[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / clang / lib / CodeGen / CGObjCGNU.cpp
blob0d2e74267e46c2958be3a3414dfd14b4674066a5
1 //===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides Objective-C code generation targeting the GNU runtime. The
10 // class in this file generates structures used by the GNU Objective-C runtime
11 // library. These structures are defined in objc/objc.h and objc/objc-api.h in
12 // the GNU runtime distribution.
14 //===----------------------------------------------------------------------===//
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGObjCRuntime.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Attr.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/RecordLayout.h"
26 #include "clang/AST/StmtObjC.h"
27 #include "clang/Basic/FileManager.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/CodeGen/ConstantInitBuilder.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/StringMap.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/ConvertUTF.h"
38 #include <cctype>
40 using namespace clang;
41 using namespace CodeGen;
43 namespace {
45 /// Class that lazily initialises the runtime function. Avoids inserting the
46 /// types and the function declaration into a module if they're not used, and
47 /// avoids constructing the type more than once if it's used more than once.
48 class LazyRuntimeFunction {
49 CodeGenModule *CGM = nullptr;
50 llvm::FunctionType *FTy = nullptr;
51 const char *FunctionName = nullptr;
52 llvm::FunctionCallee Function = nullptr;
54 public:
55 LazyRuntimeFunction() = default;
57 /// Initialises the lazy function with the name, return type, and the types
58 /// of the arguments.
59 template <typename... Tys>
60 void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy,
61 Tys *... Types) {
62 CGM = Mod;
63 FunctionName = name;
64 Function = nullptr;
65 if(sizeof...(Tys)) {
66 SmallVector<llvm::Type *, 8> ArgTys({Types...});
67 FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
69 else {
70 FTy = llvm::FunctionType::get(RetTy, std::nullopt, false);
74 llvm::FunctionType *getType() { return FTy; }
76 /// Overloaded cast operator, allows the class to be implicitly cast to an
77 /// LLVM constant.
78 operator llvm::FunctionCallee() {
79 if (!Function) {
80 if (!FunctionName)
81 return nullptr;
82 Function = CGM->CreateRuntimeFunction(FTy, FunctionName);
84 return Function;
89 /// GNU Objective-C runtime code generation. This class implements the parts of
90 /// Objective-C support that are specific to the GNU family of runtimes (GCC,
91 /// GNUstep and ObjFW).
92 class CGObjCGNU : public CGObjCRuntime {
93 protected:
94 /// The LLVM module into which output is inserted
95 llvm::Module &TheModule;
96 /// strut objc_super. Used for sending messages to super. This structure
97 /// contains the receiver (object) and the expected class.
98 llvm::StructType *ObjCSuperTy;
99 /// struct objc_super*. The type of the argument to the superclass message
100 /// lookup functions.
101 llvm::PointerType *PtrToObjCSuperTy;
102 /// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring
103 /// SEL is included in a header somewhere, in which case it will be whatever
104 /// type is declared in that header, most likely {i8*, i8*}.
105 llvm::PointerType *SelectorTy;
106 /// Element type of SelectorTy.
107 llvm::Type *SelectorElemTy;
108 /// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the
109 /// places where it's used
110 llvm::IntegerType *Int8Ty;
111 /// Pointer to i8 - LLVM type of char*, for all of the places where the
112 /// runtime needs to deal with C strings.
113 llvm::PointerType *PtrToInt8Ty;
114 /// struct objc_protocol type
115 llvm::StructType *ProtocolTy;
116 /// Protocol * type.
117 llvm::PointerType *ProtocolPtrTy;
118 /// Instance Method Pointer type. This is a pointer to a function that takes,
119 /// at a minimum, an object and a selector, and is the generic type for
120 /// Objective-C methods. Due to differences between variadic / non-variadic
121 /// calling conventions, it must always be cast to the correct type before
122 /// actually being used.
123 llvm::PointerType *IMPTy;
124 /// Type of an untyped Objective-C object. Clang treats id as a built-in type
125 /// when compiling Objective-C code, so this may be an opaque pointer (i8*),
126 /// but if the runtime header declaring it is included then it may be a
127 /// pointer to a structure.
128 llvm::PointerType *IdTy;
129 /// Element type of IdTy.
130 llvm::Type *IdElemTy;
131 /// Pointer to a pointer to an Objective-C object. Used in the new ABI
132 /// message lookup function and some GC-related functions.
133 llvm::PointerType *PtrToIdTy;
134 /// The clang type of id. Used when using the clang CGCall infrastructure to
135 /// call Objective-C methods.
136 CanQualType ASTIdTy;
137 /// LLVM type for C int type.
138 llvm::IntegerType *IntTy;
139 /// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is
140 /// used in the code to document the difference between i8* meaning a pointer
141 /// to a C string and i8* meaning a pointer to some opaque type.
142 llvm::PointerType *PtrTy;
143 /// LLVM type for C long type. The runtime uses this in a lot of places where
144 /// it should be using intptr_t, but we can't fix this without breaking
145 /// compatibility with GCC...
146 llvm::IntegerType *LongTy;
147 /// LLVM type for C size_t. Used in various runtime data structures.
148 llvm::IntegerType *SizeTy;
149 /// LLVM type for C intptr_t.
150 llvm::IntegerType *IntPtrTy;
151 /// LLVM type for C ptrdiff_t. Mainly used in property accessor functions.
152 llvm::IntegerType *PtrDiffTy;
153 /// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance
154 /// variables.
155 llvm::PointerType *PtrToIntTy;
156 /// LLVM type for Objective-C BOOL type.
157 llvm::Type *BoolTy;
158 /// 32-bit integer type, to save us needing to look it up every time it's used.
159 llvm::IntegerType *Int32Ty;
160 /// 64-bit integer type, to save us needing to look it up every time it's used.
161 llvm::IntegerType *Int64Ty;
162 /// The type of struct objc_property.
163 llvm::StructType *PropertyMetadataTy;
164 /// Metadata kind used to tie method lookups to message sends. The GNUstep
165 /// runtime provides some LLVM passes that can use this to do things like
166 /// automatic IMP caching and speculative inlining.
167 unsigned msgSendMDKind;
168 /// Does the current target use SEH-based exceptions? False implies
169 /// Itanium-style DWARF unwinding.
170 bool usesSEHExceptions;
172 /// Helper to check if we are targeting a specific runtime version or later.
173 bool isRuntime(ObjCRuntime::Kind kind, unsigned major, unsigned minor=0) {
174 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
175 return (R.getKind() == kind) &&
176 (R.getVersion() >= VersionTuple(major, minor));
179 std::string ManglePublicSymbol(StringRef Name) {
180 return (StringRef(CGM.getTriple().isOSBinFormatCOFF() ? "$_" : "._") + Name).str();
183 std::string SymbolForProtocol(Twine Name) {
184 return (ManglePublicSymbol("OBJC_PROTOCOL_") + Name).str();
187 std::string SymbolForProtocolRef(StringRef Name) {
188 return (ManglePublicSymbol("OBJC_REF_PROTOCOL_") + Name).str();
192 /// Helper function that generates a constant string and returns a pointer to
193 /// the start of the string. The result of this function can be used anywhere
194 /// where the C code specifies const char*.
195 llvm::Constant *MakeConstantString(StringRef Str, const char *Name = "") {
196 ConstantAddress Array =
197 CGM.GetAddrOfConstantCString(std::string(Str), Name);
198 return llvm::ConstantExpr::getGetElementPtr(Array.getElementType(),
199 Array.getPointer(), Zeros);
202 /// Emits a linkonce_odr string, whose name is the prefix followed by the
203 /// string value. This allows the linker to combine the strings between
204 /// different modules. Used for EH typeinfo names, selector strings, and a
205 /// few other things.
206 llvm::Constant *ExportUniqueString(const std::string &Str,
207 const std::string &prefix,
208 bool Private=false) {
209 std::string name = prefix + Str;
210 auto *ConstStr = TheModule.getGlobalVariable(name);
211 if (!ConstStr) {
212 llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str);
213 auto *GV = new llvm::GlobalVariable(TheModule, value->getType(), true,
214 llvm::GlobalValue::LinkOnceODRLinkage, value, name);
215 GV->setComdat(TheModule.getOrInsertComdat(name));
216 if (Private)
217 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
218 ConstStr = GV;
220 return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(),
221 ConstStr, Zeros);
224 /// Returns a property name and encoding string.
225 llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD,
226 const Decl *Container) {
227 assert(!isRuntime(ObjCRuntime::GNUstep, 2));
228 if (isRuntime(ObjCRuntime::GNUstep, 1, 6)) {
229 std::string NameAndAttributes;
230 std::string TypeStr =
231 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container);
232 NameAndAttributes += '\0';
233 NameAndAttributes += TypeStr.length() + 3;
234 NameAndAttributes += TypeStr;
235 NameAndAttributes += '\0';
236 NameAndAttributes += PD->getNameAsString();
237 return MakeConstantString(NameAndAttributes);
239 return MakeConstantString(PD->getNameAsString());
242 /// Push the property attributes into two structure fields.
243 void PushPropertyAttributes(ConstantStructBuilder &Fields,
244 const ObjCPropertyDecl *property, bool isSynthesized=true, bool
245 isDynamic=true) {
246 int attrs = property->getPropertyAttributes();
247 // For read-only properties, clear the copy and retain flags
248 if (attrs & ObjCPropertyAttribute::kind_readonly) {
249 attrs &= ~ObjCPropertyAttribute::kind_copy;
250 attrs &= ~ObjCPropertyAttribute::kind_retain;
251 attrs &= ~ObjCPropertyAttribute::kind_weak;
252 attrs &= ~ObjCPropertyAttribute::kind_strong;
254 // The first flags field has the same attribute values as clang uses internally
255 Fields.addInt(Int8Ty, attrs & 0xff);
256 attrs >>= 8;
257 attrs <<= 2;
258 // For protocol properties, synthesized and dynamic have no meaning, so we
259 // reuse these flags to indicate that this is a protocol property (both set
260 // has no meaning, as a property can't be both synthesized and dynamic)
261 attrs |= isSynthesized ? (1<<0) : 0;
262 attrs |= isDynamic ? (1<<1) : 0;
263 // The second field is the next four fields left shifted by two, with the
264 // low bit set to indicate whether the field is synthesized or dynamic.
265 Fields.addInt(Int8Ty, attrs & 0xff);
266 // Two padding fields
267 Fields.addInt(Int8Ty, 0);
268 Fields.addInt(Int8Ty, 0);
271 virtual llvm::Constant *GenerateCategoryProtocolList(const
272 ObjCCategoryDecl *OCD);
273 virtual ConstantArrayBuilder PushPropertyListHeader(ConstantStructBuilder &Fields,
274 int count) {
275 // int count;
276 Fields.addInt(IntTy, count);
277 // int size; (only in GNUstep v2 ABI.
278 if (isRuntime(ObjCRuntime::GNUstep, 2)) {
279 llvm::DataLayout td(&TheModule);
280 Fields.addInt(IntTy, td.getTypeSizeInBits(PropertyMetadataTy) /
281 CGM.getContext().getCharWidth());
283 // struct objc_property_list *next;
284 Fields.add(NULLPtr);
285 // struct objc_property properties[]
286 return Fields.beginArray(PropertyMetadataTy);
288 virtual void PushProperty(ConstantArrayBuilder &PropertiesArray,
289 const ObjCPropertyDecl *property,
290 const Decl *OCD,
291 bool isSynthesized=true, bool
292 isDynamic=true) {
293 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
294 ASTContext &Context = CGM.getContext();
295 Fields.add(MakePropertyEncodingString(property, OCD));
296 PushPropertyAttributes(Fields, property, isSynthesized, isDynamic);
297 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
298 if (accessor) {
299 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
300 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
301 Fields.add(MakeConstantString(accessor->getSelector().getAsString()));
302 Fields.add(TypeEncoding);
303 } else {
304 Fields.add(NULLPtr);
305 Fields.add(NULLPtr);
308 addPropertyMethod(property->getGetterMethodDecl());
309 addPropertyMethod(property->getSetterMethodDecl());
310 Fields.finishAndAddTo(PropertiesArray);
313 /// Ensures that the value has the required type, by inserting a bitcast if
314 /// required. This function lets us avoid inserting bitcasts that are
315 /// redundant.
316 llvm::Value *EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) {
317 if (V->getType() == Ty)
318 return V;
319 return B.CreateBitCast(V, Ty);
322 // Some zeros used for GEPs in lots of places.
323 llvm::Constant *Zeros[2];
324 /// Null pointer value. Mainly used as a terminator in various arrays.
325 llvm::Constant *NULLPtr;
326 /// LLVM context.
327 llvm::LLVMContext &VMContext;
329 protected:
331 /// Placeholder for the class. Lots of things refer to the class before we've
332 /// actually emitted it. We use this alias as a placeholder, and then replace
333 /// it with a pointer to the class structure before finally emitting the
334 /// module.
335 llvm::GlobalAlias *ClassPtrAlias;
336 /// Placeholder for the metaclass. Lots of things refer to the class before
337 /// we've / actually emitted it. We use this alias as a placeholder, and then
338 /// replace / it with a pointer to the metaclass structure before finally
339 /// emitting the / module.
340 llvm::GlobalAlias *MetaClassPtrAlias;
341 /// All of the classes that have been generated for this compilation units.
342 std::vector<llvm::Constant*> Classes;
343 /// All of the categories that have been generated for this compilation units.
344 std::vector<llvm::Constant*> Categories;
345 /// All of the Objective-C constant strings that have been generated for this
346 /// compilation units.
347 std::vector<llvm::Constant*> ConstantStrings;
348 /// Map from string values to Objective-C constant strings in the output.
349 /// Used to prevent emitting Objective-C strings more than once. This should
350 /// not be required at all - CodeGenModule should manage this list.
351 llvm::StringMap<llvm::Constant*> ObjCStrings;
352 /// All of the protocols that have been declared.
353 llvm::StringMap<llvm::Constant*> ExistingProtocols;
354 /// For each variant of a selector, we store the type encoding and a
355 /// placeholder value. For an untyped selector, the type will be the empty
356 /// string. Selector references are all done via the module's selector table,
357 /// so we create an alias as a placeholder and then replace it with the real
358 /// value later.
359 typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
360 /// Type of the selector map. This is roughly equivalent to the structure
361 /// used in the GNUstep runtime, which maintains a list of all of the valid
362 /// types for a selector in a table.
363 typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
364 SelectorMap;
365 /// A map from selectors to selector types. This allows us to emit all
366 /// selectors of the same name and type together.
367 SelectorMap SelectorTable;
369 /// Selectors related to memory management. When compiling in GC mode, we
370 /// omit these.
371 Selector RetainSel, ReleaseSel, AutoreleaseSel;
372 /// Runtime functions used for memory management in GC mode. Note that clang
373 /// supports code generation for calling these functions, but neither GNU
374 /// runtime actually supports this API properly yet.
375 LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn,
376 WeakAssignFn, GlobalAssignFn;
378 typedef std::pair<std::string, std::string> ClassAliasPair;
379 /// All classes that have aliases set for them.
380 std::vector<ClassAliasPair> ClassAliases;
382 protected:
383 /// Function used for throwing Objective-C exceptions.
384 LazyRuntimeFunction ExceptionThrowFn;
385 /// Function used for rethrowing exceptions, used at the end of \@finally or
386 /// \@synchronize blocks.
387 LazyRuntimeFunction ExceptionReThrowFn;
388 /// Function called when entering a catch function. This is required for
389 /// differentiating Objective-C exceptions and foreign exceptions.
390 LazyRuntimeFunction EnterCatchFn;
391 /// Function called when exiting from a catch block. Used to do exception
392 /// cleanup.
393 LazyRuntimeFunction ExitCatchFn;
394 /// Function called when entering an \@synchronize block. Acquires the lock.
395 LazyRuntimeFunction SyncEnterFn;
396 /// Function called when exiting an \@synchronize block. Releases the lock.
397 LazyRuntimeFunction SyncExitFn;
399 private:
400 /// Function called if fast enumeration detects that the collection is
401 /// modified during the update.
402 LazyRuntimeFunction EnumerationMutationFn;
403 /// Function for implementing synthesized property getters that return an
404 /// object.
405 LazyRuntimeFunction GetPropertyFn;
406 /// Function for implementing synthesized property setters that return an
407 /// object.
408 LazyRuntimeFunction SetPropertyFn;
409 /// Function used for non-object declared property getters.
410 LazyRuntimeFunction GetStructPropertyFn;
411 /// Function used for non-object declared property setters.
412 LazyRuntimeFunction SetStructPropertyFn;
414 protected:
415 /// The version of the runtime that this class targets. Must match the
416 /// version in the runtime.
417 int RuntimeVersion;
418 /// The version of the protocol class. Used to differentiate between ObjC1
419 /// and ObjC2 protocols. Objective-C 1 protocols can not contain optional
420 /// components and can not contain declared properties. We always emit
421 /// Objective-C 2 property structures, but we have to pretend that they're
422 /// Objective-C 1 property structures when targeting the GCC runtime or it
423 /// will abort.
424 const int ProtocolVersion;
425 /// The version of the class ABI. This value is used in the class structure
426 /// and indicates how various fields should be interpreted.
427 const int ClassABIVersion;
428 /// Generates an instance variable list structure. This is a structure
429 /// containing a size and an array of structures containing instance variable
430 /// metadata. This is used purely for introspection in the fragile ABI. In
431 /// the non-fragile ABI, it's used for instance variable fixup.
432 virtual llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
433 ArrayRef<llvm::Constant *> IvarTypes,
434 ArrayRef<llvm::Constant *> IvarOffsets,
435 ArrayRef<llvm::Constant *> IvarAlign,
436 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership);
438 /// Generates a method list structure. This is a structure containing a size
439 /// and an array of structures containing method metadata.
441 /// This structure is used by both classes and categories, and contains a next
442 /// pointer allowing them to be chained together in a linked list.
443 llvm::Constant *GenerateMethodList(StringRef ClassName,
444 StringRef CategoryName,
445 ArrayRef<const ObjCMethodDecl*> Methods,
446 bool isClassMethodList);
448 /// Emits an empty protocol. This is used for \@protocol() where no protocol
449 /// is found. The runtime will (hopefully) fix up the pointer to refer to the
450 /// real protocol.
451 virtual llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName);
453 /// Generates a list of property metadata structures. This follows the same
454 /// pattern as method and instance variable metadata lists.
455 llvm::Constant *GeneratePropertyList(const Decl *Container,
456 const ObjCContainerDecl *OCD,
457 bool isClassProperty=false,
458 bool protocolOptionalProperties=false);
460 /// Generates a list of referenced protocols. Classes, categories, and
461 /// protocols all use this structure.
462 llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols);
464 /// To ensure that all protocols are seen by the runtime, we add a category on
465 /// a class defined in the runtime, declaring no methods, but adopting the
466 /// protocols. This is a horribly ugly hack, but it allows us to collect all
467 /// of the protocols without changing the ABI.
468 void GenerateProtocolHolderCategory();
470 /// Generates a class structure.
471 llvm::Constant *GenerateClassStructure(
472 llvm::Constant *MetaClass,
473 llvm::Constant *SuperClass,
474 unsigned info,
475 const char *Name,
476 llvm::Constant *Version,
477 llvm::Constant *InstanceSize,
478 llvm::Constant *IVars,
479 llvm::Constant *Methods,
480 llvm::Constant *Protocols,
481 llvm::Constant *IvarOffsets,
482 llvm::Constant *Properties,
483 llvm::Constant *StrongIvarBitmap,
484 llvm::Constant *WeakIvarBitmap,
485 bool isMeta=false);
487 /// Generates a method list. This is used by protocols to define the required
488 /// and optional methods.
489 virtual llvm::Constant *GenerateProtocolMethodList(
490 ArrayRef<const ObjCMethodDecl*> Methods);
491 /// Emits optional and required method lists.
492 template<class T>
493 void EmitProtocolMethodList(T &&Methods, llvm::Constant *&Required,
494 llvm::Constant *&Optional) {
495 SmallVector<const ObjCMethodDecl*, 16> RequiredMethods;
496 SmallVector<const ObjCMethodDecl*, 16> OptionalMethods;
497 for (const auto *I : Methods)
498 if (I->isOptional())
499 OptionalMethods.push_back(I);
500 else
501 RequiredMethods.push_back(I);
502 Required = GenerateProtocolMethodList(RequiredMethods);
503 Optional = GenerateProtocolMethodList(OptionalMethods);
506 /// Returns a selector with the specified type encoding. An empty string is
507 /// used to return an untyped selector (with the types field set to NULL).
