1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This contains code to emit Expr nodes as LLVM code.
11 //===----------------------------------------------------------------------===//
13 #include "CGCUDARuntime.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "llvm/ADT/Hashing.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/StringExtras.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/IntrinsicsWebAssembly.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/MDBuilder.h"
40 #include "llvm/IR/MatrixBuilder.h"
41 #include "llvm/Passes/OptimizationLevel.h"
42 #include "llvm/Support/ConvertUTF.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/Path.h"
45 #include "llvm/Support/SaveAndRestore.h"
46 #include "llvm/Support/xxhash.h"
47 #include "llvm/Transforms/Utils/SanitizerStats.h"
52 using namespace clang
;
53 using namespace CodeGen
;
55 // Experiment to make sanitizers easier to debug
56 static llvm::cl::opt
<bool> ClSanitizeDebugDeoptimization(
57 "ubsan-unique-traps", llvm::cl::Optional
,
58 llvm::cl::desc("Deoptimize traps for UBSAN so there is 1 trap per check"),
59 llvm::cl::init(false));
61 //===--------------------------------------------------------------------===//
62 // Miscellaneous Helper Methods
63 //===--------------------------------------------------------------------===//
65 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
67 Address
CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type
*Ty
,
70 llvm::Value
*ArraySize
) {
71 auto Alloca
= CreateTempAlloca(Ty
, Name
, ArraySize
);
72 Alloca
->setAlignment(Align
.getAsAlign());
73 return Address(Alloca
, Ty
, Align
, KnownNonNull
);
76 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
77 /// block. The alloca is casted to default address space if necessary.
78 Address
CodeGenFunction::CreateTempAlloca(llvm::Type
*Ty
, CharUnits Align
,
80 llvm::Value
*ArraySize
,
81 Address
*AllocaAddr
) {
82 auto Alloca
= CreateTempAllocaWithoutCast(Ty
, Align
, Name
, ArraySize
);
85 llvm::Value
*V
= Alloca
.getPointer();
86 // Alloca always returns a pointer in alloca address space, which may
87 // be different from the type defined by the language. For example,
88 // in C++ the auto variables are in the default address space. Therefore
89 // cast alloca to the default address space when necessary.
90 if (getASTAllocaAddressSpace() != LangAS::Default
) {
91 auto DestAddrSpace
= getContext().getTargetAddressSpace(LangAS::Default
);
92 llvm::IRBuilderBase::InsertPointGuard
IPG(Builder
);
93 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
94 // otherwise alloca is inserted at the current insertion point of the
97 Builder
.SetInsertPoint(getPostAllocaInsertPoint());
98 V
= getTargetHooks().performAddrSpaceCast(
99 *this, V
, getASTAllocaAddressSpace(), LangAS::Default
,
100 Ty
->getPointerTo(DestAddrSpace
), /*non-null*/ true);
103 return Address(V
, Ty
, Align
, KnownNonNull
);
106 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
107 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
108 /// insertion point of the builder.
109 llvm::AllocaInst
*CodeGenFunction::CreateTempAlloca(llvm::Type
*Ty
,
111 llvm::Value
*ArraySize
) {
113 return Builder
.CreateAlloca(Ty
, ArraySize
, Name
);
114 return new llvm::AllocaInst(Ty
, CGM
.getDataLayout().getAllocaAddrSpace(),
115 ArraySize
, Name
, AllocaInsertPt
);
118 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
119 /// default alignment of the corresponding LLVM type, which is *not*
120 /// guaranteed to be related in any way to the expected alignment of
121 /// an AST type that might have been lowered to Ty.
122 Address
CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type
*Ty
,
125 CharUnits::fromQuantity(CGM
.getDataLayout().getPrefTypeAlign(Ty
));
126 return CreateTempAlloca(Ty
, Align
, Name
);
129 Address
CodeGenFunction::CreateIRTemp(QualType Ty
, const Twine
&Name
) {
130 CharUnits Align
= getContext().getTypeAlignInChars(Ty
);
131 return CreateTempAlloca(ConvertType(Ty
), Align
, Name
);
134 Address
CodeGenFunction::CreateMemTemp(QualType Ty
, const Twine
&Name
,
136 // FIXME: Should we prefer the preferred type alignment here?
137 return CreateMemTemp(Ty
, getContext().getTypeAlignInChars(Ty
), Name
, Alloca
);
140 Address
CodeGenFunction::CreateMemTemp(QualType Ty
, CharUnits Align
,
141 const Twine
&Name
, Address
*Alloca
) {
142 Address Result
= CreateTempAlloca(ConvertTypeForMem(Ty
), Align
, Name
,
143 /*ArraySize=*/nullptr, Alloca
);
145 if (Ty
->isConstantMatrixType()) {
146 auto *ArrayTy
= cast
<llvm::ArrayType
>(Result
.getElementType());
147 auto *VectorTy
= llvm::FixedVectorType::get(ArrayTy
->getElementType(),
148 ArrayTy
->getNumElements());
150 Result
= Address(Result
.getPointer(), VectorTy
, Result
.getAlignment(),
156 Address
CodeGenFunction::CreateMemTempWithoutCast(QualType Ty
, CharUnits Align
,
158 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty
), Align
, Name
);
161 Address
CodeGenFunction::CreateMemTempWithoutCast(QualType Ty
,
163 return CreateMemTempWithoutCast(Ty
, getContext().getTypeAlignInChars(Ty
),
167 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
168 /// expression and compare the result against zero, returning an Int1Ty value.
169 llvm::Value
*CodeGenFunction::EvaluateExprAsBool(const Expr
*E
) {
170 PGO
.setCurrentStmt(E
);
171 if (const MemberPointerType
*MPT
= E
->getType()->getAs
<MemberPointerType
>()) {
172 llvm::Value
*MemPtr
= EmitScalarExpr(E
);
173 return CGM
.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr
, MPT
);
176 QualType BoolTy
= getContext().BoolTy
;
177 SourceLocation Loc
= E
->getExprLoc();
178 CGFPOptionsRAII
FPOptsRAII(*this, E
);
179 if (!E
->getType()->isAnyComplexType())
180 return EmitScalarConversion(EmitScalarExpr(E
), E
->getType(), BoolTy
, Loc
);
182 return EmitComplexToScalarConversion(EmitComplexExpr(E
), E
->getType(), BoolTy
,
186 /// EmitIgnoredExpr - Emit code to compute the specified expression,
187 /// ignoring the result.
188 void CodeGenFunction::EmitIgnoredExpr(const Expr
*E
) {
190 return (void)EmitAnyExpr(E
, AggValueSlot::ignored(), true);
192 // if this is a bitfield-resulting conditional operator, we can special case
193 // emit this. The normal 'EmitLValue' version of this is particularly
194 // difficult to codegen for, since creating a single "LValue" for two
195 // different sized arguments here is not particularly doable.
196 if (const auto *CondOp
= dyn_cast
<AbstractConditionalOperator
>(
197 E
->IgnoreParenNoopCasts(getContext()))) {
198 if (CondOp
->getObjectKind() == OK_BitField
)
199 return EmitIgnoredConditionalOperator(CondOp
);
202 // Just emit it as an l-value and drop the result.
206 /// EmitAnyExpr - Emit code to compute the specified expression which
207 /// can have any type. The result is returned as an RValue struct.
208 /// If this is an aggregate expression, AggSlot indicates where the
209 /// result should be returned.
210 RValue
CodeGenFunction::EmitAnyExpr(const Expr
*E
,
211 AggValueSlot aggSlot
,
213 switch (getEvaluationKind(E
->getType())) {
215 return RValue::get(EmitScalarExpr(E
, ignoreResult
));
217 return RValue::getComplex(EmitComplexExpr(E
, ignoreResult
, ignoreResult
));
219 if (!ignoreResult
&& aggSlot
.isIgnored())
220 aggSlot
= CreateAggTemp(E
->getType(), "agg-temp");
221 EmitAggExpr(E
, aggSlot
);
222 return aggSlot
.asRValue();
224 llvm_unreachable("bad evaluation kind");
227 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
228 /// always be accessible even if no aggregate location is provided.
229 RValue
CodeGenFunction::EmitAnyExprToTemp(const Expr
*E
) {
230 AggValueSlot AggSlot
= AggValueSlot::ignored();
232 if (hasAggregateEvaluationKind(E
->getType()))
233 AggSlot
= CreateAggTemp(E
->getType(), "agg.tmp");
234 return EmitAnyExpr(E
, AggSlot
);
237 /// EmitAnyExprToMem - Evaluate an expression into a given memory
239 void CodeGenFunction::EmitAnyExprToMem(const Expr
*E
,
243 // FIXME: This function should take an LValue as an argument.
244 switch (getEvaluationKind(E
->getType())) {
246 EmitComplexExprIntoLValue(E
, MakeAddrLValue(Location
, E
->getType()),
250 case TEK_Aggregate
: {
251 EmitAggExpr(E
, AggValueSlot::forAddr(Location
, Quals
,
252 AggValueSlot::IsDestructed_t(IsInit
),
253 AggValueSlot::DoesNotNeedGCBarriers
,
254 AggValueSlot::IsAliased_t(!IsInit
),
255 AggValueSlot::MayOverlap
));
260 RValue RV
= RValue::get(EmitScalarExpr(E
, /*Ignore*/ false));
261 LValue LV
= MakeAddrLValue(Location
, E
->getType());
262 EmitStoreThroughLValue(RV
, LV
);
266 llvm_unreachable("bad evaluation kind");
270 pushTemporaryCleanup(CodeGenFunction
&CGF
, const MaterializeTemporaryExpr
*M
,
271 const Expr
*E
, Address ReferenceTemporary
) {
272 // Objective-C++ ARC:
273 // If we are binding a reference to a temporary that has ownership, we
274 // need to perform retain/release operations on the temporary.
276 // FIXME: This should be looking at E, not M.
277 if (auto Lifetime
= M
->getType().getObjCLifetime()) {
279 case Qualifiers::OCL_None
:
280 case Qualifiers::OCL_ExplicitNone
:
281 // Carry on to normal cleanup handling.
284 case Qualifiers::OCL_Autoreleasing
:
285 // Nothing to do; cleaned up by an autorelease pool.
288 case Qualifiers::OCL_Strong
:
289 case Qualifiers::OCL_Weak
:
290 switch (StorageDuration Duration
= M
->getStorageDuration()) {
292 // Note: we intentionally do not register a cleanup to release
293 // the object on program termination.
297 // FIXME: We should probably register a cleanup in this case.
301 case SD_FullExpression
:
302 CodeGenFunction::Destroyer
*Destroy
;
303 CleanupKind CleanupKind
;
304 if (Lifetime
== Qualifiers::OCL_Strong
) {
305 const ValueDecl
*VD
= M
->getExtendingDecl();
307 VD
&& isa
<VarDecl
>(VD
) && VD
->hasAttr
<ObjCPreciseLifetimeAttr
>();
308 CleanupKind
= CGF
.getARCCleanupKind();
309 Destroy
= Precise
? &CodeGenFunction::destroyARCStrongPrecise
310 : &CodeGenFunction::destroyARCStrongImprecise
;
312 // __weak objects always get EH cleanups; otherwise, exceptions
313 // could cause really nasty crashes instead of mere leaks.
314 CleanupKind
= NormalAndEHCleanup
;
315 Destroy
= &CodeGenFunction::destroyARCWeak
;
317 if (Duration
== SD_FullExpression
)
318 CGF
.pushDestroy(CleanupKind
, ReferenceTemporary
,
319 M
->getType(), *Destroy
,
320 CleanupKind
& EHCleanup
);
322 CGF
.pushLifetimeExtendedDestroy(CleanupKind
, ReferenceTemporary
,
324 *Destroy
, CleanupKind
& EHCleanup
);
328 llvm_unreachable("temporary cannot have dynamic storage duration");
330 llvm_unreachable("unknown storage duration");
334 CXXDestructorDecl
*ReferenceTemporaryDtor
= nullptr;
335 if (const RecordType
*RT
=
336 E
->getType()->getBaseElementTypeUnsafe()->getAs
<RecordType
>()) {
337 // Get the destructor for the reference temporary.
338 auto *ClassDecl
= cast
<CXXRecordDecl
>(RT
->getDecl());
339 if (!ClassDecl
->hasTrivialDestructor())
340 ReferenceTemporaryDtor
= ClassDecl
->getDestructor();
343 if (!ReferenceTemporaryDtor
)
346 // Call the destructor for the temporary.
347 switch (M
->getStorageDuration()) {
350 llvm::FunctionCallee CleanupFn
;
351 llvm::Constant
*CleanupArg
;
352 if (E
->getType()->isArrayType()) {
353 CleanupFn
= CodeGenFunction(CGF
.CGM
).generateDestroyHelper(
354 ReferenceTemporary
, E
->getType(),
355 CodeGenFunction::destroyCXXObject
, CGF
.getLangOpts().Exceptions
,
356 dyn_cast_or_null
<VarDecl
>(M
->getExtendingDecl()));
357 CleanupArg
= llvm::Constant::getNullValue(CGF
.Int8PtrTy
);
359 CleanupFn
= CGF
.CGM
.getAddrAndTypeOfCXXStructor(
360 GlobalDecl(ReferenceTemporaryDtor
, Dtor_Complete
));
361 CleanupArg
= cast
<llvm::Constant
>(ReferenceTemporary
.getPointer());
363 CGF
.CGM
.getCXXABI().registerGlobalDtor(
364 CGF
, *cast
<VarDecl
>(M
->getExtendingDecl()), CleanupFn
, CleanupArg
);
368 case SD_FullExpression
:
369 CGF
.pushDestroy(NormalAndEHCleanup
, ReferenceTemporary
, E
->getType(),
370 CodeGenFunction::destroyCXXObject
,
371 CGF
.getLangOpts().Exceptions
);
375 CGF
.pushLifetimeExtendedDestroy(NormalAndEHCleanup
,
376 ReferenceTemporary
, E
->getType(),
377 CodeGenFunction::destroyCXXObject
,
378 CGF
.getLangOpts().Exceptions
);
382 llvm_unreachable("temporary cannot have dynamic storage duration");
386 static Address
createReferenceTemporary(CodeGenFunction
&CGF
,
387 const MaterializeTemporaryExpr
*M
,
389 Address
*Alloca
= nullptr) {
390 auto &TCG
= CGF
.getTargetHooks();
391 switch (M
->getStorageDuration()) {
392 case SD_FullExpression
:
394 // If we have a constant temporary array or record try to promote it into a
395 // constant global under the same rules a normal constant would've been
396 // promoted. This is easier on the optimizer and generally emits fewer
398 QualType Ty
= Inner
->getType();
399 if (CGF
.CGM
.getCodeGenOpts().MergeAllConstants
&&
400 (Ty
->isArrayType() || Ty
->isRecordType()) &&
401 Ty
.isConstantStorage(CGF
.getContext(), true, false))
402 if (auto Init
= ConstantEmitter(CGF
).tryEmitAbstract(Inner
, Ty
)) {
403 auto AS
= CGF
.CGM
.GetGlobalConstantAddressSpace();
404 auto *GV
= new llvm::GlobalVariable(
405 CGF
.CGM
.getModule(), Init
->getType(), /*isConstant=*/true,
406 llvm::GlobalValue::PrivateLinkage
, Init
, ".ref.tmp", nullptr,
407 llvm::GlobalValue::NotThreadLocal
,
408 CGF
.getContext().getTargetAddressSpace(AS
));
409 CharUnits alignment
= CGF
.getContext().getTypeAlignInChars(Ty
);
410 GV
->setAlignment(alignment
.getAsAlign());
411 llvm::Constant
*C
= GV
;
412 if (AS
!= LangAS::Default
)
413 C
= TCG
.performAddrSpaceCast(
414 CGF
.CGM
, GV
, AS
, LangAS::Default
,
415 GV
->getValueType()->getPointerTo(
416 CGF
.getContext().getTargetAddressSpace(LangAS::Default
)));
417 // FIXME: Should we put the new global into a COMDAT?
418 return Address(C
, GV
->getValueType(), alignment
);
420 return CGF
.CreateMemTemp(Ty
, "ref.tmp", Alloca
);
424 return CGF
.CGM
.GetAddrOfGlobalTemporary(M
, Inner
);
427 llvm_unreachable("temporary can't have dynamic storage duration");
429 llvm_unreachable("unknown storage duration");
432 /// Helper method to check if the underlying ABI is AAPCS
433 static bool isAAPCS(const TargetInfo
&TargetInfo
) {
434 return TargetInfo
.getABI().startswith("aapcs");
437 LValue
CodeGenFunction::
438 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr
*M
) {
439 const Expr
*E
= M
->getSubExpr();
441 assert((!M
->getExtendingDecl() || !isa
<VarDecl
>(M
->getExtendingDecl()) ||
442 !cast
<VarDecl
>(M
->getExtendingDecl())->isARCPseudoStrong()) &&
443 "Reference should never be pseudo-strong!");
445 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
446 // as that will cause the lifetime adjustment to be lost for ARC
447 auto ownership
= M
->getType().getObjCLifetime();
448 if (ownership
!= Qualifiers::OCL_None
&&
449 ownership
!= Qualifiers::OCL_ExplicitNone
) {
450 Address Object
= createReferenceTemporary(*this, M
, E
);
451 if (auto *Var
= dyn_cast
<llvm::GlobalVariable
>(Object
.getPointer())) {
452 llvm::Type
*Ty
= ConvertTypeForMem(E
->getType());
453 Object
= Address(llvm::ConstantExpr::getBitCast(
454 Var
, Ty
->getPointerTo(Object
.getAddressSpace())),
455 Ty
, Object
.getAlignment());
457 // createReferenceTemporary will promote the temporary to a global with a
458 // constant initializer if it can. It can only do this to a value of
459 // ARC-manageable type if the value is global and therefore "immune" to
460 // ref-counting operations. Therefore we have no need to emit either a
461 // dynamic initialization or a cleanup and we can just return the address
463 if (Var
->hasInitializer())
464 return MakeAddrLValue(Object
, M
->getType(), AlignmentSource::Decl
);
466 Var
->setInitializer(CGM
.EmitNullConstant(E
->getType()));
468 LValue RefTempDst
= MakeAddrLValue(Object
, M
->getType(),
469 AlignmentSource::Decl
);
471 switch (getEvaluationKind(E
->getType())) {
472 default: llvm_unreachable("expected scalar or aggregate expression");
474 EmitScalarInit(E
, M
->getExtendingDecl(), RefTempDst
, false);
476 case TEK_Aggregate
: {
477 EmitAggExpr(E
, AggValueSlot::forAddr(Object
,
478 E
->getType().getQualifiers(),
479 AggValueSlot::IsDestructed
,
480 AggValueSlot::DoesNotNeedGCBarriers
,
481 AggValueSlot::IsNotAliased
,
482 AggValueSlot::DoesNotOverlap
));
487 pushTemporaryCleanup(*this, M
, E
, Object
);
491 SmallVector
<const Expr
*, 2> CommaLHSs
;
492 SmallVector
<SubobjectAdjustment
, 2> Adjustments
;
493 E
= E
->skipRValueSubobjectAdjustments(CommaLHSs
, Adjustments
);
495 for (const auto &Ignored
: CommaLHSs
)
496 EmitIgnoredExpr(Ignored
);
498 if (const auto *opaque
= dyn_cast
<OpaqueValueExpr
>(E
)) {
499 if (opaque
->getType()->isRecordType()) {
500 assert(Adjustments
.empty());
501 return EmitOpaqueValueLValue(opaque
);
505 // Create and initialize the reference temporary.
506 Address Alloca
= Address::invalid();
507 Address Object
= createReferenceTemporary(*this, M
, E
, &Alloca
);
508 if (auto *Var
= dyn_cast
<llvm::GlobalVariable
>(
509 Object
.getPointer()->stripPointerCasts())) {
510 llvm::Type
*TemporaryType
= ConvertTypeForMem(E
->getType());
511 Object
= Address(llvm::ConstantExpr::getBitCast(
512 cast
<llvm::Constant
>(Object
.getPointer()),
513 TemporaryType
->getPointerTo()),
515 Object
.getAlignment());
516 // If the temporary is a global and has a constant initializer or is a
517 // constant temporary that we promoted to a global, we may have already
519 if (!Var
->hasInitializer()) {
520 Var
->setInitializer(CGM
.EmitNullConstant(E
->getType()));
521 EmitAnyExprToMem(E
, Object
, Qualifiers(), /*IsInit*/true);
524 switch (M
->getStorageDuration()) {
526 if (auto *Size
= EmitLifetimeStart(
527 CGM
.getDataLayout().getTypeAllocSize(Alloca
.getElementType()),
528 Alloca
.getPointer())) {
529 pushCleanupAfterFullExpr
<CallLifetimeEnd
>(NormalEHLifetimeMarker
,
534 case SD_FullExpression
: {
535 if (!ShouldEmitLifetimeMarkers
)
538 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
539 // marker. Instead, start the lifetime of a conditional temporary earlier
540 // so that it's unconditional. Don't do this with sanitizers which need
541 // more precise lifetime marks. However when inside an "await.suspend"
542 // block, we should always avoid conditional cleanup because it creates
543 // boolean marker that lives across await_suspend, which can destroy coro
545 ConditionalEvaluation
*OldConditional
= nullptr;
546 CGBuilderTy::InsertPoint OldIP
;
547 if (isInConditionalBranch() && !E
->getType().isDestructedType() &&
548 ((!SanOpts
.has(SanitizerKind::HWAddress
) &&
549 !SanOpts
.has(SanitizerKind::Memory
) &&
550 !CGM
.getCodeGenOpts().SanitizeAddressUseAfterScope
) ||
552 OldConditional
= OutermostConditional
;
553 OutermostConditional
= nullptr;
555 OldIP
= Builder
.saveIP();
556 llvm::BasicBlock
*Block
= OldConditional
->getStartingBlock();
557 Builder
.restoreIP(CGBuilderTy::InsertPoint(
558 Block
, llvm::BasicBlock::iterator(Block
->back())));
561 if (auto *Size
= EmitLifetimeStart(
562 CGM
.getDataLayout().getTypeAllocSize(Alloca
.getElementType()),
563 Alloca
.getPointer())) {
564 pushFullExprCleanup
<CallLifetimeEnd
>(NormalEHLifetimeMarker
, Alloca
,
568 if (OldConditional
) {
569 OutermostConditional
= OldConditional
;
570 Builder
.restoreIP(OldIP
);
578 EmitAnyExprToMem(E
, Object
, Qualifiers(), /*IsInit*/true);
580 pushTemporaryCleanup(*this, M
, E
, Object
);
582 // Perform derived-to-base casts and/or field accesses, to get from the
583 // temporary object we created (and, potentially, for which we extended
584 // the lifetime) to the subobject we're binding the reference to.
585 for (SubobjectAdjustment
&Adjustment
: llvm::reverse(Adjustments
)) {
586 switch (Adjustment
.Kind
) {
587 case SubobjectAdjustment::DerivedToBaseAdjustment
:
589 GetAddressOfBaseClass(Object
, Adjustment
.DerivedToBase
.DerivedClass
,
590 Adjustment
.DerivedToBase
.BasePath
->path_begin(),
591 Adjustment
.DerivedToBase
.BasePath
->path_end(),
592 /*NullCheckValue=*/ false, E
->getExprLoc());
595 case SubobjectAdjustment::FieldAdjustment
: {
596 LValue LV
= MakeAddrLValue(Object
, E
->getType(), AlignmentSource::Decl
);
597 LV
= EmitLValueForField(LV
, Adjustment
.Field
);
598 assert(LV
.isSimple() &&
599 "materialized temporary field is not a simple lvalue");
600 Object
= LV
.getAddress(*this);
604 case SubobjectAdjustment::MemberPointerAdjustment
: {
605 llvm::Value
*Ptr
= EmitScalarExpr(Adjustment
.Ptr
.RHS
);
606 Object
= EmitCXXMemberDataPointerAddress(E
, Object
, Ptr
,
613 return MakeAddrLValue(Object
, M
->getType(), AlignmentSource::Decl
);
617 CodeGenFunction::EmitReferenceBindingToExpr(const Expr
*E
) {
618 // Emit the expression as an lvalue.
619 LValue LV
= EmitLValue(E
);
620 assert(LV
.isSimple());
621 llvm::Value
*Value
= LV
.getPointer(*this);
623 if (sanitizePerformTypeCheck() && !E
->getType()->isFunctionType()) {
624 // C++11 [dcl.ref]p5 (as amended by core issue 453):
625 // If a glvalue to which a reference is directly bound designates neither
626 // an existing object or function of an appropriate type nor a region of
627 // storage of suitable size and alignment to contain an object of the
628 // reference's type, the behavior is undefined.
629 QualType Ty
= E
->getType();
630 EmitTypeCheck(TCK_ReferenceBinding
, E
->getExprLoc(), Value
, Ty
);
633 return RValue::get(Value
);
637 /// getAccessedFieldNo - Given an encoded value and a result number, return the
638 /// input field number being accessed.
639 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx
,
640 const llvm::Constant
*Elts
) {
641 return cast
<llvm::ConstantInt
>(Elts
->getAggregateElement(Idx
))
645 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
646 static llvm::Value
*emitHash16Bytes(CGBuilderTy
&Builder
, llvm::Value
*Low
,
648 llvm::Value
*KMul
= Builder
.getInt64(0x9ddfea08eb382d69ULL
);
649 llvm::Value
*K47
= Builder
.getInt64(47);
650 llvm::Value
*A0
= Builder
.CreateMul(Builder
.CreateXor(Low
, High
), KMul
);
651 llvm::Value
*A1
= Builder
.CreateXor(Builder
.CreateLShr(A0
, K47
), A0
);
652 llvm::Value
*B0
= Builder
.CreateMul(Builder
.CreateXor(High
, A1
), KMul
);
653 llvm::Value
*B1
= Builder
.CreateXor(Builder
.CreateLShr(B0
, K47
), B0
);
654 return Builder
.CreateMul(B1
, KMul
);
657 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK
) {
658 return TCK
== TCK_DowncastPointer
|| TCK
== TCK_Upcast
||
659 TCK
== TCK_UpcastToVirtualBase
|| TCK
== TCK_DynamicOperation
;
662 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK
, QualType Ty
) {
663 CXXRecordDecl
*RD
= Ty
->getAsCXXRecordDecl();
664 return (RD
&& RD
->hasDefinition() && RD
->isDynamicClass()) &&
665 (TCK
== TCK_MemberAccess
|| TCK
== TCK_MemberCall
||
666 TCK
== TCK_DowncastPointer
|| TCK
== TCK_DowncastReference
||
667 TCK
== TCK_UpcastToVirtualBase
|| TCK
== TCK_DynamicOperation
);
670 bool CodeGenFunction::sanitizePerformTypeCheck() const {
671 return SanOpts
.has(SanitizerKind::Null
) ||
672 SanOpts
.has(SanitizerKind::Alignment
) ||
673 SanOpts
.has(SanitizerKind::ObjectSize
) ||
674 SanOpts
.has(SanitizerKind::Vptr
);
677 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK
, SourceLocation Loc
,
678 llvm::Value
*Ptr
, QualType Ty
,
680 SanitizerSet SkippedChecks
,
681 llvm::Value
*ArraySize
) {
682 if (!sanitizePerformTypeCheck())
685 // Don't check pointers outside the default address space. The null check
686 // isn't correct, the object-size check isn't supported by LLVM, and we can't
687 // communicate the addresses to the runtime handler for the vptr check.
688 if (Ptr
->getType()->getPointerAddressSpace())
691 // Don't check pointers to volatile data. The behavior here is implementation-
693 if (Ty
.isVolatileQualified())
696 SanitizerScope
SanScope(this);
698 SmallVector
<std::pair
<llvm::Value
*, SanitizerMask
>, 3> Checks
;
699 llvm::BasicBlock
*Done
= nullptr;
701 // Quickly determine whether we have a pointer to an alloca. It's possible
702 // to skip null checks, and some alignment checks, for these pointers. This
703 // can reduce compile-time significantly.
704 auto PtrToAlloca
= dyn_cast
<llvm::AllocaInst
>(Ptr
->stripPointerCasts());
706 llvm::Value
*True
= llvm::ConstantInt::getTrue(getLLVMContext());
707 llvm::Value
*IsNonNull
= nullptr;
708 bool IsGuaranteedNonNull
=
709 SkippedChecks
.has(SanitizerKind::Null
) || PtrToAlloca
;
710 bool AllowNullPointers
= isNullPointerAllowed(TCK
);
711 if ((SanOpts
.has(SanitizerKind::Null
) || AllowNullPointers
) &&
712 !IsGuaranteedNonNull
) {
713 // The glvalue must not be an empty glvalue.
714 IsNonNull
= Builder
.CreateIsNotNull(Ptr
);
716 // The IR builder can constant-fold the null check if the pointer points to
718 IsGuaranteedNonNull
= IsNonNull
== True
;
720 // Skip the null check if the pointer is known to be non-null.
721 if (!IsGuaranteedNonNull
) {
722 if (AllowNullPointers
) {
723 // When performing pointer casts, it's OK if the value is null.
724 // Skip the remaining checks in that case.
725 Done
= createBasicBlock("null");
726 llvm::BasicBlock
*Rest
= createBasicBlock("not.null");
727 Builder
.CreateCondBr(IsNonNull
, Rest
, Done
);
730 Checks
.push_back(std::make_pair(IsNonNull
, SanitizerKind::Null
));
735 if (SanOpts
.has(SanitizerKind::ObjectSize
) &&
736 !SkippedChecks
.has(SanitizerKind::ObjectSize
) &&
737 !Ty
->isIncompleteType()) {
738 uint64_t TySize
= CGM
.getMinimumObjectSize(Ty
).getQuantity();
739 llvm::Value
*Size
= llvm::ConstantInt::get(IntPtrTy
, TySize
);
741 Size
= Builder
.CreateMul(Size
, ArraySize
);
743 // Degenerate case: new X[0] does not need an objectsize check.
744 llvm::Constant
*ConstantSize
= dyn_cast
<llvm::Constant
>(Size
);
745 if (!ConstantSize
|| !ConstantSize
->isNullValue()) {
746 // The glvalue must refer to a large enough storage region.
747 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
749 // FIXME: Get object address space
750 llvm::Type
*Tys
[2] = { IntPtrTy
, Int8PtrTy
};
751 llvm::Function
*F
= CGM
.getIntrinsic(llvm::Intrinsic::objectsize
, Tys
);
752 llvm::Value
*Min
= Builder
.getFalse();
753 llvm::Value
*NullIsUnknown
= Builder
.getFalse();
754 llvm::Value
*Dynamic
= Builder
.getFalse();
755 llvm::Value
*LargeEnough
= Builder
.CreateICmpUGE(
756 Builder
.CreateCall(F
, {Ptr
, Min
, NullIsUnknown
, Dynamic
}), Size
);
757 Checks
.push_back(std::make_pair(LargeEnough
, SanitizerKind::ObjectSize
));
761 llvm::MaybeAlign AlignVal
;
762 llvm::Value
*PtrAsInt
= nullptr;
764 if (SanOpts
.has(SanitizerKind::Alignment
) &&
765 !SkippedChecks
.has(SanitizerKind::Alignment
)) {
766 AlignVal
= Alignment
.getAsMaybeAlign();
767 if (!Ty
->isIncompleteType() && !AlignVal
)
768 AlignVal
= CGM
.getNaturalTypeAlignment(Ty
, nullptr, nullptr,
769 /*ForPointeeType=*/true)
772 // The glvalue must be suitably aligned.
773 if (AlignVal
&& *AlignVal
> llvm::Align(1) &&
774 (!PtrToAlloca
|| PtrToAlloca
->getAlign() < *AlignVal
)) {
775 PtrAsInt
= Builder
.CreatePtrToInt(Ptr
, IntPtrTy
);
776 llvm::Value
*Align
= Builder
.CreateAnd(
777 PtrAsInt
, llvm::ConstantInt::get(IntPtrTy
, AlignVal
->value() - 1));
778 llvm::Value
*Aligned
=
779 Builder
.CreateICmpEQ(Align
, llvm::ConstantInt::get(IntPtrTy
, 0));
781 Checks
.push_back(std::make_pair(Aligned
, SanitizerKind::Alignment
));
785 if (Checks
.size() > 0) {
786 llvm::Constant
*StaticData
[] = {
787 EmitCheckSourceLocation(Loc
), EmitCheckTypeDescriptor(Ty
),
788 llvm::ConstantInt::get(Int8Ty
, AlignVal
? llvm::Log2(*AlignVal
) : 1),
789 llvm::ConstantInt::get(Int8Ty
, TCK
)};
790 EmitCheck(Checks
, SanitizerHandler::TypeMismatch
, StaticData
,
791 PtrAsInt
? PtrAsInt
: Ptr
);
794 // If possible, check that the vptr indicates that there is a subobject of
795 // type Ty at offset zero within this object.
797 // C++11 [basic.life]p5,6:
798 // [For storage which does not refer to an object within its lifetime]
799 // The program has undefined behavior if:
800 // -- the [pointer or glvalue] is used to access a non-static data member
801 // or call a non-static member function
802 if (SanOpts
.has(SanitizerKind::Vptr
) &&
803 !SkippedChecks
.has(SanitizerKind::Vptr
) && isVptrCheckRequired(TCK
, Ty
)) {
804 // Ensure that the pointer is non-null before loading it. If there is no
805 // compile-time guarantee, reuse the run-time null check or emit a new one.
