1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This contains code to emit Objective-C code as LLVM code.
11 //===----------------------------------------------------------------------===//
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Basic/Diagnostic.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/CodeGen/CodeGenABITypes.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/Analysis/ObjCARCUtil.h"
28 #include "llvm/BinaryFormat/MachO.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
33 using namespace clang
;
34 using namespace CodeGen
;
36 typedef llvm::PointerIntPair
<llvm::Value
*,1,bool> TryEmitResult
;
38 tryEmitARCRetainScalarExpr(CodeGenFunction
&CGF
, const Expr
*e
);
39 static RValue
AdjustObjCObjectType(CodeGenFunction
&CGF
,
43 /// Given the address of a variable of pointer type, find the correct
44 /// null to store into it.
45 static llvm::Constant
*getNullForVariable(Address addr
) {
46 llvm::Type
*type
= addr
.getElementType();
47 return llvm::ConstantPointerNull::get(cast
<llvm::PointerType
>(type
));
50 /// Emits an instance of NSConstantString representing the object.
51 llvm::Value
*CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral
*E
)
54 CGM
.getObjCRuntime().GenerateConstantString(E
->getString()).getPointer();
55 // FIXME: This bitcast should just be made an invariant on the Runtime.
56 return llvm::ConstantExpr::getBitCast(C
, ConvertType(E
->getType()));
59 /// EmitObjCBoxedExpr - This routine generates code to call
60 /// the appropriate expression boxing method. This will either be
61 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
62 /// or [NSValue valueWithBytes:objCType:].
65 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr
*E
) {
66 // Generate the correct selector for this literal's concrete type.
68 const ObjCMethodDecl
*BoxingMethod
= E
->getBoxingMethod();
69 const Expr
*SubExpr
= E
->getSubExpr();
71 if (E
->isExpressibleAsConstantInitializer()) {
72 ConstantEmitter
ConstEmitter(CGM
);
73 return ConstEmitter
.tryEmitAbstract(E
, E
->getType());
76 assert(BoxingMethod
->isClassMethod() && "BoxingMethod must be a class method");
77 Selector Sel
= BoxingMethod
->getSelector();
79 // Generate a reference to the class pointer, which will be the receiver.
80 // Assumes that the method was introduced in the class that should be
81 // messaged (avoids pulling it out of the result type).
82 CGObjCRuntime
&Runtime
= CGM
.getObjCRuntime();
83 const ObjCInterfaceDecl
*ClassDecl
= BoxingMethod
->getClassInterface();
84 llvm::Value
*Receiver
= Runtime
.GetClass(*this, ClassDecl
);
87 const ParmVarDecl
*ArgDecl
= *BoxingMethod
->param_begin();
88 QualType ArgQT
= ArgDecl
->getType().getUnqualifiedType();
90 // ObjCBoxedExpr supports boxing of structs and unions
91 // via [NSValue valueWithBytes:objCType:]
92 const QualType
ValueType(SubExpr
->getType().getCanonicalType());
93 if (ValueType
->isObjCBoxableRecordType()) {
94 // Emit CodeGen for first parameter
95 // and cast value to correct type
96 Address Temporary
= CreateMemTemp(SubExpr
->getType());
97 EmitAnyExprToMem(SubExpr
, Temporary
, Qualifiers(), /*isInit*/ true);
98 llvm::Value
*BitCast
=
99 Builder
.CreateBitCast(Temporary
.getPointer(), ConvertType(ArgQT
));
100 Args
.add(RValue::get(BitCast
), ArgQT
);
102 // Create char array to store type encoding
104 getContext().getObjCEncodingForType(ValueType
, Str
);
105 llvm::Constant
*GV
= CGM
.GetAddrOfConstantCString(Str
).getPointer();
107 // Cast type encoding to correct type
108 const ParmVarDecl
*EncodingDecl
= BoxingMethod
->parameters()[1];
109 QualType EncodingQT
= EncodingDecl
->getType().getUnqualifiedType();
110 llvm::Value
*Cast
= Builder
.CreateBitCast(GV
, ConvertType(EncodingQT
));
112 Args
.add(RValue::get(Cast
), EncodingQT
);
114 Args
.add(EmitAnyExpr(SubExpr
), ArgQT
);
117 RValue result
= Runtime
.GenerateMessageSend(
118 *this, ReturnValueSlot(), BoxingMethod
->getReturnType(), Sel
, Receiver
,
119 Args
, ClassDecl
, BoxingMethod
);
120 return Builder
.CreateBitCast(result
.getScalarVal(),
121 ConvertType(E
->getType()));
124 llvm::Value
*CodeGenFunction::EmitObjCCollectionLiteral(const Expr
*E
,
125 const ObjCMethodDecl
*MethodWithObjects
) {
126 ASTContext
&Context
= CGM
.getContext();
127 const ObjCDictionaryLiteral
*DLE
= nullptr;
128 const ObjCArrayLiteral
*ALE
= dyn_cast
<ObjCArrayLiteral
>(E
);
130 DLE
= cast
<ObjCDictionaryLiteral
>(E
);
132 // Optimize empty collections by referencing constants, when available.
133 uint64_t NumElements
=
134 ALE
? ALE
->getNumElements() : DLE
->getNumElements();
135 if (NumElements
== 0 && CGM
.getLangOpts().ObjCRuntime
.hasEmptyCollections()) {
136 StringRef ConstantName
= ALE
? "__NSArray0__" : "__NSDictionary0__";
137 QualType
IdTy(CGM
.getContext().getObjCIdType());
138 llvm::Constant
*Constant
=
139 CGM
.CreateRuntimeVariable(ConvertType(IdTy
), ConstantName
);
140 LValue LV
= MakeNaturalAlignAddrLValue(Constant
, IdTy
);
141 llvm::Value
*Ptr
= EmitLoadOfScalar(LV
, E
->getBeginLoc());
142 cast
<llvm::LoadInst
>(Ptr
)->setMetadata(
143 llvm::LLVMContext::MD_invariant_load
,
144 llvm::MDNode::get(getLLVMContext(), std::nullopt
));
145 return Builder
.CreateBitCast(Ptr
, ConvertType(E
->getType()));
148 // Compute the type of the array we're initializing.
149 llvm::APInt
APNumElements(Context
.getTypeSize(Context
.getSizeType()),
151 QualType ElementType
= Context
.getObjCIdType().withConst();
152 QualType ElementArrayType
= Context
.getConstantArrayType(
153 ElementType
, APNumElements
, nullptr, ArraySizeModifier::Normal
,
154 /*IndexTypeQuals=*/0);
156 // Allocate the temporary array(s).
157 Address Objects
= CreateMemTemp(ElementArrayType
, "objects");
158 Address Keys
= Address::invalid();
160 Keys
= CreateMemTemp(ElementArrayType
, "keys");
162 // In ARC, we may need to do extra work to keep all the keys and
163 // values alive until after the call.
164 SmallVector
<llvm::Value
*, 16> NeededObjects
;
165 bool TrackNeededObjects
=
166 (getLangOpts().ObjCAutoRefCount
&&
167 CGM
.getCodeGenOpts().OptimizationLevel
!= 0);
169 // Perform the actual initialialization of the array(s).
170 for (uint64_t i
= 0; i
< NumElements
; i
++) {
172 // Emit the element and store it to the appropriate array slot.
173 const Expr
*Rhs
= ALE
->getElement(i
);
174 LValue LV
= MakeAddrLValue(Builder
.CreateConstArrayGEP(Objects
, i
),
175 ElementType
, AlignmentSource::Decl
);
177 llvm::Value
*value
= EmitScalarExpr(Rhs
);
178 EmitStoreThroughLValue(RValue::get(value
), LV
, true);
179 if (TrackNeededObjects
) {
180 NeededObjects
.push_back(value
);
183 // Emit the key and store it to the appropriate array slot.
184 const Expr
*Key
= DLE
->getKeyValueElement(i
).Key
;
185 LValue KeyLV
= MakeAddrLValue(Builder
.CreateConstArrayGEP(Keys
, i
),
186 ElementType
, AlignmentSource::Decl
);
187 llvm::Value
*keyValue
= EmitScalarExpr(Key
);
188 EmitStoreThroughLValue(RValue::get(keyValue
), KeyLV
, /*isInit=*/true);
190 // Emit the value and store it to the appropriate array slot.
191 const Expr
*Value
= DLE
->getKeyValueElement(i
).Value
;
192 LValue ValueLV
= MakeAddrLValue(Builder
.CreateConstArrayGEP(Objects
, i
),
193 ElementType
, AlignmentSource::Decl
);
194 llvm::Value
*valueValue
= EmitScalarExpr(Value
);
195 EmitStoreThroughLValue(RValue::get(valueValue
), ValueLV
, /*isInit=*/true);
196 if (TrackNeededObjects
) {
197 NeededObjects
.push_back(keyValue
);
198 NeededObjects
.push_back(valueValue
);
203 // Generate the argument list.
205 ObjCMethodDecl::param_const_iterator PI
= MethodWithObjects
->param_begin();
206 const ParmVarDecl
*argDecl
= *PI
++;
207 QualType ArgQT
= argDecl
->getType().getUnqualifiedType();
208 Args
.add(RValue::get(Objects
.getPointer()), ArgQT
);
211 ArgQT
= argDecl
->getType().getUnqualifiedType();
212 Args
.add(RValue::get(Keys
.getPointer()), ArgQT
);
215 ArgQT
= argDecl
->getType().getUnqualifiedType();
217 llvm::ConstantInt::get(CGM
.getTypes().ConvertType(ArgQT
), NumElements
);
218 Args
.add(RValue::get(Count
), ArgQT
);
220 // Generate a reference to the class pointer, which will be the receiver.
221 Selector Sel
= MethodWithObjects
->getSelector();
222 QualType ResultType
= E
->getType();
223 const ObjCObjectPointerType
*InterfacePointerType
224 = ResultType
->getAsObjCInterfacePointerType();
225 assert(InterfacePointerType
&& "Unexpected InterfacePointerType - null");
226 ObjCInterfaceDecl
*Class
227 = InterfacePointerType
->getObjectType()->getInterface();
228 CGObjCRuntime
&Runtime
= CGM
.getObjCRuntime();
229 llvm::Value
*Receiver
= Runtime
.GetClass(*this, Class
);
231 // Generate the message send.
232 RValue result
= Runtime
.GenerateMessageSend(
233 *this, ReturnValueSlot(), MethodWithObjects
->getReturnType(), Sel
,
234 Receiver
, Args
, Class
, MethodWithObjects
);
236 // The above message send needs these objects, but in ARC they are
237 // passed in a buffer that is essentially __unsafe_unretained.
238 // Therefore we must prevent the optimizer from releasing them until
240 if (TrackNeededObjects
) {
241 EmitARCIntrinsicUse(NeededObjects
);
244 return Builder
.CreateBitCast(result
.getScalarVal(),
245 ConvertType(E
->getType()));
248 llvm::Value
*CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral
*E
) {
249 return EmitObjCCollectionLiteral(E
, E
->getArrayWithObjectsMethod());
252 llvm::Value
*CodeGenFunction::EmitObjCDictionaryLiteral(
253 const ObjCDictionaryLiteral
*E
) {
254 return EmitObjCCollectionLiteral(E
, E
->getDictWithObjectsMethod());
258 llvm::Value
*CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr
*E
) {
260 // Note that this implementation allows for non-constant strings to be passed
261 // as arguments to @selector(). Currently, the only thing preventing this
262 // behaviour is the type checking in the front end.
263 return CGM
.getObjCRuntime().GetSelector(*this, E
->getSelector());
266 llvm::Value
*CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr
*E
) {
267 // FIXME: This should pass the Decl not the name.
268 return CGM
.getObjCRuntime().GenerateProtocolRef(*this, E
->getProtocol());
271 /// Adjust the type of an Objective-C object that doesn't match up due
272 /// to type erasure at various points, e.g., related result types or the use
273 /// of parameterized classes.
274 static RValue
AdjustObjCObjectType(CodeGenFunction
&CGF
, QualType ExpT
,
276 if (!ExpT
->isObjCRetainableType())
279 // If the converted types are the same, we're done.
280 llvm::Type
*ExpLLVMTy
= CGF
.ConvertType(ExpT
);
281 if (ExpLLVMTy
== Result
.getScalarVal()->getType())
284 // We have applied a substitution. Cast the rvalue appropriately.
285 return RValue::get(CGF
.Builder
.CreateBitCast(Result
.getScalarVal(),
289 /// Decide whether to extend the lifetime of the receiver of a
290 /// returns-inner-pointer message.
292 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr
*message
) {
293 switch (message
->getReceiverKind()) {
295 // For a normal instance message, we should extend unless the
296 // receiver is loaded from a variable with precise lifetime.
297 case ObjCMessageExpr::Instance
: {
298 const Expr
*receiver
= message
->getInstanceReceiver();
300 // Look through OVEs.
301 if (auto opaque
= dyn_cast
<OpaqueValueExpr
>(receiver
)) {
302 if (opaque
->getSourceExpr())
303 receiver
= opaque
->getSourceExpr()->IgnoreParens();
306 const ImplicitCastExpr
*ice
= dyn_cast
<ImplicitCastExpr
>(receiver
);
307 if (!ice
|| ice
->getCastKind() != CK_LValueToRValue
) return true;
308 receiver
= ice
->getSubExpr()->IgnoreParens();
310 // Look through OVEs.
311 if (auto opaque
= dyn_cast
<OpaqueValueExpr
>(receiver
)) {
312 if (opaque
->getSourceExpr())
313 receiver
= opaque
->getSourceExpr()->IgnoreParens();
316 // Only __strong variables.
317 if (receiver
->getType().getObjCLifetime() != Qualifiers::OCL_Strong
)
320 // All ivars and fields have precise lifetime.
321 if (isa
<MemberExpr
>(receiver
) || isa
<ObjCIvarRefExpr
>(receiver
))
324 // Otherwise, check for variables.
325 const DeclRefExpr
*declRef
= dyn_cast
<DeclRefExpr
>(ice
->getSubExpr());
326 if (!declRef
) return true;
327 const VarDecl
*var
= dyn_cast
<VarDecl
>(declRef
->getDecl());
328 if (!var
) return true;
330 // All variables have precise lifetime except local variables with
331 // automatic storage duration that aren't specially marked.
332 return (var
->hasLocalStorage() &&
333 !var
->hasAttr
<ObjCPreciseLifetimeAttr
>());
336 case ObjCMessageExpr::Class
:
337 case ObjCMessageExpr::SuperClass
:
338 // It's never necessary for class objects.
341 case ObjCMessageExpr::SuperInstance
:
342 // We generally assume that 'self' lives throughout a method call.
346 llvm_unreachable("invalid receiver kind");
349 /// Given an expression of ObjC pointer type, check whether it was
350 /// immediately loaded from an ARC __weak l-value.
351 static const Expr
*findWeakLValue(const Expr
*E
) {
352 assert(E
->getType()->isObjCRetainableType());
353 E
= E
->IgnoreParens();
354 if (auto CE
= dyn_cast
<CastExpr
>(E
)) {
355 if (CE
->getCastKind() == CK_LValueToRValue
) {
356 if (CE
->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak
)
357 return CE
->getSubExpr();
364 /// The ObjC runtime may provide entrypoints that are likely to be faster
365 /// than an ordinary message send of the appropriate selector.
367 /// The entrypoints are guaranteed to be equivalent to just sending the
368 /// corresponding message. If the entrypoint is implemented naively as just a
369 /// message send, using it is a trade-off: it sacrifices a few cycles of
370 /// overhead to save a small amount of code. However, it's possible for
371 /// runtimes to detect and special-case classes that use "standard"
372 /// behavior; if that's dynamically a large proportion of all objects, using
373 /// the entrypoint will also be faster than using a message send.
375 /// If the runtime does support a required entrypoint, then this method will
376 /// generate a call and return the resulting value. Otherwise it will return
377 /// std::nullopt and the caller can generate a msgSend instead.
378 static std::optional
<llvm::Value
*> tryGenerateSpecializedMessageSend(
379 CodeGenFunction
&CGF
, QualType ResultType
, llvm::Value
*Receiver
,
380 const CallArgList
&Args
, Selector Sel
, const ObjCMethodDecl
*method
,
381 bool isClassMessage
) {
383 if (!CGM
.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls
)
386 auto &Runtime
= CGM
.getLangOpts().ObjCRuntime
;
387 switch (Sel
.getMethodFamily()) {
389 if (isClassMessage
&&
390 Runtime
.shouldUseRuntimeFunctionsForAlloc() &&
391 ResultType
->isObjCObjectPointerType()) {
392 // [Foo alloc] -> objc_alloc(Foo) or
393 // [self alloc] -> objc_alloc(self)
394 if (Sel
.isUnarySelector() && Sel
.getNameForSlot(0) == "alloc")
395 return CGF
.EmitObjCAlloc(Receiver
, CGF
.ConvertType(ResultType
));
396 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
397 // [self allocWithZone:nil] -> objc_allocWithZone(self)
398 if (Sel
.isKeywordSelector() && Sel
.getNumArgs() == 1 &&
399 Args
.size() == 1 && Args
.front().getType()->isPointerType() &&
400 Sel
.getNameForSlot(0) == "allocWithZone") {
401 const llvm::Value
* arg
= Args
.front().getKnownRValue().getScalarVal();
402 if (isa
<llvm::ConstantPointerNull
>(arg
))
403 return CGF
.EmitObjCAllocWithZone(Receiver
,
404 CGF
.ConvertType(ResultType
));
410 case OMF_autorelease
:
411 if (ResultType
->isObjCObjectPointerType() &&
412 CGM
.getLangOpts().getGC() == LangOptions::NonGC
&&
413 Runtime
.shouldUseARCFunctionsForRetainRelease())
414 return CGF
.EmitObjCAutorelease(Receiver
, CGF
.ConvertType(ResultType
));
418 if (ResultType
->isObjCObjectPointerType() &&
419 CGM
.getLangOpts().getGC() == LangOptions::NonGC
&&
420 Runtime
.shouldUseARCFunctionsForRetainRelease())
421 return CGF
.EmitObjCRetainNonBlock(Receiver
, CGF
.ConvertType(ResultType
));
425 if (ResultType
->isVoidType() &&
426 CGM
.getLangOpts().getGC() == LangOptions::NonGC
&&
427 Runtime
.shouldUseARCFunctionsForRetainRelease()) {
428 CGF
.EmitObjCRelease(Receiver
, ARCPreciseLifetime
);
439 CodeGen::RValue
CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
440 CodeGenFunction
&CGF
, ReturnValueSlot Return
, QualType ResultType
,
441 Selector Sel
, llvm::Value
*Receiver
, const CallArgList
&Args
,
442 const ObjCInterfaceDecl
*OID
, const ObjCMethodDecl
*Method
,
443 bool isClassMessage
) {
444 if (std::optional
<llvm::Value
*> SpecializedResult
=
445 tryGenerateSpecializedMessageSend(CGF
, ResultType
, Receiver
, Args
,
446 Sel
, Method
, isClassMessage
)) {
447 return RValue::get(*SpecializedResult
);
449 return GenerateMessageSend(CGF
, Return
, ResultType
, Sel
, Receiver
, Args
, OID
,
453 static void AppendFirstImpliedRuntimeProtocols(
454 const ObjCProtocolDecl
*PD
,
455 llvm::UniqueVector
<const ObjCProtocolDecl
*> &PDs
) {
456 if (!PD
->isNonRuntimeProtocol()) {
457 const auto *Can
= PD
->getCanonicalDecl();
462 for (const auto *ParentPD
: PD
->protocols())
463 AppendFirstImpliedRuntimeProtocols(ParentPD
, PDs
);
466 std::vector
<const ObjCProtocolDecl
*>
467 CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin
,
468 ObjCProtocolDecl::protocol_iterator end
) {
469 std::vector
<const ObjCProtocolDecl
*> RuntimePds
;
470 llvm::DenseSet
<const ObjCProtocolDecl
*> NonRuntimePDs
;
472 for (; begin
!= end
; ++begin
) {
473 const auto *It
= *begin
;
474 const auto *Can
= It
->getCanonicalDecl();
475 if (Can
->isNonRuntimeProtocol())
476 NonRuntimePDs
.insert(Can
);
478 RuntimePds
.push_back(Can
);
481 // If there are no non-runtime protocols then we can just stop now.
482 if (NonRuntimePDs
.empty())
485 // Else we have to search through the non-runtime protocol's inheritancy
486 // hierarchy DAG stopping whenever a branch either finds a runtime protocol or
487 // a non-runtime protocol without any parents. These are the "first-implied"
488 // protocols from a non-runtime protocol.
489 llvm::UniqueVector
<const ObjCProtocolDecl
*> FirstImpliedProtos
;
490 for (const auto *PD
: NonRuntimePDs
)
491 AppendFirstImpliedRuntimeProtocols(PD
, FirstImpliedProtos
);
493 // Walk the Runtime list to get all protocols implied via the inclusion of
494 // this protocol, e.g. all protocols it inherits from including itself.
495 llvm::DenseSet
<const ObjCProtocolDecl
*> AllImpliedProtocols
;
496 for (const auto *PD
: RuntimePds
) {
497 const auto *Can
= PD
->getCanonicalDecl();
498 AllImpliedProtocols
.insert(Can
);
499 Can
->getImpliedProtocols(AllImpliedProtocols
);
502 // Similar to above, walk the list of first-implied protocols to find the set
503 // all the protocols implied excluding the listed protocols themselves since
504 // they are not yet a part of the `RuntimePds` list.
505 for (const auto *PD
: FirstImpliedProtos
) {
506 PD
->getImpliedProtocols(AllImpliedProtocols
);
509 // From the first-implied list we have to finish building the final protocol
510 // list. If a protocol in the first-implied list was already implied via some
511 // inheritance path through some other protocols then it would be redundant to
512 // add it here and so we skip over it.
