValueSlot Slot
= args
.isUsingInAlloca()
4638 ? createPlaceholderSlot(*this, type
) : CreateAggTemp(type
, "agg.tmp");
4640 bool DestroyedInCallee
= true, NeedsEHCleanup
= true;
4641 if (const auto *RD
= type
->getAsCXXRecordDecl())
4642 DestroyedInCallee
= RD
->hasNonTrivialDestructor();
4644 NeedsEHCleanup
= needsEHCleanup(type
.isDestructedType());
4646 if (DestroyedInCallee
)
4647 Slot
.setExternallyDestructed();
4649 EmitAggExpr(E
, Slot
);
4650 RValue RV
= Slot
.asRValue();
4653 if (DestroyedInCallee
&& NeedsEHCleanup
) {
4654 // Create a no-op GEP between the placeholder and the cleanup so we can
4655 // RAUW it successfully. It also serves as a marker of the first
4656 // instruction where the cleanup is active.
4657 pushFullExprCleanup
<DestroyUnpassedArg
>(EHCleanup
, Slot
.getAddress(),
4659 // This unreachable is a temporary marker which will be removed later.
4660 llvm::Instruction
*IsActive
= Builder
.CreateUnreachable();
4661 args
.addArgCleanupDeactivation(EHStack
.stable_begin(), IsActive
);
4666 if (HasAggregateEvalKind
&& isa
<ImplicitCastExpr
>(E
) &&
4667 cast
<CastExpr
>(E
)->getCastKind() == CK_LValueToRValue
) {
4668 LValue L
= EmitLValue(cast
<CastExpr
>(E
)->getSubExpr());
4669 assert(L
.isSimple());
4670 args
.addUncopiedAggregate(L
, type
);
4674 args
.add(EmitAnyExprToTemp(E
), type
);
4677 QualType
CodeGenFunction::getVarArgType(const Expr
*Arg
) {
4678 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4679 // implicitly widens null pointer constants that are arguments to varargs
4680 // functions to pointer-sized ints.
4681 if (!getTarget().getTriple().isOSWindows())
4682 return Arg
->getType();
4684 if (Arg
->getType()->isIntegerType() &&
4685 getContext().getTypeSize(Arg
->getType()) <
4686 getContext().getTargetInfo().getPointerWidth(LangAS::Default
) &&
4687 Arg
->isNullPointerConstant(getContext(),
4688 Expr::NPC_ValueDependentIsNotNull
)) {
4689 return getContext().getIntPtrType();
4692 return Arg
->getType();
4695 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4696 // optimizer it can aggressively ignore unwind edges.
4698 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction
*Inst
) {
4699 if (CGM
.getCodeGenOpts().OptimizationLevel
!= 0 &&
4700 !CGM
.getCodeGenOpts().ObjCAutoRefCountExceptions
)
4701 Inst
->setMetadata("clang.arc.no_objc_arc_exceptions",
4702 CGM
.getNoObjCARCExceptionsMetadata());
4705 /// Emits a call to the given no-arguments nounwind runtime function.
4707 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee
,
4708 const llvm::Twine
&name
) {
4709 return EmitNounwindRuntimeCall(callee
, std::nullopt
, name
);
4712 /// Emits a call to the given nounwind runtime function.
4714 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee
,
4715 ArrayRef
<llvm::Value
*> args
,
4716 const llvm::Twine
&name
) {
4717 llvm::CallInst
*call
= EmitRuntimeCall(callee
, args
, name
);
4718 call
->setDoesNotThrow();
4722 /// Emits a simple call (never an invoke) to the given no-arguments
4723 /// runtime function.
4724 llvm::CallInst
*CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee
,
4725 const llvm::Twine
&name
) {
4726 return EmitRuntimeCall(callee
, std::nullopt
, name
);
4729 // Calls which may throw must have operand bundles indicating which funclet
4730 // they are nested within.
4731 SmallVector
<llvm::OperandBundleDef
, 1>
4732 CodeGenFunction::getBundlesForFunclet(llvm::Value
*Callee
) {
4733 // There is no need for a funclet operand bundle if we aren't inside a
4735 if (!CurrentFuncletPad
)
4736 return (SmallVector
<llvm::OperandBundleDef
, 1>());
4738 // Skip intrinsics which cannot throw (as long as they don't lower into
4739 // regular function calls in the course of IR transformations).
4740 if (auto *CalleeFn
= dyn_cast
<llvm::Function
>(Callee
->stripPointerCasts())) {
4741 if (CalleeFn
->isIntrinsic() && CalleeFn
->doesNotThrow()) {
4742 auto IID
= CalleeFn
->getIntrinsicID();
4743 if (!llvm::IntrinsicInst::mayLowerToFunctionCall(IID
))
4744 return (SmallVector
<llvm::OperandBundleDef
, 1>());
4748 SmallVector
<llvm::OperandBundleDef
, 1> BundleList
;
4749 BundleList
.emplace_back("funclet", CurrentFuncletPad
);
4753 /// Emits a simple call (never an invoke) to the given runtime function.
4754 llvm::CallInst
*CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee
,
4755 ArrayRef
<llvm::Value
*> args
,
4756 const llvm::Twine
&name
) {
4757 llvm::CallInst
*call
= Builder
.CreateCall(
4758 callee
, args
, getBundlesForFunclet(callee
.getCallee()), name
);
4759 call
->setCallingConv(getRuntimeCC());
4763 /// Emits a call or invoke to the given noreturn runtime function.
4764 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4765 llvm::FunctionCallee callee
, ArrayRef
<llvm::Value
*> args
) {
4766 SmallVector
<llvm::OperandBundleDef
, 1> BundleList
=
4767 getBundlesForFunclet(callee
.getCallee());
4769 if (getInvokeDest()) {
4770 llvm::InvokeInst
*invoke
=
4771 Builder
.CreateInvoke(callee
,
4772 getUnreachableBlock(),
4776 invoke
->setDoesNotReturn();
4777 invoke
->setCallingConv(getRuntimeCC());
4779 llvm::CallInst
*call
= Builder
.CreateCall(callee
, args
, BundleList
);
4780 call
->setDoesNotReturn();
4781 call
->setCallingConv(getRuntimeCC());
4782 Builder
.CreateUnreachable();
4786 /// Emits a call or invoke instruction to the given nullary runtime function.
4788 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee
,
4789 const Twine
&name
) {
4790 return EmitRuntimeCallOrInvoke(callee
, std::nullopt
, name
);
4793 /// Emits a call or invoke instruction to the given runtime function.
4795 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee
,
4796 ArrayRef
<llvm::Value
*> args
,
4797 const Twine
&name
) {
4798 llvm::CallBase
*call
= EmitCallOrInvoke(callee
, args
, name
);
4799 call
->setCallingConv(getRuntimeCC());
4803 /// Emits a call or invoke instruction to the given function, depending
4804 /// on the current state of the EH stack.
4805 llvm::CallBase
*CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee
,
4806 ArrayRef
<llvm::Value
*> Args
,
4807 const Twine
&Name
) {
4808 llvm::BasicBlock
*InvokeDest
= getInvokeDest();
4809 SmallVector
<llvm::OperandBundleDef
, 1> BundleList
=
4810 getBundlesForFunclet(Callee
.getCallee());
4812 llvm::CallBase
*Inst
;
4814 Inst
= Builder
.CreateCall(Callee
, Args
, BundleList
, Name
);
4816 llvm::BasicBlock
*ContBB
= createBasicBlock("invoke.cont");
4817 Inst
= Builder
.CreateInvoke(Callee
, ContBB
, InvokeDest
, Args
, BundleList
,
4822 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4823 // optimizer it can aggressively ignore unwind edges.