806 if (!IsGuaranteedNonNull
) {
808 IsNonNull
= Builder
.CreateIsNotNull(Ptr
);
810 Done
= createBasicBlock("vptr.null");
811 llvm::BasicBlock
*VptrNotNull
= createBasicBlock("vptr.not.null");
812 Builder
.CreateCondBr(IsNonNull
, VptrNotNull
, Done
);
813 EmitBlock(VptrNotNull
);
816 // Compute a hash of the mangled name of the type.
818 // FIXME: This is not guaranteed to be deterministic! Move to a
819 // fingerprinting mechanism once LLVM provides one. For the time
820 // being the implementation happens to be deterministic.
821 SmallString
<64> MangledName
;
822 llvm::raw_svector_ostream
Out(MangledName
);
823 CGM
.getCXXABI().getMangleContext().mangleCXXRTTI(Ty
.getUnqualifiedType(),
826 // Contained in NoSanitizeList based on the mangled type.
827 if (!CGM
.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr
,
829 llvm::hash_code TypeHash
= hash_value(Out
.str());
831 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
832 llvm::Value
*Low
= llvm::ConstantInt::get(Int64Ty
, TypeHash
);
833 Address
VPtrAddr(Ptr
, IntPtrTy
, getPointerAlign());
834 llvm::Value
*VPtrVal
= Builder
.CreateLoad(VPtrAddr
);
835 llvm::Value
*High
= Builder
.CreateZExt(VPtrVal
, Int64Ty
);
837 llvm::Value
*Hash
= emitHash16Bytes(Builder
, Low
, High
);
838 Hash
= Builder
.CreateTrunc(Hash
, IntPtrTy
);
840 // Look the hash up in our cache.
841 const int CacheSize
= 128;
842 llvm::Type
*HashTable
= llvm::ArrayType::get(IntPtrTy
, CacheSize
);
843 llvm::Value
*Cache
= CGM
.CreateRuntimeVariable(HashTable
,
844 "__ubsan_vptr_type_cache");
845 llvm::Value
*Slot
= Builder
.CreateAnd(Hash
,
846 llvm::ConstantInt::get(IntPtrTy
,
848 llvm::Value
*Indices
[] = { Builder
.getInt32(0), Slot
};
849 llvm::Value
*CacheVal
= Builder
.CreateAlignedLoad(
850 IntPtrTy
, Builder
.CreateInBoundsGEP(HashTable
, Cache
, Indices
),
853 // If the hash isn't in the cache, call a runtime handler to perform the
854 // hard work of checking whether the vptr is for an object of the right
855 // type. This will either fill in the cache and return, or produce a
857 llvm::Value
*EqualHash
= Builder
.CreateICmpEQ(CacheVal
, Hash
);
858 llvm::Constant
*StaticData
[] = {
859 EmitCheckSourceLocation(Loc
),
860 EmitCheckTypeDescriptor(Ty
),
861 CGM
.GetAddrOfRTTIDescriptor(Ty
.getUnqualifiedType()),
862 llvm::ConstantInt::get(Int8Ty
, TCK
)
864 llvm::Value
*DynamicData
[] = { Ptr
, Hash
};
865 EmitCheck(std::make_pair(EqualHash
, SanitizerKind::Vptr
),
866 SanitizerHandler::DynamicTypeCacheMiss
, StaticData
,
872 Builder
.CreateBr(Done
);
877 llvm::Value
*CodeGenFunction::LoadPassedObjectSize(const Expr
*E
,
879 ASTContext
&C
= getContext();
880 uint64_t EltSize
= C
.getTypeSizeInChars(EltTy
).getQuantity();
884 auto *ArrayDeclRef
= dyn_cast
<DeclRefExpr
>(E
->IgnoreParenImpCasts());
888 auto *ParamDecl
= dyn_cast
<ParmVarDecl
>(ArrayDeclRef
->getDecl());
892 auto *POSAttr
= ParamDecl
->getAttr
<PassObjectSizeAttr
>();
896 // Don't load the size if it's a lower bound.
897 int POSType
= POSAttr
->getType();
898 if (POSType
!= 0 && POSType
!= 1)
901 // Find the implicit size parameter.
902 auto PassedSizeIt
= SizeArguments
.find(ParamDecl
);
903 if (PassedSizeIt
== SizeArguments
.end())
906 const ImplicitParamDecl
*PassedSizeDecl
= PassedSizeIt
->second
;
907 assert(LocalDeclMap
.count(PassedSizeDecl
) && "Passed size not loadable");
908 Address AddrOfSize
= LocalDeclMap
.find(PassedSizeDecl
)->second
;
909 llvm::Value
*SizeInBytes
= EmitLoadOfScalar(AddrOfSize
, /*Volatile=*/false,
910 C
.getSizeType(), E
->getExprLoc());
911 llvm::Value
*SizeOfElement
=
912 llvm::ConstantInt::get(SizeInBytes
->getType(), EltSize
);
913 return Builder
.CreateUDiv(SizeInBytes
, SizeOfElement
);
916 /// If Base is known to point to the start of an array, return the length of
917 /// that array. Return 0 if the length cannot be determined.
918 static llvm::Value
*getArrayIndexingBound(CodeGenFunction
&CGF
,
920 QualType
&IndexedType
,
921 LangOptions::StrictFlexArraysLevelKind
922 StrictFlexArraysLevel
) {
923 // For the vector indexing extension, the bound is the number of elements.
924 if (const VectorType
*VT
= Base
->getType()->getAs
<VectorType
>()) {
925 IndexedType
= Base
->getType();
926 return CGF
.Builder
.getInt32(VT
->getNumElements());
929 Base
= Base
->IgnoreParens();
931 if (const auto *CE
= dyn_cast
<CastExpr
>(Base
)) {
932 if (CE
->getCastKind() == CK_ArrayToPointerDecay
&&
933 !CE
->getSubExpr()->isFlexibleArrayMemberLike(CGF
.getContext(),
934 StrictFlexArraysLevel
)) {
935 CodeGenFunction::SanitizerScope
SanScope(&CGF
);
937 IndexedType
= CE
->getSubExpr()->getType();
938 const ArrayType
*AT
= IndexedType
->castAsArrayTypeUnsafe();
939 if (const auto *CAT
= dyn_cast
<ConstantArrayType
>(AT
))
940 return CGF
.Builder
.getInt(CAT
->getSize());
942 if (const auto *VAT
= dyn_cast
<VariableArrayType
>(AT
))
943 return CGF
.getVLASize(VAT
).NumElts
;
944 // Ignore pass_object_size here. It's not applicable on decayed pointers.
947 if (FieldDecl
*FD
= CGF
.FindCountedByField(Base
, StrictFlexArraysLevel
)) {
948 const auto *ME
= dyn_cast
<MemberExpr
>(CE
->getSubExpr());
949 IndexedType
= Base
->getType();
951 .EmitAnyExprToTemp(MemberExpr::CreateImplicit(
952 CGF
.getContext(), const_cast<Expr
*>(ME
->getBase()),
953 ME
->isArrow(), FD
, FD
->getType(), VK_LValue
, OK_Ordinary
))
958 CodeGenFunction::SanitizerScope
SanScope(&CGF
);
960 QualType EltTy
{Base
->getType()->getPointeeOrArrayElementType(), 0};
961 if (llvm::Value
*POS
= CGF
.LoadPassedObjectSize(Base
, EltTy
)) {
962 IndexedType
= Base
->getType();
969 FieldDecl
*CodeGenFunction::FindCountedByField(
971 LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel
) {
972 const ValueDecl
*VD
= nullptr;
974 Base
= Base
->IgnoreParenImpCasts();
976 if (const auto *ME
= dyn_cast
<MemberExpr
>(Base
)) {
977 VD
= dyn_cast
<ValueDecl
>(ME
->getMemberDecl());
978 } else if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(Base
)) {
979 // Pointing to the full structure.
980 VD
= dyn_cast
<ValueDecl
>(DRE
->getDecl());
982 QualType Ty
= VD
->getType();
983 if (Ty
->isPointerType())
984 Ty
= Ty
->getPointeeType();
986 if (const auto *RD
= Ty
->getAsRecordDecl())
987 VD
= RD
->getLastField();
988 } else if (const auto *CE
= dyn_cast
<CastExpr
>(Base
)) {
989 if (const auto *ME
= dyn_cast
<MemberExpr
>(CE
->getSubExpr()))
990 VD
= dyn_cast
<ValueDecl
>(ME
->getMemberDecl());
993 const auto *FD
= dyn_cast_if_present
<FieldDecl
>(VD
);
994 if (!FD
|| !FD
->getParent() ||
995 !Decl::isFlexibleArrayMemberLike(getContext(), FD
, FD
->getType(),
996 StrictFlexArraysLevel
, true))
999 const auto *CBA
= FD
->getAttr
<CountedByAttr
>();
1003 StringRef FieldName
= CBA
->getCountedByField()->getName();
1005 llvm::find_if(FD
->getParent()->fields(), [&](const FieldDecl
*Field
) {
1006 return FieldName
== Field
->getName();
1008 return It
!= FD
->getParent()->field_end() ? *It
: nullptr;
1011 void CodeGenFunction::EmitBoundsCheck(const Expr
*E
, const Expr
*Base
,
1012 llvm::Value
*Index
, QualType IndexType
,
1014 assert(SanOpts
.has(SanitizerKind::ArrayBounds
) &&
1015 "should not be called unless adding bounds checks");
1016 const LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel
=
1017 getLangOpts().getStrictFlexArraysLevel();
1019 QualType IndexedType
;
1020 llvm::Value
*Bound
=
1021 getArrayIndexingBound(*this, Base
, IndexedType
, StrictFlexArraysLevel
);
1025 SanitizerScope
SanScope(this);
1027 bool IndexSigned
= IndexType
->isSignedIntegerOrEnumerationType();
1028 llvm::Value
*IndexVal
= Builder
.CreateIntCast(Index
, SizeTy
, IndexSigned
);
1029 llvm::Value
*BoundVal
= Builder
.CreateIntCast(Bound
, SizeTy
, false);
1031 llvm::Constant
*StaticData
[] = {
1032 EmitCheckSourceLocation(E
->getExprLoc()),
1033 EmitCheckTypeDescriptor(IndexedType
),
1034 EmitCheckTypeDescriptor(IndexType
)
1036 llvm::Value
*Check
= Accessed
? Builder
.CreateICmpULT(IndexVal
, BoundVal
)
1037 : Builder
.CreateICmpULE(IndexVal
, BoundVal
);
1038 EmitCheck(std::make_pair(Check
, SanitizerKind::ArrayBounds
),
1039 SanitizerHandler::OutOfBounds
, StaticData
, Index
);
1043 CodeGenFunction::ComplexPairTy
CodeGenFunction::
1044 EmitComplexPrePostIncDec(const UnaryOperator
*E
, LValue LV
,
1045 bool isInc
, bool isPre
) {
1046 ComplexPairTy InVal
= EmitLoadOfComplex(LV
, E
->getExprLoc());
1048 llvm::Value
*NextVal
;
1049 if (isa
<llvm::IntegerType
>(InVal
.first
->getType())) {
1050 uint64_t AmountVal
= isInc
? 1 : -1;
1051 NextVal
= llvm::ConstantInt::get(InVal
.first
->getType(), AmountVal
, true);
1053 // Add the inc/dec to the real part.
1054 NextVal
= Builder
.CreateAdd(InVal
.first
, NextVal
, isInc
? "inc" : "dec");
1056 QualType ElemTy
= E
->getType()->castAs
<ComplexType
>()->getElementType();
1057 llvm::APFloat
FVal(getContext().getFloatTypeSemantics(ElemTy
), 1);
1060 NextVal
= llvm::ConstantFP::get(getLLVMContext(), FVal
);
1062 // Add the inc/dec to the real part.
1063 NextVal
= Builder
.CreateFAdd(InVal
.first
, NextVal
, isInc
? "inc" : "dec");
1066 ComplexPairTy
IncVal(NextVal
, InVal
.second
);
1068 // Store the updated result through the lvalue.
1069 EmitStoreOfComplex(IncVal
, LV
, /*init*/ false);
1070 if (getLangOpts().OpenMP
)
1071 CGM
.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1074 // If this is a postinc, return the value read from memory, otherwise use the
1076 return isPre
? IncVal
: InVal
;
1079 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr
*E
,
1080 CodeGenFunction
*CGF
) {
1081 // Bind VLAs in the cast type.
1082 if (CGF
&& E
->getType()->isVariablyModifiedType())
1083 CGF
->EmitVariablyModifiedType(E
->getType());
1085 if (CGDebugInfo
*DI
= getModuleDebugInfo())
1086 DI
->EmitExplicitCastType(E
->getType());
1089 //===----------------------------------------------------------------------===//
1090 // LValue Expression Emission
1091 //===----------------------------------------------------------------------===//
1093 static Address
EmitPointerWithAlignment(const Expr
*E
, LValueBaseInfo
*BaseInfo
,
1094 TBAAAccessInfo
*TBAAInfo
,
1095 KnownNonNull_t IsKnownNonNull
,
1096 CodeGenFunction
&CGF
) {
1097 // We allow this with ObjC object pointers because of fragile ABIs.
1098 assert(E
->getType()->isPointerType() ||
1099 E
->getType()->isObjCObjectPointerType());
1100 E
= E
->IgnoreParens();
1103 if (const CastExpr
*CE
= dyn_cast
<CastExpr
>(E
)) {
1104 if (const auto *ECE
= dyn_cast
<ExplicitCastExpr
>(CE
))
1105 CGF
.CGM
.EmitExplicitCastExprType(ECE
, &CGF
);
1107 switch (CE
->getCastKind()) {
1108 // Non-converting casts (but not C's implicit conversion from void*).
1111 case CK_AddressSpaceConversion
:
1112 if (auto PtrTy
= CE
->getSubExpr()->getType()->getAs
<PointerType
>()) {
1113 if (PtrTy
->getPointeeType()->isVoidType())
1116 LValueBaseInfo InnerBaseInfo
;
1117 TBAAAccessInfo InnerTBAAInfo
;
1118 Address Addr
= CGF
.EmitPointerWithAlignment(
1119 CE
->getSubExpr(), &InnerBaseInfo
, &InnerTBAAInfo
, IsKnownNonNull
);
1120 if (BaseInfo
) *BaseInfo
= InnerBaseInfo
;
1121 if (TBAAInfo
) *TBAAInfo
= InnerTBAAInfo
;
1123 if (isa
<ExplicitCastExpr
>(CE
)) {
1124 LValueBaseInfo TargetTypeBaseInfo
;
1125 TBAAAccessInfo TargetTypeTBAAInfo
;
1126 CharUnits Align
= CGF
.CGM
.getNaturalPointeeTypeAlignment(
1127 E
->getType(), &TargetTypeBaseInfo
, &TargetTypeTBAAInfo
);
1130 CGF
.CGM
.mergeTBAAInfoForCast(*TBAAInfo
, TargetTypeTBAAInfo
);
1131 // If the source l-value is opaque, honor the alignment of the
1133 if (InnerBaseInfo
.getAlignmentSource() != AlignmentSource::Decl
) {
1135 BaseInfo
->mergeForCast(TargetTypeBaseInfo
);
1136 Addr
= Address(Addr
.getPointer(), Addr
.getElementType(), Align
,
1141 if (CGF
.SanOpts
.has(SanitizerKind::CFIUnrelatedCast
) &&
1142 CE
->getCastKind() == CK_BitCast
) {
1143 if (auto PT
= E
->getType()->getAs
<PointerType
>())
1144 CGF
.EmitVTablePtrCheckForCast(PT
->getPointeeType(), Addr
,
1146 CodeGenFunction::CFITCK_UnrelatedCast
,
1150 llvm::Type
*ElemTy
=
1151 CGF
.ConvertTypeForMem(E
->getType()->getPointeeType());
1152 Addr
= Addr
.withElementType(ElemTy
);
1153 if (CE
->getCastKind() == CK_AddressSpaceConversion
)
1154 Addr
= CGF
.Builder
.CreateAddrSpaceCast(Addr
,
1155 CGF
.ConvertType(E
->getType()));
1160 // Array-to-pointer decay.
1161 case CK_ArrayToPointerDecay
:
1162 return CGF
.EmitArrayToPointerDecay(CE
->getSubExpr(), BaseInfo
, TBAAInfo
);
1164 // Derived-to-base conversions.
1165 case CK_UncheckedDerivedToBase
:
1166 case CK_DerivedToBase
: {
1167 // TODO: Support accesses to members of base classes in TBAA. For now, we
1168 // conservatively pretend that the complete object is of the base class
1171 *TBAAInfo
= CGF
.CGM
.getTBAAAccessInfo(E
->getType());
1172 Address Addr
= CGF
.EmitPointerWithAlignment(
1173 CE
->getSubExpr(), BaseInfo
, nullptr,
1174 (KnownNonNull_t
)(IsKnownNonNull
||
1175 CE
->getCastKind() == CK_UncheckedDerivedToBase
));
1176 auto Derived
= CE
->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1177 return CGF
.GetAddressOfBaseClass(
1178 Addr
, Derived
, CE
->path_begin(), CE
->path_end(),
1179 CGF
.ShouldNullCheckClassCastValue(CE
), CE
->getExprLoc());
1182 // TODO: Is there any reason to treat base-to-derived conversions
1190 if (const UnaryOperator
*UO
= dyn_cast
<UnaryOperator
>(E
)) {
1191 if (UO
->getOpcode() == UO_AddrOf
) {
1192 LValue LV
= CGF
.EmitLValue(UO
->getSubExpr(), IsKnownNonNull
);
1193 if (BaseInfo
) *BaseInfo
= LV
.getBaseInfo();
1194 if (TBAAInfo
) *TBAAInfo
= LV
.getTBAAInfo();
1195 return LV
.getAddress(CGF
);
1199 // std::addressof and variants.
1200 if (auto *Call
= dyn_cast
<CallExpr
>(E
)) {
1201 switch (Call
->getBuiltinCallee()) {
1204 case Builtin::BIaddressof
:
1205 case Builtin::BI__addressof
:
1206 case Builtin::BI__builtin_addressof
: {
1207 LValue LV
= CGF
.EmitLValue(Call
->getArg(0), IsKnownNonNull
);
1208 if (BaseInfo
) *BaseInfo
= LV
.getBaseInfo();
1209 if (TBAAInfo
) *TBAAInfo
= LV
.getTBAAInfo();
1210 return LV
.getAddress(CGF
);
1215 // TODO: conditional operators, comma.
1217 // Otherwise, use the alignment of the type.
1219 CGF
.CGM
.getNaturalPointeeTypeAlignment(E
->getType(), BaseInfo
, TBAAInfo
);
1220 llvm::Type
*ElemTy
= CGF
.ConvertTypeForMem(E
->getType()->getPointeeType());
1221 return Address(CGF
.EmitScalarExpr(E
), ElemTy
, Align
, IsKnownNonNull
);
1224 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1225 /// derive a more accurate bound on the alignment of the pointer.
1226 Address
CodeGenFunction::EmitPointerWithAlignment(
1227 const Expr
*E
, LValueBaseInfo
*BaseInfo
, TBAAAccessInfo
*TBAAInfo
,
1228 KnownNonNull_t IsKnownNonNull
) {
1230 ::EmitPointerWithAlignment(E
, BaseInfo
, TBAAInfo
, IsKnownNonNull
, *this);
1231 if (IsKnownNonNull
&& !Addr
.isKnownNonNull())
1232 Addr
.setKnownNonNull();
1236 llvm::Value
*CodeGenFunction::EmitNonNullRValueCheck(RValue RV
, QualType T
) {
1237 llvm::Value
*V
= RV
.getScalarVal();
1238 if (auto MPT
= T
->getAs
<MemberPointerType
>())
1239 return CGM
.getCXXABI().EmitMemberPointerIsNotNull(*this, V
, MPT
);
1240 return Builder
.CreateICmpNE(V
, llvm::Constant::getNullValue(V
->getType()));
1243 RValue
CodeGenFunction::GetUndefRValue(QualType Ty
) {
1244 if (Ty
->isVoidType())
1245 return RValue::get(nullptr);
1247 switch (getEvaluationKind(Ty
)) {
1250 ConvertType(Ty
->castAs
<ComplexType
>()->getElementType());
1251 llvm::Value
*U
= llvm::UndefValue::get(EltTy
);
1252 return RValue::getComplex(std::make_pair(U
, U
));
1255 // If this is a use of an undefined aggregate type, the aggregate must have an
1256 // identifiable address. Just because the contents of the value are undefined
1257 // doesn't mean that the address can't be taken and compared.
1258 case TEK_Aggregate
: {
1259 Address DestPtr
= CreateMemTemp(Ty
, "undef.agg.tmp");
1260 return RValue::getAggregate(DestPtr
);
1264 return RValue::get(llvm::UndefValue::get(ConvertType(Ty
)));
1266 llvm_unreachable("bad evaluation kind");
1269 RValue
CodeGenFunction::EmitUnsupportedRValue(const Expr
*E
,
1271 ErrorUnsupported(E
, Name
);
1272 return GetUndefRValue(E
->getType());
1275 LValue
CodeGenFunction::EmitUnsupportedLValue(const Expr
*E
,
1277 ErrorUnsupported(E
, Name
);
1278 llvm::Type
*ElTy
= ConvertType(E
->getType());
1279 llvm::Type
*Ty
= UnqualPtrTy
;
1280 return MakeAddrLValue(
1281 Address(llvm::UndefValue::get(Ty
), ElTy
, CharUnits::One()), E
->getType());
1284 bool CodeGenFunction::IsWrappedCXXThis(const Expr
*Obj
) {
1285 const Expr
*Base
= Obj
;
1286 while (!isa
<CXXThisExpr
>(Base
)) {
1287 // The result of a dynamic_cast can be null.
1288 if (isa
<CXXDynamicCastExpr
>(Base
))
1291 if (const auto *CE
= dyn_cast
<CastExpr
>(Base
)) {
1292 Base
= CE
->getSubExpr();
1293 } else if (const auto *PE
= dyn_cast
<ParenExpr
>(Base
)) {
1294 Base
= PE
->getSubExpr();
1295 } else if (const auto *UO
= dyn_cast
<UnaryOperator
>(Base
)) {
1296 if (UO
->getOpcode() == UO_Extension
)
1297 Base
= UO
->getSubExpr();
1307 LValue
CodeGenFunction::EmitCheckedLValue(const Expr
*E
, TypeCheckKind TCK
) {
1309 if (SanOpts
.has(SanitizerKind::ArrayBounds
) && isa
<ArraySubscriptExpr
>(E
))
1310 LV
= EmitArraySubscriptExpr(cast
<ArraySubscriptExpr
>(E
), /*Accessed*/true);
1313 if (!isa
<DeclRefExpr
>(E
) && !LV
.isBitField() && LV
.isSimple()) {
1314 SanitizerSet SkippedChecks
;
1315 if (const auto *ME
= dyn_cast
<MemberExpr
>(E
)) {
1316 bool IsBaseCXXThis
= IsWrappedCXXThis(ME
->getBase());
1318 SkippedChecks
.set(SanitizerKind::Alignment
, true);
1319 if (IsBaseCXXThis
|| isa
<DeclRefExpr
>(ME
->getBase()))
1320 SkippedChecks
.set(SanitizerKind::Null
, true);
1322 EmitTypeCheck(TCK
, E
->getExprLoc(), LV
.getPointer(*this), E
->getType(),
1323 LV
.getAlignment(), SkippedChecks
);
1328 /// EmitLValue - Emit code to compute a designator that specifies the location
1329 /// of the expression.
1331 /// This can return one of two things: a simple address or a bitfield reference.
1332 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1333 /// an LLVM pointer type.
1335 /// If this returns a bitfield reference, nothing about the pointee type of the
1336 /// LLVM value is known: For example, it may not be a pointer to an integer.
1338 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1339 /// this method guarantees that the returned pointer type will point to an LLVM
1340 /// type of the same size of the lvalue's type. If the lvalue has a variable
1341 /// length type, this is not possible.
1343 LValue
CodeGenFunction::EmitLValue(const Expr
*E
,
1344 KnownNonNull_t IsKnownNonNull
) {
1345 LValue LV
= EmitLValueHelper(E
, IsKnownNonNull
);
1346 if (IsKnownNonNull
&& !LV
.isKnownNonNull())
1347 LV
.setKnownNonNull();
1351 LValue
CodeGenFunction::EmitLValueHelper(const Expr
*E
,
1352 KnownNonNull_t IsKnownNonNull
) {
1353 ApplyDebugLocation
DL(*this, E
);
1354 switch (E
->getStmtClass()) {
1355 default: return EmitUnsupportedLValue(E
, "l-value expression");
1357 case Expr::ObjCPropertyRefExprClass
:
1358 llvm_unreachable("cannot emit a property reference directly");
1360 case Expr::ObjCSelectorExprClass
:
1361 return EmitObjCSelectorLValue(cast
<ObjCSelectorExpr
>(E
));
1362 case Expr::ObjCIsaExprClass
:
1363 return EmitObjCIsaExpr(cast
<ObjCIsaExpr
>(E
));
1364 case Expr::BinaryOperatorClass
:
1365 return EmitBinaryOperatorLValue(cast
<BinaryOperator
>(E
));
1366 case Expr::CompoundAssignOperatorClass
: {
1367 QualType Ty
= E
->getType();
1368 if (const AtomicType
*AT
= Ty
->getAs
<AtomicType
>())
1369 Ty
= AT
->getValueType();
1370 if (!Ty
->isAnyComplexType())
1371 return EmitCompoundAssignmentLValue(cast
<CompoundAssignOperator
>(E
));
1372 return EmitComplexCompoundAssignmentLValue(cast
<CompoundAssignOperator
>(E
));
1374 case Expr::CallExprClass
:
1375 case Expr::CXXMemberCallExprClass
:
1376 case Expr::CXXOperatorCallExprClass
:
1377 case Expr::UserDefinedLiteralClass
:
1378 return EmitCallExprLValue(cast
<CallExpr
>(E
));
1379 case Expr::CXXRewrittenBinaryOperatorClass
:
1380 return EmitLValue(cast
<CXXRewrittenBinaryOperator
>(E
)->getSemanticForm(),
1382 case Expr::VAArgExprClass
:
1383 return EmitVAArgExprLValue(cast
<VAArgExpr
>(E
));
1384 case Expr::DeclRefExprClass
:
1385 return EmitDeclRefLValue(cast
<DeclRefExpr
>(E
));
1386 case Expr::ConstantExprClass
: {
1387 const ConstantExpr
*CE
= cast
<ConstantExpr
>(E
);
1388 if (llvm::Value
*Result
= ConstantEmitter(*this).tryEmitConstantExpr(CE
)) {
1389 QualType RetType
= cast
<CallExpr
>(CE
->getSubExpr()->IgnoreImplicit())
1390 ->getCallReturnType(getContext())
1392 return MakeNaturalAlignAddrLValue(Result
, RetType
);
1394 return EmitLValue(cast
<ConstantExpr
>(E
)->getSubExpr(), IsKnownNonNull
);
1396 case Expr::ParenExprClass
:
1397 return EmitLValue(cast
<ParenExpr
>(E
)->getSubExpr(), IsKnownNonNull
);
1398 case Expr::GenericSelectionExprClass
:
1399 return EmitLValue(cast
<GenericSelectionExpr
>(E
)->getResultExpr(),
1401 case Expr::PredefinedExprClass
:
1402 return EmitPredefinedLValue(cast
<PredefinedExpr
>(E
));
1403 case Expr::StringLiteralClass
:
1404 return EmitStringLiteralLValue(cast
<StringLiteral
>(E
));
1405 case Expr::ObjCEncodeExprClass
:
1406 return EmitObjCEncodeExprLValue(cast
<ObjCEncodeExpr
>(E
));
1407 case Expr::PseudoObjectExprClass
:
1408 return EmitPseudoObjectLValue(cast
<PseudoObjectExpr
>(E
));
1409 case Expr::InitListExprClass
:
1410 return EmitInitListLValue(cast
<InitListExpr
>(E
));
1411 case Expr::CXXTemporaryObjectExprClass
:
1412 case Expr::CXXConstructExprClass
:
1413 return EmitCXXConstructLValue(cast
<CXXConstructExpr
>(E
));
1414 case Expr::CXXBindTemporaryExprClass
:
1415 return EmitCXXBindTemporaryLValue(cast
<CXXBindTemporaryExpr
>(E
));
1416 case Expr::CXXUuidofExprClass
:
1417 return EmitCXXUuidofLValue(cast
<CXXUuidofExpr
>(E
));
1418 case Expr::LambdaExprClass
:
1419 return EmitAggExprToLValue(E
);
1421 case Expr::ExprWithCleanupsClass
: {
1422 const auto *cleanups
= cast
<ExprWithCleanups
>(E
);
1423 RunCleanupsScope
Scope(*this);
1424 LValue LV
= EmitLValue(cleanups
->getSubExpr(), IsKnownNonNull
);
1425 if (LV
.isSimple()) {
1426 // Defend against branches out of gnu statement expressions surrounded by
1428 Address Addr
= LV
.getAddress(*this);
1429 llvm::Value
*V
= Addr
.getPointer();
1430 Scope
.ForceCleanup({&V
});
1431 return LValue::MakeAddr(Addr
.withPointer(V
, Addr
.isKnownNonNull()),
1432 LV
.getType(), getContext(), LV
.getBaseInfo(),
1435 // FIXME: Is it possible to create an ExprWithCleanups that produces a
1436 // bitfield lvalue or some other non-simple lvalue?
1440 case Expr::CXXDefaultArgExprClass
: {
1441 auto *DAE
= cast
<CXXDefaultArgExpr
>(E
);
1442 CXXDefaultArgExprScope
Scope(*this, DAE
);
1443 return EmitLValue(DAE
->getExpr(), IsKnownNonNull
);
1445 case Expr::CXXDefaultInitExprClass
: {
1446 auto *DIE
= cast
<CXXDefaultInitExpr
>(E
);
1447 CXXDefaultInitExprScope
Scope(*this, DIE
);
1448 return EmitLValue(DIE
->getExpr(), IsKnownNonNull
);
1450 case Expr::CXXTypeidExprClass
:
1451 return EmitCXXTypeidLValue(cast
<CXXTypeidExpr
>(E
));
1453 case Expr::ObjCMessageExprClass
:
1454 return EmitObjCMessageExprLValue(cast
<ObjCMessageExpr
>(E
));
1455 case Expr::ObjCIvarRefExprClass
:
1456 return EmitObjCIvarRefLValue(cast
<ObjCIvarRefExpr
>(E
));
1457 case Expr::StmtExprClass
:
1458 return EmitStmtExprLValue(cast
<StmtExpr
>(E
));
1459 case Expr::UnaryOperatorClass
:
1460 return EmitUnaryOpLValue(cast
<UnaryOperator
>(E
));
1461 case Expr::ArraySubscriptExprClass
:
1462 return EmitArraySubscriptExpr(cast
<ArraySubscriptExpr
>(E
));
1463 case Expr::MatrixSubscriptExprClass
:
1464 return EmitMatrixSubscriptExpr(cast
<MatrixSubscriptExpr
>(E
));
1465 case Expr::OMPArraySectionExprClass
:
1466 return EmitOMPArraySectionExpr(cast
<OMPArraySectionExpr
>(E
));
1467 case Expr::ExtVectorElementExprClass
:
1468 return EmitExtVectorElementExpr(cast
<ExtVectorElementExpr
>(E
));
1469 case Expr::CXXThisExprClass
:
1470 return MakeAddrLValue(LoadCXXThisAddress(), E
->getType());
1471 case Expr::MemberExprClass
:
1472 return EmitMemberExpr(cast
<MemberExpr
>(E
));
1473 case Expr::CompoundLiteralExprClass
:
1474 return EmitCompoundLiteralLValue(cast
<CompoundLiteralExpr
>(E
));
1475 case Expr::ConditionalOperatorClass
:
1476 return EmitConditionalOperatorLValue(cast
<ConditionalOperator
>(E
));
1477 case Expr::BinaryConditionalOperatorClass
:
1478 return EmitConditionalOperatorLValue(cast
<BinaryConditionalOperator
>(E
));
1479 case Expr::ChooseExprClass
:
1480 return EmitLValue(cast
<ChooseExpr
>(E
)->getChosenSubExpr(), IsKnownNonNull
);
1481 case Expr::OpaqueValueExprClass
:
1482 return EmitOpaqueValueLValue(cast
<OpaqueValueExpr
>(E
));
1483 case Expr::SubstNonTypeTemplateParmExprClass
:
1484 return EmitLValue(cast
<SubstNonTypeTemplateParmExpr
>(E
)->getReplacement(),
1486 case Expr::ImplicitCastExprClass
:
1487 case Expr::CStyleCastExprClass
:
1488 case Expr::CXXFunctionalCastExprClass
:
1489 case Expr::CXXStaticCastExprClass
:
1490 case Expr::CXXDynamicCastExprClass
:
1491 case Expr::CXXReinterpretCastExprClass
:
1492 case Expr::CXXConstCastExprClass
:
1493 case Expr::CXXAddrspaceCastExprClass
:
1494 case Expr::ObjCBridgedCastExprClass
:
1495 return EmitCastLValue(cast
<CastExpr
>(E
));
1497 case Expr::MaterializeTemporaryExprClass
:
1498 return EmitMaterializeTemporaryExpr(cast
<MaterializeTemporaryExpr
>(E
));
1500 case Expr::CoawaitExprClass
:
1501 return EmitCoawaitLValue(cast
<CoawaitExpr
>(E
));
1502 case Expr::CoyieldExprClass
:
1503 return EmitCoyieldLValue(cast
<CoyieldExpr
>(E
));
1507 /// Given an object of the given canonical type, can we safely copy a
1508 /// value out of it based on its initializer?
