1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This contains code dealing with code generation of C++ expressions
11 //===----------------------------------------------------------------------===//
13 #include "CGCUDARuntime.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CodeGenFunction.h"
18 #include "ConstantEmitter.h"
19 #include "TargetInfo.h"
20 #include "clang/Basic/CodeGenOptions.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "llvm/IR/Intrinsics.h"
24 using namespace clang
;
25 using namespace CodeGen
;
28 struct MemberCallInfo
{
30 // Number of prefix arguments for the call. Ignores the `this` pointer.
36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction
&CGF
, GlobalDecl GD
,
37 llvm::Value
*This
, llvm::Value
*ImplicitParam
,
38 QualType ImplicitParamTy
, const CallExpr
*CE
,
39 CallArgList
&Args
, CallArgList
*RtlArgs
) {
40 auto *MD
= cast
<CXXMethodDecl
>(GD
.getDecl());
42 assert(CE
== nullptr || isa
<CXXMemberCallExpr
>(CE
) ||
43 isa
<CXXOperatorCallExpr
>(CE
));
44 assert(MD
->isImplicitObjectMemberFunction() &&
45 "Trying to emit a member or operator call expr on a static method!");
48 const CXXRecordDecl
*RD
=
49 CGF
.CGM
.getCXXABI().getThisArgumentTypeForMethod(GD
);
50 Args
.add(RValue::get(This
), CGF
.getTypes().DeriveThisType(RD
, MD
));
52 // If there is an implicit parameter (e.g. VTT), emit it.
54 Args
.add(RValue::get(ImplicitParam
), ImplicitParamTy
);
57 const FunctionProtoType
*FPT
= MD
->getType()->castAs
<FunctionProtoType
>();
58 RequiredArgs required
= RequiredArgs::forPrototypePlus(FPT
, Args
.size());
59 unsigned PrefixSize
= Args
.size() - 1;
61 // And the rest of the call args.
63 // Special case: if the caller emitted the arguments right-to-left already
64 // (prior to emitting the *this argument), we're done. This happens for
65 // assignment operators.
66 Args
.addFrom(*RtlArgs
);
68 // Special case: skip first argument of CXXOperatorCall (it is "this").
69 unsigned ArgsToSkip
= 0;
70 if (const auto *Op
= dyn_cast
<CXXOperatorCallExpr
>(CE
)) {
71 if (const auto *M
= dyn_cast
<CXXMethodDecl
>(Op
->getCalleeDecl()))
73 static_cast<unsigned>(!M
->isExplicitObjectMemberFunction());
75 CGF
.EmitCallArgs(Args
, FPT
, drop_begin(CE
->arguments(), ArgsToSkip
),
76 CE
->getDirectCallee());
79 FPT
->getNumParams() == 0 &&
80 "No CallExpr specified for function with non-zero number of arguments");
82 return {required
, PrefixSize
};
85 RValue
CodeGenFunction::EmitCXXMemberOrOperatorCall(
86 const CXXMethodDecl
*MD
, const CGCallee
&Callee
,
87 ReturnValueSlot ReturnValue
,
88 llvm::Value
*This
, llvm::Value
*ImplicitParam
, QualType ImplicitParamTy
,
89 const CallExpr
*CE
, CallArgList
*RtlArgs
) {
90 const FunctionProtoType
*FPT
= MD
->getType()->castAs
<FunctionProtoType
>();
92 MemberCallInfo CallInfo
= commonEmitCXXMemberOrOperatorCall(
93 *this, MD
, This
, ImplicitParam
, ImplicitParamTy
, CE
, Args
, RtlArgs
);
94 auto &FnInfo
= CGM
.getTypes().arrangeCXXMethodCall(
95 Args
, FPT
, CallInfo
.ReqArgs
, CallInfo
.PrefixSize
);
96 return EmitCall(FnInfo
, Callee
, ReturnValue
, Args
, nullptr,
97 CE
&& CE
== MustTailCall
,
98 CE
? CE
->getExprLoc() : SourceLocation());
101 RValue
CodeGenFunction::EmitCXXDestructorCall(
102 GlobalDecl Dtor
, const CGCallee
&Callee
, llvm::Value
*This
, QualType ThisTy
,
103 llvm::Value
*ImplicitParam
, QualType ImplicitParamTy
, const CallExpr
*CE
) {
104 const CXXMethodDecl
*DtorDecl
= cast
<CXXMethodDecl
>(Dtor
.getDecl());
106 assert(!ThisTy
.isNull());
107 assert(ThisTy
->getAsCXXRecordDecl() == DtorDecl
->getParent() &&
108 "Pointer/Object mixup");
110 LangAS SrcAS
= ThisTy
.getAddressSpace();
111 LangAS DstAS
= DtorDecl
->getMethodQualifiers().getAddressSpace();
112 if (SrcAS
!= DstAS
) {
113 QualType DstTy
= DtorDecl
->getThisType();
114 llvm::Type
*NewType
= CGM
.getTypes().ConvertType(DstTy
);
115 This
= getTargetHooks().performAddrSpaceCast(*this, This
, SrcAS
, DstAS
,
120 commonEmitCXXMemberOrOperatorCall(*this, Dtor
, This
, ImplicitParam
,
121 ImplicitParamTy
, CE
, Args
, nullptr);
122 return EmitCall(CGM
.getTypes().arrangeCXXStructorDeclaration(Dtor
), Callee
,
123 ReturnValueSlot(), Args
, nullptr, CE
&& CE
== MustTailCall
,
124 CE
? CE
->getExprLoc() : SourceLocation
{});
127 RValue
CodeGenFunction::EmitCXXPseudoDestructorExpr(
128 const CXXPseudoDestructorExpr
*E
) {
129 QualType DestroyedType
= E
->getDestroyedType();
130 if (DestroyedType
.hasStrongOrWeakObjCLifetime()) {
131 // Automatic Reference Counting:
132 // If the pseudo-expression names a retainable object with weak or
133 // strong lifetime, the object shall be released.
134 Expr
*BaseExpr
= E
->getBase();
135 Address BaseValue
= Address::invalid();
136 Qualifiers BaseQuals
;
138 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
140 BaseValue
= EmitPointerWithAlignment(BaseExpr
);
141 const auto *PTy
= BaseExpr
->getType()->castAs
<PointerType
>();
142 BaseQuals
= PTy
->getPointeeType().getQualifiers();
144 LValue BaseLV
= EmitLValue(BaseExpr
);
145 BaseValue
= BaseLV
.getAddress(*this);
146 QualType BaseTy
= BaseExpr
->getType();
147 BaseQuals
= BaseTy
.getQualifiers();
150 switch (DestroyedType
.getObjCLifetime()) {
151 case Qualifiers::OCL_None
:
152 case Qualifiers::OCL_ExplicitNone
:
153 case Qualifiers::OCL_Autoreleasing
:
156 case Qualifiers::OCL_Strong
:
157 EmitARCRelease(Builder
.CreateLoad(BaseValue
,
158 DestroyedType
.isVolatileQualified()),
162 case Qualifiers::OCL_Weak
:
163 EmitARCDestroyWeak(BaseValue
);
167 // C++ [expr.pseudo]p1:
168 // The result shall only be used as the operand for the function call
169 // operator (), and the result of such a call has type void. The only
170 // effect is the evaluation of the postfix-expression before the dot or
172 EmitIgnoredExpr(E
->getBase());
175 return RValue::get(nullptr);
178 static CXXRecordDecl
*getCXXRecord(const Expr
*E
) {
179 QualType T
= E
->getType();
180 if (const PointerType
*PTy
= T
->getAs
<PointerType
>())
181 T
= PTy
->getPointeeType();
182 const RecordType
*Ty
= T
->castAs
<RecordType
>();
183 return cast
<CXXRecordDecl
>(Ty
->getDecl());
186 // Note: This function also emit constructor calls to support a MSVC
187 // extensions allowing explicit constructor function call.
188 RValue
CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr
*CE
,
189 ReturnValueSlot ReturnValue
) {
190 const Expr
*callee
= CE
->getCallee()->IgnoreParens();
192 if (isa
<BinaryOperator
>(callee
))
193 return EmitCXXMemberPointerCallExpr(CE
, ReturnValue
);
195 const MemberExpr
*ME
= cast
<MemberExpr
>(callee
);
196 const CXXMethodDecl
*MD
= cast
<CXXMethodDecl
>(ME
->getMemberDecl());
198 if (MD
->isStatic()) {
199 // The method is static, emit it as we would a regular call.
201 CGCallee::forDirect(CGM
.GetAddrOfFunction(MD
), GlobalDecl(MD
));
202 return EmitCall(getContext().getPointerType(MD
->getType()), callee
, CE
,
206 bool HasQualifier
= ME
->hasQualifier();
207 NestedNameSpecifier
*Qualifier
= HasQualifier
? ME
->getQualifier() : nullptr;
208 bool IsArrow
= ME
->isArrow();
209 const Expr
*Base
= ME
->getBase();
211 return EmitCXXMemberOrOperatorMemberCallExpr(
212 CE
, MD
, ReturnValue
, HasQualifier
, Qualifier
, IsArrow
, Base
);
215 RValue
CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
216 const CallExpr
*CE
, const CXXMethodDecl
*MD
, ReturnValueSlot ReturnValue
,
217 bool HasQualifier
, NestedNameSpecifier
*Qualifier
, bool IsArrow
,
219 assert(isa
<CXXMemberCallExpr
>(CE
) || isa
<CXXOperatorCallExpr
>(CE
));
221 // Compute the object pointer.
222 bool CanUseVirtualCall
= MD
->isVirtual() && !HasQualifier
;
224 const CXXMethodDecl
*DevirtualizedMethod
= nullptr;
225 if (CanUseVirtualCall
&&
226 MD
->getDevirtualizedMethod(Base
, getLangOpts().AppleKext
)) {
227 const CXXRecordDecl
*BestDynamicDecl
= Base
->getBestDynamicClassType();
228 DevirtualizedMethod
= MD
->getCorrespondingMethodInClass(BestDynamicDecl
);
229 assert(DevirtualizedMethod
);
230 const CXXRecordDecl
*DevirtualizedClass
= DevirtualizedMethod
->getParent();
231 const Expr
*Inner
= Base
->IgnoreParenBaseCasts();
232 if (DevirtualizedMethod
->getReturnType().getCanonicalType() !=
233 MD
->getReturnType().getCanonicalType())
234 // If the return types are not the same, this might be a case where more
235 // code needs to run to compensate for it. For example, the derived
236 // method might return a type that inherits form from the return
237 // type of MD and has a prefix.
238 // For now we just avoid devirtualizing these covariant cases.
239 DevirtualizedMethod
= nullptr;
240 else if (getCXXRecord(Inner
) == DevirtualizedClass
)
241 // If the class of the Inner expression is where the dynamic method
242 // is defined, build the this pointer from it.
244 else if (getCXXRecord(Base
) != DevirtualizedClass
) {
245 // If the method is defined in a class that is not the best dynamic
246 // one or the one of the full expression, we would have to build
247 // a derived-to-base cast to compute the correct this pointer, but
248 // we don't have support for that yet, so do a virtual call.
249 DevirtualizedMethod
= nullptr;
253 bool TrivialForCodegen
=
254 MD
->isTrivial() || (MD
->isDefaulted() && MD
->getParent()->isUnion());
255 bool TrivialAssignment
=
257 (MD
->isCopyAssignmentOperator() || MD
->isMoveAssignmentOperator()) &&
258 !MD
->getParent()->mayInsertExtraPadding();
260 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
261 // operator before the LHS.
262 CallArgList RtlArgStorage
;
263 CallArgList
*RtlArgs
= nullptr;
264 LValue TrivialAssignmentRHS
;
265 if (auto *OCE
= dyn_cast
<CXXOperatorCallExpr
>(CE
)) {
266 if (OCE
->isAssignmentOp()) {
267 if (TrivialAssignment
) {
268 TrivialAssignmentRHS
= EmitLValue(CE
->getArg(1));
270 RtlArgs
= &RtlArgStorage
;
271 EmitCallArgs(*RtlArgs
, MD
->getType()->castAs
<FunctionProtoType
>(),
272 drop_begin(CE
->arguments(), 1), CE
->getDirectCallee(),
273 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft
);
280 LValueBaseInfo BaseInfo
;
281 TBAAAccessInfo TBAAInfo
;
282 Address ThisValue
= EmitPointerWithAlignment(Base
, &BaseInfo
, &TBAAInfo
);
283 This
= MakeAddrLValue(ThisValue
, Base
->getType(), BaseInfo
, TBAAInfo
);
285 This
= EmitLValue(Base
);
288 if (const CXXConstructorDecl
*Ctor
= dyn_cast
<CXXConstructorDecl
>(MD
)) {
289 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
290 // constructing a new complete object of type Ctor.