4824 if (CGM
.getLangOpts().ObjCAutoRefCount
)
4825 AddObjCARCExceptionMetadata(Inst
);
4830 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction
*Old
,
4832 DeferredReplacements
.push_back(
4833 std::make_pair(llvm::WeakTrackingVH(Old
), New
));
4838 /// Specify given \p NewAlign as the alignment of return value attribute. If
4839 /// such attribute already exists, re-set it to the maximal one of two options.
4840 [[nodiscard
]] llvm::AttributeList
4841 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext
&Ctx
,
4842 const llvm::AttributeList
&Attrs
,
4843 llvm::Align NewAlign
) {
4844 llvm::Align CurAlign
= Attrs
.getRetAlignment().valueOrOne();
4845 if (CurAlign
>= NewAlign
)
4847 llvm::Attribute AlignAttr
= llvm::Attribute::getWithAlignment(Ctx
, NewAlign
);
4848 return Attrs
.removeRetAttribute(Ctx
, llvm::Attribute::AttrKind::Alignment
)
4849 .addRetAttribute(Ctx
, AlignAttr
);
4852 template <typename AlignedAttrTy
> class AbstractAssumeAlignedAttrEmitter
{
4854 CodeGenFunction
&CGF
;
4856 /// We do nothing if this is, or becomes, nullptr.
4857 const AlignedAttrTy
*AA
= nullptr;
4859 llvm::Value
*Alignment
= nullptr; // May or may not be a constant.
4860 llvm::ConstantInt
*OffsetCI
= nullptr; // Constant, hopefully zero.
4862 AbstractAssumeAlignedAttrEmitter(CodeGenFunction
&CGF_
, const Decl
*FuncDecl
)
4866 AA
= FuncDecl
->getAttr
<AlignedAttrTy
>();
4870 /// If we can, materialize the alignment as an attribute on return value.
4871 [[nodiscard
]] llvm::AttributeList
4872 TryEmitAsCallSiteAttribute(const llvm::AttributeList
&Attrs
) {
4873 if (!AA
|| OffsetCI
|| CGF
.SanOpts
.has(SanitizerKind::Alignment
))
4875 const auto *AlignmentCI
= dyn_cast
<llvm::ConstantInt
>(Alignment
);
4878 // We may legitimately have non-power-of-2 alignment here.
4879 // If so, this is UB land, emit it via `@llvm.assume` instead.
4880 if (!AlignmentCI
->getValue().isPowerOf2())
4882 llvm::AttributeList NewAttrs
= maybeRaiseRetAlignmentAttribute(
4883 CGF
.getLLVMContext(), Attrs
,
4885 AlignmentCI
->getLimitedValue(llvm::Value::MaximumAlignment
)));
4886 AA
= nullptr; // We're done. Disallow doing anything else.
4890 /// Emit alignment assumption.
4891 /// This is a general fallback that we take if either there is an offset,
4892 /// or the alignment is variable or we are sanitizing for alignment.
4893 void EmitAsAnAssumption(SourceLocation Loc
, QualType RetTy
, RValue
&Ret
) {
4896 CGF
.emitAlignmentAssumption(Ret
.getScalarVal(), RetTy
, Loc
,
4897 AA
->getLocation(), Alignment
, OffsetCI
);
4898 AA
= nullptr; // We're done. Disallow doing anything else.
4902 /// Helper data structure to emit `AssumeAlignedAttr`.
4903 class AssumeAlignedAttrEmitter final
4904 : public AbstractAssumeAlignedAttrEmitter
<AssumeAlignedAttr
> {
4906 AssumeAlignedAttrEmitter(CodeGenFunction
&CGF_
, const Decl
*FuncDecl
)
4907 : AbstractAssumeAlignedAttrEmitter(CGF_
, FuncDecl
) {
4910 // It is guaranteed that the alignment/offset are constants.
4911 Alignment
= cast
<llvm::ConstantInt
>(CGF
.EmitScalarExpr(AA
->getAlignment()));
4912 if (Expr
*Offset
= AA
->getOffset()) {
4913 OffsetCI
= cast
<llvm::ConstantInt
>(CGF
.EmitScalarExpr(Offset
));
4914 if (OffsetCI
->isNullValue()) // Canonicalize zero offset to no offset.
4920 /// Helper data structure to emit `AllocAlignAttr`.
4921 class AllocAlignAttrEmitter final
4922 : public AbstractAssumeAlignedAttrEmitter
<AllocAlignAttr
> {
4924 AllocAlignAttrEmitter(CodeGenFunction
&CGF_
, const Decl
*FuncDecl
,
4925 const CallArgList
&CallArgs
)
4926 : AbstractAssumeAlignedAttrEmitter(CGF_
, FuncDecl
) {
4929 // Alignment may or may not be a constant, and that is okay.
4930 Alignment
= CallArgs
[AA
->getParamIndex().getLLVMIndex()]
4938 static unsigned getMaxVectorWidth(const llvm::Type
*Ty
) {
4939 if (auto *VT
= dyn_cast
<llvm::VectorType
>(Ty
))
4940 return VT
->getPrimitiveSizeInBits().getKnownMinValue();
4941 if (auto *AT
= dyn_cast
<llvm::ArrayType
>(Ty
))
4942 return getMaxVectorWidth(AT
->getElementType());
4944 unsigned MaxVectorWidth
= 0;
4945 if (auto *ST
= dyn_cast
<llvm::StructType
>(Ty
))
4946 for (auto *I
: ST
->elements())
4947 MaxVectorWidth
= std::max(MaxVectorWidth
, getMaxVectorWidth(I
));
4948 return MaxVectorWidth
;
4951 RValue
CodeGenFunction::EmitCall(const CGFunctionInfo
&CallInfo
,
4952 const CGCallee
&Callee
,
4953 ReturnValueSlot ReturnValue
,
4954 const CallArgList
&CallArgs
,
4955 llvm::CallBase
**callOrInvoke
, bool IsMustTail
,
4956 SourceLocation Loc
) {
4957 // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4959 assert(Callee
.isOrdinary() || Callee
.isVirtual());
4961 // Handle struct-return functions by passing a pointer to the
4962 // location that we would like to return into.
4963 QualType RetTy
= CallInfo
.getReturnType();
4964 const ABIArgInfo
&RetAI
= CallInfo
.getReturnInfo();
4966 llvm::FunctionType
*IRFuncTy
= getTypes().GetFunctionType(CallInfo
);
4968 const Decl
*TargetDecl
= Callee
.getAbstractInfo().getCalleeDecl().getDecl();
4969 if (const FunctionDecl
*FD
= dyn_cast_or_null
<FunctionDecl
>(TargetDecl
)) {
4970 // We can only guarantee that a function is called from the correct
4971 // context/function based on the appropriate target attributes,
4972 // so only check in the case where we have both always_inline and target
4973 // since otherwise we could be making a conditional call after a check for
4974 // the proper cpu features (and it won't cause code generation issues due to
4975 // function based code generation).