1509 static bool isConstantEmittableObjectType(QualType type
) {
1510 assert(type
.isCanonical());
1511 assert(!type
->isReferenceType());
1513 // Must be const-qualified but non-volatile.
1514 Qualifiers qs
= type
.getLocalQualifiers();
1515 if (!qs
.hasConst() || qs
.hasVolatile()) return false;
1517 // Otherwise, all object types satisfy this except C++ classes with
1518 // mutable subobjects or non-trivial copy/destroy behavior.
1519 if (const auto *RT
= dyn_cast
<RecordType
>(type
))
1520 if (const auto *RD
= dyn_cast
<CXXRecordDecl
>(RT
->getDecl()))
1521 if (RD
->hasMutableFields() || !RD
->isTrivial())
1527 /// Can we constant-emit a load of a reference to a variable of the
1528 /// given type? This is different from predicates like
1529 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1530 /// in situations that don't necessarily satisfy the language's rules
1531 /// for this (e.g. C++'s ODR-use rules). For example, we want to able
1532 /// to do this with const float variables even if those variables
1533 /// aren't marked 'constexpr'.
1534 enum ConstantEmissionKind
{
1536 CEK_AsReferenceOnly
,
1537 CEK_AsValueOrReference
,
1540 static ConstantEmissionKind
checkVarTypeForConstantEmission(QualType type
) {
1541 type
= type
.getCanonicalType();
1542 if (const auto *ref
= dyn_cast
<ReferenceType
>(type
)) {
1543 if (isConstantEmittableObjectType(ref
->getPointeeType()))
1544 return CEK_AsValueOrReference
;
1545 return CEK_AsReferenceOnly
;
1547 if (isConstantEmittableObjectType(type
))
1548 return CEK_AsValueOnly
;
1552 /// Try to emit a reference to the given value without producing it as
1553 /// an l-value. This is just an optimization, but it avoids us needing
1554 /// to emit global copies of variables if they're named without triggering
1555 /// a formal use in a context where we can't emit a direct reference to them,
1556 /// for instance if a block or lambda or a member of a local class uses a
1557 /// const int variable or constexpr variable from an enclosing function.
1558 CodeGenFunction::ConstantEmission
1559 CodeGenFunction::tryEmitAsConstant(DeclRefExpr
*refExpr
) {
1560 ValueDecl
*value
= refExpr
->getDecl();
1562 // The value needs to be an enum constant or a constant variable.
1563 ConstantEmissionKind CEK
;
1564 if (isa
<ParmVarDecl
>(value
)) {
1566 } else if (auto *var
= dyn_cast
<VarDecl
>(value
)) {
1567 CEK
= checkVarTypeForConstantEmission(var
->getType());
1568 } else if (isa
<EnumConstantDecl
>(value
)) {
1569 CEK
= CEK_AsValueOnly
;
1573 if (CEK
== CEK_None
) return ConstantEmission();
1575 Expr::EvalResult result
;
1576 bool resultIsReference
;
1577 QualType resultType
;
1579 // It's best to evaluate all the way as an r-value if that's permitted.
1580 if (CEK
!= CEK_AsReferenceOnly
&&
1581 refExpr
->EvaluateAsRValue(result
, getContext())) {
1582 resultIsReference
= false;
1583 resultType
= refExpr
->getType();
1585 // Otherwise, try to evaluate as an l-value.
1586 } else if (CEK
!= CEK_AsValueOnly
&&
1587 refExpr
->EvaluateAsLValue(result
, getContext())) {
1588 resultIsReference
= true;
1589 resultType
= value
->getType();
1593 return ConstantEmission();
1596 // In any case, if the initializer has side-effects, abandon ship.
1597 if (result
.HasSideEffects
)
1598 return ConstantEmission();
1600 // In CUDA/HIP device compilation, a lambda may capture a reference variable
1601 // referencing a global host variable by copy. In this case the lambda should
1602 // make a copy of the value of the global host variable. The DRE of the
1603 // captured reference variable cannot be emitted as load from the host
1604 // global variable as compile time constant, since the host variable is not
1605 // accessible on device. The DRE of the captured reference variable has to be
1606 // loaded from captures.
1607 if (CGM
.getLangOpts().CUDAIsDevice
&& result
.Val
.isLValue() &&
1608 refExpr
->refersToEnclosingVariableOrCapture()) {
1609 auto *MD
= dyn_cast_or_null
<CXXMethodDecl
>(CurCodeDecl
);
1610 if (MD
&& MD
->getParent()->isLambda() &&
1611 MD
->getOverloadedOperator() == OO_Call
) {
1612 const APValue::LValueBase
&base
= result
.Val
.getLValueBase();
1613 if (const ValueDecl
*D
= base
.dyn_cast
<const ValueDecl
*>()) {
1614 if (const VarDecl
*VD
= dyn_cast
<const VarDecl
>(D
)) {
1615 if (!VD
->hasAttr
<CUDADeviceAttr
>()) {
1616 return ConstantEmission();
1623 // Emit as a constant.
1624 auto C
= ConstantEmitter(*this).emitAbstract(refExpr
->getLocation(),
1625 result
.Val
, resultType
);
1627 // Make sure we emit a debug reference to the global variable.
1628 // This should probably fire even for
1629 if (isa
<VarDecl
>(value
)) {
1630 if (!getContext().DeclMustBeEmitted(cast
<VarDecl
>(value
)))
1631 EmitDeclRefExprDbgValue(refExpr
, result
.Val
);
1633 assert(isa
<EnumConstantDecl
>(value
));
1634 EmitDeclRefExprDbgValue(refExpr
, result
.Val
);
1637 // If we emitted a reference constant, we need to dereference that.
1638 if (resultIsReference
)
1639 return ConstantEmission::forReference(C
);
1641 return ConstantEmission::forValue(C
);
1644 static DeclRefExpr
*tryToConvertMemberExprToDeclRefExpr(CodeGenFunction
&CGF
,
1645 const MemberExpr
*ME
) {
1646 if (auto *VD
= dyn_cast
<VarDecl
>(ME
->getMemberDecl())) {
1647 // Try to emit static variable member expressions as DREs.
1648 return DeclRefExpr::Create(
1649 CGF
.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD
,
1650 /*RefersToEnclosingVariableOrCapture=*/false, ME
->getExprLoc(),
1651 ME
->getType(), ME
->getValueKind(), nullptr, nullptr, ME
->isNonOdrUse());
1656 CodeGenFunction::ConstantEmission
1657 CodeGenFunction::tryEmitAsConstant(const MemberExpr
*ME
) {
1658 if (DeclRefExpr
*DRE
= tryToConvertMemberExprToDeclRefExpr(*this, ME
))
1659 return tryEmitAsConstant(DRE
);
1660 return ConstantEmission();
1663 llvm::Value
*CodeGenFunction::emitScalarConstant(
1664 const CodeGenFunction::ConstantEmission
&Constant
, Expr
*E
) {
1665 assert(Constant
&& "not a constant");
1666 if (Constant
.isReference())
1667 return EmitLoadOfLValue(Constant
.getReferenceLValue(*this, E
),
1670 return Constant
.getValue();
1673 llvm::Value
*CodeGenFunction::EmitLoadOfScalar(LValue lvalue
,
1674 SourceLocation Loc
) {
1675 return EmitLoadOfScalar(lvalue
.getAddress(*this), lvalue
.isVolatile(),
1676 lvalue
.getType(), Loc
, lvalue
.getBaseInfo(),
1677 lvalue
.getTBAAInfo(), lvalue
.isNontemporal());
1680 static bool hasBooleanRepresentation(QualType Ty
) {
1681 if (Ty
->isBooleanType())
1684 if (const EnumType
*ET
= Ty
->getAs
<EnumType
>())
1685 return ET
->getDecl()->getIntegerType()->isBooleanType();
1687 if (const AtomicType
*AT
= Ty
->getAs
<AtomicType
>())
1688 return hasBooleanRepresentation(AT
->getValueType());
1693 static bool getRangeForType(CodeGenFunction
&CGF
, QualType Ty
,
1694 llvm::APInt
&Min
, llvm::APInt
&End
,
1695 bool StrictEnums
, bool IsBool
) {
1696 const EnumType
*ET
= Ty
->getAs
<EnumType
>();
1697 bool IsRegularCPlusPlusEnum
= CGF
.getLangOpts().CPlusPlus
&& StrictEnums
&&
1698 ET
&& !ET
->getDecl()->isFixed();
1699 if (!IsBool
&& !IsRegularCPlusPlusEnum
)
1703 Min
= llvm::APInt(CGF
.getContext().getTypeSize(Ty
), 0);
1704 End
= llvm::APInt(CGF
.getContext().getTypeSize(Ty
), 2);
1706 const EnumDecl
*ED
= ET
->getDecl();
1707 ED
->getValueRange(End
, Min
);
1712 llvm::MDNode
*CodeGenFunction::getRangeForLoadFromType(QualType Ty
) {
1713 llvm::APInt Min
, End
;
1714 if (!getRangeForType(*this, Ty
, Min
, End
, CGM
.getCodeGenOpts().StrictEnums
,
1715 hasBooleanRepresentation(Ty
)))
1718 llvm::MDBuilder
MDHelper(getLLVMContext());
1719 return MDHelper
.createRange(Min
, End
);
1722 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value
*Value
, QualType Ty
,
1723 SourceLocation Loc
) {
1724 bool HasBoolCheck
= SanOpts
.has(SanitizerKind::Bool
);
1725 bool HasEnumCheck
= SanOpts
.has(SanitizerKind::Enum
);
1726 if (!HasBoolCheck
&& !HasEnumCheck
)
1729 bool IsBool
= hasBooleanRepresentation(Ty
) ||
1730 NSAPI(CGM
.getContext()).isObjCBOOLType(Ty
);
1731 bool NeedsBoolCheck
= HasBoolCheck
&& IsBool
;
1732 bool NeedsEnumCheck
= HasEnumCheck
&& Ty
->getAs
<EnumType
>();
1733 if (!NeedsBoolCheck
&& !NeedsEnumCheck
)
1736 // Single-bit booleans don't need to be checked. Special-case this to avoid
1737 // a bit width mismatch when handling bitfield values. This is handled by
1738 // EmitFromMemory for the non-bitfield case.
1740 cast
<llvm::IntegerType
>(Value
->getType())->getBitWidth() == 1)
1743 llvm::APInt Min
, End
;
1744 if (!getRangeForType(*this, Ty
, Min
, End
, /*StrictEnums=*/true, IsBool
))
1747 auto &Ctx
= getLLVMContext();
1748 SanitizerScope
SanScope(this);
1752 Check
= Builder
.CreateICmpULE(Value
, llvm::ConstantInt::get(Ctx
, End
));
1754 llvm::Value
*Upper
=
1755 Builder
.CreateICmpSLE(Value
, llvm::ConstantInt::get(Ctx
, End
));
1756 llvm::Value
*Lower
=
1757 Builder
.CreateICmpSGE(Value
, llvm::ConstantInt::get(Ctx
, Min
));
1758 Check
= Builder
.CreateAnd(Upper
, Lower
);
1760 llvm::Constant
*StaticArgs
[] = {EmitCheckSourceLocation(Loc
),
1761 EmitCheckTypeDescriptor(Ty
)};
1762 SanitizerMask Kind
=
1763 NeedsEnumCheck
? SanitizerKind::Enum
: SanitizerKind::Bool
;
1764 EmitCheck(std::make_pair(Check
, Kind
), SanitizerHandler::LoadInvalidValue
,
1765 StaticArgs
, EmitCheckValue(Value
));
1769 llvm::Value
*CodeGenFunction::EmitLoadOfScalar(Address Addr
, bool Volatile
,
1772 LValueBaseInfo BaseInfo
,
1773 TBAAAccessInfo TBAAInfo
,
1774 bool isNontemporal
) {
1775 if (auto *GV
= dyn_cast
<llvm::GlobalValue
>(Addr
.getPointer()))
1776 if (GV
->isThreadLocal())
1777 Addr
= Addr
.withPointer(Builder
.CreateThreadLocalAddress(GV
),
1780 if (const auto *ClangVecTy
= Ty
->getAs
<VectorType
>()) {
1781 // Boolean vectors use `iN` as storage type.
1782 if (ClangVecTy
->isExtVectorBoolType()) {
1783 llvm::Type
*ValTy
= ConvertType(Ty
);
1784 unsigned ValNumElems
=
1785 cast
<llvm::FixedVectorType
>(ValTy
)->getNumElements();
1786 // Load the `iP` storage object (P is the padded vector size).
1787 auto *RawIntV
= Builder
.CreateLoad(Addr
, Volatile
, "load_bits");
1788 const auto *RawIntTy
= RawIntV
->getType();
1789 assert(RawIntTy
->isIntegerTy() && "compressed iN storage for bitvectors");
1790 // Bitcast iP --> <P x i1>.
1791 auto *PaddedVecTy
= llvm::FixedVectorType::get(
1792 Builder
.getInt1Ty(), RawIntTy
->getPrimitiveSizeInBits());
1793 llvm::Value
*V
= Builder
.CreateBitCast(RawIntV
, PaddedVecTy
);
1794 // Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
1795 V
= emitBoolVecConversion(V
, ValNumElems
, "extractvec");
1797 return EmitFromMemory(V
, Ty
);
1800 // Handle vectors of size 3 like size 4 for better performance.
1801 const llvm::Type
*EltTy
= Addr
.getElementType();
1802 const auto *VTy
= cast
<llvm::FixedVectorType
>(EltTy
);
1804 if (!CGM
.getCodeGenOpts().PreserveVec3Type
&& VTy
->getNumElements() == 3) {
1806 llvm::VectorType
*vec4Ty
=
1807 llvm::FixedVectorType::get(VTy
->getElementType(), 4);
1808 Address Cast
= Addr
.withElementType(vec4Ty
);
1810 llvm::Value
*V
= Builder
.CreateLoad(Cast
, Volatile
, "loadVec4");
1812 // Shuffle vector to get vec3.
1813 V
= Builder
.CreateShuffleVector(V
, ArrayRef
<int>{0, 1, 2}, "extractVec");
1814 return EmitFromMemory(V
, Ty
);
1818 // Atomic operations have to be done on integral types.
1819 LValue AtomicLValue
=
1820 LValue::MakeAddr(Addr
, Ty
, getContext(), BaseInfo
, TBAAInfo
);
1821 if (Ty
->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue
)) {
1822 return EmitAtomicLoad(AtomicLValue
, Loc
).getScalarVal();
1825 llvm::LoadInst
*Load
= Builder
.CreateLoad(Addr
, Volatile
);
1826 if (isNontemporal
) {
1827 llvm::MDNode
*Node
= llvm::MDNode::get(
1828 Load
->getContext(), llvm::ConstantAsMetadata::get(Builder
.getInt32(1)));
1829 Load
->setMetadata(llvm::LLVMContext::MD_nontemporal
, Node
);
1832 CGM
.DecorateInstructionWithTBAA(Load
, TBAAInfo
);
1834 if (EmitScalarRangeCheck(Load
, Ty
, Loc
)) {
1835 // In order to prevent the optimizer from throwing away the check, don't
1836 // attach range metadata to the load.
1837 } else if (CGM
.getCodeGenOpts().OptimizationLevel
> 0)
1838 if (llvm::MDNode
*RangeInfo
= getRangeForLoadFromType(Ty
)) {
1839 Load
->setMetadata(llvm::LLVMContext::MD_range
, RangeInfo
);
1840 Load
->setMetadata(llvm::LLVMContext::MD_noundef
,
1841 llvm::MDNode::get(getLLVMContext(), std::nullopt
));
1844 return EmitFromMemory(Load
, Ty
);
1847 llvm::Value
*CodeGenFunction::EmitToMemory(llvm::Value
*Value
, QualType Ty
) {
1848 // Bool has a different representation in memory than in registers.
1849 if (hasBooleanRepresentation(Ty
)) {
1850 // This should really always be an i1, but sometimes it's already
1851 // an i8, and it's awkward to track those cases down.
1852 if (Value
->getType()->isIntegerTy(1))
1853 return Builder
.CreateZExt(Value
, ConvertTypeForMem(Ty
), "frombool");
1854 assert(Value
->getType()->isIntegerTy(getContext().getTypeSize(Ty
)) &&
1855 "wrong value rep of bool");
1861 llvm::Value
*CodeGenFunction::EmitFromMemory(llvm::Value
*Value
, QualType Ty
) {
1862 // Bool has a different representation in memory than in registers.
1863 if (hasBooleanRepresentation(Ty
)) {
1864 assert(Value
->getType()->isIntegerTy(getContext().getTypeSize(Ty
)) &&
1865 "wrong value rep of bool");
1866 return Builder
.CreateTrunc(Value
, Builder
.getInt1Ty(), "tobool");
1868 if (Ty
->isExtVectorBoolType()) {
1869 const auto *RawIntTy
= Value
->getType();
1870 // Bitcast iP --> <P x i1>.
1871 auto *PaddedVecTy
= llvm::FixedVectorType::get(
1872 Builder
.getInt1Ty(), RawIntTy
->getPrimitiveSizeInBits());
1873 auto *V
= Builder
.CreateBitCast(Value
, PaddedVecTy
);
1874 // Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
1875 llvm::Type
*ValTy
= ConvertType(Ty
);
1876 unsigned ValNumElems
= cast
<llvm::FixedVectorType
>(ValTy
)->getNumElements();
1877 return emitBoolVecConversion(V
, ValNumElems
, "extractvec");
1883 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1884 // MatrixType), if it points to a array (the memory type of MatrixType).
1885 static Address
MaybeConvertMatrixAddress(Address Addr
, CodeGenFunction
&CGF
,
1886 bool IsVector
= true) {
1887 auto *ArrayTy
= dyn_cast
<llvm::ArrayType
>(Addr
.getElementType());
1888 if (ArrayTy
&& IsVector
) {
1889 auto *VectorTy
= llvm::FixedVectorType::get(ArrayTy
->getElementType(),
1890 ArrayTy
->getNumElements());
1892 return Addr
.withElementType(VectorTy
);
1894 auto *VectorTy
= dyn_cast
<llvm::VectorType
>(Addr
.getElementType());
1895 if (VectorTy
&& !IsVector
) {
1896 auto *ArrayTy
= llvm::ArrayType::get(
1897 VectorTy
->getElementType(),
1898 cast
<llvm::FixedVectorType
>(VectorTy
)->getNumElements());
1900 return Addr
.withElementType(ArrayTy
);
1906 // Emit a store of a matrix LValue. This may require casting the original
1907 // pointer to memory address (ArrayType) to a pointer to the value type
1909 static void EmitStoreOfMatrixScalar(llvm::Value
*value
, LValue lvalue
,
1910 bool isInit
, CodeGenFunction
&CGF
) {
1911 Address Addr
= MaybeConvertMatrixAddress(lvalue
.getAddress(CGF
), CGF
,
1912 value
->getType()->isVectorTy());
1913 CGF
.EmitStoreOfScalar(value
, Addr
, lvalue
.isVolatile(), lvalue
.getType(),
1914 lvalue
.getBaseInfo(), lvalue
.getTBAAInfo(), isInit
,
1915 lvalue
.isNontemporal());
1918 void CodeGenFunction::EmitStoreOfScalar(llvm::Value
*Value
, Address Addr
,
1919 bool Volatile
, QualType Ty
,
1920 LValueBaseInfo BaseInfo
,
1921 TBAAAccessInfo TBAAInfo
,
1922 bool isInit
, bool isNontemporal
) {
1923 if (auto *GV
= dyn_cast
<llvm::GlobalValue
>(Addr
.getPointer()))
1924 if (GV
->isThreadLocal())
1925 Addr
= Addr
.withPointer(Builder
.CreateThreadLocalAddress(GV
),
1928 llvm::Type
*SrcTy
= Value
->getType();
1929 if (const auto *ClangVecTy
= Ty
->getAs
<VectorType
>()) {
1930 auto *VecTy
= dyn_cast
<llvm::FixedVectorType
>(SrcTy
);
1931 if (VecTy
&& ClangVecTy
->isExtVectorBoolType()) {
1932 auto *MemIntTy
= cast
<llvm::IntegerType
>(Addr
.getElementType());
1933 // Expand to the memory bit width.
1934 unsigned MemNumElems
= MemIntTy
->getPrimitiveSizeInBits();
1935 // <N x i1> --> <P x i1>.
1936 Value
= emitBoolVecConversion(Value
, MemNumElems
, "insertvec");
1938 Value
= Builder
.CreateBitCast(Value
, MemIntTy
);
1939 } else if (!CGM
.getCodeGenOpts().PreserveVec3Type
) {
1940 // Handle vec3 special.
1941 if (VecTy
&& cast
<llvm::FixedVectorType
>(VecTy
)->getNumElements() == 3) {
1942 // Our source is a vec3, do a shuffle vector to make it a vec4.
1943 Value
= Builder
.CreateShuffleVector(Value
, ArrayRef
<int>{0, 1, 2, -1},
1945 SrcTy
= llvm::FixedVectorType::get(VecTy
->getElementType(), 4);
1947 if (Addr
.getElementType() != SrcTy
) {
1948 Addr
= Addr
.withElementType(SrcTy
);
1953 Value
= EmitToMemory(Value
, Ty
);
1955 LValue AtomicLValue
=
1956 LValue::MakeAddr(Addr
, Ty
, getContext(), BaseInfo
, TBAAInfo
);
1957 if (Ty
->isAtomicType() ||
1958 (!isInit
&& LValueIsSuitableForInlineAtomic(AtomicLValue
))) {
1959 EmitAtomicStore(RValue::get(Value
), AtomicLValue
, isInit
);
1963 llvm::StoreInst
*Store
= Builder
.CreateStore(Value
, Addr
, Volatile
);
1964 if (isNontemporal
) {
1965 llvm::MDNode
*Node
=
1966 llvm::MDNode::get(Store
->getContext(),
1967 llvm::ConstantAsMetadata::get(Builder
.getInt32(1)));
1968 Store
->setMetadata(llvm::LLVMContext::MD_nontemporal
, Node
);
1971 CGM
.DecorateInstructionWithTBAA(Store
, TBAAInfo
);
1974 void CodeGenFunction::EmitStoreOfScalar(llvm::Value
*value
, LValue lvalue
,
1976 if (lvalue
.getType()->isConstantMatrixType()) {
1977 EmitStoreOfMatrixScalar(value
, lvalue
, isInit
, *this);
1981 EmitStoreOfScalar(value
, lvalue
.getAddress(*this), lvalue
.isVolatile(),
1982 lvalue
.getType(), lvalue
.getBaseInfo(),
1983 lvalue
.getTBAAInfo(), isInit
, lvalue
.isNontemporal());
1986 // Emit a load of a LValue of matrix type. This may require casting the pointer
1987 // to memory address (ArrayType) to a pointer to the value type (VectorType).
1988 static RValue
EmitLoadOfMatrixLValue(LValue LV
, SourceLocation Loc
,
1989 CodeGenFunction
&CGF
) {
1990 assert(LV
.getType()->isConstantMatrixType());
1991 Address Addr
= MaybeConvertMatrixAddress(LV
.getAddress(CGF
), CGF
);
1992 LV
.setAddress(Addr
);
1993 return RValue::get(CGF
.EmitLoadOfScalar(LV
, Loc
));
1996 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1997 /// method emits the address of the lvalue, then loads the result as an rvalue,
1998 /// returning the rvalue.
1999 RValue
CodeGenFunction::EmitLoadOfLValue(LValue LV
, SourceLocation Loc
) {
2000 if (LV
.isObjCWeak()) {
2001 // load of a __weak object.
2002 Address AddrWeakObj
= LV
.getAddress(*this);
2003 return RValue::get(CGM
.getObjCRuntime().EmitObjCWeakRead(*this,
2006 if (LV
.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak
) {
2007 // In MRC mode, we do a load+autorelease.
2008 if (!getLangOpts().ObjCAutoRefCount
) {
2009 return RValue::get(EmitARCLoadWeak(LV
.getAddress(*this)));
2012 // In ARC mode, we load retained and then consume the value.
2013 llvm::Value
*Object
= EmitARCLoadWeakRetained(LV
.getAddress(*this));
2014 Object
= EmitObjCConsumeObject(LV
.getType(), Object
);
2015 return RValue::get(Object
);
2018 if (LV
.isSimple()) {
2019 assert(!LV
.getType()->isFunctionType());
2021 if (LV
.getType()->isConstantMatrixType())
2022 return EmitLoadOfMatrixLValue(LV
, Loc
, *this);
2024 // Everything needs a load.
2025 return RValue::get(EmitLoadOfScalar(LV
, Loc
));
2028 if (LV
.isVectorElt()) {
2029 llvm::LoadInst
*Load
= Builder
.CreateLoad(LV
.getVectorAddress(),
2030 LV
.isVolatileQualified());
2031 return RValue::get(Builder
.CreateExtractElement(Load
, LV
.getVectorIdx(),
2035 // If this is a reference to a subset of the elements of a vector, either
2036 // shuffle the input or extract/insert them as appropriate.
2037 if (LV
.isExtVectorElt()) {
2038 return EmitLoadOfExtVectorElementLValue(LV
);
2041 // Global Register variables always invoke intrinsics
2042 if (LV
.isGlobalReg())
2043 return EmitLoadOfGlobalRegLValue(LV
);
2045 if (LV
.isMatrixElt()) {
2046 llvm::Value
*Idx
= LV
.getMatrixIdx();
2047 if (CGM
.getCodeGenOpts().OptimizationLevel
> 0) {
2048 const auto *const MatTy
= LV
.getType()->castAs
<ConstantMatrixType
>();
2049 llvm::MatrixBuilder
MB(Builder
);
2050 MB
.CreateIndexAssumption(Idx
, MatTy
->getNumElementsFlattened());
2052 llvm::LoadInst
*Load
=
2053 Builder
.CreateLoad(LV
.getMatrixAddress(), LV
.isVolatileQualified());
2054 return RValue::get(Builder
.CreateExtractElement(Load
, Idx
, "matrixext"));
2057 assert(LV
.isBitField() && "Unknown LValue type!");
2058 return EmitLoadOfBitfieldLValue(LV
, Loc
);
2061 RValue
CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV
,
2062 SourceLocation Loc
) {
2063 const CGBitFieldInfo
&Info
= LV
.getBitFieldInfo();
2065 // Get the output type.
2066 llvm::Type
*ResLTy
= ConvertType(LV
.getType());
2068 Address Ptr
= LV
.getBitFieldAddress();
2070 Builder
.CreateLoad(Ptr
, LV
.isVolatileQualified(), "bf.load");
2072 bool UseVolatile
= LV
.isVolatileQualified() &&
2073 Info
.VolatileStorageSize
!= 0 && isAAPCS(CGM
.getTarget());
2074 const unsigned Offset
= UseVolatile
? Info
.VolatileOffset
: Info
.Offset
;
2075 const unsigned StorageSize
=
2076 UseVolatile
? Info
.VolatileStorageSize
: Info
.StorageSize
;
2077 if (Info
.IsSigned
) {
2078 assert(static_cast<unsigned>(Offset
+ Info
.Size
) <= StorageSize
);
2079 unsigned HighBits
= StorageSize
- Offset
- Info
.Size
;
2081 Val
= Builder
.CreateShl(Val
, HighBits
, "bf.shl");
2082 if (Offset
+ HighBits
)
2083 Val
= Builder
.CreateAShr(Val
, Offset
+ HighBits
, "bf.ashr");
2086 Val
= Builder
.CreateLShr(Val
, Offset
, "bf.lshr");
2087 if (static_cast<unsigned>(Offset
) + Info
.Size
< StorageSize
)
2088 Val
= Builder
.CreateAnd(
2089 Val
, llvm::APInt::getLowBitsSet(StorageSize
, Info
.Size
), "bf.clear");
2091 Val
= Builder
.CreateIntCast(Val
, ResLTy
, Info
.IsSigned
, "bf.cast");
2092 EmitScalarRangeCheck(Val
, LV
.getType(), Loc
);
2093 return RValue::get(Val
);
2096 // If this is a reference to a subset of the elements of a vector, create an
2097 // appropriate shufflevector.
2098 RValue
CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV
) {
2099 llvm::Value
*Vec
= Builder
.CreateLoad(LV
.getExtVectorAddress(),
2100 LV
.isVolatileQualified());
2102 const llvm::Constant
*Elts
= LV
.getExtVectorElts();
2104 // If the result of the expression is a non-vector type, we must be extracting
2105 // a single element. Just codegen as an extractelement.
2106 const VectorType
*ExprVT
= LV
.getType()->getAs
<VectorType
>();
2108 unsigned InIdx
= getAccessedFieldNo(0, Elts
);
2109 llvm::Value
*Elt
= llvm::ConstantInt::get(SizeTy
, InIdx
);
2110 return RValue::get(Builder
.CreateExtractElement(Vec
, Elt
));
2113 // Always use shuffle vector to try to retain the original program structure
2114 unsigned NumResultElts
= ExprVT
->getNumElements();
2116 SmallVector
<int, 4> Mask
;
2117 for (unsigned i
= 0; i
!= NumResultElts
; ++i
)
2118 Mask
.push_back(getAccessedFieldNo(i
, Elts
));
2120 Vec
= Builder
.CreateShuffleVector(Vec
, Mask
);
2121 return RValue::get(Vec
);
2124 /// Generates lvalue for partial ext_vector access.
2125 Address
CodeGenFunction::EmitExtVectorElementLValue(LValue LV
) {
2126 Address VectorAddress
= LV
.getExtVectorAddress();
2127 QualType EQT
= LV
.getType()->castAs
<VectorType
>()->getElementType();
2128 llvm::Type
*VectorElementTy
= CGM
.getTypes().ConvertType(EQT
);
2130 Address CastToPointerElement
= VectorAddress
.withElementType(VectorElementTy
);
2132 const llvm::Constant
*Elts
= LV
.getExtVectorElts();
2133 unsigned ix
= getAccessedFieldNo(0, Elts
);
2135 Address VectorBasePtrPlusIx
=
2136 Builder
.CreateConstInBoundsGEP(CastToPointerElement
, ix
,
2139 return VectorBasePtrPlusIx
;
2142 /// Load of global gamed gegisters are always calls to intrinsics.
2143 RValue
CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV
) {
2144 assert((LV
.getType()->isIntegerType() || LV
.getType()->isPointerType()) &&
2145 "Bad type for register variable");
2146 llvm::MDNode
*RegName
= cast
<llvm::MDNode
>(
2147 cast
<llvm::MetadataAsValue
>(LV
.getGlobalReg())->getMetadata());
2149 // We accept integer and pointer types only
2150 llvm::Type
*OrigTy
= CGM
.getTypes().ConvertType(LV
.getType());
2151 llvm::Type
*Ty
= OrigTy
;
2152 if (OrigTy
->isPointerTy())
2153 Ty
= CGM
.getTypes().getDataLayout().getIntPtrType(OrigTy
);
2154 llvm::Type
*Types
[] = { Ty
};
2156 llvm::Function
*F
= CGM
.getIntrinsic(llvm::Intrinsic::read_register
, Types
);
2157 llvm::Value
*Call
= Builder
.CreateCall(
2158 F
, llvm::MetadataAsValue::get(Ty
->getContext(), RegName
));
2159 if (OrigTy
->isPointerTy())
2160 Call
= Builder
.CreateIntToPtr(Call
, OrigTy
);
2161 return RValue::get(Call
);
2164 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2165 /// lvalue, where both are guaranteed to the have the same type, and that type
2167 void CodeGenFunction::EmitStoreThroughLValue(RValue Src
, LValue Dst
,
2169 if (!Dst
.isSimple()) {
2170 if (Dst
.isVectorElt()) {
2171 // Read/modify/write the vector, inserting the new element.
2172 llvm::Value
*Vec
= Builder
.CreateLoad(Dst
.getVectorAddress(),
2173 Dst
.isVolatileQualified());
2174 auto *IRStoreTy
= dyn_cast
<llvm::IntegerType
>(Vec
->getType());
2176 auto *IRVecTy
= llvm::FixedVectorType::get(
2177 Builder
.getInt1Ty(), IRStoreTy
->getPrimitiveSizeInBits());
2178 Vec
= Builder
.CreateBitCast(Vec
, IRVecTy
);
2181 Vec
= Builder
.CreateInsertElement(Vec
, Src
.getScalarVal(),
2182 Dst
.getVectorIdx(), "vecins");
2184 // <N x i1> --> <iN>.