513 for (const auto *PD
: FirstImpliedProtos
) {
514 if (!AllImpliedProtocols
.contains(PD
)) {
515 RuntimePds
.push_back(PD
);
522 /// Instead of '[[MyClass alloc] init]', try to generate
523 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
524 /// caller side, as well as the optimized objc_alloc.
525 static std::optional
<llvm::Value
*>
526 tryEmitSpecializedAllocInit(CodeGenFunction
&CGF
, const ObjCMessageExpr
*OME
) {
527 auto &Runtime
= CGF
.getLangOpts().ObjCRuntime
;
528 if (!Runtime
.shouldUseRuntimeFunctionForCombinedAllocInit())
531 // Match the exact pattern '[[MyClass alloc] init]'.
532 Selector Sel
= OME
->getSelector();
533 if (OME
->getReceiverKind() != ObjCMessageExpr::Instance
||
534 !OME
->getType()->isObjCObjectPointerType() || !Sel
.isUnarySelector() ||
535 Sel
.getNameForSlot(0) != "init")
538 // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
539 // with 'cls' a Class.
541 dyn_cast
<ObjCMessageExpr
>(OME
->getInstanceReceiver()->IgnoreParenCasts());
544 Selector SubSel
= SubOME
->getSelector();
546 if (!SubOME
->getType()->isObjCObjectPointerType() ||
547 !SubSel
.isUnarySelector() || SubSel
.getNameForSlot(0) != "alloc")
550 llvm::Value
*Receiver
= nullptr;
551 switch (SubOME
->getReceiverKind()) {
552 case ObjCMessageExpr::Instance
:
553 if (!SubOME
->getInstanceReceiver()->getType()->isObjCClassType())
555 Receiver
= CGF
.EmitScalarExpr(SubOME
->getInstanceReceiver());
558 case ObjCMessageExpr::Class
: {
559 QualType ReceiverType
= SubOME
->getClassReceiver();
560 const ObjCObjectType
*ObjTy
= ReceiverType
->castAs
<ObjCObjectType
>();
561 const ObjCInterfaceDecl
*ID
= ObjTy
->getInterface();
562 assert(ID
&& "null interface should be impossible here");
563 Receiver
= CGF
.CGM
.getObjCRuntime().GetClass(CGF
, ID
);
566 case ObjCMessageExpr::SuperInstance
:
567 case ObjCMessageExpr::SuperClass
:
571 return CGF
.EmitObjCAllocInit(Receiver
, CGF
.ConvertType(OME
->getType()));
574 RValue
CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr
*E
,
575 ReturnValueSlot Return
) {
576 // Only the lookup mechanism and first two arguments of the method
577 // implementation vary between runtimes. We can get the receiver and
578 // arguments in generic code.
580 bool isDelegateInit
= E
->isDelegateInitCall();
582 const ObjCMethodDecl
*method
= E
->getMethodDecl();
584 // If the method is -retain, and the receiver's being loaded from
585 // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
586 if (method
&& E
->getReceiverKind() == ObjCMessageExpr::Instance
&&
587 method
->getMethodFamily() == OMF_retain
) {
588 if (auto lvalueExpr
= findWeakLValue(E
->getInstanceReceiver())) {
589 LValue lvalue
= EmitLValue(lvalueExpr
);
590 llvm::Value
*result
= EmitARCLoadWeakRetained(lvalue
.getAddress(*this));
591 return AdjustObjCObjectType(*this, E
->getType(), RValue::get(result
));
595 if (std::optional
<llvm::Value
*> Val
= tryEmitSpecializedAllocInit(*this, E
))
596 return AdjustObjCObjectType(*this, E
->getType(), RValue::get(*Val
));
598 // We don't retain the receiver in delegate init calls, and this is
599 // safe because the receiver value is always loaded from 'self',
600 // which we zero out. We don't want to Block_copy block receivers,
604 CGM
.getLangOpts().ObjCAutoRefCount
&&
606 method
->hasAttr
<NSConsumesSelfAttr
>());
608 CGObjCRuntime
&Runtime
= CGM
.getObjCRuntime();
609 bool isSuperMessage
= false;
610 bool isClassMessage
= false;
611 ObjCInterfaceDecl
*OID
= nullptr;
613 QualType ReceiverType
;
614 llvm::Value
*Receiver
= nullptr;
615 switch (E
->getReceiverKind()) {
616 case ObjCMessageExpr::Instance
:
617 ReceiverType
= E
->getInstanceReceiver()->getType();
618 isClassMessage
= ReceiverType
->isObjCClassType();
620 TryEmitResult ter
= tryEmitARCRetainScalarExpr(*this,
621 E
->getInstanceReceiver());
622 Receiver
= ter
.getPointer();
623 if (ter
.getInt()) retainSelf
= false;
625 Receiver
= EmitScalarExpr(E
->getInstanceReceiver());
628 case ObjCMessageExpr::Class
: {
629 ReceiverType
= E
->getClassReceiver();
630 OID
= ReceiverType
->castAs
<ObjCObjectType
>()->getInterface();
631 assert(OID
&& "Invalid Objective-C class message send");
632 Receiver
= Runtime
.GetClass(*this, OID
);
633 isClassMessage
= true;
637 case ObjCMessageExpr::SuperInstance
:
638 ReceiverType
= E
->getSuperType();
639 Receiver
= LoadObjCSelf();
640 isSuperMessage
= true;
643 case ObjCMessageExpr::SuperClass
:
644 ReceiverType
= E
->getSuperType();
645 Receiver
= LoadObjCSelf();
646 isSuperMessage
= true;
647 isClassMessage
= true;
652 Receiver
= EmitARCRetainNonBlock(Receiver
);
654 // In ARC, we sometimes want to "extend the lifetime"
655 // (i.e. retain+autorelease) of receivers of returns-inner-pointer
657 if (getLangOpts().ObjCAutoRefCount
&& method
&&
658 method
->hasAttr
<ObjCReturnsInnerPointerAttr
>() &&
659 shouldExtendReceiverForInnerPointerMessage(E
))
660 Receiver
= EmitARCRetainAutorelease(ReceiverType
, Receiver
);
662 QualType ResultType
= method
? method
->getReturnType() : E
->getType();
665 EmitCallArgs(Args
, method
, E
->arguments(), /*AC*/AbstractCallee(method
));
667 // For delegate init calls in ARC, do an unsafe store of null into
668 // self. This represents the call taking direct ownership of that
669 // value. We have to do this after emitting the other call
670 // arguments because they might also reference self, but we don't
671 // have to worry about any of them modifying self because that would
672 // be an undefined read and write of an object in unordered
674 if (isDelegateInit
) {
675 assert(getLangOpts().ObjCAutoRefCount
&&
676 "delegate init calls should only be marked in ARC");
678 // Do an unsafe store of null into self.
680 GetAddrOfLocalVar(cast
<ObjCMethodDecl
>(CurCodeDecl
)->getSelfDecl());
681 Builder
.CreateStore(getNullForVariable(selfAddr
), selfAddr
);
685 if (isSuperMessage
) {
686 // super is only valid in an Objective-C method
687 const ObjCMethodDecl
*OMD
= cast
<ObjCMethodDecl
>(CurFuncDecl
);
688 bool isCategoryImpl
= isa
<ObjCCategoryImplDecl
>(OMD
->getDeclContext());
689 result
= Runtime
.GenerateMessageSendSuper(*this, Return
, ResultType
,
691 OMD
->getClassInterface(),
698 // Call runtime methods directly if we can.
699 result
= Runtime
.GeneratePossiblySpecializedMessageSend(
700 *this, Return
, ResultType
, E
->getSelector(), Receiver
, Args
, OID
,
701 method
, isClassMessage
);
704 // For delegate init calls in ARC, implicitly store the result of
705 // the call back into self. This takes ownership of the value.
706 if (isDelegateInit
) {
708 GetAddrOfLocalVar(cast
<ObjCMethodDecl
>(CurCodeDecl
)->getSelfDecl());
709 llvm::Value
*newSelf
= result
.getScalarVal();
711 // The delegate return type isn't necessarily a matching type; in
712 // fact, it's quite likely to be 'id'.
713 llvm::Type
*selfTy
= selfAddr
.getElementType();
714 newSelf
= Builder
.CreateBitCast(newSelf
, selfTy
);
716 Builder
.CreateStore(newSelf
, selfAddr
);
719 return AdjustObjCObjectType(*this, E
->getType(), result
);
723 struct FinishARCDealloc final
: EHScopeStack::Cleanup
{
724 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
725 const ObjCMethodDecl
*method
= cast
<ObjCMethodDecl
>(CGF
.CurCodeDecl
);
727 const ObjCImplDecl
*impl
= cast
<ObjCImplDecl
>(method
->getDeclContext());
728 const ObjCInterfaceDecl
*iface
= impl
->getClassInterface();
729 if (!iface
->getSuperClass()) return;
731 bool isCategory
= isa
<ObjCCategoryImplDecl
>(impl
);
733 // Call [super dealloc] if we have a superclass.
734 llvm::Value
*self
= CGF
.LoadObjCSelf();
737 CGF
.CGM
.getObjCRuntime().GenerateMessageSendSuper(CGF
, ReturnValueSlot(),
738 CGF
.getContext().VoidTy
,
739 method
->getSelector(),
743 /*is class msg*/ false,
750 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
751 /// the LLVM function and sets the other context used by
753 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl
*OMD
,
754 const ObjCContainerDecl
*CD
) {
755 SourceLocation StartLoc
= OMD
->getBeginLoc();
756 FunctionArgList args
;
757 // Check if we should generate debug info for this method.
758 if (OMD
->hasAttr
<NoDebugAttr
>())
759 DebugInfo
= nullptr; // disable debug info indefinitely for this function
761 llvm::Function
*Fn
= CGM
.getObjCRuntime().GenerateMethod(OMD
, CD
);
763 const CGFunctionInfo
&FI
= CGM
.getTypes().arrangeObjCMethodDeclaration(OMD
);
764 if (OMD
->isDirectMethod()) {
765 Fn
->setVisibility(llvm::Function::HiddenVisibility
);
766 CGM
.SetLLVMFunctionAttributes(OMD
, FI
, Fn
, /*IsThunk=*/false);
767 CGM
.SetLLVMFunctionAttributesForDefinition(OMD
, Fn
);
769 CGM
.SetInternalFunctionAttributes(OMD
, Fn
, FI
);
772 args
.push_back(OMD
->getSelfDecl());
773 if (!OMD
->isDirectMethod())
774 args
.push_back(OMD
->getCmdDecl());
776 args
.append(OMD
->param_begin(), OMD
->param_end());
779 CurEHLocation
= OMD
->getEndLoc();
781 StartFunction(OMD
, OMD
->getReturnType(), Fn
, FI
, args
,
782 OMD
->getLocation(), StartLoc
);
784 if (OMD
->isDirectMethod()) {
785 // This function is a direct call, it has to implement a nil check
788 // TODO: possibly have several entry points to elide the check
789 CGM
.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn
, OMD
, CD
);
792 // In ARC, certain methods get an extra cleanup.
793 if (CGM
.getLangOpts().ObjCAutoRefCount
&&
794 OMD
->isInstanceMethod() &&
795 OMD
->getSelector().isUnarySelector()) {
796 const IdentifierInfo
*ident
=
797 OMD
->getSelector().getIdentifierInfoForSlot(0);
798 if (ident
->isStr("dealloc"))
799 EHStack
.pushCleanup
<FinishARCDealloc
>(getARCCleanupKind());
803 static llvm::Value
*emitARCRetainLoadOfScalar(CodeGenFunction
&CGF
,
804 LValue lvalue
, QualType type
);
806 /// Generate an Objective-C method. An Objective-C method is a C function with
807 /// its pointer, name, and types registered in the class structure.
808 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl
*OMD
) {
809 StartObjCMethod(OMD
, OMD
->getClassInterface());
810 PGO
.assignRegionCounters(GlobalDecl(OMD
), CurFn
);
811 assert(isa
<CompoundStmt
>(OMD
->getBody()));
812 incrementProfileCounter(OMD
->getBody());
813 EmitCompoundStmtWithoutScope(*cast
<CompoundStmt
>(OMD
->getBody()));
814 FinishFunction(OMD
->getBodyRBrace());
817 /// emitStructGetterCall - Call the runtime function to load a property
818 /// into the return value slot.
819 static void emitStructGetterCall(CodeGenFunction
&CGF
, ObjCIvarDecl
*ivar
,
820 bool isAtomic
, bool hasStrong
) {
821 ASTContext
&Context
= CGF
.getContext();
824 CGF
.EmitLValueForIvar(CGF
.TypeOfSelfObject(), CGF
.LoadObjCSelf(), ivar
, 0)
827 // objc_copyStruct (ReturnValue, &structIvar,
828 // sizeof (Type of Ivar), isAtomic, false);
832 CGF
.Builder
.CreateBitCast(CGF
.ReturnValue
.getPointer(), CGF
.VoidPtrTy
);
833 args
.add(RValue::get(dest
), Context
.VoidPtrTy
);
835 src
= CGF
.Builder
.CreateBitCast(src
, CGF
.VoidPtrTy
);
836 args
.add(RValue::get(src
), Context
.VoidPtrTy
);
838 CharUnits size
= CGF
.getContext().getTypeSizeInChars(ivar
->getType());
839 args
.add(RValue::get(CGF
.CGM
.getSize(size
)), Context
.getSizeType());
840 args
.add(RValue::get(CGF
.Builder
.getInt1(isAtomic
)), Context
.BoolTy
);
841 args
.add(RValue::get(CGF
.Builder
.getInt1(hasStrong
)), Context
.BoolTy
);
843 llvm::FunctionCallee fn
= CGF
.CGM
.getObjCRuntime().GetGetStructFunction();
844 CGCallee callee
= CGCallee::forDirect(fn
);
845 CGF
.EmitCall(CGF
.getTypes().arrangeBuiltinFunctionCall(Context
.VoidTy
, args
),
846 callee
, ReturnValueSlot(), args
);
849 /// Determine whether the given architecture supports unaligned atomic
850 /// accesses. They don't have to be fast, just faster than a function
851 /// call and a mutex.
852 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch
) {
853 // FIXME: Allow unaligned atomic load/store on x86. (It is not
854 // currently supported by the backend.)
858 /// Return the maximum size that permits atomic accesses for the given
860 static CharUnits
getMaxAtomicAccessSize(CodeGenModule
&CGM
,
861 llvm::Triple::ArchType arch
) {
862 // ARM has 8-byte atomic accesses, but it's not clear whether we
863 // want to rely on them here.
865 // In the default case, just assume that any size up to a pointer is
866 // fine given adequate alignment.
867 return CharUnits::fromQuantity(CGM
.PointerSizeInBytes
);
871 class PropertyImplStrategy
{
874 /// The 'native' strategy is to use the architecture's provided
875 /// reads and writes.
878 /// Use objc_setProperty and objc_getProperty.
881 /// Use objc_setProperty for the setter, but use expression
882 /// evaluation for the getter.
883 SetPropertyAndExpressionGet
,
885 /// Use objc_copyStruct.
888 /// The 'expression' strategy is to emit normal assignment or
889 /// lvalue-to-rvalue expressions.
893 StrategyKind
getKind() const { return StrategyKind(Kind
); }
895 bool hasStrongMember() const { return HasStrong
; }
896 bool isAtomic() const { return IsAtomic
; }
897 bool isCopy() const { return IsCopy
; }
899 CharUnits
getIvarSize() const { return IvarSize
; }
900 CharUnits
getIvarAlignment() const { return IvarAlignment
; }
902 PropertyImplStrategy(CodeGenModule
&CGM
,
903 const ObjCPropertyImplDecl
*propImpl
);
907 unsigned IsAtomic
: 1;
909 unsigned HasStrong
: 1;
912 CharUnits IvarAlignment
;
916 /// Pick an implementation strategy for the given property synthesis.
917 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule
&CGM
,
918 const ObjCPropertyImplDecl
*propImpl
) {
919 const ObjCPropertyDecl
*prop
= propImpl
->getPropertyDecl();
920 ObjCPropertyDecl::SetterKind setterKind
= prop
->getSetterKind();
922 IsCopy
= (setterKind
== ObjCPropertyDecl::Copy
);
923 IsAtomic
= prop
->isAtomic();
924 HasStrong
= false; // doesn't matter here.
926 // Evaluate the ivar's size and alignment.
927 ObjCIvarDecl
*ivar
= propImpl
->getPropertyIvarDecl();
928 QualType ivarType
= ivar
->getType();
929 auto TInfo
= CGM
.getContext().getTypeInfoInChars(ivarType
);
930 IvarSize
= TInfo
.Width
;
931 IvarAlignment
= TInfo
.Align
;
933 // If we have a copy property, we always have to use setProperty.
934 // If the property is atomic we need to use getProperty, but in
935 // the nonatomic case we can just use expression.
937 Kind
= IsAtomic
? GetSetProperty
: SetPropertyAndExpressionGet
;
942 if (setterKind
== ObjCPropertyDecl::Retain
) {
943 // In GC-only, there's nothing special that needs to be done.
944 if (CGM
.getLangOpts().getGC() == LangOptions::GCOnly
) {
947 // In ARC, if the property is non-atomic, use expression emission,
948 // which translates to objc_storeStrong. This isn't required, but
949 // it's slightly nicer.
950 } else if (CGM
.getLangOpts().ObjCAutoRefCount
&& !IsAtomic
) {
951 // Using standard expression emission for the setter is only
952 // acceptable if the ivar is __strong, which won't be true if
953 // the property is annotated with __attribute__((NSObject)).
954 // TODO: falling all the way back to objc_setProperty here is
955 // just laziness, though; we could still use objc_storeStrong
956 // if we hacked it right.
957 if (ivarType
.getObjCLifetime() == Qualifiers::OCL_Strong
)
960 Kind
= SetPropertyAndExpressionGet
;
963 // Otherwise, we need to at least use setProperty. However, if
964 // the property isn't atomic, we can use normal expression
965 // emission for the getter.
966 } else if (!IsAtomic
) {
967 Kind
= SetPropertyAndExpressionGet
;
970 // Otherwise, we have to use both setProperty and getProperty.
972 Kind
= GetSetProperty
;
977 // If we're not atomic, just use expression accesses.
983 // Properties on bitfield ivars need to be emitted using expression
984 // accesses even if they're nominally atomic.
985 if (ivar
->isBitField()) {
990 // GC-qualified or ARC-qualified ivars need to be emitted as
991 // expressions. This actually works out to being atomic anyway,
992 // except for ARC __strong, but that should trigger the above code.
993 if (ivarType
.hasNonTrivialObjCLifetime() ||
994 (CGM
.getLangOpts().getGC() &&
995 CGM
.getContext().getObjCGCAttrKind(ivarType
))) {
1000 // Compute whether the ivar has strong members.
1001 if (CGM
.getLangOpts().getGC())
1002 if (const RecordType
*recordType
= ivarType
->getAs
<RecordType
>())
1003 HasStrong
= recordType
->getDecl()->hasObjectMember();
1005 // We can never access structs with object members with a native
1006 // access, because we need to use write barriers. This is what
1007 // objc_copyStruct is for.
1013 // Otherwise, this is target-dependent and based on the size and
1014 // alignment of the ivar.
1016 // If the size of the ivar is not a power of two, give up. We don't
1017 // want to get into the business of doing compare-and-swaps.
1018 if (!IvarSize
.isPowerOfTwo()) {
1023 llvm::Triple::ArchType arch
=
1024 CGM
.getTarget().getTriple().getArch();
1026 // Most architectures require memory to fit within a single cache
1027 // line, so the alignment has to be at least the size of the access.
1028 // Otherwise we have to grab a lock.
1029 if (IvarAlignment
< IvarSize
&& !hasUnalignedAtomics(arch
)) {
1034 // If the ivar's size exceeds the architecture's maximum atomic
1035 // access size, we have to use CopyStruct.
1036 if (IvarSize
> getMaxAtomicAccessSize(CGM
, arch
)) {
1041 // Otherwise, we can use native loads and stores.
1045 /// Generate an Objective-C property getter function.
1047 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1048 /// is illegal within a category.
1049 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl
*IMP
,
1050 const ObjCPropertyImplDecl
*PID
) {
1051 llvm::Constant
*AtomicHelperFn
=
1052 CodeGenFunction(CGM
).GenerateObjCAtomicGetterCopyHelperFunction(PID
);
1053 ObjCMethodDecl
*OMD
= PID
->getGetterMethodDecl();
1054 assert(OMD
&& "Invalid call to generate getter (empty method)");
1055 StartObjCMethod(OMD
, IMP
->getClassInterface());
1057 generateObjCGetterBody(IMP
, PID
, OMD
, AtomicHelperFn
);
1059 FinishFunction(OMD
->getEndLoc());
1062 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl
*propImpl
) {
1063 const Expr
*getter
= propImpl
->getGetterCXXConstructor();
1064 if (!getter
) return true;
1066 // Sema only makes only of these when the ivar has a C++ class type,
1067 // so the form is pretty constrained.
1069 // If the property has a reference type, we might just be binding a
1070 // reference, in which case the result will be a gl-value. We should
1071 // treat this as a non-trivial operation.
1072 if (getter
->isGLValue())
1075 // If we selected a trivial copy-constructor, we're okay.
1076 if (const CXXConstructExpr
*construct
= dyn_cast
<CXXConstructExpr
>(getter
))
1077 return (construct
->getConstructor()->isTrivial());
1079 // The constructor might require cleanups (in which case it's never
1081 assert(isa
<ExprWithCleanups
>(getter
));
1085 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
1086 /// copy the ivar into the resturn slot.
1087 static void emitCPPObjectAtomicGetterCall(CodeGenFunction
&CGF
,
1088 llvm::Value
*returnAddr
,
1090 llvm::Constant
*AtomicHelperFn
) {
1091 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1095 // The 1st argument is the return Slot.
1096 args
.add(RValue::get(returnAddr
), CGF
.getContext().VoidPtrTy
);
1098 // The 2nd argument is the address of the ivar.