4976 if (TargetDecl
->hasAttr
<AlwaysInlineAttr
>() &&
4977 (TargetDecl
->hasAttr
<TargetAttr
>() ||
4978 (CurFuncDecl
&& CurFuncDecl
->hasAttr
<TargetAttr
>())))
4979 checkTargetFeatures(Loc
, FD
);
4981 // Some architectures (such as x86-64) have the ABI changed based on
4982 // attribute-target/features. Give them a chance to diagnose.
4983 CGM
.getTargetCodeGenInfo().checkFunctionCallABI(
4984 CGM
, Loc
, dyn_cast_or_null
<FunctionDecl
>(CurCodeDecl
), FD
, CallArgs
);
4987 // 1. Set up the arguments.
4989 // If we're using inalloca, insert the allocation after the stack save.
4990 // FIXME: Do this earlier rather than hacking it in here!
4991 Address ArgMemory
= Address::invalid();
4992 if (llvm::StructType
*ArgStruct
= CallInfo
.getArgStruct()) {
4993 const llvm::DataLayout
&DL
= CGM
.getDataLayout();
4994 llvm::Instruction
*IP
= CallArgs
.getStackBase();
4995 llvm::AllocaInst
*AI
;
4997 IP
= IP
->getNextNode();
4998 AI
= new llvm::AllocaInst(ArgStruct
, DL
.getAllocaAddrSpace(),
5001 AI
= CreateTempAlloca(ArgStruct
, "argmem");
5003 auto Align
= CallInfo
.getArgStructAlignment();
5004 AI
->setAlignment(Align
.getAsAlign());
5005 AI
->setUsedWithInAlloca(true);
5006 assert(AI
->isUsedWithInAlloca() && !AI
->isStaticAlloca());
5007 ArgMemory
= Address(AI
, ArgStruct
, Align
);
5010 ClangToLLVMArgMapping
IRFunctionArgs(CGM
.getContext(), CallInfo
);
5011 SmallVector
<llvm::Value
*, 16> IRCallArgs(IRFunctionArgs
.totalIRArgs());
5013 // If the call returns a temporary with struct return, create a temporary
5014 // alloca to hold the result, unless one is given to us.
5015 Address SRetPtr
= Address::invalid();
5016 Address SRetAlloca
= Address::invalid();
5017 llvm::Value
*UnusedReturnSizePtr
= nullptr;
5018 if (RetAI
.isIndirect() || RetAI
.isInAlloca() || RetAI
.isCoerceAndExpand()) {
5019 if (!ReturnValue
.isNull()) {
5020 SRetPtr
= ReturnValue
.getValue();
5022 SRetPtr
= CreateMemTemp(RetTy
, "tmp", &SRetAlloca
);
5023 if (HaveInsertPoint() && ReturnValue
.isUnused()) {
5024 llvm::TypeSize size
=
5025 CGM
.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy
));
5026 UnusedReturnSizePtr
= EmitLifetimeStart(size
, SRetAlloca
.getPointer());
5029 if (IRFunctionArgs
.hasSRetArg()) {
5030 IRCallArgs
[IRFunctionArgs
.getSRetArgNo()] = SRetPtr
.getPointer();
5031 } else if (RetAI
.isInAlloca()) {
5033 Builder
.CreateStructGEP(ArgMemory
, RetAI
.getInAllocaFieldIndex());
5034 Builder
.CreateStore(SRetPtr
.getPointer(), Addr
);
5038 Address swiftErrorTemp
= Address::invalid();
5039 Address swiftErrorArg
= Address::invalid();
5041 // When passing arguments using temporary allocas, we need to add the
5042 // appropriate lifetime markers. This vector keeps track of all the lifetime
5043 // markers that need to be ended right after the call.
5044 SmallVector
<CallLifetimeEnd
, 2> CallLifetimeEndAfterCall
;
5046 // Translate all of the arguments as necessary to match the IR lowering.
5047 assert(CallInfo
.arg_size() == CallArgs
.size() &&
5048 "Mismatch between function signature & arguments.");
5050 CGFunctionInfo::const_arg_iterator info_it
= CallInfo
.arg_begin();
5051 for (CallArgList::const_iterator I
= CallArgs
.begin(), E
= CallArgs
.end();
5052 I
!= E
; ++I
, ++info_it
, ++ArgNo
) {
5053 const ABIArgInfo
&ArgInfo
= info_it
->info
;
5055 // Insert a padding argument to ensure proper alignment.
5056 if (IRFunctionArgs
.hasPaddingArg(ArgNo
))
5057 IRCallArgs
[IRFunctionArgs
.getPaddingArgNo(ArgNo
)] =
5058 llvm::UndefValue::get(ArgInfo
.getPaddingType());
5060 unsigned FirstIRArg
, NumIRArgs
;
5061 std::tie(FirstIRArg
, NumIRArgs
) = IRFunctionArgs
.getIRArgs(ArgNo
);
5063 bool ArgHasMaybeUndefAttr
=
5064 IsArgumentMaybeUndef(TargetDecl
, CallInfo
.getNumRequiredArgs(), ArgNo
);
5066 switch (ArgInfo
.getKind()) {
5067 case ABIArgInfo::InAlloca
: {
5068 assert(NumIRArgs
== 0);
5069 assert(getTarget().getTriple().getArch() == llvm::Triple::x86
);
5070 if (I
->isAggregate()) {
5071 Address Addr
= I
->hasLValue()
5072 ? I
->getKnownLValue().getAddress(*this)
5073 : I
->getKnownRValue().getAggregateAddress();
5074 llvm::Instruction
*Placeholder
=
5075 cast
<llvm::Instruction
>(Addr
.getPointer());
5077 if (!ArgInfo
.getInAllocaIndirect()) {
5078 // Replace the placeholder with the appropriate argument slot GEP.
5079 CGBuilderTy::InsertPoint IP
= Builder
.saveIP();
5080 Builder
.SetInsertPoint(Placeholder
);
5081 Addr
= Builder
.CreateStructGEP(ArgMemory
,
5082 ArgInfo
.getInAllocaFieldIndex());
5083 Builder
.restoreIP(IP
);
5085 // For indirect things such as overaligned structs, replace the
5086 // placeholder with a regular aggregate temporary alloca. Store the
5087 // address of this alloca into the struct.
5088 Addr
= CreateMemTemp(info_it
->type
, "inalloca.indirect.tmp");
5089 Address ArgSlot
= Builder
.CreateStructGEP(
5090 ArgMemory
, ArgInfo
.getInAllocaFieldIndex());
5091 Builder
.CreateStore(Addr
.getPointer(), ArgSlot
);
5093 deferPlaceholderReplacement(Placeholder
, Addr
.getPointer());
5094 } else if (ArgInfo
.getInAllocaIndirect()) {
5095 // Make a temporary alloca and store the address of it into the argument
5097 Address Addr
= CreateMemTempWithoutCast(
5098 I
->Ty
, getContext().getTypeAlignInChars(I
->Ty
),
5099 "indirect-arg-temp");
5100 I
->copyInto(*this, Addr
);
5102 Builder
.CreateStructGEP(ArgMemory
, ArgInfo
.getInAllocaFieldIndex());
5103 Builder
.CreateStore(Addr
.getPointer(), ArgSlot
);
5105 // Store the RValue into the argument struct.