292 assert(ReturnValue
.isNull() && "Constructor shouldn't have return value");
294 commonEmitCXXMemberOrOperatorCall(
295 *this, {Ctor
, Ctor_Complete
}, This
.getPointer(*this),
296 /*ImplicitParam=*/nullptr,
297 /*ImplicitParamTy=*/QualType(), CE
, Args
, nullptr);
299 EmitCXXConstructorCall(Ctor
, Ctor_Complete
, /*ForVirtualBase=*/false,
300 /*Delegating=*/false, This
.getAddress(*this), Args
,
301 AggValueSlot::DoesNotOverlap
, CE
->getExprLoc(),
302 /*NewPointerIsChecked=*/false);
303 return RValue::get(nullptr);
306 if (TrivialForCodegen
) {
307 if (isa
<CXXDestructorDecl
>(MD
))
308 return RValue::get(nullptr);
310 if (TrivialAssignment
) {
311 // We don't like to generate the trivial copy/move assignment operator
312 // when it isn't necessary; just produce the proper effect here.
313 // It's important that we use the result of EmitLValue here rather than
314 // emitting call arguments, in order to preserve TBAA information from
316 LValue RHS
= isa
<CXXOperatorCallExpr
>(CE
)
317 ? TrivialAssignmentRHS
318 : EmitLValue(*CE
->arg_begin());
319 EmitAggregateAssign(This
, RHS
, CE
->getType());
320 return RValue::get(This
.getPointer(*this));
323 assert(MD
->getParent()->mayInsertExtraPadding() &&
324 "unknown trivial member function");
327 // Compute the function type we're calling.
328 const CXXMethodDecl
*CalleeDecl
=
329 DevirtualizedMethod
? DevirtualizedMethod
: MD
;
330 const CGFunctionInfo
*FInfo
= nullptr;
331 if (const auto *Dtor
= dyn_cast
<CXXDestructorDecl
>(CalleeDecl
))
332 FInfo
= &CGM
.getTypes().arrangeCXXStructorDeclaration(
333 GlobalDecl(Dtor
, Dtor_Complete
));
335 FInfo
= &CGM
.getTypes().arrangeCXXMethodDeclaration(CalleeDecl
);
337 llvm::FunctionType
*Ty
= CGM
.getTypes().GetFunctionType(*FInfo
);
339 // C++11 [class.mfct.non-static]p2:
340 // If a non-static member function of a class X is called for an object that
341 // is not of type X, or of a type derived from X, the behavior is undefined.
342 SourceLocation CallLoc
;
343 ASTContext
&C
= getContext();
345 CallLoc
= CE
->getExprLoc();
347 SanitizerSet SkippedChecks
;
348 if (const auto *CMCE
= dyn_cast
<CXXMemberCallExpr
>(CE
)) {
349 auto *IOA
= CMCE
->getImplicitObjectArgument();
350 bool IsImplicitObjectCXXThis
= IsWrappedCXXThis(IOA
);
351 if (IsImplicitObjectCXXThis
)
352 SkippedChecks
.set(SanitizerKind::Alignment
, true);
353 if (IsImplicitObjectCXXThis
|| isa
<DeclRefExpr
>(IOA
))
354 SkippedChecks
.set(SanitizerKind::Null
, true);
356 EmitTypeCheck(CodeGenFunction::TCK_MemberCall
, CallLoc
,
357 This
.getPointer(*this),
358 C
.getRecordType(CalleeDecl
->getParent()),
359 /*Alignment=*/CharUnits::Zero(), SkippedChecks
);
361 // C++ [class.virtual]p12:
362 // Explicit qualification with the scope operator (5.1) suppresses the
363 // virtual call mechanism.
365 // We also don't emit a virtual call if the base expression has a record type
366 // because then we know what the type is.
367 bool UseVirtualCall
= CanUseVirtualCall
&& !DevirtualizedMethod
;
369 if (const CXXDestructorDecl
*Dtor
= dyn_cast
<CXXDestructorDecl
>(CalleeDecl
)) {
370 assert(CE
->arg_begin() == CE
->arg_end() &&
371 "Destructor shouldn't have explicit parameters");
372 assert(ReturnValue
.isNull() && "Destructor shouldn't have return value");
373 if (UseVirtualCall
) {
374 CGM
.getCXXABI().EmitVirtualDestructorCall(*this, Dtor
, Dtor_Complete
,
375 This
.getAddress(*this),
376 cast
<CXXMemberCallExpr
>(CE
));
378 GlobalDecl
GD(Dtor
, Dtor_Complete
);
380 if (getLangOpts().AppleKext
&& Dtor
->isVirtual() && HasQualifier
)
381 Callee
= BuildAppleKextVirtualCall(Dtor
, Qualifier
, Ty
);
382 else if (!DevirtualizedMethod
)
384 CGCallee::forDirect(CGM
.getAddrOfCXXStructor(GD
, FInfo
, Ty
), GD
);
386 Callee
= CGCallee::forDirect(CGM
.GetAddrOfFunction(GD
, Ty
), GD
);
390 IsArrow
? Base
->getType()->getPointeeType() : Base
->getType();
391 EmitCXXDestructorCall(GD
, Callee
, This
.getPointer(*this), ThisTy
,
392 /*ImplicitParam=*/nullptr,
393 /*ImplicitParamTy=*/QualType(), CE
);
395 return RValue::get(nullptr);
398 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
399 // 'CalleeDecl' instead.
402 if (UseVirtualCall
) {
403 Callee
= CGCallee::forVirtual(CE
, MD
, This
.getAddress(*this), Ty
);
405 if (SanOpts
.has(SanitizerKind::CFINVCall
) &&
406 MD
->getParent()->isDynamicClass()) {
408 const CXXRecordDecl
*RD
;
409 std::tie(VTable
, RD
) = CGM
.getCXXABI().LoadVTablePtr(
410 *this, This
.getAddress(*this), CalleeDecl
->getParent());
411 EmitVTablePtrCheckForCall(RD
, VTable
, CFITCK_NVCall
, CE
->getBeginLoc());
414 if (getLangOpts().AppleKext
&& MD
->isVirtual() && HasQualifier
)
415 Callee
= BuildAppleKextVirtualCall(MD
, Qualifier
, Ty
);
416 else if (!DevirtualizedMethod
)
418 CGCallee::forDirect(CGM
.GetAddrOfFunction(MD
, Ty
), GlobalDecl(MD
));
421 CGCallee::forDirect(CGM
.GetAddrOfFunction(DevirtualizedMethod
, Ty
),
422 GlobalDecl(DevirtualizedMethod
));
426 if (MD
->isVirtual()) {
427 Address NewThisAddr
=
428 CGM
.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
429 *this, CalleeDecl
, This
.getAddress(*this), UseVirtualCall
);
430 This
.setAddress(NewThisAddr
);
433 return EmitCXXMemberOrOperatorCall(
434 CalleeDecl
, Callee
, ReturnValue
, This
.getPointer(*this),
435 /*ImplicitParam=*/nullptr, QualType(), CE
, RtlArgs
);
439 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr
*E
,
440 ReturnValueSlot ReturnValue
) {
441 const BinaryOperator
*BO
=
442 cast
<BinaryOperator
>(E
->getCallee()->IgnoreParens());
443 const Expr
*BaseExpr
= BO
->getLHS();
444 const Expr
*MemFnExpr
= BO
->getRHS();
446 const auto *MPT
= MemFnExpr
->getType()->castAs
<MemberPointerType
>();
447 const auto *FPT
= MPT
->getPointeeType()->castAs
<FunctionProtoType
>();
449 cast
<CXXRecordDecl
>(MPT
->getClass()->castAs
<RecordType
>()->getDecl());
451 // Emit the 'this' pointer.
452 Address This
= Address::invalid();
453 if (BO
->getOpcode() == BO_PtrMemI
)
454 This
= EmitPointerWithAlignment(BaseExpr
, nullptr, nullptr, KnownNonNull
);
456 This
= EmitLValue(BaseExpr
, KnownNonNull
).getAddress(*this);
458 EmitTypeCheck(TCK_MemberCall
, E
->getExprLoc(), This
.getPointer(),
459 QualType(MPT
->getClass(), 0));
461 // Get the member function pointer.
462 llvm::Value
*MemFnPtr
= EmitScalarExpr(MemFnExpr
);
464 // Ask the ABI to load the callee. Note that This is modified.
465 llvm::Value
*ThisPtrForCall
= nullptr;
467 CGM
.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO
, This
,
468 ThisPtrForCall
, MemFnPtr
, MPT
);
473 getContext().getPointerType(getContext().getTagDeclType(RD
));
475 // Push the this ptr.
476 Args
.add(RValue::get(ThisPtrForCall
), ThisType
);
478 RequiredArgs required
= RequiredArgs::forPrototypePlus(FPT
, 1);
480 // And the rest of the call args
481 EmitCallArgs(Args
, FPT
, E
->arguments());
482 return EmitCall(CGM
.getTypes().arrangeCXXMethodCall(Args
, FPT
, required
,
484 Callee
, ReturnValue
, Args
, nullptr, E
== MustTailCall
,
489 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr
*E
,
490 const CXXMethodDecl
*MD
,
491 ReturnValueSlot ReturnValue
) {
492 assert(MD
->isImplicitObjectMemberFunction() &&
493 "Trying to emit a member call expr on a static method!");
494 return EmitCXXMemberOrOperatorMemberCallExpr(
495 E
, MD
, ReturnValue
, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
496 /*IsArrow=*/false, E
->getArg(0));
499 RValue
CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr
*E
,
500 ReturnValueSlot ReturnValue
) {
501 return CGM
.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E
, ReturnValue
);
504 static void EmitNullBaseClassInitialization(CodeGenFunction
&CGF
,
506 const CXXRecordDecl
*Base
) {
510 DestPtr
= DestPtr
.withElementType(CGF
.Int8Ty
);
512 const ASTRecordLayout
&Layout
= CGF
.getContext().getASTRecordLayout(Base
);
513 CharUnits NVSize
= Layout
.getNonVirtualSize();
515 // We cannot simply zero-initialize the entire base sub-object if vbptrs are
516 // present, they are initialized by the most derived class before calling the
518 SmallVector
<std::pair
<CharUnits
, CharUnits
>, 1> Stores
;
519 Stores
.emplace_back(CharUnits::Zero(), NVSize
);
521 // Each store is split by the existence of a vbptr.
522 CharUnits VBPtrWidth
= CGF
.getPointerSize();
523 std::vector
<CharUnits
> VBPtrOffsets
=
524 CGF
.CGM
.getCXXABI().getVBPtrOffsets(Base
);
525 for (CharUnits VBPtrOffset
: VBPtrOffsets
) {
526 // Stop before we hit any virtual base pointers located in virtual bases.
527 if (VBPtrOffset
>= NVSize
)
529 std::pair
<CharUnits
, CharUnits
> LastStore
= Stores
.pop_back_val();
530 CharUnits LastStoreOffset
= LastStore
.first
;
531 CharUnits LastStoreSize
= LastStore
.second
;
533 CharUnits SplitBeforeOffset
= LastStoreOffset
;
534 CharUnits SplitBeforeSize
= VBPtrOffset
- SplitBeforeOffset
;
535 assert(!SplitBeforeSize
.isNegative() && "negative store size!");
536 if (!SplitBeforeSize
.isZero())
537 Stores
.emplace_back(SplitBeforeOffset
, SplitBeforeSize
);
539 CharUnits SplitAfterOffset
= VBPtrOffset
+ VBPtrWidth
;
540 CharUnits SplitAfterSize
= LastStoreSize
- SplitAfterOffset
;
541 assert(!SplitAfterSize
.isNegative() && "negative store size!");
542 if (!SplitAfterSize
.isZero())
543 Stores
.emplace_back(SplitAfterOffset
, SplitAfterSize
);
546 // If the type contains a pointer to data member we can't memset it to zero.
547 // Instead, create a null constant and copy it to the destination.
548 // TODO: there are other patterns besides zero that we can usefully memset,
549 // like -1, which happens to be the pattern used by member-pointers.
550 // TODO: isZeroInitializable can be over-conservative in the case where a
551 // virtual base contains a member pointer.
552 llvm::Constant
*NullConstantForBase
= CGF
.CGM
.EmitNullConstantForBase(Base
);
553 if (!NullConstantForBase
->isNullValue()) {
554 llvm::GlobalVariable
*NullVariable
= new llvm::GlobalVariable(
555 CGF
.CGM
.getModule(), NullConstantForBase
->getType(),
556 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage
,
557 NullConstantForBase
, Twine());
560 std::max(Layout
.getNonVirtualAlignment(), DestPtr
.getAlignment());
561 NullVariable
->setAlignment(Align
.getAsAlign());
563 Address
SrcPtr(NullVariable
, CGF
.Int8Ty
, Align
);
565 // Get and call the appropriate llvm.memcpy overload.