2185 Vec
= Builder
.CreateBitCast(Vec
, IRStoreTy
);
2187 Builder
.CreateStore(Vec
, Dst
.getVectorAddress(),
2188 Dst
.isVolatileQualified());
2192 // If this is an update of extended vector elements, insert them as
2194 if (Dst
.isExtVectorElt())
2195 return EmitStoreThroughExtVectorComponentLValue(Src
, Dst
);
2197 if (Dst
.isGlobalReg())
2198 return EmitStoreThroughGlobalRegLValue(Src
, Dst
);
2200 if (Dst
.isMatrixElt()) {
2201 llvm::Value
*Idx
= Dst
.getMatrixIdx();
2202 if (CGM
.getCodeGenOpts().OptimizationLevel
> 0) {
2203 const auto *const MatTy
= Dst
.getType()->castAs
<ConstantMatrixType
>();
2204 llvm::MatrixBuilder
MB(Builder
);
2205 MB
.CreateIndexAssumption(Idx
, MatTy
->getNumElementsFlattened());
2207 llvm::Instruction
*Load
= Builder
.CreateLoad(Dst
.getMatrixAddress());
2209 Builder
.CreateInsertElement(Load
, Src
.getScalarVal(), Idx
, "matins");
2210 Builder
.CreateStore(Vec
, Dst
.getMatrixAddress(),
2211 Dst
.isVolatileQualified());
2215 assert(Dst
.isBitField() && "Unknown LValue type");
2216 return EmitStoreThroughBitfieldLValue(Src
, Dst
);
2219 // There's special magic for assigning into an ARC-qualified l-value.
2220 if (Qualifiers::ObjCLifetime Lifetime
= Dst
.getQuals().getObjCLifetime()) {
2222 case Qualifiers::OCL_None
:
2223 llvm_unreachable("present but none");
2225 case Qualifiers::OCL_ExplicitNone
:
2229 case Qualifiers::OCL_Strong
:
2231 Src
= RValue::get(EmitARCRetain(Dst
.getType(), Src
.getScalarVal()));
2234 EmitARCStoreStrong(Dst
, Src
.getScalarVal(), /*ignore*/ true);
2237 case Qualifiers::OCL_Weak
:
2239 // Initialize and then skip the primitive store.
2240 EmitARCInitWeak(Dst
.getAddress(*this), Src
.getScalarVal());
2242 EmitARCStoreWeak(Dst
.getAddress(*this), Src
.getScalarVal(),
2246 case Qualifiers::OCL_Autoreleasing
:
2247 Src
= RValue::get(EmitObjCExtendObjectLifetime(Dst
.getType(),
2248 Src
.getScalarVal()));
2249 // fall into the normal path
2254 if (Dst
.isObjCWeak() && !Dst
.isNonGC()) {
2255 // load of a __weak object.
2256 Address LvalueDst
= Dst
.getAddress(*this);
2257 llvm::Value
*src
= Src
.getScalarVal();
2258 CGM
.getObjCRuntime().EmitObjCWeakAssign(*this, src
, LvalueDst
);
2262 if (Dst
.isObjCStrong() && !Dst
.isNonGC()) {
2263 // load of a __strong object.
2264 Address LvalueDst
= Dst
.getAddress(*this);
2265 llvm::Value
*src
= Src
.getScalarVal();
2266 if (Dst
.isObjCIvar()) {
2267 assert(Dst
.getBaseIvarExp() && "BaseIvarExp is NULL");
2268 llvm::Type
*ResultType
= IntPtrTy
;
2269 Address dst
= EmitPointerWithAlignment(Dst
.getBaseIvarExp());
2270 llvm::Value
*RHS
= dst
.getPointer();
2271 RHS
= Builder
.CreatePtrToInt(RHS
, ResultType
, "sub.ptr.rhs.cast");
2273 Builder
.CreatePtrToInt(LvalueDst
.getPointer(), ResultType
,
2274 "sub.ptr.lhs.cast");
2275 llvm::Value
*BytesBetween
= Builder
.CreateSub(LHS
, RHS
, "ivar.offset");
2276 CGM
.getObjCRuntime().EmitObjCIvarAssign(*this, src
, dst
,
2278 } else if (Dst
.isGlobalObjCRef()) {
2279 CGM
.getObjCRuntime().EmitObjCGlobalAssign(*this, src
, LvalueDst
,
2280 Dst
.isThreadLocalRef());
2283 CGM
.getObjCRuntime().EmitObjCStrongCastAssign(*this, src
, LvalueDst
);
2287 assert(Src
.isScalar() && "Can't emit an agg store with this method");
2288 EmitStoreOfScalar(Src
.getScalarVal(), Dst
, isInit
);
2291 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src
, LValue Dst
,
2292 llvm::Value
**Result
) {
2293 const CGBitFieldInfo
&Info
= Dst
.getBitFieldInfo();
2294 llvm::Type
*ResLTy
= ConvertTypeForMem(Dst
.getType());
2295 Address Ptr
= Dst
.getBitFieldAddress();
2297 // Get the source value, truncated to the width of the bit-field.
2298 llvm::Value
*SrcVal
= Src
.getScalarVal();
2300 // Cast the source to the storage type and shift it into place.
2301 SrcVal
= Builder
.CreateIntCast(SrcVal
, Ptr
.getElementType(),
2302 /*isSigned=*/false);
2303 llvm::Value
*MaskedVal
= SrcVal
;
2305 const bool UseVolatile
=
2306 CGM
.getCodeGenOpts().AAPCSBitfieldWidth
&& Dst
.isVolatileQualified() &&
2307 Info
.VolatileStorageSize
!= 0 && isAAPCS(CGM
.getTarget());
2308 const unsigned StorageSize
=
2309 UseVolatile
? Info
.VolatileStorageSize
: Info
.StorageSize
;
2310 const unsigned Offset
= UseVolatile
? Info
.VolatileOffset
: Info
.Offset
;
2311 // See if there are other bits in the bitfield's storage we'll need to load
2312 // and mask together with source before storing.
2313 if (StorageSize
!= Info
.Size
) {
2314 assert(StorageSize
> Info
.Size
&& "Invalid bitfield size.");
2316 Builder
.CreateLoad(Ptr
, Dst
.isVolatileQualified(), "bf.load");
2318 // Mask the source value as needed.
2319 if (!hasBooleanRepresentation(Dst
.getType()))
2320 SrcVal
= Builder
.CreateAnd(
2321 SrcVal
, llvm::APInt::getLowBitsSet(StorageSize
, Info
.Size
),
2325 SrcVal
= Builder
.CreateShl(SrcVal
, Offset
, "bf.shl");
2327 // Mask out the original value.
2328 Val
= Builder
.CreateAnd(
2329 Val
, ~llvm::APInt::getBitsSet(StorageSize
, Offset
, Offset
+ Info
.Size
),
2332 // Or together the unchanged values and the source value.
2333 SrcVal
= Builder
.CreateOr(Val
, SrcVal
, "bf.set");
2335 assert(Offset
== 0);
2336 // According to the AACPS:
2337 // When a volatile bit-field is written, and its container does not overlap
2338 // with any non-bit-field member, its container must be read exactly once
2339 // and written exactly once using the access width appropriate to the type
2340 // of the container. The two accesses are not atomic.
2341 if (Dst
.isVolatileQualified() && isAAPCS(CGM
.getTarget()) &&
2342 CGM
.getCodeGenOpts().ForceAAPCSBitfieldLoad
)
2343 Builder
.CreateLoad(Ptr
, true, "bf.load");
2346 // Write the new value back out.
2347 Builder
.CreateStore(SrcVal
, Ptr
, Dst
.isVolatileQualified());
2349 // Return the new value of the bit-field, if requested.
2351 llvm::Value
*ResultVal
= MaskedVal
;
2353 // Sign extend the value if needed.
2354 if (Info
.IsSigned
) {
2355 assert(Info
.Size
<= StorageSize
);
2356 unsigned HighBits
= StorageSize
- Info
.Size
;
2358 ResultVal
= Builder
.CreateShl(ResultVal
, HighBits
, "bf.result.shl");
2359 ResultVal
= Builder
.CreateAShr(ResultVal
, HighBits
, "bf.result.ashr");
2363 ResultVal
= Builder
.CreateIntCast(ResultVal
, ResLTy
, Info
.IsSigned
,
2365 *Result
= EmitFromMemory(ResultVal
, Dst
.getType());
2369 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src
,
2371 // This access turns into a read/modify/write of the vector. Load the input
2373 llvm::Value
*Vec
= Builder
.CreateLoad(Dst
.getExtVectorAddress(),
2374 Dst
.isVolatileQualified());
2375 const llvm::Constant
*Elts
= Dst
.getExtVectorElts();
2377 llvm::Value
*SrcVal
= Src
.getScalarVal();
2379 if (const VectorType
*VTy
= Dst
.getType()->getAs
<VectorType
>()) {
2380 unsigned NumSrcElts
= VTy
->getNumElements();
2381 unsigned NumDstElts
=
2382 cast
<llvm::FixedVectorType
>(Vec
->getType())->getNumElements();
2383 if (NumDstElts
== NumSrcElts
) {
2384 // Use shuffle vector is the src and destination are the same number of
2385 // elements and restore the vector mask since it is on the side it will be
2387 SmallVector
<int, 4> Mask(NumDstElts
);
2388 for (unsigned i
= 0; i
!= NumSrcElts
; ++i
)
2389 Mask
[getAccessedFieldNo(i
, Elts
)] = i
;
2391 Vec
= Builder
.CreateShuffleVector(SrcVal
, Mask
);
2392 } else if (NumDstElts
> NumSrcElts
) {
2393 // Extended the source vector to the same length and then shuffle it
2394 // into the destination.
2395 // FIXME: since we're shuffling with undef, can we just use the indices
2396 // into that? This could be simpler.
2397 SmallVector
<int, 4> ExtMask
;
2398 for (unsigned i
= 0; i
!= NumSrcElts
; ++i
)
2399 ExtMask
.push_back(i
);
2400 ExtMask
.resize(NumDstElts
, -1);
2401 llvm::Value
*ExtSrcVal
= Builder
.CreateShuffleVector(SrcVal
, ExtMask
);
2403 SmallVector
<int, 4> Mask
;
2404 for (unsigned i
= 0; i
!= NumDstElts
; ++i
)
2407 // When the vector size is odd and .odd or .hi is used, the last element
2408 // of the Elts constant array will be one past the size of the vector.
2409 // Ignore the last element here, if it is greater than the mask size.
2410 if (getAccessedFieldNo(NumSrcElts
- 1, Elts
) == Mask
.size())
2413 // modify when what gets shuffled in
2414 for (unsigned i
= 0; i
!= NumSrcElts
; ++i
)
2415 Mask
[getAccessedFieldNo(i
, Elts
)] = i
+ NumDstElts
;
2416 Vec
= Builder
.CreateShuffleVector(Vec
, ExtSrcVal
, Mask
);
2418 // We should never shorten the vector
2419 llvm_unreachable("unexpected shorten vector length");
2422 // If the Src is a scalar (not a vector) it must be updating one element.
2423 unsigned InIdx
= getAccessedFieldNo(0, Elts
);
2424 llvm::Value
*Elt
= llvm::ConstantInt::get(SizeTy
, InIdx
);
2425 Vec
= Builder
.CreateInsertElement(Vec
, SrcVal
, Elt
);
2428 Builder
.CreateStore(Vec
, Dst
.getExtVectorAddress(),
2429 Dst
.isVolatileQualified());
2432 /// Store of global named registers are always calls to intrinsics.
2433 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src
, LValue Dst
) {
2434 assert((Dst
.getType()->isIntegerType() || Dst
.getType()->isPointerType()) &&
2435 "Bad type for register variable");
2436 llvm::MDNode
*RegName
= cast
<llvm::MDNode
>(
2437 cast
<llvm::MetadataAsValue
>(Dst
.getGlobalReg())->getMetadata());
2438 assert(RegName
&& "Register LValue is not metadata");
2440 // We accept integer and pointer types only
2441 llvm::Type
*OrigTy
= CGM
.getTypes().ConvertType(Dst
.getType());
2442 llvm::Type
*Ty
= OrigTy
;
2443 if (OrigTy
->isPointerTy())
2444 Ty
= CGM
.getTypes().getDataLayout().getIntPtrType(OrigTy
);
2445 llvm::Type
*Types
[] = { Ty
};
2447 llvm::Function
*F
= CGM
.getIntrinsic(llvm::Intrinsic::write_register
, Types
);
2448 llvm::Value
*Value
= Src
.getScalarVal();
2449 if (OrigTy
->isPointerTy())
2450 Value
= Builder
.CreatePtrToInt(Value
, Ty
);
2452 F
, {llvm::MetadataAsValue::get(Ty
->getContext(), RegName
), Value
});
2455 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2456 // generating write-barries API. It is currently a global, ivar,
2458 static void setObjCGCLValueClass(const ASTContext
&Ctx
, const Expr
*E
,
2460 bool IsMemberAccess
=false) {
2461 if (Ctx
.getLangOpts().getGC() == LangOptions::NonGC
)
2464 if (isa
<ObjCIvarRefExpr
>(E
)) {
2465 QualType ExpTy
= E
->getType();
2466 if (IsMemberAccess
&& ExpTy
->isPointerType()) {
2467 // If ivar is a structure pointer, assigning to field of
2468 // this struct follows gcc's behavior and makes it a non-ivar
2469 // writer-barrier conservatively.
2470 ExpTy
= ExpTy
->castAs
<PointerType
>()->getPointeeType();
2471 if (ExpTy
->isRecordType()) {
2472 LV
.setObjCIvar(false);
2476 LV
.setObjCIvar(true);
2477 auto *Exp
= cast
<ObjCIvarRefExpr
>(const_cast<Expr
*>(E
));
2478 LV
.setBaseIvarExp(Exp
->getBase());
2479 LV
.setObjCArray(E
->getType()->isArrayType());
2483 if (const auto *Exp
= dyn_cast
<DeclRefExpr
>(E
)) {
2484 if (const auto *VD
= dyn_cast
<VarDecl
>(Exp
->getDecl())) {
2485 if (VD
->hasGlobalStorage()) {
2486 LV
.setGlobalObjCRef(true);
2487 LV
.setThreadLocalRef(VD
->getTLSKind() != VarDecl::TLS_None
);
2490 LV
.setObjCArray(E
->getType()->isArrayType());
2494 if (const auto *Exp
= dyn_cast
<UnaryOperator
>(E
)) {
2495 setObjCGCLValueClass(Ctx
, Exp
->getSubExpr(), LV
, IsMemberAccess
);
2499 if (const auto *Exp
= dyn_cast
<ParenExpr
>(E
)) {
2500 setObjCGCLValueClass(Ctx
, Exp
->getSubExpr(), LV
, IsMemberAccess
);
2501 if (LV
.isObjCIvar()) {
2502 // If cast is to a structure pointer, follow gcc's behavior and make it
2503 // a non-ivar write-barrier.
2504 QualType ExpTy
= E
->getType();
2505 if (ExpTy
->isPointerType())
2506 ExpTy
= ExpTy
->castAs
<PointerType
>()->getPointeeType();
2507 if (ExpTy
->isRecordType())
2508 LV
.setObjCIvar(false);
2513 if (const auto *Exp
= dyn_cast
<GenericSelectionExpr
>(E
)) {
2514 setObjCGCLValueClass(Ctx
, Exp
->getResultExpr(), LV
);
2518 if (const auto *Exp
= dyn_cast
<ImplicitCastExpr
>(E
)) {
2519 setObjCGCLValueClass(Ctx
, Exp
->getSubExpr(), LV
, IsMemberAccess
);
2523 if (const auto *Exp
= dyn_cast
<CStyleCastExpr
>(E
)) {
2524 setObjCGCLValueClass(Ctx
, Exp
->getSubExpr(), LV
, IsMemberAccess
);
2528 if (const auto *Exp
= dyn_cast
<ObjCBridgedCastExpr
>(E
)) {
2529 setObjCGCLValueClass(Ctx
, Exp
->getSubExpr(), LV
, IsMemberAccess
);
2533 if (const auto *Exp
= dyn_cast
<ArraySubscriptExpr
>(E
)) {
2534 setObjCGCLValueClass(Ctx
, Exp
->getBase(), LV
);
2535 if (LV
.isObjCIvar() && !LV
.isObjCArray())
2536 // Using array syntax to assigning to what an ivar points to is not
2537 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2538 LV
.setObjCIvar(false);
2539 else if (LV
.isGlobalObjCRef() && !LV
.isObjCArray())
2540 // Using array syntax to assigning to what global points to is not
2541 // same as assigning to the global itself. {id *G;} G[i] = 0;
2542 LV
.setGlobalObjCRef(false);
2546 if (const auto *Exp
= dyn_cast
<MemberExpr
>(E
)) {
2547 setObjCGCLValueClass(Ctx
, Exp
->getBase(), LV
, true);
2548 // We don't know if member is an 'ivar', but this flag is looked at
2549 // only in the context of LV.isObjCIvar().
2550 LV
.setObjCArray(E
->getType()->isArrayType());
2555 static LValue
EmitThreadPrivateVarDeclLValue(
2556 CodeGenFunction
&CGF
, const VarDecl
*VD
, QualType T
, Address Addr
,
2557 llvm::Type
*RealVarTy
, SourceLocation Loc
) {
2558 if (CGF
.CGM
.getLangOpts().OpenMPIRBuilder
)
2559 Addr
= CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2560 CGF
, VD
, Addr
, Loc
);
2563 CGF
.CGM
.getOpenMPRuntime().getAddrOfThreadPrivate(CGF
, VD
, Addr
, Loc
);
2565 Addr
= Addr
.withElementType(RealVarTy
);
2566 return CGF
.MakeAddrLValue(Addr
, T
, AlignmentSource::Decl
);
2569 static Address
emitDeclTargetVarDeclLValue(CodeGenFunction
&CGF
,
2570 const VarDecl
*VD
, QualType T
) {
2571 std::optional
<OMPDeclareTargetDeclAttr::MapTypeTy
> Res
=
2572 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD
);
2573 // Return an invalid address if variable is MT_To (or MT_Enter starting with
2574 // OpenMP 5.2) and unified memory is not enabled. For all other cases: MT_Link
2575 // and MT_To (or MT_Enter) with unified memory, return a valid address.
2576 if (!Res
|| ((*Res
== OMPDeclareTargetDeclAttr::MT_To
||
2577 *Res
== OMPDeclareTargetDeclAttr::MT_Enter
) &&
2578 !CGF
.CGM
.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2579 return Address::invalid();
2580 assert(((*Res
== OMPDeclareTargetDeclAttr::MT_Link
) ||
2581 ((*Res
== OMPDeclareTargetDeclAttr::MT_To
||
2582 *Res
== OMPDeclareTargetDeclAttr::MT_Enter
) &&
2583 CGF
.CGM
.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2584 "Expected link clause OR to clause with unified memory enabled.");
2585 QualType PtrTy
= CGF
.getContext().getPointerType(VD
->getType());
2586 Address Addr
= CGF
.CGM
.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD
);
2587 return CGF
.EmitLoadOfPointer(Addr
, PtrTy
->castAs
<PointerType
>());
2591 CodeGenFunction::EmitLoadOfReference(LValue RefLVal
,
2592 LValueBaseInfo
*PointeeBaseInfo
,
2593 TBAAAccessInfo
*PointeeTBAAInfo
) {
2594 llvm::LoadInst
*Load
=
2595 Builder
.CreateLoad(RefLVal
.getAddress(*this), RefLVal
.isVolatile());
2596 CGM
.DecorateInstructionWithTBAA(Load
, RefLVal
.getTBAAInfo());
2598 QualType PointeeType
= RefLVal
.getType()->getPointeeType();
2599 CharUnits Align
= CGM
.getNaturalTypeAlignment(
2600 PointeeType
, PointeeBaseInfo
, PointeeTBAAInfo
,
2601 /* forPointeeType= */ true);
2602 return Address(Load
, ConvertTypeForMem(PointeeType
), Align
);
2605 LValue
CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal
) {
2606 LValueBaseInfo PointeeBaseInfo
;
2607 TBAAAccessInfo PointeeTBAAInfo
;
2608 Address PointeeAddr
= EmitLoadOfReference(RefLVal
, &PointeeBaseInfo
,
2610 return MakeAddrLValue(PointeeAddr
, RefLVal
.getType()->getPointeeType(),
2611 PointeeBaseInfo
, PointeeTBAAInfo
);
2614 Address
CodeGenFunction::EmitLoadOfPointer(Address Ptr
,
2615 const PointerType
*PtrTy
,
2616 LValueBaseInfo
*BaseInfo
,
2617 TBAAAccessInfo
*TBAAInfo
) {
2618 llvm::Value
*Addr
= Builder
.CreateLoad(Ptr
);
2619 return Address(Addr
, ConvertTypeForMem(PtrTy
->getPointeeType()),
2620 CGM
.getNaturalTypeAlignment(PtrTy
->getPointeeType(), BaseInfo
,
2622 /*forPointeeType=*/true));
2625 LValue
CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr
,
2626 const PointerType
*PtrTy
) {
2627 LValueBaseInfo BaseInfo
;
2628 TBAAAccessInfo TBAAInfo
;
2629 Address Addr
= EmitLoadOfPointer(PtrAddr
, PtrTy
, &BaseInfo
, &TBAAInfo
);
2630 return MakeAddrLValue(Addr
, PtrTy
->getPointeeType(), BaseInfo
, TBAAInfo
);
2633 static LValue
EmitGlobalVarDeclLValue(CodeGenFunction
&CGF
,
2634 const Expr
*E
, const VarDecl
*VD
) {
2635 QualType T
= E
->getType();
2637 // If it's thread_local, emit a call to its wrapper function instead.
2638 if (VD
->getTLSKind() == VarDecl::TLS_Dynamic
&&
2639 CGF
.CGM
.getCXXABI().usesThreadWrapperFunction(VD
))
2640 return CGF
.CGM
.getCXXABI().EmitThreadLocalVarDeclLValue(CGF
, VD
, T
);
2641 // Check if the variable is marked as declare target with link clause in
2643 if (CGF
.getLangOpts().OpenMPIsTargetDevice
) {
2644 Address Addr
= emitDeclTargetVarDeclLValue(CGF
, VD
, T
);
2646 return CGF
.MakeAddrLValue(Addr
, T
, AlignmentSource::Decl
);
2649 llvm::Value
*V
= CGF
.CGM
.GetAddrOfGlobalVar(VD
);
2651 if (VD
->getTLSKind() != VarDecl::TLS_None
)
2652 V
= CGF
.Builder
.CreateThreadLocalAddress(V
);
2654 llvm::Type
*RealVarTy
= CGF
.getTypes().ConvertTypeForMem(VD
->getType());
2655 CharUnits Alignment
= CGF
.getContext().getDeclAlign(VD
);
2656 Address
Addr(V
, RealVarTy
, Alignment
);
2657 // Emit reference to the private copy of the variable if it is an OpenMP
2658 // threadprivate variable.
2659 if (CGF
.getLangOpts().OpenMP
&& !CGF
.getLangOpts().OpenMPSimd
&&
2660 VD
->hasAttr
<OMPThreadPrivateDeclAttr
>()) {
2661 return EmitThreadPrivateVarDeclLValue(CGF
, VD
, T
, Addr
, RealVarTy
,
2664 LValue LV
= VD
->getType()->isReferenceType() ?
2665 CGF
.EmitLoadOfReferenceLValue(Addr
, VD
->getType(),
2666 AlignmentSource::Decl
) :
2667 CGF
.MakeAddrLValue(Addr
, T
, AlignmentSource::Decl
);
2668 setObjCGCLValueClass(CGF
.getContext(), E
, LV
);
2672 static llvm::Constant
*EmitFunctionDeclPointer(CodeGenModule
&CGM
,
2674 const FunctionDecl
*FD
= cast
<FunctionDecl
>(GD
.getDecl());
2675 if (FD
->hasAttr
<WeakRefAttr
>()) {
2676 ConstantAddress aliasee
= CGM
.GetWeakRefReference(FD
);
2677 return aliasee
.getPointer();
2680 llvm::Constant
*V
= CGM
.GetAddrOfFunction(GD
);
2681 if (!FD
->hasPrototype()) {
2682 if (const FunctionProtoType
*Proto
=
2683 FD
->getType()->getAs
<FunctionProtoType
>()) {
2684 // Ugly case: for a K&R-style definition, the type of the definition
2685 // isn't the same as the type of a use. Correct for this with a
2687 QualType NoProtoType
=
2688 CGM
.getContext().getFunctionNoProtoType(Proto
->getReturnType());
2689 NoProtoType
= CGM
.getContext().getPointerType(NoProtoType
);
2690 V
= llvm::ConstantExpr::getBitCast(V
,
2691 CGM
.getTypes().ConvertType(NoProtoType
));
2697 static LValue
EmitFunctionDeclLValue(CodeGenFunction
&CGF
, const Expr
*E
,
2699 const FunctionDecl
*FD
= cast
<FunctionDecl
>(GD
.getDecl());
2700 llvm::Value
*V
= EmitFunctionDeclPointer(CGF
.CGM
, GD
);
2701 CharUnits Alignment
= CGF
.getContext().getDeclAlign(FD
);
2702 return CGF
.MakeAddrLValue(V
, E
->getType(), Alignment
,
2703 AlignmentSource::Decl
);
2706 static LValue
EmitCapturedFieldLValue(CodeGenFunction
&CGF
, const FieldDecl
*FD
,
2707 llvm::Value
*ThisValue
) {
2709 return CGF
.EmitLValueForLambdaField(FD
, ThisValue
);
2712 /// Named Registers are named metadata pointing to the register name
2713 /// which will be read from/written to as an argument to the intrinsic
2714 /// @llvm.read/write_register.
2715 /// So far, only the name is being passed down, but other options such as
2716 /// register type, allocation type or even optimization options could be
2717 /// passed down via the metadata node.
2718 static LValue
EmitGlobalNamedRegister(const VarDecl
*VD
, CodeGenModule
&CGM
) {
2719 SmallString
<64> Name("llvm.named.register.");
2720 AsmLabelAttr
*Asm
= VD
->getAttr
<AsmLabelAttr
>();
2721 assert(Asm
->getLabel().size() < 64-Name
.size() &&
2722 "Register name too big");
2723 Name
.append(Asm
->getLabel());
2724 llvm::NamedMDNode
*M
=
2725 CGM
.getModule().getOrInsertNamedMetadata(Name
);
2726 if (M
->getNumOperands() == 0) {
2727 llvm::MDString
*Str
= llvm::MDString::get(CGM
.getLLVMContext(),
2729 llvm::Metadata
*Ops
[] = {Str
};
2730 M
->addOperand(llvm::MDNode::get(CGM
.getLLVMContext(), Ops
));
2733 CharUnits Alignment
= CGM
.getContext().getDeclAlign(VD
);
2736 llvm::MetadataAsValue::get(CGM
.getLLVMContext(), M
->getOperand(0));
2737 return LValue::MakeGlobalReg(Ptr
, Alignment
, VD
->getType());
2740 /// Determine whether we can emit a reference to \p VD from the current
2741 /// context, despite not necessarily having seen an odr-use of the variable in
2743 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction
&CGF
,
2744 const DeclRefExpr
*E
,
2745 const VarDecl
*VD
) {
2746 // For a variable declared in an enclosing scope, do not emit a spurious
2747 // reference even if we have a capture, as that will emit an unwarranted
2748 // reference to our capture state, and will likely generate worse code than
2749 // emitting a local copy.
2750 if (E
->refersToEnclosingVariableOrCapture())
2753 // For a local declaration declared in this function, we can always reference
2754 // it even if we don't have an odr-use.
2755 if (VD
->hasLocalStorage()) {
2756 return VD
->getDeclContext() ==
2757 dyn_cast_or_null
<DeclContext
>(CGF
.CurCodeDecl
);
2760 // For a global declaration, we can emit a reference to it if we know
2761 // for sure that we are able to emit a definition of it.
2762 VD
= VD
->getDefinition(CGF
.getContext());
2766 // Don't emit a spurious reference if it might be to a variable that only
2767 // exists on a different device / target.
2768 // FIXME: This is unnecessarily broad. Check whether this would actually be a
2769 // cross-target reference.
2770 if (CGF
.getLangOpts().OpenMP
|| CGF
.getLangOpts().CUDA
||
2771 CGF
.getLangOpts().OpenCL
) {
2775 // We can emit a spurious reference only if the linkage implies that we'll
2776 // be emitting a non-interposable symbol that will be retained until link
2778 switch (CGF
.CGM
.getLLVMLinkageVarDefinition(VD
)) {
2779 case llvm::GlobalValue::ExternalLinkage
:
2780 case llvm::GlobalValue::LinkOnceODRLinkage
:
2781 case llvm::GlobalValue::WeakODRLinkage
:
2782 case llvm::GlobalValue::InternalLinkage
:
2783 case llvm::GlobalValue::PrivateLinkage
:
2790 LValue
CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr
*E
) {
2791 const NamedDecl
*ND
= E
->getDecl();
2792 QualType T
= E
->getType();
2794 assert(E
->isNonOdrUse() != NOUR_Unevaluated
&&
2795 "should not emit an unevaluated operand");
2797 if (const auto *VD
= dyn_cast
<VarDecl
>(ND
)) {
2798 // Global Named registers access via intrinsics only
2799 if (VD
->getStorageClass() == SC_Register
&&
2800 VD
->hasAttr
<AsmLabelAttr
>() && !VD
->isLocalVarDecl())
2801 return EmitGlobalNamedRegister(VD
, CGM
);
2803 // If this DeclRefExpr does not constitute an odr-use of the variable,
2804 // we're not permitted to emit a reference to it in general, and it might
2805 // not be captured if capture would be necessary for a use. Emit the
2806 // constant value directly instead.
2807 if (E
->isNonOdrUse() == NOUR_Constant
&&
2808 (VD
->getType()->isReferenceType() ||
2809 !canEmitSpuriousReferenceToVariable(*this, E
, VD
))) {
2810 VD
->getAnyInitializer(VD
);
2811 llvm::Constant
*Val
= ConstantEmitter(*this).emitAbstract(
2812 E
->getLocation(), *VD
->evaluateValue(), VD
->getType());
2813 assert(Val
&& "failed to emit constant expression");
2815 Address Addr
= Address::invalid();
2816 if (!VD
->getType()->isReferenceType()) {
2817 // Spill the constant value to a global.
2818 Addr
= CGM
.createUnnamedGlobalFrom(*VD
, Val
,
2819 getContext().getDeclAlign(VD
));
2820 llvm::Type
*VarTy
= getTypes().ConvertTypeForMem(VD
->getType());
2821 auto *PTy
= llvm::PointerType::get(
2822 VarTy
, getTypes().getTargetAddressSpace(VD
->getType()));
2823 Addr
= Builder
.CreatePointerBitCastOrAddrSpaceCast(Addr
, PTy
, VarTy
);
2825 // Should we be using the alignment of the constant pointer we emitted?
2826 CharUnits Alignment
=
2827 CGM
.getNaturalTypeAlignment(E
->getType(),
2828 /* BaseInfo= */ nullptr,
2829 /* TBAAInfo= */ nullptr,
2830 /* forPointeeType= */ true);
2831 Addr
= Address(Val
, ConvertTypeForMem(E
->getType()), Alignment
);
2833 return MakeAddrLValue(Addr
, T
, AlignmentSource::Decl
);
2836 // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2838 // Check for captured variables.
2839 if (E
->refersToEnclosingVariableOrCapture()) {
2840 VD
= VD
->getCanonicalDecl();
2841 if (auto *FD
= LambdaCaptureFields
.lookup(VD
))
2842 return EmitCapturedFieldLValue(*this, FD
, CXXABIThisValue
);
2843 if (CapturedStmtInfo
) {
2844 auto I
= LocalDeclMap
.find(VD
);
2845 if (I
!= LocalDeclMap
.end()) {
2847 if (VD
->getType()->isReferenceType())
2848 CapLVal
= EmitLoadOfReferenceLValue(I
->second
, VD
->getType(),
2849 AlignmentSource::Decl
);
2851 CapLVal
= MakeAddrLValue(I
->second
, T
);
2852 // Mark lvalue as nontemporal if the variable is marked as nontemporal
2854 if (getLangOpts().OpenMP
&&
2855 CGM
.getOpenMPRuntime().isNontemporalDecl(VD
))
2856 CapLVal
.setNontemporal(/*Value=*/true);
2860 EmitCapturedFieldLValue(*this, CapturedStmtInfo
->lookup(VD
),
2861 CapturedStmtInfo
->getContextValue());
2862 Address LValueAddress
= CapLVal
.getAddress(*this);
2863 CapLVal
= MakeAddrLValue(
2864 Address(LValueAddress
.getPointer(), LValueAddress
.getElementType(),
2865 getContext().getDeclAlign(VD
)),
2866 CapLVal
.getType(), LValueBaseInfo(AlignmentSource::Decl
),
2867 CapLVal
.getTBAAInfo());
2868 // Mark lvalue as nontemporal if the variable is marked as nontemporal
2870 if (getLangOpts().OpenMP
&&
2871 CGM
.getOpenMPRuntime().isNontemporalDecl(VD
))
2872 CapLVal
.setNontemporal(/*Value=*/true);
2876 assert(isa
<BlockDecl
>(CurCodeDecl
));
2877 Address addr
= GetAddrOfBlockDecl(VD
);
2878 return MakeAddrLValue(addr
, T
, AlignmentSource::Decl
);
2882 // FIXME: We should be able to assert this for FunctionDecls as well!
2883 // FIXME: We should be able to assert this for all DeclRefExprs, not just
2884 // those with a valid source location.