5107 Builder
.CreateStructGEP(ArgMemory
, ArgInfo
.getInAllocaFieldIndex());
5108 Addr
= Addr
.withElementType(ConvertTypeForMem(I
->Ty
));
5109 I
->copyInto(*this, Addr
);
5114 case ABIArgInfo::Indirect
:
5115 case ABIArgInfo::IndirectAliased
: {
5116 assert(NumIRArgs
== 1);
5117 if (!I
->isAggregate()) {
5118 // Make a temporary alloca to pass the argument.
5119 Address Addr
= CreateMemTempWithoutCast(
5120 I
->Ty
, ArgInfo
.getIndirectAlign(), "indirect-arg-temp");
5122 llvm::Value
*Val
= Addr
.getPointer();
5123 if (ArgHasMaybeUndefAttr
)
5124 Val
= Builder
.CreateFreeze(Addr
.getPointer());
5125 IRCallArgs
[FirstIRArg
] = Val
;
5127 I
->copyInto(*this, Addr
);
5129 // We want to avoid creating an unnecessary temporary+copy here;
5130 // however, we need one in three cases:
5131 // 1. If the argument is not byval, and we are required to copy the
5132 // source. (This case doesn't occur on any common architecture.)
5133 // 2. If the argument is byval, RV is not sufficiently aligned, and
5134 // we cannot force it to be sufficiently aligned.
5135 // 3. If the argument is byval, but RV is not located in default
5136 // or alloca address space.
5137 Address Addr
= I
->hasLValue()
5138 ? I
->getKnownLValue().getAddress(*this)
5139 : I
->getKnownRValue().getAggregateAddress();
5140 llvm::Value
*V
= Addr
.getPointer();
5141 CharUnits Align
= ArgInfo
.getIndirectAlign();
5142 const llvm::DataLayout
*TD
= &CGM
.getDataLayout();
5144 assert((FirstIRArg
>= IRFuncTy
->getNumParams() ||
5145 IRFuncTy
->getParamType(FirstIRArg
)->getPointerAddressSpace() ==
5146 TD
->getAllocaAddrSpace()) &&
5147 "indirect argument must be in alloca address space");
5149 bool NeedCopy
= false;
5150 if (Addr
.getAlignment() < Align
&&
5151 llvm::getOrEnforceKnownAlignment(V
, Align
.getAsAlign(), *TD
) <
5152 Align
.getAsAlign()) {
5154 } else if (I
->hasLValue()) {
5155 auto LV
= I
->getKnownLValue();
5156 auto AS
= LV
.getAddressSpace();
5159 ArgInfo
.isIndirectAliased() || ArgInfo
.getIndirectByVal();
5161 if (!isByValOrRef
||
5162 (LV
.getAlignment() < getContext().getTypeAlignInChars(I
->Ty
))) {
5165 if (!getLangOpts().OpenCL
) {
5166 if ((isByValOrRef
&&
5167 (AS
!= LangAS::Default
&&
5168 AS
!= CGM
.getASTAllocaAddressSpace()))) {
5172 // For OpenCL even if RV is located in default or alloca address space
5173 // we don't want to perform address space cast for it.
5174 else if ((isByValOrRef
&&
5175 Addr
.getType()->getAddressSpace() != IRFuncTy
->
5176 getParamType(FirstIRArg
)->getPointerAddressSpace())) {
5182 // Create an aligned temporary, and copy to it.
5183 Address AI
= CreateMemTempWithoutCast(
5184 I
->Ty
, ArgInfo
.getIndirectAlign(), "byval-temp");
5185 llvm::Value
*Val
= AI
.getPointer();
5186 if (ArgHasMaybeUndefAttr
)
5187 Val
= Builder
.CreateFreeze(AI
.getPointer());
5188 IRCallArgs
[FirstIRArg
] = Val
;
5190 // Emit lifetime markers for the temporary alloca.
5191 llvm::TypeSize ByvalTempElementSize
=
5192 CGM
.getDataLayout().getTypeAllocSize(AI
.getElementType());
5193 llvm::Value
*LifetimeSize
=
5194 EmitLifetimeStart(ByvalTempElementSize
, AI
.getPointer());
5196 // Add cleanup code to emit the end lifetime marker after the call.
5197 if (LifetimeSize
) // In case we disabled lifetime markers.
5198 CallLifetimeEndAfterCall
.emplace_back(AI
, LifetimeSize
);
5200 // Generate the copy.
5201 I
->copyInto(*this, AI
);
5203 // Skip the extra memcpy call.
5204 auto *T
= llvm::PointerType::get(
5205 CGM
.getLLVMContext(), CGM
.getDataLayout().getAllocaAddrSpace());
5207 llvm::Value
*Val
= getTargetHooks().performAddrSpaceCast(
5208 *this, V
, LangAS::Default
, CGM
.getASTAllocaAddressSpace(), T
,
5210 if (ArgHasMaybeUndefAttr
)
5211 Val
= Builder
.CreateFreeze(Val
);
5212 IRCallArgs
[FirstIRArg
] = Val
;
5218 case ABIArgInfo::Ignore
:
5219 assert(NumIRArgs
== 0);
5222 case ABIArgInfo::Extend
:
5223 case ABIArgInfo::Direct
: {
5224 if (!isa
<llvm::StructType
>(ArgInfo
.getCoerceToType()) &&
5225 ArgInfo
.getCoerceToType() == ConvertType(info_it
->type
) &&
5226 ArgInfo
.getDirectOffset() == 0) {
5227 assert(NumIRArgs
== 1);
5229 if (!I
->isAggregate())
5230 V
= I
->getKnownRValue().getScalarVal();
5232 V
= Builder
.CreateLoad(
5233 I
->hasLValue() ? I
->getKnownLValue().getAddress(*this)
5234 : I
->getKnownRValue().getAggregateAddress());
5236 // Implement swifterror by copying into a new swifterror argument.
5237 // We'll write back in the normal path out of the call.
5238 if (CallInfo
.getExtParameterInfo(ArgNo
).getABI()
5239 == ParameterABI::SwiftErrorResult
) {
5240 assert(!swiftErrorTemp
.isValid() && "multiple swifterror args");
5242 QualType pointeeTy
= I
->Ty
->getPointeeType();
5243 swiftErrorArg
= Address(V
, ConvertTypeForMem(pointeeTy
),
5244 getContext().getTypeAlignInChars(pointeeTy
));
5247 CreateMemTemp(pointeeTy
, getPointerAlign(), "swifterror.temp");
5248 V
= swiftErrorTemp
.getPointer();
5249 cast
<llvm::AllocaInst
>(V
)->setSwiftError(true);
5251 llvm::Value
*errorValue
= Builder
.CreateLoad(swiftErrorArg
);
5252 Builder
.CreateStore(errorValue
, swiftErrorTemp
);
5255 // We might have to widen integers, but we should never truncate.
5256 if (ArgInfo
.getCoerceToType() != V
->getType() &&
5257 V
->getType()->isIntegerTy())
5258 V
= Builder
.CreateZExt(V
, ArgInfo
.getCoerceToType());
5260 // If the argument doesn't match, perform a bitcast to coerce it. This
5261 // can happen due to trivial type mismatches.