566 for (std::pair
<CharUnits
, CharUnits
> Store
: Stores
) {
567 CharUnits StoreOffset
= Store
.first
;
568 CharUnits StoreSize
= Store
.second
;
569 llvm::Value
*StoreSizeVal
= CGF
.CGM
.getSize(StoreSize
);
570 CGF
.Builder
.CreateMemCpy(
571 CGF
.Builder
.CreateConstInBoundsByteGEP(DestPtr
, StoreOffset
),
572 CGF
.Builder
.CreateConstInBoundsByteGEP(SrcPtr
, StoreOffset
),
576 // Otherwise, just memset the whole thing to zero. This is legal
577 // because in LLVM, all default initializers (other than the ones we just
578 // handled above) are guaranteed to have a bit pattern of all zeros.
580 for (std::pair
<CharUnits
, CharUnits
> Store
: Stores
) {
581 CharUnits StoreOffset
= Store
.first
;
582 CharUnits StoreSize
= Store
.second
;
583 llvm::Value
*StoreSizeVal
= CGF
.CGM
.getSize(StoreSize
);
584 CGF
.Builder
.CreateMemSet(
585 CGF
.Builder
.CreateConstInBoundsByteGEP(DestPtr
, StoreOffset
),
586 CGF
.Builder
.getInt8(0), StoreSizeVal
);
592 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr
*E
,
594 assert(!Dest
.isIgnored() && "Must have a destination!");
595 const CXXConstructorDecl
*CD
= E
->getConstructor();
597 // If we require zero initialization before (or instead of) calling the
598 // constructor, as can be the case with a non-user-provided default
599 // constructor, emit the zero initialization now, unless destination is
601 if (E
->requiresZeroInitialization() && !Dest
.isZeroed()) {
602 switch (E
->getConstructionKind()) {
603 case CXXConstructExpr::CK_Delegating
:
604 case CXXConstructExpr::CK_Complete
:
605 EmitNullInitialization(Dest
.getAddress(), E
->getType());
607 case CXXConstructExpr::CK_VirtualBase
:
608 case CXXConstructExpr::CK_NonVirtualBase
:
609 EmitNullBaseClassInitialization(*this, Dest
.getAddress(),
615 // If this is a call to a trivial default constructor, do nothing.
616 if (CD
->isTrivial() && CD
->isDefaultConstructor())
619 // Elide the constructor if we're constructing from a temporary.
620 if (getLangOpts().ElideConstructors
&& E
->isElidable()) {
621 // FIXME: This only handles the simplest case, where the source object
622 // is passed directly as the first argument to the constructor.
623 // This should also handle stepping though implicit casts and
624 // conversion sequences which involve two steps, with a
625 // conversion operator followed by a converting constructor.
626 const Expr
*SrcObj
= E
->getArg(0);
627 assert(SrcObj
->isTemporaryObject(getContext(), CD
->getParent()));
629 getContext().hasSameUnqualifiedType(E
->getType(), SrcObj
->getType()));
630 EmitAggExpr(SrcObj
, Dest
);
634 if (const ArrayType
*arrayType
635 = getContext().getAsArrayType(E
->getType())) {
636 EmitCXXAggrConstructorCall(CD
, arrayType
, Dest
.getAddress(), E
,
637 Dest
.isSanitizerChecked());
639 CXXCtorType Type
= Ctor_Complete
;
640 bool ForVirtualBase
= false;
641 bool Delegating
= false;
643 switch (E
->getConstructionKind()) {
644 case CXXConstructExpr::CK_Delegating
:
645 // We should be emitting a constructor; GlobalDecl will assert this
646 Type
= CurGD
.getCtorType();
650 case CXXConstructExpr::CK_Complete
:
651 Type
= Ctor_Complete
;
654 case CXXConstructExpr::CK_VirtualBase
:
655 ForVirtualBase
= true;
658 case CXXConstructExpr::CK_NonVirtualBase
:
662 // Call the constructor.
663 EmitCXXConstructorCall(CD
, Type
, ForVirtualBase
, Delegating
, Dest
, E
);
667 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest
, Address Src
,
669 if (const ExprWithCleanups
*E
= dyn_cast
<ExprWithCleanups
>(Exp
))
670 Exp
= E
->getSubExpr();
671 assert(isa
<CXXConstructExpr
>(Exp
) &&
672 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
673 const CXXConstructExpr
* E
= cast
<CXXConstructExpr
>(Exp
);
674 const CXXConstructorDecl
*CD
= E
->getConstructor();
675 RunCleanupsScope
Scope(*this);
677 // If we require zero initialization before (or instead of) calling the
678 // constructor, as can be the case with a non-user-provided default
679 // constructor, emit the zero initialization now.
680 // FIXME. Do I still need this for a copy ctor synthesis?
681 if (E
->requiresZeroInitialization())
682 EmitNullInitialization(Dest
, E
->getType());
684 assert(!getContext().getAsConstantArrayType(E
->getType())
685 && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
686 EmitSynthesizedCXXCopyCtorCall(CD
, Dest
, Src
, E
);
689 static CharUnits
CalculateCookiePadding(CodeGenFunction
&CGF
,
690 const CXXNewExpr
*E
) {
692 return CharUnits::Zero();
694 // No cookie is required if the operator new[] being used is the
695 // reserved placement operator new[].
696 if (E
->getOperatorNew()->isReservedGlobalPlacementOperator())
697 return CharUnits::Zero();
699 return CGF
.CGM
.getCXXABI().GetArrayCookieSize(E
);
702 static llvm::Value
*EmitCXXNewAllocSize(CodeGenFunction
&CGF
,
704 unsigned minElements
,
705 llvm::Value
*&numElements
,
706 llvm::Value
*&sizeWithoutCookie
) {
707 QualType type
= e
->getAllocatedType();
710 CharUnits typeSize
= CGF
.getContext().getTypeSizeInChars(type
);
712 = llvm::ConstantInt::get(CGF
.SizeTy
, typeSize
.getQuantity());
713 return sizeWithoutCookie
;
716 // The width of size_t.
717 unsigned sizeWidth
= CGF
.SizeTy
->getBitWidth();
719 // Figure out the cookie size.
720 llvm::APInt
cookieSize(sizeWidth
,
721 CalculateCookiePadding(CGF
, e
).getQuantity());
723 // Emit the array size expression.
724 // We multiply the size of all dimensions for NumElements.
725 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
727 ConstantEmitter(CGF
).tryEmitAbstract(*e
->getArraySize(), e
->getType());
729 numElements
= CGF
.EmitScalarExpr(*e
->getArraySize());
730 assert(isa
<llvm::IntegerType
>(numElements
->getType()));
732 // The number of elements can be have an arbitrary integer type;
733 // essentially, we need to multiply it by a constant factor, add a
734 // cookie size, and verify that the result is representable as a
735 // size_t. That's just a gloss, though, and it's wrong in one
736 // important way: if the count is negative, it's an error even if
737 // the cookie size would bring the total size >= 0.
739 = (*e
->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
740 llvm::IntegerType
*numElementsType
741 = cast
<llvm::IntegerType
>(numElements
->getType());
742 unsigned numElementsWidth
= numElementsType
->getBitWidth();
744 // Compute the constant factor.
745 llvm::APInt
arraySizeMultiplier(sizeWidth
, 1);
746 while (const ConstantArrayType
*CAT
747 = CGF
.getContext().getAsConstantArrayType(type
)) {
748 type
= CAT
->getElementType();
749 arraySizeMultiplier
*= CAT
->getSize();
752 CharUnits typeSize
= CGF
.getContext().getTypeSizeInChars(type
);
753 llvm::APInt
typeSizeMultiplier(sizeWidth
, typeSize
.getQuantity());
754 typeSizeMultiplier
*= arraySizeMultiplier
;
756 // This will be a size_t.
759 // If someone is doing 'new int[42]' there is no need to do a dynamic check.
760 // Don't bloat the -O0 code.
761 if (llvm::ConstantInt
*numElementsC
=
762 dyn_cast
<llvm::ConstantInt
>(numElements
)) {
763 const llvm::APInt
&count
= numElementsC
->getValue();
765 bool hasAnyOverflow
= false;
767 // If 'count' was a negative number, it's an overflow.
768 if (isSigned
&& count
.isNegative())
769 hasAnyOverflow
= true;
771 // We want to do all this arithmetic in size_t. If numElements is
772 // wider than that, check whether it's already too big, and if so,
774 else if (numElementsWidth
> sizeWidth
&&
775 numElementsWidth
- sizeWidth
> count
.countl_zero())
776 hasAnyOverflow
= true;
778 // Okay, compute a count at the right width.
779 llvm::APInt adjustedCount
= count
.zextOrTrunc(sizeWidth
);
781 // If there is a brace-initializer, we cannot allocate fewer elements than
782 // there are initializers. If we do, that's treated like an overflow.
783 if (adjustedCount
.ult(minElements
))
784 hasAnyOverflow
= true;
786 // Scale numElements by that. This might overflow, but we don't
787 // care because it only overflows if allocationSize does, too, and
788 // if that overflows then we shouldn't use this.
789 numElements
= llvm::ConstantInt::get(CGF
.SizeTy
,
790 adjustedCount
* arraySizeMultiplier
);
792 // Compute the size before cookie, and track whether it overflowed.
794 llvm::APInt allocationSize
795 = adjustedCount
.umul_ov(typeSizeMultiplier
, overflow
);
796 hasAnyOverflow
|= overflow
;
798 // Add in the cookie, and check whether it's overflowed.
799 if (cookieSize
!= 0) {
800 // Save the current size without a cookie. This shouldn't be
801 // used if there was overflow.
802 sizeWithoutCookie
= llvm::ConstantInt::get(CGF
.SizeTy
, allocationSize
);
804 allocationSize
= allocationSize
.uadd_ov(cookieSize
, overflow
);
805 hasAnyOverflow
|= overflow
;
808 // On overflow, produce a -1 so operator new will fail.
809 if (hasAnyOverflow
) {
810 size
= llvm::Constant::getAllOnesValue(CGF
.SizeTy
);
812 size
= llvm::ConstantInt::get(CGF
.SizeTy
, allocationSize
);
815 // Otherwise, we might need to use the overflow intrinsics.
817 // There are up to five conditions we need to test for:
818 // 1) if isSigned, we need to check whether numElements is negative;
819 // 2) if numElementsWidth > sizeWidth, we need to check whether
820 // numElements is larger than something representable in size_t;
821 // 3) if minElements > 0, we need to check whether numElements is smaller
823 // 4) we need to compute
824 // sizeWithoutCookie := numElements * typeSizeMultiplier
825 // and check whether it overflows; and
826 // 5) if we need a cookie, we need to compute
827 // size := sizeWithoutCookie + cookieSize
828 // and check whether it overflows.
830 llvm::Value
*hasOverflow
= nullptr;
832 // If numElementsWidth > sizeWidth, then one way or another, we're
833 // going to have to do a comparison for (2), and this happens to
834 // take care of (1), too.
835 if (numElementsWidth
> sizeWidth
) {
836 llvm::APInt threshold
=
837 llvm::APInt::getOneBitSet(numElementsWidth
, sizeWidth
);
839 llvm::Value
*thresholdV
840 = llvm::ConstantInt::get(numElementsType
, threshold
);
842 hasOverflow
= CGF
.Builder
.CreateICmpUGE(numElements
, thresholdV
);
843 numElements
= CGF
.Builder
.CreateTrunc(numElements
, CGF
.SizeTy
);
845 // Otherwise, if we're signed, we want to sext up to size_t.
846 } else if (isSigned
) {
847 if (numElementsWidth
< sizeWidth
)
848 numElements
= CGF
.Builder
.CreateSExt(numElements
, CGF
.SizeTy
);
850 // If there's a non-1 type size multiplier, then we can do the
851 // signedness check at the same time as we do the multiply
852 // because a negative number times anything will cause an
853 // unsigned overflow. Otherwise, we have to do it here. But at least
854 // in this case, we can subsume the >= minElements check.
855 if (typeSizeMultiplier
== 1)
856 hasOverflow
= CGF
.Builder
.CreateICmpSLT(numElements
,
857 llvm::ConstantInt::get(CGF
.SizeTy
, minElements
));
859 // Otherwise, zext up to size_t if necessary.
860 } else if (numElementsWidth
< sizeWidth
) {
861 numElements
= CGF
.Builder
.CreateZExt(numElements
, CGF
.SizeTy
);
864 assert(numElements
->getType() == CGF
.SizeTy
);
867 // Don't allow allocation of fewer elements than we have initializers.
869 hasOverflow
= CGF
.Builder
.CreateICmpULT(numElements
,
870 llvm::ConstantInt::get(CGF
.SizeTy
, minElements
));
871 } else if (numElementsWidth
> sizeWidth
) {
872 // The other existing overflow subsumes this check.
873 // We do an unsigned comparison, since any signed value < -1 is
874 // taken care of either above or below.
875 hasOverflow
= CGF
.Builder
.CreateOr(hasOverflow
,
876 CGF
.Builder
.CreateICmpULT(numElements
,
877 llvm::ConstantInt::get(CGF
.SizeTy
, minElements
)));
883 // Multiply by the type size if necessary. This multiplier
884 // includes all the factors for nested arrays.