2885 assert((ND
->isUsed(false) || !isa
<VarDecl
>(ND
) || E
->isNonOdrUse() ||
2886 !E
->getLocation().isValid()) &&
2887 "Should not use decl without marking it used!");
2889 if (ND
->hasAttr
<WeakRefAttr
>()) {
2890 const auto *VD
= cast
<ValueDecl
>(ND
);
2891 ConstantAddress Aliasee
= CGM
.GetWeakRefReference(VD
);
2892 return MakeAddrLValue(Aliasee
, T
, AlignmentSource::Decl
);
2895 if (const auto *VD
= dyn_cast
<VarDecl
>(ND
)) {
2896 // Check if this is a global variable.
2897 if (VD
->hasLinkage() || VD
->isStaticDataMember())
2898 return EmitGlobalVarDeclLValue(*this, E
, VD
);
2900 Address addr
= Address::invalid();
2902 // The variable should generally be present in the local decl map.
2903 auto iter
= LocalDeclMap
.find(VD
);
2904 if (iter
!= LocalDeclMap
.end()) {
2905 addr
= iter
->second
;
2907 // Otherwise, it might be static local we haven't emitted yet for
2908 // some reason; most likely, because it's in an outer function.
2909 } else if (VD
->isStaticLocal()) {
2910 llvm::Constant
*var
= CGM
.getOrCreateStaticVarDecl(
2911 *VD
, CGM
.getLLVMLinkageVarDefinition(VD
));
2913 var
, ConvertTypeForMem(VD
->getType()), getContext().getDeclAlign(VD
));
2915 // No other cases for now.
2917 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2920 // Handle threadlocal function locals.
2921 if (VD
->getTLSKind() != VarDecl::TLS_None
)
2922 addr
= addr
.withPointer(
2923 Builder
.CreateThreadLocalAddress(addr
.getPointer()), NotKnownNonNull
);
2925 // Check for OpenMP threadprivate variables.
2926 if (getLangOpts().OpenMP
&& !getLangOpts().OpenMPSimd
&&
2927 VD
->hasAttr
<OMPThreadPrivateDeclAttr
>()) {
2928 return EmitThreadPrivateVarDeclLValue(
2929 *this, VD
, T
, addr
, getTypes().ConvertTypeForMem(VD
->getType()),
2933 // Drill into block byref variables.
2934 bool isBlockByref
= VD
->isEscapingByref();
2936 addr
= emitBlockByrefAddress(addr
, VD
);
2939 // Drill into reference types.
2940 LValue LV
= VD
->getType()->isReferenceType() ?
2941 EmitLoadOfReferenceLValue(addr
, VD
->getType(), AlignmentSource::Decl
) :
2942 MakeAddrLValue(addr
, T
, AlignmentSource::Decl
);
2944 bool isLocalStorage
= VD
->hasLocalStorage();
2946 bool NonGCable
= isLocalStorage
&&
2947 !VD
->getType()->isReferenceType() &&
2950 LV
.getQuals().removeObjCGCAttr();
2954 bool isImpreciseLifetime
=
2955 (isLocalStorage
&& !VD
->hasAttr
<ObjCPreciseLifetimeAttr
>());
2956 if (isImpreciseLifetime
)
2957 LV
.setARCPreciseLifetime(ARCImpreciseLifetime
);
2958 setObjCGCLValueClass(getContext(), E
, LV
);
2962 if (const auto *FD
= dyn_cast
<FunctionDecl
>(ND
)) {
2963 LValue LV
= EmitFunctionDeclLValue(*this, E
, FD
);
2965 // Emit debuginfo for the function declaration if the target wants to.
2966 if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) {
2967 if (CGDebugInfo
*DI
= CGM
.getModuleDebugInfo()) {
2969 cast
<llvm::Function
>(LV
.getPointer(*this)->stripPointerCasts());
2970 if (!Fn
->getSubprogram())
2971 DI
->EmitFunctionDecl(FD
, FD
->getLocation(), T
, Fn
);
2978 // FIXME: While we're emitting a binding from an enclosing scope, all other
2979 // DeclRefExprs we see should be implicitly treated as if they also refer to
2980 // an enclosing scope.
2981 if (const auto *BD
= dyn_cast
<BindingDecl
>(ND
)) {
2982 if (E
->refersToEnclosingVariableOrCapture()) {
2983 auto *FD
= LambdaCaptureFields
.lookup(BD
);
2984 return EmitCapturedFieldLValue(*this, FD
, CXXABIThisValue
);
2986 return EmitLValue(BD
->getBinding());
2989 // We can form DeclRefExprs naming GUID declarations when reconstituting
2990 // non-type template parameters into expressions.
2991 if (const auto *GD
= dyn_cast
<MSGuidDecl
>(ND
))
2992 return MakeAddrLValue(CGM
.GetAddrOfMSGuidDecl(GD
), T
,
2993 AlignmentSource::Decl
);
2995 if (const auto *TPO
= dyn_cast
<TemplateParamObjectDecl
>(ND
))
2996 return MakeAddrLValue(CGM
.GetAddrOfTemplateParamObject(TPO
), T
,
2997 AlignmentSource::Decl
);
2999 llvm_unreachable("Unhandled DeclRefExpr");
3002 LValue
CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator
*E
) {
3003 // __extension__ doesn't affect lvalue-ness.
3004 if (E
->getOpcode() == UO_Extension
)
3005 return EmitLValue(E
->getSubExpr());
3007 QualType ExprTy
= getContext().getCanonicalType(E
->getSubExpr()->getType());
3008 switch (E
->getOpcode()) {
3009 default: llvm_unreachable("Unknown unary operator lvalue!");
3011 QualType T
= E
->getSubExpr()->getType()->getPointeeType();
3012 assert(!T
.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
3014 LValueBaseInfo BaseInfo
;
3015 TBAAAccessInfo TBAAInfo
;
3016 Address Addr
= EmitPointerWithAlignment(E
->getSubExpr(), &BaseInfo
,
3018 LValue LV
= MakeAddrLValue(Addr
, T
, BaseInfo
, TBAAInfo
);
3019 LV
.getQuals().setAddressSpace(ExprTy
.getAddressSpace());
3021 // We should not generate __weak write barrier on indirect reference
3022 // of a pointer to object; as in void foo (__weak id *param); *param = 0;
3023 // But, we continue to generate __strong write barrier on indirect write
3024 // into a pointer to object.
3025 if (getLangOpts().ObjC
&&
3026 getLangOpts().getGC() != LangOptions::NonGC
&&
3028 LV
.setNonGC(!E
->isOBJCGCCandidate(getContext()));
3033 LValue LV
= EmitLValue(E
->getSubExpr());
3034 assert(LV
.isSimple() && "real/imag on non-ordinary l-value");
3036 // __real is valid on scalars. This is a faster way of testing that.
3037 // __imag can only produce an rvalue on scalars.
3038 if (E
->getOpcode() == UO_Real
&&
3039 !LV
.getAddress(*this).getElementType()->isStructTy()) {
3040 assert(E
->getSubExpr()->getType()->isArithmeticType());
3044 QualType T
= ExprTy
->castAs
<ComplexType
>()->getElementType();
3047 (E
->getOpcode() == UO_Real
3048 ? emitAddrOfRealComponent(LV
.getAddress(*this), LV
.getType())
3049 : emitAddrOfImagComponent(LV
.getAddress(*this), LV
.getType()));
3050 LValue ElemLV
= MakeAddrLValue(Component
, T
, LV
.getBaseInfo(),
3051 CGM
.getTBAAInfoForSubobject(LV
, T
));
3052 ElemLV
.getQuals().addQualifiers(LV
.getQuals());
3057 LValue LV
= EmitLValue(E
->getSubExpr());
3058 bool isInc
= E
->getOpcode() == UO_PreInc
;
3060 if (E
->getType()->isAnyComplexType())
3061 EmitComplexPrePostIncDec(E
, LV
, isInc
, true/*isPre*/);
3063 EmitScalarPrePostIncDec(E
, LV
, isInc
, true/*isPre*/);
3069 LValue
CodeGenFunction::EmitStringLiteralLValue(const StringLiteral
*E
) {
3070 return MakeAddrLValue(CGM
.GetAddrOfConstantStringFromLiteral(E
),
3071 E
->getType(), AlignmentSource::Decl
);
3074 LValue
CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr
*E
) {
3075 return MakeAddrLValue(CGM
.GetAddrOfConstantStringFromObjCEncode(E
),
3076 E
->getType(), AlignmentSource::Decl
);
3079 LValue
CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr
*E
) {
3080 auto SL
= E
->getFunctionName();
3081 assert(SL
!= nullptr && "No StringLiteral name in PredefinedExpr");
3082 StringRef FnName
= CurFn
->getName();
3083 if (FnName
.startswith("\01"))
3084 FnName
= FnName
.substr(1);
3085 StringRef NameItems
[] = {
3086 PredefinedExpr::getIdentKindName(E
->getIdentKind()), FnName
};
3087 std::string GVName
= llvm::join(NameItems
, NameItems
+ 2, ".");
3088 if (auto *BD
= dyn_cast_or_null
<BlockDecl
>(CurCodeDecl
)) {
3089 std::string Name
= std::string(SL
->getString());
3090 if (!Name
.empty()) {
3091 unsigned Discriminator
=
3092 CGM
.getCXXABI().getMangleContext().getBlockId(BD
, true);
3094 Name
+= "_" + Twine(Discriminator
+ 1).str();
3095 auto C
= CGM
.GetAddrOfConstantCString(Name
, GVName
.c_str());
3096 return MakeAddrLValue(C
, E
->getType(), AlignmentSource::Decl
);
3099 CGM
.GetAddrOfConstantCString(std::string(FnName
), GVName
.c_str());
3100 return MakeAddrLValue(C
, E
->getType(), AlignmentSource::Decl
);
3103 auto C
= CGM
.GetAddrOfConstantStringFromLiteral(SL
, GVName
);
3104 return MakeAddrLValue(C
, E
->getType(), AlignmentSource::Decl
);
3107 /// Emit a type description suitable for use by a runtime sanitizer library. The
3108 /// format of a type descriptor is
3111 /// { i16 TypeKind, i16 TypeInfo }
3114 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
3115 /// integer, 1 for a floating point value, and -1 for anything else.
3116 llvm::Constant
*CodeGenFunction::EmitCheckTypeDescriptor(QualType T
) {
3117 // Only emit each type's descriptor once.
3118 if (llvm::Constant
*C
= CGM
.getTypeDescriptorFromMap(T
))
3121 uint16_t TypeKind
= -1;
3122 uint16_t TypeInfo
= 0;
3124 if (T
->isIntegerType()) {
3126 TypeInfo
= (llvm::Log2_32(getContext().getTypeSize(T
)) << 1) |
3127 (T
->isSignedIntegerType() ? 1 : 0);
3128 } else if (T
->isFloatingType()) {
3130 TypeInfo
= getContext().getTypeSize(T
);
3133 // Format the type name as if for a diagnostic, including quotes and
3134 // optionally an 'aka'.
3135 SmallString
<32> Buffer
;
3136 CGM
.getDiags().ConvertArgToString(
3137 DiagnosticsEngine::ak_qualtype
, (intptr_t)T
.getAsOpaquePtr(), StringRef(),
3138 StringRef(), std::nullopt
, Buffer
, std::nullopt
);
3140 llvm::Constant
*Components
[] = {
3141 Builder
.getInt16(TypeKind
), Builder
.getInt16(TypeInfo
),
3142 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer
)
3144 llvm::Constant
*Descriptor
= llvm::ConstantStruct::getAnon(Components
);
3146 auto *GV
= new llvm::GlobalVariable(
3147 CGM
.getModule(), Descriptor
->getType(),
3148 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage
, Descriptor
);
3149 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
3150 CGM
.getSanitizerMetadata()->disableSanitizerForGlobal(GV
);
3152 // Remember the descriptor for this type.
3153 CGM
.setTypeDescriptorInMap(T
, GV
);
3158 llvm::Value
*CodeGenFunction::EmitCheckValue(llvm::Value
*V
) {
3159 llvm::Type
*TargetTy
= IntPtrTy
;
3161 if (V
->getType() == TargetTy
)
3164 // Floating-point types which fit into intptr_t are bitcast to integers
3165 // and then passed directly (after zero-extension, if necessary).
3166 if (V
->getType()->isFloatingPointTy()) {
3167 unsigned Bits
= V
->getType()->getPrimitiveSizeInBits().getFixedValue();
3168 if (Bits
<= TargetTy
->getIntegerBitWidth())
3169 V
= Builder
.CreateBitCast(V
, llvm::Type::getIntNTy(getLLVMContext(),
3173 // Integers which fit in intptr_t are zero-extended and passed directly.
3174 if (V
->getType()->isIntegerTy() &&
3175 V
->getType()->getIntegerBitWidth() <= TargetTy
->getIntegerBitWidth())
3176 return Builder
.CreateZExt(V
, TargetTy
);
3178 // Pointers are passed directly, everything else is passed by address.
3179 if (!V
->getType()->isPointerTy()) {
3180 Address Ptr
= CreateDefaultAlignTempAlloca(V
->getType());
3181 Builder
.CreateStore(V
, Ptr
);
3182 V
= Ptr
.getPointer();
3184 return Builder
.CreatePtrToInt(V
, TargetTy
);
3187 /// Emit a representation of a SourceLocation for passing to a handler
3188 /// in a sanitizer runtime library. The format for this data is:
3190 /// struct SourceLocation {
3191 /// const char *Filename;
3192 /// int32_t Line, Column;
3195 /// For an invalid SourceLocation, the Filename pointer is null.
3196 llvm::Constant
*CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc
) {
3197 llvm::Constant
*Filename
;
3200 PresumedLoc PLoc
= getContext().getSourceManager().getPresumedLoc(Loc
);
3201 if (PLoc
.isValid()) {
3202 StringRef FilenameString
= PLoc
.getFilename();
3204 int PathComponentsToStrip
=
3205 CGM
.getCodeGenOpts().EmitCheckPathComponentsToStrip
;
3206 if (PathComponentsToStrip
< 0) {
3207 assert(PathComponentsToStrip
!= INT_MIN
);
3208 int PathComponentsToKeep
= -PathComponentsToStrip
;
3209 auto I
= llvm::sys::path::rbegin(FilenameString
);
3210 auto E
= llvm::sys::path::rend(FilenameString
);
3211 while (I
!= E
&& --PathComponentsToKeep
)
3214 FilenameString
= FilenameString
.substr(I
- E
);
3215 } else if (PathComponentsToStrip
> 0) {
3216 auto I
= llvm::sys::path::begin(FilenameString
);
3217 auto E
= llvm::sys::path::end(FilenameString
);
3218 while (I
!= E
&& PathComponentsToStrip
--)
3223 FilenameString
.substr(I
- llvm::sys::path::begin(FilenameString
));
3225 FilenameString
= llvm::sys::path::filename(FilenameString
);
3229 CGM
.GetAddrOfConstantCString(std::string(FilenameString
), ".src");
3230 CGM
.getSanitizerMetadata()->disableSanitizerForGlobal(
3231 cast
<llvm::GlobalVariable
>(
3232 FilenameGV
.getPointer()->stripPointerCasts()));
3233 Filename
= FilenameGV
.getPointer();
3234 Line
= PLoc
.getLine();
3235 Column
= PLoc
.getColumn();
3237 Filename
= llvm::Constant::getNullValue(Int8PtrTy
);
3241 llvm::Constant
*Data
[] = {Filename
, Builder
.getInt32(Line
),
3242 Builder
.getInt32(Column
)};
3244 return llvm::ConstantStruct::getAnon(Data
);
3248 /// Specify under what conditions this check can be recovered
3249 enum class CheckRecoverableKind
{
3250 /// Always terminate program execution if this check fails.
3252 /// Check supports recovering, runtime has both fatal (noreturn) and
3253 /// non-fatal handlers for this check.
3255 /// Runtime conditionally aborts, always need to support recovery.
3260 static CheckRecoverableKind
getRecoverableKind(SanitizerMask Kind
) {
3261 assert(Kind
.countPopulation() == 1);
3262 if (Kind
== SanitizerKind::Vptr
)
3263 return CheckRecoverableKind::AlwaysRecoverable
;
3264 else if (Kind
== SanitizerKind::Return
|| Kind
== SanitizerKind::Unreachable
)
3265 return CheckRecoverableKind::Unrecoverable
;
3267 return CheckRecoverableKind::Recoverable
;
3271 struct SanitizerHandlerInfo
{
3272 char const *const Name
;
3277 const SanitizerHandlerInfo SanitizerHandlers
[] = {
3278 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3279 LIST_SANITIZER_CHECKS
3280 #undef SANITIZER_CHECK
3283 static void emitCheckHandlerCall(CodeGenFunction
&CGF
,
3284 llvm::FunctionType
*FnType
,
3285 ArrayRef
<llvm::Value
*> FnArgs
,
3286 SanitizerHandler CheckHandler
,
3287 CheckRecoverableKind RecoverKind
, bool IsFatal
,
3288 llvm::BasicBlock
*ContBB
) {
3289 assert(IsFatal
|| RecoverKind
!= CheckRecoverableKind::Unrecoverable
);
3290 std::optional
<ApplyDebugLocation
> DL
;
3291 if (!CGF
.Builder
.getCurrentDebugLocation()) {
3292 // Ensure that the call has at least an artificial debug location.
3293 DL
.emplace(CGF
, SourceLocation());
3295 bool NeedsAbortSuffix
=
3296 IsFatal
&& RecoverKind
!= CheckRecoverableKind::Unrecoverable
;
3297 bool MinimalRuntime
= CGF
.CGM
.getCodeGenOpts().SanitizeMinimalRuntime
;
3298 const SanitizerHandlerInfo
&CheckInfo
= SanitizerHandlers
[CheckHandler
];
3299 const StringRef CheckName
= CheckInfo
.Name
;
3300 std::string FnName
= "__ubsan_handle_" + CheckName
.str();
3301 if (CheckInfo
.Version
&& !MinimalRuntime
)
3302 FnName
+= "_v" + llvm::utostr(CheckInfo
.Version
);
3304 FnName
+= "_minimal";
3305 if (NeedsAbortSuffix
)
3308 !IsFatal
|| RecoverKind
== CheckRecoverableKind::AlwaysRecoverable
;
3310 llvm::AttrBuilder
B(CGF
.getLLVMContext());
3312 B
.addAttribute(llvm::Attribute::NoReturn
)
3313 .addAttribute(llvm::Attribute::NoUnwind
);
3315 B
.addUWTableAttr(llvm::UWTableKind::Default
);
3317 llvm::FunctionCallee Fn
= CGF
.CGM
.CreateRuntimeFunction(
3319 llvm::AttributeList::get(CGF
.getLLVMContext(),
3320 llvm::AttributeList::FunctionIndex
, B
),
3322 llvm::CallInst
*HandlerCall
= CGF
.EmitNounwindRuntimeCall(Fn
, FnArgs
);
3324 HandlerCall
->setDoesNotReturn();
3325 CGF
.Builder
.CreateUnreachable();
3327 CGF
.Builder
.CreateBr(ContBB
);
3331 void CodeGenFunction::EmitCheck(
3332 ArrayRef
<std::pair
<llvm::Value
*, SanitizerMask
>> Checked
,
3333 SanitizerHandler CheckHandler
, ArrayRef
<llvm::Constant
*> StaticArgs
,
3334 ArrayRef
<llvm::Value
*> DynamicArgs
) {
3335 assert(IsSanitizerScope
);
3336 assert(Checked
.size() > 0);
3337 assert(CheckHandler
>= 0 &&
3338 size_t(CheckHandler
) < std::size(SanitizerHandlers
));
3339 const StringRef CheckName
= SanitizerHandlers
[CheckHandler
].Name
;
3341 llvm::Value
*FatalCond
= nullptr;
3342 llvm::Value
*RecoverableCond
= nullptr;
3343 llvm::Value
*TrapCond
= nullptr;
3344 for (int i
= 0, n
= Checked
.size(); i
< n
; ++i
) {
3345 llvm::Value
*Check
= Checked
[i
].first
;
3346 // -fsanitize-trap= overrides -fsanitize-recover=.
3347 llvm::Value
*&Cond
=
3348 CGM
.getCodeGenOpts().SanitizeTrap
.has(Checked
[i
].second
)
3350 : CGM
.getCodeGenOpts().SanitizeRecover
.has(Checked
[i
].second
)
3353 Cond
= Cond
? Builder
.CreateAnd(Cond
, Check
) : Check
;
3357 EmitTrapCheck(TrapCond
, CheckHandler
);
3358 if (!FatalCond
&& !RecoverableCond
)
3361 llvm::Value
*JointCond
;
3362 if (FatalCond
&& RecoverableCond
)
3363 JointCond
= Builder
.CreateAnd(FatalCond
, RecoverableCond
);
3365 JointCond
= FatalCond
? FatalCond
: RecoverableCond
;
3368 CheckRecoverableKind RecoverKind
= getRecoverableKind(Checked
[0].second
);
3369 assert(SanOpts
.has(Checked
[0].second
));
3371 for (int i
= 1, n
= Checked
.size(); i
< n
; ++i
) {
3372 assert(RecoverKind
== getRecoverableKind(Checked
[i
].second
) &&
3373 "All recoverable kinds in a single check must be same!");
3374 assert(SanOpts
.has(Checked
[i
].second
));
3378 llvm::BasicBlock
*Cont
= createBasicBlock("cont");
3379 llvm::BasicBlock
*Handlers
= createBasicBlock("handler." + CheckName
);
3380 llvm::Instruction
*Branch
= Builder
.CreateCondBr(JointCond
, Cont
, Handlers
);
3381 // Give hint that we very much don't expect to execute the handler
3382 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3383 llvm::MDBuilder
MDHelper(getLLVMContext());
3384 llvm::MDNode
*Node
= MDHelper
.createBranchWeights((1U << 20) - 1, 1);
3385 Branch
->setMetadata(llvm::LLVMContext::MD_prof
, Node
);
3386 EmitBlock(Handlers
);
3388 // Handler functions take an i8* pointing to the (handler-specific) static
3389 // information block, followed by a sequence of intptr_t arguments
3390 // representing operand values.
3391 SmallVector
<llvm::Value
*, 4> Args
;
3392 SmallVector
<llvm::Type
*, 4> ArgTypes
;
3393 if (!CGM
.getCodeGenOpts().SanitizeMinimalRuntime
) {
3394 Args
.reserve(DynamicArgs
.size() + 1);
3395 ArgTypes
.reserve(DynamicArgs
.size() + 1);
3397 // Emit handler arguments and create handler function type.
3398 if (!StaticArgs
.empty()) {
3399 llvm::Constant
*Info
= llvm::ConstantStruct::getAnon(StaticArgs
);
3400 auto *InfoPtr
= new llvm::GlobalVariable(
3401 CGM
.getModule(), Info
->getType(), false,
3402 llvm::GlobalVariable::PrivateLinkage
, Info
, "", nullptr,
3403 llvm::GlobalVariable::NotThreadLocal
,
3404 CGM
.getDataLayout().getDefaultGlobalsAddressSpace());
3405 InfoPtr
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
3406 CGM
.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr
);
3407 Args
.push_back(InfoPtr
);
3408 ArgTypes
.push_back(Args
.back()->getType());
3411 for (size_t i
= 0, n
= DynamicArgs
.size(); i
!= n
; ++i
) {
3412 Args
.push_back(EmitCheckValue(DynamicArgs
[i
]));
3413 ArgTypes
.push_back(IntPtrTy
);
3417 llvm::FunctionType
*FnType
=
3418 llvm::FunctionType::get(CGM
.VoidTy
, ArgTypes
, false);
3420 if (!FatalCond
|| !RecoverableCond
) {
3421 // Simple case: we need to generate a single handler call, either
3422 // fatal, or non-fatal.
3423 emitCheckHandlerCall(*this, FnType
, Args
, CheckHandler
, RecoverKind
,
3424 (FatalCond
!= nullptr), Cont
);
3426 // Emit two handler calls: first one for set of unrecoverable checks,
3427 // another one for recoverable.
3428 llvm::BasicBlock
*NonFatalHandlerBB
=
3429 createBasicBlock("non_fatal." + CheckName
);
3430 llvm::BasicBlock
*FatalHandlerBB
= createBasicBlock("fatal." + CheckName
);
3431 Builder
.CreateCondBr(FatalCond
, NonFatalHandlerBB
, FatalHandlerBB
);
3432 EmitBlock(FatalHandlerBB
);
3433 emitCheckHandlerCall(*this, FnType
, Args
, CheckHandler
, RecoverKind
, true,
3435 EmitBlock(NonFatalHandlerBB
);
3436 emitCheckHandlerCall(*this, FnType
, Args
, CheckHandler
, RecoverKind
, false,
3443 void CodeGenFunction::EmitCfiSlowPathCheck(
3444 SanitizerMask Kind
, llvm::Value
*Cond
, llvm::ConstantInt
*TypeId
,
3445 llvm::Value
*Ptr
, ArrayRef
<llvm::Constant
*> StaticArgs
) {
3446 llvm::BasicBlock
*Cont
= createBasicBlock("cfi.cont");
3448 llvm::BasicBlock
*CheckBB
= createBasicBlock("cfi.slowpath");
3449 llvm::BranchInst
*BI
= Builder
.CreateCondBr(Cond
, Cont
, CheckBB
);
3451 llvm::MDBuilder
MDHelper(getLLVMContext());
3452 llvm::MDNode
*Node
= MDHelper
.createBranchWeights((1U << 20) - 1, 1);
3453 BI
->setMetadata(llvm::LLVMContext::MD_prof
, Node
);
3457 bool WithDiag
= !CGM
.getCodeGenOpts().SanitizeTrap
.has(Kind
);
3459 llvm::CallInst
*CheckCall
;
3460 llvm::FunctionCallee SlowPathFn
;
3462 llvm::Constant
*Info
= llvm::ConstantStruct::getAnon(StaticArgs
);
3464 new llvm::GlobalVariable(CGM
.getModule(), Info
->getType(), false,
3465 llvm::GlobalVariable::PrivateLinkage
, Info
);
3466 InfoPtr
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
3467 CGM
.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr
);
3469 SlowPathFn
= CGM
.getModule().getOrInsertFunction(
3470 "__cfi_slowpath_diag",
3471 llvm::FunctionType::get(VoidTy
, {Int64Ty
, Int8PtrTy
, Int8PtrTy
},
3473 CheckCall
= Builder
.CreateCall(SlowPathFn
, {TypeId
, Ptr
, InfoPtr
});
3475 SlowPathFn
= CGM
.getModule().getOrInsertFunction(
3477 llvm::FunctionType::get(VoidTy
, {Int64Ty
, Int8PtrTy
}, false));
3478 CheckCall
= Builder
.CreateCall(SlowPathFn
, {TypeId
, Ptr
});
3482 cast
<llvm::GlobalValue
>(SlowPathFn
.getCallee()->stripPointerCasts()));
3483 CheckCall
->setDoesNotThrow();
3488 // Emit a stub for __cfi_check function so that the linker knows about this
3489 // symbol in LTO mode.
3490 void CodeGenFunction::EmitCfiCheckStub() {
3491 llvm::Module
*M
= &CGM
.getModule();
3492 auto &Ctx
= M
->getContext();
3493 llvm::Function
*F
= llvm::Function::Create(
3494 llvm::FunctionType::get(VoidTy
, {Int64Ty
, Int8PtrTy
, Int8PtrTy
}, false),
3495 llvm::GlobalValue::WeakAnyLinkage
, "__cfi_check", M
);
3496 F
->setAlignment(llvm::Align(4096));
3498 llvm::BasicBlock
*BB
= llvm::BasicBlock::Create(Ctx
, "entry", F
);
3499 // CrossDSOCFI pass is not executed if there is no executable code.
3500 SmallVector
<llvm::Value
*> Args
{F
->getArg(2), F
->getArg(1)};
3501 llvm::CallInst::Create(M
->getFunction("__cfi_check_fail"), Args
, "", BB
);
3502 llvm::ReturnInst::Create(Ctx
, nullptr, BB
);
3505 // This function is basically a switch over the CFI failure kind, which is
3506 // extracted from CFICheckFailData (1st function argument). Each case is either
3507 // llvm.trap or a call to one of the two runtime handlers, based on
3508 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid
3509 // failure kind) traps, but this should really never happen. CFICheckFailData
3510 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3511 // check kind; in this case __cfi_check_fail traps as well.
3512 void CodeGenFunction::EmitCfiCheckFail() {
3513 SanitizerScope
SanScope(this);
3514 FunctionArgList Args
;
3515 ImplicitParamDecl
ArgData(getContext(), getContext().VoidPtrTy
,
3516 ImplicitParamDecl::Other
);
3517 ImplicitParamDecl
ArgAddr(getContext(), getContext().VoidPtrTy
,
3518 ImplicitParamDecl::Other
);
3519 Args
.push_back(&ArgData
);
3520 Args
.push_back(&ArgAddr
);
3522 const CGFunctionInfo
&FI
=
3523 CGM
.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy
, Args
);
3525 llvm::Function
*F
= llvm::Function::Create(
3526 llvm::FunctionType::get(VoidTy
, {VoidPtrTy
, VoidPtrTy
}, false),
3527 llvm::GlobalValue::WeakODRLinkage
, "__cfi_check_fail", &CGM
.getModule());
3529 CGM
.SetLLVMFunctionAttributes(GlobalDecl(), FI
, F
, /*IsThunk=*/false);
3530 CGM
.SetLLVMFunctionAttributesForDefinition(nullptr, F
);
3531 F
->setVisibility(llvm::GlobalValue::HiddenVisibility
);
3533 StartFunction(GlobalDecl(), CGM
.getContext().VoidTy
, F
, FI
, Args
,
3536 // This function is not affected by NoSanitizeList. This function does
3537 // not have a source location, but "src:*" would still apply. Revert any
3538 // changes to SanOpts made in StartFunction.
3539 SanOpts
= CGM
.getLangOpts().Sanitize
;
3542 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData
), /*Volatile=*/false,
3543 CGM
.getContext().VoidPtrTy
, ArgData
.getLocation());
3545 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr
), /*Volatile=*/false,
3546 CGM
.getContext().VoidPtrTy
, ArgAddr
.getLocation());
3548 // Data == nullptr means the calling module has trap behaviour for this check.
3549 llvm::Value
*DataIsNotNullPtr
=
3550 Builder
.CreateICmpNE(Data
, llvm::ConstantPointerNull::get(Int8PtrTy
));
3551 EmitTrapCheck(DataIsNotNullPtr
, SanitizerHandler::CFICheckFail
);
3553 llvm::StructType
*SourceLocationTy
=
3554 llvm::StructType::get(VoidPtrTy
, Int32Ty
, Int32Ty
);
3555 llvm::StructType
*CfiCheckFailDataTy
=
3556 llvm::StructType::get(Int8Ty
, SourceLocationTy
, VoidPtrTy
);
3558 llvm::Value
*V
= Builder
.CreateConstGEP2_32(
3560 Builder
.CreatePointerCast(Data
, CfiCheckFailDataTy
->getPointerTo(0)), 0,
3563 Address
CheckKindAddr(V
, Int8Ty
, getIntAlign());
3564 llvm::Value
*CheckKind
= Builder
.CreateLoad(CheckKindAddr
);
3566 llvm::Value
*AllVtables
= llvm::MetadataAsValue::get(
3567 CGM
.getLLVMContext(),
3568 llvm::MDString::get(CGM
.getLLVMContext(), "all-vtables"));
3569 llvm::Value
*ValidVtable
= Builder
.CreateZExt(
3570 Builder
.CreateCall(CGM
.getIntrinsic(llvm::Intrinsic::type_test
),
3571 {Addr
, AllVtables
}),
3574 const std::pair
<int, SanitizerMask
> CheckKinds
[] = {
3575 {CFITCK_VCall
, SanitizerKind::CFIVCall
},
3576 {CFITCK_NVCall
, SanitizerKind::CFINVCall
},
3577 {CFITCK_DerivedCast
, SanitizerKind::CFIDerivedCast
},
3578 {CFITCK_UnrelatedCast
, SanitizerKind::CFIUnrelatedCast
},
3579 {CFITCK_ICall
, SanitizerKind::CFIICall
}};
3581 SmallVector
<std::pair
<llvm::Value
*, SanitizerMask
>, 5> Checks
;
3582 for (auto CheckKindMaskPair
: CheckKinds
) {
3583 int Kind
= CheckKindMaskPair
.first
;
3584 SanitizerMask Mask
= CheckKindMaskPair
.second
;
3586 Builder
.CreateICmpNE(CheckKind
, llvm::ConstantInt::get(Int8Ty
, Kind
));
3587 if (CGM
.getLangOpts().Sanitize
.has(Mask
))
3588 EmitCheck(std::make_pair(Cond
, Mask
), SanitizerHandler::CFICheckFail
, {},
3589 {Data
, Addr
, ValidVtable
});
3591 EmitTrapCheck(Cond
, SanitizerHandler::CFICheckFail
);
3595 // The only reference to this function will be created during LTO link.
3596 // Make sure it survives until then.
3597 CGM
.addUsedGlobal(F
);
3600 void CodeGenFunction::EmitUnreachable(SourceLocation Loc
) {
3601 if (SanOpts
.has(SanitizerKind::Unreachable
)) {
3602 SanitizerScope
SanScope(this);
3603 EmitCheck(std::make_pair(static_cast<llvm::Value
*>(Builder
.getFalse()),
3604 SanitizerKind::Unreachable
),
3605 SanitizerHandler::BuiltinUnreachable
,
3606 EmitCheckSourceLocation(Loc
), std::nullopt
);
3608 Builder
.CreateUnreachable();
3611 void CodeGenFunction::EmitTrapCheck(llvm::Value
*Checked
,
3612 SanitizerHandler CheckHandlerID
) {
3613 llvm::BasicBlock
*Cont
= createBasicBlock("cont");
3615 // If we're optimizing, collapse all calls to trap down to just one per
3616 // check-type per function to save on code size.