1099 llvm::Value
*ivarAddr
=
1100 CGF
.EmitLValueForIvar(CGF
.TypeOfSelfObject(), CGF
.LoadObjCSelf(), ivar
, 0)
1102 ivarAddr
= CGF
.Builder
.CreateBitCast(ivarAddr
, CGF
.Int8PtrTy
);
1103 args
.add(RValue::get(ivarAddr
), CGF
.getContext().VoidPtrTy
);
1105 // Third argument is the helper function.
1106 args
.add(RValue::get(AtomicHelperFn
), CGF
.getContext().VoidPtrTy
);
1108 llvm::FunctionCallee copyCppAtomicObjectFn
=
1109 CGF
.CGM
.getObjCRuntime().GetCppAtomicObjectGetFunction();
1110 CGCallee callee
= CGCallee::forDirect(copyCppAtomicObjectFn
);
1112 CGF
.getTypes().arrangeBuiltinFunctionCall(CGF
.getContext().VoidTy
, args
),
1113 callee
, ReturnValueSlot(), args
);
1116 // emitCmdValueForGetterSetterBody - Handle emitting the load necessary for
1117 // the `_cmd` selector argument for getter/setter bodies. For direct methods,
1118 // this returns an undefined/poison value; this matches behavior prior to `_cmd`
1119 // being removed from the direct method ABI as the getter/setter caller would
1120 // never load one. For non-direct methods, this emits a load of the implicit
1122 static llvm::Value
*emitCmdValueForGetterSetterBody(CodeGenFunction
&CGF
,
1123 ObjCMethodDecl
*MD
) {
1124 if (MD
->isDirectMethod()) {
1125 // Direct methods do not have a `_cmd` argument. Emit an undefined/poison
1126 // value. This will be passed to objc_getProperty/objc_setProperty, which
1127 // has not appeared bothered by the `_cmd` argument being undefined before.
1128 llvm::Type
*selType
= CGF
.ConvertType(CGF
.getContext().getObjCSelType());
1129 return llvm::PoisonValue::get(selType
);
1132 return CGF
.Builder
.CreateLoad(CGF
.GetAddrOfLocalVar(MD
->getCmdDecl()), "cmd");
1136 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl
*classImpl
,
1137 const ObjCPropertyImplDecl
*propImpl
,
1138 const ObjCMethodDecl
*GetterMethodDecl
,
1139 llvm::Constant
*AtomicHelperFn
) {
1141 ObjCIvarDecl
*ivar
= propImpl
->getPropertyIvarDecl();
1143 if (ivar
->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct
) {
1144 if (!AtomicHelperFn
) {
1146 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar
, 0);
1147 LValue Dst
= MakeAddrLValue(ReturnValue
, ivar
->getType());
1148 callCStructCopyConstructor(Dst
, Src
);
1150 ObjCIvarDecl
*ivar
= propImpl
->getPropertyIvarDecl();
1151 emitCPPObjectAtomicGetterCall(*this, ReturnValue
.getPointer(), ivar
,
1157 // If there's a non-trivial 'get' expression, we just have to emit that.
1158 if (!hasTrivialGetExpr(propImpl
)) {
1159 if (!AtomicHelperFn
) {
1160 auto *ret
= ReturnStmt::Create(getContext(), SourceLocation(),
1161 propImpl
->getGetterCXXConstructor(),
1162 /* NRVOCandidate=*/nullptr);
1163 EmitReturnStmt(*ret
);
1166 ObjCIvarDecl
*ivar
= propImpl
->getPropertyIvarDecl();
1167 emitCPPObjectAtomicGetterCall(*this, ReturnValue
.getPointer(),
1168 ivar
, AtomicHelperFn
);
1173 const ObjCPropertyDecl
*prop
= propImpl
->getPropertyDecl();
1174 QualType propType
= prop
->getType();
1175 ObjCMethodDecl
*getterMethod
= propImpl
->getGetterMethodDecl();
1177 // Pick an implementation strategy.
1178 PropertyImplStrategy
strategy(CGM
, propImpl
);
1179 switch (strategy
.getKind()) {
1180 case PropertyImplStrategy::Native
: {
1181 // We don't need to do anything for a zero-size struct.
1182 if (strategy
.getIvarSize().isZero())
1185 LValue LV
= EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar
, 0);
1187 // Currently, all atomic accesses have to be through integer
1188 // types, so there's no point in trying to pick a prettier type.
1189 uint64_t ivarSize
= getContext().toBits(strategy
.getIvarSize());
1190 llvm::Type
*bitcastType
= llvm::Type::getIntNTy(getLLVMContext(), ivarSize
);
1192 // Perform an atomic load. This does not impose ordering constraints.
1193 Address ivarAddr
= LV
.getAddress(*this);
1194 ivarAddr
= ivarAddr
.withElementType(bitcastType
);
1195 llvm::LoadInst
*load
= Builder
.CreateLoad(ivarAddr
, "load");
1196 load
->setAtomic(llvm::AtomicOrdering::Unordered
);
1198 // Store that value into the return address. Doing this with a
1199 // bitcast is likely to produce some pretty ugly IR, but it's not
1200 // the *most* terrible thing in the world.
1201 llvm::Type
*retTy
= ConvertType(getterMethod
->getReturnType());
1202 uint64_t retTySize
= CGM
.getDataLayout().getTypeSizeInBits(retTy
);
1203 llvm::Value
*ivarVal
= load
;
1204 if (ivarSize
> retTySize
) {
1205 bitcastType
= llvm::Type::getIntNTy(getLLVMContext(), retTySize
);
1206 ivarVal
= Builder
.CreateTrunc(load
, bitcastType
);
1208 Builder
.CreateStore(ivarVal
, ReturnValue
.withElementType(bitcastType
));
1210 // Make sure we don't do an autorelease.
1211 AutoreleaseResult
= false;
1215 case PropertyImplStrategy::GetSetProperty
: {
1216 llvm::FunctionCallee getPropertyFn
=
1217 CGM
.getObjCRuntime().GetPropertyGetFunction();
1218 if (!getPropertyFn
) {
1219 CGM
.ErrorUnsupported(propImpl
, "Obj-C getter requiring atomic copy");
1222 CGCallee callee
= CGCallee::forDirect(getPropertyFn
);
1224 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1225 // FIXME: Can't this be simpler? This might even be worse than the
1226 // corresponding gcc code.
1227 llvm::Value
*cmd
= emitCmdValueForGetterSetterBody(*this, getterMethod
);
1228 llvm::Value
*self
= Builder
.CreateBitCast(LoadObjCSelf(), VoidPtrTy
);
1229 llvm::Value
*ivarOffset
=
1230 EmitIvarOffsetAsPointerDiff(classImpl
->getClassInterface(), ivar
);
1233 args
.add(RValue::get(self
), getContext().getObjCIdType());
1234 args
.add(RValue::get(cmd
), getContext().getObjCSelType());
1235 args
.add(RValue::get(ivarOffset
), getContext().getPointerDiffType());
1236 args
.add(RValue::get(Builder
.getInt1(strategy
.isAtomic())),
1237 getContext().BoolTy
);
1239 // FIXME: We shouldn't need to get the function info here, the
1240 // runtime already should have computed it to build the function.
1241 llvm::CallBase
*CallInstruction
;
1242 RValue RV
= EmitCall(getTypes().arrangeBuiltinFunctionCall(
1243 getContext().getObjCIdType(), args
),
1244 callee
, ReturnValueSlot(), args
, &CallInstruction
);
1245 if (llvm::CallInst
*call
= dyn_cast
<llvm::CallInst
>(CallInstruction
))
1246 call
->setTailCall();
1248 // We need to fix the type here. Ivars with copy & retain are
1249 // always objects so we don't need to worry about complex or
1251 RV
= RValue::get(Builder
.CreateBitCast(
1253 getTypes().ConvertType(getterMethod
->getReturnType())));
1255 EmitReturnOfRValue(RV
, propType
);
1257 // objc_getProperty does an autorelease, so we should suppress ours.
1258 AutoreleaseResult
= false;
1263 case PropertyImplStrategy::CopyStruct
:
1264 emitStructGetterCall(*this, ivar
, strategy
.isAtomic(),
1265 strategy
.hasStrongMember());
1268 case PropertyImplStrategy::Expression
:
1269 case PropertyImplStrategy::SetPropertyAndExpressionGet
: {
1270 LValue LV
= EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar
, 0);
1272 QualType ivarType
= ivar
->getType();
1273 switch (getEvaluationKind(ivarType
)) {
1275 ComplexPairTy pair
= EmitLoadOfComplex(LV
, SourceLocation());
1276 EmitStoreOfComplex(pair
, MakeAddrLValue(ReturnValue
, ivarType
),
1280 case TEK_Aggregate
: {
1281 // The return value slot is guaranteed to not be aliased, but
1282 // that's not necessarily the same as "on the stack", so
1283 // we still potentially need objc_memmove_collectable.
1284 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue
, ivarType
),
1285 /* Src= */ LV
, ivarType
, getOverlapForReturnValue());
1290 if (propType
->isReferenceType()) {
1291 value
= LV
.getAddress(*this).getPointer();
1293 // We want to load and autoreleaseReturnValue ARC __weak ivars.
1294 if (LV
.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak
) {
1295 if (getLangOpts().ObjCAutoRefCount
) {
1296 value
= emitARCRetainLoadOfScalar(*this, LV
, ivarType
);
1298 value
= EmitARCLoadWeak(LV
.getAddress(*this));
1301 // Otherwise we want to do a simple load, suppressing the
1302 // final autorelease.
1304 value
= EmitLoadOfLValue(LV
, SourceLocation()).getScalarVal();
1305 AutoreleaseResult
= false;
1308 value
= Builder
.CreateBitCast(
1309 value
, ConvertType(GetterMethodDecl
->getReturnType()));
1312 EmitReturnOfRValue(RValue::get(value
), propType
);
1316 llvm_unreachable("bad evaluation kind");
1320 llvm_unreachable("bad @property implementation strategy!");
1323 /// emitStructSetterCall - Call the runtime function to store the value
1324 /// from the first formal parameter into the given ivar.
1325 static void emitStructSetterCall(CodeGenFunction
&CGF
, ObjCMethodDecl
*OMD
,
1326 ObjCIvarDecl
*ivar
) {
1327 // objc_copyStruct (&structIvar, &Arg,
1328 // sizeof (struct something), true, false);
1331 // The first argument is the address of the ivar.
1332 llvm::Value
*ivarAddr
=
1333 CGF
.EmitLValueForIvar(CGF
.TypeOfSelfObject(), CGF
.LoadObjCSelf(), ivar
, 0)
1335 ivarAddr
= CGF
.Builder
.CreateBitCast(ivarAddr
, CGF
.Int8PtrTy
);
1336 args
.add(RValue::get(ivarAddr
), CGF
.getContext().VoidPtrTy
);
1338 // The second argument is the address of the parameter variable.
1339 ParmVarDecl
*argVar
= *OMD
->param_begin();
1340 DeclRefExpr
argRef(CGF
.getContext(), argVar
, false,
1341 argVar
->getType().getNonReferenceType(), VK_LValue
,
1343 llvm::Value
*argAddr
= CGF
.EmitLValue(&argRef
).getPointer(CGF
);
1344 argAddr
= CGF
.Builder
.CreateBitCast(argAddr
, CGF
.Int8PtrTy
);
1345 args
.add(RValue::get(argAddr
), CGF
.getContext().VoidPtrTy
);
1347 // The third argument is the sizeof the type.
1349 CGF
.CGM
.getSize(CGF
.getContext().getTypeSizeInChars(ivar
->getType()));
1350 args
.add(RValue::get(size
), CGF
.getContext().getSizeType());
1352 // The fourth argument is the 'isAtomic' flag.
1353 args
.add(RValue::get(CGF
.Builder
.getTrue()), CGF
.getContext().BoolTy
);
1355 // The fifth argument is the 'hasStrong' flag.
1356 // FIXME: should this really always be false?
1357 args
.add(RValue::get(CGF
.Builder
.getFalse()), CGF
.getContext().BoolTy
);
1359 llvm::FunctionCallee fn
= CGF
.CGM
.getObjCRuntime().GetSetStructFunction();
1360 CGCallee callee
= CGCallee::forDirect(fn
);
1362 CGF
.getTypes().arrangeBuiltinFunctionCall(CGF
.getContext().VoidTy
, args
),
1363 callee
, ReturnValueSlot(), args
);
1366 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1367 /// the value from the first formal parameter into the given ivar, using
1368 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1369 static void emitCPPObjectAtomicSetterCall(CodeGenFunction
&CGF
,
1370 ObjCMethodDecl
*OMD
,
1372 llvm::Constant
*AtomicHelperFn
) {
1373 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1377 // The first argument is the address of the ivar.
1378 llvm::Value
*ivarAddr
=
1379 CGF
.EmitLValueForIvar(CGF
.TypeOfSelfObject(), CGF
.LoadObjCSelf(), ivar
, 0)
1381 ivarAddr
= CGF
.Builder
.CreateBitCast(ivarAddr
, CGF
.Int8PtrTy
);
1382 args
.add(RValue::get(ivarAddr
), CGF
.getContext().VoidPtrTy
);
1384 // The second argument is the address of the parameter variable.
1385 ParmVarDecl
*argVar
= *OMD
->param_begin();
1386 DeclRefExpr
argRef(CGF
.getContext(), argVar
, false,
1387 argVar
->getType().getNonReferenceType(), VK_LValue
,
1389 llvm::Value
*argAddr
= CGF
.EmitLValue(&argRef
).getPointer(CGF
);
1390 argAddr
= CGF
.Builder
.CreateBitCast(argAddr
, CGF
.Int8PtrTy
);
1391 args
.add(RValue::get(argAddr
), CGF
.getContext().VoidPtrTy
);
1393 // Third argument is the helper function.
1394 args
.add(RValue::get(AtomicHelperFn
), CGF
.getContext().VoidPtrTy
);
1396 llvm::FunctionCallee fn
=
1397 CGF
.CGM
.getObjCRuntime().GetCppAtomicObjectSetFunction();
1398 CGCallee callee
= CGCallee::forDirect(fn
);
1400 CGF
.getTypes().arrangeBuiltinFunctionCall(CGF
.getContext().VoidTy
, args
),
1401 callee
, ReturnValueSlot(), args
);
1405 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl
*PID
) {
1406 Expr
*setter
= PID
->getSetterCXXAssignment();
1407 if (!setter
) return true;
1409 // Sema only makes only of these when the ivar has a C++ class type,
1410 // so the form is pretty constrained.
1412 // An operator call is trivial if the function it calls is trivial.
1413 // This also implies that there's nothing non-trivial going on with
1414 // the arguments, because operator= can only be trivial if it's a
1415 // synthesized assignment operator and therefore both parameters are
1417 if (CallExpr
*call
= dyn_cast
<CallExpr
>(setter
)) {
1418 if (const FunctionDecl
*callee
1419 = dyn_cast_or_null
<FunctionDecl
>(call
->getCalleeDecl()))
1420 if (callee
->isTrivial())
1425 assert(isa
<ExprWithCleanups
>(setter
));
1429 static bool UseOptimizedSetter(CodeGenModule
&CGM
) {
1430 if (CGM
.getLangOpts().getGC() != LangOptions::NonGC
)
1432 return CGM
.getLangOpts().ObjCRuntime
.hasOptimizedSetter();
1436 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl
*classImpl
,
1437 const ObjCPropertyImplDecl
*propImpl
,
1438 llvm::Constant
*AtomicHelperFn
) {
1439 ObjCIvarDecl
*ivar
= propImpl
->getPropertyIvarDecl();
1440 ObjCMethodDecl
*setterMethod
= propImpl
->getSetterMethodDecl();
1442 if (ivar
->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct
) {
1443 ParmVarDecl
*PVD
= *setterMethod
->param_begin();
1444 if (!AtomicHelperFn
) {
1445 // Call the move assignment operator instead of calling the copy
1446 // assignment operator and destructor.
1447 LValue Dst
= EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar
,
1449 LValue Src
= MakeAddrLValue(GetAddrOfLocalVar(PVD
), ivar
->getType());
1450 callCStructMoveAssignmentOperator(Dst
, Src
);
1452 // If atomic, assignment is called via a locking api.
1453 emitCPPObjectAtomicSetterCall(*this, setterMethod
, ivar
, AtomicHelperFn
);
1455 // Decativate the destructor for the setter parameter.
1456 DeactivateCleanupBlock(CalleeDestructedParamCleanups
[PVD
], AllocaInsertPt
);
1460 // Just use the setter expression if Sema gave us one and it's
1462 if (!hasTrivialSetExpr(propImpl
)) {
1463 if (!AtomicHelperFn
)
1464 // If non-atomic, assignment is called directly.
1465 EmitStmt(propImpl
->getSetterCXXAssignment());
1467 // If atomic, assignment is called via a locking api.
1468 emitCPPObjectAtomicSetterCall(*this, setterMethod
, ivar
,
1473 PropertyImplStrategy
strategy(CGM
, propImpl
);
1474 switch (strategy
.getKind()) {
1475 case PropertyImplStrategy::Native
: {
1476 // We don't need to do anything for a zero-size struct.
1477 if (strategy
.getIvarSize().isZero())
1480 Address argAddr
= GetAddrOfLocalVar(*setterMethod
->param_begin());
1483 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar
, /*quals*/ 0);
1484 Address ivarAddr
= ivarLValue
.getAddress(*this);
1486 // Currently, all atomic accesses have to be through integer
1487 // types, so there's no point in trying to pick a prettier type.
1488 llvm::Type
*castType
= llvm::Type::getIntNTy(
1489 getLLVMContext(), getContext().toBits(strategy
.getIvarSize()));
1491 // Cast both arguments to the chosen operation type.
1492 argAddr
= argAddr
.withElementType(castType
);
1493 ivarAddr
= ivarAddr
.withElementType(castType
);
1495 llvm::Value
*load
= Builder
.CreateLoad(argAddr
);
1497 // Perform an atomic store. There are no memory ordering requirements.
1498 llvm::StoreInst
*store
= Builder
.CreateStore(load
, ivarAddr
);
1499 store
->setAtomic(llvm::AtomicOrdering::Unordered
);
1503 case PropertyImplStrategy::GetSetProperty
:
1504 case PropertyImplStrategy::SetPropertyAndExpressionGet
: {
1506 llvm::FunctionCallee setOptimizedPropertyFn
= nullptr;
1507 llvm::FunctionCallee setPropertyFn
= nullptr;
1508 if (UseOptimizedSetter(CGM
)) {
1509 // 10.8 and iOS 6.0 code and GC is off
1510 setOptimizedPropertyFn
=
1511 CGM
.getObjCRuntime().GetOptimizedPropertySetFunction(
1512 strategy
.isAtomic(), strategy
.isCopy());
1513 if (!setOptimizedPropertyFn
) {
1514 CGM
.ErrorUnsupported(propImpl
, "Obj-C optimized setter - NYI");
1519 setPropertyFn
= CGM
.getObjCRuntime().GetPropertySetFunction();
1520 if (!setPropertyFn
) {
1521 CGM
.ErrorUnsupported(propImpl
, "Obj-C setter requiring atomic copy");
1526 // Emit objc_setProperty((id) self, _cmd, offset, arg,
1527 // <is-atomic>, <is-copy>).
1528 llvm::Value
*cmd
= emitCmdValueForGetterSetterBody(*this, setterMethod
);
1530 Builder
.CreateBitCast(LoadObjCSelf(), VoidPtrTy
);
1531 llvm::Value
*ivarOffset
=
1532 EmitIvarOffsetAsPointerDiff(classImpl
->getClassInterface(), ivar
);
1533 Address argAddr
= GetAddrOfLocalVar(*setterMethod
->param_begin());
1534 llvm::Value
*arg
= Builder
.CreateLoad(argAddr
, "arg");
1535 arg
= Builder
.CreateBitCast(arg
, VoidPtrTy
);
1538 args
.add(RValue::get(self
), getContext().getObjCIdType());
1539 args
.add(RValue::get(cmd
), getContext().getObjCSelType());
1540 if (setOptimizedPropertyFn
) {
1541 args
.add(RValue::get(arg
), getContext().getObjCIdType());
1542 args
.add(RValue::get(ivarOffset
), getContext().getPointerDiffType());
1543 CGCallee callee
= CGCallee::forDirect(setOptimizedPropertyFn
);
1544 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy
, args
),
1545 callee
, ReturnValueSlot(), args
);
1547 args
.add(RValue::get(ivarOffset
), getContext().getPointerDiffType());
1548 args
.add(RValue::get(arg
), getContext().getObjCIdType());
1549 args
.add(RValue::get(Builder
.getInt1(strategy
.isAtomic())),
1550 getContext().BoolTy
);
1551 args
.add(RValue::get(Builder
.getInt1(strategy
.isCopy())),
1552 getContext().BoolTy
);
1553 // FIXME: We shouldn't need to get the function info here, the runtime
1554 // already should have computed it to build the function.
1555 CGCallee callee
= CGCallee::forDirect(setPropertyFn
);
1556 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy
, args
),
1557 callee
, ReturnValueSlot(), args
);
1563 case PropertyImplStrategy::CopyStruct
:
1564 emitStructSetterCall(*this, setterMethod
, ivar
);
1567 case PropertyImplStrategy::Expression
:
1571 // Otherwise, fake up some ASTs and emit a normal assignment.