886 // This step also causes numElements to be scaled up by the
887 // nested-array factor if necessary. Overflow on this computation
888 // can be ignored because the result shouldn't be used if
890 if (typeSizeMultiplier
!= 1) {
891 llvm::Function
*umul_with_overflow
892 = CGF
.CGM
.getIntrinsic(llvm::Intrinsic::umul_with_overflow
, CGF
.SizeTy
);
895 llvm::ConstantInt::get(CGF
.SizeTy
, typeSizeMultiplier
);
896 llvm::Value
*result
=
897 CGF
.Builder
.CreateCall(umul_with_overflow
, {size
, tsmV
});
899 llvm::Value
*overflowed
= CGF
.Builder
.CreateExtractValue(result
, 1);
901 hasOverflow
= CGF
.Builder
.CreateOr(hasOverflow
, overflowed
);
903 hasOverflow
= overflowed
;
905 size
= CGF
.Builder
.CreateExtractValue(result
, 0);
907 // Also scale up numElements by the array size multiplier.
908 if (arraySizeMultiplier
!= 1) {
909 // If the base element type size is 1, then we can re-use the
910 // multiply we just did.
911 if (typeSize
.isOne()) {
912 assert(arraySizeMultiplier
== typeSizeMultiplier
);
915 // Otherwise we need a separate multiply.
918 llvm::ConstantInt::get(CGF
.SizeTy
, arraySizeMultiplier
);
919 numElements
= CGF
.Builder
.CreateMul(numElements
, asmV
);
923 // numElements doesn't need to be scaled.
924 assert(arraySizeMultiplier
== 1);
927 // Add in the cookie size if necessary.
928 if (cookieSize
!= 0) {
929 sizeWithoutCookie
= size
;
931 llvm::Function
*uadd_with_overflow
932 = CGF
.CGM
.getIntrinsic(llvm::Intrinsic::uadd_with_overflow
, CGF
.SizeTy
);
934 llvm::Value
*cookieSizeV
= llvm::ConstantInt::get(CGF
.SizeTy
, cookieSize
);
935 llvm::Value
*result
=
936 CGF
.Builder
.CreateCall(uadd_with_overflow
, {size
, cookieSizeV
});
938 llvm::Value
*overflowed
= CGF
.Builder
.CreateExtractValue(result
, 1);
940 hasOverflow
= CGF
.Builder
.CreateOr(hasOverflow
, overflowed
);
942 hasOverflow
= overflowed
;
944 size
= CGF
.Builder
.CreateExtractValue(result
, 0);
947 // If we had any possibility of dynamic overflow, make a select to
948 // overwrite 'size' with an all-ones value, which should cause
949 // operator new to throw.
951 size
= CGF
.Builder
.CreateSelect(hasOverflow
,
952 llvm::Constant::getAllOnesValue(CGF
.SizeTy
),
957 sizeWithoutCookie
= size
;
959 assert(sizeWithoutCookie
&& "didn't set sizeWithoutCookie?");
964 static void StoreAnyExprIntoOneUnit(CodeGenFunction
&CGF
, const Expr
*Init
,
965 QualType AllocType
, Address NewPtr
,
966 AggValueSlot::Overlap_t MayOverlap
) {
967 // FIXME: Refactor with EmitExprAsInit.
968 switch (CGF
.getEvaluationKind(AllocType
)) {
970 CGF
.EmitScalarInit(Init
, nullptr,
971 CGF
.MakeAddrLValue(NewPtr
, AllocType
), false);
974 CGF
.EmitComplexExprIntoLValue(Init
, CGF
.MakeAddrLValue(NewPtr
, AllocType
),
977 case TEK_Aggregate
: {
979 = AggValueSlot::forAddr(NewPtr
, AllocType
.getQualifiers(),
980 AggValueSlot::IsDestructed
,
981 AggValueSlot::DoesNotNeedGCBarriers
,
982 AggValueSlot::IsNotAliased
,
983 MayOverlap
, AggValueSlot::IsNotZeroed
,
984 AggValueSlot::IsSanitizerChecked
);
985 CGF
.EmitAggExpr(Init
, Slot
);
989 llvm_unreachable("bad evaluation kind");
992 void CodeGenFunction::EmitNewArrayInitializer(
993 const CXXNewExpr
*E
, QualType ElementType
, llvm::Type
*ElementTy
,
994 Address BeginPtr
, llvm::Value
*NumElements
,
995 llvm::Value
*AllocSizeWithoutCookie
) {
996 // If we have a type with trivial initialization and no initializer,
997 // there's nothing to do.
998 if (!E
->hasInitializer())
1001 Address CurPtr
= BeginPtr
;
1003 unsigned InitListElements
= 0;
1005 const Expr
*Init
= E
->getInitializer();
1006 Address EndOfInit
= Address::invalid();
1007 QualType::DestructionKind DtorKind
= ElementType
.isDestructedType();
1008 EHScopeStack::stable_iterator Cleanup
;
1009 llvm::Instruction
*CleanupDominator
= nullptr;
1011 CharUnits ElementSize
= getContext().getTypeSizeInChars(ElementType
);
1012 CharUnits ElementAlign
=
1013 BeginPtr
.getAlignment().alignmentOfArrayElement(ElementSize
);
1015 // Attempt to perform zero-initialization using memset.
1016 auto TryMemsetInitialization
= [&]() -> bool {
1017 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
1018 // we can initialize with a memset to -1.
1019 if (!CGM
.getTypes().isZeroInitializable(ElementType
))
1022 // Optimization: since zero initialization will just set the memory
1023 // to all zeroes, generate a single memset to do it in one shot.
1025 // Subtract out the size of any elements we've already initialized.
1026 auto *RemainingSize
= AllocSizeWithoutCookie
;
1027 if (InitListElements
) {
1028 // We know this can't overflow; we check this when doing the allocation.
1029 auto *InitializedSize
= llvm::ConstantInt::get(
1030 RemainingSize
->getType(),
1031 getContext().getTypeSizeInChars(ElementType
).getQuantity() *
1033 RemainingSize
= Builder
.CreateSub(RemainingSize
, InitializedSize
);
1036 // Create the memset.
1037 Builder
.CreateMemSet(CurPtr
, Builder
.getInt8(0), RemainingSize
, false);
1041 // If the initializer is an initializer list, first do the explicit elements.
1042 if (const InitListExpr
*ILE
= dyn_cast
<InitListExpr
>(Init
)) {
1043 // Initializing from a (braced) string literal is a special case; the init
1044 // list element does not initialize a (single) array element.
1045 if (ILE
->isStringLiteralInit()) {
1046 // Initialize the initial portion of length equal to that of the string
1047 // literal. The allocation must be for at least this much; we emitted a
1048 // check for that earlier.
1050 AggValueSlot::forAddr(CurPtr
, ElementType
.getQualifiers(),
1051 AggValueSlot::IsDestructed
,
1052 AggValueSlot::DoesNotNeedGCBarriers
,
1053 AggValueSlot::IsNotAliased
,
1054 AggValueSlot::DoesNotOverlap
,
1055 AggValueSlot::IsNotZeroed
,
1056 AggValueSlot::IsSanitizerChecked
);
1057 EmitAggExpr(ILE
->getInit(0), Slot
);
1059 // Move past these elements.
1061 cast
<ConstantArrayType
>(ILE
->getType()->getAsArrayTypeUnsafe())
1062 ->getSize().getZExtValue();
1063 CurPtr
= Builder
.CreateConstInBoundsGEP(
1064 CurPtr
, InitListElements
, "string.init.end");
1066 // Zero out the rest, if any remain.
1067 llvm::ConstantInt
*ConstNum
= dyn_cast
<llvm::ConstantInt
>(NumElements
);
1068 if (!ConstNum
|| !ConstNum
->equalsInt(InitListElements
)) {
1069 bool OK
= TryMemsetInitialization();
1071 assert(OK
&& "couldn't memset character type?");
1076 InitListElements
= ILE
->getNumInits();
1078 // If this is a multi-dimensional array new, we will initialize multiple
1079 // elements with each init list element.
1080 QualType AllocType
= E
->getAllocatedType();
1081 if (const ConstantArrayType
*CAT
= dyn_cast_or_null
<ConstantArrayType
>(
1082 AllocType
->getAsArrayTypeUnsafe())) {
1083 ElementTy
= ConvertTypeForMem(AllocType
);
1084 CurPtr
= CurPtr
.withElementType(ElementTy
);
1085 InitListElements
*= getContext().getConstantArrayElementCount(CAT
);
1088 // Enter a partial-destruction Cleanup if necessary.
1089 if (needsEHCleanup(DtorKind
)) {
1090 // In principle we could tell the Cleanup where we are more
1091 // directly, but the control flow can get so varied here that it
1092 // would actually be quite complex. Therefore we go through an
1094 EndOfInit
= CreateTempAlloca(BeginPtr
.getType(), getPointerAlign(),
1096 CleanupDominator
= Builder
.CreateStore(BeginPtr
.getPointer(), EndOfInit
);
1097 pushIrregularPartialArrayCleanup(BeginPtr
.getPointer(), EndOfInit
,
1098 ElementType
, ElementAlign
,
1099 getDestroyer(DtorKind
));
1100 Cleanup
= EHStack
.stable_begin();
1103 CharUnits StartAlign
= CurPtr
.getAlignment();
1104 for (unsigned i
= 0, e
= ILE
->getNumInits(); i
!= e
; ++i
) {
1105 // Tell the cleanup that it needs to destroy up to this
1106 // element. TODO: some of these stores can be trivially
1107 // observed to be unnecessary.
1108 if (EndOfInit
.isValid()) {
1109 Builder
.CreateStore(CurPtr
.getPointer(), EndOfInit
);
1111 // FIXME: If the last initializer is an incomplete initializer list for
1112 // an array, and we have an array filler, we can fold together the two
1113 // initialization loops.
1114 StoreAnyExprIntoOneUnit(*this, ILE
->getInit(i
),
1115 ILE
->getInit(i
)->getType(), CurPtr
,
1116 AggValueSlot::DoesNotOverlap
);
1117 CurPtr
= Address(Builder
.CreateInBoundsGEP(
1118 CurPtr
.getElementType(), CurPtr
.getPointer(),
1119 Builder
.getSize(1), "array.exp.next"),
1120 CurPtr
.getElementType(),
1121 StartAlign
.alignmentAtOffset((i
+ 1) * ElementSize
));
1124 // The remaining elements are filled with the array filler expression.
1125 Init
= ILE
->getArrayFiller();
1127 // Extract the initializer for the individual array elements by pulling
1128 // out the array filler from all the nested initializer lists. This avoids
1129 // generating a nested loop for the initialization.
1130 while (Init
&& Init
->getType()->isConstantArrayType()) {
1131 auto *SubILE
= dyn_cast
<InitListExpr
>(Init
);
1134 assert(SubILE
->getNumInits() == 0 && "explicit inits in array filler?");
1135 Init
= SubILE
->getArrayFiller();
1138 // Switch back to initializing one base element at a time.
1139 CurPtr
= CurPtr
.withElementType(BeginPtr
.getElementType());
1142 // If all elements have already been initialized, skip any further
1144 llvm::ConstantInt
*ConstNum
= dyn_cast
<llvm::ConstantInt
>(NumElements
);
1145 if (ConstNum
&& ConstNum
->getZExtValue() <= InitListElements
) {
1146 // If there was a Cleanup, deactivate it.
1147 if (CleanupDominator
)
1148 DeactivateCleanupBlock(Cleanup
, CleanupDominator
);
1152 assert(Init
&& "have trailing elements to initialize but no initializer");
1154 // If this is a constructor call, try to optimize it out, and failing that
1155 // emit a single loop to initialize all remaining elements.
1156 if (const CXXConstructExpr
*CCE
= dyn_cast
<CXXConstructExpr
>(Init
)) {
1157 CXXConstructorDecl
*Ctor
= CCE
->getConstructor();
1158 if (Ctor
->isTrivial()) {
1159 // If new expression did not specify value-initialization, then there
1160 // is no initialization.
1161 if (!CCE
->requiresZeroInitialization() || Ctor
->getParent()->isEmpty())
1164 if (TryMemsetInitialization())
1168 // Store the new Cleanup position for irregular Cleanups.
1170 // FIXME: Share this cleanup with the constructor call emission rather than
1171 // having it create a cleanup of its own.
1172 if (EndOfInit
.isValid())
1173 Builder
.CreateStore(CurPtr
.getPointer(), EndOfInit
);
1175 // Emit a constructor call loop to initialize the remaining elements.
1176 if (InitListElements
)
1177 NumElements
= Builder
.CreateSub(
1179 llvm::ConstantInt::get(NumElements
->getType(), InitListElements
));
1180 EmitCXXAggrConstructorCall(Ctor
, NumElements
, CurPtr
, CCE
,
1181 /*NewPointerIsChecked*/true,
1182 CCE
->requiresZeroInitialization());
1186 // If this is value-initialization, we can usually use memset.