3617 if (TrapBBs
.size() <= CheckHandlerID
)
3618 TrapBBs
.resize(CheckHandlerID
+ 1);
3620 llvm::BasicBlock
*&TrapBB
= TrapBBs
[CheckHandlerID
];
3622 if (!ClSanitizeDebugDeoptimization
&&
3623 CGM
.getCodeGenOpts().OptimizationLevel
&& TrapBB
&&
3624 (!CurCodeDecl
|| !CurCodeDecl
->hasAttr
<OptimizeNoneAttr
>())) {
3625 auto Call
= TrapBB
->begin();
3626 assert(isa
<llvm::CallInst
>(Call
) && "Expected call in trap BB");
3628 Call
->applyMergedLocation(Call
->getDebugLoc(),
3629 Builder
.getCurrentDebugLocation());
3630 Builder
.CreateCondBr(Checked
, Cont
, TrapBB
);
3632 TrapBB
= createBasicBlock("trap");
3633 Builder
.CreateCondBr(Checked
, Cont
, TrapBB
);
3636 llvm::CallInst
*TrapCall
= Builder
.CreateCall(
3637 CGM
.getIntrinsic(llvm::Intrinsic::ubsantrap
),
3638 llvm::ConstantInt::get(CGM
.Int8Ty
, ClSanitizeDebugDeoptimization
3639 ? TrapBB
->getParent()->size()
3642 if (!CGM
.getCodeGenOpts().TrapFuncName
.empty()) {
3643 auto A
= llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3644 CGM
.getCodeGenOpts().TrapFuncName
);
3645 TrapCall
->addFnAttr(A
);
3647 TrapCall
->setDoesNotReturn();
3648 TrapCall
->setDoesNotThrow();
3649 Builder
.CreateUnreachable();
3655 llvm::CallInst
*CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID
) {
3656 llvm::CallInst
*TrapCall
=
3657 Builder
.CreateCall(CGM
.getIntrinsic(IntrID
));
3659 if (!CGM
.getCodeGenOpts().TrapFuncName
.empty()) {
3660 auto A
= llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3661 CGM
.getCodeGenOpts().TrapFuncName
);
3662 TrapCall
->addFnAttr(A
);
3668 Address
CodeGenFunction::EmitArrayToPointerDecay(const Expr
*E
,
3669 LValueBaseInfo
*BaseInfo
,
3670 TBAAAccessInfo
*TBAAInfo
) {
3671 assert(E
->getType()->isArrayType() &&
3672 "Array to pointer decay must have array source type!");
3674 // Expressions of array type can't be bitfields or vector elements.
3675 LValue LV
= EmitLValue(E
);
3676 Address Addr
= LV
.getAddress(*this);
3678 // If the array type was an incomplete type, we need to make sure
3679 // the decay ends up being the right type.
3680 llvm::Type
*NewTy
= ConvertType(E
->getType());
3681 Addr
= Addr
.withElementType(NewTy
);
3683 // Note that VLA pointers are always decayed, so we don't need to do
3685 if (!E
->getType()->isVariableArrayType()) {
3686 assert(isa
<llvm::ArrayType
>(Addr
.getElementType()) &&
3687 "Expected pointer to array");
3688 Addr
= Builder
.CreateConstArrayGEP(Addr
, 0, "arraydecay");
3691 // The result of this decay conversion points to an array element within the
3692 // base lvalue. However, since TBAA currently does not support representing
3693 // accesses to elements of member arrays, we conservatively represent accesses
3694 // to the pointee object as if it had no any base lvalue specified.
3695 // TODO: Support TBAA for member arrays.
3696 QualType EltType
= E
->getType()->castAsArrayTypeUnsafe()->getElementType();
3697 if (BaseInfo
) *BaseInfo
= LV
.getBaseInfo();
3698 if (TBAAInfo
) *TBAAInfo
= CGM
.getTBAAAccessInfo(EltType
);
3700 return Addr
.withElementType(ConvertTypeForMem(EltType
));
3703 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3704 /// array to pointer, return the array subexpression.
3705 static const Expr
*isSimpleArrayDecayOperand(const Expr
*E
) {
3706 // If this isn't just an array->pointer decay, bail out.
3707 const auto *CE
= dyn_cast
<CastExpr
>(E
);
3708 if (!CE
|| CE
->getCastKind() != CK_ArrayToPointerDecay
)
3711 // If this is a decay from variable width array, bail out.
3712 const Expr
*SubExpr
= CE
->getSubExpr();
3713 if (SubExpr
->getType()->isVariableArrayType())
3719 static llvm::Value
*emitArraySubscriptGEP(CodeGenFunction
&CGF
,
3720 llvm::Type
*elemType
,
3722 ArrayRef
<llvm::Value
*> indices
,
3726 const llvm::Twine
&name
= "arrayidx") {
3728 return CGF
.EmitCheckedInBoundsGEP(elemType
, ptr
, indices
, signedIndices
,
3729 CodeGenFunction::NotSubtraction
, loc
,
3732 return CGF
.Builder
.CreateGEP(elemType
, ptr
, indices
, name
);
3736 static CharUnits
getArrayElementAlign(CharUnits arrayAlign
,
3738 CharUnits eltSize
) {
3739 // If we have a constant index, we can use the exact offset of the
3740 // element we're accessing.
3741 if (auto constantIdx
= dyn_cast
<llvm::ConstantInt
>(idx
)) {
3742 CharUnits offset
= constantIdx
->getZExtValue() * eltSize
;
3743 return arrayAlign
.alignmentAtOffset(offset
);
3745 // Otherwise, use the worst-case alignment for any element.
3747 return arrayAlign
.alignmentOfArrayElement(eltSize
);
3751 static QualType
getFixedSizeElementType(const ASTContext
&ctx
,
3752 const VariableArrayType
*vla
) {
3755 eltType
= vla
->getElementType();
3756 } while ((vla
= ctx
.getAsVariableArrayType(eltType
)));
3760 /// Given an array base, check whether its member access belongs to a record
3761 /// with preserve_access_index attribute or not.
3762 static bool IsPreserveAIArrayBase(CodeGenFunction
&CGF
, const Expr
*ArrayBase
) {
3763 if (!ArrayBase
|| !CGF
.getDebugInfo())
3766 // Only support base as either a MemberExpr or DeclRefExpr.
3767 // DeclRefExpr to cover cases like:
3768 // struct s { int a; int b[10]; };
3771 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3772 // p->b[5] is a MemberExpr example.
3773 const Expr
*E
= ArrayBase
->IgnoreImpCasts();
3774 if (const auto *ME
= dyn_cast
<MemberExpr
>(E
))
3775 return ME
->getMemberDecl()->hasAttr
<BPFPreserveAccessIndexAttr
>();
3777 if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(E
)) {
3778 const auto *VarDef
= dyn_cast
<VarDecl
>(DRE
->getDecl());
3782 const auto *PtrT
= VarDef
->getType()->getAs
<PointerType
>();
3786 const auto *PointeeT
= PtrT
->getPointeeType()
3787 ->getUnqualifiedDesugaredType();
3788 if (const auto *RecT
= dyn_cast
<RecordType
>(PointeeT
))
3789 return RecT
->getDecl()->hasAttr
<BPFPreserveAccessIndexAttr
>();
3796 static Address
emitArraySubscriptGEP(CodeGenFunction
&CGF
, Address addr
,
3797 ArrayRef
<llvm::Value
*> indices
,
3798 QualType eltType
, bool inbounds
,
3799 bool signedIndices
, SourceLocation loc
,
3800 QualType
*arrayType
= nullptr,
3801 const Expr
*Base
= nullptr,
3802 const llvm::Twine
&name
= "arrayidx") {
3803 // All the indices except that last must be zero.
3805 for (auto *idx
: indices
.drop_back())
3806 assert(isa
<llvm::ConstantInt
>(idx
) &&
3807 cast
<llvm::ConstantInt
>(idx
)->isZero());
3810 // Determine the element size of the statically-sized base. This is
3811 // the thing that the indices are expressed in terms of.
3812 if (auto vla
= CGF
.getContext().getAsVariableArrayType(eltType
)) {
3813 eltType
= getFixedSizeElementType(CGF
.getContext(), vla
);
3816 // We can use that to compute the best alignment of the element.
3817 CharUnits eltSize
= CGF
.getContext().getTypeSizeInChars(eltType
);
3818 CharUnits eltAlign
=
3819 getArrayElementAlign(addr
.getAlignment(), indices
.back(), eltSize
);
3821 llvm::Value
*eltPtr
;
3822 auto LastIndex
= dyn_cast
<llvm::ConstantInt
>(indices
.back());
3824 (!CGF
.IsInPreservedAIRegion
&& !IsPreserveAIArrayBase(CGF
, Base
))) {
3825 eltPtr
= emitArraySubscriptGEP(
3826 CGF
, addr
.getElementType(), addr
.getPointer(), indices
, inbounds
,
3827 signedIndices
, loc
, name
);
3829 // Remember the original array subscript for bpf target
3830 unsigned idx
= LastIndex
->getZExtValue();
3831 llvm::DIType
*DbgInfo
= nullptr;
3833 DbgInfo
= CGF
.getDebugInfo()->getOrCreateStandaloneType(*arrayType
, loc
);
3834 eltPtr
= CGF
.Builder
.CreatePreserveArrayAccessIndex(addr
.getElementType(),
3840 return Address(eltPtr
, CGF
.ConvertTypeForMem(eltType
), eltAlign
);
3843 LValue
CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr
*E
,
3845 // The index must always be an integer, which is not an aggregate. Emit it
3846 // in lexical order (this complexity is, sadly, required by C++17).
3847 llvm::Value
*IdxPre
=
3848 (E
->getLHS() == E
->getIdx()) ? EmitScalarExpr(E
->getIdx()) : nullptr;
3849 bool SignedIndices
= false;
3850 auto EmitIdxAfterBase
= [&, IdxPre
](bool Promote
) -> llvm::Value
* {
3852 if (E
->getLHS() != E
->getIdx()) {
3853 assert(E
->getRHS() == E
->getIdx() && "index was neither LHS nor RHS");
3854 Idx
= EmitScalarExpr(E
->getIdx());
3857 QualType IdxTy
= E
->getIdx()->getType();
3858 bool IdxSigned
= IdxTy
->isSignedIntegerOrEnumerationType();
3859 SignedIndices
|= IdxSigned
;
3861 if (SanOpts
.has(SanitizerKind::ArrayBounds
))
3862 EmitBoundsCheck(E
, E
->getBase(), Idx
, IdxTy
, Accessed
);
3864 // Extend or truncate the index type to 32 or 64-bits.
3865 if (Promote
&& Idx
->getType() != IntPtrTy
)
3866 Idx
= Builder
.CreateIntCast(Idx
, IntPtrTy
, IdxSigned
, "idxprom");
3872 // If the base is a vector type, then we are forming a vector element lvalue
3873 // with this subscript.
3874 if (E
->getBase()->getType()->isVectorType() &&
3875 !isa
<ExtVectorElementExpr
>(E
->getBase())) {
3876 // Emit the vector as an lvalue to get its address.
3877 LValue LHS
= EmitLValue(E
->getBase());
3878 auto *Idx
= EmitIdxAfterBase(/*Promote*/false);
3879 assert(LHS
.isSimple() && "Can only subscript lvalue vectors here!");
3880 return LValue::MakeVectorElt(LHS
.getAddress(*this), Idx
,
3881 E
->getBase()->getType(), LHS
.getBaseInfo(),
3885 // All the other cases basically behave like simple offsetting.
3887 // Handle the extvector case we ignored above.
3888 if (isa
<ExtVectorElementExpr
>(E
->getBase())) {
3889 LValue LV
= EmitLValue(E
->getBase());
3890 auto *Idx
= EmitIdxAfterBase(/*Promote*/true);
3891 Address Addr
= EmitExtVectorElementLValue(LV
);
3893 QualType EltType
= LV
.getType()->castAs
<VectorType
>()->getElementType();
3894 Addr
= emitArraySubscriptGEP(*this, Addr
, Idx
, EltType
, /*inbounds*/ true,
3895 SignedIndices
, E
->getExprLoc());
3896 return MakeAddrLValue(Addr
, EltType
, LV
.getBaseInfo(),
3897 CGM
.getTBAAInfoForSubobject(LV
, EltType
));
3900 LValueBaseInfo EltBaseInfo
;
3901 TBAAAccessInfo EltTBAAInfo
;
3902 Address Addr
= Address::invalid();
3903 if (const VariableArrayType
*vla
=
3904 getContext().getAsVariableArrayType(E
->getType())) {
3905 // The base must be a pointer, which is not an aggregate. Emit
3906 // it. It needs to be emitted first in case it's what captures
3908 Addr
= EmitPointerWithAlignment(E
->getBase(), &EltBaseInfo
, &EltTBAAInfo
);
3909 auto *Idx
= EmitIdxAfterBase(/*Promote*/true);
3911 // The element count here is the total number of non-VLA elements.
3912 llvm::Value
*numElements
= getVLASize(vla
).NumElts
;
3914 // Effectively, the multiply by the VLA size is part of the GEP.
3915 // GEP indexes are signed, and scaling an index isn't permitted to
3916 // signed-overflow, so we use the same semantics for our explicit
3917 // multiply. We suppress this if overflow is not undefined behavior.
3918 if (getLangOpts().isSignedOverflowDefined()) {
3919 Idx
= Builder
.CreateMul(Idx
, numElements
);
3921 Idx
= Builder
.CreateNSWMul(Idx
, numElements
);
3924 Addr
= emitArraySubscriptGEP(*this, Addr
, Idx
, vla
->getElementType(),
3925 !getLangOpts().isSignedOverflowDefined(),
3926 SignedIndices
, E
->getExprLoc());
3928 } else if (const ObjCObjectType
*OIT
= E
->getType()->getAs
<ObjCObjectType
>()){
3929 // Indexing over an interface, as in "NSString *P; P[4];"
3931 // Emit the base pointer.
3932 Addr
= EmitPointerWithAlignment(E
->getBase(), &EltBaseInfo
, &EltTBAAInfo
);
3933 auto *Idx
= EmitIdxAfterBase(/*Promote*/true);
3935 CharUnits InterfaceSize
= getContext().getTypeSizeInChars(OIT
);
3936 llvm::Value
*InterfaceSizeVal
=
3937 llvm::ConstantInt::get(Idx
->getType(), InterfaceSize
.getQuantity());
3939 llvm::Value
*ScaledIdx
= Builder
.CreateMul(Idx
, InterfaceSizeVal
);
3941 // We don't necessarily build correct LLVM struct types for ObjC
3942 // interfaces, so we can't rely on GEP to do this scaling
3943 // correctly, so we need to cast to i8*. FIXME: is this actually
3944 // true? A lot of other things in the fragile ABI would break...
3945 llvm::Type
*OrigBaseElemTy
= Addr
.getElementType();
3948 CharUnits EltAlign
=
3949 getArrayElementAlign(Addr
.getAlignment(), Idx
, InterfaceSize
);
3950 llvm::Value
*EltPtr
=
3951 emitArraySubscriptGEP(*this, Int8Ty
, Addr
.getPointer(), ScaledIdx
,
3952 false, SignedIndices
, E
->getExprLoc());
3953 Addr
= Address(EltPtr
, OrigBaseElemTy
, EltAlign
);
3954 } else if (const Expr
*Array
= isSimpleArrayDecayOperand(E
->getBase())) {
3955 // If this is A[i] where A is an array, the frontend will have decayed the
3956 // base to be a ArrayToPointerDecay implicit cast. While correct, it is
3957 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3958 // "gep x, i" here. Emit one "gep A, 0, i".
3959 assert(Array
->getType()->isArrayType() &&
3960 "Array to pointer decay must have array source type!");
3962 // For simple multidimensional array indexing, set the 'accessed' flag for
3963 // better bounds-checking of the base expression.
3964 if (const auto *ASE
= dyn_cast
<ArraySubscriptExpr
>(Array
))
3965 ArrayLV
= EmitArraySubscriptExpr(ASE
, /*Accessed*/ true);
3967 ArrayLV
= EmitLValue(Array
);
3968 auto *Idx
= EmitIdxAfterBase(/*Promote*/true);
3970 // Propagate the alignment from the array itself to the result.
3971 QualType arrayType
= Array
->getType();
3972 Addr
= emitArraySubscriptGEP(
3973 *this, ArrayLV
.getAddress(*this), {CGM
.getSize(CharUnits::Zero()), Idx
},
3974 E
->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices
,
3975 E
->getExprLoc(), &arrayType
, E
->getBase());
3976 EltBaseInfo
= ArrayLV
.getBaseInfo();
3977 EltTBAAInfo
= CGM
.getTBAAInfoForSubobject(ArrayLV
, E
->getType());
3979 // The base must be a pointer; emit it with an estimate of its alignment.
3980 Addr
= EmitPointerWithAlignment(E
->getBase(), &EltBaseInfo
, &EltTBAAInfo
);
3981 auto *Idx
= EmitIdxAfterBase(/*Promote*/true);
3982 QualType ptrType
= E
->getBase()->getType();
3983 Addr
= emitArraySubscriptGEP(*this, Addr
, Idx
, E
->getType(),
3984 !getLangOpts().isSignedOverflowDefined(),
3985 SignedIndices
, E
->getExprLoc(), &ptrType
,
3989 LValue LV
= MakeAddrLValue(Addr
, E
->getType(), EltBaseInfo
, EltTBAAInfo
);
3991 if (getLangOpts().ObjC
&&
3992 getLangOpts().getGC() != LangOptions::NonGC
) {
3993 LV
.setNonGC(!E
->isOBJCGCCandidate(getContext()));
3994 setObjCGCLValueClass(getContext(), E
, LV
);
3999 LValue
CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr
*E
) {
4001 !E
->isIncomplete() &&
4002 "incomplete matrix subscript expressions should be rejected during Sema");
4003 LValue Base
= EmitLValue(E
->getBase());
4004 llvm::Value
*RowIdx
= EmitScalarExpr(E
->getRowIdx());
4005 llvm::Value
*ColIdx
= EmitScalarExpr(E
->getColumnIdx());
4006 llvm::Value
*NumRows
= Builder
.getIntN(
4007 RowIdx
->getType()->getScalarSizeInBits(),
4008 E
->getBase()->getType()->castAs
<ConstantMatrixType
>()->getNumRows());
4009 llvm::Value
*FinalIdx
=
4010 Builder
.CreateAdd(Builder
.CreateMul(ColIdx
, NumRows
), RowIdx
);
4011 return LValue::MakeMatrixElt(
4012 MaybeConvertMatrixAddress(Base
.getAddress(*this), *this), FinalIdx
,
4013 E
->getBase()->getType(), Base
.getBaseInfo(), TBAAAccessInfo());
4016 static Address
emitOMPArraySectionBase(CodeGenFunction
&CGF
, const Expr
*Base
,
4017 LValueBaseInfo
&BaseInfo
,
4018 TBAAAccessInfo
&TBAAInfo
,
4019 QualType BaseTy
, QualType ElTy
,
4020 bool IsLowerBound
) {
4022 if (auto *ASE
= dyn_cast
<OMPArraySectionExpr
>(Base
->IgnoreParenImpCasts())) {
4023 BaseLVal
= CGF
.EmitOMPArraySectionExpr(ASE
, IsLowerBound
);
4024 if (BaseTy
->isArrayType()) {
4025 Address Addr
= BaseLVal
.getAddress(CGF
);
4026 BaseInfo
= BaseLVal
.getBaseInfo();
4028 // If the array type was an incomplete type, we need to make sure
4029 // the decay ends up being the right type.
4030 llvm::Type
*NewTy
= CGF
.ConvertType(BaseTy
);
4031 Addr
= Addr
.withElementType(NewTy
);
4033 // Note that VLA pointers are always decayed, so we don't need to do
4035 if (!BaseTy
->isVariableArrayType()) {
4036 assert(isa
<llvm::ArrayType
>(Addr
.getElementType()) &&
4037 "Expected pointer to array");
4038 Addr
= CGF
.Builder
.CreateConstArrayGEP(Addr
, 0, "arraydecay");
4041 return Addr
.withElementType(CGF
.ConvertTypeForMem(ElTy
));
4043 LValueBaseInfo TypeBaseInfo
;
4044 TBAAAccessInfo TypeTBAAInfo
;
4046 CGF
.CGM
.getNaturalTypeAlignment(ElTy
, &TypeBaseInfo
, &TypeTBAAInfo
);
4047 BaseInfo
.mergeForCast(TypeBaseInfo
);
4048 TBAAInfo
= CGF
.CGM
.mergeTBAAInfoForCast(TBAAInfo
, TypeTBAAInfo
);
4049 return Address(CGF
.Builder
.CreateLoad(BaseLVal
.getAddress(CGF
)),
4050 CGF
.ConvertTypeForMem(ElTy
), Align
);
4052 return CGF
.EmitPointerWithAlignment(Base
, &BaseInfo
, &TBAAInfo
);
4055 LValue
CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr
*E
,
4056 bool IsLowerBound
) {
4057 QualType BaseTy
= OMPArraySectionExpr::getBaseOriginalType(E
->getBase());
4058 QualType ResultExprTy
;
4059 if (auto *AT
= getContext().getAsArrayType(BaseTy
))
4060 ResultExprTy
= AT
->getElementType();
4062 ResultExprTy
= BaseTy
->getPointeeType();
4063 llvm::Value
*Idx
= nullptr;
4064 if (IsLowerBound
|| E
->getColonLocFirst().isInvalid()) {
4065 // Requesting lower bound or upper bound, but without provided length and
4066 // without ':' symbol for the default length -> length = 1.
4067 // Idx = LowerBound ?: 0;
4068 if (auto *LowerBound
= E
->getLowerBound()) {
4069 Idx
= Builder
.CreateIntCast(
4070 EmitScalarExpr(LowerBound
), IntPtrTy
,
4071 LowerBound
->getType()->hasSignedIntegerRepresentation());
4073 Idx
= llvm::ConstantInt::getNullValue(IntPtrTy
);
4075 // Try to emit length or lower bound as constant. If this is possible, 1
4076 // is subtracted from constant length or lower bound. Otherwise, emit LLVM
4077 // IR (LB + Len) - 1.
4078 auto &C
= CGM
.getContext();
4079 auto *Length
= E
->getLength();
4080 llvm::APSInt ConstLength
;
4082 // Idx = LowerBound + Length - 1;
4083 if (std::optional
<llvm::APSInt
> CL
= Length
->getIntegerConstantExpr(C
)) {
4084 ConstLength
= CL
->zextOrTrunc(PointerWidthInBits
);
4087 auto *LowerBound
= E
->getLowerBound();
4088 llvm::APSInt
ConstLowerBound(PointerWidthInBits
, /*isUnsigned=*/false);
4090 if (std::optional
<llvm::APSInt
> LB
=
4091 LowerBound
->getIntegerConstantExpr(C
)) {
4092 ConstLowerBound
= LB
->zextOrTrunc(PointerWidthInBits
);
4093 LowerBound
= nullptr;
4098 else if (!LowerBound
)
4101 if (Length
|| LowerBound
) {
4102 auto *LowerBoundVal
=
4104 ? Builder
.CreateIntCast(
4105 EmitScalarExpr(LowerBound
), IntPtrTy
,
4106 LowerBound
->getType()->hasSignedIntegerRepresentation())
4107 : llvm::ConstantInt::get(IntPtrTy
, ConstLowerBound
);
4110 ? Builder
.CreateIntCast(
4111 EmitScalarExpr(Length
), IntPtrTy
,
4112 Length
->getType()->hasSignedIntegerRepresentation())
4113 : llvm::ConstantInt::get(IntPtrTy
, ConstLength
);
4114 Idx
= Builder
.CreateAdd(LowerBoundVal
, LengthVal
, "lb_add_len",
4116 !getLangOpts().isSignedOverflowDefined());
4117 if (Length
&& LowerBound
) {
4118 Idx
= Builder
.CreateSub(
4119 Idx
, llvm::ConstantInt::get(IntPtrTy
, /*V=*/1), "idx_sub_1",
4120 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4123 Idx
= llvm::ConstantInt::get(IntPtrTy
, ConstLength
+ ConstLowerBound
);
4125 // Idx = ArraySize - 1;
4126 QualType ArrayTy
= BaseTy
->isPointerType()
4127 ? E
->getBase()->IgnoreParenImpCasts()->getType()
4129 if (auto *VAT
= C
.getAsVariableArrayType(ArrayTy
)) {
4130 Length
= VAT
->getSizeExpr();
4131 if (std::optional
<llvm::APSInt
> L
= Length
->getIntegerConstantExpr(C
)) {
4136 auto *CAT
= C
.getAsConstantArrayType(ArrayTy
);
4137 assert(CAT
&& "unexpected type for array initializer");
4138 ConstLength
= CAT
->getSize();
4141 auto *LengthVal
= Builder
.CreateIntCast(
4142 EmitScalarExpr(Length
), IntPtrTy
,
4143 Length
->getType()->hasSignedIntegerRepresentation());
4144 Idx
= Builder
.CreateSub(
4145 LengthVal
, llvm::ConstantInt::get(IntPtrTy
, /*V=*/1), "len_sub_1",
4146 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4148 ConstLength
= ConstLength
.zextOrTrunc(PointerWidthInBits
);
4150 Idx
= llvm::ConstantInt::get(IntPtrTy
, ConstLength
);
4156 Address EltPtr
= Address::invalid();
4157 LValueBaseInfo BaseInfo
;
4158 TBAAAccessInfo TBAAInfo
;
4159 if (auto *VLA
= getContext().getAsVariableArrayType(ResultExprTy
)) {
4160 // The base must be a pointer, which is not an aggregate. Emit
4161 // it. It needs to be emitted first in case it's what captures
4164 emitOMPArraySectionBase(*this, E
->getBase(), BaseInfo
, TBAAInfo
,
4165 BaseTy
, VLA
->getElementType(), IsLowerBound
);
4166 // The element count here is the total number of non-VLA elements.
4167 llvm::Value
*NumElements
= getVLASize(VLA
).NumElts
;
4169 // Effectively, the multiply by the VLA size is part of the GEP.
4170 // GEP indexes are signed, and scaling an index isn't permitted to
4171 // signed-overflow, so we use the same semantics for our explicit
4172 // multiply. We suppress this if overflow is not undefined behavior.
4173 if (getLangOpts().isSignedOverflowDefined())
4174 Idx
= Builder
.CreateMul(Idx
, NumElements
);
4176 Idx
= Builder
.CreateNSWMul(Idx
, NumElements
);
4177 EltPtr
= emitArraySubscriptGEP(*this, Base
, Idx
, VLA
->getElementType(),
4178 !getLangOpts().isSignedOverflowDefined(),
4179 /*signedIndices=*/false, E
->getExprLoc());
4180 } else if (const Expr
*Array
= isSimpleArrayDecayOperand(E
->getBase())) {
4181 // If this is A[i] where A is an array, the frontend will have decayed the
4182 // base to be a ArrayToPointerDecay implicit cast. While correct, it is
4183 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
4184 // "gep x, i" here. Emit one "gep A, 0, i".
4185 assert(Array
->getType()->isArrayType() &&
4186 "Array to pointer decay must have array source type!");
4188 // For simple multidimensional array indexing, set the 'accessed' flag for
4189 // better bounds-checking of the base expression.
4190 if (const auto *ASE
= dyn_cast
<ArraySubscriptExpr
>(Array
))
4191 ArrayLV
= EmitArraySubscriptExpr(ASE
, /*Accessed*/ true);
4193 ArrayLV
= EmitLValue(Array
);
4195 // Propagate the alignment from the array itself to the result.
4196 EltPtr
= emitArraySubscriptGEP(
4197 *this, ArrayLV
.getAddress(*this), {CGM
.getSize(CharUnits::Zero()), Idx
},
4198 ResultExprTy
, !getLangOpts().isSignedOverflowDefined(),
4199 /*signedIndices=*/false, E
->getExprLoc());
4200 BaseInfo
= ArrayLV
.getBaseInfo();
4201 TBAAInfo
= CGM
.getTBAAInfoForSubobject(ArrayLV
, ResultExprTy
);
4203 Address Base
= emitOMPArraySectionBase(*this, E
->getBase(), BaseInfo
,
4204 TBAAInfo
, BaseTy
, ResultExprTy
,
4206 EltPtr
= emitArraySubscriptGEP(*this, Base
, Idx
, ResultExprTy
,
4207 !getLangOpts().isSignedOverflowDefined(),
4208 /*signedIndices=*/false, E
->getExprLoc());
4211 return MakeAddrLValue(EltPtr
, ResultExprTy
, BaseInfo
, TBAAInfo
);
4214 LValue
CodeGenFunction::
4215 EmitExtVectorElementExpr(const ExtVectorElementExpr
*E
) {
4216 // Emit the base vector as an l-value.
4219 // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4221 // If it is a pointer to a vector, emit the address and form an lvalue with
4223 LValueBaseInfo BaseInfo
;
4224 TBAAAccessInfo TBAAInfo
;
4225 Address Ptr
= EmitPointerWithAlignment(E
->getBase(), &BaseInfo
, &TBAAInfo
);
4226 const auto *PT
= E
->getBase()->getType()->castAs
<PointerType
>();
4227 Base
= MakeAddrLValue(Ptr
, PT
->getPointeeType(), BaseInfo
, TBAAInfo
);
4228 Base
.getQuals().removeObjCGCAttr();
4229 } else if (E
->getBase()->isGLValue()) {
4230 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4231 // emit the base as an lvalue.
4232 assert(E
->getBase()->getType()->isVectorType());
4233 Base
= EmitLValue(E
->getBase());
4235 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4236 assert(E
->getBase()->getType()->isVectorType() &&
4237 "Result must be a vector");
4238 llvm::Value
*Vec
= EmitScalarExpr(E
->getBase());
4240 // Store the vector to memory (because LValue wants an address).
4241 Address VecMem
= CreateMemTemp(E
->getBase()->getType());
4242 Builder
.CreateStore(Vec
, VecMem
);
4243 Base
= MakeAddrLValue(VecMem
, E
->getBase()->getType(),
4244 AlignmentSource::Decl
);
4248 E
->getType().withCVRQualifiers(Base
.getQuals().getCVRQualifiers());
4250 // Encode the element access list into a vector of unsigned indices.
4251 SmallVector
<uint32_t, 4> Indices
;
4252 E
->getEncodedElementAccess(Indices
);
4254 if (Base
.isSimple()) {
4255 llvm::Constant
*CV
=
4256 llvm::ConstantDataVector::get(getLLVMContext(), Indices
);
4257 return LValue::MakeExtVectorElt(Base
.getAddress(*this), CV
, type
,
4258 Base
.getBaseInfo(), TBAAAccessInfo());
4260 assert(Base
.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4262 llvm::Constant
*BaseElts
= Base
.getExtVectorElts();
4263 SmallVector
<llvm::Constant
*, 4> CElts
;
4265 for (unsigned i
= 0, e
= Indices
.size(); i
!= e
; ++i
)
4266 CElts
.push_back(BaseElts
->getAggregateElement(Indices
[i
]));
4267 llvm::Constant
*CV
= llvm::ConstantVector::get(CElts
);
4268 return LValue::MakeExtVectorElt(Base
.getExtVectorAddress(), CV
, type
,
4269 Base
.getBaseInfo(), TBAAAccessInfo());
4272 LValue
CodeGenFunction::EmitMemberExpr(const MemberExpr
*E
) {
4273 if (DeclRefExpr
*DRE
= tryToConvertMemberExprToDeclRefExpr(*this, E
)) {
4274 EmitIgnoredExpr(E
->getBase());
4275 return EmitDeclRefLValue(DRE
);
4278 Expr
*BaseExpr
= E
->getBase();
4279 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
4282 LValueBaseInfo BaseInfo
;
4283 TBAAAccessInfo TBAAInfo
;
4284 Address Addr
= EmitPointerWithAlignment(BaseExpr
, &BaseInfo
, &TBAAInfo
);
4285 QualType PtrTy
= BaseExpr
->getType()->getPointeeType();
4286 SanitizerSet SkippedChecks
;
4287 bool IsBaseCXXThis
= IsWrappedCXXThis(BaseExpr
);
4289 SkippedChecks
.set(SanitizerKind::Alignment
, true);
4290 if (IsBaseCXXThis
|| isa
<DeclRefExpr
>(BaseExpr
))
4291 SkippedChecks
.set(SanitizerKind::Null
, true);
4292 EmitTypeCheck(TCK_MemberAccess
, E
->getExprLoc(), Addr
.getPointer(), PtrTy
,
4293 /*Alignment=*/CharUnits::Zero(), SkippedChecks
);
4294 BaseLV
= MakeAddrLValue(Addr
, PtrTy
, BaseInfo
, TBAAInfo
);
4296 BaseLV
= EmitCheckedLValue(BaseExpr
, TCK_MemberAccess
);
4298 NamedDecl
*ND
= E
->getMemberDecl();
4299 if (auto *Field
= dyn_cast
<FieldDecl
>(ND
)) {
4300 LValue LV
= EmitLValueForField(BaseLV
, Field
);
4301 setObjCGCLValueClass(getContext(), E
, LV
);
4302 if (getLangOpts().OpenMP
) {
4303 // If the member was explicitly marked as nontemporal, mark it as
4304 // nontemporal. If the base lvalue is marked as nontemporal, mark access
4305 // to children as nontemporal too.