508 virtual llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
509 const std::string &TypeEncoding);
511 /// Returns the name of ivar offset variables. In the GNUstep v1 ABI, this
512 /// contains the class and ivar names, in the v2 ABI this contains the type
513 /// encoding as well.
514 virtual std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
515 const ObjCIvarDecl *Ivar) {
516 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
517 + '.' + Ivar->getNameAsString();
518 return Name;
520 /// Returns the variable used to store the offset of an instance variable.
521 llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
522 const ObjCIvarDecl *Ivar);
523 /// Emits a reference to a class. This allows the linker to object if there
524 /// is no class of the matching name.
525 void EmitClassRef(const std::string &className);
527 /// Emits a pointer to the named class
528 virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF,
529 const std::string &Name, bool isWeak);
531 /// Looks up the method for sending a message to the specified object. This
532 /// mechanism differs between the GCC and GNU runtimes, so this method must be
533 /// overridden in subclasses.
534 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
535 llvm::Value *&Receiver,
536 llvm::Value *cmd,
537 llvm::MDNode *node,
538 MessageSendInfo &MSI) = 0;
540 /// Looks up the method for sending a message to a superclass. This
541 /// mechanism differs between the GCC and GNU runtimes, so this method must
542 /// be overridden in subclasses.
543 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
544 Address ObjCSuper,
545 llvm::Value *cmd,
546 MessageSendInfo &MSI) = 0;
548 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
549 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
550 /// bits set to their values, LSB first, while larger ones are stored in a
551 /// structure of this / form:
553 /// struct { int32_t length; int32_t values[length]; };
555 /// The values in the array are stored in host-endian format, with the least
556 /// significant bit being assumed to come first in the bitfield. Therefore,
557 /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
558 /// while a bitfield / with the 63rd bit set will be 1<<64.
559 llvm::Constant *MakeBitField(ArrayRef<bool> bits);
561 public:
562 CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
563 unsigned protocolClassVersion, unsigned classABI=1);
565 ConstantAddress GenerateConstantString(const StringLiteral *) override;
567 RValue
568 GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return,
569 QualType ResultType, Selector Sel,
570 llvm::Value *Receiver, const CallArgList &CallArgs,
571 const ObjCInterfaceDecl *Class,
572 const ObjCMethodDecl *Method) override;
573 RValue
574 GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return,
575 QualType ResultType, Selector Sel,
576 const ObjCInterfaceDecl *Class,
577 bool isCategoryImpl, llvm::Value *Receiver,
578 bool IsClassMessage, const CallArgList &CallArgs,
579 const ObjCMethodDecl *Method) override;
580 llvm::Value *GetClass(CodeGenFunction &CGF,
581 const ObjCInterfaceDecl *OID) override;
582 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override;
583 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override;
584 llvm::Value *GetSelector(CodeGenFunction &CGF,
585 const ObjCMethodDecl *Method) override;
586 virtual llvm::Constant *GetConstantSelector(Selector Sel,
587 const std::string &TypeEncoding) {
588 llvm_unreachable("Runtime unable to generate constant selector");
590 llvm::Constant *GetConstantSelector(const ObjCMethodDecl *M) {
591 return GetConstantSelector(M->getSelector(),
592 CGM.getContext().getObjCEncodingForMethodDecl(M));
594 llvm::Constant *GetEHType(QualType T) override;
596 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
597 const ObjCContainerDecl *CD) override;
598 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn,
599 const ObjCMethodDecl *OMD,
600 const ObjCContainerDecl *CD) override;
601 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
602 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
603 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override;
604 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
605 const ObjCProtocolDecl *PD) override;
606 void GenerateProtocol(const ObjCProtocolDecl *PD) override;
608 virtual llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD);
610 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override {
611 return GenerateProtocolRef(PD);
614 llvm::Function *ModuleInitFunction() override;
615 llvm::FunctionCallee GetPropertyGetFunction() override;
616 llvm::FunctionCallee GetPropertySetFunction() override;
617 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
618 bool copy) override;
619 llvm::FunctionCallee GetSetStructFunction() override;
620 llvm::FunctionCallee GetGetStructFunction() override;
621 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override;
622 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override;
623 llvm::FunctionCallee EnumerationMutationFunction() override;
625 void EmitTryStmt(CodeGenFunction &CGF,
626 const ObjCAtTryStmt &S) override;
627 void EmitSynchronizedStmt(CodeGenFunction &CGF,
628 const ObjCAtSynchronizedStmt &S) override;
629 void EmitThrowStmt(CodeGenFunction &CGF,
630 const ObjCAtThrowStmt &S,
631 bool ClearInsertionPoint=true) override;
632 llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
633 Address AddrWeakObj) override;
634 void EmitObjCWeakAssign(CodeGenFunction &CGF,
635 llvm::Value *src, Address dst) override;
636 void EmitObjCGlobalAssign(CodeGenFunction &CGF,
637 llvm::Value *src, Address dest,
638 bool threadlocal=false) override;
639 void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src,
640 Address dest, llvm::Value *ivarOffset) override;
641 void EmitObjCStrongCastAssign(CodeGenFunction &CGF,
642 llvm::Value *src, Address dest) override;
643 void EmitGCMemmoveCollectable(CodeGenFunction &CGF, Address DestPtr,
644 Address SrcPtr,
645 llvm::Value *Size) override;
646 LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy,
647 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
648 unsigned CVRQualifiers) override;
649 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
650 const ObjCInterfaceDecl *Interface,
651 const ObjCIvarDecl *Ivar) override;
652 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
653 llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
654 const CGBlockInfo &blockInfo) override {
655 return NULLPtr;
657 llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM,
658 const CGBlockInfo &blockInfo) override {
659 return NULLPtr;
662 llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override {
663 return NULLPtr;
667 /// Class representing the legacy GCC Objective-C ABI. This is the default when
668 /// -fobjc-nonfragile-abi is not specified.
670 /// The GCC ABI target actually generates code that is approximately compatible
671 /// with the new GNUstep runtime ABI, but refrains from using any features that
672 /// would not work with the GCC runtime. For example, clang always generates
673 /// the extended form of the class structure, and the extra fields are simply
674 /// ignored by GCC libobjc.
675 class CGObjCGCC : public CGObjCGNU {
676 /// The GCC ABI message lookup function. Returns an IMP pointing to the
677 /// method implementation for this message.
678 LazyRuntimeFunction MsgLookupFn;
679 /// The GCC ABI superclass message lookup function. Takes a pointer to a
680 /// structure describing the receiver and the class, and a selector as
681 /// arguments. Returns the IMP for the corresponding method.
682 LazyRuntimeFunction MsgLookupSuperFn;
684 protected:
685 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
686 llvm::Value *cmd, llvm::MDNode *node,
687 MessageSendInfo &MSI) override {
688 CGBuilderTy &Builder = CGF.Builder;
689 llvm::Value *args[] = {
690 EnforceType(Builder, Receiver, IdTy),
691 EnforceType(Builder, cmd, SelectorTy) };
692 llvm::CallBase *imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
693 imp->setMetadata(msgSendMDKind, node);
694 return imp;
697 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
698 llvm::Value *cmd, MessageSendInfo &MSI) override {
699 CGBuilderTy &Builder = CGF.Builder;
700 llvm::Value *lookupArgs[] = {
701 EnforceType(Builder, ObjCSuper.getPointer(), PtrToObjCSuperTy), cmd};
702 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
705 public:
706 CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
707 // IMP objc_msg_lookup(id, SEL);
708 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
709 // IMP objc_msg_lookup_super(struct objc_super*, SEL);
710 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
711 PtrToObjCSuperTy, SelectorTy);
715 /// Class used when targeting the new GNUstep runtime ABI.
716 class CGObjCGNUstep : public CGObjCGNU {
717 /// The slot lookup function. Returns a pointer to a cacheable structure
718 /// that contains (among other things) the IMP.
719 LazyRuntimeFunction SlotLookupFn;
720 /// The GNUstep ABI superclass message lookup function. Takes a pointer to
721 /// a structure describing the receiver and the class, and a selector as
722 /// arguments. Returns the slot for the corresponding method. Superclass
723 /// message lookup rarely changes, so this is a good caching opportunity.
724 LazyRuntimeFunction SlotLookupSuperFn;
725 /// Specialised function for setting atomic retain properties
726 LazyRuntimeFunction SetPropertyAtomic;
727 /// Specialised function for setting atomic copy properties
728 LazyRuntimeFunction SetPropertyAtomicCopy;
729 /// Specialised function for setting nonatomic retain properties
730 LazyRuntimeFunction SetPropertyNonAtomic;
731 /// Specialised function for setting nonatomic copy properties
732 LazyRuntimeFunction SetPropertyNonAtomicCopy;
733 /// Function to perform atomic copies of C++ objects with nontrivial copy
734 /// constructors from Objective-C ivars.
735 LazyRuntimeFunction CxxAtomicObjectGetFn;
736 /// Function to perform atomic copies of C++ objects with nontrivial copy
737 /// constructors to Objective-C ivars.
738 LazyRuntimeFunction CxxAtomicObjectSetFn;
739 /// Type of a slot structure pointer. This is returned by the various
740 /// lookup functions.
741 llvm::Type *SlotTy;
742 /// Type of a slot structure.
743 llvm::Type *SlotStructTy;
745 public:
746 llvm::Constant *GetEHType(QualType T) override;
748 protected:
749 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
750 llvm::Value *cmd, llvm::MDNode *node,
751 MessageSendInfo &MSI) override {
752 CGBuilderTy &Builder = CGF.Builder;
753 llvm::FunctionCallee LookupFn = SlotLookupFn;
755 // Store the receiver on the stack so that we can reload it later
756 Address ReceiverPtr =
757 CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign());
758 Builder.CreateStore(Receiver, ReceiverPtr);
760 llvm::Value *self;
762 if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
763 self = CGF.LoadObjCSelf();
764 } else {
765 self = llvm::ConstantPointerNull::get(IdTy);
768 // The lookup function is guaranteed not to capture the receiver pointer.
769 if (auto *LookupFn2 = dyn_cast<llvm::Function>(LookupFn.getCallee()))
770 LookupFn2->addParamAttr(0, llvm::Attribute::NoCapture);
772 llvm::Value *args[] = {
773 EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy),
774 EnforceType(Builder, cmd, SelectorTy),
775 EnforceType(Builder, self, IdTy) };
776 llvm::CallBase *slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args);
777 slot->setOnlyReadsMemory();
778 slot->setMetadata(msgSendMDKind, node);
780 // Load the imp from the slot
781 llvm::Value *imp = Builder.CreateAlignedLoad(
782 IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4),
783 CGF.getPointerAlign());
785 // The lookup function may have changed the receiver, so make sure we use
786 // the new one.
787 Receiver = Builder.CreateLoad(ReceiverPtr, true);
788 return imp;
791 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
792 llvm::Value *cmd,
793 MessageSendInfo &MSI) override {
794 CGBuilderTy &Builder = CGF.Builder;
795 llvm::Value *lookupArgs[] = {ObjCSuper.getPointer(), cmd};
797 llvm::CallInst *slot =
798 CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs);
799 slot->setOnlyReadsMemory();
801 return Builder.CreateAlignedLoad(
802 IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4),
803 CGF.getPointerAlign());
806 public:
807 CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 9, 3, 1) {}
808 CGObjCGNUstep(CodeGenModule &Mod, unsigned ABI, unsigned ProtocolABI,
809 unsigned ClassABI) :
810 CGObjCGNU(Mod, ABI, ProtocolABI, ClassABI) {
811 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
813 SlotStructTy = llvm::StructType::get(PtrTy, PtrTy, PtrTy, IntTy, IMPTy);
814 SlotTy = llvm::PointerType::getUnqual(SlotStructTy);
815 // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
816 SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
817 SelectorTy, IdTy);
818 // Slot_t objc_slot_lookup_super(struct objc_super*, SEL);
819 SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
820 PtrToObjCSuperTy, SelectorTy);
821 // If we're in ObjC++ mode, then we want to make
822 if (usesSEHExceptions) {
823 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
824 // void objc_exception_rethrow(void)
825 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy);
826 } else if (CGM.getLangOpts().CPlusPlus) {
827 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
828 // void *__cxa_begin_catch(void *e)
829 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy);
830 // void __cxa_end_catch(void)
831 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy);
832 // void _Unwind_Resume_or_Rethrow(void*)
833 ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy,
834 PtrTy);
835 } else if (R.getVersion() >= VersionTuple(1, 7)) {
836 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
837 // id objc_begin_catch(void *e)
838 EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy);
839 // void objc_end_catch(void)
840 ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy);
841 // void _Unwind_Resume_or_Rethrow(void*)
842 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy, PtrTy);
844 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
845 SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy,
846 SelectorTy, IdTy, PtrDiffTy);
847 SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy,
848 IdTy, SelectorTy, IdTy, PtrDiffTy);
849 SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy,
850 IdTy, SelectorTy, IdTy, PtrDiffTy);
851 SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy",
852 VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy);
853 // void objc_setCppObjectAtomic(void *dest, const void *src, void
854 // *helper);
855 CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy,
856 PtrTy, PtrTy);
857 // void objc_getCppObjectAtomic(void *dest, const void *src, void
858 // *helper);
859 CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy,
860 PtrTy, PtrTy);
863 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override {
864 // The optimised functions were added in version 1.7 of the GNUstep
865 // runtime.
866 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
867 VersionTuple(1, 7));
868 return CxxAtomicObjectGetFn;
871 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override {
872 // The optimised functions were added in version 1.7 of the GNUstep
873 // runtime.
874 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
875 VersionTuple(1, 7));
876 return CxxAtomicObjectSetFn;
879 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
880 bool copy) override {
881 // The optimised property functions omit the GC check, and so are not
882 // safe to use in GC mode. The standard functions are fast in GC mode,
883 // so there is less advantage in using them.
884 assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC));
885 // The optimised functions were added in version 1.7 of the GNUstep
886 // runtime.
887 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
888 VersionTuple(1, 7));
890 if (atomic) {
891 if (copy) return SetPropertyAtomicCopy;
892 return SetPropertyAtomic;
895 return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic;
899 /// GNUstep Objective-C ABI version 2 implementation.
900 /// This is the ABI that provides a clean break with the legacy GCC ABI and
901 /// cleans up a number of things that were added to work around 1980s linkers.
902 class CGObjCGNUstep2 : public CGObjCGNUstep {
903 enum SectionKind
905 SelectorSection = 0,
906 ClassSection,
907 ClassReferenceSection,
908 CategorySection,
909 ProtocolSection,
910 ProtocolReferenceSection,
911 ClassAliasSection,
912 ConstantStringSection
914 static const char *const SectionsBaseNames[8];
915 static const char *const PECOFFSectionsBaseNames[8];
916 template<SectionKind K>
917 std::string sectionName() {
918 if (CGM.getTriple().isOSBinFormatCOFF()) {
919 std::string name(PECOFFSectionsBaseNames[K]);
920 name += "$m";
921 return name;
923 return SectionsBaseNames[K];
925 /// The GCC ABI superclass message lookup function. Takes a pointer to a
926 /// structure describing the receiver and the class, and a selector as
927 /// arguments. Returns the IMP for the corresponding method.
928 LazyRuntimeFunction MsgLookupSuperFn;
929 /// A flag indicating if we've emitted at least one protocol.
930 /// If we haven't, then we need to emit an empty protocol, to ensure that the
931 /// __start__objc_protocols and __stop__objc_protocols sections exist.
932 bool EmittedProtocol = false;
933 /// A flag indicating if we've emitted at least one protocol reference.
934 /// If we haven't, then we need to emit an empty protocol, to ensure that the
935 /// __start__objc_protocol_refs and __stop__objc_protocol_refs sections
936 /// exist.
937 bool EmittedProtocolRef = false;
938 /// A flag indicating if we've emitted at least one class.
939 /// If we haven't, then we need to emit an empty protocol, to ensure that the
940 /// __start__objc_classes and __stop__objc_classes sections / exist.
941 bool EmittedClass = false;
942 /// Generate the name of a symbol for a reference to a class. Accesses to
943 /// classes should be indirected via this.
945 typedef std::pair<std::string, std::pair<llvm::GlobalVariable*, int>>
946 EarlyInitPair;
947 std::vector<EarlyInitPair> EarlyInitList;
949 std::string SymbolForClassRef(StringRef Name, bool isWeak) {
950 if (isWeak)
951 return (ManglePublicSymbol("OBJC_WEAK_REF_CLASS_") + Name).str();
952 else
953 return (ManglePublicSymbol("OBJC_REF_CLASS_") + Name).str();
955 /// Generate the name of a class symbol.
956 std::string SymbolForClass(StringRef Name) {
957 return (ManglePublicSymbol("OBJC_CLASS_") + Name).str();
959 void CallRuntimeFunction(CGBuilderTy &B, StringRef FunctionName,
960 ArrayRef<llvm::Value*> Args) {
961 SmallVector<llvm::Type *,8> Types;
962 for (auto *Arg : Args)
963 Types.push_back(Arg->getType());
964 llvm::FunctionType *FT = llvm::FunctionType::get(B.getVoidTy(), Types,
965 false);
966 llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FT, FunctionName);
967 B.CreateCall(Fn, Args);
970 ConstantAddress GenerateConstantString(const StringLiteral *SL) override {
972 auto Str = SL->getString();
973 CharUnits Align = CGM.getPointerAlign();
975 // Look for an existing one
976 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
977 if (old != ObjCStrings.end())
978 return ConstantAddress(old->getValue(), IdElemTy, Align);
980 bool isNonASCII = SL->containsNonAscii();
982 auto LiteralLength = SL->getLength();
984 if ((CGM.getTarget().getPointerWidth(LangAS::Default) == 64) &&
985 (LiteralLength < 9) && !isNonASCII) {
986 // Tiny strings are only used on 64-bit platforms. They store 8 7-bit
987 // ASCII characters in the high 56 bits, followed by a 4-bit length and a
988 // 3-bit tag (which is always 4).
989 uint64_t str = 0;
990 // Fill in the characters
991 for (unsigned i=0 ; i<LiteralLength ; i++)
992 str |= ((uint64_t)SL->getCodeUnit(i)) << ((64 - 4 - 3) - (i*7));
993 // Fill in the length
994 str |= LiteralLength << 3;
995 // Set the tag
996 str |= 4;
997 auto *ObjCStr = llvm::ConstantExpr::getIntToPtr(
998 llvm::ConstantInt::get(Int64Ty, str), IdTy);
999 ObjCStrings[Str] = ObjCStr;
1000 return ConstantAddress(ObjCStr, IdElemTy, Align);
1003 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1005 if (StringClass.empty()) StringClass = "NSConstantString";
1007 std::string Sym = SymbolForClass(StringClass);
1009 llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
1011 if (!isa) {
1012 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
1013 llvm::GlobalValue::ExternalLinkage, nullptr, Sym);
1014 if (CGM.getTriple().isOSBinFormatCOFF()) {
1015 cast<llvm::GlobalValue>(isa)->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1017 } else if (isa->getType() != PtrToIdTy)
1018 isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
1020 // struct
1021 // {
1022 // Class isa;
1023 // uint32_t flags;
1024 // uint32_t length; // Number of codepoints
1025 // uint32_t size; // Number of bytes
1026 // uint32_t hash;
1027 // const char *data;
1028 // };
1030 ConstantInitBuilder Builder(CGM);
1031 auto Fields = Builder.beginStruct();
1032 if (!CGM.getTriple().isOSBinFormatCOFF()) {
1033 Fields.add(isa);
1034 } else {
1035 Fields.addNullPointer(PtrTy);
1037 // For now, all non-ASCII strings are represented as UTF-16. As such, the
1038 // number of bytes is simply double the number of UTF-16 codepoints. In
1039 // ASCII strings, the number of bytes is equal to the number of non-ASCII
1040 // codepoints.
1041 if (isNonASCII) {
1042 unsigned NumU8CodeUnits = Str.size();
1043 // A UTF-16 representation of a unicode string contains at most the same
1044 // number of code units as a UTF-8 representation. Allocate that much
1045 // space, plus one for the final null character.