1187 ImplicitValueInitExpr
IVIE(ElementType
);
1188 if (isa
<ImplicitValueInitExpr
>(Init
)) {
1189 if (TryMemsetInitialization())
1192 // Switch to an ImplicitValueInitExpr for the element type. This handles
1193 // only one case: multidimensional array new of pointers to members. In
1194 // all other cases, we already have an initializer for the array element.
1198 // At this point we should have found an initializer for the individual
1199 // elements of the array.
1200 assert(getContext().hasSameUnqualifiedType(ElementType
, Init
->getType()) &&
1201 "got wrong type of element to initialize");
1203 // If we have an empty initializer list, we can usually use memset.
1204 if (auto *ILE
= dyn_cast
<InitListExpr
>(Init
))
1205 if (ILE
->getNumInits() == 0 && TryMemsetInitialization())
1208 // If we have a struct whose every field is value-initialized, we can
1209 // usually use memset.
1210 if (auto *ILE
= dyn_cast
<InitListExpr
>(Init
)) {
1211 if (const RecordType
*RType
= ILE
->getType()->getAs
<RecordType
>()) {
1212 if (RType
->getDecl()->isStruct()) {
1213 unsigned NumElements
= 0;
1214 if (auto *CXXRD
= dyn_cast
<CXXRecordDecl
>(RType
->getDecl()))
1215 NumElements
= CXXRD
->getNumBases();
1216 for (auto *Field
: RType
->getDecl()->fields())
1217 if (!Field
->isUnnamedBitfield())
1219 // FIXME: Recurse into nested InitListExprs.
1220 if (ILE
->getNumInits() == NumElements
)
1221 for (unsigned i
= 0, e
= ILE
->getNumInits(); i
!= e
; ++i
)
1222 if (!isa
<ImplicitValueInitExpr
>(ILE
->getInit(i
)))
1224 if (ILE
->getNumInits() == NumElements
&& TryMemsetInitialization())
1230 // Create the loop blocks.
1231 llvm::BasicBlock
*EntryBB
= Builder
.GetInsertBlock();
1232 llvm::BasicBlock
*LoopBB
= createBasicBlock("new.loop");
1233 llvm::BasicBlock
*ContBB
= createBasicBlock("new.loop.end");
1235 // Find the end of the array, hoisted out of the loop.
1236 llvm::Value
*EndPtr
=
1237 Builder
.CreateInBoundsGEP(BeginPtr
.getElementType(), BeginPtr
.getPointer(),
1238 NumElements
, "array.end");
1240 // If the number of elements isn't constant, we have to now check if there is
1241 // anything left to initialize.
1243 llvm::Value
*IsEmpty
=
1244 Builder
.CreateICmpEQ(CurPtr
.getPointer(), EndPtr
, "array.isempty");
1245 Builder
.CreateCondBr(IsEmpty
, ContBB
, LoopBB
);
1251 // Set up the current-element phi.
1252 llvm::PHINode
*CurPtrPhi
=
1253 Builder
.CreatePHI(CurPtr
.getType(), 2, "array.cur");
1254 CurPtrPhi
->addIncoming(CurPtr
.getPointer(), EntryBB
);
1256 CurPtr
= Address(CurPtrPhi
, CurPtr
.getElementType(), ElementAlign
);
1258 // Store the new Cleanup position for irregular Cleanups.
1259 if (EndOfInit
.isValid())
1260 Builder
.CreateStore(CurPtr
.getPointer(), EndOfInit
);
1262 // Enter a partial-destruction Cleanup if necessary.
1263 if (!CleanupDominator
&& needsEHCleanup(DtorKind
)) {
1264 pushRegularPartialArrayCleanup(BeginPtr
.getPointer(), CurPtr
.getPointer(),
1265 ElementType
, ElementAlign
,
1266 getDestroyer(DtorKind
));
1267 Cleanup
= EHStack
.stable_begin();
1268 CleanupDominator
= Builder
.CreateUnreachable();
1271 // Emit the initializer into this element.
1272 StoreAnyExprIntoOneUnit(*this, Init
, Init
->getType(), CurPtr
,
1273 AggValueSlot::DoesNotOverlap
);
1275 // Leave the Cleanup if we entered one.
1276 if (CleanupDominator
) {
1277 DeactivateCleanupBlock(Cleanup
, CleanupDominator
);
1278 CleanupDominator
->eraseFromParent();
1281 // Advance to the next element by adjusting the pointer type as necessary.
1282 llvm::Value
*NextPtr
=
1283 Builder
.CreateConstInBoundsGEP1_32(ElementTy
, CurPtr
.getPointer(), 1,
1286 // Check whether we've gotten to the end of the array and, if so,
1288 llvm::Value
*IsEnd
= Builder
.CreateICmpEQ(NextPtr
, EndPtr
, "array.atend");
1289 Builder
.CreateCondBr(IsEnd
, ContBB
, LoopBB
);
1290 CurPtrPhi
->addIncoming(NextPtr
, Builder
.GetInsertBlock());
1295 static void EmitNewInitializer(CodeGenFunction
&CGF
, const CXXNewExpr
*E
,
1296 QualType ElementType
, llvm::Type
*ElementTy
,
1297 Address NewPtr
, llvm::Value
*NumElements
,
1298 llvm::Value
*AllocSizeWithoutCookie
) {
1299 ApplyDebugLocation
DL(CGF
, E
);
1301 CGF
.EmitNewArrayInitializer(E
, ElementType
, ElementTy
, NewPtr
, NumElements
,
1302 AllocSizeWithoutCookie
);
1303 else if (const Expr
*Init
= E
->getInitializer())
1304 StoreAnyExprIntoOneUnit(CGF
, Init
, E
->getAllocatedType(), NewPtr
,
1305 AggValueSlot::DoesNotOverlap
);
1308 /// Emit a call to an operator new or operator delete function, as implicitly
1309 /// created by new-expressions and delete-expressions.
1310 static RValue
EmitNewDeleteCall(CodeGenFunction
&CGF
,
1311 const FunctionDecl
*CalleeDecl
,
1312 const FunctionProtoType
*CalleeType
,
1313 const CallArgList
&Args
) {
1314 llvm::CallBase
*CallOrInvoke
;
1315 llvm::Constant
*CalleePtr
= CGF
.CGM
.GetAddrOfFunction(CalleeDecl
);
1316 CGCallee Callee
= CGCallee::forDirect(CalleePtr
, GlobalDecl(CalleeDecl
));
1318 CGF
.EmitCall(CGF
.CGM
.getTypes().arrangeFreeFunctionCall(
1319 Args
, CalleeType
, /*ChainCall=*/false),
1320 Callee
, ReturnValueSlot(), Args
, &CallOrInvoke
);
1322 /// C++1y [expr.new]p10:
1323 /// [In a new-expression,] an implementation is allowed to omit a call
1324 /// to a replaceable global allocation function.
1326 /// We model such elidable calls with the 'builtin' attribute.
1327 llvm::Function
*Fn
= dyn_cast
<llvm::Function
>(CalleePtr
);
1328 if (CalleeDecl
->isReplaceableGlobalAllocationFunction() &&
1329 Fn
&& Fn
->hasFnAttribute(llvm::Attribute::NoBuiltin
)) {
1330 CallOrInvoke
->addFnAttr(llvm::Attribute::Builtin
);
1336 RValue
CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType
*Type
,
1337 const CallExpr
*TheCall
,
1340 EmitCallArgs(Args
, Type
, TheCall
->arguments());
1341 // Find the allocation or deallocation function that we're calling.
1342 ASTContext
&Ctx
= getContext();
1343 DeclarationName Name
= Ctx
.DeclarationNames
1344 .getCXXOperatorName(IsDelete
? OO_Delete
: OO_New
);
1346 for (auto *Decl
: Ctx
.getTranslationUnitDecl()->lookup(Name
))
1347 if (auto *FD
= dyn_cast
<FunctionDecl
>(Decl
))
1348 if (Ctx
.hasSameType(FD
->getType(), QualType(Type
, 0)))
1349 return EmitNewDeleteCall(*this, FD
, Type
, Args
);
1350 llvm_unreachable("predeclared global operator new/delete is missing");
1354 /// The parameters to pass to a usual operator delete.
1355 struct UsualDeleteParams
{
1356 bool DestroyingDelete
= false;
1358 bool Alignment
= false;
1362 static UsualDeleteParams
getUsualDeleteParams(const FunctionDecl
*FD
) {
1363 UsualDeleteParams Params
;
1365 const FunctionProtoType
*FPT
= FD
->getType()->castAs
<FunctionProtoType
>();
1366 auto AI
= FPT
->param_type_begin(), AE
= FPT
->param_type_end();
1368 // The first argument is always a void*.
1371 // The next parameter may be a std::destroying_delete_t.
1372 if (FD
->isDestroyingOperatorDelete()) {
1373 Params
.DestroyingDelete
= true;
1378 // Figure out what other parameters we should be implicitly passing.
1379 if (AI
!= AE
&& (*AI
)->isIntegerType()) {
1384 if (AI
!= AE
&& (*AI
)->isAlignValT()) {
1385 Params
.Alignment
= true;
1389 assert(AI
== AE
&& "unexpected usual deallocation function parameter");
1394 /// A cleanup to call the given 'operator delete' function upon abnormal
1395 /// exit from a new expression. Templated on a traits type that deals with
1396 /// ensuring that the arguments dominate the cleanup if necessary.
1397 template<typename Traits
>
1398 class CallDeleteDuringNew final
: public EHScopeStack::Cleanup
{
1399 /// Type used to hold llvm::Value*s.
1400 typedef typename
Traits::ValueTy ValueTy
;
1401 /// Type used to hold RValues.
1402 typedef typename
Traits::RValueTy RValueTy
;
1403 struct PlacementArg
{
1408 unsigned NumPlacementArgs
: 31;
1409 unsigned PassAlignmentToPlacementDelete
: 1;
1410 const FunctionDecl
*OperatorDelete
;
1413 CharUnits AllocAlign
;
1415 PlacementArg
*getPlacementArgs() {
1416 return reinterpret_cast<PlacementArg
*>(this + 1);
1420 static size_t getExtraSize(size_t NumPlacementArgs
) {
1421 return NumPlacementArgs
* sizeof(PlacementArg
);
1424 CallDeleteDuringNew(size_t NumPlacementArgs
,
1425 const FunctionDecl
*OperatorDelete
, ValueTy Ptr
,
1426 ValueTy AllocSize
, bool PassAlignmentToPlacementDelete
,
1427 CharUnits AllocAlign
)
1428 : NumPlacementArgs(NumPlacementArgs
),
1429 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete
),
1430 OperatorDelete(OperatorDelete
), Ptr(Ptr
), AllocSize(AllocSize
),
1431 AllocAlign(AllocAlign
) {}
1433 void setPlacementArg(unsigned I
, RValueTy Arg
, QualType Type
) {
1434 assert(I
< NumPlacementArgs
&& "index out of range");
1435 getPlacementArgs()[I
] = {Arg
, Type
};
1438 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
1439 const auto *FPT
= OperatorDelete
->getType()->castAs
<FunctionProtoType
>();
1440 CallArgList DeleteArgs
;
1442 // The first argument is always a void* (or C* for a destroying operator
1443 // delete for class type C).
1444 DeleteArgs
.add(Traits::get(CGF
, Ptr
), FPT
->getParamType(0));
1446 // Figure out what other parameters we should be implicitly passing.
1447 UsualDeleteParams Params
;
1448 if (NumPlacementArgs
) {
1449 // A placement deallocation function is implicitly passed an alignment
1450 // if the placement allocation function was, but is never passed a size.
1451 Params
.Alignment
= PassAlignmentToPlacementDelete
;
1453 // For a non-placement new-expression, 'operator delete' can take a
1454 // size and/or an alignment if it has the right parameters.
1455 Params
= getUsualDeleteParams(OperatorDelete
);
1458 assert(!Params
.DestroyingDelete
&&
1459 "should not call destroying delete in a new-expression");
1461 // The second argument can be a std::size_t (for non-placement delete).
1463 DeleteArgs
.add(Traits::get(CGF
, AllocSize
),
1464 CGF
.getContext().getSizeType());
1466 // The next (second or third) argument can be a std::align_val_t, which
1467 // is an enum whose underlying type is std::size_t.
1468 // FIXME: Use the right type as the parameter type. Note that in a call
1469 // to operator delete(size_t, ...), we may not have it available.
1470 if (Params
.Alignment
)
1471 DeleteArgs
.add(RValue::get(llvm::ConstantInt::get(
1472 CGF
.SizeTy
, AllocAlign
.getQuantity())),
1473 CGF
.getContext().getSizeType());
1475 // Pass the rest of the arguments, which must match exactly.
1476 for (unsigned I
= 0; I
!= NumPlacementArgs
; ++I
) {
1477 auto Arg
= getPlacementArgs()[I
];
1478 DeleteArgs
.add(Traits::get(CGF
, Arg
.ArgValue
), Arg
.ArgType
);
1481 // Call 'operator delete'.