1572 ValueDecl
*selfDecl
= setterMethod
->getSelfDecl();
1573 DeclRefExpr
self(getContext(), selfDecl
, false, selfDecl
->getType(),
1574 VK_LValue
, SourceLocation());
1575 ImplicitCastExpr
selfLoad(ImplicitCastExpr::OnStack
, selfDecl
->getType(),
1576 CK_LValueToRValue
, &self
, VK_PRValue
,
1577 FPOptionsOverride());
1578 ObjCIvarRefExpr
ivarRef(ivar
, ivar
->getType().getNonReferenceType(),
1579 SourceLocation(), SourceLocation(),
1580 &selfLoad
, true, true);
1582 ParmVarDecl
*argDecl
= *setterMethod
->param_begin();
1583 QualType argType
= argDecl
->getType().getNonReferenceType();
1584 DeclRefExpr
arg(getContext(), argDecl
, false, argType
, VK_LValue
,
1586 ImplicitCastExpr
argLoad(ImplicitCastExpr::OnStack
,
1587 argType
.getUnqualifiedType(), CK_LValueToRValue
,
1588 &arg
, VK_PRValue
, FPOptionsOverride());
1590 // The property type can differ from the ivar type in some situations with
1591 // Objective-C pointer types, we can always bit cast the RHS in these cases.
1592 // The following absurdity is just to ensure well-formed IR.
1593 CastKind argCK
= CK_NoOp
;
1594 if (ivarRef
.getType()->isObjCObjectPointerType()) {
1595 if (argLoad
.getType()->isObjCObjectPointerType())
1597 else if (argLoad
.getType()->isBlockPointerType())
1598 argCK
= CK_BlockPointerToObjCPointerCast
;
1600 argCK
= CK_CPointerToObjCPointerCast
;
1601 } else if (ivarRef
.getType()->isBlockPointerType()) {
1602 if (argLoad
.getType()->isBlockPointerType())
1605 argCK
= CK_AnyPointerToBlockPointerCast
;
1606 } else if (ivarRef
.getType()->isPointerType()) {
1608 } else if (argLoad
.getType()->isAtomicType() &&
1609 !ivarRef
.getType()->isAtomicType()) {
1610 argCK
= CK_AtomicToNonAtomic
;
1611 } else if (!argLoad
.getType()->isAtomicType() &&
1612 ivarRef
.getType()->isAtomicType()) {
1613 argCK
= CK_NonAtomicToAtomic
;
1615 ImplicitCastExpr
argCast(ImplicitCastExpr::OnStack
, ivarRef
.getType(), argCK
,
1616 &argLoad
, VK_PRValue
, FPOptionsOverride());
1617 Expr
*finalArg
= &argLoad
;
1618 if (!getContext().hasSameUnqualifiedType(ivarRef
.getType(),
1620 finalArg
= &argCast
;
1622 BinaryOperator
*assign
= BinaryOperator::Create(
1623 getContext(), &ivarRef
, finalArg
, BO_Assign
, ivarRef
.getType(),
1624 VK_PRValue
, OK_Ordinary
, SourceLocation(), FPOptionsOverride());
1628 /// Generate an Objective-C property setter function.
1630 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1631 /// is illegal within a category.
1632 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl
*IMP
,
1633 const ObjCPropertyImplDecl
*PID
) {
1634 llvm::Constant
*AtomicHelperFn
=
1635 CodeGenFunction(CGM
).GenerateObjCAtomicSetterCopyHelperFunction(PID
);
1636 ObjCMethodDecl
*OMD
= PID
->getSetterMethodDecl();
1637 assert(OMD
&& "Invalid call to generate setter (empty method)");
1638 StartObjCMethod(OMD
, IMP
->getClassInterface());
1640 generateObjCSetterBody(IMP
, PID
, AtomicHelperFn
);
1642 FinishFunction(OMD
->getEndLoc());
1646 struct DestroyIvar final
: EHScopeStack::Cleanup
{
1649 const ObjCIvarDecl
*ivar
;
1650 CodeGenFunction::Destroyer
*destroyer
;
1651 bool useEHCleanupForArray
;
1653 DestroyIvar(llvm::Value
*addr
, const ObjCIvarDecl
*ivar
,
1654 CodeGenFunction::Destroyer
*destroyer
,
1655 bool useEHCleanupForArray
)
1656 : addr(addr
), ivar(ivar
), destroyer(destroyer
),
1657 useEHCleanupForArray(useEHCleanupForArray
) {}
1659 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
1661 = CGF
.EmitLValueForIvar(CGF
.TypeOfSelfObject(), addr
, ivar
, /*CVR*/ 0);
1662 CGF
.emitDestroy(lvalue
.getAddress(CGF
), ivar
->getType(), destroyer
,
1663 flags
.isForNormalCleanup() && useEHCleanupForArray
);
1668 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1669 static void destroyARCStrongWithStore(CodeGenFunction
&CGF
,
1672 llvm::Value
*null
= getNullForVariable(addr
);
1673 CGF
.EmitARCStoreStrongCall(addr
, null
, /*ignored*/ true);
1676 static void emitCXXDestructMethod(CodeGenFunction
&CGF
,
1677 ObjCImplementationDecl
*impl
) {
1678 CodeGenFunction::RunCleanupsScope
scope(CGF
);
1680 llvm::Value
*self
= CGF
.LoadObjCSelf();
1682 const ObjCInterfaceDecl
*iface
= impl
->getClassInterface();
1683 for (const ObjCIvarDecl
*ivar
= iface
->all_declared_ivar_begin();
1684 ivar
; ivar
= ivar
->getNextIvar()) {
1685 QualType type
= ivar
->getType();
1687 // Check whether the ivar is a destructible type.
1688 QualType::DestructionKind dtorKind
= type
.isDestructedType();
1689 if (!dtorKind
) continue;
1691 CodeGenFunction::Destroyer
*destroyer
= nullptr;
1693 // Use a call to objc_storeStrong to destroy strong ivars, for the
1694 // general benefit of the tools.
1695 if (dtorKind
== QualType::DK_objc_strong_lifetime
) {
1696 destroyer
= destroyARCStrongWithStore
;
1698 // Otherwise use the default for the destruction kind.
1700 destroyer
= CGF
.getDestroyer(dtorKind
);
1703 CleanupKind cleanupKind
= CGF
.getCleanupKind(dtorKind
);
1705 CGF
.EHStack
.pushCleanup
<DestroyIvar
>(cleanupKind
, self
, ivar
, destroyer
,
1706 cleanupKind
& EHCleanup
);
1709 assert(scope
.requiresCleanups() && "nothing to do in .cxx_destruct?");
1712 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl
*IMP
,
1715 MD
->createImplicitParams(CGM
.getContext(), IMP
->getClassInterface());
1716 StartObjCMethod(MD
, IMP
->getClassInterface());
1718 // Emit .cxx_construct.
1720 // Suppress the final autorelease in ARC.
1721 AutoreleaseResult
= false;
1723 for (const auto *IvarInit
: IMP
->inits()) {
1724 FieldDecl
*Field
= IvarInit
->getAnyMember();
1725 ObjCIvarDecl
*Ivar
= cast
<ObjCIvarDecl
>(Field
);
1726 LValue LV
= EmitLValueForIvar(TypeOfSelfObject(),
1727 LoadObjCSelf(), Ivar
, 0);
1728 EmitAggExpr(IvarInit
->getInit(),
1729 AggValueSlot::forLValue(LV
, *this, AggValueSlot::IsDestructed
,
1730 AggValueSlot::DoesNotNeedGCBarriers
,
1731 AggValueSlot::IsNotAliased
,
1732 AggValueSlot::DoesNotOverlap
));
1734 // constructor returns 'self'.
1735 CodeGenTypes
&Types
= CGM
.getTypes();
1736 QualType
IdTy(CGM
.getContext().getObjCIdType());
1737 llvm::Value
*SelfAsId
=
1738 Builder
.CreateBitCast(LoadObjCSelf(), Types
.ConvertType(IdTy
));
1739 EmitReturnOfRValue(RValue::get(SelfAsId
), IdTy
);
1741 // Emit .cxx_destruct.
1743 emitCXXDestructMethod(*this, IMP
);
1748 llvm::Value
*CodeGenFunction::LoadObjCSelf() {
1749 VarDecl
*Self
= cast
<ObjCMethodDecl
>(CurFuncDecl
)->getSelfDecl();
1750 DeclRefExpr
DRE(getContext(), Self
,
1751 /*is enclosing local*/ (CurFuncDecl
!= CurCodeDecl
),
1752 Self
->getType(), VK_LValue
, SourceLocation());
1753 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE
), SourceLocation());
1756 QualType
CodeGenFunction::TypeOfSelfObject() {
1757 const ObjCMethodDecl
*OMD
= cast
<ObjCMethodDecl
>(CurFuncDecl
);
1758 ImplicitParamDecl
*selfDecl
= OMD
->getSelfDecl();
1759 const ObjCObjectPointerType
*PTy
= cast
<ObjCObjectPointerType
>(
1760 getContext().getCanonicalType(selfDecl
->getType()));
1761 return PTy
->getPointeeType();
1764 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt
&S
){
1765 llvm::FunctionCallee EnumerationMutationFnPtr
=
1766 CGM
.getObjCRuntime().EnumerationMutationFunction();
1767 if (!EnumerationMutationFnPtr
) {
1768 CGM
.ErrorUnsupported(&S
, "Obj-C fast enumeration for this runtime");
1771 CGCallee EnumerationMutationFn
=
1772 CGCallee::forDirect(EnumerationMutationFnPtr
);
1774 CGDebugInfo
*DI
= getDebugInfo();
1776 DI
->EmitLexicalBlockStart(Builder
, S
.getSourceRange().getBegin());
1778 RunCleanupsScope
ForScope(*this);
1780 // The local variable comes into scope immediately.
1781 AutoVarEmission variable
= AutoVarEmission::invalid();
1782 if (const DeclStmt
*SD
= dyn_cast
<DeclStmt
>(S
.getElement()))
1783 variable
= EmitAutoVarAlloca(*cast
<VarDecl
>(SD
->getSingleDecl()));
1785 JumpDest LoopEnd
= getJumpDestInCurrentScope("forcoll.end");
1787 // Fast enumeration state.
1788 QualType StateTy
= CGM
.getObjCFastEnumerationStateType();
1789 Address StatePtr
= CreateMemTemp(StateTy
, "state.ptr");
1790 EmitNullInitialization(StatePtr
, StateTy
);
1792 // Number of elements in the items array.
1793 static const unsigned NumItems
= 16;
1795 // Fetch the countByEnumeratingWithState:objects:count: selector.
1796 IdentifierInfo
*II
[] = {
1797 &CGM
.getContext().Idents
.get("countByEnumeratingWithState"),
1798 &CGM
.getContext().Idents
.get("objects"),
1799 &CGM
.getContext().Idents
.get("count")
1801 Selector FastEnumSel
=
1802 CGM
.getContext().Selectors
.getSelector(std::size(II
), &II
[0]);
1804 QualType ItemsTy
= getContext().getConstantArrayType(
1805 getContext().getObjCIdType(), llvm::APInt(32, NumItems
), nullptr,
1806 ArraySizeModifier::Normal
, 0);
1807 Address ItemsPtr
= CreateMemTemp(ItemsTy
, "items.ptr");
1809 // Emit the collection pointer. In ARC, we do a retain.
1810 llvm::Value
*Collection
;
1811 if (getLangOpts().ObjCAutoRefCount
) {
1812 Collection
= EmitARCRetainScalarExpr(S
.getCollection());
1814 // Enter a cleanup to do the release.
1815 EmitObjCConsumeObject(S
.getCollection()->getType(), Collection
);
1817 Collection
= EmitScalarExpr(S
.getCollection());
1820 // The 'continue' label needs to appear within the cleanup for the
1821 // collection object.
1822 JumpDest AfterBody
= getJumpDestInCurrentScope("forcoll.next");
1824 // Send it our message:
1827 // The first argument is a temporary of the enumeration-state type.
1828 Args
.add(RValue::get(StatePtr
.getPointer()),
1829 getContext().getPointerType(StateTy
));
1831 // The second argument is a temporary array with space for NumItems
1832 // pointers. We'll actually be loading elements from the array
1833 // pointer written into the control state; this buffer is so that
1834 // collections that *aren't* backed by arrays can still queue up
1835 // batches of elements.
1836 Args
.add(RValue::get(ItemsPtr
.getPointer()),
1837 getContext().getPointerType(ItemsTy
));
1839 // The third argument is the capacity of that temporary array.
1840 llvm::Type
*NSUIntegerTy
= ConvertType(getContext().getNSUIntegerType());
1841 llvm::Constant
*Count
= llvm::ConstantInt::get(NSUIntegerTy
, NumItems
);
1842 Args
.add(RValue::get(Count
), getContext().getNSUIntegerType());
1844 // Start the enumeration.
1846 CGM
.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1847 getContext().getNSUIntegerType(),
1848 FastEnumSel
, Collection
, Args
);
1850 // The initial number of objects that were returned in the buffer.
1851 llvm::Value
*initialBufferLimit
= CountRV
.getScalarVal();
1853 llvm::BasicBlock
*EmptyBB
= createBasicBlock("forcoll.empty");
1854 llvm::BasicBlock
*LoopInitBB
= createBasicBlock("forcoll.loopinit");
1856 llvm::Value
*zero
= llvm::Constant::getNullValue(NSUIntegerTy
);
1858 // If the limit pointer was zero to begin with, the collection is
1859 // empty; skip all this. Set the branch weight assuming this has the same
1860 // probability of exiting the loop as any other loop exit.
1861 uint64_t EntryCount
= getCurrentProfileCount();
1862 Builder
.CreateCondBr(
1863 Builder
.CreateICmpEQ(initialBufferLimit
, zero
, "iszero"), EmptyBB
,
1865 createProfileWeights(EntryCount
, getProfileCount(S
.getBody())));
1867 // Otherwise, initialize the loop.
1868 EmitBlock(LoopInitBB
);
1870 // Save the initial mutations value. This is the value at an
1871 // address that was written into the state object by
1872 // countByEnumeratingWithState:objects:count:.
1873 Address StateMutationsPtrPtr
=
1874 Builder
.CreateStructGEP(StatePtr
, 2, "mutationsptr.ptr");
1875 llvm::Value
*StateMutationsPtr
1876 = Builder
.CreateLoad(StateMutationsPtrPtr
, "mutationsptr");
1878 llvm::Type
*UnsignedLongTy
= ConvertType(getContext().UnsignedLongTy
);
1879 llvm::Value
*initialMutations
=
1880 Builder
.CreateAlignedLoad(UnsignedLongTy
, StateMutationsPtr
,
1881 getPointerAlign(), "forcoll.initial-mutations");
1883 // Start looping. This is the point we return to whenever we have a
1884 // fresh, non-empty batch of objects.
1885 llvm::BasicBlock
*LoopBodyBB
= createBasicBlock("forcoll.loopbody");
1886 EmitBlock(LoopBodyBB
);
1888 // The current index into the buffer.
1889 llvm::PHINode
*index
= Builder
.CreatePHI(NSUIntegerTy
, 3, "forcoll.index");
1890 index
->addIncoming(zero
, LoopInitBB
);
1892 // The current buffer size.
1893 llvm::PHINode
*count
= Builder
.CreatePHI(NSUIntegerTy
, 3, "forcoll.count");
1894 count
->addIncoming(initialBufferLimit
, LoopInitBB
);
1896 incrementProfileCounter(&S
);
1898 // Check whether the mutations value has changed from where it was
1899 // at start. StateMutationsPtr should actually be invariant between
1901 StateMutationsPtr
= Builder
.CreateLoad(StateMutationsPtrPtr
, "mutationsptr");
1902 llvm::Value
*currentMutations
1903 = Builder
.CreateAlignedLoad(UnsignedLongTy
, StateMutationsPtr
,
1904 getPointerAlign(), "statemutations");
1906 llvm::BasicBlock
*WasMutatedBB
= createBasicBlock("forcoll.mutated");
1907 llvm::BasicBlock
*WasNotMutatedBB
= createBasicBlock("forcoll.notmutated");
1909 Builder
.CreateCondBr(Builder
.CreateICmpEQ(currentMutations
, initialMutations
),
1910 WasNotMutatedBB
, WasMutatedBB
);
1912 // If so, call the enumeration-mutation function.
1913 EmitBlock(WasMutatedBB
);
1914 llvm::Type
*ObjCIdType
= ConvertType(getContext().getObjCIdType());
1916 Builder
.CreateBitCast(Collection
, ObjCIdType
);
1918 Args2
.add(RValue::get(V
), getContext().getObjCIdType());
1919 // FIXME: We shouldn't need to get the function info here, the runtime already
1920 // should have computed it to build the function.
1922 CGM
.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy
, Args2
),
1923 EnumerationMutationFn
, ReturnValueSlot(), Args2
);
1925 // Otherwise, or if the mutation function returns, just continue.
1926 EmitBlock(WasNotMutatedBB
);
1928 // Initialize the element variable.
1929 RunCleanupsScope
elementVariableScope(*this);
1930 bool elementIsVariable
;
1931 LValue elementLValue
;
1932 QualType elementType
;
1933 if (const DeclStmt
*SD
= dyn_cast
<DeclStmt
>(S
.getElement())) {
1934 // Initialize the variable, in case it's a __block variable or something.
1935 EmitAutoVarInit(variable
);
1937 const VarDecl
*D
= cast
<VarDecl
>(SD
->getSingleDecl());
1938 DeclRefExpr
tempDRE(getContext(), const_cast<VarDecl
*>(D
), false,
1939 D
->getType(), VK_LValue
, SourceLocation());
1940 elementLValue
= EmitLValue(&tempDRE
);
1941 elementType
= D
->getType();
1942 elementIsVariable
= true;
1944 if (D
->isARCPseudoStrong())
1945 elementLValue
.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone
);
1947 elementLValue
= LValue(); // suppress warning
1948 elementType
= cast
<Expr
>(S
.getElement())->getType();
1949 elementIsVariable
= false;
1951 llvm::Type
*convertedElementType
= ConvertType(elementType
);
1953 // Fetch the buffer out of the enumeration state.
1954 // TODO: this pointer should actually be invariant between
1955 // refreshes, which would help us do certain loop optimizations.
1956 Address StateItemsPtr
=
1957 Builder
.CreateStructGEP(StatePtr
, 1, "stateitems.ptr");
1958 llvm::Value
*EnumStateItems
=
1959 Builder
.CreateLoad(StateItemsPtr
, "stateitems");
1961 // Fetch the value at the current index from the buffer.
1962 llvm::Value
*CurrentItemPtr
= Builder
.CreateGEP(
1963 ObjCIdType
, EnumStateItems
, index
, "currentitem.ptr");
1964 llvm::Value
*CurrentItem
=
1965 Builder
.CreateAlignedLoad(ObjCIdType
, CurrentItemPtr
, getPointerAlign());
1967 if (SanOpts
.has(SanitizerKind::ObjCCast
)) {
1968 // Before using an item from the collection, check that the implicit cast
1969 // from id to the element type is valid. This is done with instrumentation
1970 // roughly corresponding to:
1972 // if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
1973 const ObjCObjectPointerType
*ObjPtrTy
=
1974 elementType
->getAsObjCInterfacePointerType();
1975 const ObjCInterfaceType
*InterfaceTy
=
1976 ObjPtrTy
? ObjPtrTy
->getInterfaceType() : nullptr;
1978 SanitizerScope
SanScope(this);
1979 auto &C
= CGM
.getContext();
1980 assert(InterfaceTy
->getDecl() && "No decl for ObjC interface type");
1981 Selector IsKindOfClassSel
= GetUnarySelector("isKindOfClass", C
);
1982 CallArgList IsKindOfClassArgs
;
1984 CGM
.getObjCRuntime().GetClass(*this, InterfaceTy
->getDecl());
1985 IsKindOfClassArgs
.add(RValue::get(Cls
), C
.getObjCClassType());
1986 llvm::Value
*IsClass
=
1987 CGM
.getObjCRuntime()
1988 .GenerateMessageSend(*this, ReturnValueSlot(), C
.BoolTy
,
1989 IsKindOfClassSel
, CurrentItem
,
1992 llvm::Constant
*StaticData
[] = {
1993 EmitCheckSourceLocation(S
.getBeginLoc()),
1994 EmitCheckTypeDescriptor(QualType(InterfaceTy
, 0))};
1995 EmitCheck({{IsClass
, SanitizerKind::ObjCCast
}},
1996 SanitizerHandler::InvalidObjCCast
,
1997 ArrayRef
<llvm::Constant
*>(StaticData
), CurrentItem
);
2001 // Cast that value to the right type.
2002 CurrentItem
= Builder
.CreateBitCast(CurrentItem
, convertedElementType
,
2005 // Make sure we have an l-value. Yes, this gets evaluated every
2006 // time through the loop.
2007 if (!elementIsVariable
) {
2008 elementLValue
= EmitLValue(cast
<Expr
>(S
.getElement()));
2009 EmitStoreThroughLValue(RValue::get(CurrentItem
), elementLValue
);
2011 EmitStoreThroughLValue(RValue::get(CurrentItem
), elementLValue
,
2015 // If we do have an element variable, this assignment is the end of
2016 // its initialization.
2017 if (elementIsVariable
)
2018 EmitAutoVarCleanups(variable
);
2020 // Perform the loop body, setting up break and continue labels.
2021 BreakContinueStack
.push_back(BreakContinue(LoopEnd
, AfterBody
));
2023 RunCleanupsScope
Scope(*this);
2024 EmitStmt(S
.getBody());
2026 BreakContinueStack
.pop_back();
2028 // Destroy the element variable now.
2029 elementVariableScope
.ForceCleanup();
2031 // Check whether there are more elements.
2032 EmitBlock(AfterBody
.getBlock());
2034 llvm::BasicBlock
*FetchMoreBB
= createBasicBlock("forcoll.refetch");
2036 // First we check in the local buffer.
2037 llvm::Value
*indexPlusOne
=
2038 Builder
.CreateAdd(index
, llvm::ConstantInt::get(NSUIntegerTy
, 1));
2040 // If we haven't overrun the buffer yet, we can continue.
2041 // Set the branch weights based on the simplifying assumption that this is
2042 // like a while-loop, i.e., ignoring that the false branch fetches more
2043 // elements and then returns to the loop.