1046 SmallVector<llvm::UTF16, 128> ToBuf(NumU8CodeUnits + 1);
1047 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)Str.data();
1048 llvm::UTF16 *ToPtr = &ToBuf[0];
1049 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumU8CodeUnits,
1050 &ToPtr, ToPtr + NumU8CodeUnits, llvm::strictConversion);
1051 uint32_t StringLength = ToPtr - &ToBuf[0];
1052 // Add null terminator
1053 *ToPtr = 0;
1054 // Flags: 2 indicates UTF-16 encoding
1055 Fields.addInt(Int32Ty, 2);
1056 // Number of UTF-16 codepoints
1057 Fields.addInt(Int32Ty, StringLength);
1058 // Number of bytes
1059 Fields.addInt(Int32Ty, StringLength * 2);
1060 // Hash. Not currently initialised by the compiler.
1061 Fields.addInt(Int32Ty, 0);
1062 // pointer to the data string.
1063 auto Arr = llvm::ArrayRef(&ToBuf[0], ToPtr + 1);
1064 auto *C = llvm::ConstantDataArray::get(VMContext, Arr);
1065 auto *Buffer = new llvm::GlobalVariable(TheModule, C->getType(),
1066 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, C, ".str");
1067 Buffer->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1068 Fields.add(Buffer);
1069 } else {
1070 // Flags: 0 indicates ASCII encoding
1071 Fields.addInt(Int32Ty, 0);
1072 // Number of UTF-16 codepoints, each ASCII byte is a UTF-16 codepoint
1073 Fields.addInt(Int32Ty, Str.size());
1074 // Number of bytes
1075 Fields.addInt(Int32Ty, Str.size());
1076 // Hash. Not currently initialised by the compiler.
1077 Fields.addInt(Int32Ty, 0);
1078 // Data pointer
1079 Fields.add(MakeConstantString(Str));
1081 std::string StringName;
1082 bool isNamed = !isNonASCII;
1083 if (isNamed) {
1084 StringName = ".objc_str_";
1085 for (int i=0,e=Str.size() ; i<e ; ++i) {
1086 unsigned char c = Str[i];
1087 if (isalnum(c))
1088 StringName += c;
1089 else if (c == ' ')
1090 StringName += '_';
1091 else {
1092 isNamed = false;
1093 break;
1097 llvm::GlobalVariable *ObjCStrGV =
1098 Fields.finishAndCreateGlobal(
1099 isNamed ? StringRef(StringName) : ".objc_string",
1100 Align, false, isNamed ? llvm::GlobalValue::LinkOnceODRLinkage
1101 : llvm::GlobalValue::PrivateLinkage);
1102 ObjCStrGV->setSection(sectionName<ConstantStringSection>());
1103 if (isNamed) {
1104 ObjCStrGV->setComdat(TheModule.getOrInsertComdat(StringName));
1105 ObjCStrGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1107 if (CGM.getTriple().isOSBinFormatCOFF()) {
1108 std::pair<llvm::GlobalVariable*, int> v{ObjCStrGV, 0};
1109 EarlyInitList.emplace_back(Sym, v);
1111 llvm::Constant *ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStrGV, IdTy);
1112 ObjCStrings[Str] = ObjCStr;
1113 ConstantStrings.push_back(ObjCStr);
1114 return ConstantAddress(ObjCStr, IdElemTy, Align);
1117 void PushProperty(ConstantArrayBuilder &PropertiesArray,
1118 const ObjCPropertyDecl *property,
1119 const Decl *OCD,
1120 bool isSynthesized=true, bool
1121 isDynamic=true) override {
1122 // struct objc_property
1123 // {
1124 // const char *name;
1125 // const char *attributes;
1126 // const char *type;
1127 // SEL getter;
1128 // SEL setter;
1129 // };
1130 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
1131 ASTContext &Context = CGM.getContext();
1132 Fields.add(MakeConstantString(property->getNameAsString()));
1133 std::string TypeStr =
1134 CGM.getContext().getObjCEncodingForPropertyDecl(property, OCD);
1135 Fields.add(MakeConstantString(TypeStr));
1136 std::string typeStr;
1137 Context.getObjCEncodingForType(property->getType(), typeStr);
1138 Fields.add(MakeConstantString(typeStr));
1139 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
1140 if (accessor) {
1141 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
1142 Fields.add(GetConstantSelector(accessor->getSelector(), TypeStr));
1143 } else {
1144 Fields.add(NULLPtr);
1147 addPropertyMethod(property->getGetterMethodDecl());
1148 addPropertyMethod(property->getSetterMethodDecl());
1149 Fields.finishAndAddTo(PropertiesArray);
1152 llvm::Constant *
1153 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) override {
1154 // struct objc_protocol_method_description
1155 // {
1156 // SEL selector;
1157 // const char *types;
1158 // };
1159 llvm::StructType *ObjCMethodDescTy =
1160 llvm::StructType::get(CGM.getLLVMContext(),
1161 { PtrToInt8Ty, PtrToInt8Ty });
1162 ASTContext &Context = CGM.getContext();
1163 ConstantInitBuilder Builder(CGM);
1164 // struct objc_protocol_method_description_list
1165 // {
1166 // int count;
1167 // int size;
1168 // struct objc_protocol_method_description methods[];
1169 // };
1170 auto MethodList = Builder.beginStruct();
1171 // int count;
1172 MethodList.addInt(IntTy, Methods.size());
1173 // int size; // sizeof(struct objc_method_description)
1174 llvm::DataLayout td(&TheModule);
1175 MethodList.addInt(IntTy, td.getTypeSizeInBits(ObjCMethodDescTy) /
1176 CGM.getContext().getCharWidth());
1177 // struct objc_method_description[]
1178 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
1179 for (auto *M : Methods) {
1180 auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
1181 Method.add(CGObjCGNU::GetConstantSelector(M));
1182 Method.add(GetTypeString(Context.getObjCEncodingForMethodDecl(M, true)));
1183 Method.finishAndAddTo(MethodArray);
1185 MethodArray.finishAndAddTo(MethodList);
1186 return MethodList.finishAndCreateGlobal(".objc_protocol_method_list",
1187 CGM.getPointerAlign());
1189 llvm::Constant *GenerateCategoryProtocolList(const ObjCCategoryDecl *OCD)
1190 override {
1191 const auto &ReferencedProtocols = OCD->getReferencedProtocols();
1192 auto RuntimeProtocols = GetRuntimeProtocolList(ReferencedProtocols.begin(),
1193 ReferencedProtocols.end());
1194 SmallVector<llvm::Constant *, 16> Protocols;
1195 for (const auto *PI : RuntimeProtocols)
1196 Protocols.push_back(
1197 llvm::ConstantExpr::getBitCast(GenerateProtocolRef(PI),
1198 ProtocolPtrTy));
1199 return GenerateProtocolList(Protocols);
1202 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
1203 llvm::Value *cmd, MessageSendInfo &MSI) override {
1204 // Don't access the slot unless we're trying to cache the result.
1205 CGBuilderTy &Builder = CGF.Builder;
1206 llvm::Value *lookupArgs[] = {CGObjCGNU::EnforceType(Builder,
1207 ObjCSuper.getPointer(),
1208 PtrToObjCSuperTy),
1209 cmd};
1210 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
1213 llvm::GlobalVariable *GetClassVar(StringRef Name, bool isWeak=false) {
1214 std::string SymbolName = SymbolForClassRef(Name, isWeak);
1215 auto *ClassSymbol = TheModule.getNamedGlobal(SymbolName);
1216 if (ClassSymbol)
1217 return ClassSymbol;
1218 ClassSymbol = new llvm::GlobalVariable(TheModule,
1219 IdTy, false, llvm::GlobalValue::ExternalLinkage,
1220 nullptr, SymbolName);
1221 // If this is a weak symbol, then we are creating a valid definition for
1222 // the symbol, pointing to a weak definition of the real class pointer. If
1223 // this is not a weak reference, then we are expecting another compilation
1224 // unit to provide the real indirection symbol.
1225 if (isWeak)
1226 ClassSymbol->setInitializer(new llvm::GlobalVariable(TheModule,
1227 Int8Ty, false, llvm::GlobalValue::ExternalWeakLinkage,
1228 nullptr, SymbolForClass(Name)));
1229 else {
1230 if (CGM.getTriple().isOSBinFormatCOFF()) {
1231 IdentifierInfo &II = CGM.getContext().Idents.get(Name);
1232 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
1233 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
1235 const ObjCInterfaceDecl *OID = nullptr;
1236 for (const auto *Result : DC->lookup(&II))
1237 if ((OID = dyn_cast<ObjCInterfaceDecl>(Result)))
1238 break;
1240 // The first Interface we find may be a @class,
1241 // which should only be treated as the source of
1242 // truth in the absence of a true declaration.
1243 assert(OID && "Failed to find ObjCInterfaceDecl");
1244 const ObjCInterfaceDecl *OIDDef = OID->getDefinition();
1245 if (OIDDef != nullptr)
1246 OID = OIDDef;
1248 auto Storage = llvm::GlobalValue::DefaultStorageClass;
1249 if (OID->hasAttr<DLLImportAttr>())
1250 Storage = llvm::GlobalValue::DLLImportStorageClass;
1251 else if (OID->hasAttr<DLLExportAttr>())
1252 Storage = llvm::GlobalValue::DLLExportStorageClass;
1254 cast<llvm::GlobalValue>(ClassSymbol)->setDLLStorageClass(Storage);
1257 assert(ClassSymbol->getName() == SymbolName);
1258 return ClassSymbol;
1260 llvm::Value *GetClassNamed(CodeGenFunction &CGF,
1261 const std::string &Name,
1262 bool isWeak) override {
1263 return CGF.Builder.CreateLoad(
1264 Address(GetClassVar(Name, isWeak), IdTy, CGM.getPointerAlign()));
1266 int32_t FlagsForOwnership(Qualifiers::ObjCLifetime Ownership) {
1267 // typedef enum {
1268 // ownership_invalid = 0,
1269 // ownership_strong = 1,
1270 // ownership_weak = 2,
1271 // ownership_unsafe = 3
1272 // } ivar_ownership;
1273 int Flag;
1274 switch (Ownership) {
1275 case Qualifiers::OCL_Strong:
1276 Flag = 1;
1277 break;
1278 case Qualifiers::OCL_Weak:
1279 Flag = 2;
1280 break;
1281 case Qualifiers::OCL_ExplicitNone:
1282 Flag = 3;
1283 break;
1284 case Qualifiers::OCL_None:
1285 case Qualifiers::OCL_Autoreleasing:
1286 assert(Ownership != Qualifiers::OCL_Autoreleasing);
1287 Flag = 0;
1289 return Flag;
1291 llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
1292 ArrayRef<llvm::Constant *> IvarTypes,
1293 ArrayRef<llvm::Constant *> IvarOffsets,
1294 ArrayRef<llvm::Constant *> IvarAlign,
1295 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) override {
1296 llvm_unreachable("Method should not be called!");
1299 llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName) override {
1300 std::string Name = SymbolForProtocol(ProtocolName);
1301 auto *GV = TheModule.getGlobalVariable(Name);
1302 if (!GV) {
1303 // Emit a placeholder symbol.
1304 GV = new llvm::GlobalVariable(TheModule, ProtocolTy, false,
1305 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1306 GV->setAlignment(CGM.getPointerAlign().getAsAlign());
1308 return llvm::ConstantExpr::getBitCast(GV, ProtocolPtrTy);
1311 /// Existing protocol references.
1312 llvm::StringMap<llvm::Constant*> ExistingProtocolRefs;
1314 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1315 const ObjCProtocolDecl *PD) override {
1316 auto Name = PD->getNameAsString();
1317 auto *&Ref = ExistingProtocolRefs[Name];
1318 if (!Ref) {
1319 auto *&Protocol = ExistingProtocols[Name];
1320 if (!Protocol)
1321 Protocol = GenerateProtocolRef(PD);
1322 std::string RefName = SymbolForProtocolRef(Name);
1323 assert(!TheModule.getGlobalVariable(RefName));
1324 // Emit a reference symbol.
1325 auto GV = new llvm::GlobalVariable(TheModule, ProtocolPtrTy,
1326 false, llvm::GlobalValue::LinkOnceODRLinkage,
1327 llvm::ConstantExpr::getBitCast(Protocol, ProtocolPtrTy), RefName);
1328 GV->setComdat(TheModule.getOrInsertComdat(RefName));
1329 GV->setSection(sectionName<ProtocolReferenceSection>());
1330 GV->setAlignment(CGM.getPointerAlign().getAsAlign());
1331 Ref = GV;
1333 EmittedProtocolRef = true;
1334 return CGF.Builder.CreateAlignedLoad(ProtocolPtrTy, Ref,
1335 CGM.getPointerAlign());
1338 llvm::Constant *GenerateProtocolList(ArrayRef<llvm::Constant*> Protocols) {
1339 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(ProtocolPtrTy,
1340 Protocols.size());
1341 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1342 Protocols);
1343 ConstantInitBuilder builder(CGM);
1344 auto ProtocolBuilder = builder.beginStruct();
1345 ProtocolBuilder.addNullPointer(PtrTy);
1346 ProtocolBuilder.addInt(SizeTy, Protocols.size());
1347 ProtocolBuilder.add(ProtocolArray);
1348 return ProtocolBuilder.finishAndCreateGlobal(".objc_protocol_list",
1349 CGM.getPointerAlign(), false, llvm::GlobalValue::InternalLinkage);
1352 void GenerateProtocol(const ObjCProtocolDecl *PD) override {
1353 // Do nothing - we only emit referenced protocols.
1355 llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD) override {
1356 std::string ProtocolName = PD->getNameAsString();
1357 auto *&Protocol = ExistingProtocols[ProtocolName];
1358 if (Protocol)
1359 return Protocol;
1361 EmittedProtocol = true;
1363 auto SymName = SymbolForProtocol(ProtocolName);
1364 auto *OldGV = TheModule.getGlobalVariable(SymName);
1366 // Use the protocol definition, if there is one.
1367 if (const ObjCProtocolDecl *Def = PD->getDefinition())
1368 PD = Def;
1369 else {
1370 // If there is no definition, then create an external linkage symbol and
1371 // hope that someone else fills it in for us (and fail to link if they
1372 // don't).
1373 assert(!OldGV);
1374 Protocol = new llvm::GlobalVariable(TheModule, ProtocolTy,
1375 /*isConstant*/false,
1376 llvm::GlobalValue::ExternalLinkage, nullptr, SymName);
1377 return Protocol;
1380 SmallVector<llvm::Constant*, 16> Protocols;
1381 auto RuntimeProtocols =
1382 GetRuntimeProtocolList(PD->protocol_begin(), PD->protocol_end());
1383 for (const auto *PI : RuntimeProtocols)
1384 Protocols.push_back(
1385 llvm::ConstantExpr::getBitCast(GenerateProtocolRef(PI),
1386 ProtocolPtrTy));
1387 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
1389 // Collect information about methods
1390 llvm::Constant *InstanceMethodList, *OptionalInstanceMethodList;
1391 llvm::Constant *ClassMethodList, *OptionalClassMethodList;
1392 EmitProtocolMethodList(PD->instance_methods(), InstanceMethodList,
1393 OptionalInstanceMethodList);
1394 EmitProtocolMethodList(PD->class_methods(), ClassMethodList,
1395 OptionalClassMethodList);
1397 // The isa pointer must be set to a magic number so the runtime knows it's
1398 // the correct layout.
1399 ConstantInitBuilder builder(CGM);
1400 auto ProtocolBuilder = builder.beginStruct();
1401 ProtocolBuilder.add(llvm::ConstantExpr::getIntToPtr(
1402 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1403 ProtocolBuilder.add(MakeConstantString(ProtocolName));
1404 ProtocolBuilder.add(ProtocolList);
1405 ProtocolBuilder.add(InstanceMethodList);
1406 ProtocolBuilder.add(ClassMethodList);
1407 ProtocolBuilder.add(OptionalInstanceMethodList);
1408 ProtocolBuilder.add(OptionalClassMethodList);
1409 // Required instance properties
1410 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, false));
1411 // Optional instance properties
1412 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, true));
1413 // Required class properties
1414 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, false));
1415 // Optional class properties
1416 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, true));
1418 auto *GV = ProtocolBuilder.finishAndCreateGlobal(SymName,
1419 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1420 GV->setSection(sectionName<ProtocolSection>());
1421 GV->setComdat(TheModule.getOrInsertComdat(SymName));
1422 if (OldGV) {
1423 OldGV->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GV,
1424 OldGV->getType()));
1425 OldGV->removeFromParent();
1426 GV->setName(SymName);
1428 Protocol = GV;
1429 return GV;
1431 llvm::Constant *EnforceType(llvm::Constant *Val, llvm::Type *Ty) {
1432 if (Val->getType() == Ty)
1433 return Val;
1434 return llvm::ConstantExpr::getBitCast(Val, Ty);
1436 llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
1437 const std::string &TypeEncoding) override {
1438 return GetConstantSelector(Sel, TypeEncoding);
1440 llvm::Constant *GetTypeString(llvm::StringRef TypeEncoding) {
1441 if (TypeEncoding.empty())
1442 return NULLPtr;
1443 std::string MangledTypes = std::string(TypeEncoding);
1444 std::replace(MangledTypes.begin(), MangledTypes.end(),
1445 '@', '\1');
1446 std::string TypesVarName = ".objc_sel_types_" + MangledTypes;
1447 auto *TypesGlobal = TheModule.getGlobalVariable(TypesVarName);
1448 if (!TypesGlobal) {
1449 llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext,
1450 TypeEncoding);
1451 auto *GV = new llvm::GlobalVariable(TheModule, Init->getType(),
1452 true, llvm::GlobalValue::LinkOnceODRLinkage, Init, TypesVarName);
1453 GV->setComdat(TheModule.getOrInsertComdat(TypesVarName));
1454 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1455 TypesGlobal = GV;
1457 return llvm::ConstantExpr::getGetElementPtr(TypesGlobal->getValueType(),
1458 TypesGlobal, Zeros);
1460 llvm::Constant *GetConstantSelector(Selector Sel,
1461 const std::string &TypeEncoding) override {
1462 // @ is used as a special character in symbol names (used for symbol
1463 // versioning), so mangle the name to not include it. Replace it with a
1464 // character that is not a valid type encoding character (and, being
1465 // non-printable, never will be!)
1466 std::string MangledTypes = TypeEncoding;
1467 std::replace(MangledTypes.begin(), MangledTypes.end(),
1468 '@', '\1');
1469 auto SelVarName = (StringRef(".objc_selector_") + Sel.getAsString() + "_" +
1470 MangledTypes).str();
1471 if (auto *GV = TheModule.getNamedGlobal(SelVarName))
1472 return EnforceType(GV, SelectorTy);
1473 ConstantInitBuilder builder(CGM);
1474 auto SelBuilder = builder.beginStruct();
1475 SelBuilder.add(ExportUniqueString(Sel.getAsString(), ".objc_sel_name_",
1476 true));
1477 SelBuilder.add(GetTypeString(TypeEncoding));
1478 auto *GV = SelBuilder.finishAndCreateGlobal(SelVarName,
1479 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1480 GV->setComdat(TheModule.getOrInsertComdat(SelVarName));
1481 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1482 GV->setSection(sectionName<SelectorSection>());
1483 auto *SelVal = EnforceType(GV, SelectorTy);
1484 return SelVal;
1486 llvm::StructType *emptyStruct = nullptr;
1488 /// Return pointers to the start and end of a section. On ELF platforms, we
1489 /// use the __start_ and __stop_ symbols that GNU-compatible linkers will set
1490 /// to the start and end of section names, as long as those section names are
1491 /// valid identifiers and the symbols are referenced but not defined. On
1492 /// Windows, we use the fact that MSVC-compatible linkers will lexically sort
1493 /// by subsections and place everything that we want to reference in a middle
1494 /// subsection and then insert zero-sized symbols in subsections a and z.