1482 EmitNewDeleteCall(CGF
, OperatorDelete
, FPT
, DeleteArgs
);
1487 /// Enter a cleanup to call 'operator delete' if the initializer in a
1488 /// new-expression throws.
1489 static void EnterNewDeleteCleanup(CodeGenFunction
&CGF
,
1490 const CXXNewExpr
*E
,
1492 llvm::Value
*AllocSize
,
1493 CharUnits AllocAlign
,
1494 const CallArgList
&NewArgs
) {
1495 unsigned NumNonPlacementArgs
= E
->passAlignment() ? 2 : 1;
1497 // If we're not inside a conditional branch, then the cleanup will
1498 // dominate and we can do the easier (and more efficient) thing.
1499 if (!CGF
.isInConditionalBranch()) {
1500 struct DirectCleanupTraits
{
1501 typedef llvm::Value
*ValueTy
;
1502 typedef RValue RValueTy
;
1503 static RValue
get(CodeGenFunction
&, ValueTy V
) { return RValue::get(V
); }
1504 static RValue
get(CodeGenFunction
&, RValueTy V
) { return V
; }
1507 typedef CallDeleteDuringNew
<DirectCleanupTraits
> DirectCleanup
;
1509 DirectCleanup
*Cleanup
= CGF
.EHStack
1510 .pushCleanupWithExtra
<DirectCleanup
>(EHCleanup
,
1511 E
->getNumPlacementArgs(),
1512 E
->getOperatorDelete(),
1513 NewPtr
.getPointer(),
1517 for (unsigned I
= 0, N
= E
->getNumPlacementArgs(); I
!= N
; ++I
) {
1518 auto &Arg
= NewArgs
[I
+ NumNonPlacementArgs
];
1519 Cleanup
->setPlacementArg(I
, Arg
.getRValue(CGF
), Arg
.Ty
);
1525 // Otherwise, we need to save all this stuff.
1526 DominatingValue
<RValue
>::saved_type SavedNewPtr
=
1527 DominatingValue
<RValue
>::save(CGF
, RValue::get(NewPtr
.getPointer()));
1528 DominatingValue
<RValue
>::saved_type SavedAllocSize
=
1529 DominatingValue
<RValue
>::save(CGF
, RValue::get(AllocSize
));
1531 struct ConditionalCleanupTraits
{
1532 typedef DominatingValue
<RValue
>::saved_type ValueTy
;
1533 typedef DominatingValue
<RValue
>::saved_type RValueTy
;
1534 static RValue
get(CodeGenFunction
&CGF
, ValueTy V
) {
1535 return V
.restore(CGF
);
1538 typedef CallDeleteDuringNew
<ConditionalCleanupTraits
> ConditionalCleanup
;
1540 ConditionalCleanup
*Cleanup
= CGF
.EHStack
1541 .pushCleanupWithExtra
<ConditionalCleanup
>(EHCleanup
,
1542 E
->getNumPlacementArgs(),
1543 E
->getOperatorDelete(),
1548 for (unsigned I
= 0, N
= E
->getNumPlacementArgs(); I
!= N
; ++I
) {
1549 auto &Arg
= NewArgs
[I
+ NumNonPlacementArgs
];
1550 Cleanup
->setPlacementArg(
1551 I
, DominatingValue
<RValue
>::save(CGF
, Arg
.getRValue(CGF
)), Arg
.Ty
);
1554 CGF
.initFullExprCleanup();
1557 llvm::Value
*CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr
*E
) {
1558 // The element type being allocated.
1559 QualType allocType
= getContext().getBaseElementType(E
->getAllocatedType());
1561 // 1. Build a call to the allocation function.
1562 FunctionDecl
*allocator
= E
->getOperatorNew();
1564 // If there is a brace-initializer, cannot allocate fewer elements than inits.
1565 unsigned minElements
= 0;
1566 if (E
->isArray() && E
->hasInitializer()) {
1567 const InitListExpr
*ILE
= dyn_cast
<InitListExpr
>(E
->getInitializer());
1568 if (ILE
&& ILE
->isStringLiteralInit())
1570 cast
<ConstantArrayType
>(ILE
->getType()->getAsArrayTypeUnsafe())
1571 ->getSize().getZExtValue();
1573 minElements
= ILE
->getNumInits();
1576 llvm::Value
*numElements
= nullptr;
1577 llvm::Value
*allocSizeWithoutCookie
= nullptr;
1578 llvm::Value
*allocSize
=
1579 EmitCXXNewAllocSize(*this, E
, minElements
, numElements
,
1580 allocSizeWithoutCookie
);
1581 CharUnits allocAlign
= getContext().getTypeAlignInChars(allocType
);
1583 // Emit the allocation call. If the allocator is a global placement
1584 // operator, just "inline" it directly.
1585 Address allocation
= Address::invalid();
1586 CallArgList allocatorArgs
;
1587 if (allocator
->isReservedGlobalPlacementOperator()) {
1588 assert(E
->getNumPlacementArgs() == 1);
1589 const Expr
*arg
= *E
->placement_arguments().begin();
1591 LValueBaseInfo BaseInfo
;
1592 allocation
= EmitPointerWithAlignment(arg
, &BaseInfo
);
1594 // The pointer expression will, in many cases, be an opaque void*.
1595 // In these cases, discard the computed alignment and use the
1596 // formal alignment of the allocated type.
1597 if (BaseInfo
.getAlignmentSource() != AlignmentSource::Decl
)
1598 allocation
= allocation
.withAlignment(allocAlign
);
1600 // Set up allocatorArgs for the call to operator delete if it's not
1601 // the reserved global operator.
1602 if (E
->getOperatorDelete() &&
1603 !E
->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1604 allocatorArgs
.add(RValue::get(allocSize
), getContext().getSizeType());
1605 allocatorArgs
.add(RValue::get(allocation
.getPointer()), arg
->getType());
1609 const FunctionProtoType
*allocatorType
=
1610 allocator
->getType()->castAs
<FunctionProtoType
>();
1611 unsigned ParamsToSkip
= 0;
1613 // The allocation size is the first argument.
1614 QualType sizeType
= getContext().getSizeType();
1615 allocatorArgs
.add(RValue::get(allocSize
), sizeType
);
1618 if (allocSize
!= allocSizeWithoutCookie
) {
1619 CharUnits cookieAlign
= getSizeAlign(); // FIXME: Ask the ABI.
1620 allocAlign
= std::max(allocAlign
, cookieAlign
);
1623 // The allocation alignment may be passed as the second argument.
1624 if (E
->passAlignment()) {
1625 QualType AlignValT
= sizeType
;
1626 if (allocatorType
->getNumParams() > 1) {
1627 AlignValT
= allocatorType
->getParamType(1);
1628 assert(getContext().hasSameUnqualifiedType(
1629 AlignValT
->castAs
<EnumType
>()->getDecl()->getIntegerType(),
1631 "wrong type for alignment parameter");
1634 // Corner case, passing alignment to 'operator new(size_t, ...)'.
1635 assert(allocator
->isVariadic() && "can't pass alignment to allocator");
1638 RValue::get(llvm::ConstantInt::get(SizeTy
, allocAlign
.getQuantity())),
1642 // FIXME: Why do we not pass a CalleeDecl here?
1643 EmitCallArgs(allocatorArgs
, allocatorType
, E
->placement_arguments(),
1644 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip
);
1647 EmitNewDeleteCall(*this, allocator
, allocatorType
, allocatorArgs
);
1649 // Set !heapallocsite metadata on the call to operator new.
1651 if (auto *newCall
= dyn_cast
<llvm::CallBase
>(RV
.getScalarVal()))
1652 getDebugInfo()->addHeapAllocSiteMetadata(newCall
, allocType
,
1655 // If this was a call to a global replaceable allocation function that does
1656 // not take an alignment argument, the allocator is known to produce
1657 // storage that's suitably aligned for any object that fits, up to a known
1658 // threshold. Otherwise assume it's suitably aligned for the allocated type.
1659 CharUnits allocationAlign
= allocAlign
;
1660 if (!E
->passAlignment() &&
1661 allocator
->isReplaceableGlobalAllocationFunction()) {
1662 unsigned AllocatorAlign
= llvm::bit_floor(std::min
<uint64_t>(
1663 Target
.getNewAlign(), getContext().getTypeSize(allocType
)));
1664 allocationAlign
= std::max(
1665 allocationAlign
, getContext().toCharUnitsFromBits(AllocatorAlign
));
1668 allocation
= Address(RV
.getScalarVal(), Int8Ty
, allocationAlign
);
1671 // Emit a null check on the allocation result if the allocation
1672 // function is allowed to return null (because it has a non-throwing
1673 // exception spec or is the reserved placement new) and we have an
1674 // interesting initializer will be running sanitizers on the initialization.
1675 bool nullCheck
= E
->shouldNullCheckAllocation() &&
1676 (!allocType
.isPODType(getContext()) || E
->hasInitializer() ||
1677 sanitizePerformTypeCheck());
1679 llvm::BasicBlock
*nullCheckBB
= nullptr;
1680 llvm::BasicBlock
*contBB
= nullptr;
1682 // The null-check means that the initializer is conditionally
1684 ConditionalEvaluation
conditional(*this);
1687 conditional
.begin(*this);
1689 nullCheckBB
= Builder
.GetInsertBlock();
1690 llvm::BasicBlock
*notNullBB
= createBasicBlock("new.notnull");
1691 contBB
= createBasicBlock("new.cont");
1693 llvm::Value
*isNull
=
1694 Builder
.CreateIsNull(allocation
.getPointer(), "new.isnull");
1695 Builder
.CreateCondBr(isNull
, contBB
, notNullBB
);
1696 EmitBlock(notNullBB
);
1699 // If there's an operator delete, enter a cleanup to call it if an
1700 // exception is thrown.
1701 EHScopeStack::stable_iterator operatorDeleteCleanup
;
1702 llvm::Instruction
*cleanupDominator
= nullptr;
1703 if (E
->getOperatorDelete() &&
1704 !E
->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1705 EnterNewDeleteCleanup(*this, E
, allocation
, allocSize
, allocAlign
,
1707 operatorDeleteCleanup
= EHStack
.stable_begin();
1708 cleanupDominator
= Builder
.CreateUnreachable();
1711 assert((allocSize
== allocSizeWithoutCookie
) ==
1712 CalculateCookiePadding(*this, E
).isZero());
1713 if (allocSize
!= allocSizeWithoutCookie
) {
1714 assert(E
->isArray());
1715 allocation
= CGM
.getCXXABI().InitializeArrayCookie(*this, allocation
,
1720 llvm::Type
*elementTy
= ConvertTypeForMem(allocType
);
1721 Address result
= allocation
.withElementType(elementTy
);
1723 // Passing pointer through launder.invariant.group to avoid propagation of
1724 // vptrs information which may be included in previous type.
1725 // To not break LTO with different optimizations levels, we do it regardless
1726 // of optimization level.
1727 if (CGM
.getCodeGenOpts().StrictVTablePointers
&&
1728 allocator
->isReservedGlobalPlacementOperator())
1729 result
= Builder
.CreateLaunderInvariantGroup(result
);
1731 // Emit sanitizer checks for pointer value now, so that in the case of an
1732 // array it was checked only once and not at each constructor call. We may
1733 // have already checked that the pointer is non-null.
1734 // FIXME: If we have an array cookie and a potentially-throwing allocator,
1735 // we'll null check the wrong pointer here.
1736 SanitizerSet SkippedChecks
;
1737 SkippedChecks
.set(SanitizerKind::Null
, nullCheck
);
1738 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall
,
1739 E
->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1740 result
.getPointer(), allocType
, result
.getAlignment(),
1741 SkippedChecks
, numElements
);
1743 EmitNewInitializer(*this, E
, allocType
, elementTy
, result
, numElements
,
1744 allocSizeWithoutCookie
);
1745 llvm::Value
*resultPtr
= result
.getPointer();
1747 // NewPtr is a pointer to the base element type. If we're
1748 // allocating an array of arrays, we'll need to cast back to the
1749 // array pointer type.
1750 llvm::Type
*resultType
= ConvertTypeForMem(E
->getType());
1751 if (resultPtr
->getType() != resultType
)
1752 resultPtr
= Builder
.CreateBitCast(resultPtr
, resultType
);
1755 // Deactivate the 'operator delete' cleanup if we finished
1757 if (operatorDeleteCleanup
.isValid()) {
1758 DeactivateCleanupBlock(operatorDeleteCleanup
, cleanupDominator
);
1759 cleanupDominator
->eraseFromParent();
1763 conditional
.end(*this);
1765 llvm::BasicBlock
*notNullBB
= Builder
.GetInsertBlock();
1768 llvm::PHINode
*PHI
= Builder
.CreatePHI(resultPtr
->getType(), 2);
1769 PHI
->addIncoming(resultPtr
, notNullBB
);
1770 PHI
->addIncoming(llvm::Constant::getNullValue(resultPtr
->getType()),
1779 void CodeGenFunction::EmitDeleteCall(const FunctionDecl
*DeleteFD
,
1780 llvm::Value
*Ptr
, QualType DeleteTy
,
1781 llvm::Value
*NumElements
,
1782 CharUnits CookieSize
) {
1783 assert((!NumElements
&& CookieSize
.isZero()) ||
1784 DeleteFD
->getOverloadedOperator() == OO_Array_Delete
);
1786 const auto *DeleteFTy
= DeleteFD
->getType()->castAs
<FunctionProtoType
>();
1787 CallArgList DeleteArgs
;
1789 auto Params
= getUsualDeleteParams(DeleteFD
);
1790 auto ParamTypeIt
= DeleteFTy
->param_type_begin();
1792 // Pass the pointer itself.