2044 Builder
.CreateCondBr(
2045 Builder
.CreateICmpULT(indexPlusOne
, count
), LoopBodyBB
, FetchMoreBB
,
2046 createProfileWeights(getProfileCount(S
.getBody()), EntryCount
));
2048 index
->addIncoming(indexPlusOne
, AfterBody
.getBlock());
2049 count
->addIncoming(count
, AfterBody
.getBlock());
2051 // Otherwise, we have to fetch more elements.
2052 EmitBlock(FetchMoreBB
);
2055 CGM
.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2056 getContext().getNSUIntegerType(),
2057 FastEnumSel
, Collection
, Args
);
2059 // If we got a zero count, we're done.
2060 llvm::Value
*refetchCount
= CountRV
.getScalarVal();
2062 // (note that the message send might split FetchMoreBB)
2063 index
->addIncoming(zero
, Builder
.GetInsertBlock());
2064 count
->addIncoming(refetchCount
, Builder
.GetInsertBlock());
2066 Builder
.CreateCondBr(Builder
.CreateICmpEQ(refetchCount
, zero
),
2067 EmptyBB
, LoopBodyBB
);
2069 // No more elements.
2072 if (!elementIsVariable
) {
2073 // If the element was not a declaration, set it to be null.
2075 llvm::Value
*null
= llvm::Constant::getNullValue(convertedElementType
);
2076 elementLValue
= EmitLValue(cast
<Expr
>(S
.getElement()));
2077 EmitStoreThroughLValue(RValue::get(null
), elementLValue
);
2081 DI
->EmitLexicalBlockEnd(Builder
, S
.getSourceRange().getEnd());
2083 ForScope
.ForceCleanup();
2084 EmitBlock(LoopEnd
.getBlock());
2087 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt
&S
) {
2088 CGM
.getObjCRuntime().EmitTryStmt(*this, S
);
2091 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt
&S
) {
2092 CGM
.getObjCRuntime().EmitThrowStmt(*this, S
);
2095 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
2096 const ObjCAtSynchronizedStmt
&S
) {
2097 CGM
.getObjCRuntime().EmitSynchronizedStmt(*this, S
);
2101 struct CallObjCRelease final
: EHScopeStack::Cleanup
{
2102 CallObjCRelease(llvm::Value
*object
) : object(object
) {}
2103 llvm::Value
*object
;
2105 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2106 // Releases at the end of the full-expression are imprecise.
2107 CGF
.EmitARCRelease(object
, ARCImpreciseLifetime
);
2112 /// Produce the code for a CK_ARCConsumeObject. Does a primitive
2113 /// release at the end of the full-expression.
2114 llvm::Value
*CodeGenFunction::EmitObjCConsumeObject(QualType type
,
2115 llvm::Value
*object
) {
2116 // If we're in a conditional branch, we need to make the cleanup
2118 pushFullExprCleanup
<CallObjCRelease
>(getARCCleanupKind(), object
);
2122 llvm::Value
*CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type
,
2123 llvm::Value
*value
) {
2124 return EmitARCRetainAutorelease(type
, value
);
2127 /// Given a number of pointers, inform the optimizer that they're
2128 /// being intrinsically used up until this point in the program.
2129 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef
<llvm::Value
*> values
) {
2130 llvm::Function
*&fn
= CGM
.getObjCEntrypoints().clang_arc_use
;
2132 fn
= CGM
.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use
);
2134 // This isn't really a "runtime" function, but as an intrinsic it
2135 // doesn't really matter as long as we align things up.
2136 EmitNounwindRuntimeCall(fn
, values
);
2139 /// Emit a call to "clang.arc.noop.use", which consumes the result of a call
2140 /// that has operand bundle "clang.arc.attachedcall".
2141 void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef
<llvm::Value
*> values
) {
2142 llvm::Function
*&fn
= CGM
.getObjCEntrypoints().clang_arc_noop_use
;
2144 fn
= CGM
.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use
);
2145 EmitNounwindRuntimeCall(fn
, values
);
2148 static void setARCRuntimeFunctionLinkage(CodeGenModule
&CGM
, llvm::Value
*RTF
) {
2149 if (auto *F
= dyn_cast
<llvm::Function
>(RTF
)) {
2150 // If the target runtime doesn't naturally support ARC, emit weak
2151 // references to the runtime support library. We don't really
2152 // permit this to fail, but we need a particular relocation style.
2153 if (!CGM
.getLangOpts().ObjCRuntime
.hasNativeARC() &&
2154 !CGM
.getTriple().isOSBinFormatCOFF()) {
2155 F
->setLinkage(llvm::Function::ExternalWeakLinkage
);
2160 static void setARCRuntimeFunctionLinkage(CodeGenModule
&CGM
,
2161 llvm::FunctionCallee RTF
) {
2162 setARCRuntimeFunctionLinkage(CGM
, RTF
.getCallee());
2165 static llvm::Function
*getARCIntrinsic(llvm::Intrinsic::ID IntID
,
2166 CodeGenModule
&CGM
) {
2167 llvm::Function
*fn
= CGM
.getIntrinsic(IntID
);
2168 setARCRuntimeFunctionLinkage(CGM
, fn
);
2172 /// Perform an operation having the signature
2174 /// where a null input causes a no-op and returns null.
2175 static llvm::Value
*emitARCValueOperation(
2176 CodeGenFunction
&CGF
, llvm::Value
*value
, llvm::Type
*returnType
,
2177 llvm::Function
*&fn
, llvm::Intrinsic::ID IntID
,
2178 llvm::CallInst::TailCallKind tailKind
= llvm::CallInst::TCK_None
) {
2179 if (isa
<llvm::ConstantPointerNull
>(value
))
2183 fn
= getARCIntrinsic(IntID
, CGF
.CGM
);
2185 // Cast the argument to 'id'.
2186 llvm::Type
*origType
= returnType
? returnType
: value
->getType();
2187 value
= CGF
.Builder
.CreateBitCast(value
, CGF
.Int8PtrTy
);
2189 // Call the function.
2190 llvm::CallInst
*call
= CGF
.EmitNounwindRuntimeCall(fn
, value
);
2191 call
->setTailCallKind(tailKind
);
2193 // Cast the result back to the original type.
2194 return CGF
.Builder
.CreateBitCast(call
, origType
);
2197 /// Perform an operation having the following signature:
2199 static llvm::Value
*emitARCLoadOperation(CodeGenFunction
&CGF
, Address addr
,
2200 llvm::Function
*&fn
,
2201 llvm::Intrinsic::ID IntID
) {
2203 fn
= getARCIntrinsic(IntID
, CGF
.CGM
);
2205 return CGF
.EmitNounwindRuntimeCall(fn
, addr
.getPointer());
2208 /// Perform an operation having the following signature:
2210 static llvm::Value
*emitARCStoreOperation(CodeGenFunction
&CGF
, Address addr
,
2212 llvm::Function
*&fn
,
2213 llvm::Intrinsic::ID IntID
,
2215 assert(addr
.getElementType() == value
->getType());
2218 fn
= getARCIntrinsic(IntID
, CGF
.CGM
);
2220 llvm::Type
*origType
= value
->getType();
2222 llvm::Value
*args
[] = {
2223 CGF
.Builder
.CreateBitCast(addr
.getPointer(), CGF
.Int8PtrPtrTy
),
2224 CGF
.Builder
.CreateBitCast(value
, CGF
.Int8PtrTy
)
2226 llvm::CallInst
*result
= CGF
.EmitNounwindRuntimeCall(fn
, args
);
2228 if (ignored
) return nullptr;
2230 return CGF
.Builder
.CreateBitCast(result
, origType
);
2233 /// Perform an operation having the following signature:
2234 /// void (i8**, i8**)
2235 static void emitARCCopyOperation(CodeGenFunction
&CGF
, Address dst
, Address src
,
2236 llvm::Function
*&fn
,
2237 llvm::Intrinsic::ID IntID
) {
2238 assert(dst
.getType() == src
.getType());
2241 fn
= getARCIntrinsic(IntID
, CGF
.CGM
);
2243 llvm::Value
*args
[] = {
2244 CGF
.Builder
.CreateBitCast(dst
.getPointer(), CGF
.Int8PtrPtrTy
),
2245 CGF
.Builder
.CreateBitCast(src
.getPointer(), CGF
.Int8PtrPtrTy
)
2247 CGF
.EmitNounwindRuntimeCall(fn
, args
);
2250 /// Perform an operation having the signature
2252 /// where a null input causes a no-op and returns null.
2253 static llvm::Value
*emitObjCValueOperation(CodeGenFunction
&CGF
,
2255 llvm::Type
*returnType
,
2256 llvm::FunctionCallee
&fn
,
2258 if (isa
<llvm::ConstantPointerNull
>(value
))
2262 llvm::FunctionType
*fnType
=
2263 llvm::FunctionType::get(CGF
.Int8PtrTy
, CGF
.Int8PtrTy
, false);
2264 fn
= CGF
.CGM
.CreateRuntimeFunction(fnType
, fnName
);
2266 // We have Native ARC, so set nonlazybind attribute for performance
2267 if (llvm::Function
*f
= dyn_cast
<llvm::Function
>(fn
.getCallee()))
2268 if (fnName
== "objc_retain")
2269 f
->addFnAttr(llvm::Attribute::NonLazyBind
);
2272 // Cast the argument to 'id'.
2273 llvm::Type
*origType
= returnType
? returnType
: value
->getType();
2274 value
= CGF
.Builder
.CreateBitCast(value
, CGF
.Int8PtrTy
);
2276 // Call the function.
2277 llvm::CallBase
*Inst
= CGF
.EmitCallOrInvoke(fn
, value
);
2279 // Mark calls to objc_autorelease as tail on the assumption that methods
2280 // overriding autorelease do not touch anything on the stack.
2281 if (fnName
== "objc_autorelease")
2282 if (auto *Call
= dyn_cast
<llvm::CallInst
>(Inst
))
2283 Call
->setTailCall();
2285 // Cast the result back to the original type.
2286 return CGF
.Builder
.CreateBitCast(Inst
, origType
);
2289 /// Produce the code to do a retain. Based on the type, calls one of:
2290 /// call i8* \@objc_retain(i8* %value)
2291 /// call i8* \@objc_retainBlock(i8* %value)
2292 llvm::Value
*CodeGenFunction::EmitARCRetain(QualType type
, llvm::Value
*value
) {
2293 if (type
->isBlockPointerType())
2294 return EmitARCRetainBlock(value
, /*mandatory*/ false);
2296 return EmitARCRetainNonBlock(value
);
2299 /// Retain the given object, with normal retain semantics.
2300 /// call i8* \@objc_retain(i8* %value)
2301 llvm::Value
*CodeGenFunction::EmitARCRetainNonBlock(llvm::Value
*value
) {
2302 return emitARCValueOperation(*this, value
, nullptr,
2303 CGM
.getObjCEntrypoints().objc_retain
,
2304 llvm::Intrinsic::objc_retain
);
2307 /// Retain the given block, with _Block_copy semantics.
2308 /// call i8* \@objc_retainBlock(i8* %value)
2310 /// \param mandatory - If false, emit the call with metadata
2311 /// indicating that it's okay for the optimizer to eliminate this call
2312 /// if it can prove that the block never escapes except down the stack.
2313 llvm::Value
*CodeGenFunction::EmitARCRetainBlock(llvm::Value
*value
,
2316 = emitARCValueOperation(*this, value
, nullptr,
2317 CGM
.getObjCEntrypoints().objc_retainBlock
,
2318 llvm::Intrinsic::objc_retainBlock
);
2320 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2321 // tell the optimizer that it doesn't need to do this copy if the
2322 // block doesn't escape, where being passed as an argument doesn't
2323 // count as escaping.
2324 if (!mandatory
&& isa
<llvm::Instruction
>(result
)) {
2325 llvm::CallInst
*call
2326 = cast
<llvm::CallInst
>(result
->stripPointerCasts());
2327 assert(call
->getCalledOperand() ==
2328 CGM
.getObjCEntrypoints().objc_retainBlock
);
2330 call
->setMetadata("clang.arc.copy_on_escape",
2331 llvm::MDNode::get(Builder
.getContext(), std::nullopt
));
2337 static void emitAutoreleasedReturnValueMarker(CodeGenFunction
&CGF
) {
2338 // Fetch the void(void) inline asm which marks that we're going to
2339 // do something with the autoreleased return value.
2340 llvm::InlineAsm
*&marker
2341 = CGF
.CGM
.getObjCEntrypoints().retainAutoreleasedReturnValueMarker
;
2344 = CGF
.CGM
.getTargetCodeGenInfo()
2345 .getARCRetainAutoreleasedReturnValueMarker();
2347 // If we have an empty assembly string, there's nothing to do.
2348 if (assembly
.empty()) {
2350 // Otherwise, at -O0, build an inline asm that we're going to call
2352 } else if (CGF
.CGM
.getCodeGenOpts().OptimizationLevel
== 0) {
2353 llvm::FunctionType
*type
=
2354 llvm::FunctionType::get(CGF
.VoidTy
, /*variadic*/false);
2356 marker
= llvm::InlineAsm::get(type
, assembly
, "", /*sideeffects*/ true);
2358 // If we're at -O1 and above, we don't want to litter the code
2359 // with this marker yet, so leave a breadcrumb for the ARC
2360 // optimizer to pick up.
2362 const char *retainRVMarkerKey
= llvm::objcarc::getRVMarkerModuleFlagStr();
2363 if (!CGF
.CGM
.getModule().getModuleFlag(retainRVMarkerKey
)) {
2364 auto *str
= llvm::MDString::get(CGF
.getLLVMContext(), assembly
);
2365 CGF
.CGM
.getModule().addModuleFlag(llvm::Module::Error
,
2366 retainRVMarkerKey
, str
);
2371 // Call the marker asm if we made one, which we do only at -O0.
2373 CGF
.Builder
.CreateCall(marker
, std::nullopt
,
2374 CGF
.getBundlesForFunclet(marker
));
2377 static llvm::Value
*emitOptimizedARCReturnCall(llvm::Value
*value
,
2379 CodeGenFunction
&CGF
) {
2380 emitAutoreleasedReturnValueMarker(CGF
);
2382 // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting
2383 // retainRV or claimRV calls in the IR. We currently do this only when the
2384 // optimization level isn't -O0 since global-isel, which is currently run at
2385 // -O0, doesn't know about the operand bundle.
2386 ObjCEntrypoints
&EPs
= CGF
.CGM
.getObjCEntrypoints();
2387 llvm::Function
*&EP
= IsRetainRV
2388 ? EPs
.objc_retainAutoreleasedReturnValue
2389 : EPs
.objc_unsafeClaimAutoreleasedReturnValue
;
2390 llvm::Intrinsic::ID IID
=
2391 IsRetainRV
? llvm::Intrinsic::objc_retainAutoreleasedReturnValue
2392 : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue
;
2393 EP
= getARCIntrinsic(IID
, CGF
.CGM
);
2395 llvm::Triple::ArchType Arch
= CGF
.CGM
.getTriple().getArch();
2397 // FIXME: Do this on all targets and at -O0 too. This can be enabled only if
2398 // the target backend knows how to handle the operand bundle.
2399 if (CGF
.CGM
.getCodeGenOpts().OptimizationLevel
> 0 &&
2400 (Arch
== llvm::Triple::aarch64
|| Arch
== llvm::Triple::x86_64
)) {
2401 llvm::Value
*bundleArgs
[] = {EP
};
2402 llvm::OperandBundleDef
OB("clang.arc.attachedcall", bundleArgs
);
2403 auto *oldCall
= cast
<llvm::CallBase
>(value
);
2404 llvm::CallBase
*newCall
= llvm::CallBase::addOperandBundle(
2405 oldCall
, llvm::LLVMContext::OB_clang_arc_attachedcall
, OB
, oldCall
);
2406 newCall
->copyMetadata(*oldCall
);
2407 oldCall
->replaceAllUsesWith(newCall
);
2408 oldCall
->eraseFromParent();
2409 CGF
.EmitARCNoopIntrinsicUse(newCall
);
2414 CGF
.CGM
.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail();
2415 llvm::CallInst::TailCallKind tailKind
=
2416 isNoTail
? llvm::CallInst::TCK_NoTail
: llvm::CallInst::TCK_None
;
2417 return emitARCValueOperation(CGF
, value
, nullptr, EP
, IID
, tailKind
);
2420 /// Retain the given object which is the result of a function call.
2421 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2423 /// Yes, this function name is one character away from a different
2424 /// call with completely different semantics.
2426 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value
*value
) {
2427 return emitOptimizedARCReturnCall(value
, true, *this);
2430 /// Claim a possibly-autoreleased return value at +0. This is only
2431 /// valid to do in contexts which do not rely on the retain to keep
2432 /// the object valid for all of its uses; for example, when
2433 /// the value is ignored, or when it is being assigned to an
2434 /// __unsafe_unretained variable.
2436 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2438 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value
*value
) {
2439 return emitOptimizedARCReturnCall(value
, false, *this);
2442 /// Release the given object.
2443 /// call void \@objc_release(i8* %value)
2444 void CodeGenFunction::EmitARCRelease(llvm::Value
*value
,
2445 ARCPreciseLifetime_t precise
) {
2446 if (isa
<llvm::ConstantPointerNull
>(value
)) return;
2448 llvm::Function
*&fn
= CGM
.getObjCEntrypoints().objc_release
;
2450 fn
= getARCIntrinsic(llvm::Intrinsic::objc_release
, CGM
);
2452 // Cast the argument to 'id'.
2453 value
= Builder
.CreateBitCast(value
, Int8PtrTy
);
2455 // Call objc_release.
2456 llvm::CallInst
*call
= EmitNounwindRuntimeCall(fn
, value
);
2458 if (precise
== ARCImpreciseLifetime
) {
2459 call
->setMetadata("clang.imprecise_release",
2460 llvm::MDNode::get(Builder
.getContext(), std::nullopt
));
2464 /// Destroy a __strong variable.
2466 /// At -O0, emit a call to store 'null' into the address;
2467 /// instrumenting tools prefer this because the address is exposed,
2468 /// but it's relatively cumbersome to optimize.
2470 /// At -O1 and above, just load and call objc_release.
2472 /// call void \@objc_storeStrong(i8** %addr, i8* null)
2473 void CodeGenFunction::EmitARCDestroyStrong(Address addr
,
2474 ARCPreciseLifetime_t precise
) {
2475 if (CGM
.getCodeGenOpts().OptimizationLevel
== 0) {
2476 llvm::Value
*null
= getNullForVariable(addr
);
2477 EmitARCStoreStrongCall(addr
, null
, /*ignored*/ true);
2481 llvm::Value
*value
= Builder
.CreateLoad(addr
);
2482 EmitARCRelease(value
, precise
);
2485 /// Store into a strong object. Always calls this:
2486 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
2487 llvm::Value
*CodeGenFunction::EmitARCStoreStrongCall(Address addr
,
2490 assert(addr
.getElementType() == value
->getType());
2492 llvm::Function
*&fn
= CGM
.getObjCEntrypoints().objc_storeStrong
;
2494 fn
= getARCIntrinsic(llvm::Intrinsic::objc_storeStrong
, CGM
);
2496 llvm::Value
*args
[] = {
2497 Builder
.CreateBitCast(addr
.getPointer(), Int8PtrPtrTy
),
2498 Builder
.CreateBitCast(value
, Int8PtrTy
)
2500 EmitNounwindRuntimeCall(fn
, args
);
2502 if (ignored
) return nullptr;
2506 /// Store into a strong object. Sometimes calls this:
2507 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
2508 /// Other times, breaks it down into components.
2509 llvm::Value
*CodeGenFunction::EmitARCStoreStrong(LValue dst
,
2510 llvm::Value
*newValue
,
2512 QualType type
= dst
.getType();
2513 bool isBlock
= type
->isBlockPointerType();
2515 // Use a store barrier at -O0 unless this is a block type or the
2516 // lvalue is inadequately aligned.
2517 if (shouldUseFusedARCCalls() &&
2519 (dst
.getAlignment().isZero() ||
2520 dst
.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes
))) {
2521 return EmitARCStoreStrongCall(dst
.getAddress(*this), newValue
, ignored
);
2524 // Otherwise, split it out.
2526 // Retain the new value.
2527 newValue
= EmitARCRetain(type
, newValue
);
2529 // Read the old value.
2530 llvm::Value
*oldValue
= EmitLoadOfScalar(dst
, SourceLocation());
2532 // Store. We do this before the release so that any deallocs won't
2533 // see the old value.
2534 EmitStoreOfScalar(newValue
, dst
);
2536 // Finally, release the old value.
2537 EmitARCRelease(oldValue
, dst
.isARCPreciseLifetime());
2542 /// Autorelease the given object.
2543 /// call i8* \@objc_autorelease(i8* %value)
2544 llvm::Value
*CodeGenFunction::EmitARCAutorelease(llvm::Value
*value
) {
2545 return emitARCValueOperation(*this, value
, nullptr,
2546 CGM
.getObjCEntrypoints().objc_autorelease
,
2547 llvm::Intrinsic::objc_autorelease
);
2550 /// Autorelease the given object.
2551 /// call i8* \@objc_autoreleaseReturnValue(i8* %value)
2553 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value
*value
) {
2554 return emitARCValueOperation(*this, value
, nullptr,
2555 CGM
.getObjCEntrypoints().objc_autoreleaseReturnValue
,
2556 llvm::Intrinsic::objc_autoreleaseReturnValue
,
2557 llvm::CallInst::TCK_Tail
);
2560 /// Do a fused retain/autorelease of the given object.
2561 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2563 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value
*value
) {
2564 return emitARCValueOperation(*this, value
, nullptr,
2565 CGM
.getObjCEntrypoints().objc_retainAutoreleaseReturnValue
,
2566 llvm::Intrinsic::objc_retainAutoreleaseReturnValue
,
2567 llvm::CallInst::TCK_Tail
);
2570 /// Do a fused retain/autorelease of the given object.