1495 std::pair<llvm::Constant*,llvm::Constant*>
1496 GetSectionBounds(StringRef Section) {
1497 if (CGM.getTriple().isOSBinFormatCOFF()) {
1498 if (emptyStruct == nullptr) {
1499 emptyStruct = llvm::StructType::create(VMContext, ".objc_section_sentinel");
1500 emptyStruct->setBody({}, /*isPacked*/true);
1502 auto ZeroInit = llvm::Constant::getNullValue(emptyStruct);
1503 auto Sym = [&](StringRef Prefix, StringRef SecSuffix) {
1504 auto *Sym = new llvm::GlobalVariable(TheModule, emptyStruct,
1505 /*isConstant*/false,
1506 llvm::GlobalValue::LinkOnceODRLinkage, ZeroInit, Prefix +
1507 Section);
1508 Sym->setVisibility(llvm::GlobalValue::HiddenVisibility);
1509 Sym->setSection((Section + SecSuffix).str());
1510 Sym->setComdat(TheModule.getOrInsertComdat((Prefix +
1511 Section).str()));
1512 Sym->setAlignment(CGM.getPointerAlign().getAsAlign());
1513 return Sym;
1515 return { Sym("__start_", "$a"), Sym("__stop", "$z") };
1517 auto *Start = new llvm::GlobalVariable(TheModule, PtrTy,
1518 /*isConstant*/false,
1519 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__start_") +
1520 Section);
1521 Start->setVisibility(llvm::GlobalValue::HiddenVisibility);
1522 auto *Stop = new llvm::GlobalVariable(TheModule, PtrTy,
1523 /*isConstant*/false,
1524 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__stop_") +
1525 Section);
1526 Stop->setVisibility(llvm::GlobalValue::HiddenVisibility);
1527 return { Start, Stop };
1529 CatchTypeInfo getCatchAllTypeInfo() override {
1530 return CGM.getCXXABI().getCatchAllTypeInfo();
1532 llvm::Function *ModuleInitFunction() override {
1533 llvm::Function *LoadFunction = llvm::Function::Create(
1534 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
1535 llvm::GlobalValue::LinkOnceODRLinkage, ".objcv2_load_function",
1536 &TheModule);
1537 LoadFunction->setVisibility(llvm::GlobalValue::HiddenVisibility);
1538 LoadFunction->setComdat(TheModule.getOrInsertComdat(".objcv2_load_function"));
1540 llvm::BasicBlock *EntryBB =
1541 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
1542 CGBuilderTy B(CGM, VMContext);
1543 B.SetInsertPoint(EntryBB);
1544 ConstantInitBuilder builder(CGM);
1545 auto InitStructBuilder = builder.beginStruct();
1546 InitStructBuilder.addInt(Int64Ty, 0);
1547 auto &sectionVec = CGM.getTriple().isOSBinFormatCOFF() ? PECOFFSectionsBaseNames : SectionsBaseNames;
1548 for (auto *s : sectionVec) {
1549 auto bounds = GetSectionBounds(s);
1550 InitStructBuilder.add(bounds.first);
1551 InitStructBuilder.add(bounds.second);
1553 auto *InitStruct = InitStructBuilder.finishAndCreateGlobal(".objc_init",
1554 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1555 InitStruct->setVisibility(llvm::GlobalValue::HiddenVisibility);
1556 InitStruct->setComdat(TheModule.getOrInsertComdat(".objc_init"));
1558 CallRuntimeFunction(B, "__objc_load", {InitStruct});;
1559 B.CreateRetVoid();
1560 // Make sure that the optimisers don't delete this function.
1561 CGM.addCompilerUsedGlobal(LoadFunction);
1562 // FIXME: Currently ELF only!
1563 // We have to do this by hand, rather than with @llvm.ctors, so that the
1564 // linker can remove the duplicate invocations.
1565 auto *InitVar = new llvm::GlobalVariable(TheModule, LoadFunction->getType(),
1566 /*isConstant*/false, llvm::GlobalValue::LinkOnceAnyLinkage,
1567 LoadFunction, ".objc_ctor");
1568 // Check that this hasn't been renamed. This shouldn't happen, because
1569 // this function should be called precisely once.
1570 assert(InitVar->getName() == ".objc_ctor");
1571 // In Windows, initialisers are sorted by the suffix. XCL is for library
1572 // initialisers, which run before user initialisers. We are running
1573 // Objective-C loads at the end of library load. This means +load methods
1574 // will run before any other static constructors, but that static
1575 // constructors can see a fully initialised Objective-C state.
1576 if (CGM.getTriple().isOSBinFormatCOFF())
1577 InitVar->setSection(".CRT$XCLz");
1578 else
1580 if (CGM.getCodeGenOpts().UseInitArray)
1581 InitVar->setSection(".init_array");
1582 else
1583 InitVar->setSection(".ctors");
1585 InitVar->setVisibility(llvm::GlobalValue::HiddenVisibility);
1586 InitVar->setComdat(TheModule.getOrInsertComdat(".objc_ctor"));
1587 CGM.addUsedGlobal(InitVar);
1588 for (auto *C : Categories) {
1589 auto *Cat = cast<llvm::GlobalVariable>(C->stripPointerCasts());
1590 Cat->setSection(sectionName<CategorySection>());
1591 CGM.addUsedGlobal(Cat);
1593 auto createNullGlobal = [&](StringRef Name, ArrayRef<llvm::Constant*> Init,
1594 StringRef Section) {
1595 auto nullBuilder = builder.beginStruct();
1596 for (auto *F : Init)
1597 nullBuilder.add(F);
1598 auto GV = nullBuilder.finishAndCreateGlobal(Name, CGM.getPointerAlign(),
1599 false, llvm::GlobalValue::LinkOnceODRLinkage);
1600 GV->setSection(Section);
1601 GV->setComdat(TheModule.getOrInsertComdat(Name));
1602 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1603 CGM.addUsedGlobal(GV);
1604 return GV;
1606 for (auto clsAlias : ClassAliases)
1607 createNullGlobal(std::string(".objc_class_alias") +
1608 clsAlias.second, { MakeConstantString(clsAlias.second),
1609 GetClassVar(clsAlias.first) }, sectionName<ClassAliasSection>());
1610 // On ELF platforms, add a null value for each special section so that we
1611 // can always guarantee that the _start and _stop symbols will exist and be
1612 // meaningful. This is not required on COFF platforms, where our start and
1613 // stop symbols will create the section.
1614 if (!CGM.getTriple().isOSBinFormatCOFF()) {
1615 createNullGlobal(".objc_null_selector", {NULLPtr, NULLPtr},
1616 sectionName<SelectorSection>());
1617 if (Categories.empty())
1618 createNullGlobal(".objc_null_category", {NULLPtr, NULLPtr,
1619 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr},
1620 sectionName<CategorySection>());
1621 if (!EmittedClass) {
1622 createNullGlobal(".objc_null_cls_init_ref", NULLPtr,
1623 sectionName<ClassSection>());
1624 createNullGlobal(".objc_null_class_ref", { NULLPtr, NULLPtr },
1625 sectionName<ClassReferenceSection>());
1627 if (!EmittedProtocol)
1628 createNullGlobal(".objc_null_protocol", {NULLPtr, NULLPtr, NULLPtr,
1629 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr,
1630 NULLPtr}, sectionName<ProtocolSection>());
1631 if (!EmittedProtocolRef)
1632 createNullGlobal(".objc_null_protocol_ref", {NULLPtr},
1633 sectionName<ProtocolReferenceSection>());
1634 if (ClassAliases.empty())
1635 createNullGlobal(".objc_null_class_alias", { NULLPtr, NULLPtr },
1636 sectionName<ClassAliasSection>());
1637 if (ConstantStrings.empty()) {
1638 auto i32Zero = llvm::ConstantInt::get(Int32Ty, 0);
1639 createNullGlobal(".objc_null_constant_string", { NULLPtr, i32Zero,
1640 i32Zero, i32Zero, i32Zero, NULLPtr },
1641 sectionName<ConstantStringSection>());
1644 ConstantStrings.clear();
1645 Categories.clear();
1646 Classes.clear();
1648 if (EarlyInitList.size() > 0) {
1649 auto *Init = llvm::Function::Create(llvm::FunctionType::get(CGM.VoidTy,
1650 {}), llvm::GlobalValue::InternalLinkage, ".objc_early_init",
1651 &CGM.getModule());
1652 llvm::IRBuilder<> b(llvm::BasicBlock::Create(CGM.getLLVMContext(), "entry",
1653 Init));
1654 for (const auto &lateInit : EarlyInitList) {
1655 auto *global = TheModule.getGlobalVariable(lateInit.first);
1656 if (global) {
1657 llvm::GlobalVariable *GV = lateInit.second.first;
1658 b.CreateAlignedStore(
1659 global,
1660 b.CreateStructGEP(GV->getValueType(), GV, lateInit.second.second),
1661 CGM.getPointerAlign().getAsAlign());
1664 b.CreateRetVoid();
1665 // We can't use the normal LLVM global initialisation array, because we
1666 // need to specify that this runs early in library initialisation.
1667 auto *InitVar = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
1668 /*isConstant*/true, llvm::GlobalValue::InternalLinkage,
1669 Init, ".objc_early_init_ptr");
1670 InitVar->setSection(".CRT$XCLb");
1671 CGM.addUsedGlobal(InitVar);
1673 return nullptr;
1675 /// In the v2 ABI, ivar offset variables use the type encoding in their name
1676 /// to trigger linker failures if the types don't match.
1677 std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
1678 const ObjCIvarDecl *Ivar) override {
1679 std::string TypeEncoding;
1680 CGM.getContext().getObjCEncodingForType(Ivar->getType(), TypeEncoding);
1681 // Prevent the @ from being interpreted as a symbol version.
1682 std::replace(TypeEncoding.begin(), TypeEncoding.end(),
1683 '@', '\1');
1684 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
1685 + '.' + Ivar->getNameAsString() + '.' + TypeEncoding;
1686 return Name;
1688 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
1689 const ObjCInterfaceDecl *Interface,
1690 const ObjCIvarDecl *Ivar) override {
1691 const std::string Name = GetIVarOffsetVariableName(Ivar->getContainingInterface(), Ivar);
1692 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
1693 if (!IvarOffsetPointer)
1694 IvarOffsetPointer = new llvm::GlobalVariable(TheModule, IntTy, false,
1695 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1696 CharUnits Align = CGM.getIntAlign();
1697 llvm::Value *Offset =
1698 CGF.Builder.CreateAlignedLoad(IntTy, IvarOffsetPointer, Align);
1699 if (Offset->getType() != PtrDiffTy)
1700 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
1701 return Offset;
1703 void GenerateClass(const ObjCImplementationDecl *OID) override {
1704 ASTContext &Context = CGM.getContext();
1705 bool IsCOFF = CGM.getTriple().isOSBinFormatCOFF();
1707 // Get the class name
1708 ObjCInterfaceDecl *classDecl =
1709 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
1710 std::string className = classDecl->getNameAsString();
1711 auto *classNameConstant = MakeConstantString(className);
1713 ConstantInitBuilder builder(CGM);
1714 auto metaclassFields = builder.beginStruct();
1715 // struct objc_class *isa;
1716 metaclassFields.addNullPointer(PtrTy);
1717 // struct objc_class *super_class;
1718 metaclassFields.addNullPointer(PtrTy);
1719 // const char *name;
1720 metaclassFields.add(classNameConstant);
1721 // long version;
1722 metaclassFields.addInt(LongTy, 0);
1723 // unsigned long info;
1724 // objc_class_flag_meta
1725 metaclassFields.addInt(LongTy, 1);
1726 // long instance_size;
1727 // Setting this to zero is consistent with the older ABI, but it might be
1728 // more sensible to set this to sizeof(struct objc_class)
1729 metaclassFields.addInt(LongTy, 0);
1730 // struct objc_ivar_list *ivars;
1731 metaclassFields.addNullPointer(PtrTy);
1732 // struct objc_method_list *methods
1733 // FIXME: Almost identical code is copied and pasted below for the
1734 // class, but refactoring it cleanly requires C++14 generic lambdas.
1735 if (OID->classmeth_begin() == OID->classmeth_end())
1736 metaclassFields.addNullPointer(PtrTy);
1737 else {
1738 SmallVector<ObjCMethodDecl*, 16> ClassMethods;
1739 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
1740 OID->classmeth_end());
1741 metaclassFields.addBitCast(
1742 GenerateMethodList(className, "", ClassMethods, true),
1743 PtrTy);
1745 // void *dtable;
1746 metaclassFields.addNullPointer(PtrTy);
1747 // IMP cxx_construct;
1748 metaclassFields.addNullPointer(PtrTy);
1749 // IMP cxx_destruct;
1750 metaclassFields.addNullPointer(PtrTy);
1751 // struct objc_class *subclass_list
1752 metaclassFields.addNullPointer(PtrTy);
1753 // struct objc_class *sibling_class
1754 metaclassFields.addNullPointer(PtrTy);
1755 // struct objc_protocol_list *protocols;
1756 metaclassFields.addNullPointer(PtrTy);
1757 // struct reference_list *extra_data;
1758 metaclassFields.addNullPointer(PtrTy);
1759 // long abi_version;
1760 metaclassFields.addInt(LongTy, 0);
1761 // struct objc_property_list *properties
1762 metaclassFields.add(GeneratePropertyList(OID, classDecl, /*isClassProperty*/true));
1764 auto *metaclass = metaclassFields.finishAndCreateGlobal(
1765 ManglePublicSymbol("OBJC_METACLASS_") + className,
1766 CGM.getPointerAlign());
1768 auto classFields = builder.beginStruct();
1769 // struct objc_class *isa;
1770 classFields.add(metaclass);
1771 // struct objc_class *super_class;
1772 // Get the superclass name.
1773 const ObjCInterfaceDecl * SuperClassDecl =
1774 OID->getClassInterface()->getSuperClass();
1775 llvm::Constant *SuperClass = nullptr;
1776 if (SuperClassDecl) {
1777 auto SuperClassName = SymbolForClass(SuperClassDecl->getNameAsString());
1778 SuperClass = TheModule.getNamedGlobal(SuperClassName);
1779 if (!SuperClass)
1781 SuperClass = new llvm::GlobalVariable(TheModule, PtrTy, false,
1782 llvm::GlobalValue::ExternalLinkage, nullptr, SuperClassName);
1783 if (IsCOFF) {
1784 auto Storage = llvm::GlobalValue::DefaultStorageClass;
1785 if (SuperClassDecl->hasAttr<DLLImportAttr>())
1786 Storage = llvm::GlobalValue::DLLImportStorageClass;
1787 else if (SuperClassDecl->hasAttr<DLLExportAttr>())
1788 Storage = llvm::GlobalValue::DLLExportStorageClass;
1790 cast<llvm::GlobalValue>(SuperClass)->setDLLStorageClass(Storage);
1793 if (!IsCOFF)
1794 classFields.add(llvm::ConstantExpr::getBitCast(SuperClass, PtrTy));
1795 else
1796 classFields.addNullPointer(PtrTy);
1797 } else
1798 classFields.addNullPointer(PtrTy);
1799 // const char *name;
1800 classFields.add(classNameConstant);
1801 // long version;
1802 classFields.addInt(LongTy, 0);
1803 // unsigned long info;
1804 // !objc_class_flag_meta
1805 classFields.addInt(LongTy, 0);
1806 // long instance_size;
1807 int superInstanceSize = !SuperClassDecl ? 0 :
1808 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
1809 // Instance size is negative for classes that have not yet had their ivar
1810 // layout calculated.
1811 classFields.addInt(LongTy,
1812 0 - (Context.getASTObjCImplementationLayout(OID).getSize().getQuantity() -
1813 superInstanceSize));
1815 if (classDecl->all_declared_ivar_begin() == nullptr)
1816 classFields.addNullPointer(PtrTy);
1817 else {
1818 int ivar_count = 0;
1819 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
1820 IVD = IVD->getNextIvar()) ivar_count++;
1821 llvm::DataLayout td(&TheModule);
1822 // struct objc_ivar_list *ivars;
1823 ConstantInitBuilder b(CGM);
1824 auto ivarListBuilder = b.beginStruct();
1825 // int count;
1826 ivarListBuilder.addInt(IntTy, ivar_count);
1827 // size_t size;
1828 llvm::StructType *ObjCIvarTy = llvm::StructType::get(
1829 PtrToInt8Ty,
1830 PtrToInt8Ty,
1831 PtrToInt8Ty,
1832 Int32Ty,
1833 Int32Ty);
1834 ivarListBuilder.addInt(SizeTy, td.getTypeSizeInBits(ObjCIvarTy) /
1835 CGM.getContext().getCharWidth());
1836 // struct objc_ivar ivars[]
1837 auto ivarArrayBuilder = ivarListBuilder.beginArray();
1838 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
1839 IVD = IVD->getNextIvar()) {
1840 auto ivarTy = IVD->getType();
1841 auto ivarBuilder = ivarArrayBuilder.beginStruct();
1842 // const char *name;
1843 ivarBuilder.add(MakeConstantString(IVD->getNameAsString()));
1844 // const char *type;
1845 std::string TypeStr;
1846 //Context.getObjCEncodingForType(ivarTy, TypeStr, IVD, true);
1847 Context.getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, ivarTy, TypeStr, true);
1848 ivarBuilder.add(MakeConstantString(TypeStr));
1849 // int *offset;
1850 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
1851 uint64_t Offset = BaseOffset - superInstanceSize;
1852 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
1853 std::string OffsetName = GetIVarOffsetVariableName(classDecl, IVD);
1854 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
1855 if (OffsetVar)
1856 OffsetVar->setInitializer(OffsetValue);
1857 else
1858 OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
1859 false, llvm::GlobalValue::ExternalLinkage,
1860 OffsetValue, OffsetName);
1861 auto ivarVisibility =
1862 (IVD->getAccessControl() == ObjCIvarDecl::Private ||
1863 IVD->getAccessControl() == ObjCIvarDecl::Package ||
1864 classDecl->getVisibility() == HiddenVisibility) ?
1865 llvm::GlobalValue::HiddenVisibility :
1866 llvm::GlobalValue::DefaultVisibility;
1867 OffsetVar->setVisibility(ivarVisibility);
1868 ivarBuilder.add(OffsetVar);
1869 // Ivar size
1870 ivarBuilder.addInt(Int32Ty,
1871 CGM.getContext().getTypeSizeInChars(ivarTy).getQuantity());
1872 // Alignment will be stored as a base-2 log of the alignment.
1873 unsigned align =
1874 llvm::Log2_32(Context.getTypeAlignInChars(ivarTy).getQuantity());
1875 // Objects that require more than 2^64-byte alignment should be impossible!
1876 assert(align < 64);
1877 // uint32_t flags;
1878 // Bits 0-1 are ownership.
1879 // Bit 2 indicates an extended type encoding
1880 // Bits 3-8 contain log2(aligment)
1881 ivarBuilder.addInt(Int32Ty,
1882 (align << 3) | (1<<2) |
1883 FlagsForOwnership(ivarTy.getQualifiers().getObjCLifetime()));
1884 ivarBuilder.finishAndAddTo(ivarArrayBuilder);
1886 ivarArrayBuilder.finishAndAddTo(ivarListBuilder);
1887 auto ivarList = ivarListBuilder.finishAndCreateGlobal(".objc_ivar_list",
1888 CGM.getPointerAlign(), /*constant*/ false,
1889 llvm::GlobalValue::PrivateLinkage);
1890 classFields.add(ivarList);
1892 // struct objc_method_list *methods
1893 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
1894 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
1895 OID->instmeth_end());
1896 for (auto *propImpl : OID->property_impls())
1897 if (propImpl->getPropertyImplementation() ==
1898 ObjCPropertyImplDecl::Synthesize) {
1899 auto addIfExists = [&](const ObjCMethodDecl *OMD) {
1900 if (OMD && OMD->hasBody())
1901 InstanceMethods.push_back(OMD);
1903 addIfExists(propImpl->getGetterMethodDecl());
1904 addIfExists(propImpl->getSetterMethodDecl());
1907 if (InstanceMethods.size() == 0)
1908 classFields.addNullPointer(PtrTy);
1909 else
1910 classFields.addBitCast(
1911 GenerateMethodList(className, "", InstanceMethods, false),
1912 PtrTy);
1913 // void *dtable;
1914 classFields.addNullPointer(PtrTy);
1915 // IMP cxx_construct;
1916 classFields.addNullPointer(PtrTy);
1917 // IMP cxx_destruct;
1918 classFields.addNullPointer(PtrTy);
1919 // struct objc_class *subclass_list
1920 classFields.addNullPointer(PtrTy);
1921 // struct objc_class *sibling_class
1922 classFields.addNullPointer(PtrTy);
1923 // struct objc_protocol_list *protocols;
1924 auto RuntimeProtocols = GetRuntimeProtocolList(classDecl->protocol_begin(),
1925 classDecl->protocol_end());
1926 SmallVector<llvm::Constant *, 16> Protocols;
1927 for (const auto *I : RuntimeProtocols)
1928 Protocols.push_back(
1929 llvm::ConstantExpr::getBitCast(GenerateProtocolRef(I),
1930 ProtocolPtrTy));
1931 if (Protocols.empty())
1932 classFields.addNullPointer(PtrTy);
1933 else
1934 classFields.add(GenerateProtocolList(Protocols));
1935 // struct reference_list *extra_data;
1936 classFields.addNullPointer(PtrTy);
1937 // long abi_version;
1938 classFields.addInt(LongTy, 0);
1939 // struct objc_property_list *properties
1940 classFields.add(GeneratePropertyList(OID, classDecl));
1942 llvm::GlobalVariable *classStruct =
1943 classFields.finishAndCreateGlobal(SymbolForClass(className),
1944 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1946 auto *classRefSymbol = GetClassVar(className);
1947 classRefSymbol->setSection(sectionName<ClassReferenceSection>());
1948 classRefSymbol->setInitializer(llvm::ConstantExpr::getBitCast(classStruct, IdTy));
1950 if (IsCOFF) {
1951 // we can't import a class struct.