1793 QualType ArgTy
= *ParamTypeIt
++;
1794 llvm::Value
*DeletePtr
= Builder
.CreateBitCast(Ptr
, ConvertType(ArgTy
));
1795 DeleteArgs
.add(RValue::get(DeletePtr
), ArgTy
);
1797 // Pass the std::destroying_delete tag if present.
1798 llvm::AllocaInst
*DestroyingDeleteTag
= nullptr;
1799 if (Params
.DestroyingDelete
) {
1800 QualType DDTag
= *ParamTypeIt
++;
1801 llvm::Type
*Ty
= getTypes().ConvertType(DDTag
);
1802 CharUnits Align
= CGM
.getNaturalTypeAlignment(DDTag
);
1803 DestroyingDeleteTag
= CreateTempAlloca(Ty
, "destroying.delete.tag");
1804 DestroyingDeleteTag
->setAlignment(Align
.getAsAlign());
1806 RValue::getAggregate(Address(DestroyingDeleteTag
, Ty
, Align
)), DDTag
);
1809 // Pass the size if the delete function has a size_t parameter.
1811 QualType SizeType
= *ParamTypeIt
++;
1812 CharUnits DeleteTypeSize
= getContext().getTypeSizeInChars(DeleteTy
);
1813 llvm::Value
*Size
= llvm::ConstantInt::get(ConvertType(SizeType
),
1814 DeleteTypeSize
.getQuantity());
1816 // For array new, multiply by the number of elements.
1818 Size
= Builder
.CreateMul(Size
, NumElements
);
1820 // If there is a cookie, add the cookie size.
1821 if (!CookieSize
.isZero())
1822 Size
= Builder
.CreateAdd(
1823 Size
, llvm::ConstantInt::get(SizeTy
, CookieSize
.getQuantity()));
1825 DeleteArgs
.add(RValue::get(Size
), SizeType
);
1828 // Pass the alignment if the delete function has an align_val_t parameter.
1829 if (Params
.Alignment
) {
1830 QualType AlignValType
= *ParamTypeIt
++;
1831 CharUnits DeleteTypeAlign
=
1832 getContext().toCharUnitsFromBits(getContext().getTypeAlignIfKnown(
1833 DeleteTy
, true /* NeedsPreferredAlignment */));
1834 llvm::Value
*Align
= llvm::ConstantInt::get(ConvertType(AlignValType
),
1835 DeleteTypeAlign
.getQuantity());
1836 DeleteArgs
.add(RValue::get(Align
), AlignValType
);
1839 assert(ParamTypeIt
== DeleteFTy
->param_type_end() &&
1840 "unknown parameter to usual delete function");
1842 // Emit the call to delete.
1843 EmitNewDeleteCall(*this, DeleteFD
, DeleteFTy
, DeleteArgs
);
1845 // If call argument lowering didn't use the destroying_delete_t alloca,
1847 if (DestroyingDeleteTag
&& DestroyingDeleteTag
->use_empty())
1848 DestroyingDeleteTag
->eraseFromParent();
1852 /// Calls the given 'operator delete' on a single object.
1853 struct CallObjectDelete final
: EHScopeStack::Cleanup
{
1855 const FunctionDecl
*OperatorDelete
;
1856 QualType ElementType
;
1858 CallObjectDelete(llvm::Value
*Ptr
,
1859 const FunctionDecl
*OperatorDelete
,
1860 QualType ElementType
)
1861 : Ptr(Ptr
), OperatorDelete(OperatorDelete
), ElementType(ElementType
) {}
1863 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
1864 CGF
.EmitDeleteCall(OperatorDelete
, Ptr
, ElementType
);
1870 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl
*OperatorDelete
,
1871 llvm::Value
*CompletePtr
,
1872 QualType ElementType
) {
1873 EHStack
.pushCleanup
<CallObjectDelete
>(NormalAndEHCleanup
, CompletePtr
,
1874 OperatorDelete
, ElementType
);
1877 /// Emit the code for deleting a single object with a destroying operator
1878 /// delete. If the element type has a non-virtual destructor, Ptr has already
1879 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1880 /// Ptr points to an object of the static type.
1881 static void EmitDestroyingObjectDelete(CodeGenFunction
&CGF
,
1882 const CXXDeleteExpr
*DE
, Address Ptr
,
1883 QualType ElementType
) {
1884 auto *Dtor
= ElementType
->getAsCXXRecordDecl()->getDestructor();
1885 if (Dtor
&& Dtor
->isVirtual())
1886 CGF
.CGM
.getCXXABI().emitVirtualObjectDelete(CGF
, DE
, Ptr
, ElementType
,
1889 CGF
.EmitDeleteCall(DE
->getOperatorDelete(), Ptr
.getPointer(), ElementType
);
1892 /// Emit the code for deleting a single object.
1893 /// \return \c true if we started emitting UnconditionalDeleteBlock, \c false
1895 static bool EmitObjectDelete(CodeGenFunction
&CGF
,
1896 const CXXDeleteExpr
*DE
,
1898 QualType ElementType
,
1899 llvm::BasicBlock
*UnconditionalDeleteBlock
) {
1900 // C++11 [expr.delete]p3:
1901 // If the static type of the object to be deleted is different from its
1902 // dynamic type, the static type shall be a base class of the dynamic type
1903 // of the object to be deleted and the static type shall have a virtual
1904 // destructor or the behavior is undefined.
1905 CGF
.EmitTypeCheck(CodeGenFunction::TCK_MemberCall
,
1906 DE
->getExprLoc(), Ptr
.getPointer(),
1909 const FunctionDecl
*OperatorDelete
= DE
->getOperatorDelete();
1910 assert(!OperatorDelete
->isDestroyingOperatorDelete());
1912 // Find the destructor for the type, if applicable. If the
1913 // destructor is virtual, we'll just emit the vcall and return.
1914 const CXXDestructorDecl
*Dtor
= nullptr;
1915 if (const RecordType
*RT
= ElementType
->getAs
<RecordType
>()) {
1916 CXXRecordDecl
*RD
= cast
<CXXRecordDecl
>(RT
->getDecl());
1917 if (RD
->hasDefinition() && !RD
->hasTrivialDestructor()) {
1918 Dtor
= RD
->getDestructor();
1920 if (Dtor
->isVirtual()) {
1921 bool UseVirtualCall
= true;
1922 const Expr
*Base
= DE
->getArgument();
1923 if (auto *DevirtualizedDtor
=
1924 dyn_cast_or_null
<const CXXDestructorDecl
>(
1925 Dtor
->getDevirtualizedMethod(
1926 Base
, CGF
.CGM
.getLangOpts().AppleKext
))) {
1927 UseVirtualCall
= false;
1928 const CXXRecordDecl
*DevirtualizedClass
=
1929 DevirtualizedDtor
->getParent();
1930 if (declaresSameEntity(getCXXRecord(Base
), DevirtualizedClass
)) {
1931 // Devirtualized to the class of the base type (the type of the
1932 // whole expression).
1933 Dtor
= DevirtualizedDtor
;
1935 // Devirtualized to some other type. Would need to cast the this
1936 // pointer to that type but we don't have support for that yet, so
1937 // do a virtual call. FIXME: handle the case where it is
1938 // devirtualized to the derived type (the type of the inner
1939 // expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
1940 UseVirtualCall
= true;
1943 if (UseVirtualCall
) {
1944 CGF
.CGM
.getCXXABI().emitVirtualObjectDelete(CGF
, DE
, Ptr
, ElementType
,
1952 // Make sure that we call delete even if the dtor throws.
1953 // This doesn't have to a conditional cleanup because we're going
1954 // to pop it off in a second.
1955 CGF
.EHStack
.pushCleanup
<CallObjectDelete
>(NormalAndEHCleanup
,
1957 OperatorDelete
, ElementType
);
1960 CGF
.EmitCXXDestructorCall(Dtor
, Dtor_Complete
,
1961 /*ForVirtualBase=*/false,
1962 /*Delegating=*/false,
1964 else if (auto Lifetime
= ElementType
.getObjCLifetime()) {
1966 case Qualifiers::OCL_None
:
1967 case Qualifiers::OCL_ExplicitNone
:
1968 case Qualifiers::OCL_Autoreleasing
:
1971 case Qualifiers::OCL_Strong
:
1972 CGF
.EmitARCDestroyStrong(Ptr
, ARCPreciseLifetime
);
1975 case Qualifiers::OCL_Weak
:
1976 CGF
.EmitARCDestroyWeak(Ptr
);
1981 // When optimizing for size, call 'operator delete' unconditionally.
1982 if (CGF
.CGM
.getCodeGenOpts().OptimizeSize
> 1) {
1983 CGF
.EmitBlock(UnconditionalDeleteBlock
);
1984 CGF
.PopCleanupBlock();
1988 CGF
.PopCleanupBlock();
1993 /// Calls the given 'operator delete' on an array of objects.
1994 struct CallArrayDelete final
: EHScopeStack::Cleanup
{
1996 const FunctionDecl
*OperatorDelete
;
1997 llvm::Value
*NumElements
;
1998 QualType ElementType
;
1999 CharUnits CookieSize
;
2001 CallArrayDelete(llvm::Value
*Ptr
,
2002 const FunctionDecl
*OperatorDelete
,
2003 llvm::Value
*NumElements
,
2004 QualType ElementType
,
2005 CharUnits CookieSize
)
2006 : Ptr(Ptr
), OperatorDelete(OperatorDelete
), NumElements(NumElements
),
2007 ElementType(ElementType
), CookieSize(CookieSize
) {}
2009 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2010 CGF
.EmitDeleteCall(OperatorDelete
, Ptr
, ElementType
, NumElements
,
2016 /// Emit the code for deleting an array of objects.
2017 static void EmitArrayDelete(CodeGenFunction
&CGF
,
2018 const CXXDeleteExpr
*E
,
2020 QualType elementType
) {
2021 llvm::Value
*numElements
= nullptr;
2022 llvm::Value
*allocatedPtr
= nullptr;
2023 CharUnits cookieSize
;
2024 CGF
.CGM
.getCXXABI().ReadArrayCookie(CGF
, deletedPtr
, E
, elementType
,
2025 numElements
, allocatedPtr
, cookieSize
);
2027 assert(allocatedPtr
&& "ReadArrayCookie didn't set allocated pointer");
2029 // Make sure that we call delete even if one of the dtors throws.
2030 const FunctionDecl
*operatorDelete
= E
->getOperatorDelete();
2031 CGF
.EHStack
.pushCleanup
<CallArrayDelete
>(NormalAndEHCleanup
,
2032 allocatedPtr
, operatorDelete
,
2033 numElements
, elementType
,
2036 // Destroy the elements.
2037 if (QualType::DestructionKind dtorKind
= elementType
.isDestructedType()) {
2038 assert(numElements
&& "no element count for a type with a destructor!");
2040 CharUnits elementSize
= CGF
.getContext().getTypeSizeInChars(elementType
);
2041 CharUnits elementAlign
=
2042 deletedPtr
.getAlignment().alignmentOfArrayElement(elementSize
);
2044 llvm::Value
*arrayBegin
= deletedPtr
.getPointer();
2045 llvm::Value
*arrayEnd
= CGF
.Builder
.CreateInBoundsGEP(
2046 deletedPtr
.getElementType(), arrayBegin
, numElements
, "delete.end");
2048 // Note that it is legal to allocate a zero-length array, and we
2049 // can never fold the check away because the length should always
2050 // come from a cookie.
2051 CGF
.emitArrayDestroy(arrayBegin
, arrayEnd
, elementType
, elementAlign
,
2052 CGF
.getDestroyer(dtorKind
),
2053 /*checkZeroLength*/ true,
2054 CGF
.needsEHCleanup(dtorKind
));
2057 // Pop the cleanup block.
2058 CGF
.PopCleanupBlock();
2061 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr
*E
) {
2062 const Expr
*Arg
= E
->getArgument();
2063 Address Ptr
= EmitPointerWithAlignment(Arg
);
2065 // Null check the pointer.
2067 // We could avoid this null check if we can determine that the object
2068 // destruction is trivial and doesn't require an array cookie; we can
2069 // unconditionally perform the operator delete call in that case. For now, we
2070 // assume that deleted pointers are null rarely enough that it's better to
2071 // keep the branch. This might be worth revisiting for a -O0 code size win.