5262 if (FirstIRArg
< IRFuncTy
->getNumParams() &&
5263 V
->getType() != IRFuncTy
->getParamType(FirstIRArg
))
5264 V
= Builder
.CreateBitCast(V
, IRFuncTy
->getParamType(FirstIRArg
));
5266 if (ArgHasMaybeUndefAttr
)
5267 V
= Builder
.CreateFreeze(V
);
5268 IRCallArgs
[FirstIRArg
] = V
;
5272 // FIXME: Avoid the conversion through memory if possible.
5273 Address Src
= Address::invalid();
5274 if (!I
->isAggregate()) {
5275 Src
= CreateMemTemp(I
->Ty
, "coerce");
5276 I
->copyInto(*this, Src
);
5278 Src
= I
->hasLValue() ? I
->getKnownLValue().getAddress(*this)
5279 : I
->getKnownRValue().getAggregateAddress();
5282 // If the value is offset in memory, apply the offset now.
5283 Src
= emitAddressAtOffset(*this, Src
, ArgInfo
);
5285 // Fast-isel and the optimizer generally like scalar values better than
5286 // FCAs, so we flatten them if this is safe to do for this argument.
5287 llvm::StructType
*STy
=
5288 dyn_cast
<llvm::StructType
>(ArgInfo
.getCoerceToType());
5289 if (STy
&& ArgInfo
.isDirect() && ArgInfo
.getCanBeFlattened()) {
5290 llvm::Type
*SrcTy
= Src
.getElementType();
5291 llvm::TypeSize SrcTypeSize
=
5292 CGM
.getDataLayout().getTypeAllocSize(SrcTy
);
5293 llvm::TypeSize DstTypeSize
= CGM
.getDataLayout().getTypeAllocSize(STy
);
5294 if (SrcTypeSize
.isScalable()) {
5295 assert(STy
->containsHomogeneousScalableVectorTypes() &&
5296 "ABI only supports structure with homogeneous scalable vector "
5298 assert(SrcTypeSize
== DstTypeSize
&&
5299 "Only allow non-fractional movement of structure with "
5300 "homogeneous scalable vector type");
5301 assert(NumIRArgs
== STy
->getNumElements());
5303 llvm::Value
*StoredStructValue
=
5304 Builder
.CreateLoad(Src
, Src
.getName() + ".tuple");
5305 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
5306 llvm::Value
*Extract
= Builder
.CreateExtractValue(
5307 StoredStructValue
, i
, Src
.getName() + ".extract" + Twine(i
));
5308 IRCallArgs
[FirstIRArg
+ i
] = Extract
;
5311 uint64_t SrcSize
= SrcTypeSize
.getFixedValue();
5312 uint64_t DstSize
= DstTypeSize
.getFixedValue();
5314 // If the source type is smaller than the destination type of the
5315 // coerce-to logic, copy the source value into a temp alloca the size
5316 // of the destination type to allow loading all of it. The bits past
5317 // the source value are left undef.
5318 if (SrcSize
< DstSize
) {
5319 Address TempAlloca
= CreateTempAlloca(STy
, Src
.getAlignment(),
5320 Src
.getName() + ".coerce");
5321 Builder
.CreateMemCpy(TempAlloca
, Src
, SrcSize
);
5324 Src
= Src
.withElementType(STy
);
5327 assert(NumIRArgs
== STy
->getNumElements());
5328 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
5329 Address EltPtr
= Builder
.CreateStructGEP(Src
, i
);
5330 llvm::Value
*LI
= Builder
.CreateLoad(EltPtr
);
5331 if (ArgHasMaybeUndefAttr
)
5332 LI
= Builder
.CreateFreeze(LI
);
5333 IRCallArgs
[FirstIRArg
+ i
] = LI
;
5337 // In the simple case, just pass the coerced loaded value.
5338 assert(NumIRArgs
== 1);
5340 CreateCoercedLoad(Src
, ArgInfo
.getCoerceToType(), *this);
5342 if (CallInfo
.isCmseNSCall()) {
5343 // For certain parameter types, clear padding bits, as they may reveal
5344 // sensitive information.
5345 // Small struct/union types are passed as integer arrays.
5346 auto *ATy
= dyn_cast
<llvm::ArrayType
>(Load
->getType());
5347 if (ATy
!= nullptr && isa
<RecordType
>(I
->Ty
.getCanonicalType()))
5348 Load
= EmitCMSEClearRecord(Load
, ATy
, I
->Ty
);
5351 if (ArgHasMaybeUndefAttr
)
5352 Load
= Builder
.CreateFreeze(Load
);
5353 IRCallArgs
[FirstIRArg
] = Load
;
5359 case ABIArgInfo::CoerceAndExpand
: {
5360 auto coercionType
= ArgInfo
.getCoerceAndExpandType();
5361 auto layout
= CGM
.getDataLayout().getStructLayout(coercionType
);
5363 llvm::Value
*tempSize
= nullptr;
5364 Address addr
= Address::invalid();
5365 Address AllocaAddr
= Address::invalid();
5366 if (I
->isAggregate()) {
5367 addr
= I
->hasLValue() ? I
->getKnownLValue().getAddress(*this)
5368 : I
->getKnownRValue().getAggregateAddress();
5371 RValue RV
= I
->getKnownRValue();
5372 assert(RV
.isScalar()); // complex should always just be direct
5374 llvm::Type
*scalarType
= RV
.getScalarVal()->getType();
5375 auto scalarSize
= CGM
.getDataLayout().getTypeAllocSize(scalarType
);
5376 auto scalarAlign
= CGM
.getDataLayout().getPrefTypeAlign(scalarType
);
5378 // Materialize to a temporary.
5379 addr
= CreateTempAlloca(
5380 RV
.getScalarVal()->getType(),
5381 CharUnits::fromQuantity(std::max(layout
->getAlignment(), scalarAlign
)),
5383 /*ArraySize=*/nullptr, &AllocaAddr
);
5384 tempSize
= EmitLifetimeStart(scalarSize
, AllocaAddr
.getPointer());
5386 Builder
.CreateStore(RV
.getScalarVal(), addr
);
5389 addr
= addr
.withElementType(coercionType
);
5391 unsigned IRArgPos
= FirstIRArg
;
5392 for (unsigned i
= 0, e
= coercionType
->getNumElements(); i
!= e
; ++i
) {
5393 llvm::Type
*eltType
= coercionType
->getElementType(i
);
5394 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType
)) continue;
5395 Address eltAddr
= Builder
.CreateStructGEP(addr
, i
);
5396 llvm::Value
*elt
= Builder
.CreateLoad(eltAddr
);
5397 if (ArgHasMaybeUndefAttr
)
5398 elt
= Builder
.CreateFreeze(elt
);
5399 IRCallArgs
[IRArgPos
++] = elt
;
5401 assert(IRArgPos
== FirstIRArg
+ NumIRArgs
);
5404 EmitLifetimeEnd(tempSize
, AllocaAddr
.getPointer());
5410 case ABIArgInfo::Expand
: {
5411 unsigned IRArgPos
= FirstIRArg
;
5412 ExpandTypeToArgs(I
->Ty
, *I
, IRFuncTy
, IRCallArgs
, IRArgPos
);
5413 assert(IRArgPos
== FirstIRArg
+ NumIRArgs
);
5419 const CGCallee
&ConcreteCallee
= Callee
.prepareConcreteCallee(*this);
5420 llvm::Value
*CalleePtr
= ConcreteCallee
.getFunctionPointer();
5422 // If we're using inalloca, set up that argument.