1952 if (OID->getClassInterface()->hasAttr<DLLExportAttr>()) {
1953 classStruct->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1954 cast<llvm::GlobalValue>(classRefSymbol)->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1957 if (SuperClass) {
1958 std::pair<llvm::GlobalVariable*, int> v{classStruct, 1};
1959 EarlyInitList.emplace_back(std::string(SuperClass->getName()),
1960 std::move(v));
1966 // Resolve the class aliases, if they exist.
1967 // FIXME: Class pointer aliases shouldn't exist!
1968 if (ClassPtrAlias) {
1969 ClassPtrAlias->replaceAllUsesWith(
1970 llvm::ConstantExpr::getBitCast(classStruct, IdTy));
1971 ClassPtrAlias->eraseFromParent();
1972 ClassPtrAlias = nullptr;
1974 if (auto Placeholder =
1975 TheModule.getNamedGlobal(SymbolForClass(className)))
1976 if (Placeholder != classStruct) {
1977 Placeholder->replaceAllUsesWith(
1978 llvm::ConstantExpr::getBitCast(classStruct, Placeholder->getType()));
1979 Placeholder->eraseFromParent();
1980 classStruct->setName(SymbolForClass(className));
1982 if (MetaClassPtrAlias) {
1983 MetaClassPtrAlias->replaceAllUsesWith(
1984 llvm::ConstantExpr::getBitCast(metaclass, IdTy));
1985 MetaClassPtrAlias->eraseFromParent();
1986 MetaClassPtrAlias = nullptr;
1988 assert(classStruct->getName() == SymbolForClass(className));
1990 auto classInitRef = new llvm::GlobalVariable(TheModule,
1991 classStruct->getType(), false, llvm::GlobalValue::ExternalLinkage,
1992 classStruct, ManglePublicSymbol("OBJC_INIT_CLASS_") + className);
1993 classInitRef->setSection(sectionName<ClassSection>());
1994 CGM.addUsedGlobal(classInitRef);
1996 EmittedClass = true;
1998 public:
1999 CGObjCGNUstep2(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 10, 4, 2) {
2000 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
2001 PtrToObjCSuperTy, SelectorTy);
2002 // struct objc_property
2003 // {
2004 // const char *name;
2005 // const char *attributes;
2006 // const char *type;
2007 // SEL getter;
2008 // SEL setter;
2009 // }
2010 PropertyMetadataTy =
2011 llvm::StructType::get(CGM.getLLVMContext(),
2012 { PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty });
2017 const char *const CGObjCGNUstep2::SectionsBaseNames[8] =
2019 "__objc_selectors",
2020 "__objc_classes",
2021 "__objc_class_refs",
2022 "__objc_cats",
2023 "__objc_protocols",
2024 "__objc_protocol_refs",
2025 "__objc_class_aliases",
2026 "__objc_constant_string"
2029 const char *const CGObjCGNUstep2::PECOFFSectionsBaseNames[8] =
2031 ".objcrt$SEL",
2032 ".objcrt$CLS",
2033 ".objcrt$CLR",
2034 ".objcrt$CAT",
2035 ".objcrt$PCL",
2036 ".objcrt$PCR",
2037 ".objcrt$CAL",
2038 ".objcrt$STR"
2041 /// Support for the ObjFW runtime.
2042 class CGObjCObjFW: public CGObjCGNU {
2043 protected:
2044 /// The GCC ABI message lookup function. Returns an IMP pointing to the
2045 /// method implementation for this message.
2046 LazyRuntimeFunction MsgLookupFn;
2047 /// stret lookup function. While this does not seem to make sense at the
2048 /// first look, this is required to call the correct forwarding function.
2049 LazyRuntimeFunction MsgLookupFnSRet;
2050 /// The GCC ABI superclass message lookup function. Takes a pointer to a
2051 /// structure describing the receiver and the class, and a selector as
2052 /// arguments. Returns the IMP for the corresponding method.
2053 LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet;
2055 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
2056 llvm::Value *cmd, llvm::MDNode *node,
2057 MessageSendInfo &MSI) override {
2058 CGBuilderTy &Builder = CGF.Builder;
2059 llvm::Value *args[] = {
2060 EnforceType(Builder, Receiver, IdTy),
2061 EnforceType(Builder, cmd, SelectorTy) };
2063 llvm::CallBase *imp;
2064 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2065 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args);
2066 else
2067 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
2069 imp->setMetadata(msgSendMDKind, node);
2070 return imp;
2073 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
2074 llvm::Value *cmd, MessageSendInfo &MSI) override {
2075 CGBuilderTy &Builder = CGF.Builder;
2076 llvm::Value *lookupArgs[] = {
2077 EnforceType(Builder, ObjCSuper.getPointer(), PtrToObjCSuperTy), cmd,
2080 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2081 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs);
2082 else
2083 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
2086 llvm::Value *GetClassNamed(CodeGenFunction &CGF, const std::string &Name,
2087 bool isWeak) override {
2088 if (isWeak)
2089 return CGObjCGNU::GetClassNamed(CGF, Name, isWeak);
2091 EmitClassRef(Name);
2092 std::string SymbolName = "_OBJC_CLASS_" + Name;
2093 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName);
2094 if (!ClassSymbol)
2095 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
2096 llvm::GlobalValue::ExternalLinkage,
2097 nullptr, SymbolName);
2098 return ClassSymbol;
2101 public:
2102 CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) {
2103 // IMP objc_msg_lookup(id, SEL);
2104 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
2105 MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy,
2106 SelectorTy);
2107 // IMP objc_msg_lookup_super(struct objc_super*, SEL);
2108 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
2109 PtrToObjCSuperTy, SelectorTy);
2110 MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy,
2111 PtrToObjCSuperTy, SelectorTy);
2114 } // end anonymous namespace
2116 /// Emits a reference to a dummy variable which is emitted with each class.
2117 /// This ensures that a linker error will be generated when trying to link
2118 /// together modules where a referenced class is not defined.
2119 void CGObjCGNU::EmitClassRef(const std::string &className) {
2120 std::string symbolRef = "__objc_class_ref_" + className;
2121 // Don't emit two copies of the same symbol
2122 if (TheModule.getGlobalVariable(symbolRef))
2123 return;
2124 std::string symbolName = "__objc_class_name_" + className;
2125 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
2126 if (!ClassSymbol) {
2127 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
2128 llvm::GlobalValue::ExternalLinkage,
2129 nullptr, symbolName);
2131 new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
2132 llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
2135 CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
2136 unsigned protocolClassVersion, unsigned classABI)
2137 : CGObjCRuntime(cgm), TheModule(CGM.getModule()),
2138 VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr),
2139 MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion),
2140 ProtocolVersion(protocolClassVersion), ClassABIVersion(classABI) {
2142 msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
2143 usesSEHExceptions =
2144 cgm.getContext().getTargetInfo().getTriple().isWindowsMSVCEnvironment();
2146 CodeGenTypes &Types = CGM.getTypes();
2147 IntTy = cast<llvm::IntegerType>(
2148 Types.ConvertType(CGM.getContext().IntTy));
2149 LongTy = cast<llvm::IntegerType>(
2150 Types.ConvertType(CGM.getContext().LongTy));
2151 SizeTy = cast<llvm::IntegerType>(
2152 Types.ConvertType(CGM.getContext().getSizeType()));
2153 PtrDiffTy = cast<llvm::IntegerType>(
2154 Types.ConvertType(CGM.getContext().getPointerDiffType()));
2155 BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
2157 Int8Ty = llvm::Type::getInt8Ty(VMContext);
2158 // C string type. Used in lots of places.
2159 PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty);
2160 ProtocolPtrTy = llvm::PointerType::getUnqual(
2161 Types.ConvertType(CGM.getContext().getObjCProtoType()));
2163 Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
2164 Zeros[1] = Zeros[0];
2165 NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
2166 // Get the selector Type.
2167 QualType selTy = CGM.getContext().getObjCSelType();
2168 if (QualType() == selTy) {
2169 SelectorTy = PtrToInt8Ty;
2170 SelectorElemTy = Int8Ty;
2171 } else {
2172 SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
2173 SelectorElemTy = CGM.getTypes().ConvertTypeForMem(selTy->getPointeeType());
2176 PtrToIntTy = llvm::PointerType::getUnqual(IntTy);
2177 PtrTy = PtrToInt8Ty;
2179 Int32Ty = llvm::Type::getInt32Ty(VMContext);
2180 Int64Ty = llvm::Type::getInt64Ty(VMContext);
2182 IntPtrTy =
2183 CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty;
2185 // Object type
2186 QualType UnqualIdTy = CGM.getContext().getObjCIdType();
2187 ASTIdTy = CanQualType();
2188 if (UnqualIdTy != QualType()) {
2189 ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
2190 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2191 IdElemTy = CGM.getTypes().ConvertTypeForMem(
2192 ASTIdTy.getTypePtr()->getPointeeType());
2193 } else {
2194 IdTy = PtrToInt8Ty;
2195 IdElemTy = Int8Ty;
2197 PtrToIdTy = llvm::PointerType::getUnqual(IdTy);
2198 ProtocolTy = llvm::StructType::get(IdTy,
2199 PtrToInt8Ty, // name
2200 PtrToInt8Ty, // protocols
2201 PtrToInt8Ty, // instance methods
2202 PtrToInt8Ty, // class methods
2203 PtrToInt8Ty, // optional instance methods
2204 PtrToInt8Ty, // optional class methods
2205 PtrToInt8Ty, // properties
2206 PtrToInt8Ty);// optional properties
2208 // struct objc_property_gsv1
2209 // {
2210 // const char *name;
2211 // char attributes;
2212 // char attributes2;
2213 // char unused1;
2214 // char unused2;
2215 // const char *getter_name;
2216 // const char *getter_types;
2217 // const char *setter_name;
2218 // const char *setter_types;
2219 // }
2220 PropertyMetadataTy = llvm::StructType::get(CGM.getLLVMContext(), {
2221 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty,
2222 PtrToInt8Ty, PtrToInt8Ty });
2224 ObjCSuperTy = llvm::StructType::get(IdTy, IdTy);
2225 PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy);
2227 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
2229 // void objc_exception_throw(id);
2230 ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy);
2231 ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy);
2232 // int objc_sync_enter(id);
2233 SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy);
2234 // int objc_sync_exit(id);
2235 SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy);
2237 // void objc_enumerationMutation (id)
2238 EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy, IdTy);
2240 // id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
2241 GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
2242 PtrDiffTy, BoolTy);
2243 // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
2244 SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
2245 PtrDiffTy, IdTy, BoolTy, BoolTy);
2246 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2247 GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy,
2248 PtrDiffTy, BoolTy, BoolTy);
2249 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2250 SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy,
2251 PtrDiffTy, BoolTy, BoolTy);
2253 // IMP type
2254 llvm::Type *IMPArgs[] = { IdTy, SelectorTy };
2255 IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs,
2256 true));
2258 const LangOptions &Opts = CGM.getLangOpts();
2259 if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
2260 RuntimeVersion = 10;
2262 // Don't bother initialising the GC stuff unless we're compiling in GC mode
2263 if (Opts.getGC() != LangOptions::NonGC) {
2264 // This is a bit of an hack. We should sort this out by having a proper
2265 // CGObjCGNUstep subclass for GC, but we may want to really support the old
2266 // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
2267 // Get selectors needed in GC mode
2268 RetainSel = GetNullarySelector("retain", CGM.getContext());
2269 ReleaseSel = GetNullarySelector("release", CGM.getContext());
2270 AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
2272 // Get functions needed in GC mode
2274 // id objc_assign_ivar(id, id, ptrdiff_t);
2275 IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy);
2276 // id objc_assign_strongCast (id, id*)
2277 StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
2278 PtrToIdTy);
2279 // id objc_assign_global(id, id*);
2280 GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy);
2281 // id objc_assign_weak(id, id*);
2282 WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy);
2283 // id objc_read_weak(id*);
2284 WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy);
2285 // void *objc_memmove_collectable(void*, void *, size_t);
2286 MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
2287 SizeTy);
2291 llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF,
2292 const std::string &Name, bool isWeak) {
2293 llvm::Constant *ClassName = MakeConstantString(Name);
2294 // With the incompatible ABI, this will need to be replaced with a direct
2295 // reference to the class symbol. For the compatible nonfragile ABI we are
2296 // still performing this lookup at run time but emitting the symbol for the
2297 // class externally so that we can make the switch later.
2299 // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
2300 // with memoized versions or with static references if it's safe to do so.
2301 if (!isWeak)
2302 EmitClassRef(Name);
2304 llvm::FunctionCallee ClassLookupFn = CGM.CreateRuntimeFunction(
2305 llvm::FunctionType::get(IdTy, PtrToInt8Ty, true), "objc_lookup_class");
2306 return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName);
2309 // This has to perform the lookup every time, since posing and related
2310 // techniques can modify the name -> class mapping.
2311 llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF,
2312 const ObjCInterfaceDecl *OID) {
2313 auto *Value =
2314 GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported());
2315 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value))
2316 CGM.setGVProperties(ClassSymbol, OID);
2317 return Value;
2320 llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
2321 auto *Value = GetClassNamed(CGF, "NSAutoreleasePool", false);
2322 if (CGM.getTriple().isOSBinFormatCOFF()) {
2323 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) {
2324 IdentifierInfo &II = CGF.CGM.getContext().Idents.get("NSAutoreleasePool");
2325 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
2326 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2328 const VarDecl *VD = nullptr;
2329 for (const auto *Result : DC->lookup(&II))
2330 if ((VD = dyn_cast<VarDecl>(Result)))
2331 break;
2333 CGM.setGVProperties(ClassSymbol, VD);
2336 return Value;
2339 llvm::Value *CGObjCGNU::GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
2340 const std::string &TypeEncoding) {
2341 SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel];
2342 llvm::GlobalAlias *SelValue = nullptr;
2344 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
2345 e = Types.end() ; i!=e ; i++) {
2346 if (i->first == TypeEncoding) {
2347 SelValue = i->second;
2348 break;
2351 if (!SelValue) {
2352 SelValue = llvm::GlobalAlias::create(SelectorElemTy, 0,
2353 llvm::GlobalValue::PrivateLinkage,
2354 ".objc_selector_" + Sel.getAsString(),
2355 &TheModule);
2356 Types.emplace_back(TypeEncoding, SelValue);
2359 return SelValue;
2362 Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) {
2363 llvm::Value *SelValue = GetSelector(CGF, Sel);
2365 // Store it to a temporary. Does this satisfy the semantics of
2366 // GetAddrOfSelector? Hopefully.
2367 Address tmp = CGF.CreateTempAlloca(SelValue->getType(),
2368 CGF.getPointerAlign());
2369 CGF.Builder.CreateStore(SelValue, tmp);
2370 return tmp;
2373 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) {
2374 return GetTypedSelector(CGF, Sel, std::string());
2377 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF,
2378 const ObjCMethodDecl *Method) {
2379 std::string SelTypes = CGM.getContext().getObjCEncodingForMethodDecl(Method);
2380 return GetTypedSelector(CGF, Method->getSelector(), SelTypes);
2383 llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
2384 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
2385 // With the old ABI, there was only one kind of catchall, which broke
2386 // foreign exceptions. With the new ABI, we use __objc_id_typeinfo as
2387 // a pointer indicating object catchalls, and NULL to indicate real
2388 // catchalls
2389 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2390 return MakeConstantString("@id");
2391 } else {
2392 return nullptr;
2396 // All other types should be Objective-C interface pointer types.
2397 const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>();
2398 assert(OPT && "Invalid @catch type.");
2399 const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface();
2400 assert(IDecl && "Invalid @catch type.");
2401 return MakeConstantString(IDecl->getIdentifier()->getName());
2404 llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) {
2405 if (usesSEHExceptions)
2406 return CGM.getCXXABI().getAddrOfRTTIDescriptor(T);
2408 if (!CGM.getLangOpts().CPlusPlus)
2409 return CGObjCGNU::GetEHType(T);
2411 // For Objective-C++, we want to provide the ability to catch both C++ and
2412 // Objective-C objects in the same function.
2414 // There's a particular fixed type info for 'id'.
2415 if (T->isObjCIdType() ||
2416 T->isObjCQualifiedIdType()) {
2417 llvm::Constant *IDEHType =
2418 CGM.getModule().getGlobalVariable("__objc_id_type_info");
2419 if (!IDEHType)
2420 IDEHType =
2421 new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
2422 false,
2423 llvm::GlobalValue::ExternalLinkage,
2424 nullptr, "__objc_id_type_info");
2425 return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty);
2428 const ObjCObjectPointerType *PT =
2429 T->getAs<ObjCObjectPointerType>();
2430 assert(PT && "Invalid @catch type.");
2431 const ObjCInterfaceType *IT = PT->getInterfaceType();
2432 assert(IT && "Invalid @catch type.");
2433 std::string className =
2434 std::string(IT->getDecl()->getIdentifier()->getName());
2436 std::string typeinfoName = "__objc_eh_typeinfo_" + className;
2438 // Return the existing typeinfo if it exists
2439 llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName);
2440 if (typeinfo)
2441 return llvm::ConstantExpr::getBitCast(typeinfo, PtrToInt8Ty);
2443 // Otherwise create it.
2445 // vtable for gnustep::libobjc::__objc_class_type_info
2446 // It's quite ugly hard-coding this. Ideally we'd generate it using the host
2447 // platform's name mangling.
2448 const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
2449 auto *Vtable = TheModule.getGlobalVariable(vtableName);
2450 if (!Vtable) {
2451 Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
2452 llvm::GlobalValue::ExternalLinkage,
2453 nullptr, vtableName);
2455 llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
2456 auto *BVtable = llvm::ConstantExpr::getBitCast(
2457 llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two),
2458 PtrToInt8Ty);
2460 llvm::Constant *typeName =
2461 ExportUniqueString(className, "__objc_eh_typename_");
2463 ConstantInitBuilder builder(CGM);
2464 auto fields = builder.beginStruct();
2465 fields.add(BVtable);
2466 fields.add(typeName);
2467 llvm::Constant *TI =
2468 fields.finishAndCreateGlobal("__objc_eh_typeinfo_" + className,
2469 CGM.getPointerAlign(),
2470 /*constant*/ false,
2471 llvm::GlobalValue::LinkOnceODRLinkage);
2472 return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty);
2475 /// Generate an NSConstantString object.