2072 llvm::BasicBlock
*DeleteNotNull
= createBasicBlock("delete.notnull");
2073 llvm::BasicBlock
*DeleteEnd
= createBasicBlock("delete.end");
2075 llvm::Value
*IsNull
= Builder
.CreateIsNull(Ptr
.getPointer(), "isnull");
2077 Builder
.CreateCondBr(IsNull
, DeleteEnd
, DeleteNotNull
);
2078 EmitBlock(DeleteNotNull
);
2079 Ptr
.setKnownNonNull();
2081 QualType DeleteTy
= E
->getDestroyedType();
2083 // A destroying operator delete overrides the entire operation of the
2084 // delete expression.
2085 if (E
->getOperatorDelete()->isDestroyingOperatorDelete()) {
2086 EmitDestroyingObjectDelete(*this, E
, Ptr
, DeleteTy
);
2087 EmitBlock(DeleteEnd
);
2091 // We might be deleting a pointer to array. If so, GEP down to the
2092 // first non-array element.
2093 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2094 if (DeleteTy
->isConstantArrayType()) {
2095 llvm::Value
*Zero
= Builder
.getInt32(0);
2096 SmallVector
<llvm::Value
*,8> GEP
;
2098 GEP
.push_back(Zero
); // point at the outermost array
2100 // For each layer of array type we're pointing at:
2101 while (const ConstantArrayType
*Arr
2102 = getContext().getAsConstantArrayType(DeleteTy
)) {
2103 // 1. Unpeel the array type.
2104 DeleteTy
= Arr
->getElementType();
2106 // 2. GEP to the first element of the array.
2107 GEP
.push_back(Zero
);
2110 Ptr
= Address(Builder
.CreateInBoundsGEP(Ptr
.getElementType(),
2111 Ptr
.getPointer(), GEP
, "del.first"),
2112 ConvertTypeForMem(DeleteTy
), Ptr
.getAlignment(),
2113 Ptr
.isKnownNonNull());
2116 assert(ConvertTypeForMem(DeleteTy
) == Ptr
.getElementType());
2118 if (E
->isArrayForm()) {
2119 EmitArrayDelete(*this, E
, Ptr
, DeleteTy
);
2120 EmitBlock(DeleteEnd
);
2122 if (!EmitObjectDelete(*this, E
, Ptr
, DeleteTy
, DeleteEnd
))
2123 EmitBlock(DeleteEnd
);
2127 static bool isGLValueFromPointerDeref(const Expr
*E
) {
2128 E
= E
->IgnoreParens();
2130 if (const auto *CE
= dyn_cast
<CastExpr
>(E
)) {
2131 if (!CE
->getSubExpr()->isGLValue())
2133 return isGLValueFromPointerDeref(CE
->getSubExpr());
2136 if (const auto *OVE
= dyn_cast
<OpaqueValueExpr
>(E
))
2137 return isGLValueFromPointerDeref(OVE
->getSourceExpr());
2139 if (const auto *BO
= dyn_cast
<BinaryOperator
>(E
))
2140 if (BO
->getOpcode() == BO_Comma
)
2141 return isGLValueFromPointerDeref(BO
->getRHS());
2143 if (const auto *ACO
= dyn_cast
<AbstractConditionalOperator
>(E
))
2144 return isGLValueFromPointerDeref(ACO
->getTrueExpr()) ||
2145 isGLValueFromPointerDeref(ACO
->getFalseExpr());
2147 // C++11 [expr.sub]p1:
2148 // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2149 if (isa
<ArraySubscriptExpr
>(E
))
2152 if (const auto *UO
= dyn_cast
<UnaryOperator
>(E
))
2153 if (UO
->getOpcode() == UO_Deref
)
2159 static llvm::Value
*EmitTypeidFromVTable(CodeGenFunction
&CGF
, const Expr
*E
,
2160 llvm::Type
*StdTypeInfoPtrTy
) {
2161 // Get the vtable pointer.
2162 Address ThisPtr
= CGF
.EmitLValue(E
).getAddress(CGF
);
2164 QualType SrcRecordTy
= E
->getType();
2166 // C++ [class.cdtor]p4:
2167 // If the operand of typeid refers to the object under construction or
2168 // destruction and the static type of the operand is neither the constructor
2169 // or destructor’s class nor one of its bases, the behavior is undefined.
2170 CGF
.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation
, E
->getExprLoc(),
2171 ThisPtr
.getPointer(), SrcRecordTy
);
2173 // C++ [expr.typeid]p2:
2174 // If the glvalue expression is obtained by applying the unary * operator to
2175 // a pointer and the pointer is a null pointer value, the typeid expression
2176 // throws the std::bad_typeid exception.
2178 // However, this paragraph's intent is not clear. We choose a very generous
2179 // interpretation which implores us to consider comma operators, conditional
2180 // operators, parentheses and other such constructs.
2181 if (CGF
.CGM
.getCXXABI().shouldTypeidBeNullChecked(
2182 isGLValueFromPointerDeref(E
), SrcRecordTy
)) {
2183 llvm::BasicBlock
*BadTypeidBlock
=
2184 CGF
.createBasicBlock("typeid.bad_typeid");
2185 llvm::BasicBlock
*EndBlock
= CGF
.createBasicBlock("typeid.end");
2187 llvm::Value
*IsNull
= CGF
.Builder
.CreateIsNull(ThisPtr
.getPointer());
2188 CGF
.Builder
.CreateCondBr(IsNull
, BadTypeidBlock
, EndBlock
);
2190 CGF
.EmitBlock(BadTypeidBlock
);
2191 CGF
.CGM
.getCXXABI().EmitBadTypeidCall(CGF
);
2192 CGF
.EmitBlock(EndBlock
);
2195 return CGF
.CGM
.getCXXABI().EmitTypeid(CGF
, SrcRecordTy
, ThisPtr
,
2199 llvm::Value
*CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr
*E
) {
2200 llvm::Type
*PtrTy
= llvm::PointerType::getUnqual(getLLVMContext());
2201 LangAS GlobAS
= CGM
.GetGlobalVarAddressSpace(nullptr);
2203 auto MaybeASCast
= [=](auto &&TypeInfo
) {
2204 if (GlobAS
== LangAS::Default
)
2206 return getTargetHooks().performAddrSpaceCast(CGM
,TypeInfo
, GlobAS
,
2207 LangAS::Default
, PtrTy
);
2210 if (E
->isTypeOperand()) {
2211 llvm::Constant
*TypeInfo
=
2212 CGM
.GetAddrOfRTTIDescriptor(E
->getTypeOperand(getContext()));
2213 return MaybeASCast(TypeInfo
);
2216 // C++ [expr.typeid]p2:
2217 // When typeid is applied to a glvalue expression whose type is a
2218 // polymorphic class type, the result refers to a std::type_info object
2219 // representing the type of the most derived object (that is, the dynamic
2220 // type) to which the glvalue refers.
2221 // If the operand is already most derived object, no need to look up vtable.
2222 if (E
->isPotentiallyEvaluated() && !E
->isMostDerived(getContext()))
2223 return EmitTypeidFromVTable(*this, E
->getExprOperand(), PtrTy
);
2225 QualType OperandTy
= E
->getExprOperand()->getType();
2226 return MaybeASCast(CGM
.GetAddrOfRTTIDescriptor(OperandTy
));
2229 static llvm::Value
*EmitDynamicCastToNull(CodeGenFunction
&CGF
,
2231 llvm::Type
*DestLTy
= CGF
.ConvertType(DestTy
);
2232 if (DestTy
->isPointerType())
2233 return llvm::Constant::getNullValue(DestLTy
);
2235 /// C++ [expr.dynamic.cast]p9:
2236 /// A failed cast to reference type throws std::bad_cast
2237 if (!CGF
.CGM
.getCXXABI().EmitBadCastCall(CGF
))
2240 CGF
.Builder
.ClearInsertionPoint();
2241 return llvm::PoisonValue::get(DestLTy
);
2244 llvm::Value
*CodeGenFunction::EmitDynamicCast(Address ThisAddr
,
2245 const CXXDynamicCastExpr
*DCE
) {
2246 CGM
.EmitExplicitCastExprType(DCE
, this);
2247 QualType DestTy
= DCE
->getTypeAsWritten();
2249 QualType SrcTy
= DCE
->getSubExpr()->getType();
2251 // C++ [expr.dynamic.cast]p7:
2252 // If T is "pointer to cv void," then the result is a pointer to the most
2253 // derived object pointed to by v.
2254 bool IsDynamicCastToVoid
= DestTy
->isVoidPointerType();
2255 QualType SrcRecordTy
;
2256 QualType DestRecordTy
;
2257 if (IsDynamicCastToVoid
) {
2258 SrcRecordTy
= SrcTy
->getPointeeType();
2260 } else if (const PointerType
*DestPTy
= DestTy
->getAs
<PointerType
>()) {
2261 SrcRecordTy
= SrcTy
->castAs
<PointerType
>()->getPointeeType();
2262 DestRecordTy
= DestPTy
->getPointeeType();
2264 SrcRecordTy
= SrcTy
;
2265 DestRecordTy
= DestTy
->castAs
<ReferenceType
>()->getPointeeType();
2268 // C++ [class.cdtor]p5:
2269 // If the operand of the dynamic_cast refers to the object under
2270 // construction or destruction and the static type of the operand is not a
2271 // pointer to or object of the constructor or destructor’s own class or one
2272 // of its bases, the dynamic_cast results in undefined behavior.
2273 EmitTypeCheck(TCK_DynamicOperation
, DCE
->getExprLoc(), ThisAddr
.getPointer(),
2276 if (DCE
->isAlwaysNull()) {
2277 if (llvm::Value
*T
= EmitDynamicCastToNull(*this, DestTy
)) {
2278 // Expression emission is expected to retain a valid insertion point.
2279 if (!Builder
.GetInsertBlock())
2280 EmitBlock(createBasicBlock("dynamic_cast.unreachable"));
2285 assert(SrcRecordTy
->isRecordType() && "source type must be a record type!");
2287 // If the destination is effectively final, the cast succeeds if and only
2288 // if the dynamic type of the pointer is exactly the destination type.
2289 bool IsExact
= !IsDynamicCastToVoid
&&
2290 CGM
.getCodeGenOpts().OptimizationLevel
> 0 &&
2291 DestRecordTy
->getAsCXXRecordDecl()->isEffectivelyFinal() &&
2292 CGM
.getCXXABI().shouldEmitExactDynamicCast(DestRecordTy
);
2294 // C++ [expr.dynamic.cast]p4:
2295 // If the value of v is a null pointer value in the pointer case, the result
2296 // is the null pointer value of type T.
2297 bool ShouldNullCheckSrcValue
=
2298 IsExact
|| CGM
.getCXXABI().shouldDynamicCastCallBeNullChecked(
2299 SrcTy
->isPointerType(), SrcRecordTy
);
2301 llvm::BasicBlock
*CastNull
= nullptr;
2302 llvm::BasicBlock
*CastNotNull
= nullptr;
2303 llvm::BasicBlock
*CastEnd
= createBasicBlock("dynamic_cast.end");
2305 if (ShouldNullCheckSrcValue
) {
2306 CastNull
= createBasicBlock("dynamic_cast.null");
2307 CastNotNull
= createBasicBlock("dynamic_cast.notnull");
2309 llvm::Value
*IsNull
= Builder
.CreateIsNull(ThisAddr
.getPointer());
2310 Builder
.CreateCondBr(IsNull
, CastNull
, CastNotNull
);
2311 EmitBlock(CastNotNull
);
2315 if (IsDynamicCastToVoid
) {
2316 Value
= CGM
.getCXXABI().emitDynamicCastToVoid(*this, ThisAddr
, SrcRecordTy
);
2317 } else if (IsExact
) {
2318 // If the destination type is effectively final, this pointer points to the
2319 // right type if and only if its vptr has the right value.
2320 Value
= CGM
.getCXXABI().emitExactDynamicCast(
2321 *this, ThisAddr
, SrcRecordTy
, DestTy
, DestRecordTy
, CastEnd
, CastNull
);
2323 assert(DestRecordTy
->isRecordType() &&
2324 "destination type must be a record type!");
2325 Value
= CGM
.getCXXABI().emitDynamicCastCall(*this, ThisAddr
, SrcRecordTy
,
2326 DestTy
, DestRecordTy
, CastEnd
);
2328 CastNotNull
= Builder
.GetInsertBlock();
2330 llvm::Value
*NullValue
= nullptr;
2331 if (ShouldNullCheckSrcValue
) {
2332 EmitBranch(CastEnd
);
2334 EmitBlock(CastNull
);
2335 NullValue
= EmitDynamicCastToNull(*this, DestTy
);
2336 CastNull
= Builder
.GetInsertBlock();
2338 EmitBranch(CastEnd
);
2344 llvm::PHINode
*PHI
= Builder
.CreatePHI(Value
->getType(), 2);
2345 PHI
->addIncoming(Value
, CastNotNull
);
2346 PHI
->addIncoming(NullValue
, CastNull
);