5423 if (ArgMemory
.isValid()) {
5424 llvm::Value
*Arg
= ArgMemory
.getPointer();
5425 assert(IRFunctionArgs
.hasInallocaArg());
5426 IRCallArgs
[IRFunctionArgs
.getInallocaArgNo()] = Arg
;
5429 // 2. Prepare the function pointer.
5431 // If the callee is a bitcast of a non-variadic function to have a
5432 // variadic function pointer type, check to see if we can remove the
5433 // bitcast. This comes up with unprototyped functions.
5435 // This makes the IR nicer, but more importantly it ensures that we
5436 // can inline the function at -O0 if it is marked always_inline.
5437 auto simplifyVariadicCallee
= [](llvm::FunctionType
*CalleeFT
,
5438 llvm::Value
*Ptr
) -> llvm::Function
* {
5439 if (!CalleeFT
->isVarArg())
5442 // Get underlying value if it's a bitcast
5443 if (llvm::ConstantExpr
*CE
= dyn_cast
<llvm::ConstantExpr
>(Ptr
)) {
5444 if (CE
->getOpcode() == llvm::Instruction::BitCast
)
5445 Ptr
= CE
->getOperand(0);
5448 llvm::Function
*OrigFn
= dyn_cast
<llvm::Function
>(Ptr
);
5452 llvm::FunctionType
*OrigFT
= OrigFn
->getFunctionType();
5454 // If the original type is variadic, or if any of the component types
5455 // disagree, we cannot remove the cast.
5456 if (OrigFT
->isVarArg() ||
5457 OrigFT
->getNumParams() != CalleeFT
->getNumParams() ||
5458 OrigFT
->getReturnType() != CalleeFT
->getReturnType())
5461 for (unsigned i
= 0, e
= OrigFT
->getNumParams(); i
!= e
; ++i
)
5462 if (OrigFT
->getParamType(i
) != CalleeFT
->getParamType(i
))
5468 if (llvm::Function
*OrigFn
= simplifyVariadicCallee(IRFuncTy
, CalleePtr
)) {
5470 IRFuncTy
= OrigFn
->getFunctionType();
5473 // 3. Perform the actual call.
5475 // Deactivate any cleanups that we're supposed to do immediately before
5477 if (!CallArgs
.getCleanupsToDeactivate().empty())
5478 deactivateArgCleanupsBeforeCall(*this, CallArgs
);
5480 // Assert that the arguments we computed match up. The IR verifier
5481 // will catch this, but this is a common enough source of problems
5482 // during IRGen changes that it's way better for debugging to catch
5483 // it ourselves here.
5485 assert(IRCallArgs
.size() == IRFuncTy
->getNumParams() || IRFuncTy
->isVarArg());
5486 for (unsigned i
= 0; i
< IRCallArgs
.size(); ++i
) {
5487 // Inalloca argument can have different type.
5488 if (IRFunctionArgs
.hasInallocaArg() &&
5489 i
== IRFunctionArgs
.getInallocaArgNo())
5491 if (i
< IRFuncTy
->getNumParams())
5492 assert(IRCallArgs
[i
]->getType() == IRFuncTy
->getParamType(i
));
5496 // Update the largest vector width if any arguments have vector types.
5497 for (unsigned i
= 0; i
< IRCallArgs
.size(); ++i
)
5498 LargestVectorWidth
= std::max(LargestVectorWidth
,
5499 getMaxVectorWidth(IRCallArgs
[i
]->getType()));
5501 // Compute the calling convention and attributes.
5502 unsigned CallingConv
;
5503 llvm::AttributeList Attrs
;
5504 CGM
.ConstructAttributeList(CalleePtr
->getName(), CallInfo
,
5505 Callee
.getAbstractInfo(), Attrs
, CallingConv
,
5506 /*AttrOnCallSite=*/true,
5509 if (const FunctionDecl
*FD
= dyn_cast_or_null
<FunctionDecl
>(CurFuncDecl
)) {
5510 if (FD
->hasAttr
<StrictFPAttr
>())
5511 // All calls within a strictfp function are marked strictfp
5512 Attrs
= Attrs
.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP
);
5514 // If -ffast-math is enabled and the function is guarded by an
5515 // '__attribute__((optnone)) adjust the memory attribute so the BE emits the
5516 // library call instead of the intrinsic.
5517 if (FD
->hasAttr
<OptimizeNoneAttr
>() && getLangOpts().FastMath
)
5518 CGM
.AdjustMemoryAttribute(CalleePtr
->getName(), Callee
.getAbstractInfo(),
5521 // Add call-site nomerge attribute if exists.
5522 if (InNoMergeAttributedStmt
)
5523 Attrs
= Attrs
.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge
);
5525 // Add call-site noinline attribute if exists.
5526 if (InNoInlineAttributedStmt
)
5527 Attrs
= Attrs
.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline
);
5529 // Add call-site always_inline attribute if exists.
5530 if (InAlwaysInlineAttributedStmt
)
5532 Attrs
.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline
);
5534 // Apply some call-site-specific attributes.
5535 // TODO: work this into building the attribute set.
5537 // Apply always_inline to all calls within flatten functions.
5538 // FIXME: should this really take priority over __try, below?
5539 if (CurCodeDecl
&& CurCodeDecl
->hasAttr
<FlattenAttr
>() &&
5540 !InNoInlineAttributedStmt
&&
5541 !(TargetDecl
&& TargetDecl
->hasAttr
<NoInlineAttr
>())) {
5543 Attrs
.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline
);
5546 // Disable inlining inside SEH __try blocks.
5547 if (isSEHTryScope()) {
5548 Attrs
= Attrs
.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline
);
5551 // Decide whether to use a call or an invoke.
5553 if (currentFunctionUsesSEHTry()) {
5554 // SEH cares about asynchronous exceptions, so everything can "throw."
5555 CannotThrow
= false;
5556 } else if (isCleanupPadScope() &&
5557 EHPersonality::get(*this).isMSVCXXPersonality()) {
5558 // The MSVC++ personality will implicitly terminate the program if an
5559 // exception is thrown during a cleanup outside of a try/catch.
5560 // We don't need to model anything in IR to get this behavior.
5563 // Otherwise, nounwind call sites will never throw.
5564 CannotThrow
= Attrs
.hasFnAttr(llvm::Attribute::NoUnwind
);
5566 if (auto *FPtr
= dyn_cast
<llvm::Function
>(CalleePtr
))
5567 if (FPtr
->hasFnAttribute(llvm::Attribute::NoUnwind
))
5571 // If we made a temporary, be sure to clean up after ourselves. Note that we
5572 // can't depend on being inside of an ExprWithCleanups, so we need to manually
5573 // pop this cleanup later on. Being eager about this is OK, since this
5574 // temporary is 'invisible' outside of the callee.