2571 /// call i8* \@objc_retainAutorelease(i8* %value)
2573 /// %retain = call i8* \@objc_retainBlock(i8* %value)
2574 /// call i8* \@objc_autorelease(i8* %retain)
2575 llvm::Value
*CodeGenFunction::EmitARCRetainAutorelease(QualType type
,
2576 llvm::Value
*value
) {
2577 if (!type
->isBlockPointerType())
2578 return EmitARCRetainAutoreleaseNonBlock(value
);
2580 if (isa
<llvm::ConstantPointerNull
>(value
)) return value
;
2582 llvm::Type
*origType
= value
->getType();
2583 value
= Builder
.CreateBitCast(value
, Int8PtrTy
);
2584 value
= EmitARCRetainBlock(value
, /*mandatory*/ true);
2585 value
= EmitARCAutorelease(value
);
2586 return Builder
.CreateBitCast(value
, origType
);
2589 /// Do a fused retain/autorelease of the given object.
2590 /// call i8* \@objc_retainAutorelease(i8* %value)
2592 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value
*value
) {
2593 return emitARCValueOperation(*this, value
, nullptr,
2594 CGM
.getObjCEntrypoints().objc_retainAutorelease
,
2595 llvm::Intrinsic::objc_retainAutorelease
);
2598 /// i8* \@objc_loadWeak(i8** %addr)
2599 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2600 llvm::Value
*CodeGenFunction::EmitARCLoadWeak(Address addr
) {
2601 return emitARCLoadOperation(*this, addr
,
2602 CGM
.getObjCEntrypoints().objc_loadWeak
,
2603 llvm::Intrinsic::objc_loadWeak
);
2606 /// i8* \@objc_loadWeakRetained(i8** %addr)
2607 llvm::Value
*CodeGenFunction::EmitARCLoadWeakRetained(Address addr
) {
2608 return emitARCLoadOperation(*this, addr
,
2609 CGM
.getObjCEntrypoints().objc_loadWeakRetained
,
2610 llvm::Intrinsic::objc_loadWeakRetained
);
2613 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2615 llvm::Value
*CodeGenFunction::EmitARCStoreWeak(Address addr
,
2618 return emitARCStoreOperation(*this, addr
, value
,
2619 CGM
.getObjCEntrypoints().objc_storeWeak
,
2620 llvm::Intrinsic::objc_storeWeak
, ignored
);
2623 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2624 /// Returns %value. %addr is known to not have a current weak entry.
2625 /// Essentially equivalent to:
2626 /// *addr = nil; objc_storeWeak(addr, value);
2627 void CodeGenFunction::EmitARCInitWeak(Address addr
, llvm::Value
*value
) {
2628 // If we're initializing to null, just write null to memory; no need
2629 // to get the runtime involved. But don't do this if optimization
2630 // is enabled, because accounting for this would make the optimizer
2631 // much more complicated.
2632 if (isa
<llvm::ConstantPointerNull
>(value
) &&
2633 CGM
.getCodeGenOpts().OptimizationLevel
== 0) {
2634 Builder
.CreateStore(value
, addr
);
2638 emitARCStoreOperation(*this, addr
, value
,
2639 CGM
.getObjCEntrypoints().objc_initWeak
,
2640 llvm::Intrinsic::objc_initWeak
, /*ignored*/ true);
2643 /// void \@objc_destroyWeak(i8** %addr)
2644 /// Essentially objc_storeWeak(addr, nil).
2645 void CodeGenFunction::EmitARCDestroyWeak(Address addr
) {
2646 llvm::Function
*&fn
= CGM
.getObjCEntrypoints().objc_destroyWeak
;
2648 fn
= getARCIntrinsic(llvm::Intrinsic::objc_destroyWeak
, CGM
);
2650 EmitNounwindRuntimeCall(fn
, addr
.getPointer());
2653 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2654 /// Disregards the current value in %dest. Leaves %src pointing to nothing.
2655 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2656 void CodeGenFunction::EmitARCMoveWeak(Address dst
, Address src
) {
2657 emitARCCopyOperation(*this, dst
, src
,
2658 CGM
.getObjCEntrypoints().objc_moveWeak
,
2659 llvm::Intrinsic::objc_moveWeak
);
2662 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2663 /// Disregards the current value in %dest. Essentially
2664 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2665 void CodeGenFunction::EmitARCCopyWeak(Address dst
, Address src
) {
2666 emitARCCopyOperation(*this, dst
, src
,
2667 CGM
.getObjCEntrypoints().objc_copyWeak
,
2668 llvm::Intrinsic::objc_copyWeak
);
2671 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty
, Address DstAddr
,
2673 llvm::Value
*Object
= EmitARCLoadWeakRetained(SrcAddr
);
2674 Object
= EmitObjCConsumeObject(Ty
, Object
);
2675 EmitARCStoreWeak(DstAddr
, Object
, false);
2678 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty
, Address DstAddr
,
2680 llvm::Value
*Object
= EmitARCLoadWeakRetained(SrcAddr
);
2681 Object
= EmitObjCConsumeObject(Ty
, Object
);
2682 EmitARCStoreWeak(DstAddr
, Object
, false);
2683 EmitARCDestroyWeak(SrcAddr
);
2686 /// Produce the code to do a objc_autoreleasepool_push.
2687 /// call i8* \@objc_autoreleasePoolPush(void)
2688 llvm::Value
*CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2689 llvm::Function
*&fn
= CGM
.getObjCEntrypoints().objc_autoreleasePoolPush
;
2691 fn
= getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush
, CGM
);
2693 return EmitNounwindRuntimeCall(fn
);
2696 /// Produce the code to do a primitive release.
2697 /// call void \@objc_autoreleasePoolPop(i8* %ptr)
2698 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value
*value
) {
2699 assert(value
->getType() == Int8PtrTy
);
2701 if (getInvokeDest()) {
2702 // Call the runtime method not the intrinsic if we are handling exceptions
2703 llvm::FunctionCallee
&fn
=
2704 CGM
.getObjCEntrypoints().objc_autoreleasePoolPopInvoke
;
2706 llvm::FunctionType
*fnType
=
2707 llvm::FunctionType::get(Builder
.getVoidTy(), Int8PtrTy
, false);
2708 fn
= CGM
.CreateRuntimeFunction(fnType
, "objc_autoreleasePoolPop");
2709 setARCRuntimeFunctionLinkage(CGM
, fn
);
2712 // objc_autoreleasePoolPop can throw.
2713 EmitRuntimeCallOrInvoke(fn
, value
);
2715 llvm::FunctionCallee
&fn
= CGM
.getObjCEntrypoints().objc_autoreleasePoolPop
;
2717 fn
= getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop
, CGM
);
2719 EmitRuntimeCall(fn
, value
);
2723 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2724 /// Which is: [[NSAutoreleasePool alloc] init];
2725 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2726 /// init is declared as: - (id) init; in its NSObject super class.
2728 llvm::Value
*CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2729 CGObjCRuntime
&Runtime
= CGM
.getObjCRuntime();
2730 llvm::Value
*Receiver
= Runtime
.EmitNSAutoreleasePoolClassRef(*this);
2731 // [NSAutoreleasePool alloc]
2732 IdentifierInfo
*II
= &CGM
.getContext().Idents
.get("alloc");
2733 Selector AllocSel
= getContext().Selectors
.getSelector(0, &II
);
2736 Runtime
.GenerateMessageSend(*this, ReturnValueSlot(),
2737 getContext().getObjCIdType(),
2738 AllocSel
, Receiver
, Args
);
2741 Receiver
= AllocRV
.getScalarVal();
2742 II
= &CGM
.getContext().Idents
.get("init");
2743 Selector InitSel
= getContext().Selectors
.getSelector(0, &II
);
2745 Runtime
.GenerateMessageSend(*this, ReturnValueSlot(),
2746 getContext().getObjCIdType(),
2747 InitSel
, Receiver
, Args
);
2748 return InitRV
.getScalarVal();
2751 /// Allocate the given objc object.
2752 /// call i8* \@objc_alloc(i8* %value)
2753 llvm::Value
*CodeGenFunction::EmitObjCAlloc(llvm::Value
*value
,
2754 llvm::Type
*resultType
) {
2755 return emitObjCValueOperation(*this, value
, resultType
,
2756 CGM
.getObjCEntrypoints().objc_alloc
,
2760 /// Allocate the given objc object.
2761 /// call i8* \@objc_allocWithZone(i8* %value)
2762 llvm::Value
*CodeGenFunction::EmitObjCAllocWithZone(llvm::Value
*value
,
2763 llvm::Type
*resultType
) {
2764 return emitObjCValueOperation(*this, value
, resultType
,
2765 CGM
.getObjCEntrypoints().objc_allocWithZone
,
2766 "objc_allocWithZone");
2769 llvm::Value
*CodeGenFunction::EmitObjCAllocInit(llvm::Value
*value
,
2770 llvm::Type
*resultType
) {
2771 return emitObjCValueOperation(*this, value
, resultType
,
2772 CGM
.getObjCEntrypoints().objc_alloc_init
,
2776 /// Produce the code to do a primitive release.
2778 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value
*Arg
) {
2779 IdentifierInfo
*II
= &CGM
.getContext().Idents
.get("drain");
2780 Selector DrainSel
= getContext().Selectors
.getSelector(0, &II
);
2782 CGM
.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2783 getContext().VoidTy
, DrainSel
, Arg
, Args
);
2786 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction
&CGF
,
2789 CGF
.EmitARCDestroyStrong(addr
, ARCPreciseLifetime
);
2792 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction
&CGF
,
2795 CGF
.EmitARCDestroyStrong(addr
, ARCImpreciseLifetime
);
2798 void CodeGenFunction::destroyARCWeak(CodeGenFunction
&CGF
,
2801 CGF
.EmitARCDestroyWeak(addr
);
2804 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction
&CGF
, Address addr
,
2806 llvm::Value
*value
= CGF
.Builder
.CreateLoad(addr
);
2807 CGF
.EmitARCIntrinsicUse(value
);
2810 /// Autorelease the given object.
2811 /// call i8* \@objc_autorelease(i8* %value)
2812 llvm::Value
*CodeGenFunction::EmitObjCAutorelease(llvm::Value
*value
,
2813 llvm::Type
*returnType
) {
2814 return emitObjCValueOperation(
2815 *this, value
, returnType
,
2816 CGM
.getObjCEntrypoints().objc_autoreleaseRuntimeFunction
,
2817 "objc_autorelease");
2820 /// Retain the given object, with normal retain semantics.
2821 /// call i8* \@objc_retain(i8* %value)
2822 llvm::Value
*CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value
*value
,
2823 llvm::Type
*returnType
) {
2824 return emitObjCValueOperation(
2825 *this, value
, returnType
,
2826 CGM
.getObjCEntrypoints().objc_retainRuntimeFunction
, "objc_retain");
2829 /// Release the given object.
2830 /// call void \@objc_release(i8* %value)
2831 void CodeGenFunction::EmitObjCRelease(llvm::Value
*value
,
2832 ARCPreciseLifetime_t precise
) {
2833 if (isa
<llvm::ConstantPointerNull
>(value
)) return;
2835 llvm::FunctionCallee
&fn
=
2836 CGM
.getObjCEntrypoints().objc_releaseRuntimeFunction
;
2838 llvm::FunctionType
*fnType
=
2839 llvm::FunctionType::get(Builder
.getVoidTy(), Int8PtrTy
, false);
2840 fn
= CGM
.CreateRuntimeFunction(fnType
, "objc_release");
2841 setARCRuntimeFunctionLinkage(CGM
, fn
);
2842 // We have Native ARC, so set nonlazybind attribute for performance
2843 if (llvm::Function
*f
= dyn_cast
<llvm::Function
>(fn
.getCallee()))
2844 f
->addFnAttr(llvm::Attribute::NonLazyBind
);
2847 // Cast the argument to 'id'.
2848 value
= Builder
.CreateBitCast(value
, Int8PtrTy
);
2850 // Call objc_release.
2851 llvm::CallBase
*call
= EmitCallOrInvoke(fn
, value
);
2853 if (precise
== ARCImpreciseLifetime
) {
2854 call
->setMetadata("clang.imprecise_release",
2855 llvm::MDNode::get(Builder
.getContext(), std::nullopt
));
2860 struct CallObjCAutoreleasePoolObject final
: EHScopeStack::Cleanup
{
2863 CallObjCAutoreleasePoolObject(llvm::Value
*token
) : Token(token
) {}
2865 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2866 CGF
.EmitObjCAutoreleasePoolPop(Token
);
2869 struct CallObjCMRRAutoreleasePoolObject final
: EHScopeStack::Cleanup
{
2872 CallObjCMRRAutoreleasePoolObject(llvm::Value
*token
) : Token(token
) {}
2874 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2875 CGF
.EmitObjCMRRAutoreleasePoolPop(Token
);
2880 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value
*Ptr
) {
2881 if (CGM
.getLangOpts().ObjCAutoRefCount
)
2882 EHStack
.pushCleanup
<CallObjCAutoreleasePoolObject
>(NormalCleanup
, Ptr
);
2884 EHStack
.pushCleanup
<CallObjCMRRAutoreleasePoolObject
>(NormalCleanup
, Ptr
);
2887 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime
) {
2889 case Qualifiers::OCL_None
:
2890 case Qualifiers::OCL_ExplicitNone
:
2891 case Qualifiers::OCL_Strong
:
2892 case Qualifiers::OCL_Autoreleasing
:
2895 case Qualifiers::OCL_Weak
:
2899 llvm_unreachable("impossible lifetime!");
2902 static TryEmitResult
tryEmitARCRetainLoadOfScalar(CodeGenFunction
&CGF
,
2905 llvm::Value
*result
;
2906 bool shouldRetain
= shouldRetainObjCLifetime(type
.getObjCLifetime());
2908 result
= CGF
.EmitLoadOfLValue(lvalue
, SourceLocation()).getScalarVal();
2910 assert(type
.getObjCLifetime() == Qualifiers::OCL_Weak
);
2911 result
= CGF
.EmitARCLoadWeakRetained(lvalue
.getAddress(CGF
));
2913 return TryEmitResult(result
, !shouldRetain
);
2916 static TryEmitResult
tryEmitARCRetainLoadOfScalar(CodeGenFunction
&CGF
,
2918 e
= e
->IgnoreParens();
2919 QualType type
= e
->getType();
2921 // If we're loading retained from a __strong xvalue, we can avoid
2922 // an extra retain/release pair by zeroing out the source of this
2923 // "move" operation.
2924 if (e
->isXValue() &&
2925 !type
.isConstQualified() &&
2926 type
.getObjCLifetime() == Qualifiers::OCL_Strong
) {
2928 LValue lv
= CGF
.EmitLValue(e
);
2930 // Load the object pointer.
2931 llvm::Value
*result
= CGF
.EmitLoadOfLValue(lv
,
2932 SourceLocation()).getScalarVal();
2934 // Set the source pointer to NULL.
2935 CGF
.EmitStoreOfScalar(getNullForVariable(lv
.getAddress(CGF
)), lv
);
2937 return TryEmitResult(result
, true);
2940 // As a very special optimization, in ARC++, if the l-value is the
2941 // result of a non-volatile assignment, do a simple retain of the
2942 // result of the call to objc_storeWeak instead of reloading.
2943 if (CGF
.getLangOpts().CPlusPlus
&&
2944 !type
.isVolatileQualified() &&
2945 type
.getObjCLifetime() == Qualifiers::OCL_Weak
&&
2946 isa
<BinaryOperator
>(e
) &&
2947 cast
<BinaryOperator
>(e
)->getOpcode() == BO_Assign
)
2948 return TryEmitResult(CGF
.EmitScalarExpr(e
), false);
2950 // Try to emit code for scalar constant instead of emitting LValue and
2951 // loading it because we are not guaranteed to have an l-value. One of such
2952 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2953 if (const auto *decl_expr
= dyn_cast
<DeclRefExpr
>(e
)) {
2954 auto *DRE
= const_cast<DeclRefExpr
*>(decl_expr
);
2955 if (CodeGenFunction::ConstantEmission constant
= CGF
.tryEmitAsConstant(DRE
))
2956 return TryEmitResult(CGF
.emitScalarConstant(constant
, DRE
),
2957 !shouldRetainObjCLifetime(type
.getObjCLifetime()));
2960 return tryEmitARCRetainLoadOfScalar(CGF
, CGF
.EmitLValue(e
), type
);
2963 typedef llvm::function_ref
<llvm::Value
*(CodeGenFunction
&CGF
,
2964 llvm::Value
*value
)>
2967 /// Insert code immediately after a call.
2969 // FIXME: We should find a way to emit the runtime call immediately
2970 // after the call is emitted to eliminate the need for this function.
2971 static llvm::Value
*emitARCOperationAfterCall(CodeGenFunction
&CGF
,
2973 ValueTransform doAfterCall
,
2974 ValueTransform doFallback
) {
2975 CGBuilderTy::InsertPoint ip
= CGF
.Builder
.saveIP();
2976 auto *callBase
= dyn_cast
<llvm::CallBase
>(value
);
2978 if (callBase
&& llvm::objcarc::hasAttachedCallOpBundle(callBase
)) {
2979 // Fall back if the call base has operand bundle "clang.arc.attachedcall".
2980 value
= doFallback(CGF
, value
);
2981 } else if (llvm::CallInst
*call
= dyn_cast
<llvm::CallInst
>(value
)) {
2982 // Place the retain immediately following the call.
2983 CGF
.Builder
.SetInsertPoint(call
->getParent(),
2984 ++llvm::BasicBlock::iterator(call
));
2985 value
= doAfterCall(CGF
, value
);
2986 } else if (llvm::InvokeInst
*invoke
= dyn_cast
<llvm::InvokeInst
>(value
)) {
2987 // Place the retain at the beginning of the normal destination block.
2988 llvm::BasicBlock
*BB
= invoke
->getNormalDest();
2989 CGF
.Builder
.SetInsertPoint(BB
, BB
->begin());
2990 value
= doAfterCall(CGF
, value
);
2992 // Bitcasts can arise because of related-result returns. Rewrite
2994 } else if (llvm::BitCastInst
*bitcast
= dyn_cast
<llvm::BitCastInst
>(value
)) {
2995 // Change the insert point to avoid emitting the fall-back call after the
2997 CGF
.Builder
.SetInsertPoint(bitcast
->getParent(), bitcast
->getIterator());
2998 llvm::Value
*operand
= bitcast
->getOperand(0);
2999 operand
= emitARCOperationAfterCall(CGF
, operand
, doAfterCall
, doFallback
);
3000 bitcast
->setOperand(0, operand
);
3003 auto *phi
= dyn_cast
<llvm::PHINode
>(value
);
3004 if (phi
&& phi
->getNumIncomingValues() == 2 &&
3005 isa
<llvm::ConstantPointerNull
>(phi
->getIncomingValue(1)) &&
3006 isa
<llvm::CallBase
>(phi
->getIncomingValue(0))) {
3007 // Handle phi instructions that are generated when it's necessary to check
3008 // whether the receiver of a message is null.
3009 llvm::Value
*inVal
= phi
->getIncomingValue(0);
3010 inVal
= emitARCOperationAfterCall(CGF
, inVal
, doAfterCall
, doFallback
);
3011 phi
->setIncomingValue(0, inVal
);
3014 // Generic fall-back case.
3015 // Retain using the non-block variant: we never need to do a copy
3016 // of a block that's been returned to us.
3017 value
= doFallback(CGF
, value
);
3021 CGF
.Builder
.restoreIP(ip
);
3025 /// Given that the given expression is some sort of call (which does
3026 /// not return retained), emit a retain following it.
3027 static llvm::Value
*emitARCRetainCallResult(CodeGenFunction
&CGF
,
3029 llvm::Value
*value
= CGF
.EmitScalarExpr(e
);
3030 return emitARCOperationAfterCall(CGF
, value
,
3031 [](CodeGenFunction
&CGF
, llvm::Value
*value
) {
3032 return CGF
.EmitARCRetainAutoreleasedReturnValue(value
);
3034 [](CodeGenFunction
&CGF
, llvm::Value
*value
) {
3035 return CGF
.EmitARCRetainNonBlock(value
);
3039 /// Given that the given expression is some sort of call (which does
3040 /// not return retained), perform an unsafeClaim following it.
3041 static llvm::Value
*emitARCUnsafeClaimCallResult(CodeGenFunction
&CGF
,
3043 llvm::Value
*value
= CGF
.EmitScalarExpr(e
);
3044 return emitARCOperationAfterCall(CGF
, value
,
3045 [](CodeGenFunction
&CGF
, llvm::Value
*value
) {
3046 return CGF
.EmitARCUnsafeClaimAutoreleasedReturnValue(value
);
3048 [](CodeGenFunction
&CGF
, llvm::Value
*value
) {
3053 llvm::Value
*CodeGenFunction::EmitARCReclaimReturnedObject(const Expr
*E
,
3054 bool allowUnsafeClaim
) {
3055 if (allowUnsafeClaim
&&
3056 CGM
.getLangOpts().ObjCRuntime
.hasARCUnsafeClaimAutoreleasedReturnValue()) {
3057 return emitARCUnsafeClaimCallResult(*this, E
);
3059 llvm::Value
*value
= emitARCRetainCallResult(*this, E
);
3060 return EmitObjCConsumeObject(E
->getType(), value
);
3064 /// Determine whether it might be important to emit a separate
3065 /// objc_retain_block on the result of the given expression, or
3066 /// whether it's okay to just emit it in a +1 context.
3067 static bool shouldEmitSeparateBlockRetain(const Expr
*e
) {
3068 assert(e
->getType()->isBlockPointerType());
3069 e
= e
->IgnoreParens();
3071 // For future goodness, emit block expressions directly in +1
3072 // contexts if we can.
3073 if (isa
<BlockExpr
>(e
))
3076 if (const CastExpr
*cast
= dyn_cast
<CastExpr
>(e
)) {
3077 switch (cast
->getCastKind()) {
3078 // Emitting these operations in +1 contexts is goodness.