4306 if ((IsWrappedCXXThis(BaseExpr
) &&
4307 CGM
.getOpenMPRuntime().isNontemporalDecl(Field
)) ||
4308 BaseLV
.isNontemporal())
4309 LV
.setNontemporal(/*Value=*/true);
4314 if (const auto *FD
= dyn_cast
<FunctionDecl
>(ND
))
4315 return EmitFunctionDeclLValue(*this, E
, FD
);
4317 llvm_unreachable("Unhandled member declaration!");
4320 /// Given that we are currently emitting a lambda, emit an l-value for
4321 /// one of its members.
4323 LValue
CodeGenFunction::EmitLValueForLambdaField(const FieldDecl
*Field
,
4324 llvm::Value
*ThisValue
) {
4325 bool HasExplicitObjectParameter
= false;
4326 if (const auto *MD
= dyn_cast_if_present
<CXXMethodDecl
>(CurCodeDecl
)) {
4327 HasExplicitObjectParameter
= MD
->isExplicitObjectMemberFunction();
4328 assert(MD
->getParent()->isLambda());
4329 assert(MD
->getParent() == Field
->getParent());
4332 if (HasExplicitObjectParameter
) {
4333 const VarDecl
*D
= cast
<CXXMethodDecl
>(CurCodeDecl
)->getParamDecl(0);
4334 auto It
= LocalDeclMap
.find(D
);
4335 assert(It
!= LocalDeclMap
.end() && "explicit parameter not loaded?");
4336 Address AddrOfExplicitObject
= It
->getSecond();
4337 if (D
->getType()->isReferenceType())
4338 LambdaLV
= EmitLoadOfReferenceLValue(AddrOfExplicitObject
, D
->getType(),
4339 AlignmentSource::Decl
);
4341 LambdaLV
= MakeNaturalAlignAddrLValue(AddrOfExplicitObject
.getPointer(),
4342 D
->getType().getNonReferenceType());
4344 QualType LambdaTagType
= getContext().getTagDeclType(Field
->getParent());
4345 LambdaLV
= MakeNaturalAlignAddrLValue(ThisValue
, LambdaTagType
);
4347 return EmitLValueForField(LambdaLV
, Field
);
4350 LValue
CodeGenFunction::EmitLValueForLambdaField(const FieldDecl
*Field
) {
4351 return EmitLValueForLambdaField(Field
, CXXABIThisValue
);
4354 /// Get the field index in the debug info. The debug info structure/union
4355 /// will ignore the unnamed bitfields.
4356 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl
*Rec
,
4357 unsigned FieldIndex
) {
4358 unsigned I
= 0, Skipped
= 0;
4360 for (auto *F
: Rec
->getDefinition()->fields()) {
4361 if (I
== FieldIndex
)
4363 if (F
->isUnnamedBitfield())
4368 return FieldIndex
- Skipped
;
4371 /// Get the address of a zero-sized field within a record. The resulting
4372 /// address doesn't necessarily have the right type.
4373 static Address
emitAddrOfZeroSizeField(CodeGenFunction
&CGF
, Address Base
,
4374 const FieldDecl
*Field
) {
4375 CharUnits Offset
= CGF
.getContext().toCharUnitsFromBits(
4376 CGF
.getContext().getFieldOffset(Field
));
4377 if (Offset
.isZero())
4379 Base
= Base
.withElementType(CGF
.Int8Ty
);
4380 return CGF
.Builder
.CreateConstInBoundsByteGEP(Base
, Offset
);
4383 /// Drill down to the storage of a field without walking into
4384 /// reference types.
4386 /// The resulting address doesn't necessarily have the right type.
4387 static Address
emitAddrOfFieldStorage(CodeGenFunction
&CGF
, Address base
,
4388 const FieldDecl
*field
) {
4389 if (field
->isZeroSize(CGF
.getContext()))
4390 return emitAddrOfZeroSizeField(CGF
, base
, field
);
4392 const RecordDecl
*rec
= field
->getParent();
4395 CGF
.CGM
.getTypes().getCGRecordLayout(rec
).getLLVMFieldNo(field
);
4397 return CGF
.Builder
.CreateStructGEP(base
, idx
, field
->getName());
4400 static Address
emitPreserveStructAccess(CodeGenFunction
&CGF
, LValue base
,
4401 Address addr
, const FieldDecl
*field
) {
4402 const RecordDecl
*rec
= field
->getParent();
4403 llvm::DIType
*DbgInfo
= CGF
.getDebugInfo()->getOrCreateStandaloneType(
4404 base
.getType(), rec
->getLocation());
4407 CGF
.CGM
.getTypes().getCGRecordLayout(rec
).getLLVMFieldNo(field
);
4409 return CGF
.Builder
.CreatePreserveStructAccessIndex(
4410 addr
, idx
, CGF
.getDebugInfoFIndex(rec
, field
->getFieldIndex()), DbgInfo
);
4413 static bool hasAnyVptr(const QualType Type
, const ASTContext
&Context
) {
4414 const auto *RD
= Type
.getTypePtr()->getAsCXXRecordDecl();
4418 if (RD
->isDynamicClass())
4421 for (const auto &Base
: RD
->bases())
4422 if (hasAnyVptr(Base
.getType(), Context
))
4425 for (const FieldDecl
*Field
: RD
->fields())
4426 if (hasAnyVptr(Field
->getType(), Context
))
4432 LValue
CodeGenFunction::EmitLValueForField(LValue base
,
4433 const FieldDecl
*field
) {
4434 LValueBaseInfo BaseInfo
= base
.getBaseInfo();
4436 if (field
->isBitField()) {
4437 const CGRecordLayout
&RL
=
4438 CGM
.getTypes().getCGRecordLayout(field
->getParent());
4439 const CGBitFieldInfo
&Info
= RL
.getBitFieldInfo(field
);
4440 const bool UseVolatile
= isAAPCS(CGM
.getTarget()) &&
4441 CGM
.getCodeGenOpts().AAPCSBitfieldWidth
&&
4442 Info
.VolatileStorageSize
!= 0 &&
4444 .withCVRQualifiers(base
.getVRQualifiers())
4445 .isVolatileQualified();
4446 Address Addr
= base
.getAddress(*this);
4447 unsigned Idx
= RL
.getLLVMFieldNo(field
);
4448 const RecordDecl
*rec
= field
->getParent();
4450 if (!IsInPreservedAIRegion
&&
4451 (!getDebugInfo() || !rec
->hasAttr
<BPFPreserveAccessIndexAttr
>())) {
4453 // For structs, we GEP to the field that the record layout suggests.
4454 Addr
= Builder
.CreateStructGEP(Addr
, Idx
, field
->getName());
4456 llvm::DIType
*DbgInfo
= getDebugInfo()->getOrCreateRecordType(
4457 getContext().getRecordType(rec
), rec
->getLocation());
4458 Addr
= Builder
.CreatePreserveStructAccessIndex(
4459 Addr
, Idx
, getDebugInfoFIndex(rec
, field
->getFieldIndex()),
4464 UseVolatile
? Info
.VolatileStorageSize
: Info
.StorageSize
;
4465 // Get the access type.
4466 llvm::Type
*FieldIntTy
= llvm::Type::getIntNTy(getLLVMContext(), SS
);
4467 Addr
= Addr
.withElementType(FieldIntTy
);
4469 const unsigned VolatileOffset
= Info
.VolatileStorageOffset
.getQuantity();
4471 Addr
= Builder
.CreateConstInBoundsGEP(Addr
, VolatileOffset
);
4474 QualType fieldType
=
4475 field
->getType().withCVRQualifiers(base
.getVRQualifiers());
4476 // TODO: Support TBAA for bit fields.
4477 LValueBaseInfo
FieldBaseInfo(BaseInfo
.getAlignmentSource());
4478 return LValue::MakeBitfield(Addr
, Info
, fieldType
, FieldBaseInfo
,
4482 // Fields of may-alias structures are may-alias themselves.
4483 // FIXME: this should get propagated down through anonymous structs
4485 QualType FieldType
= field
->getType();
4486 const RecordDecl
*rec
= field
->getParent();
4487 AlignmentSource BaseAlignSource
= BaseInfo
.getAlignmentSource();
4488 LValueBaseInfo
FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource
));
4489 TBAAAccessInfo FieldTBAAInfo
;
4490 if (base
.getTBAAInfo().isMayAlias() ||
4491 rec
->hasAttr
<MayAliasAttr
>() || FieldType
->isVectorType()) {
4492 FieldTBAAInfo
= TBAAAccessInfo::getMayAliasInfo();
4493 } else if (rec
->isUnion()) {
4494 // TODO: Support TBAA for unions.
4495 FieldTBAAInfo
= TBAAAccessInfo::getMayAliasInfo();
4497 // If no base type been assigned for the base access, then try to generate
4498 // one for this base lvalue.
4499 FieldTBAAInfo
= base
.getTBAAInfo();
4500 if (!FieldTBAAInfo
.BaseType
) {
4501 FieldTBAAInfo
.BaseType
= CGM
.getTBAABaseTypeInfo(base
.getType());
4502 assert(!FieldTBAAInfo
.Offset
&&
4503 "Nonzero offset for an access with no base type!");
4506 // Adjust offset to be relative to the base type.
4507 const ASTRecordLayout
&Layout
=
4508 getContext().getASTRecordLayout(field
->getParent());
4509 unsigned CharWidth
= getContext().getCharWidth();
4510 if (FieldTBAAInfo
.BaseType
)
4511 FieldTBAAInfo
.Offset
+=
4512 Layout
.getFieldOffset(field
->getFieldIndex()) / CharWidth
;
4514 // Update the final access type and size.
4515 FieldTBAAInfo
.AccessType
= CGM
.getTBAATypeInfo(FieldType
);
4516 FieldTBAAInfo
.Size
=
4517 getContext().getTypeSizeInChars(FieldType
).getQuantity();
4520 Address addr
= base
.getAddress(*this);
4521 if (auto *ClassDef
= dyn_cast
<CXXRecordDecl
>(rec
)) {
4522 if (CGM
.getCodeGenOpts().StrictVTablePointers
&&
4523 ClassDef
->isDynamicClass()) {
4524 // Getting to any field of dynamic object requires stripping dynamic
4525 // information provided by invariant.group. This is because accessing
4526 // fields may leak the real address of dynamic object, which could result
4527 // in miscompilation when leaked pointer would be compared.
4528 auto *stripped
= Builder
.CreateStripInvariantGroup(addr
.getPointer());
4529 addr
= Address(stripped
, addr
.getElementType(), addr
.getAlignment());
4533 unsigned RecordCVR
= base
.getVRQualifiers();
4534 if (rec
->isUnion()) {
4535 // For unions, there is no pointer adjustment.
4536 if (CGM
.getCodeGenOpts().StrictVTablePointers
&&
4537 hasAnyVptr(FieldType
, getContext()))
4538 // Because unions can easily skip invariant.barriers, we need to add
4539 // a barrier every time CXXRecord field with vptr is referenced.
4540 addr
= Builder
.CreateLaunderInvariantGroup(addr
);
4542 if (IsInPreservedAIRegion
||
4543 (getDebugInfo() && rec
->hasAttr
<BPFPreserveAccessIndexAttr
>())) {
4544 // Remember the original union field index
4545 llvm::DIType
*DbgInfo
= getDebugInfo()->getOrCreateStandaloneType(base
.getType(),
4546 rec
->getLocation());
4548 Builder
.CreatePreserveUnionAccessIndex(
4549 addr
.getPointer(), getDebugInfoFIndex(rec
, field
->getFieldIndex()), DbgInfo
),
4550 addr
.getElementType(), addr
.getAlignment());
4553 if (FieldType
->isReferenceType())
4554 addr
= addr
.withElementType(CGM
.getTypes().ConvertTypeForMem(FieldType
));
4556 if (!IsInPreservedAIRegion
&&
4557 (!getDebugInfo() || !rec
->hasAttr
<BPFPreserveAccessIndexAttr
>()))
4558 // For structs, we GEP to the field that the record layout suggests.
4559 addr
= emitAddrOfFieldStorage(*this, addr
, field
);
4561 // Remember the original struct field index
4562 addr
= emitPreserveStructAccess(*this, base
, addr
, field
);
4565 // If this is a reference field, load the reference right now.
4566 if (FieldType
->isReferenceType()) {
4568 MakeAddrLValue(addr
, FieldType
, FieldBaseInfo
, FieldTBAAInfo
);
4569 if (RecordCVR
& Qualifiers::Volatile
)
4570 RefLVal
.getQuals().addVolatile();
4571 addr
= EmitLoadOfReference(RefLVal
, &FieldBaseInfo
, &FieldTBAAInfo
);
4573 // Qualifiers on the struct don't apply to the referencee.
4575 FieldType
= FieldType
->getPointeeType();
4578 // Make sure that the address is pointing to the right type. This is critical
4579 // for both unions and structs.
4580 addr
= addr
.withElementType(CGM
.getTypes().ConvertTypeForMem(FieldType
));
4582 if (field
->hasAttr
<AnnotateAttr
>())
4583 addr
= EmitFieldAnnotations(field
, addr
);
4585 LValue LV
= MakeAddrLValue(addr
, FieldType
, FieldBaseInfo
, FieldTBAAInfo
);
4586 LV
.getQuals().addCVRQualifiers(RecordCVR
);
4588 // __weak attribute on a field is ignored.
4589 if (LV
.getQuals().getObjCGCAttr() == Qualifiers::Weak
)
4590 LV
.getQuals().removeObjCGCAttr();
4596 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base
,
4597 const FieldDecl
*Field
) {
4598 QualType FieldType
= Field
->getType();
4600 if (!FieldType
->isReferenceType())
4601 return EmitLValueForField(Base
, Field
);
4603 Address V
= emitAddrOfFieldStorage(*this, Base
.getAddress(*this), Field
);
4605 // Make sure that the address is pointing to the right type.
4606 llvm::Type
*llvmType
= ConvertTypeForMem(FieldType
);
4607 V
= V
.withElementType(llvmType
);
4609 // TODO: Generate TBAA information that describes this access as a structure
4610 // member access and not just an access to an object of the field's type. This
4611 // should be similar to what we do in EmitLValueForField().
4612 LValueBaseInfo BaseInfo
= Base
.getBaseInfo();
4613 AlignmentSource FieldAlignSource
= BaseInfo
.getAlignmentSource();
4614 LValueBaseInfo
FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource
));
4615 return MakeAddrLValue(V
, FieldType
, FieldBaseInfo
,
4616 CGM
.getTBAAInfoForSubobject(Base
, FieldType
));
4619 LValue
CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr
*E
){
4620 if (E
->isFileScope()) {
4621 ConstantAddress GlobalPtr
= CGM
.GetAddrOfConstantCompoundLiteral(E
);
4622 return MakeAddrLValue(GlobalPtr
, E
->getType(), AlignmentSource::Decl
);
4624 if (E
->getType()->isVariablyModifiedType())
4625 // make sure to emit the VLA size.
4626 EmitVariablyModifiedType(E
->getType());
4628 Address DeclPtr
= CreateMemTemp(E
->getType(), ".compoundliteral");
4629 const Expr
*InitExpr
= E
->getInitializer();
4630 LValue Result
= MakeAddrLValue(DeclPtr
, E
->getType(), AlignmentSource::Decl
);
4632 EmitAnyExprToMem(InitExpr
, DeclPtr
, E
->getType().getQualifiers(),
4635 // Block-scope compound literals are destroyed at the end of the enclosing
4637 if (!getLangOpts().CPlusPlus
)
4638 if (QualType::DestructionKind DtorKind
= E
->getType().isDestructedType())
4639 pushLifetimeExtendedDestroy(getCleanupKind(DtorKind
), DeclPtr
,
4640 E
->getType(), getDestroyer(DtorKind
),
4641 DtorKind
& EHCleanup
);
4646 LValue
CodeGenFunction::EmitInitListLValue(const InitListExpr
*E
) {
4647 if (!E
->isGLValue())
4648 // Initializing an aggregate temporary in C++11: T{...}.
4649 return EmitAggExprToLValue(E
);
4651 // An lvalue initializer list must be initializing a reference.
4652 assert(E
->isTransparent() && "non-transparent glvalue init list");
4653 return EmitLValue(E
->getInit(0));
4656 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4657 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4658 /// LValue is returned and the current block has been terminated.
4659 static std::optional
<LValue
> EmitLValueOrThrowExpression(CodeGenFunction
&CGF
,
4660 const Expr
*Operand
) {
4661 if (auto *ThrowExpr
= dyn_cast
<CXXThrowExpr
>(Operand
->IgnoreParens())) {
4662 CGF
.EmitCXXThrowExpr(ThrowExpr
, /*KeepInsertionPoint*/false);
4663 return std::nullopt
;
4666 return CGF
.EmitLValue(Operand
);
4670 // Handle the case where the condition is a constant evaluatable simple integer,
4671 // which means we don't have to separately handle the true/false blocks.
4672 std::optional
<LValue
> HandleConditionalOperatorLValueSimpleCase(
4673 CodeGenFunction
&CGF
, const AbstractConditionalOperator
*E
) {
4674 const Expr
*condExpr
= E
->getCond();
4676 if (CGF
.ConstantFoldsToSimpleInteger(condExpr
, CondExprBool
)) {
4677 const Expr
*Live
= E
->getTrueExpr(), *Dead
= E
->getFalseExpr();
4679 std::swap(Live
, Dead
);
4681 if (!CGF
.ContainsLabel(Dead
)) {
4682 // If the true case is live, we need to track its region.
4684 CGF
.incrementProfileCounter(E
);
4685 // If a throw expression we emit it and return an undefined lvalue
4686 // because it can't be used.
4687 if (auto *ThrowExpr
= dyn_cast
<CXXThrowExpr
>(Live
->IgnoreParens())) {
4688 CGF
.EmitCXXThrowExpr(ThrowExpr
);
4689 llvm::Type
*ElemTy
= CGF
.ConvertType(Dead
->getType());
4690 llvm::Type
*Ty
= CGF
.UnqualPtrTy
;
4691 return CGF
.MakeAddrLValue(
4692 Address(llvm::UndefValue::get(Ty
), ElemTy
, CharUnits::One()),
4695 return CGF
.EmitLValue(Live
);
4698 return std::nullopt
;
4700 struct ConditionalInfo
{
4701 llvm::BasicBlock
*lhsBlock
, *rhsBlock
;
4702 std::optional
<LValue
> LHS
, RHS
;
4705 // Create and generate the 3 blocks for a conditional operator.
4706 // Leaves the 'current block' in the continuation basic block.
4707 template<typename FuncTy
>
4708 ConditionalInfo
EmitConditionalBlocks(CodeGenFunction
&CGF
,
4709 const AbstractConditionalOperator
*E
,
4710 const FuncTy
&BranchGenFunc
) {
4711 ConditionalInfo Info
{CGF
.createBasicBlock("cond.true"),
4712 CGF
.createBasicBlock("cond.false"), std::nullopt
,
4714 llvm::BasicBlock
*endBlock
= CGF
.createBasicBlock("cond.end");
4716 CodeGenFunction::ConditionalEvaluation
eval(CGF
);
4717 CGF
.EmitBranchOnBoolExpr(E
->getCond(), Info
.lhsBlock
, Info
.rhsBlock
,
4718 CGF
.getProfileCount(E
));
4720 // Any temporaries created here are conditional.
4721 CGF
.EmitBlock(Info
.lhsBlock
);
4722 CGF
.incrementProfileCounter(E
);
4724 Info
.LHS
= BranchGenFunc(CGF
, E
->getTrueExpr());
4726 Info
.lhsBlock
= CGF
.Builder
.GetInsertBlock();
4729 CGF
.Builder
.CreateBr(endBlock
);
4731 // Any temporaries created here are conditional.
4732 CGF
.EmitBlock(Info
.rhsBlock
);
4734 Info
.RHS
= BranchGenFunc(CGF
, E
->getFalseExpr());
4736 Info
.rhsBlock
= CGF
.Builder
.GetInsertBlock();
4737 CGF
.EmitBlock(endBlock
);
4743 void CodeGenFunction::EmitIgnoredConditionalOperator(
4744 const AbstractConditionalOperator
*E
) {
4745 if (!E
->isGLValue()) {
4746 // ?: here should be an aggregate.
4747 assert(hasAggregateEvaluationKind(E
->getType()) &&
4748 "Unexpected conditional operator!");
4749 return (void)EmitAggExprToLValue(E
);
4752 OpaqueValueMapping
binding(*this, E
);
4753 if (HandleConditionalOperatorLValueSimpleCase(*this, E
))
4756 EmitConditionalBlocks(*this, E
, [](CodeGenFunction
&CGF
, const Expr
*E
) {
4757 CGF
.EmitIgnoredExpr(E
);
4761 LValue
CodeGenFunction::EmitConditionalOperatorLValue(
4762 const AbstractConditionalOperator
*expr
) {
4763 if (!expr
->isGLValue()) {
4764 // ?: here should be an aggregate.
4765 assert(hasAggregateEvaluationKind(expr
->getType()) &&
4766 "Unexpected conditional operator!");
4767 return EmitAggExprToLValue(expr
);
4770 OpaqueValueMapping
binding(*this, expr
);
4771 if (std::optional
<LValue
> Res
=
4772 HandleConditionalOperatorLValueSimpleCase(*this, expr
))
4775 ConditionalInfo Info
= EmitConditionalBlocks(
4776 *this, expr
, [](CodeGenFunction
&CGF
, const Expr
*E
) {
4777 return EmitLValueOrThrowExpression(CGF
, E
);
4780 if ((Info
.LHS
&& !Info
.LHS
->isSimple()) ||
4781 (Info
.RHS
&& !Info
.RHS
->isSimple()))
4782 return EmitUnsupportedLValue(expr
, "conditional operator");
4784 if (Info
.LHS
&& Info
.RHS
) {
4785 Address lhsAddr
= Info
.LHS
->getAddress(*this);
4786 Address rhsAddr
= Info
.RHS
->getAddress(*this);
4787 llvm::PHINode
*phi
= Builder
.CreatePHI(lhsAddr
.getType(), 2, "cond-lvalue");
4788 phi
->addIncoming(lhsAddr
.getPointer(), Info
.lhsBlock
);
4789 phi
->addIncoming(rhsAddr
.getPointer(), Info
.rhsBlock
);
4790 Address
result(phi
, lhsAddr
.getElementType(),
4791 std::min(lhsAddr
.getAlignment(), rhsAddr
.getAlignment()));
4792 AlignmentSource alignSource
=
4793 std::max(Info
.LHS
->getBaseInfo().getAlignmentSource(),
4794 Info
.RHS
->getBaseInfo().getAlignmentSource());
4795 TBAAAccessInfo TBAAInfo
= CGM
.mergeTBAAInfoForConditionalOperator(
4796 Info
.LHS
->getTBAAInfo(), Info
.RHS
->getTBAAInfo());
4797 return MakeAddrLValue(result
, expr
->getType(), LValueBaseInfo(alignSource
),
4800 assert((Info
.LHS
|| Info
.RHS
) &&
4801 "both operands of glvalue conditional are throw-expressions?");
4802 return Info
.LHS
? *Info
.LHS
: *Info
.RHS
;
4806 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4807 /// type. If the cast is to a reference, we can have the usual lvalue result,
4808 /// otherwise if a cast is needed by the code generator in an lvalue context,
4809 /// then it must mean that we need the address of an aggregate in order to
4810 /// access one of its members. This can happen for all the reasons that casts
4811 /// are permitted with aggregate result, including noop aggregate casts, and
4812 /// cast from scalar to union.
4813 LValue
CodeGenFunction::EmitCastLValue(const CastExpr
*E
) {
4814 switch (E
->getCastKind()) {
4817 case CK_LValueToRValueBitCast
:
4818 case CK_ArrayToPointerDecay
:
4819 case CK_FunctionToPointerDecay
:
4820 case CK_NullToMemberPointer
:
4821 case CK_NullToPointer
:
4822 case CK_IntegralToPointer
:
4823 case CK_PointerToIntegral
:
4824 case CK_PointerToBoolean
:
4825 case CK_VectorSplat
:
4826 case CK_IntegralCast
:
4827 case CK_BooleanToSignedIntegral
:
4828 case CK_IntegralToBoolean
:
4829 case CK_IntegralToFloating
:
4830 case CK_FloatingToIntegral
:
4831 case CK_FloatingToBoolean
:
4832 case CK_FloatingCast
:
4833 case CK_FloatingRealToComplex
:
4834 case CK_FloatingComplexToReal
:
4835 case CK_FloatingComplexToBoolean
:
4836 case CK_FloatingComplexCast
:
4837 case CK_FloatingComplexToIntegralComplex
:
4838 case CK_IntegralRealToComplex
:
4839 case CK_IntegralComplexToReal
:
4840 case CK_IntegralComplexToBoolean
:
4841 case CK_IntegralComplexCast
:
4842 case CK_IntegralComplexToFloatingComplex
:
4843 case CK_DerivedToBaseMemberPointer
:
4844 case CK_BaseToDerivedMemberPointer
:
4845 case CK_MemberPointerToBoolean
:
4846 case CK_ReinterpretMemberPointer
:
4847 case CK_AnyPointerToBlockPointerCast
:
4848 case CK_ARCProduceObject
:
4849 case CK_ARCConsumeObject
:
4850 case CK_ARCReclaimReturnedObject
:
4851 case CK_ARCExtendBlockObject
:
4852 case CK_CopyAndAutoreleaseBlockObject
:
4853 case CK_IntToOCLSampler
:
4854 case CK_FloatingToFixedPoint
:
4855 case CK_FixedPointToFloating
:
4856 case CK_FixedPointCast
:
4857 case CK_FixedPointToBoolean
:
4858 case CK_FixedPointToIntegral
:
4859 case CK_IntegralToFixedPoint
:
4861 return EmitUnsupportedLValue(E
, "unexpected cast lvalue");
4864 llvm_unreachable("dependent cast kind in IR gen!");
4866 case CK_BuiltinFnToFnPtr
:
4867 llvm_unreachable("builtin functions are handled elsewhere");
4869 // These are never l-values; just use the aggregate emission code.
4870 case CK_NonAtomicToAtomic
:
4871 case CK_AtomicToNonAtomic
:
4872 return EmitAggExprToLValue(E
);
4875 LValue LV
= EmitLValue(E
->getSubExpr());
4876 Address V
= LV
.getAddress(*this);
4877 const auto *DCE
= cast
<CXXDynamicCastExpr
>(E
);
4878 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V
, DCE
), E
->getType());
4881 case CK_ConstructorConversion
:
4882 case CK_UserDefinedConversion
:
4883 case CK_CPointerToObjCPointerCast
:
4884 case CK_BlockPointerToObjCPointerCast
:
4885 case CK_LValueToRValue
:
4886 return EmitLValue(E
->getSubExpr());
4889 // CK_NoOp can model a qualification conversion, which can remove an array
4890 // bound and change the IR type.
4891 // FIXME: Once pointee types are removed from IR, remove this.
4892 LValue LV
= EmitLValue(E
->getSubExpr());
4893 // Propagate the volatile qualifer to LValue, if exist in E.
4894 if (E
->changesVolatileQualification())
4895 LV
.getQuals() = E
->getType().getQualifiers();
4896 if (LV
.isSimple()) {
4897 Address V
= LV
.getAddress(*this);
4899 llvm::Type
*T
= ConvertTypeForMem(E
->getType());
4900 if (V
.getElementType() != T
)
4901 LV
.setAddress(V
.withElementType(T
));
4907 case CK_UncheckedDerivedToBase
:
4908 case CK_DerivedToBase
: {
4909 const auto *DerivedClassTy
=
4910 E
->getSubExpr()->getType()->castAs
<RecordType
>();
4911 auto *DerivedClassDecl
= cast
<CXXRecordDecl
>(DerivedClassTy
->getDecl());
4913 LValue LV
= EmitLValue(E
->getSubExpr());
4914 Address This
= LV
.getAddress(*this);
4916 // Perform the derived-to-base conversion
4917 Address Base
= GetAddressOfBaseClass(
4918 This
, DerivedClassDecl
, E
->path_begin(), E
->path_end(),
4919 /*NullCheckValue=*/false, E
->getExprLoc());
4921 // TODO: Support accesses to members of base classes in TBAA. For now, we
4922 // conservatively pretend that the complete object is of the base class
4924 return MakeAddrLValue(Base
, E
->getType(), LV
.getBaseInfo(),
4925 CGM
.getTBAAInfoForSubobject(LV
, E
->getType()));
4928 return EmitAggExprToLValue(E
);
4929 case CK_BaseToDerived
: {
4930 const auto *DerivedClassTy
= E
->getType()->castAs
<RecordType
>();
4931 auto *DerivedClassDecl
= cast
<CXXRecordDecl
>(DerivedClassTy
->getDecl());
4933 LValue LV
= EmitLValue(E
->getSubExpr());
4935 // Perform the base-to-derived conversion
4936 Address Derived
= GetAddressOfDerivedClass(
4937 LV
.getAddress(*this), DerivedClassDecl
, E
->path_begin(), E
->path_end(),
4938 /*NullCheckValue=*/false);
4940 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4941 // performed and the object is not of the derived type.
4942 if (sanitizePerformTypeCheck())
4943 EmitTypeCheck(TCK_DowncastReference
, E
->getExprLoc(),
4944 Derived
.getPointer(), E
->getType());
4946 if (SanOpts
.has(SanitizerKind::CFIDerivedCast
))
4947 EmitVTablePtrCheckForCast(E
->getType(), Derived
,
4948 /*MayBeNull=*/false, CFITCK_DerivedCast
,
4951 return MakeAddrLValue(Derived
, E
->getType(), LV
.getBaseInfo(),
4952 CGM
.getTBAAInfoForSubobject(LV
, E
->getType()));
4954 case CK_LValueBitCast
: {
4955 // This must be a reinterpret_cast (or c-style equivalent).
4956 const auto *CE
= cast
<ExplicitCastExpr
>(E
);
4958 CGM
.EmitExplicitCastExprType(CE
, this);
4959 LValue LV
= EmitLValue(E
->getSubExpr());
4960 Address V
= LV
.getAddress(*this).withElementType(
4961 ConvertTypeForMem(CE
->getTypeAsWritten()->getPointeeType()));
4963 if (SanOpts
.has(SanitizerKind::CFIUnrelatedCast
))
4964 EmitVTablePtrCheckForCast(E
->getType(), V
,
4965 /*MayBeNull=*/false, CFITCK_UnrelatedCast
,
4968 return MakeAddrLValue(V
, E
->getType(), LV
.getBaseInfo(),
4969 CGM
.getTBAAInfoForSubobject(LV
, E
->getType()));
4971 case CK_AddressSpaceConversion
: {
4972 LValue LV
= EmitLValue(E
->getSubExpr());
4973 QualType DestTy
= getContext().getPointerType(E
->getType());
4974 llvm::Value
*V
= getTargetHooks().performAddrSpaceCast(
4975 *this, LV
.getPointer(*this),
4976 E
->getSubExpr()->getType().getAddressSpace(),
4977 E
->getType().getAddressSpace(), ConvertType(DestTy
));
4978 return MakeAddrLValue(Address(V
, ConvertTypeForMem(E
->getType()),
4979 LV
.getAddress(*this).getAlignment()),
4980 E
->getType(), LV
.getBaseInfo(), LV
.getTBAAInfo());
4982 case CK_ObjCObjectLValueCast
: {
4983 LValue LV
= EmitLValue(E
->getSubExpr());
4984 Address V
= LV
.getAddress(*this).withElementType(ConvertType(E
->getType()));
4985 return MakeAddrLValue(V
, E
->getType(), LV
.getBaseInfo(),
4986 CGM
.getTBAAInfoForSubobject(LV
, E
->getType()));
4988 case CK_ZeroToOCLOpaqueType
:
4989 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4992 llvm_unreachable("Unhandled lvalue cast kind?");
4995 LValue
CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr
*e
) {
4996 assert(OpaqueValueMappingData::shouldBindAsLValue(e
));
4997 return getOrCreateOpaqueLValueMapping(e
);
5001 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr
*e
) {
5002 assert(OpaqueValueMapping::shouldBindAsLValue(e
));
5004 llvm::DenseMap
<const OpaqueValueExpr
*,LValue
>::iterator
5005 it
= OpaqueLValues
.find(e
);
5007 if (it
!= OpaqueLValues
.end())
5010 assert(e
->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
5011 return EmitLValue(e
->getSourceExpr());
5015 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr
*e
) {
5016 assert(!OpaqueValueMapping::shouldBindAsLValue(e
));
5018 llvm::DenseMap
<const OpaqueValueExpr
*,RValue
>::iterator
5019 it
= OpaqueRValues
.find(e
);
5021 if (it
!= OpaqueRValues
.end())
5024 assert(e
->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
5025 return EmitAnyExpr(e
->getSourceExpr());
5028 RValue
CodeGenFunction::EmitRValueForField(LValue LV
,
5029 const FieldDecl
*FD
,
5030 SourceLocation Loc
) {
5031 QualType FT
= FD
->getType();
5032 LValue FieldLV
= EmitLValueForField(LV
, FD
);
5033 switch (getEvaluationKind(FT
)) {
5035 return RValue::getComplex(EmitLoadOfComplex(FieldLV
, Loc
));
5037 return FieldLV
.asAggregateRValue(*this);
5039 // This routine is used to load fields one-by-one to perform a copy, so
5040 // don't load reference fields.