5575 if (UnusedReturnSizePtr
)
5576 pushFullExprCleanup
<CallLifetimeEnd
>(NormalEHLifetimeMarker
, SRetAlloca
,
5577 UnusedReturnSizePtr
);
5579 llvm::BasicBlock
*InvokeDest
= CannotThrow
? nullptr : getInvokeDest();
5581 SmallVector
<llvm::OperandBundleDef
, 1> BundleList
=
5582 getBundlesForFunclet(CalleePtr
);
5584 if (SanOpts
.has(SanitizerKind::KCFI
) &&
5585 !isa_and_nonnull
<FunctionDecl
>(TargetDecl
))
5586 EmitKCFIOperandBundle(ConcreteCallee
, BundleList
);
5588 if (const FunctionDecl
*FD
= dyn_cast_or_null
<FunctionDecl
>(CurFuncDecl
))
5589 if (FD
->hasAttr
<StrictFPAttr
>())
5590 // All calls within a strictfp function are marked strictfp
5591 Attrs
= Attrs
.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP
);
5593 AssumeAlignedAttrEmitter
AssumeAlignedAttrEmitter(*this, TargetDecl
);
5594 Attrs
= AssumeAlignedAttrEmitter
.TryEmitAsCallSiteAttribute(Attrs
);
5596 AllocAlignAttrEmitter
AllocAlignAttrEmitter(*this, TargetDecl
, CallArgs
);
5597 Attrs
= AllocAlignAttrEmitter
.TryEmitAsCallSiteAttribute(Attrs
);
5599 // Emit the actual call/invoke instruction.
5602 CI
= Builder
.CreateCall(IRFuncTy
, CalleePtr
, IRCallArgs
, BundleList
);
5604 llvm::BasicBlock
*Cont
= createBasicBlock("invoke.cont");
5605 CI
= Builder
.CreateInvoke(IRFuncTy
, CalleePtr
, Cont
, InvokeDest
, IRCallArgs
,
5612 // If this is within a function that has the guard(nocf) attribute and is an
5613 // indirect call, add the "guard_nocf" attribute to this call to indicate that
5614 // Control Flow Guard checks should not be added, even if the call is inlined.
5615 if (const auto *FD
= dyn_cast_or_null
<FunctionDecl
>(CurFuncDecl
)) {
5616 if (const auto *A
= FD
->getAttr
<CFGuardAttr
>()) {
5617 if (A
->getGuard() == CFGuardAttr::GuardArg::nocf
&& !CI
->getCalledFunction())
5618 Attrs
= Attrs
.addFnAttribute(getLLVMContext(), "guard_nocf");
5622 // Apply the attributes and calling convention.
5623 CI
->setAttributes(Attrs
);
5624 CI
->setCallingConv(static_cast<llvm::CallingConv::ID
>(CallingConv
));
5626 // Apply various metadata.
5628 if (!CI
->getType()->isVoidTy())
5629 CI
->setName("call");
5631 // Update largest vector width from the return type.
5632 LargestVectorWidth
=
5633 std::max(LargestVectorWidth
, getMaxVectorWidth(CI
->getType()));
5635 // Insert instrumentation or attach profile metadata at indirect call sites.
5636 // For more details, see the comment before the definition of
5637 // IPVK_IndirectCallTarget in InstrProfData.inc.
5638 if (!CI
->getCalledFunction())
5639 PGO
.valueProfile(Builder
, llvm::IPVK_IndirectCallTarget
,
5642 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
5643 // optimizer it can aggressively ignore unwind edges.
5644 if (CGM
.getLangOpts().ObjCAutoRefCount
)
5645 AddObjCARCExceptionMetadata(CI
);
5647 // Set tail call kind if necessary.
5648 if (llvm::CallInst
*Call
= dyn_cast
<llvm::CallInst
>(CI
)) {
5649 if (TargetDecl
&& TargetDecl
->hasAttr
<NotTailCalledAttr
>())
5650 Call
->setTailCallKind(llvm::CallInst::TCK_NoTail
);
5651 else if (IsMustTail
)
5652 Call
->setTailCallKind(llvm::CallInst::TCK_MustTail
);
5655 // Add metadata for calls to MSAllocator functions
5656 if (getDebugInfo() && TargetDecl
&&
5657 TargetDecl
->hasAttr
<MSAllocatorAttr
>())
5658 getDebugInfo()->addHeapAllocSiteMetadata(CI
, RetTy
->getPointeeType(), Loc
);
5660 // Add metadata if calling an __attribute__((error(""))) or warning fn.
5661 if (TargetDecl
&& TargetDecl
->hasAttr
<ErrorAttr
>()) {
5662 llvm::ConstantInt
*Line
=
5663 llvm::ConstantInt::get(Int32Ty
, Loc
.getRawEncoding());
5664 llvm::ConstantAsMetadata
*MD
= llvm::ConstantAsMetadata::get(Line
);
5665 llvm::MDTuple
*MDT
= llvm::MDNode::get(getLLVMContext(), {MD
});
5666 CI
->setMetadata("srcloc", MDT
);
5669 // 4. Finish the call.
5671 // If the call doesn't return, finish the basic block and clear the
5672 // insertion point; this allows the rest of IRGen to discard
5673 // unreachable code.
5674 if (CI
->doesNotReturn()) {
5675 if (UnusedReturnSizePtr
)
5678 // Strip away the noreturn attribute to better diagnose unreachable UB.
5679 if (SanOpts
.has(SanitizerKind::Unreachable
)) {
5680 // Also remove from function since CallBase::hasFnAttr additionally checks
5681 // attributes of the called function.
5682 if (auto *F
= CI
->getCalledFunction())
5683 F
->removeFnAttr(llvm::Attribute::NoReturn
);
5684 CI
->removeFnAttr(llvm::Attribute::NoReturn
);
5686 // Avoid incompatibility with ASan which relies on the `noreturn`
5687 // attribute to insert handler calls.
5688 if (SanOpts
.hasOneOf(SanitizerKind::Address
|
5689 SanitizerKind::KernelAddress
)) {
5690 SanitizerScope
SanScope(this);
5691 llvm::IRBuilder
<>::InsertPointGuard
IPGuard(Builder
);
5692 Builder
.SetInsertPoint(CI
);
5693 auto *FnType
= llvm::FunctionType::get(CGM
.VoidTy
, /*isVarArg=*/false);
5694 llvm::FunctionCallee Fn
=
5695 CGM
.CreateRuntimeFunction(FnType
, "__asan_handle_no_return");
5696 EmitNounwindRuntimeCall(Fn
);
5700 EmitUnreachable(Loc
);
5701 Builder
.ClearInsertionPoint();
5703 // FIXME: For now, emit a dummy basic block because expr emitters in
5704 // generally are not ready to handle emitting expressions at unreachable
5706 EnsureInsertPoint();
5708 // Return a reasonable RValue.
5709 return GetUndefRValue(RetTy
);
5712 // If this is a musttail call, return immediately. We do not branch to the
5713 // epilogue in this case.
5715 for (auto it
= EHStack
.find(CurrentCleanupScopeDepth
); it
!= EHStack
.end();
5717 EHCleanupScope
*Cleanup
= dyn_cast
<EHCleanupScope
>(&*it
);
5718 if (!(Cleanup
&& Cleanup
->getCleanup()->isRedundantBeforeReturn()))
5719 CGM
.ErrorUnsupported(MustTailCall
, "tail call skipping over cleanups");
5721 if (CI
->getType()->isVoidTy())
5722 Builder
.CreateRetVoid();
5724 Builder
.CreateRet(CI
);
5725 Builder
.ClearInsertionPoint();
5726 EnsureInsertPoint();
5727 return GetUndefRValue(RetTy
);
5730 // Perform the swifterror writeback.