3079 case CK_LValueToRValue
:
3080 case CK_ARCReclaimReturnedObject
:
3081 case CK_ARCConsumeObject
:
3082 case CK_ARCProduceObject
:
3085 // These operations preserve a block type.
3088 return shouldEmitSeparateBlockRetain(cast
->getSubExpr());
3090 // These operations are known to be bad (or haven't been considered).
3091 case CK_AnyPointerToBlockPointerCast
:
3101 /// A CRTP base class for emitting expressions of retainable object
3102 /// pointer type in ARC.
3103 template <typename Impl
, typename Result
> class ARCExprEmitter
{
3105 CodeGenFunction
&CGF
;
3106 Impl
&asImpl() { return *static_cast<Impl
*>(this); }
3108 ARCExprEmitter(CodeGenFunction
&CGF
) : CGF(CGF
) {}
3111 Result
visit(const Expr
*e
);
3112 Result
visitCastExpr(const CastExpr
*e
);
3113 Result
visitPseudoObjectExpr(const PseudoObjectExpr
*e
);
3114 Result
visitBlockExpr(const BlockExpr
*e
);
3115 Result
visitBinaryOperator(const BinaryOperator
*e
);
3116 Result
visitBinAssign(const BinaryOperator
*e
);
3117 Result
visitBinAssignUnsafeUnretained(const BinaryOperator
*e
);
3118 Result
visitBinAssignAutoreleasing(const BinaryOperator
*e
);
3119 Result
visitBinAssignWeak(const BinaryOperator
*e
);
3120 Result
visitBinAssignStrong(const BinaryOperator
*e
);
3122 // Minimal implementation:
3123 // Result visitLValueToRValue(const Expr *e)
3124 // Result visitConsumeObject(const Expr *e)
3125 // Result visitExtendBlockObject(const Expr *e)
3126 // Result visitReclaimReturnedObject(const Expr *e)
3127 // Result visitCall(const Expr *e)
3128 // Result visitExpr(const Expr *e)
3130 // Result emitBitCast(Result result, llvm::Type *resultType)
3131 // llvm::Value *getValueOfResult(Result result)
3135 /// Try to emit a PseudoObjectExpr under special ARC rules.
3137 /// This massively duplicates emitPseudoObjectRValue.
3138 template <typename Impl
, typename Result
>
3140 ARCExprEmitter
<Impl
,Result
>::visitPseudoObjectExpr(const PseudoObjectExpr
*E
) {
3141 SmallVector
<CodeGenFunction::OpaqueValueMappingData
, 4> opaques
;
3143 // Find the result expression.
3144 const Expr
*resultExpr
= E
->getResultExpr();
3148 for (PseudoObjectExpr::const_semantics_iterator
3149 i
= E
->semantics_begin(), e
= E
->semantics_end(); i
!= e
; ++i
) {
3150 const Expr
*semantic
= *i
;
3152 // If this semantic expression is an opaque value, bind it
3153 // to the result of its source expression.
3154 if (const OpaqueValueExpr
*ov
= dyn_cast
<OpaqueValueExpr
>(semantic
)) {
3155 typedef CodeGenFunction::OpaqueValueMappingData OVMA
;
3158 // If this semantic is the result of the pseudo-object
3159 // expression, try to evaluate the source as +1.
3160 if (ov
== resultExpr
) {
3161 assert(!OVMA::shouldBindAsLValue(ov
));
3162 result
= asImpl().visit(ov
->getSourceExpr());
3163 opaqueData
= OVMA::bind(CGF
, ov
,
3164 RValue::get(asImpl().getValueOfResult(result
)));
3166 // Otherwise, just bind it.
3168 opaqueData
= OVMA::bind(CGF
, ov
, ov
->getSourceExpr());
3170 opaques
.push_back(opaqueData
);
3172 // Otherwise, if the expression is the result, evaluate it
3173 // and remember the result.
3174 } else if (semantic
== resultExpr
) {
3175 result
= asImpl().visit(semantic
);
3177 // Otherwise, evaluate the expression in an ignored context.
3179 CGF
.EmitIgnoredExpr(semantic
);
3183 // Unbind all the opaques now.
3184 for (unsigned i
= 0, e
= opaques
.size(); i
!= e
; ++i
)
3185 opaques
[i
].unbind(CGF
);
3190 template <typename Impl
, typename Result
>
3191 Result ARCExprEmitter
<Impl
, Result
>::visitBlockExpr(const BlockExpr
*e
) {
3192 // The default implementation just forwards the expression to visitExpr.
3193 return asImpl().visitExpr(e
);
3196 template <typename Impl
, typename Result
>
3197 Result ARCExprEmitter
<Impl
,Result
>::visitCastExpr(const CastExpr
*e
) {
3198 switch (e
->getCastKind()) {
3200 // No-op casts don't change the type, so we just ignore them.
3202 return asImpl().visit(e
->getSubExpr());
3204 // These casts can change the type.
3205 case CK_CPointerToObjCPointerCast
:
3206 case CK_BlockPointerToObjCPointerCast
:
3207 case CK_AnyPointerToBlockPointerCast
:
3209 llvm::Type
*resultType
= CGF
.ConvertType(e
->getType());
3210 assert(e
->getSubExpr()->getType()->hasPointerRepresentation());
3211 Result result
= asImpl().visit(e
->getSubExpr());
3212 return asImpl().emitBitCast(result
, resultType
);
3215 // Handle some casts specially.
3216 case CK_LValueToRValue
:
3217 return asImpl().visitLValueToRValue(e
->getSubExpr());
3218 case CK_ARCConsumeObject
:
3219 return asImpl().visitConsumeObject(e
->getSubExpr());
3220 case CK_ARCExtendBlockObject
:
3221 return asImpl().visitExtendBlockObject(e
->getSubExpr());
3222 case CK_ARCReclaimReturnedObject
:
3223 return asImpl().visitReclaimReturnedObject(e
->getSubExpr());
3225 // Otherwise, use the default logic.
3227 return asImpl().visitExpr(e
);
3231 template <typename Impl
, typename Result
>
3233 ARCExprEmitter
<Impl
,Result
>::visitBinaryOperator(const BinaryOperator
*e
) {
3234 switch (e
->getOpcode()) {
3236 CGF
.EmitIgnoredExpr(e
->getLHS());
3237 CGF
.EnsureInsertPoint();
3238 return asImpl().visit(e
->getRHS());
3241 return asImpl().visitBinAssign(e
);
3244 return asImpl().visitExpr(e
);
3248 template <typename Impl
, typename Result
>
3249 Result ARCExprEmitter
<Impl
,Result
>::visitBinAssign(const BinaryOperator
*e
) {
3250 switch (e
->getLHS()->getType().getObjCLifetime()) {
3251 case Qualifiers::OCL_ExplicitNone
:
3252 return asImpl().visitBinAssignUnsafeUnretained(e
);
3254 case Qualifiers::OCL_Weak
:
3255 return asImpl().visitBinAssignWeak(e
);
3257 case Qualifiers::OCL_Autoreleasing
:
3258 return asImpl().visitBinAssignAutoreleasing(e
);
3260 case Qualifiers::OCL_Strong
:
3261 return asImpl().visitBinAssignStrong(e
);
3263 case Qualifiers::OCL_None
:
3264 return asImpl().visitExpr(e
);
3266 llvm_unreachable("bad ObjC ownership qualifier");
3269 /// The default rule for __unsafe_unretained emits the RHS recursively,
3270 /// stores into the unsafe variable, and propagates the result outward.
3271 template <typename Impl
, typename Result
>
3272 Result ARCExprEmitter
<Impl
,Result
>::
3273 visitBinAssignUnsafeUnretained(const BinaryOperator
*e
) {
3274 // Recursively emit the RHS.
3275 // For __block safety, do this before emitting the LHS.
3276 Result result
= asImpl().visit(e
->getRHS());
3278 // Perform the store.
3280 CGF
.EmitCheckedLValue(e
->getLHS(), CodeGenFunction::TCK_Store
);
3281 CGF
.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result
)),
3287 template <typename Impl
, typename Result
>
3289 ARCExprEmitter
<Impl
,Result
>::visitBinAssignAutoreleasing(const BinaryOperator
*e
) {
3290 return asImpl().visitExpr(e
);
3293 template <typename Impl
, typename Result
>
3295 ARCExprEmitter
<Impl
,Result
>::visitBinAssignWeak(const BinaryOperator
*e
) {
3296 return asImpl().visitExpr(e
);
3299 template <typename Impl
, typename Result
>
3301 ARCExprEmitter
<Impl
,Result
>::visitBinAssignStrong(const BinaryOperator
*e
) {
3302 return asImpl().visitExpr(e
);
3305 /// The general expression-emission logic.
3306 template <typename Impl
, typename Result
>
3307 Result ARCExprEmitter
<Impl
,Result
>::visit(const Expr
*e
) {
3308 // We should *never* see a nested full-expression here, because if
3309 // we fail to emit at +1, our caller must not retain after we close
3310 // out the full-expression. This isn't as important in the unsafe
3312 assert(!isa
<ExprWithCleanups
>(e
));
3314 // Look through parens, __extension__, generic selection, etc.
3315 e
= e
->IgnoreParens();
3317 // Handle certain kinds of casts.
3318 if (const CastExpr
*ce
= dyn_cast
<CastExpr
>(e
)) {
3319 return asImpl().visitCastExpr(ce
);
3321 // Handle the comma operator.
3322 } else if (auto op
= dyn_cast
<BinaryOperator
>(e
)) {
3323 return asImpl().visitBinaryOperator(op
);
3325 // TODO: handle conditional operators here
3327 // For calls and message sends, use the retained-call logic.
3328 // Delegate inits are a special case in that they're the only
3329 // returns-retained expression that *isn't* surrounded by
3331 } else if (isa
<CallExpr
>(e
) ||
3332 (isa
<ObjCMessageExpr
>(e
) &&
3333 !cast
<ObjCMessageExpr
>(e
)->isDelegateInitCall())) {
3334 return asImpl().visitCall(e
);
3336 // Look through pseudo-object expressions.
3337 } else if (const PseudoObjectExpr
*pseudo
= dyn_cast
<PseudoObjectExpr
>(e
)) {
3338 return asImpl().visitPseudoObjectExpr(pseudo
);
3339 } else if (auto *be
= dyn_cast
<BlockExpr
>(e
))
3340 return asImpl().visitBlockExpr(be
);
3342 return asImpl().visitExpr(e
);
3347 /// An emitter for +1 results.
3348 struct ARCRetainExprEmitter
:
3349 public ARCExprEmitter
<ARCRetainExprEmitter
, TryEmitResult
> {
3351 ARCRetainExprEmitter(CodeGenFunction
&CGF
) : ARCExprEmitter(CGF
) {}
3353 llvm::Value
*getValueOfResult(TryEmitResult result
) {
3354 return result
.getPointer();
3357 TryEmitResult
emitBitCast(TryEmitResult result
, llvm::Type
*resultType
) {
3358 llvm::Value
*value
= result
.getPointer();
3359 value
= CGF
.Builder
.CreateBitCast(value
, resultType
);
3360 result
.setPointer(value
);
3364 TryEmitResult
visitLValueToRValue(const Expr
*e
) {
3365 return tryEmitARCRetainLoadOfScalar(CGF
, e
);
3368 /// For consumptions, just emit the subexpression and thus elide
3369 /// the retain/release pair.
3370 TryEmitResult
visitConsumeObject(const Expr
*e
) {
3371 llvm::Value
*result
= CGF
.EmitScalarExpr(e
);
3372 return TryEmitResult(result
, true);
3375 TryEmitResult
visitBlockExpr(const BlockExpr
*e
) {
3376 TryEmitResult result
= visitExpr(e
);
3377 // Avoid the block-retain if this is a block literal that doesn't need to be
3378 // copied to the heap.
3379 if (CGF
.CGM
.getCodeGenOpts().ObjCAvoidHeapifyLocalBlocks
&&
3380 e
->getBlockDecl()->canAvoidCopyToHeap())
3381 result
.setInt(true);
3385 /// Block extends are net +0. Naively, we could just recurse on
3386 /// the subexpression, but actually we need to ensure that the
3387 /// value is copied as a block, so there's a little filter here.
3388 TryEmitResult
visitExtendBlockObject(const Expr
*e
) {
3389 llvm::Value
*result
; // will be a +0 value
3391 // If we can't safely assume the sub-expression will produce a
3392 // block-copied value, emit the sub-expression at +0.
3393 if (shouldEmitSeparateBlockRetain(e
)) {
3394 result
= CGF
.EmitScalarExpr(e
);
3396 // Otherwise, try to emit the sub-expression at +1 recursively.
3398 TryEmitResult subresult
= asImpl().visit(e
);
3400 // If that produced a retained value, just use that.
3401 if (subresult
.getInt()) {
3405 // Otherwise it's +0.
3406 result
= subresult
.getPointer();
3409 // Retain the object as a block.
3410 result
= CGF
.EmitARCRetainBlock(result
, /*mandatory*/ true);
3411 return TryEmitResult(result
, true);
3414 /// For reclaims, emit the subexpression as a retained call and
3415 /// skip the consumption.
3416 TryEmitResult
visitReclaimReturnedObject(const Expr
*e
) {
3417 llvm::Value
*result
= emitARCRetainCallResult(CGF
, e
);
3418 return TryEmitResult(result
, true);
3421 /// When we have an undecorated call, retroactively do a claim.
3422 TryEmitResult
visitCall(const Expr
*e
) {
3423 llvm::Value
*result
= emitARCRetainCallResult(CGF
, e
);
3424 return TryEmitResult(result
, true);
3427 // TODO: maybe special-case visitBinAssignWeak?
3429 TryEmitResult
visitExpr(const Expr
*e
) {
3430 // We didn't find an obvious production, so emit what we've got and
3431 // tell the caller that we didn't manage to retain.
3432 llvm::Value
*result
= CGF
.EmitScalarExpr(e
);
3433 return TryEmitResult(result
, false);
3438 static TryEmitResult
3439 tryEmitARCRetainScalarExpr(CodeGenFunction
&CGF
, const Expr
*e
) {
3440 return ARCRetainExprEmitter(CGF
).visit(e
);
3443 static llvm::Value
*emitARCRetainLoadOfScalar(CodeGenFunction
&CGF
,
3446 TryEmitResult result
= tryEmitARCRetainLoadOfScalar(CGF
, lvalue
, type
);
3447 llvm::Value
*value
= result
.getPointer();
3448 if (!result
.getInt())
3449 value
= CGF
.EmitARCRetain(type
, value
);
3453 /// EmitARCRetainScalarExpr - Semantically equivalent to
3454 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3455 /// best-effort attempt to peephole expressions that naturally produce
3456 /// retained objects.
3457 llvm::Value
*CodeGenFunction::EmitARCRetainScalarExpr(const Expr
*e
) {
3458 // The retain needs to happen within the full-expression.
3459 if (const ExprWithCleanups
*cleanups
= dyn_cast
<ExprWithCleanups
>(e
)) {
3460 RunCleanupsScope
scope(*this);
3461 return EmitARCRetainScalarExpr(cleanups
->getSubExpr());
3464 TryEmitResult result
= tryEmitARCRetainScalarExpr(*this, e
);
3465 llvm::Value
*value
= result
.getPointer();
3466 if (!result
.getInt())
3467 value
= EmitARCRetain(e
->getType(), value
);
3472 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr
*e
) {
3473 // The retain needs to happen within the full-expression.
3474 if (const ExprWithCleanups
*cleanups
= dyn_cast
<ExprWithCleanups
>(e
)) {
3475 RunCleanupsScope
scope(*this);
3476 return EmitARCRetainAutoreleaseScalarExpr(cleanups
->getSubExpr());
3479 TryEmitResult result
= tryEmitARCRetainScalarExpr(*this, e
);
3480 llvm::Value
*value
= result
.getPointer();
3481 if (result
.getInt())
3482 value
= EmitARCAutorelease(value
);
3484 value
= EmitARCRetainAutorelease(e
->getType(), value
);
3488 llvm::Value
*CodeGenFunction::EmitARCExtendBlockObject(const Expr
*e
) {
3489 llvm::Value
*result
;
3492 if (shouldEmitSeparateBlockRetain(e
)) {
3493 result
= EmitScalarExpr(e
);
3496 TryEmitResult subresult
= tryEmitARCRetainScalarExpr(*this, e
);
3497 result
= subresult
.getPointer();
3498 doRetain
= !subresult
.getInt();
3502 result
= EmitARCRetainBlock(result
, /*mandatory*/ true);
3503 return EmitObjCConsumeObject(e
->getType(), result
);
3506 llvm::Value
*CodeGenFunction::EmitObjCThrowOperand(const Expr
*expr
) {
3507 // In ARC, retain and autorelease the expression.
3508 if (getLangOpts().ObjCAutoRefCount
) {
3509 // Do so before running any cleanups for the full-expression.
3510 // EmitARCRetainAutoreleaseScalarExpr does this for us.
3511 return EmitARCRetainAutoreleaseScalarExpr(expr
);
3514 // Otherwise, use the normal scalar-expression emission. The
3515 // exception machinery doesn't do anything special with the
3516 // exception like retaining it, so there's no safety associated with
3517 // only running cleanups after the throw has started, and when it
3518 // matters it tends to be substantially inferior code.
3519 return EmitScalarExpr(expr
);
3524 /// An emitter for assigning into an __unsafe_unretained context.
3525 struct ARCUnsafeUnretainedExprEmitter
:
3526 public ARCExprEmitter
<ARCUnsafeUnretainedExprEmitter
, llvm::Value
*> {
3528 ARCUnsafeUnretainedExprEmitter(CodeGenFunction
&CGF
) : ARCExprEmitter(CGF
) {}
3530 llvm::Value
*getValueOfResult(llvm::Value
*value
) {
3534 llvm::Value
*emitBitCast(llvm::Value
*value
, llvm::Type
*resultType
) {
3535 return CGF
.Builder
.CreateBitCast(value
, resultType
);
3538 llvm::Value
*visitLValueToRValue(const Expr
*e
) {
3539 return CGF
.EmitScalarExpr(e
);
3542 /// For consumptions, just emit the subexpression and perform the
3543 /// consumption like normal.
3544 llvm::Value
*visitConsumeObject(const Expr
*e
) {
3545 llvm::Value
*value
= CGF
.EmitScalarExpr(e
);
3546 return CGF
.EmitObjCConsumeObject(e
->getType(), value
);
3549 /// No special logic for block extensions. (This probably can't
3550 /// actually happen in this emitter, though.)
3551 llvm::Value
*visitExtendBlockObject(const Expr
*e
) {
3552 return CGF
.EmitARCExtendBlockObject(e
);
3555 /// For reclaims, perform an unsafeClaim if that's enabled.
3556 llvm::Value
*visitReclaimReturnedObject(const Expr
*e
) {
3557 return CGF
.EmitARCReclaimReturnedObject(e
, /*unsafe*/ true);
3560 /// When we have an undecorated call, just emit it without adding
3561 /// the unsafeClaim.
3562 llvm::Value
*visitCall(const Expr
*e
) {
3563 return CGF
.EmitScalarExpr(e
);
3566 /// Just do normal scalar emission in the default case.
3567 llvm::Value
*visitExpr(const Expr
*e
) {
3568 return CGF
.EmitScalarExpr(e
);
3573 static llvm::Value
*emitARCUnsafeUnretainedScalarExpr(CodeGenFunction
&CGF
,
3575 return ARCUnsafeUnretainedExprEmitter(CGF
).visit(e
);
3578 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3579 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3580 /// avoiding any spurious retains, including by performing reclaims
3581 /// with objc_unsafeClaimAutoreleasedReturnValue.
3582 llvm::Value
*CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr
*e
) {
3583 // Look through full-expressions.
3584 if (const ExprWithCleanups
*cleanups
= dyn_cast
<ExprWithCleanups
>(e
)) {
3585 RunCleanupsScope
scope(*this);
3586 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups
->getSubExpr());
3589 return emitARCUnsafeUnretainedScalarExpr(*this, e
);
3592 std::pair
<LValue
,llvm::Value
*>
3593 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator
*e
,
3595 // Evaluate the RHS first. If we're ignoring the result, assume
3596 // that we can emit at an unsafe +0.
3599 value
= EmitARCUnsafeUnretainedScalarExpr(e
->getRHS());
3601 value
= EmitScalarExpr(e
->getRHS());
3604 // Emit the LHS and perform the store.
3605 LValue lvalue
= EmitLValue(e
->getLHS());
3606 EmitStoreOfScalar(value
, lvalue
);
3608 return std::pair
<LValue
,llvm::Value
*>(std::move(lvalue
), value
);
3611 std::pair
<LValue
,llvm::Value
*>
3612 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator
*e
,
3614 // Evaluate the RHS first.
3615 TryEmitResult result
= tryEmitARCRetainScalarExpr(*this, e
->getRHS());
3616 llvm::Value
*value
= result
.getPointer();
3618 bool hasImmediateRetain
= result
.getInt();
3620 // If we didn't emit a retained object, and the l-value is of block
3621 // type, then we need to emit the block-retain immediately in case
3622 // it invalidates the l-value.
3623 if (!hasImmediateRetain
&& e
->getType()->isBlockPointerType()) {
3624 value
= EmitARCRetainBlock(value
, /*mandatory*/ false);
3625 hasImmediateRetain
= true;
3628 LValue lvalue
= EmitLValue(e
->getLHS());
3630 // If the RHS was emitted retained, expand this.