5041 if (FD
->getType()->isReferenceType())
5042 return RValue::get(FieldLV
.getPointer(*this));
5043 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
5045 if (FieldLV
.isBitField())
5046 return EmitLoadOfLValue(FieldLV
, Loc
);
5047 return RValue::get(EmitLoadOfScalar(FieldLV
, Loc
));
5049 llvm_unreachable("bad evaluation kind");
5052 //===--------------------------------------------------------------------===//
5053 // Expression Emission
5054 //===--------------------------------------------------------------------===//
5056 RValue
CodeGenFunction::EmitCallExpr(const CallExpr
*E
,
5057 ReturnValueSlot ReturnValue
) {
5058 // Builtins never have block type.
5059 if (E
->getCallee()->getType()->isBlockPointerType())
5060 return EmitBlockCallExpr(E
, ReturnValue
);
5062 if (const auto *CE
= dyn_cast
<CXXMemberCallExpr
>(E
))
5063 return EmitCXXMemberCallExpr(CE
, ReturnValue
);
5065 if (const auto *CE
= dyn_cast
<CUDAKernelCallExpr
>(E
))
5066 return EmitCUDAKernelCallExpr(CE
, ReturnValue
);
5068 // A CXXOperatorCallExpr is created even for explicit object methods, but
5069 // these should be treated like static function call.
5070 if (const auto *CE
= dyn_cast
<CXXOperatorCallExpr
>(E
))
5071 if (const auto *MD
=
5072 dyn_cast_if_present
<CXXMethodDecl
>(CE
->getCalleeDecl());
5073 MD
&& MD
->isImplicitObjectMemberFunction())
5074 return EmitCXXOperatorMemberCallExpr(CE
, MD
, ReturnValue
);
5076 CGCallee callee
= EmitCallee(E
->getCallee());
5078 if (callee
.isBuiltin()) {
5079 return EmitBuiltinExpr(callee
.getBuiltinDecl(), callee
.getBuiltinID(),
5083 if (callee
.isPseudoDestructor()) {
5084 return EmitCXXPseudoDestructorExpr(callee
.getPseudoDestructorExpr());
5087 return EmitCall(E
->getCallee()->getType(), callee
, E
, ReturnValue
);
5090 /// Emit a CallExpr without considering whether it might be a subclass.
5091 RValue
CodeGenFunction::EmitSimpleCallExpr(const CallExpr
*E
,
5092 ReturnValueSlot ReturnValue
) {
5093 CGCallee Callee
= EmitCallee(E
->getCallee());
5094 return EmitCall(E
->getCallee()->getType(), Callee
, E
, ReturnValue
);
5097 // Detect the unusual situation where an inline version is shadowed by a
5098 // non-inline version. In that case we should pick the external one
5099 // everywhere. That's GCC behavior too.
5100 static bool OnlyHasInlineBuiltinDeclaration(const FunctionDecl
*FD
) {
5101 for (const FunctionDecl
*PD
= FD
; PD
; PD
= PD
->getPreviousDecl())
5102 if (!PD
->isInlineBuiltinDeclaration())
5107 static CGCallee
EmitDirectCallee(CodeGenFunction
&CGF
, GlobalDecl GD
) {
5108 const FunctionDecl
*FD
= cast
<FunctionDecl
>(GD
.getDecl());
5110 if (auto builtinID
= FD
->getBuiltinID()) {
5111 std::string NoBuiltinFD
= ("no-builtin-" + FD
->getName()).str();
5112 std::string NoBuiltins
= "no-builtins";
5114 StringRef Ident
= CGF
.CGM
.getMangledName(GD
);
5115 std::string FDInlineName
= (Ident
+ ".inline").str();
5117 bool IsPredefinedLibFunction
=
5118 CGF
.getContext().BuiltinInfo
.isPredefinedLibFunction(builtinID
);
5119 bool HasAttributeNoBuiltin
=
5120 CGF
.CurFn
->getAttributes().hasFnAttr(NoBuiltinFD
) ||
5121 CGF
.CurFn
->getAttributes().hasFnAttr(NoBuiltins
);
5123 // When directing calling an inline builtin, call it through it's mangled
5124 // name to make it clear it's not the actual builtin.
5125 if (CGF
.CurFn
->getName() != FDInlineName
&&
5126 OnlyHasInlineBuiltinDeclaration(FD
)) {
5127 llvm::Constant
*CalleePtr
= EmitFunctionDeclPointer(CGF
.CGM
, GD
);
5128 llvm::Function
*Fn
= llvm::cast
<llvm::Function
>(CalleePtr
);
5129 llvm::Module
*M
= Fn
->getParent();
5130 llvm::Function
*Clone
= M
->getFunction(FDInlineName
);
5132 Clone
= llvm::Function::Create(Fn
->getFunctionType(),
5133 llvm::GlobalValue::InternalLinkage
,
5134 Fn
->getAddressSpace(), FDInlineName
, M
);
5135 Clone
->addFnAttr(llvm::Attribute::AlwaysInline
);
5137 return CGCallee::forDirect(Clone
, GD
);
5140 // Replaceable builtins provide their own implementation of a builtin. If we
5141 // are in an inline builtin implementation, avoid trivial infinite
5142 // recursion. Honor __attribute__((no_builtin("foo"))) or
5143 // __attribute__((no_builtin)) on the current function unless foo is
5144 // not a predefined library function which means we must generate the
5145 // builtin no matter what.
5146 else if (!IsPredefinedLibFunction
|| !HasAttributeNoBuiltin
)
5147 return CGCallee::forBuiltin(builtinID
, FD
);
5150 llvm::Constant
*CalleePtr
= EmitFunctionDeclPointer(CGF
.CGM
, GD
);
5151 if (CGF
.CGM
.getLangOpts().CUDA
&& !CGF
.CGM
.getLangOpts().CUDAIsDevice
&&
5152 FD
->hasAttr
<CUDAGlobalAttr
>())
5153 CalleePtr
= CGF
.CGM
.getCUDARuntime().getKernelStub(
5154 cast
<llvm::GlobalValue
>(CalleePtr
->stripPointerCasts()));
5156 return CGCallee::forDirect(CalleePtr
, GD
);
5159 CGCallee
CodeGenFunction::EmitCallee(const Expr
*E
) {
5160 E
= E
->IgnoreParens();
5162 // Look through function-to-pointer decay.
5163 if (auto ICE
= dyn_cast
<ImplicitCastExpr
>(E
)) {
5164 if (ICE
->getCastKind() == CK_FunctionToPointerDecay
||
5165 ICE
->getCastKind() == CK_BuiltinFnToFnPtr
) {
5166 return EmitCallee(ICE
->getSubExpr());
5169 // Resolve direct calls.
5170 } else if (auto DRE
= dyn_cast
<DeclRefExpr
>(E
)) {
5171 if (auto FD
= dyn_cast
<FunctionDecl
>(DRE
->getDecl())) {
5172 return EmitDirectCallee(*this, FD
);
5174 } else if (auto ME
= dyn_cast
<MemberExpr
>(E
)) {
5175 if (auto FD
= dyn_cast
<FunctionDecl
>(ME
->getMemberDecl())) {
5176 EmitIgnoredExpr(ME
->getBase());
5177 return EmitDirectCallee(*this, FD
);
5180 // Look through template substitutions.
5181 } else if (auto NTTP
= dyn_cast
<SubstNonTypeTemplateParmExpr
>(E
)) {
5182 return EmitCallee(NTTP
->getReplacement());
5184 // Treat pseudo-destructor calls differently.
5185 } else if (auto PDE
= dyn_cast
<CXXPseudoDestructorExpr
>(E
)) {
5186 return CGCallee::forPseudoDestructor(PDE
);
5189 // Otherwise, we have an indirect reference.
5190 llvm::Value
*calleePtr
;
5191 QualType functionType
;
5192 if (auto ptrType
= E
->getType()->getAs
<PointerType
>()) {
5193 calleePtr
= EmitScalarExpr(E
);
5194 functionType
= ptrType
->getPointeeType();
5196 functionType
= E
->getType();
5197 calleePtr
= EmitLValue(E
, KnownNonNull
).getPointer(*this);
5199 assert(functionType
->isFunctionType());
5202 if (const auto *VD
=
5203 dyn_cast_or_null
<VarDecl
>(E
->getReferencedDeclOfCallee()))
5204 GD
= GlobalDecl(VD
);
5206 CGCalleeInfo
calleeInfo(functionType
->getAs
<FunctionProtoType
>(), GD
);
5207 CGCallee
callee(calleeInfo
, calleePtr
);
5211 LValue
CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator
*E
) {
5212 // Comma expressions just emit their LHS then their RHS as an l-value.
5213 if (E
->getOpcode() == BO_Comma
) {
5214 EmitIgnoredExpr(E
->getLHS());
5215 EnsureInsertPoint();
5216 return EmitLValue(E
->getRHS());
5219 if (E
->getOpcode() == BO_PtrMemD
||
5220 E
->getOpcode() == BO_PtrMemI
)
5221 return EmitPointerToDataMemberBinaryExpr(E
);
5223 assert(E
->getOpcode() == BO_Assign
&& "unexpected binary l-value");
5225 // Note that in all of these cases, __block variables need the RHS
5226 // evaluated first just in case the variable gets moved by the RHS.
5228 switch (getEvaluationKind(E
->getType())) {
5230 switch (E
->getLHS()->getType().getObjCLifetime()) {
5231 case Qualifiers::OCL_Strong
:
5232 return EmitARCStoreStrong(E
, /*ignored*/ false).first
;
5234 case Qualifiers::OCL_Autoreleasing
:
5235 return EmitARCStoreAutoreleasing(E
).first
;
5237 // No reason to do any of these differently.
5238 case Qualifiers::OCL_None
:
5239 case Qualifiers::OCL_ExplicitNone
:
5240 case Qualifiers::OCL_Weak
:
5244 RValue RV
= EmitAnyExpr(E
->getRHS());
5245 LValue LV
= EmitCheckedLValue(E
->getLHS(), TCK_Store
);
5247 EmitNullabilityCheck(LV
, RV
.getScalarVal(), E
->getExprLoc());
5248 EmitStoreThroughLValue(RV
, LV
);
5249 if (getLangOpts().OpenMP
)
5250 CGM
.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
5256 return EmitComplexAssignmentLValue(E
);
5259 return EmitAggExprToLValue(E
);
5261 llvm_unreachable("bad evaluation kind");
5264 LValue
CodeGenFunction::EmitCallExprLValue(const CallExpr
*E
) {
5265 RValue RV
= EmitCallExpr(E
);
5268 return MakeAddrLValue(RV
.getAggregateAddress(), E
->getType(),
5269 AlignmentSource::Decl
);
5271 assert(E
->getCallReturnType(getContext())->isReferenceType() &&
5272 "Can't have a scalar return unless the return type is a "
5275 return MakeNaturalAlignPointeeAddrLValue(RV
.getScalarVal(), E
->getType());
5278 LValue
CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr
*E
) {
5279 // FIXME: This shouldn't require another copy.
5280 return EmitAggExprToLValue(E
);
5283 LValue
CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr
*E
) {
5284 assert(E
->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
5285 && "binding l-value to type which needs a temporary");
5286 AggValueSlot Slot
= CreateAggTemp(E
->getType());
5287 EmitCXXConstructExpr(E
, Slot
);
5288 return MakeAddrLValue(Slot
.getAddress(), E
->getType(), AlignmentSource::Decl
);
5292 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr
*E
) {
5293 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E
), E
->getType());
5296 Address
CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr
*E
) {
5297 return CGM
.GetAddrOfMSGuidDecl(E
->getGuidDecl())
5298 .withElementType(ConvertType(E
->getType()));
5301 LValue
CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr
*E
) {
5302 return MakeAddrLValue(EmitCXXUuidofExpr(E
), E
->getType(),
5303 AlignmentSource::Decl
);
5307 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr
*E
) {
5308 AggValueSlot Slot
= CreateAggTemp(E
->getType(), "temp.lvalue");
5309 Slot
.setExternallyDestructed();
5310 EmitAggExpr(E
->getSubExpr(), Slot
);
5311 EmitCXXTemporary(E
->getTemporary(), E
->getType(), Slot
.getAddress());
5312 return MakeAddrLValue(Slot
.getAddress(), E
->getType(), AlignmentSource::Decl
);
5315 LValue
CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr
*E
) {
5316 RValue RV
= EmitObjCMessageExpr(E
);
5319 return MakeAddrLValue(RV
.getAggregateAddress(), E
->getType(),
5320 AlignmentSource::Decl
);
5322 assert(E
->getMethodDecl()->getReturnType()->isReferenceType() &&
5323 "Can't have a scalar return unless the return type is a "
5326 return MakeNaturalAlignPointeeAddrLValue(RV
.getScalarVal(), E
->getType());
5329 LValue
CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr
*E
) {
5331 CGM
.getObjCRuntime().GetAddrOfSelector(*this, E
->getSelector());
5332 return MakeAddrLValue(V
, E
->getType(), AlignmentSource::Decl
);
5335 llvm::Value
*CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl
*Interface
,
5336 const ObjCIvarDecl
*Ivar
) {
5337 return CGM
.getObjCRuntime().EmitIvarOffset(*this, Interface
, Ivar
);
5341 CodeGenFunction::EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl
*Interface
,
5342 const ObjCIvarDecl
*Ivar
) {
5343 llvm::Value
*OffsetValue
= EmitIvarOffset(Interface
, Ivar
);
5344 QualType PointerDiffType
= getContext().getPointerDiffType();
5345 return Builder
.CreateZExtOrTrunc(OffsetValue
,
5346 getTypes().ConvertType(PointerDiffType
));
5349 LValue
CodeGenFunction::EmitLValueForIvar(QualType ObjectTy
,
5350 llvm::Value
*BaseValue
,
5351 const ObjCIvarDecl
*Ivar
,
5352 unsigned CVRQualifiers
) {
5353 return CGM
.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy
, BaseValue
,
5354 Ivar
, CVRQualifiers
);
5357 LValue
CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr
*E
) {
5358 // FIXME: A lot of the code below could be shared with EmitMemberExpr.
5359 llvm::Value
*BaseValue
= nullptr;
5360 const Expr
*BaseExpr
= E
->getBase();
5361 Qualifiers BaseQuals
;
5364 BaseValue
= EmitScalarExpr(BaseExpr
);
5365 ObjectTy
= BaseExpr
->getType()->getPointeeType();
5366 BaseQuals
= ObjectTy
.getQualifiers();
5368 LValue BaseLV
= EmitLValue(BaseExpr
);
5369 BaseValue
= BaseLV
.getPointer(*this);
5370 ObjectTy
= BaseExpr
->getType();
5371 BaseQuals
= ObjectTy
.getQualifiers();
5375 EmitLValueForIvar(ObjectTy
, BaseValue
, E
->getDecl(),
5376 BaseQuals
.getCVRQualifiers());
5377 setObjCGCLValueClass(getContext(), E
, LV
);
5381 LValue
CodeGenFunction::EmitStmtExprLValue(const StmtExpr
*E
) {
5382 // Can only get l-value for message expression returning aggregate type
5383 RValue RV
= EmitAnyExprToTemp(E
);
5384 return MakeAddrLValue(RV
.getAggregateAddress(), E
->getType(),
5385 AlignmentSource::Decl
);
5388 RValue
CodeGenFunction::EmitCall(QualType CalleeType
, const CGCallee
&OrigCallee
,
5389 const CallExpr
*E
, ReturnValueSlot ReturnValue
,
5390 llvm::Value
*Chain
) {
5391 // Get the actual function type. The callee type will always be a pointer to
5392 // function type or a block pointer type.
5393 assert(CalleeType
->isFunctionPointerType() &&
5394 "Call must have function pointer type!");
5396 const Decl
*TargetDecl
=
5397 OrigCallee
.getAbstractInfo().getCalleeDecl().getDecl();
5399 assert((!isa_and_present
<FunctionDecl
>(TargetDecl
) ||
5400 !cast
<FunctionDecl
>(TargetDecl
)->isImmediateFunction()) &&
5401 "trying to emit a call to an immediate function");
5403 CalleeType
= getContext().getCanonicalType(CalleeType
);
5405 auto PointeeType
= cast
<PointerType
>(CalleeType
)->getPointeeType();
5407 CGCallee Callee
= OrigCallee
;
5409 if (SanOpts
.has(SanitizerKind::Function
) &&
5410 (!TargetDecl
|| !isa
<FunctionDecl
>(TargetDecl
)) &&
5411 !isa
<FunctionNoProtoType
>(PointeeType
)) {
5412 if (llvm::Constant
*PrefixSig
=
5413 CGM
.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM
)) {
5414 SanitizerScope
SanScope(this);
5415 auto *TypeHash
= getUBSanFunctionTypeHash(PointeeType
);
5417 llvm::Type
*PrefixSigType
= PrefixSig
->getType();
5418 llvm::StructType
*PrefixStructTy
= llvm::StructType::get(
5419 CGM
.getLLVMContext(), {PrefixSigType
, Int32Ty
}, /*isPacked=*/true);
5421 llvm::Value
*CalleePtr
= Callee
.getFunctionPointer();
5423 // On 32-bit Arm, the low bit of a function pointer indicates whether
5424 // it's using the Arm or Thumb instruction set. The actual first
5425 // instruction lives at the same address either way, so we must clear
5426 // that low bit before using the function address to find the prefix
5429 // This applies to both Arm and Thumb target triples, because
5430 // either one could be used in an interworking context where it
5431 // might be passed function pointers of both types.
5432 llvm::Value
*AlignedCalleePtr
;
5433 if (CGM
.getTriple().isARM() || CGM
.getTriple().isThumb()) {
5434 llvm::Value
*CalleeAddress
=
5435 Builder
.CreatePtrToInt(CalleePtr
, IntPtrTy
);
5436 llvm::Value
*Mask
= llvm::ConstantInt::get(IntPtrTy
, ~1);
5437 llvm::Value
*AlignedCalleeAddress
=
5438 Builder
.CreateAnd(CalleeAddress
, Mask
);
5440 Builder
.CreateIntToPtr(AlignedCalleeAddress
, CalleePtr
->getType());
5442 AlignedCalleePtr
= CalleePtr
;
5445 llvm::Value
*CalleePrefixStruct
= AlignedCalleePtr
;
5446 llvm::Value
*CalleeSigPtr
=
5447 Builder
.CreateConstGEP2_32(PrefixStructTy
, CalleePrefixStruct
, -1, 0);
5448 llvm::Value
*CalleeSig
=
5449 Builder
.CreateAlignedLoad(PrefixSigType
, CalleeSigPtr
, getIntAlign());
5450 llvm::Value
*CalleeSigMatch
= Builder
.CreateICmpEQ(CalleeSig
, PrefixSig
);
5452 llvm::BasicBlock
*Cont
= createBasicBlock("cont");
5453 llvm::BasicBlock
*TypeCheck
= createBasicBlock("typecheck");
5454 Builder
.CreateCondBr(CalleeSigMatch
, TypeCheck
, Cont
);
5456 EmitBlock(TypeCheck
);
5457 llvm::Value
*CalleeTypeHash
= Builder
.CreateAlignedLoad(
5459 Builder
.CreateConstGEP2_32(PrefixStructTy
, CalleePrefixStruct
, -1, 1),
5461 llvm::Value
*CalleeTypeHashMatch
=
5462 Builder
.CreateICmpEQ(CalleeTypeHash
, TypeHash
);
5463 llvm::Constant
*StaticData
[] = {EmitCheckSourceLocation(E
->getBeginLoc()),
5464 EmitCheckTypeDescriptor(CalleeType
)};
5465 EmitCheck(std::make_pair(CalleeTypeHashMatch
, SanitizerKind::Function
),
5466 SanitizerHandler::FunctionTypeMismatch
, StaticData
,
5469 Builder
.CreateBr(Cont
);
5474 const auto *FnType
= cast
<FunctionType
>(PointeeType
);
5476 // If we are checking indirect calls and this call is indirect, check that the
5477 // function pointer is a member of the bit set for the function type.
5478 if (SanOpts
.has(SanitizerKind::CFIICall
) &&
5479 (!TargetDecl
|| !isa
<FunctionDecl
>(TargetDecl
))) {
5480 SanitizerScope
SanScope(this);
5481 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall
);
5484 if (CGM
.getCodeGenOpts().SanitizeCfiICallGeneralizePointers
)
5485 MD
= CGM
.CreateMetadataIdentifierGeneralized(QualType(FnType
, 0));
5487 MD
= CGM
.CreateMetadataIdentifierForType(QualType(FnType
, 0));
5489 llvm::Value
*TypeId
= llvm::MetadataAsValue::get(getLLVMContext(), MD
);
5491 llvm::Value
*CalleePtr
= Callee
.getFunctionPointer();
5492 llvm::Value
*TypeTest
= Builder
.CreateCall(
5493 CGM
.getIntrinsic(llvm::Intrinsic::type_test
), {CalleePtr
, TypeId
});
5495 auto CrossDsoTypeId
= CGM
.CreateCrossDsoCfiTypeId(MD
);
5496 llvm::Constant
*StaticData
[] = {
5497 llvm::ConstantInt::get(Int8Ty
, CFITCK_ICall
),
5498 EmitCheckSourceLocation(E
->getBeginLoc()),
5499 EmitCheckTypeDescriptor(QualType(FnType
, 0)),
5501 if (CGM
.getCodeGenOpts().SanitizeCfiCrossDso
&& CrossDsoTypeId
) {
5502 EmitCfiSlowPathCheck(SanitizerKind::CFIICall
, TypeTest
, CrossDsoTypeId
,
5503 CalleePtr
, StaticData
);
5505 EmitCheck(std::make_pair(TypeTest
, SanitizerKind::CFIICall
),
5506 SanitizerHandler::CFICheckFail
, StaticData
,
5507 {CalleePtr
, llvm::UndefValue::get(IntPtrTy
)});
5513 Args
.add(RValue::get(Chain
), CGM
.getContext().VoidPtrTy
);
5515 // C++17 requires that we evaluate arguments to a call using assignment syntax
5516 // right-to-left, and that we evaluate arguments to certain other operators
5517 // left-to-right. Note that we allow this to override the order dictated by
5518 // the calling convention on the MS ABI, which means that parameter
5519 // destruction order is not necessarily reverse construction order.
5520 // FIXME: Revisit this based on C++ committee response to unimplementability.
5521 EvaluationOrder Order
= EvaluationOrder::Default
;
5522 if (auto *OCE
= dyn_cast
<CXXOperatorCallExpr
>(E
)) {
5523 if (OCE
->isAssignmentOp())
5524 Order
= EvaluationOrder::ForceRightToLeft
;
5526 switch (OCE
->getOperator()) {
5528 case OO_GreaterGreater
:
5533 Order
= EvaluationOrder::ForceLeftToRight
;
5541 EmitCallArgs(Args
, dyn_cast
<FunctionProtoType
>(FnType
), E
->arguments(),
5542 E
->getDirectCallee(), /*ParamsToSkip*/ 0, Order
);
5544 const CGFunctionInfo
&FnInfo
= CGM
.getTypes().arrangeFreeFunctionCall(
5545 Args
, FnType
, /*ChainCall=*/Chain
);
5548 // If the expression that denotes the called function has a type
5549 // that does not include a prototype, [the default argument
5550 // promotions are performed]. If the number of arguments does not
5551 // equal the number of parameters, the behavior is undefined. If
5552 // the function is defined with a type that includes a prototype,
5553 // and either the prototype ends with an ellipsis (, ...) or the
5554 // types of the arguments after promotion are not compatible with
5555 // the types of the parameters, the behavior is undefined. If the
5556 // function is defined with a type that does not include a
5557 // prototype, and the types of the arguments after promotion are
5558 // not compatible with those of the parameters after promotion,
5559 // the behavior is undefined [except in some trivial cases].
5560 // That is, in the general case, we should assume that a call
5561 // through an unprototyped function type works like a *non-variadic*
5562 // call. The way we make this work is to cast to the exact type
5563 // of the promoted arguments.
5565 // Chain calls use this same code path to add the invisible chain parameter
5566 // to the function type.
5567 if (isa
<FunctionNoProtoType
>(FnType
) || Chain
) {
5568 llvm::Type
*CalleeTy
= getTypes().GetFunctionType(FnInfo
);
5569 int AS
= Callee
.getFunctionPointer()->getType()->getPointerAddressSpace();
5570 CalleeTy
= CalleeTy
->getPointerTo(AS
);
5572 llvm::Value
*CalleePtr
= Callee
.getFunctionPointer();
5573 CalleePtr
= Builder
.CreateBitCast(CalleePtr
, CalleeTy
, "callee.knr.cast");
5574 Callee
.setFunctionPointer(CalleePtr
);
5577 // HIP function pointer contains kernel handle when it is used in triple
5578 // chevron. The kernel stub needs to be loaded from kernel handle and used
5580 if (CGM
.getLangOpts().HIP
&& !CGM
.getLangOpts().CUDAIsDevice
&&
5581 isa
<CUDAKernelCallExpr
>(E
) &&
5582 (!TargetDecl
|| !isa
<FunctionDecl
>(TargetDecl
))) {
5583 llvm::Value
*Handle
= Callee
.getFunctionPointer();
5584 auto *Stub
= Builder
.CreateLoad(
5585 Address(Handle
, Handle
->getType(), CGM
.getPointerAlign()));
5586 Callee
.setFunctionPointer(Stub
);
5588 llvm::CallBase
*CallOrInvoke
= nullptr;
5589 RValue Call
= EmitCall(FnInfo
, Callee
, ReturnValue
, Args
, &CallOrInvoke
,
5590 E
== MustTailCall
, E
->getExprLoc());
5592 // Generate function declaration DISuprogram in order to be used
5593 // in debug info about call sites.
5594 if (CGDebugInfo
*DI
= getDebugInfo()) {
5595 if (auto *CalleeDecl
= dyn_cast_or_null
<FunctionDecl
>(TargetDecl
)) {
5596 FunctionArgList Args
;
5597 QualType ResTy
= BuildFunctionArgList(CalleeDecl
, Args
);
5598 DI
->EmitFuncDeclForCallSite(CallOrInvoke
,
5599 DI
->getFunctionType(CalleeDecl
, ResTy
, Args
),
5607 LValue
CodeGenFunction::
5608 EmitPointerToDataMemberBinaryExpr(const BinaryOperator
*E
) {
5609 Address BaseAddr
= Address::invalid();
5610 if (E
->getOpcode() == BO_PtrMemI
) {
5611 BaseAddr
= EmitPointerWithAlignment(E
->getLHS());
5613 BaseAddr
= EmitLValue(E
->getLHS()).getAddress(*this);
5616 llvm::Value
*OffsetV
= EmitScalarExpr(E
->getRHS());
5617 const auto *MPT
= E
->getRHS()->getType()->castAs
<MemberPointerType
>();
5619 LValueBaseInfo BaseInfo
;
5620 TBAAAccessInfo TBAAInfo
;
5621 Address MemberAddr
=
5622 EmitCXXMemberDataPointerAddress(E
, BaseAddr
, OffsetV
, MPT
, &BaseInfo
,
5625 return MakeAddrLValue(MemberAddr
, MPT
->getPointeeType(), BaseInfo
, TBAAInfo
);
5628 /// Given the address of a temporary variable, produce an r-value of
5630 RValue
CodeGenFunction::convertTempToRValue(Address addr
,
5632 SourceLocation loc
) {
5633 LValue lvalue
= MakeAddrLValue(addr
, type
, AlignmentSource::Decl
);
5634 switch (getEvaluationKind(type
)) {
5636 return RValue::getComplex(EmitLoadOfComplex(lvalue
, loc
));
5638 return lvalue
.asAggregateRValue(*this);
5640 return RValue::get(EmitLoadOfScalar(lvalue
, loc
));
5642 llvm_unreachable("bad evaluation kind");
5645 void CodeGenFunction::SetFPAccuracy(llvm::Value
*Val
, float Accuracy
) {
5646 assert(Val
->getType()->isFPOrFPVectorTy());
5647 if (Accuracy
== 0.0 || !isa
<llvm::Instruction
>(Val
))
5650 llvm::MDBuilder
MDHelper(getLLVMContext());
5651 llvm::MDNode
*Node
= MDHelper
.createFPMath(Accuracy
);
5653 cast
<llvm::Instruction
>(Val
)->setMetadata(llvm::LLVMContext::MD_fpmath
, Node
);
5656 void CodeGenFunction::SetSqrtFPAccuracy(llvm::Value
*Val
) {
5657 llvm::Type
*EltTy
= Val
->getType()->getScalarType();
5658 if (!EltTy
->isFloatTy())
5661 if ((getLangOpts().OpenCL
&&
5662 !CGM
.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt
) ||
5663 (getLangOpts().HIP
&& getLangOpts().CUDAIsDevice
&&
5664 !CGM
.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt
)) {
5665 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 3ulp
5667 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
5668 // build option allows an application to specify that single precision
5669 // floating-point divide (x/y and 1/x) and sqrt used in the program
5670 // source are correctly rounded.
5672 // TODO: CUDA has a prec-sqrt flag
5673 SetFPAccuracy(Val
, 3.0f
);
5677 void CodeGenFunction::SetDivFPAccuracy(llvm::Value
*Val
) {
5678 llvm::Type
*EltTy
= Val
->getType()->getScalarType();
5679 if (!EltTy
->isFloatTy())
5682 if ((getLangOpts().OpenCL
&&
5683 !CGM
.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt
) ||
5684 (getLangOpts().HIP
&& getLangOpts().CUDAIsDevice
&&
5685 !CGM
.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt
)) {
5686 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
5688 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
5689 // build option allows an application to specify that single precision
5690 // floating-point divide (x/y and 1/x) and sqrt used in the program
5691 // source are correctly rounded.
5693 // TODO: CUDA has a prec-div flag
5694 SetFPAccuracy(Val
, 2.5f
);
5699 struct LValueOrRValue
{
5705 static LValueOrRValue
emitPseudoObjectExpr(CodeGenFunction
&CGF
,
5706 const PseudoObjectExpr
*E
,
5708 AggValueSlot slot
) {
5709 SmallVector
<CodeGenFunction::OpaqueValueMappingData
, 4> opaques
;
5711 // Find the result expression, if any.
5712 const Expr
*resultExpr
= E
->getResultExpr();
5713 LValueOrRValue result
;
5715 for (PseudoObjectExpr::const_semantics_iterator
5716 i
= E
->semantics_begin(), e
= E
->semantics_end(); i
!= e
; ++i
) {
5717 const Expr
*semantic
= *i
;
5719 // If this semantic expression is an opaque value, bind it
5720 // to the result of its source expression.
5721 if (const auto *ov
= dyn_cast
<OpaqueValueExpr
>(semantic
)) {
5722 // Skip unique OVEs.
5723 if (ov
->isUnique()) {
5724 assert(ov
!= resultExpr
&&
5725 "A unique OVE cannot be used as the result expression");
5729 // If this is the result expression, we may need to evaluate
5730 // directly into the slot.
5731 typedef CodeGenFunction::OpaqueValueMappingData OVMA
;
5733 if (ov
== resultExpr
&& ov
->isPRValue() && !forLValue
&&
5734 CodeGenFunction::hasAggregateEvaluationKind(ov
->getType())) {
5735 CGF
.EmitAggExpr(ov
->getSourceExpr(), slot
);
5736 LValue LV
= CGF
.MakeAddrLValue(slot
.getAddress(), ov
->getType(),
5737 AlignmentSource::Decl
);
5738 opaqueData
= OVMA::bind(CGF
, ov
, LV
);
5739 result
.RV
= slot
.asRValue();
5741 // Otherwise, emit as normal.
5743 opaqueData
= OVMA::bind(CGF
, ov
, ov
->getSourceExpr());
5745 // If this is the result, also evaluate the result now.
5746 if (ov
== resultExpr
) {
5748 result
.LV
= CGF
.EmitLValue(ov
);
5750 result
.RV
= CGF
.EmitAnyExpr(ov
, slot
);
5754 opaques
.push_back(opaqueData
);
5756 // Otherwise, if the expression is the result, evaluate it
5757 // and remember the result.
5758 } else if (semantic
== resultExpr
) {
5760 result
.LV
= CGF
.EmitLValue(semantic
);
5762 result
.RV
= CGF
.EmitAnyExpr(semantic
, slot
);
5764 // Otherwise, evaluate the expression in an ignored context.
5766 CGF
.EmitIgnoredExpr(semantic
);
5770 // Unbind all the opaques now.
5771 for (unsigned i
= 0, e
= opaques
.size(); i
!= e
; ++i
)
5772 opaques
[i
].unbind(CGF
);
5777 RValue
CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr
*E
,
5778 AggValueSlot slot
) {
5779 return emitPseudoObjectExpr(*this, E
, false, slot
).RV
;
5782 LValue
CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr
*E
) {
5783 return emitPseudoObjectExpr(*this, E
, true, AggValueSlot::ignored()).LV
;