5731 if (swiftErrorTemp
.isValid()) {
5732 llvm::Value
*errorResult
= Builder
.CreateLoad(swiftErrorTemp
);
5733 Builder
.CreateStore(errorResult
, swiftErrorArg
);
5736 // Emit any call-associated writebacks immediately. Arguably this
5737 // should happen after any return-value munging.
5738 if (CallArgs
.hasWritebacks())
5739 emitWritebacks(*this, CallArgs
);
5741 // The stack cleanup for inalloca arguments has to run out of the normal
5742 // lexical order, so deactivate it and run it manually here.
5743 CallArgs
.freeArgumentMemory(*this);
5745 // Extract the return value.
5747 switch (RetAI
.getKind()) {
5748 case ABIArgInfo::CoerceAndExpand
: {
5749 auto coercionType
= RetAI
.getCoerceAndExpandType();
5751 Address addr
= SRetPtr
.withElementType(coercionType
);
5753 assert(CI
->getType() == RetAI
.getUnpaddedCoerceAndExpandType());
5754 bool requiresExtract
= isa
<llvm::StructType
>(CI
->getType());
5756 unsigned unpaddedIndex
= 0;
5757 for (unsigned i
= 0, e
= coercionType
->getNumElements(); i
!= e
; ++i
) {
5758 llvm::Type
*eltType
= coercionType
->getElementType(i
);
5759 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType
)) continue;
5760 Address eltAddr
= Builder
.CreateStructGEP(addr
, i
);
5761 llvm::Value
*elt
= CI
;
5762 if (requiresExtract
)
5763 elt
= Builder
.CreateExtractValue(elt
, unpaddedIndex
++);
5765 assert(unpaddedIndex
== 0);
5766 Builder
.CreateStore(elt
, eltAddr
);
5771 case ABIArgInfo::InAlloca
:
5772 case ABIArgInfo::Indirect
: {
5773 RValue ret
= convertTempToRValue(SRetPtr
, RetTy
, SourceLocation());
5774 if (UnusedReturnSizePtr
)
5779 case ABIArgInfo::Ignore
:
5780 // If we are ignoring an argument that had a result, make sure to
5781 // construct the appropriate return value for our caller.
5782 return GetUndefRValue(RetTy
);
5784 case ABIArgInfo::Extend
:
5785 case ABIArgInfo::Direct
: {
5786 llvm::Type
*RetIRTy
= ConvertType(RetTy
);
5787 if (RetAI
.getCoerceToType() == RetIRTy
&& RetAI
.getDirectOffset() == 0) {
5788 switch (getEvaluationKind(RetTy
)) {
5790 llvm::Value
*Real
= Builder
.CreateExtractValue(CI
, 0);
5791 llvm::Value
*Imag
= Builder
.CreateExtractValue(CI
, 1);
5792 return RValue::getComplex(std::make_pair(Real
, Imag
));
5794 case TEK_Aggregate
: {
5795 Address DestPtr
= ReturnValue
.getValue();
5796 bool DestIsVolatile
= ReturnValue
.isVolatile();
5798 if (!DestPtr
.isValid()) {
5799 DestPtr
= CreateMemTemp(RetTy
, "agg.tmp");
5800 DestIsVolatile
= false;
5802 EmitAggregateStore(CI
, DestPtr
, DestIsVolatile
);
5803 return RValue::getAggregate(DestPtr
);
5806 // If the argument doesn't match, perform a bitcast to coerce it. This
5807 // can happen due to trivial type mismatches.
5808 llvm::Value
*V
= CI
;
5809 if (V
->getType() != RetIRTy
)
5810 V
= Builder
.CreateBitCast(V
, RetIRTy
);
5811 return RValue::get(V
);
5814 llvm_unreachable("bad evaluation kind");
5817 // If coercing a fixed vector from a scalable vector for ABI
5818 // compatibility, and the types match, use the llvm.vector.extract
5819 // intrinsic to perform the conversion.
5820 if (auto *FixedDst
= dyn_cast
<llvm::FixedVectorType
>(RetIRTy
)) {
5821 llvm::Value
*V
= CI
;
5822 if (auto *ScalableSrc
= dyn_cast
<llvm::ScalableVectorType
>(V
->getType())) {
5823 if (FixedDst
->getElementType() == ScalableSrc
->getElementType()) {
5824 llvm::Value
*Zero
= llvm::Constant::getNullValue(CGM
.Int64Ty
);
5825 V
= Builder
.CreateExtractVector(FixedDst
, V
, Zero
, "cast.fixed");
5826 return RValue::get(V
);
5831 Address DestPtr
= ReturnValue
.getValue();
5832 bool DestIsVolatile
= ReturnValue
.isVolatile();
5834 if (!DestPtr
.isValid()) {
5835 DestPtr
= CreateMemTemp(RetTy
, "coerce");
5836 DestIsVolatile
= false;
5839 // An empty record can overlap other data (if declared with
5840 // no_unique_address); omit the store for such types - as there is no
5841 // actual data to store.
5842 if (!isEmptyRecord(getContext(), RetTy
, true)) {
5843 // If the value is offset in memory, apply the offset now.
5844 Address StorePtr
= emitAddressAtOffset(*this, DestPtr
, RetAI
);
5845 CreateCoercedStore(CI
, StorePtr
, DestIsVolatile
, *this);
5848 return convertTempToRValue(DestPtr
, RetTy
, SourceLocation());
5851 case ABIArgInfo::Expand
:
5852 case ABIArgInfo::IndirectAliased
:
5853 llvm_unreachable("Invalid ABI kind for return argument");
5856 llvm_unreachable("Unhandled ABIArgInfo::Kind");
5859 // Emit the assume_aligned check on the return value.
5860 if (Ret
.isScalar() && TargetDecl
) {
5861 AssumeAlignedAttrEmitter
.EmitAsAnAssumption(Loc
, RetTy
, Ret
);
5862 AllocAlignAttrEmitter
.EmitAsAnAssumption(Loc
, RetTy
, Ret
);
5865 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5866 // we can't use the full cleanup mechanism.
5867 for (CallLifetimeEnd
&LifetimeEnd
: CallLifetimeEndAfterCall
)
5868 LifetimeEnd
.Emit(*this, /*Flags=*/{});
5870 if (!ReturnValue
.isExternallyDestructed() &&
5871 RetTy
.isDestructedType() == QualType::DK_nontrivial_c_struct
)
5872 pushDestroy(QualType::DK_nontrivial_c_struct
, Ret
.getAggregateAddress(),
5878 CGCallee
CGCallee::prepareConcreteCallee(CodeGenFunction
&CGF
) const {
5880 const CallExpr
*CE
= getVirtualCallExpr();
5881 return CGF
.CGM
.getCXXABI().getVirtualFunctionPointer(
5882 CGF
, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5883 CE
? CE
->getBeginLoc() : SourceLocation());
5889 /* VarArg handling */
5891 Address
CodeGenFunction::EmitVAArg(VAArgExpr
*VE
, Address
&VAListAddr
) {
5892 VAListAddr
= VE
->isMicrosoftABI()
5893 ? EmitMSVAListRef(VE
->getSubExpr())
5894 : EmitVAListRef(VE
->getSubExpr());
5895 QualType Ty
= VE
->getType();
5896 if (VE
->isMicrosoftABI())
5897 return CGM
.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr
, Ty
);
5898 return CGM
.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr
, Ty
);