3631 if (hasImmediateRetain
) {
3632 llvm::Value
*oldValue
= EmitLoadOfScalar(lvalue
, SourceLocation());
3633 EmitStoreOfScalar(value
, lvalue
);
3634 EmitARCRelease(oldValue
, lvalue
.isARCPreciseLifetime());
3636 value
= EmitARCStoreStrong(lvalue
, value
, ignored
);
3639 return std::pair
<LValue
,llvm::Value
*>(lvalue
, value
);
3642 std::pair
<LValue
,llvm::Value
*>
3643 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator
*e
) {
3644 llvm::Value
*value
= EmitARCRetainAutoreleaseScalarExpr(e
->getRHS());
3645 LValue lvalue
= EmitLValue(e
->getLHS());
3647 EmitStoreOfScalar(value
, lvalue
);
3649 return std::pair
<LValue
,llvm::Value
*>(lvalue
, value
);
3652 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3653 const ObjCAutoreleasePoolStmt
&ARPS
) {
3654 const Stmt
*subStmt
= ARPS
.getSubStmt();
3655 const CompoundStmt
&S
= cast
<CompoundStmt
>(*subStmt
);
3657 CGDebugInfo
*DI
= getDebugInfo();
3659 DI
->EmitLexicalBlockStart(Builder
, S
.getLBracLoc());
3661 // Keep track of the current cleanup stack depth.
3662 RunCleanupsScope
Scope(*this);
3663 if (CGM
.getLangOpts().ObjCRuntime
.hasNativeARC()) {
3664 llvm::Value
*token
= EmitObjCAutoreleasePoolPush();
3665 EHStack
.pushCleanup
<CallObjCAutoreleasePoolObject
>(NormalCleanup
, token
);
3667 llvm::Value
*token
= EmitObjCMRRAutoreleasePoolPush();
3668 EHStack
.pushCleanup
<CallObjCMRRAutoreleasePoolObject
>(NormalCleanup
, token
);
3671 for (const auto *I
: S
.body())
3675 DI
->EmitLexicalBlockEnd(Builder
, S
.getRBracLoc());
3678 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3679 /// make sure it survives garbage collection until this point.
3680 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value
*object
) {
3681 // We just use an inline assembly.
3682 llvm::FunctionType
*extenderType
3683 = llvm::FunctionType::get(VoidTy
, VoidPtrTy
, RequiredArgs::All
);
3684 llvm::InlineAsm
*extender
= llvm::InlineAsm::get(extenderType
,
3686 /* constraints */ "r",
3687 /* side effects */ true);
3689 object
= Builder
.CreateBitCast(object
, VoidPtrTy
);
3690 EmitNounwindRuntimeCall(extender
, object
);
3693 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3694 /// non-trivial copy assignment function, produce following helper function.
3695 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3698 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3699 const ObjCPropertyImplDecl
*PID
) {
3700 const ObjCPropertyDecl
*PD
= PID
->getPropertyDecl();
3701 if ((!(PD
->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic
)))
3704 QualType Ty
= PID
->getPropertyIvarDecl()->getType();
3705 ASTContext
&C
= getContext();
3707 if (Ty
.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct
) {
3708 // Call the move assignment operator instead of calling the copy assignment
3709 // operator and destructor.
3710 CharUnits Alignment
= C
.getTypeAlignInChars(Ty
);
3711 llvm::Constant
*Fn
= getNonTrivialCStructMoveAssignmentOperator(
3712 CGM
, Alignment
, Alignment
, Ty
.isVolatileQualified(), Ty
);
3713 return llvm::ConstantExpr::getBitCast(Fn
, VoidPtrTy
);
3716 if (!getLangOpts().CPlusPlus
||
3717 !getLangOpts().ObjCRuntime
.hasAtomicCopyHelper())
3719 if (!Ty
->isRecordType())
3721 llvm::Constant
*HelperFn
= nullptr;
3722 if (hasTrivialSetExpr(PID
))
3724 assert(PID
->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3725 if ((HelperFn
= CGM
.getAtomicSetterHelperFnMap(Ty
)))
3729 = &CGM
.getContext().Idents
.get("__assign_helper_atomic_property_");
3731 QualType ReturnTy
= C
.VoidTy
;
3732 QualType DestTy
= C
.getPointerType(Ty
);
3733 QualType SrcTy
= Ty
;
3735 SrcTy
= C
.getPointerType(SrcTy
);
3737 SmallVector
<QualType
, 2> ArgTys
;
3738 ArgTys
.push_back(DestTy
);
3739 ArgTys
.push_back(SrcTy
);
3740 QualType FunctionTy
= C
.getFunctionType(ReturnTy
, ArgTys
, {});
3742 FunctionDecl
*FD
= FunctionDecl::Create(
3743 C
, C
.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II
,
3744 FunctionTy
, nullptr, SC_Static
, false, false, false);
3746 FunctionArgList args
;
3747 ParmVarDecl
*Params
[2];
3748 ParmVarDecl
*DstDecl
= ParmVarDecl::Create(
3749 C
, FD
, SourceLocation(), SourceLocation(), nullptr, DestTy
,
3750 C
.getTrivialTypeSourceInfo(DestTy
, SourceLocation()), SC_None
,
3751 /*DefArg=*/nullptr);
3752 args
.push_back(Params
[0] = DstDecl
);
3753 ParmVarDecl
*SrcDecl
= ParmVarDecl::Create(
3754 C
, FD
, SourceLocation(), SourceLocation(), nullptr, SrcTy
,
3755 C
.getTrivialTypeSourceInfo(SrcTy
, SourceLocation()), SC_None
,
3756 /*DefArg=*/nullptr);
3757 args
.push_back(Params
[1] = SrcDecl
);
3758 FD
->setParams(Params
);
3760 const CGFunctionInfo
&FI
=
3761 CGM
.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy
, args
);
3763 llvm::FunctionType
*LTy
= CGM
.getTypes().GetFunctionType(FI
);
3765 llvm::Function
*Fn
=
3766 llvm::Function::Create(LTy
, llvm::GlobalValue::InternalLinkage
,
3767 "__assign_helper_atomic_property_",
3770 CGM
.SetInternalFunctionAttributes(GlobalDecl(), Fn
, FI
);
3772 StartFunction(FD
, ReturnTy
, Fn
, FI
, args
);
3774 DeclRefExpr
DstExpr(C
, DstDecl
, false, DestTy
, VK_PRValue
, SourceLocation());
3775 UnaryOperator
*DST
= UnaryOperator::Create(
3776 C
, &DstExpr
, UO_Deref
, DestTy
->getPointeeType(), VK_LValue
, OK_Ordinary
,
3777 SourceLocation(), false, FPOptionsOverride());
3779 DeclRefExpr
SrcExpr(C
, SrcDecl
, false, SrcTy
, VK_PRValue
, SourceLocation());
3780 UnaryOperator
*SRC
= UnaryOperator::Create(
3781 C
, &SrcExpr
, UO_Deref
, SrcTy
->getPointeeType(), VK_LValue
, OK_Ordinary
,
3782 SourceLocation(), false, FPOptionsOverride());
3784 Expr
*Args
[2] = {DST
, SRC
};
3785 CallExpr
*CalleeExp
= cast
<CallExpr
>(PID
->getSetterCXXAssignment());
3786 CXXOperatorCallExpr
*TheCall
= CXXOperatorCallExpr::Create(
3787 C
, OO_Equal
, CalleeExp
->getCallee(), Args
, DestTy
->getPointeeType(),
3788 VK_LValue
, SourceLocation(), FPOptionsOverride());
3793 HelperFn
= llvm::ConstantExpr::getBitCast(Fn
, VoidPtrTy
);
3794 CGM
.setAtomicSetterHelperFnMap(Ty
, HelperFn
);
3798 llvm::Constant
*CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3799 const ObjCPropertyImplDecl
*PID
) {
3800 const ObjCPropertyDecl
*PD
= PID
->getPropertyDecl();
3801 if ((!(PD
->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic
)))
3804 QualType Ty
= PD
->getType();
3805 ASTContext
&C
= getContext();
3807 if (Ty
.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct
) {
3808 CharUnits Alignment
= C
.getTypeAlignInChars(Ty
);
3809 llvm::Constant
*Fn
= getNonTrivialCStructCopyConstructor(
3810 CGM
, Alignment
, Alignment
, Ty
.isVolatileQualified(), Ty
);
3811 return llvm::ConstantExpr::getBitCast(Fn
, VoidPtrTy
);
3814 if (!getLangOpts().CPlusPlus
||
3815 !getLangOpts().ObjCRuntime
.hasAtomicCopyHelper())
3817 if (!Ty
->isRecordType())
3819 llvm::Constant
*HelperFn
= nullptr;
3820 if (hasTrivialGetExpr(PID
))
3822 assert(PID
->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3823 if ((HelperFn
= CGM
.getAtomicGetterHelperFnMap(Ty
)))
3826 IdentifierInfo
*II
=
3827 &CGM
.getContext().Idents
.get("__copy_helper_atomic_property_");
3829 QualType ReturnTy
= C
.VoidTy
;
3830 QualType DestTy
= C
.getPointerType(Ty
);
3831 QualType SrcTy
= Ty
;
3833 SrcTy
= C
.getPointerType(SrcTy
);
3835 SmallVector
<QualType
, 2> ArgTys
;
3836 ArgTys
.push_back(DestTy
);
3837 ArgTys
.push_back(SrcTy
);
3838 QualType FunctionTy
= C
.getFunctionType(ReturnTy
, ArgTys
, {});
3840 FunctionDecl
*FD
= FunctionDecl::Create(
3841 C
, C
.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II
,
3842 FunctionTy
, nullptr, SC_Static
, false, false, false);
3844 FunctionArgList args
;
3845 ParmVarDecl
*Params
[2];
3846 ParmVarDecl
*DstDecl
= ParmVarDecl::Create(
3847 C
, FD
, SourceLocation(), SourceLocation(), nullptr, DestTy
,
3848 C
.getTrivialTypeSourceInfo(DestTy
, SourceLocation()), SC_None
,
3849 /*DefArg=*/nullptr);
3850 args
.push_back(Params
[0] = DstDecl
);
3851 ParmVarDecl
*SrcDecl
= ParmVarDecl::Create(
3852 C
, FD
, SourceLocation(), SourceLocation(), nullptr, SrcTy
,
3853 C
.getTrivialTypeSourceInfo(SrcTy
, SourceLocation()), SC_None
,
3854 /*DefArg=*/nullptr);
3855 args
.push_back(Params
[1] = SrcDecl
);
3856 FD
->setParams(Params
);
3858 const CGFunctionInfo
&FI
=
3859 CGM
.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy
, args
);
3861 llvm::FunctionType
*LTy
= CGM
.getTypes().GetFunctionType(FI
);
3863 llvm::Function
*Fn
= llvm::Function::Create(
3864 LTy
, llvm::GlobalValue::InternalLinkage
, "__copy_helper_atomic_property_",
3867 CGM
.SetInternalFunctionAttributes(GlobalDecl(), Fn
, FI
);
3869 StartFunction(FD
, ReturnTy
, Fn
, FI
, args
);
3871 DeclRefExpr
SrcExpr(getContext(), SrcDecl
, false, SrcTy
, VK_PRValue
,
3874 UnaryOperator
*SRC
= UnaryOperator::Create(
3875 C
, &SrcExpr
, UO_Deref
, SrcTy
->getPointeeType(), VK_LValue
, OK_Ordinary
,
3876 SourceLocation(), false, FPOptionsOverride());
3878 CXXConstructExpr
*CXXConstExpr
=
3879 cast
<CXXConstructExpr
>(PID
->getGetterCXXConstructor());
3881 SmallVector
<Expr
*, 4> ConstructorArgs
;
3882 ConstructorArgs
.push_back(SRC
);
3883 ConstructorArgs
.append(std::next(CXXConstExpr
->arg_begin()),
3884 CXXConstExpr
->arg_end());
3886 CXXConstructExpr
*TheCXXConstructExpr
=
3887 CXXConstructExpr::Create(C
, Ty
, SourceLocation(),
3888 CXXConstExpr
->getConstructor(),
3889 CXXConstExpr
->isElidable(),
3891 CXXConstExpr
->hadMultipleCandidates(),
3892 CXXConstExpr
->isListInitialization(),
3893 CXXConstExpr
->isStdInitListInitialization(),
3894 CXXConstExpr
->requiresZeroInitialization(),
3895 CXXConstExpr
->getConstructionKind(),
3898 DeclRefExpr
DstExpr(getContext(), DstDecl
, false, DestTy
, VK_PRValue
,
3901 RValue DV
= EmitAnyExpr(&DstExpr
);
3902 CharUnits Alignment
=
3903 getContext().getTypeAlignInChars(TheCXXConstructExpr
->getType());
3904 EmitAggExpr(TheCXXConstructExpr
,
3905 AggValueSlot::forAddr(
3906 Address(DV
.getScalarVal(), ConvertTypeForMem(Ty
), Alignment
),
3907 Qualifiers(), AggValueSlot::IsDestructed
,
3908 AggValueSlot::DoesNotNeedGCBarriers
,
3909 AggValueSlot::IsNotAliased
, AggValueSlot::DoesNotOverlap
));
3912 HelperFn
= llvm::ConstantExpr::getBitCast(Fn
, VoidPtrTy
);
3913 CGM
.setAtomicGetterHelperFnMap(Ty
, HelperFn
);
3918 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value
*Block
, QualType Ty
) {
3919 // Get selectors for retain/autorelease.
3920 IdentifierInfo
*CopyID
= &getContext().Idents
.get("copy");
3921 Selector CopySelector
=
3922 getContext().Selectors
.getNullarySelector(CopyID
);
3923 IdentifierInfo
*AutoreleaseID
= &getContext().Idents
.get("autorelease");
3924 Selector AutoreleaseSelector
=
3925 getContext().Selectors
.getNullarySelector(AutoreleaseID
);
3927 // Emit calls to retain/autorelease.
3928 CGObjCRuntime
&Runtime
= CGM
.getObjCRuntime();
3929 llvm::Value
*Val
= Block
;
3931 Result
= Runtime
.GenerateMessageSend(*this, ReturnValueSlot(),
3933 Val
, CallArgList(), nullptr, nullptr);
3934 Val
= Result
.getScalarVal();
3935 Result
= Runtime
.GenerateMessageSend(*this, ReturnValueSlot(),
3936 Ty
, AutoreleaseSelector
,
3937 Val
, CallArgList(), nullptr, nullptr);
3938 Val
= Result
.getScalarVal();
3942 static unsigned getBaseMachOPlatformID(const llvm::Triple
&TT
) {
3943 switch (TT
.getOS()) {
3944 case llvm::Triple::Darwin
:
3945 case llvm::Triple::MacOSX
:
3946 return llvm::MachO::PLATFORM_MACOS
;
3947 case llvm::Triple::IOS
:
3948 return llvm::MachO::PLATFORM_IOS
;
3949 case llvm::Triple::TvOS
:
3950 return llvm::MachO::PLATFORM_TVOS
;
3951 case llvm::Triple::WatchOS
:
3952 return llvm::MachO::PLATFORM_WATCHOS
;
3953 case llvm::Triple::DriverKit
:
3954 return llvm::MachO::PLATFORM_DRIVERKIT
;
3956 return llvm::MachO::PLATFORM_UNKNOWN
;
3960 static llvm::Value
*emitIsPlatformVersionAtLeast(CodeGenFunction
&CGF
,
3961 const VersionTuple
&Version
) {
3962 CodeGenModule
&CGM
= CGF
.CGM
;
3963 // Note: we intend to support multi-platform version checks, so reserve
3964 // the room for a dual platform checking invocation that will be
3965 // implemented in the future.
3966 llvm::SmallVector
<llvm::Value
*, 8> Args
;
3968 auto EmitArgs
= [&](const VersionTuple
&Version
, const llvm::Triple
&TT
) {
3969 std::optional
<unsigned> Min
= Version
.getMinor(),
3970 SMin
= Version
.getSubminor();
3972 llvm::ConstantInt::get(CGM
.Int32Ty
, getBaseMachOPlatformID(TT
)));
3973 Args
.push_back(llvm::ConstantInt::get(CGM
.Int32Ty
, Version
.getMajor()));
3974 Args
.push_back(llvm::ConstantInt::get(CGM
.Int32Ty
, Min
.value_or(0)));
3975 Args
.push_back(llvm::ConstantInt::get(CGM
.Int32Ty
, SMin
.value_or(0)));
3978 assert(!Version
.empty() && "unexpected empty version");
3979 EmitArgs(Version
, CGM
.getTarget().getTriple());
3981 if (!CGM
.IsPlatformVersionAtLeastFn
) {
3982 llvm::FunctionType
*FTy
= llvm::FunctionType::get(
3983 CGM
.Int32Ty
, {CGM
.Int32Ty
, CGM
.Int32Ty
, CGM
.Int32Ty
, CGM
.Int32Ty
},
3985 CGM
.IsPlatformVersionAtLeastFn
=
3986 CGM
.CreateRuntimeFunction(FTy
, "__isPlatformVersionAtLeast");
3989 llvm::Value
*Check
=
3990 CGF
.EmitNounwindRuntimeCall(CGM
.IsPlatformVersionAtLeastFn
, Args
);
3991 return CGF
.Builder
.CreateICmpNE(Check
,
3992 llvm::Constant::getNullValue(CGM
.Int32Ty
));
3996 CodeGenFunction::EmitBuiltinAvailable(const VersionTuple
&Version
) {
3997 // Darwin uses the new __isPlatformVersionAtLeast family of routines.
3998 if (CGM
.getTarget().getTriple().isOSDarwin())
3999 return emitIsPlatformVersionAtLeast(*this, Version
);
4001 if (!CGM
.IsOSVersionAtLeastFn
) {
4002 llvm::FunctionType
*FTy
=
4003 llvm::FunctionType::get(Int32Ty
, {Int32Ty
, Int32Ty
, Int32Ty
}, false);
4004 CGM
.IsOSVersionAtLeastFn
=
4005 CGM
.CreateRuntimeFunction(FTy
, "__isOSVersionAtLeast");
4008 std::optional
<unsigned> Min
= Version
.getMinor(),
4009 SMin
= Version
.getSubminor();
4010 llvm::Value
*Args
[] = {
4011 llvm::ConstantInt::get(CGM
.Int32Ty
, Version
.getMajor()),
4012 llvm::ConstantInt::get(CGM
.Int32Ty
, Min
.value_or(0)),
4013 llvm::ConstantInt::get(CGM
.Int32Ty
, SMin
.value_or(0))};
4015 llvm::Value
*CallRes
=
4016 EmitNounwindRuntimeCall(CGM
.IsOSVersionAtLeastFn
, Args
);
4018 return Builder
.CreateICmpNE(CallRes
, llvm::Constant::getNullValue(Int32Ty
));
4021 static bool isFoundationNeededForDarwinAvailabilityCheck(
4022 const llvm::Triple
&TT
, const VersionTuple
&TargetVersion
) {
4023 VersionTuple FoundationDroppedInVersion
;
4024 switch (TT
.getOS()) {
4025 case llvm::Triple::IOS
:
4026 case llvm::Triple::TvOS
:
4027 FoundationDroppedInVersion
= VersionTuple(/*Major=*/13);
4029 case llvm::Triple::WatchOS
:
4030 FoundationDroppedInVersion
= VersionTuple(/*Major=*/6);
4032 case llvm::Triple::Darwin
:
4033 case llvm::Triple::MacOSX
:
4034 FoundationDroppedInVersion
= VersionTuple(/*Major=*/10, /*Minor=*/15);
4036 case llvm::Triple::DriverKit
:
4037 // DriverKit doesn't need Foundation.
4040 llvm_unreachable("Unexpected OS");
4042 return TargetVersion
< FoundationDroppedInVersion
;
4045 void CodeGenModule::emitAtAvailableLinkGuard() {
4046 if (!IsPlatformVersionAtLeastFn
)
4048 // @available requires CoreFoundation only on Darwin.
4049 if (!Target
.getTriple().isOSDarwin())
4051 // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or
4053 if (!isFoundationNeededForDarwinAvailabilityCheck(
4054 Target
.getTriple(), Target
.getPlatformMinVersion()))
4056 // Add -framework CoreFoundation to the linker commands. We still want to
4057 // emit the core foundation reference down below because otherwise if
4058 // CoreFoundation is not used in the code, the linker won't link the
4060 auto &Context
= getLLVMContext();
4061 llvm::Metadata
*Args
[2] = {llvm::MDString::get(Context
, "-framework"),
4062 llvm::MDString::get(Context
, "CoreFoundation")};
4063 LinkerOptionsMetadata
.push_back(llvm::MDNode::get(Context
, Args
));
4064 // Emit a reference to a symbol from CoreFoundation to ensure that
4065 // CoreFoundation is linked into the final binary.
4066 llvm::FunctionType
*FTy
=
4067 llvm::FunctionType::get(Int32Ty
, {VoidPtrTy
}, false);
4068 llvm::FunctionCallee CFFunc
=
4069 CreateRuntimeFunction(FTy
, "CFBundleGetVersionNumber");
4071 llvm::FunctionType
*CheckFTy
= llvm::FunctionType::get(VoidTy
, {}, false);
4072 llvm::FunctionCallee CFLinkCheckFuncRef
= CreateRuntimeFunction(
4073 CheckFTy
, "__clang_at_available_requires_core_foundation_framework",
4074 llvm::AttributeList(), /*Local=*/true);
4075 llvm::Function
*CFLinkCheckFunc
=
4076 cast
<llvm::Function
>(CFLinkCheckFuncRef
.getCallee()->stripPointerCasts());
4077 if (CFLinkCheckFunc
->empty()) {
4078 CFLinkCheckFunc
->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage
);
4079 CFLinkCheckFunc
->setVisibility(llvm::GlobalValue::HiddenVisibility
);
4080 CodeGenFunction
CGF(*this);
4081 CGF
.Builder
.SetInsertPoint(CGF
.createBasicBlock("", CFLinkCheckFunc
));
4082 CGF
.EmitNounwindRuntimeCall(CFFunc
,
4083 llvm::Constant::getNullValue(VoidPtrTy
));
4084 CGF
.Builder
.CreateUnreachable();
4085 addCompilerUsedGlobal(CFLinkCheckFunc
);
4089 CGObjCRuntime::~CGObjCRuntime() {}