2476 ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
2478 std::string Str = SL->getString().str();
2479 CharUnits Align = CGM.getPointerAlign();
2481 // Look for an existing one
2482 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
2483 if (old != ObjCStrings.end())
2484 return ConstantAddress(old->getValue(), Int8Ty, Align);
2486 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
2488 if (StringClass.empty()) StringClass = "NSConstantString";
2490 std::string Sym = "_OBJC_CLASS_";
2491 Sym += StringClass;
2493 llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
2495 if (!isa)
2496 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
2497 llvm::GlobalValue::ExternalWeakLinkage, nullptr, Sym);
2498 else if (isa->getType() != PtrToIdTy)
2499 isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
2501 ConstantInitBuilder Builder(CGM);
2502 auto Fields = Builder.beginStruct();
2503 Fields.add(isa);
2504 Fields.add(MakeConstantString(Str));
2505 Fields.addInt(IntTy, Str.size());
2506 llvm::Constant *ObjCStr =
2507 Fields.finishAndCreateGlobal(".objc_str", Align);
2508 ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty);
2509 ObjCStrings[Str] = ObjCStr;
2510 ConstantStrings.push_back(ObjCStr);
2511 return ConstantAddress(ObjCStr, Int8Ty, Align);
2514 ///Generates a message send where the super is the receiver. This is a message
2515 ///send to self with special delivery semantics indicating which class's method
2516 ///should be called.
2517 RValue
2518 CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
2519 ReturnValueSlot Return,
2520 QualType ResultType,
2521 Selector Sel,
2522 const ObjCInterfaceDecl *Class,
2523 bool isCategoryImpl,
2524 llvm::Value *Receiver,
2525 bool IsClassMessage,
2526 const CallArgList &CallArgs,
2527 const ObjCMethodDecl *Method) {
2528 CGBuilderTy &Builder = CGF.Builder;
2529 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2530 if (Sel == RetainSel || Sel == AutoreleaseSel) {
2531 return RValue::get(EnforceType(Builder, Receiver,
2532 CGM.getTypes().ConvertType(ResultType)));
2534 if (Sel == ReleaseSel) {
2535 return RValue::get(nullptr);
2539 llvm::Value *cmd = GetSelector(CGF, Sel);
2540 CallArgList ActualArgs;
2542 ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
2543 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2544 ActualArgs.addFrom(CallArgs);
2546 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2548 llvm::Value *ReceiverClass = nullptr;
2549 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
2550 if (isV2ABI) {
2551 ReceiverClass = GetClassNamed(CGF,
2552 Class->getSuperClass()->getNameAsString(), /*isWeak*/false);
2553 if (IsClassMessage) {
2554 // Load the isa pointer of the superclass is this is a class method.
2555 ReceiverClass = Builder.CreateBitCast(ReceiverClass,
2556 llvm::PointerType::getUnqual(IdTy));
2557 ReceiverClass =
2558 Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign());
2560 ReceiverClass = EnforceType(Builder, ReceiverClass, IdTy);
2561 } else {
2562 if (isCategoryImpl) {
2563 llvm::FunctionCallee classLookupFunction = nullptr;
2564 if (IsClassMessage) {
2565 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2566 IdTy, PtrTy, true), "objc_get_meta_class");
2567 } else {
2568 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2569 IdTy, PtrTy, true), "objc_get_class");
2571 ReceiverClass = Builder.CreateCall(classLookupFunction,
2572 MakeConstantString(Class->getNameAsString()));
2573 } else {
2574 // Set up global aliases for the metaclass or class pointer if they do not
2575 // already exist. These will are forward-references which will be set to
2576 // pointers to the class and metaclass structure created for the runtime
2577 // load function. To send a message to super, we look up the value of the
2578 // super_class pointer from either the class or metaclass structure.
2579 if (IsClassMessage) {
2580 if (!MetaClassPtrAlias) {
2581 MetaClassPtrAlias = llvm::GlobalAlias::create(
2582 IdElemTy, 0, llvm::GlobalValue::InternalLinkage,
2583 ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule);
2585 ReceiverClass = MetaClassPtrAlias;
2586 } else {
2587 if (!ClassPtrAlias) {
2588 ClassPtrAlias = llvm::GlobalAlias::create(
2589 IdElemTy, 0, llvm::GlobalValue::InternalLinkage,
2590 ".objc_class_ref" + Class->getNameAsString(), &TheModule);
2592 ReceiverClass = ClassPtrAlias;
2595 // Cast the pointer to a simplified version of the class structure
2596 llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy);
2597 ReceiverClass = Builder.CreateBitCast(ReceiverClass,
2598 llvm::PointerType::getUnqual(CastTy));
2599 // Get the superclass pointer
2600 ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1);
2601 // Load the superclass pointer
2602 ReceiverClass =
2603 Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign());
2605 // Construct the structure used to look up the IMP
2606 llvm::StructType *ObjCSuperTy =
2607 llvm::StructType::get(Receiver->getType(), IdTy);
2609 Address ObjCSuper = CGF.CreateTempAlloca(ObjCSuperTy,
2610 CGF.getPointerAlign());
2612 Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0));
2613 Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1));
2615 // Get the IMP
2616 llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI);
2617 imp = EnforceType(Builder, imp, MSI.MessengerType);
2619 llvm::Metadata *impMD[] = {
2620 llvm::MDString::get(VMContext, Sel.getAsString()),
2621 llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
2622 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2623 llvm::Type::getInt1Ty(VMContext), IsClassMessage))};
2624 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2626 CGCallee callee(CGCalleeInfo(), imp);
2628 llvm::CallBase *call;
2629 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2630 call->setMetadata(msgSendMDKind, node);
2631 return msgRet;
2634 /// Generate code for a message send expression.
2635 RValue
2636 CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
2637 ReturnValueSlot Return,
2638 QualType ResultType,
2639 Selector Sel,
2640 llvm::Value *Receiver,
2641 const CallArgList &CallArgs,
2642 const ObjCInterfaceDecl *Class,
2643 const ObjCMethodDecl *Method) {
2644 CGBuilderTy &Builder = CGF.Builder;
2646 // Strip out message sends to retain / release in GC mode
2647 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2648 if (Sel == RetainSel || Sel == AutoreleaseSel) {
2649 return RValue::get(EnforceType(Builder, Receiver,
2650 CGM.getTypes().ConvertType(ResultType)));
2652 if (Sel == ReleaseSel) {
2653 return RValue::get(nullptr);
2657 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2658 llvm::Value *cmd;
2659 if (Method)
2660 cmd = GetSelector(CGF, Method);
2661 else
2662 cmd = GetSelector(CGF, Sel);
2663 cmd = EnforceType(Builder, cmd, SelectorTy);
2664 Receiver = EnforceType(Builder, Receiver, IdTy);
2666 llvm::Metadata *impMD[] = {
2667 llvm::MDString::get(VMContext, Sel.getAsString()),
2668 llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""),
2669 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2670 llvm::Type::getInt1Ty(VMContext), Class != nullptr))};
2671 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2673 CallArgList ActualArgs;
2674 ActualArgs.add(RValue::get(Receiver), ASTIdTy);
2675 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2676 ActualArgs.addFrom(CallArgs);
2678 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2680 // Message sends are expected to return a zero value when the
2681 // receiver is nil. At one point, this was only guaranteed for
2682 // simple integer and pointer types, but expectations have grown
2683 // over time.
2685 // Given a nil receiver, the GNU runtime's message lookup will
2686 // return a stub function that simply sets various return-value
2687 // registers to zero and then returns. That's good enough for us
2688 // if and only if (1) the calling conventions of that stub are
2689 // compatible with the signature we're using and (2) the registers
2690 // it sets are sufficient to produce a zero value of the return type.
2691 // Rather than doing a whole target-specific analysis, we assume it
2692 // only works for void, integer, and pointer types, and in all
2693 // other cases we do an explicit nil check is emitted code. In
2694 // addition to ensuring we produe a zero value for other types, this
2695 // sidesteps the few outright CC incompatibilities we know about that
2696 // could otherwise lead to crashes, like when a method is expected to
2697 // return on the x87 floating point stack or adjust the stack pointer
2698 // because of an indirect return.
2699 bool hasParamDestroyedInCallee = false;
2700 bool requiresExplicitZeroResult = false;
2701 bool requiresNilReceiverCheck = [&] {
2702 // We never need a check if we statically know the receiver isn't nil.
2703 if (!canMessageReceiverBeNull(CGF, Method, /*IsSuper*/ false,
2704 Class, Receiver))
2705 return false;
2707 // If there's a consumed argument, we need a nil check.
2708 if (Method && Method->hasParamDestroyedInCallee()) {
2709 hasParamDestroyedInCallee = true;
2712 // If the return value isn't flagged as unused, and the result
2713 // type isn't in our narrow set where we assume compatibility,
2714 // we need a nil check to ensure a nil value.
2715 if (!Return.isUnused()) {
2716 if (ResultType->isVoidType()) {
2717 // void results are definitely okay.
2718 } else if (ResultType->hasPointerRepresentation() &&
2719 CGM.getTypes().isZeroInitializable(ResultType)) {
2720 // Pointer types should be fine as long as they have
2721 // bitwise-zero null pointers. But do we need to worry
2722 // about unusual address spaces?
2723 } else if (ResultType->isIntegralOrEnumerationType()) {
2724 // Bitwise zero should always be zero for integral types.
2725 // FIXME: we probably need a size limit here, but we've
2726 // never imposed one before
2727 } else {
2728 // Otherwise, use an explicit check just to be sure.
2729 requiresExplicitZeroResult = true;
2733 return hasParamDestroyedInCallee || requiresExplicitZeroResult;
2734 }();
2736 // We will need to explicitly zero-initialize an aggregate result slot
2737 // if we generally require explicit zeroing and we have an aggregate
2738 // result.
2739 bool requiresExplicitAggZeroing =
2740 requiresExplicitZeroResult && CGF.hasAggregateEvaluationKind(ResultType);
2742 // The block we're going to end up in after any message send or nil path.
2743 llvm::BasicBlock *continueBB = nullptr;
2744 // The block that eventually branched to continueBB along the nil path.
2745 llvm::BasicBlock *nilPathBB = nullptr;
2746 // The block to do explicit work in along the nil path, if necessary.
2747 llvm::BasicBlock *nilCleanupBB = nullptr;
2749 // Emit the nil-receiver check.
2750 if (requiresNilReceiverCheck) {
2751 llvm::BasicBlock *messageBB = CGF.createBasicBlock("msgSend");
2752 continueBB = CGF.createBasicBlock("continue");
2754 // If we need to zero-initialize an aggregate result or destroy
2755 // consumed arguments, we'll need a separate cleanup block.
2756 // Otherwise we can just branch directly to the continuation block.
2757 if (requiresExplicitAggZeroing || hasParamDestroyedInCallee) {
2758 nilCleanupBB = CGF.createBasicBlock("nilReceiverCleanup");
2759 } else {
2760 nilPathBB = Builder.GetInsertBlock();
2763 llvm::Value *isNil = Builder.CreateICmpEQ(Receiver,
2764 llvm::Constant::getNullValue(Receiver->getType()));
2765 Builder.CreateCondBr(isNil, nilCleanupBB ? nilCleanupBB : continueBB,
2766 messageBB);
2767 CGF.EmitBlock(messageBB);
2770 // Get the IMP to call
2771 llvm::Value *imp;
2773 // If we have non-legacy dispatch specified, we try using the objc_msgSend()
2774 // functions. These are not supported on all platforms (or all runtimes on a
2775 // given platform), so we
2776 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
2777 case CodeGenOptions::Legacy:
2778 imp = LookupIMP(CGF, Receiver, cmd, node, MSI);
2779 break;
2780 case CodeGenOptions::Mixed:
2781 case CodeGenOptions::NonLegacy:
2782 if (CGM.ReturnTypeUsesFPRet(ResultType)) {
2783 imp =
2784 CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
2785 "objc_msgSend_fpret")
2786 .getCallee();
2787 } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) {
2788 // The actual types here don't matter - we're going to bitcast the
2789 // function anyway
2790 imp =
2791 CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
2792 "objc_msgSend_stret")
2793 .getCallee();
2794 } else {
2795 imp = CGM.CreateRuntimeFunction(
2796 llvm::FunctionType::get(IdTy, IdTy, true), "objc_msgSend")
2797 .getCallee();
2801 // Reset the receiver in case the lookup modified it
2802 ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy);
2804 imp = EnforceType(Builder, imp, MSI.MessengerType);
2806 llvm::CallBase *call;
2807 CGCallee callee(CGCalleeInfo(), imp);
2808 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2809 call->setMetadata(msgSendMDKind, node);
2811 if (requiresNilReceiverCheck) {
2812 llvm::BasicBlock *nonNilPathBB = CGF.Builder.GetInsertBlock();
2813 CGF.Builder.CreateBr(continueBB);
2815 // Emit the nil path if we decided it was necessary above.
2816 if (nilCleanupBB) {
2817 CGF.EmitBlock(nilCleanupBB);
2819 if (hasParamDestroyedInCallee) {
2820 destroyCalleeDestroyedArguments(CGF, Method, CallArgs);
2823 if (requiresExplicitAggZeroing) {
2824 assert(msgRet.isAggregate());
2825 Address addr = msgRet.getAggregateAddress();
2826 CGF.EmitNullInitialization(addr, ResultType);
2829 nilPathBB = CGF.Builder.GetInsertBlock();
2830 CGF.Builder.CreateBr(continueBB);
2833 // Enter the continuation block and emit a phi if required.
2834 CGF.EmitBlock(continueBB);
2835 if (msgRet.isScalar()) {
2836 // If the return type is void, do nothing
2837 if (llvm::Value *v = msgRet.getScalarVal()) {
2838 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
2839 phi->addIncoming(v, nonNilPathBB);
2840 phi->addIncoming(CGM.EmitNullConstant(ResultType), nilPathBB);
2841 msgRet = RValue::get(phi);
2843 } else if (msgRet.isAggregate()) {
2844 // Aggregate zeroing is handled in nilCleanupBB when it's required.
2845 } else /* isComplex() */ {
2846 std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
2847 llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
2848 phi->addIncoming(v.first, nonNilPathBB);
2849 phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
2850 nilPathBB);
2851 llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
2852 phi2->addIncoming(v.second, nonNilPathBB);
2853 phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
2854 nilPathBB);
2855 msgRet = RValue::getComplex(phi, phi2);
2858 return msgRet;
2861 /// Generates a MethodList. Used in construction of a objc_class and
2862 /// objc_category structures.
2863 llvm::Constant *CGObjCGNU::
2864 GenerateMethodList(StringRef ClassName,
2865 StringRef CategoryName,
2866 ArrayRef<const ObjCMethodDecl*> Methods,
2867 bool isClassMethodList) {
2868 if (Methods.empty())
2869 return NULLPtr;
2871 ConstantInitBuilder Builder(CGM);
2873 auto MethodList = Builder.beginStruct();
2874 MethodList.addNullPointer(CGM.Int8PtrTy);
2875 MethodList.addInt(Int32Ty, Methods.size());
2877 // Get the method structure type.
2878 llvm::StructType *ObjCMethodTy =
2879 llvm::StructType::get(CGM.getLLVMContext(), {
2880 PtrToInt8Ty, // Really a selector, but the runtime creates it us.
2881 PtrToInt8Ty, // Method types
2882 IMPTy // Method pointer
2884 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
2885 if (isV2ABI) {
2886 // size_t size;
2887 llvm::DataLayout td(&TheModule);
2888 MethodList.addInt(SizeTy, td.getTypeSizeInBits(ObjCMethodTy) /
2889 CGM.getContext().getCharWidth());
2890 ObjCMethodTy =
2891 llvm::StructType::get(CGM.getLLVMContext(), {
2892 IMPTy, // Method pointer
2893 PtrToInt8Ty, // Selector
2894 PtrToInt8Ty // Extended type encoding
2896 } else {
2897 ObjCMethodTy =
2898 llvm::StructType::get(CGM.getLLVMContext(), {
2899 PtrToInt8Ty, // Really a selector, but the runtime creates it us.
2900 PtrToInt8Ty, // Method types
2901 IMPTy // Method pointer
2904 auto MethodArray = MethodList.beginArray();
2905 ASTContext &Context = CGM.getContext();
2906 for (const auto *OMD : Methods) {
2907 llvm::Constant *FnPtr =
2908 TheModule.getFunction(getSymbolNameForMethod(OMD));
2909 assert(FnPtr && "Can't generate metadata for method that doesn't exist");
2910 auto Method = MethodArray.beginStruct(ObjCMethodTy);
2911 if (isV2ABI) {
2912 Method.addBitCast(FnPtr, IMPTy);
2913 Method.add(GetConstantSelector(OMD->getSelector(),
2914 Context.getObjCEncodingForMethodDecl(OMD)));
2915 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD, true)));
2916 } else {
2917 Method.add(MakeConstantString(OMD->getSelector().getAsString()));
2918 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD)));
2919 Method.addBitCast(FnPtr, IMPTy);
2921 Method.finishAndAddTo(MethodArray);
2923 MethodArray.finishAndAddTo(MethodList);
2925 // Create an instance of the structure
2926 return MethodList.finishAndCreateGlobal(".objc_method_list",
2927 CGM.getPointerAlign());
2930 /// Generates an IvarList. Used in construction of a objc_class.
2931 llvm::Constant *CGObjCGNU::
2932 GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
2933 ArrayRef<llvm::Constant *> IvarTypes,
2934 ArrayRef<llvm::Constant *> IvarOffsets,
2935 ArrayRef<llvm::Constant *> IvarAlign,
2936 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) {
2937 if (IvarNames.empty())
2938 return NULLPtr;
2940 ConstantInitBuilder Builder(CGM);
2942 // Structure containing array count followed by array.
2943 auto IvarList = Builder.beginStruct();
2944 IvarList.addInt(IntTy, (int)IvarNames.size());
2946 // Get the ivar structure type.
2947 llvm::StructType *ObjCIvarTy =
2948 llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, IntTy);
2950 // Array of ivar structures.
2951 auto Ivars = IvarList.beginArray(ObjCIvarTy);
2952 for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
2953 auto Ivar = Ivars.beginStruct(ObjCIvarTy);
2954 Ivar.add(IvarNames[i]);
2955 Ivar.add(IvarTypes[i]);
2956 Ivar.add(IvarOffsets[i]);
2957 Ivar.finishAndAddTo(Ivars);
2959 Ivars.finishAndAddTo(IvarList);
2961 // Create an instance of the structure
2962 return IvarList.finishAndCreateGlobal(".objc_ivar_list",
2963 CGM.getPointerAlign());
2966 /// Generate a class structure
2967 llvm::Constant *CGObjCGNU::GenerateClassStructure(
2968 llvm::Constant *MetaClass,
2969 llvm::Constant *SuperClass,
2970 unsigned info,
2971 const char *Name,
2972 llvm::Constant *Version,
2973 llvm::Constant *InstanceSize,
2974 llvm::Constant *IVars,
2975 llvm::Constant *Methods,
2976 llvm::Constant *Protocols,
2977 llvm::Constant *IvarOffsets,
2978 llvm::Constant *Properties,
2979 llvm::Constant *StrongIvarBitmap,
2980 llvm::Constant *WeakIvarBitmap,
2981 bool isMeta) {
2982 // Set up the class structure
2983 // Note: Several of these are char*s when they should be ids. This is
2984 // because the runtime performs this translation on load.
2986 // Fields marked New ABI are part of the GNUstep runtime. We emit them
2987 // anyway; the classes will still work with the GNU runtime, they will just
2988 // be ignored.
2989 llvm::StructType *ClassTy = llvm::StructType::get(
2990 PtrToInt8Ty, // isa
2991 PtrToInt8Ty, // super_class
2992 PtrToInt8Ty, // name
2993 LongTy, // version
2994 LongTy, // info
2995 LongTy, // instance_size
2996 IVars->getType(), // ivars
2997 Methods->getType(), // methods
2998 // These are all filled in by the runtime, so we pretend
2999 PtrTy, // dtable
3000 PtrTy, // subclass_list
3001 PtrTy, // sibling_class
3002 PtrTy, // protocols
3003 PtrTy, // gc_object_type
3004 // New ABI:
3005 LongTy, // abi_version
3006 IvarOffsets->getType(), // ivar_offsets
3007 Properties->getType(), // properties
3008 IntPtrTy, // strong_pointers
3009 IntPtrTy // weak_pointers
3012 ConstantInitBuilder Builder(CGM);
3013 auto Elements = Builder.beginStruct(ClassTy);
3015 // Fill in the structure
3017 // isa
3018 Elements.addBitCast(MetaClass, PtrToInt8Ty);
3019 // super_class
3020 Elements.add(SuperClass);
3021 // name
3022 Elements.add(MakeConstantString(Name, ".class_name"));
3023 // version
3024 Elements.addInt(LongTy, 0);
3025 // info
3026 Elements.addInt(LongTy, info);
3027 // instance_size
3028 if (isMeta) {
3029 llvm::DataLayout td(&TheModule);
3030 Elements.addInt(LongTy,
3031 td.getTypeSizeInBits(ClassTy) /
3032 CGM.getContext().getCharWidth());
3033 } else
3034 Elements.add(InstanceSize);
3035 // ivars
3036 Elements.add(IVars);
3037 // methods
3038 Elements.add(Methods);
3039 // These are all filled in by the runtime, so we pretend
3040 // dtable
3041 Elements.add(NULLPtr);
3042 // subclass_list
3043 Elements.add(NULLPtr);
3044 // sibling_class
3045 Elements.add(NULLPtr);
3046 // protocols
3047 Elements.addBitCast(Protocols, PtrTy);
3048 // gc_object_type
3049 Elements.add(NULLPtr);
3050 // abi_version
3051 Elements.addInt(LongTy, ClassABIVersion);
3052 // ivar_offsets
3053 Elements.add(IvarOffsets);
3054 // properties
3055 Elements.add(Properties);
3056 // strong_pointers
3057 Elements.add(StrongIvarBitmap);
3058 // weak_pointers
3059 Elements.add(WeakIvarBitmap);
3060 // Create an instance of the structure
3061 // This is now an externally visible symbol, so that we can speed up class
3062 // messages in the next ABI. We may already have some weak references to
3063 // this, so check and fix them properly.
3064 std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") +
3065 std::string(Name));
3066 llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym);
3067 llvm::Constant *Class =
3068 Elements.finishAndCreateGlobal(ClassSym, CGM.getPointerAlign(), false,
3069 llvm::GlobalValue::ExternalLinkage);
3070 if (ClassRef) {
3071 ClassRef->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(Class,
3072 ClassRef->getType()));
3073 ClassRef->removeFromParent();
3074 Class->setName(ClassSym);
3076 return Class;
3079 llvm::Constant *CGObjCGNU::
3080 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) {
3081 // Get the method structure type.
3082 llvm::StructType *ObjCMethodDescTy =
3083 llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty });
3084 ASTContext &Context = CGM.getContext();
3085 ConstantInitBuilder Builder(CGM);
3086 auto MethodList = Builder.beginStruct();
3087 MethodList.addInt(IntTy, Methods.size());
3088 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
3089 for (auto *M : Methods) {
3090 auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
3091 Method.add(MakeConstantString(M->getSelector().getAsString()));
3092 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(M)));
3093 Method.finishAndAddTo(MethodArray);
3095 MethodArray.finishAndAddTo(MethodList);
3096 return MethodList.finishAndCreateGlobal(".objc_method_list",
3097 CGM.getPointerAlign());
3100 // Create the protocol list structure used in classes, categories and so on
3101 llvm::Constant *
3102 CGObjCGNU::GenerateProtocolList(ArrayRef<std::string> Protocols) {
3104 ConstantInitBuilder Builder(CGM);
3105 auto ProtocolList = Builder.beginStruct();
3106 ProtocolList.add(NULLPtr);
3107 ProtocolList.addInt(LongTy, Protocols.size());
3109 auto Elements = ProtocolList.beginArray(PtrToInt8Ty);
3110 for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end();
3111 iter != endIter ; iter++) {
3112 llvm::Constant *protocol = nullptr;
3113 llvm::StringMap<llvm::Constant*>::iterator value =
3114 ExistingProtocols.find(*iter);
3115 if (value == ExistingProtocols.end()) {
3116 protocol = GenerateEmptyProtocol(*iter);
3117 } else {
3118 protocol = value->getValue();
3120 Elements.addBitCast(protocol, PtrToInt8Ty);
3122 Elements.finishAndAddTo(ProtocolList);
3123 return ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
3124 CGM.getPointerAlign());
3127 llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF,
3128 const ObjCProtocolDecl *PD) {
3129 auto protocol = GenerateProtocolRef(PD);
3130 llvm::Type *T =
3131 CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType());
3132 return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T));
3135 llvm::Constant *CGObjCGNU::GenerateProtocolRef(const ObjCProtocolDecl *PD) {
3136 llvm::Constant *&protocol = ExistingProtocols[PD->getNameAsString()];
3137 if (!protocol)
3138 GenerateProtocol(PD);
3139 assert(protocol && "Unknown protocol");
3140 return protocol;
3143 llvm::Constant *
3144 CGObjCGNU::GenerateEmptyProtocol(StringRef ProtocolName) {
3145 llvm::Constant *ProtocolList = GenerateProtocolList({});
3146 llvm::Constant *MethodList = GenerateProtocolMethodList({});
3147 MethodList = llvm::ConstantExpr::getBitCast(MethodList, PtrToInt8Ty);
3148 // Protocols are objects containing lists of the methods implemented and
3149 // protocols adopted.
3150 ConstantInitBuilder Builder(CGM);
3151 auto Elements = Builder.beginStruct();
3153 // The isa pointer must be set to a magic number so the runtime knows it's
3154 // the correct layout.
3155 Elements.add(llvm::ConstantExpr::getIntToPtr(
3156 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
3158 Elements.add(MakeConstantString(ProtocolName, ".objc_protocol_name"));
3159 Elements.add(ProtocolList); /* .protocol_list */
3160 Elements.add(MethodList); /* .instance_methods */
3161 Elements.add(MethodList); /* .class_methods */
3162 Elements.add(MethodList); /* .optional_instance_methods */
3163 Elements.add(MethodList); /* .optional_class_methods */
3164 Elements.add(NULLPtr); /* .properties */
3165 Elements.add(NULLPtr); /* .optional_properties */
3166 return Elements.finishAndCreateGlobal(SymbolForProtocol(ProtocolName),
3167 CGM.getPointerAlign());
3170 void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
3171 if (PD->isNonRuntimeProtocol())
3172 return;
3174 std::string ProtocolName = PD->getNameAsString();
3176 // Use the protocol definition, if there is one.
3177 if (const ObjCProtocolDecl *Def = PD->getDefinition())
3178 PD = Def;
3180 SmallVector<std::string, 16> Protocols;
3181 for (const auto *PI : PD->protocols())
3182 Protocols.push_back(PI->getNameAsString());
3183 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
3184 SmallVector<const ObjCMethodDecl*, 16> OptionalInstanceMethods;
3185 for (const auto *I : PD->instance_methods())
3186 if (I->isOptional())
3187 OptionalInstanceMethods.push_back(I);
3188 else
3189 InstanceMethods.push_back(I);
3190 // Collect information about class methods:
3191 SmallVector<const ObjCMethodDecl*, 16> ClassMethods;
3192 SmallVector<const ObjCMethodDecl*, 16> OptionalClassMethods;
3193 for (const auto *I : PD->class_methods())
3194 if (I->isOptional())
3195 OptionalClassMethods.push_back(I);
3196 else
3197 ClassMethods.push_back(I);
3199 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
3200 llvm::Constant *InstanceMethodList =
3201 GenerateProtocolMethodList(InstanceMethods);
3202 llvm::Constant *ClassMethodList =
3203 GenerateProtocolMethodList(ClassMethods);
3204 llvm::Constant *OptionalInstanceMethodList =
3205 GenerateProtocolMethodList(OptionalInstanceMethods);
3206 llvm::Constant *OptionalClassMethodList =
3207 GenerateProtocolMethodList(OptionalClassMethods);
3209 // Property metadata: name, attributes, isSynthesized, setter name, setter
3210 // types, getter name, getter types.
3211 // The isSynthesized value is always set to 0 in a protocol. It exists to
3212 // simplify the runtime library by allowing it to use the same data
3213 // structures for protocol metadata everywhere.
3215 llvm::Constant *PropertyList =
3216 GeneratePropertyList(nullptr, PD, false, false);
3217 llvm::Constant *OptionalPropertyList =
3218 GeneratePropertyList(nullptr, PD, false, true);
3220 // Protocols are objects containing lists of the methods implemented and
3221 // protocols adopted.
3222 // The isa pointer must be set to a magic number so the runtime knows it's
3223 // the correct layout.
3224 ConstantInitBuilder Builder(CGM);
3225 auto Elements = Builder.beginStruct();
3226 Elements.add(
3227 llvm::ConstantExpr::getIntToPtr(
3228 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
3229 Elements.add(MakeConstantString(ProtocolName));
3230 Elements.add(ProtocolList);
3231 Elements.add(InstanceMethodList);
3232 Elements.add(ClassMethodList);
3233 Elements.add(OptionalInstanceMethodList);
3234 Elements.add(OptionalClassMethodList);
3235 Elements.add(PropertyList);
3236 Elements.add(OptionalPropertyList);
3237 ExistingProtocols[ProtocolName] =
3238 llvm::ConstantExpr::getBitCast(
3239 Elements.finishAndCreateGlobal(".objc_protocol", CGM.getPointerAlign()),
3240 IdTy);
3242 void CGObjCGNU::GenerateProtocolHolderCategory() {
3243 // Collect information about instance methods
3245 ConstantInitBuilder Builder(CGM);
3246 auto Elements = Builder.beginStruct();
3248 const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
3249 const std::string CategoryName = "AnotherHack";
3250 Elements.add(MakeConstantString(CategoryName));
3251 Elements.add(MakeConstantString(ClassName));
3252 // Instance method list
3253 Elements.addBitCast(GenerateMethodList(
3254 ClassName, CategoryName, {}, false), PtrTy);
3255 // Class method list
3256 Elements.addBitCast(GenerateMethodList(
3257 ClassName, CategoryName, {}, true), PtrTy);
3259 // Protocol list
3260 ConstantInitBuilder ProtocolListBuilder(CGM);
3261 auto ProtocolList = ProtocolListBuilder.beginStruct();
3262 ProtocolList.add(NULLPtr);
3263 ProtocolList.addInt(LongTy, ExistingProtocols.size());
3264 auto ProtocolElements = ProtocolList.beginArray(PtrTy);
3265 for (auto iter = ExistingProtocols.begin(), endIter = ExistingProtocols.end();
3266 iter != endIter ; iter++) {
3267 ProtocolElements.addBitCast(iter->getValue(), PtrTy);
3269 ProtocolElements.finishAndAddTo(ProtocolList);
3270 Elements.addBitCast(
3271 ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
3272 CGM.getPointerAlign()),
3273 PtrTy);
3274 Categories.push_back(llvm::ConstantExpr::getBitCast(
3275 Elements.finishAndCreateGlobal("", CGM.getPointerAlign()),
3276 PtrTy));
3279 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
3280 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
3281 /// bits set to their values, LSB first, while larger ones are stored in a
3282 /// structure of this / form:
3284 /// struct { int32_t length; int32_t values[length]; };
3286 /// The values in the array are stored in host-endian format, with the least
3287 /// significant bit being assumed to come first in the bitfield. Therefore, a
3288 /// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
3289 /// bitfield / with the 63rd bit set will be 1<<64.
3290 llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) {
3291 int bitCount = bits.size();
3292 int ptrBits = CGM.getDataLayout().getPointerSizeInBits();
3293 if (bitCount < ptrBits) {
3294 uint64_t val = 1;
3295 for (int i=0 ; i<bitCount ; ++i) {
3296 if (bits[i]) val |= 1ULL<<(i+1);
3298 return llvm::ConstantInt::get(IntPtrTy, val);
3300 SmallVector<llvm::Constant *, 8> values;
3301 int v=0;
3302 while (v < bitCount) {
3303 int32_t word = 0;
3304 for (int i=0 ; (i<32) && (v<bitCount) ; ++i) {
3305 if (bits[v]) word |= 1<<i;
3306 v++;
3308 values.push_back(llvm::ConstantInt::get(Int32Ty, word));
3311 ConstantInitBuilder builder(CGM);
3312 auto fields = builder.beginStruct();
3313 fields.addInt(Int32Ty, values.size());
3314 auto array = fields.beginArray();
3315 for (auto *v : values) array.add(v);
3316 array.finishAndAddTo(fields);
3318 llvm::Constant *GS =
3319 fields.finishAndCreateGlobal("", CharUnits::fromQuantity(4));
3320 llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
3321 return ptr;
3324 llvm::Constant *CGObjCGNU::GenerateCategoryProtocolList(const
3325 ObjCCategoryDecl *OCD) {
3326 const auto &RefPro = OCD->getReferencedProtocols();
3327 const auto RuntimeProtos =
3328 GetRuntimeProtocolList(RefPro.begin(), RefPro.end());
3329 SmallVector<std::string, 16> Protocols;
3330 for (const auto *PD : RuntimeProtos)
3331 Protocols.push_back(PD->getNameAsString());
3332 return GenerateProtocolList(Protocols);
3335 void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
3336 const ObjCInterfaceDecl *Class = OCD->getClassInterface();
3337 std::string ClassName = Class->getNameAsString();
3338 std::string CategoryName = OCD->getNameAsString();
3340 // Collect the names of referenced protocols
3341 const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
3343 ConstantInitBuilder Builder(CGM);
3344 auto Elements = Builder.beginStruct();
3345 Elements.add(MakeConstantString(CategoryName));
3346 Elements.add(MakeConstantString(ClassName));
3347 // Instance method list
3348 SmallVector<ObjCMethodDecl*, 16> InstanceMethods;
3349 InstanceMethods.insert(InstanceMethods.begin(), OCD->instmeth_begin(),
3350 OCD->instmeth_end());
3351 Elements.addBitCast(
3352 GenerateMethodList(ClassName, CategoryName, InstanceMethods, false),
3353 PtrTy);
3354 // Class method list
3356 SmallVector<ObjCMethodDecl*, 16> ClassMethods;
3357 ClassMethods.insert(ClassMethods.begin(), OCD->classmeth_begin(),
3358 OCD->classmeth_end());
3359 Elements.addBitCast(
3360 GenerateMethodList(ClassName, CategoryName, ClassMethods, true),
3361 PtrTy);
3362 // Protocol list
3363 Elements.addBitCast(GenerateCategoryProtocolList(CatDecl), PtrTy);
3364 if (isRuntime(ObjCRuntime::GNUstep, 2)) {
3365 const ObjCCategoryDecl *Category =
3366 Class->FindCategoryDeclaration(OCD->getIdentifier());
3367 if (Category) {
3368 // Instance properties
3369 Elements.addBitCast(GeneratePropertyList(OCD, Category, false), PtrTy);
3370 // Class properties
3371 Elements.addBitCast(GeneratePropertyList(OCD, Category, true), PtrTy);
3372 } else {
3373 Elements.addNullPointer(PtrTy);
3374 Elements.addNullPointer(PtrTy);
3378 Categories.push_back(llvm::ConstantExpr::getBitCast(
3379 Elements.finishAndCreateGlobal(
3380 std::string(".objc_category_")+ClassName+CategoryName,
3381 CGM.getPointerAlign()),
3382 PtrTy));
3385 llvm::Constant *CGObjCGNU::GeneratePropertyList(const Decl *Container,
3386 const ObjCContainerDecl *OCD,
3387 bool isClassProperty,
3388 bool protocolOptionalProperties) {
3390 SmallVector<const ObjCPropertyDecl *, 16> Properties;
3391 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet;
3392 bool isProtocol = isa<ObjCProtocolDecl>(OCD);
3393 ASTContext &Context = CGM.getContext();
3395 std::function<void(const ObjCProtocolDecl *Proto)> collectProtocolProperties
3396 = [&](const ObjCProtocolDecl *Proto) {
3397 for (const auto *P : Proto->protocols())
3398 collectProtocolProperties(P);
3399 for (const auto *PD : Proto->properties()) {
3400 if (isClassProperty != PD->isClassProperty())
3401 continue;
3402 // Skip any properties that are declared in protocols that this class
3403 // conforms to but are not actually implemented by this class.
3404 if (!isProtocol && !Context.getObjCPropertyImplDeclForPropertyDecl(PD, Container))
3405 continue;
3406 if (!PropertySet.insert(PD->getIdentifier()).second)
3407 continue;
3408 Properties.push_back(PD);
3412 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3413 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions())
3414 for (auto *PD : ClassExt->properties()) {
3415 if (isClassProperty != PD->isClassProperty())
3416 continue;
3417 PropertySet.insert(PD->getIdentifier());
3418 Properties.push_back(PD);
3421 for (const auto *PD : OCD->properties()) {
3422 if (isClassProperty != PD->isClassProperty())
3423 continue;
3424 // If we're generating a list for a protocol, skip optional / required ones
3425 // when generating the other list.
3426 if (isProtocol && (protocolOptionalProperties != PD->isOptional()))
3427 continue;
3428 // Don't emit duplicate metadata for properties that were already in a
3429 // class extension.
3430 if (!PropertySet.insert(PD->getIdentifier()).second)
3431 continue;
3433 Properties.push_back(PD);
3436 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3437 for (const auto *P : OID->all_referenced_protocols())
3438 collectProtocolProperties(P);
3439 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD))
3440 for (const auto *P : CD->protocols())
3441 collectProtocolProperties(P);
3443 auto numProperties = Properties.size();
3445 if (numProperties == 0)
3446 return NULLPtr;
3448 ConstantInitBuilder builder(CGM);
3449 auto propertyList = builder.beginStruct();
3450 auto properties = PushPropertyListHeader(propertyList, numProperties);
3452 // Add all of the property methods need adding to the method list and to the
3453 // property metadata list.
3454 for (auto *property : Properties) {
3455 bool isSynthesized = false;
3456 bool isDynamic = false;
3457 if (!isProtocol) {
3458 auto *propertyImpl = Context.getObjCPropertyImplDeclForPropertyDecl(property, Container);
3459 if (propertyImpl) {
3460 isSynthesized = (propertyImpl->getPropertyImplementation() ==
3461 ObjCPropertyImplDecl::Synthesize);
3462 isDynamic = (propertyImpl->getPropertyImplementation() ==
3463 ObjCPropertyImplDecl::Dynamic);
3466 PushProperty(properties, property, Container, isSynthesized, isDynamic);
3468 properties.finishAndAddTo(propertyList);
3470 return propertyList.finishAndCreateGlobal(".objc_property_list",
3471 CGM.getPointerAlign());
3474 void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {
3475 // Get the class declaration for which the alias is specified.
3476 ObjCInterfaceDecl *ClassDecl =
3477 const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface());
3478 ClassAliases.emplace_back(ClassDecl->getNameAsString(),
3479 OAD->getNameAsString());
3482 void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
3483 ASTContext &Context = CGM.getContext();
3485 // Get the superclass name.
3486 const ObjCInterfaceDecl * SuperClassDecl =
3487 OID->getClassInterface()->getSuperClass();
3488 std::string SuperClassName;
3489 if (SuperClassDecl) {
3490 SuperClassName = SuperClassDecl->getNameAsString();
3491 EmitClassRef(SuperClassName);
3494 // Get the class name
3495 ObjCInterfaceDecl *ClassDecl =
3496 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
3497 std::string ClassName = ClassDecl->getNameAsString();
3499 // Emit the symbol that is used to generate linker errors if this class is
3500 // referenced in other modules but not declared.
3501 std::string classSymbolName = "__objc_class_name_" + ClassName;
3502 if (auto *symbol = TheModule.getGlobalVariable(classSymbolName)) {
3503 symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
3504 } else {
3505 new llvm::GlobalVariable(TheModule, LongTy, false,
3506 llvm::GlobalValue::ExternalLinkage,
3507 llvm::ConstantInt::get(LongTy, 0),
3508 classSymbolName);
3511 // Get the size of instances.
3512 int instanceSize =
3513 Context.getASTObjCImplementationLayout(OID).getSize().getQuantity();
3515 // Collect information about instance variables.
3516 SmallVector<llvm::Constant*, 16> IvarNames;
3517 SmallVector<llvm::Constant*, 16> IvarTypes;
3518 SmallVector<llvm::Constant*, 16> IvarOffsets;
3519 SmallVector<llvm::Constant*, 16> IvarAligns;
3520 SmallVector<Qualifiers::ObjCLifetime, 16> IvarOwnership;
3522 ConstantInitBuilder IvarOffsetBuilder(CGM);
3523 auto IvarOffsetValues = IvarOffsetBuilder.beginArray(PtrToIntTy);
3524 SmallVector<bool, 16> WeakIvars;
3525 SmallVector<bool, 16> StrongIvars;
3527 int superInstanceSize = !SuperClassDecl ? 0 :
3528 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
3529 // For non-fragile ivars, set the instance size to 0 - {the size of just this
3530 // class}. The runtime will then set this to the correct value on load.
3531 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3532 instanceSize = 0 - (instanceSize - superInstanceSize);
3535 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3536 IVD = IVD->getNextIvar()) {
3537 // Store the name
3538 IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
3539 // Get the type encoding for this ivar
3540 std::string TypeStr;
3541 Context.getObjCEncodingForType(IVD->getType(), TypeStr, IVD);
3542 IvarTypes.push_back(MakeConstantString(TypeStr));
3543 IvarAligns.push_back(llvm::ConstantInt::get(IntTy,
3544 Context.getTypeSize(IVD->getType())));
3545 // Get the offset
3546 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
3547 uint64_t Offset = BaseOffset;
3548 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3549 Offset = BaseOffset - superInstanceSize;
3551 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
3552 // Create the direct offset value
3553 std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
3554 IVD->getNameAsString();
3556 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
3557 if (OffsetVar) {
3558 OffsetVar->setInitializer(OffsetValue);
3559 // If this is the real definition, change its linkage type so that
3560 // different modules will use this one, rather than their private
3561 // copy.
3562 OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
3563 } else
3564 OffsetVar = new llvm::GlobalVariable(TheModule, Int32Ty,
3565 false, llvm::GlobalValue::ExternalLinkage,
3566 OffsetValue, OffsetName);
3567 IvarOffsets.push_back(OffsetValue);
3568 IvarOffsetValues.add(OffsetVar);
3569 Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
3570 IvarOwnership.push_back(lt);
3571 switch (lt) {
3572 case Qualifiers::OCL_Strong:
3573 StrongIvars.push_back(true);
3574 WeakIvars.push_back(false);
3575 break;
3576 case Qualifiers::OCL_Weak:
3577 StrongIvars.push_back(false);
3578 WeakIvars.push_back(true);
3579 break;
3580 default:
3581 StrongIvars.push_back(false);
3582 WeakIvars.push_back(false);
3585 llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
3586 llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
3587 llvm::GlobalVariable *IvarOffsetArray =
3588 IvarOffsetValues.finishAndCreateGlobal(".ivar.offsets",
3589 CGM.getPointerAlign());
3591 // Collect information about instance methods
3592 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
3593 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
3594 OID->instmeth_end());
3596 SmallVector<const ObjCMethodDecl*, 16> ClassMethods;
3597 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
3598 OID->classmeth_end());
3600 llvm::Constant *Properties = GeneratePropertyList(OID, ClassDecl);
3602 // Collect the names of referenced protocols
3603 auto RefProtocols = ClassDecl->protocols();
3604 auto RuntimeProtocols =
3605 GetRuntimeProtocolList(RefProtocols.begin(), RefProtocols.end());
3606 SmallVector<std::string, 16> Protocols;
3607 for (const auto *I : RuntimeProtocols)
3608 Protocols.push_back(I->getNameAsString());
3610 // Get the superclass pointer.
3611 llvm::Constant *SuperClass;
3612 if (!SuperClassName.empty()) {
3613 SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
3614 } else {
3615 SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
3617 // Empty vector used to construct empty method lists
3618 SmallVector<llvm::Constant*, 1> empty;
3619 // Generate the method and instance variable lists
3620 llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
3621 InstanceMethods, false);
3622 llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
3623 ClassMethods, true);
3624 llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
3625 IvarOffsets, IvarAligns, IvarOwnership);
3626 // Irrespective of whether we are compiling for a fragile or non-fragile ABI,
3627 // we emit a symbol containing the offset for each ivar in the class. This
3628 // allows code compiled for the non-Fragile ABI to inherit from code compiled
3629 // for the legacy ABI, without causing problems. The converse is also
3630 // possible, but causes all ivar accesses to be fragile.
3632 // Offset pointer for getting at the correct field in the ivar list when
3633 // setting up the alias. These are: The base address for the global, the
3634 // ivar array (second field), the ivar in this list (set for each ivar), and
3635 // the offset (third field in ivar structure)
3636 llvm::Type *IndexTy = Int32Ty;
3637 llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
3638 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 2 : 1), nullptr,
3639 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 3 : 2) };
3641 unsigned ivarIndex = 0;
3642 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3643 IVD = IVD->getNextIvar()) {
3644 const std::string Name = GetIVarOffsetVariableName(ClassDecl, IVD);
3645 offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
3646 // Get the correct ivar field
3647 llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
3648 cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList,
3649 offsetPointerIndexes);
3650 // Get the existing variable, if one exists.
3651 llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
3652 if (offset) {
3653 offset->setInitializer(offsetValue);
3654 // If this is the real definition, change its linkage type so that
3655 // different modules will use this one, rather than their private
3656 // copy.
3657 offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
3658 } else
3659 // Add a new alias if there isn't one already.
3660 new llvm::GlobalVariable(TheModule, offsetValue->getType(),
3661 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
3662 ++ivarIndex;
3664 llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
3666 //Generate metaclass for class methods
3667 llvm::Constant *MetaClassStruct = GenerateClassStructure(
3668 NULLPtr, NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0],
3669 NULLPtr, ClassMethodList, NULLPtr, NULLPtr,
3670 GeneratePropertyList(OID, ClassDecl, true), ZeroPtr, ZeroPtr, true);
3671 CGM.setGVProperties(cast<llvm::GlobalValue>(MetaClassStruct),
3672 OID->getClassInterface());
3674 // Generate the class structure
3675 llvm::Constant *ClassStruct = GenerateClassStructure(
3676 MetaClassStruct, SuperClass, 0x11L, ClassName.c_str(), nullptr,
3677 llvm::ConstantInt::get(LongTy, instanceSize), IvarList, MethodList,
3678 GenerateProtocolList(Protocols), IvarOffsetArray, Properties,
3679 StrongIvarBitmap, WeakIvarBitmap);
3680 CGM.setGVProperties(cast<llvm::GlobalValue>(ClassStruct),
3681 OID->getClassInterface());
3683 // Resolve the class aliases, if they exist.
3684 if (ClassPtrAlias) {
3685 ClassPtrAlias->replaceAllUsesWith(
3686 llvm::ConstantExpr::getBitCast(ClassStruct, IdTy));
3687 ClassPtrAlias->eraseFromParent();
3688 ClassPtrAlias = nullptr;
3690 if (MetaClassPtrAlias) {
3691 MetaClassPtrAlias->replaceAllUsesWith(
3692 llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy));
3693 MetaClassPtrAlias->eraseFromParent();
3694 MetaClassPtrAlias = nullptr;
3697 // Add class structure to list to be added to the symtab later
3698 ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty);
3699 Classes.push_back(ClassStruct);
3702 llvm::Function *CGObjCGNU::ModuleInitFunction() {
3703 // Only emit an ObjC load function if no Objective-C stuff has been called
3704 if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
3705 ExistingProtocols.empty() && SelectorTable.empty())
3706 return nullptr;
3708 // Add all referenced protocols to a category.
3709 GenerateProtocolHolderCategory();
3711 llvm::StructType *selStructTy = dyn_cast<llvm::StructType>(SelectorElemTy);
3712 llvm::Type *selStructPtrTy = SelectorTy;
3713 if (!selStructTy) {
3714 selStructTy = llvm::StructType::get(CGM.getLLVMContext(),
3715 { PtrToInt8Ty, PtrToInt8Ty });
3716 selStructPtrTy = llvm::PointerType::getUnqual(selStructTy);
3719 // Generate statics list:
3720 llvm::Constant *statics = NULLPtr;
3721 if (!ConstantStrings.empty()) {
3722 llvm::GlobalVariable *fileStatics = [&] {
3723 ConstantInitBuilder builder(CGM);
3724 auto staticsStruct = builder.beginStruct();
3726 StringRef stringClass = CGM.getLangOpts().ObjCConstantStringClass;
3727 if (stringClass.empty()) stringClass = "NXConstantString";
3728 staticsStruct.add(MakeConstantString(stringClass,
3729 ".objc_static_class_name"));
3731 auto array = staticsStruct.beginArray();
3732 array.addAll(ConstantStrings);
3733 array.add(NULLPtr);
3734 array.finishAndAddTo(staticsStruct);
3736 return staticsStruct.finishAndCreateGlobal(".objc_statics",
3737 CGM.getPointerAlign());
3738 }();
3740 ConstantInitBuilder builder(CGM);
3741 auto allStaticsArray = builder.beginArray(fileStatics->getType());
3742 allStaticsArray.add(fileStatics);
3743 allStaticsArray.addNullPointer(fileStatics->getType());
3745 statics = allStaticsArray.finishAndCreateGlobal(".objc_statics_ptr",
3746 CGM.getPointerAlign());
3747 statics = llvm::ConstantExpr::getBitCast(statics, PtrTy);
3750 // Array of classes, categories, and constant objects.
3752 SmallVector<llvm::GlobalAlias*, 16> selectorAliases;
3753 unsigned selectorCount;
3755 // Pointer to an array of selectors used in this module.
3756 llvm::GlobalVariable *selectorList = [&] {
3757 ConstantInitBuilder builder(CGM);
3758 auto selectors = builder.beginArray(selStructTy);
3759 auto &table = SelectorTable; // MSVC workaround
3760 std::vector<Selector> allSelectors;
3761 for (auto &entry : table)
3762 allSelectors.push_back(entry.first);
3763 llvm::sort(allSelectors);
3765 for (auto &untypedSel : allSelectors) {
3766 std::string selNameStr = untypedSel.getAsString();
3767 llvm::Constant *selName = ExportUniqueString(selNameStr, ".objc_sel_name");
3769 for (TypedSelector &sel : table[untypedSel]) {
3770 llvm::Constant *selectorTypeEncoding = NULLPtr;
3771 if (!sel.first.empty())
3772 selectorTypeEncoding =
3773 MakeConstantString(sel.first, ".objc_sel_types");
3775 auto selStruct = selectors.beginStruct(selStructTy);
3776 selStruct.add(selName);
3777 selStruct.add(selectorTypeEncoding);
3778 selStruct.finishAndAddTo(selectors);
3780 // Store the selector alias for later replacement
3781 selectorAliases.push_back(sel.second);
3785 // Remember the number of entries in the selector table.
3786 selectorCount = selectors.size();
3788 // NULL-terminate the selector list. This should not actually be required,
3789 // because the selector list has a length field. Unfortunately, the GCC
3790 // runtime decides to ignore the length field and expects a NULL terminator,
3791 // and GCC cooperates with this by always setting the length to 0.
3792 auto selStruct = selectors.beginStruct(selStructTy);
3793 selStruct.add(NULLPtr);
3794 selStruct.add(NULLPtr);
3795 selStruct.finishAndAddTo(selectors);
3797 return selectors.finishAndCreateGlobal(".objc_selector_list",
3798 CGM.getPointerAlign());
3799 }();
3801 // Now that all of the static selectors exist, create pointers to them.
3802 for (unsigned i = 0; i < selectorCount; ++i) {
3803 llvm::Constant *idxs[] = {
3804 Zeros[0],
3805 llvm::ConstantInt::get(Int32Ty, i)
3807 // FIXME: We're generating redundant loads and stores here!
3808 llvm::Constant *selPtr = llvm::ConstantExpr::getGetElementPtr(
3809 selectorList->getValueType(), selectorList, idxs);
3810 // If selectors are defined as an opaque type, cast the pointer to this
3811 // type.
3812 selPtr = llvm::ConstantExpr::getBitCast(selPtr, SelectorTy);
3813 selectorAliases[i]->replaceAllUsesWith(selPtr);
3814 selectorAliases[i]->eraseFromParent();
3817 llvm::GlobalVariable *symtab = [&] {
3818 ConstantInitBuilder builder(CGM);
3819 auto symtab = builder.beginStruct();
3821 // Number of static selectors
3822 symtab.addInt(LongTy, selectorCount);
3824 symtab.addBitCast(selectorList, selStructPtrTy);
3826 // Number of classes defined.
3827 symtab.addInt(CGM.Int16Ty, Classes.size());
3828 // Number of categories defined
3829 symtab.addInt(CGM.Int16Ty, Categories.size());
3831 // Create an array of classes, then categories, then static object instances
3832 auto classList = symtab.beginArray(PtrToInt8Ty);
3833 classList.addAll(Classes);
3834 classList.addAll(Categories);
3835 // NULL-terminated list of static object instances (mainly constant strings)
3836 classList.add(statics);
3837 classList.add(NULLPtr);
3838 classList.finishAndAddTo(symtab);
3840 // Construct the symbol table.
3841 return symtab.finishAndCreateGlobal("", CGM.getPointerAlign());
3842 }();
3844 // The symbol table is contained in a module which has some version-checking
3845 // constants
3846 llvm::Constant *module = [&] {
3847 llvm::Type *moduleEltTys[] = {
3848 LongTy, LongTy, PtrToInt8Ty, symtab->getType(), IntTy
3850 llvm::StructType *moduleTy = llvm::StructType::get(
3851 CGM.getLLVMContext(),
3852 ArrayRef(moduleEltTys).drop_back(unsigned(RuntimeVersion < 10)));
3854 ConstantInitBuilder builder(CGM);
3855 auto module = builder.beginStruct(moduleTy);
3856 // Runtime version, used for ABI compatibility checking.
3857 module.addInt(LongTy, RuntimeVersion);
3858 // sizeof(ModuleTy)
3859 module.addInt(LongTy, CGM.getDataLayout().getTypeStoreSize(moduleTy));
3861 // The path to the source file where this module was declared
3862 SourceManager &SM = CGM.getContext().getSourceManager();
3863 OptionalFileEntryRef mainFile = SM.getFileEntryRefForID(SM.getMainFileID());
3864 std::string path =
3865 (mainFile->getDir().getName() + "/" + mainFile->getName()).str();
3866 module.add(MakeConstantString(path, ".objc_source_file_name"));
3867 module.add(symtab);
3869 if (RuntimeVersion >= 10) {
3870 switch (CGM.getLangOpts().getGC()) {
3871 case LangOptions::GCOnly:
3872 module.addInt(IntTy, 2);
3873 break;
3874 case LangOptions::NonGC:
3875 if (CGM.getLangOpts().ObjCAutoRefCount)
3876 module.addInt(IntTy, 1);
3877 else
3878 module.addInt(IntTy, 0);
3879 break;
3880 case LangOptions::HybridGC:
3881 module.addInt(IntTy, 1);
3882 break;
3886 return module.finishAndCreateGlobal("", CGM.getPointerAlign());
3887 }();
3889 // Create the load function calling the runtime entry point with the module
3890 // structure
3891 llvm::Function * LoadFunction = llvm::Function::Create(
3892 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
3893 llvm::GlobalValue::InternalLinkage, ".objc_load_function",
3894 &TheModule);
3895 llvm::BasicBlock *EntryBB =
3896 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
3897 CGBuilderTy Builder(CGM, VMContext);
3898 Builder.SetInsertPoint(EntryBB);
3900 llvm::FunctionType *FT =
3901 llvm::FunctionType::get(Builder.getVoidTy(), module->getType(), true);
3902 llvm::FunctionCallee Register =
3903 CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
3904 Builder.CreateCall(Register, module);
3906 if (!ClassAliases.empty()) {
3907 llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty};
3908 llvm::FunctionType *RegisterAliasTy =
3909 llvm::FunctionType::get(Builder.getVoidTy(),
3910 ArgTypes, false);
3911 llvm::Function *RegisterAlias = llvm::Function::Create(
3912 RegisterAliasTy,
3913 llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np",
3914 &TheModule);
3915 llvm::BasicBlock *AliasBB =
3916 llvm::BasicBlock::Create(VMContext, "alias", LoadFunction);
3917 llvm::BasicBlock *NoAliasBB =
3918 llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction);
3920 // Branch based on whether the runtime provided class_registerAlias_np()
3921 llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias,
3922 llvm::Constant::getNullValue(RegisterAlias->getType()));
3923 Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB);
3925 // The true branch (has alias registration function):
3926 Builder.SetInsertPoint(AliasBB);
3927 // Emit alias registration calls:
3928 for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin();
3929 iter != ClassAliases.end(); ++iter) {
3930 llvm::Constant *TheClass =
3931 TheModule.getGlobalVariable("_OBJC_CLASS_" + iter->first, true);
3932 if (TheClass) {
3933 TheClass = llvm::ConstantExpr::getBitCast(TheClass, PtrTy);
3934 Builder.CreateCall(RegisterAlias,
3935 {TheClass, MakeConstantString(iter->second)});
3938 // Jump to end:
3939 Builder.CreateBr(NoAliasBB);
3941 // Missing alias registration function, just return from the function:
3942 Builder.SetInsertPoint(NoAliasBB);
3944 Builder.CreateRetVoid();
3946 return LoadFunction;
3949 llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
3950 const ObjCContainerDecl *CD) {
3951 CodeGenTypes &Types = CGM.getTypes();
3952 llvm::FunctionType *MethodTy =
3953 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
3954 std::string FunctionName = getSymbolNameForMethod(OMD);
3956 llvm::Function *Method
3957 = llvm::Function::Create(MethodTy,
3958 llvm::GlobalValue::InternalLinkage,
3959 FunctionName,
3960 &TheModule);
3961 return Method;
3964 void CGObjCGNU::GenerateDirectMethodPrologue(CodeGenFunction &CGF,
3965 llvm::Function *Fn,
3966 const ObjCMethodDecl *OMD,
3967 const ObjCContainerDecl *CD) {
3968 // GNU runtime doesn't support direct calls at this time
3971 llvm::FunctionCallee CGObjCGNU::GetPropertyGetFunction() {
3972 return GetPropertyFn;
3975 llvm::FunctionCallee CGObjCGNU::GetPropertySetFunction() {
3976 return SetPropertyFn;
3979 llvm::FunctionCallee CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic,
3980 bool copy) {
3981 return nullptr;
3984 llvm::FunctionCallee CGObjCGNU::GetGetStructFunction() {
3985 return GetStructPropertyFn;
3988 llvm::FunctionCallee CGObjCGNU::GetSetStructFunction() {
3989 return SetStructPropertyFn;
3992 llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectGetFunction() {
3993 return nullptr;
3996 llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectSetFunction() {
3997 return nullptr;
4000 llvm::FunctionCallee CGObjCGNU::EnumerationMutationFunction() {
4001 return EnumerationMutationFn;
4004 void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
4005 const ObjCAtSynchronizedStmt &S) {
4006 EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
4010 void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
4011 const ObjCAtTryStmt &S) {
4012 // Unlike the Apple non-fragile runtimes, which also uses
4013 // unwind-based zero cost exceptions, the GNU Objective C runtime's
4014 // EH support isn't a veneer over C++ EH. Instead, exception
4015 // objects are created by objc_exception_throw and destroyed by
4016 // the personality function; this avoids the need for bracketing
4017 // catch handlers with calls to __blah_begin_catch/__blah_end_catch
4018 // (or even _Unwind_DeleteException), but probably doesn't
4019 // interoperate very well with foreign exceptions.
4021 // In Objective-C++ mode, we actually emit something equivalent to the C++
4022 // exception handler.
4023 EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
4026 void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
4027 const ObjCAtThrowStmt &S,
4028 bool ClearInsertionPoint) {
4029 llvm::Value *ExceptionAsObject;
4030 bool isRethrow = false;
4032 if (const Expr *ThrowExpr = S.getThrowExpr()) {
4033 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
4034 ExceptionAsObject = Exception;
4035 } else {
4036 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
4037 "Unexpected rethrow outside @catch block.");
4038 ExceptionAsObject = CGF.ObjCEHValueStack.back();
4039 isRethrow = true;
4041 if (isRethrow && usesSEHExceptions) {
4042 // For SEH, ExceptionAsObject may be undef, because the catch handler is
4043 // not passed it for catchalls and so it is not visible to the catch
4044 // funclet. The real thrown object will still be live on the stack at this
4045 // point and will be rethrown. If we are explicitly rethrowing the object
4046 // that was passed into the `@catch` block, then this code path is not
4047 // reached and we will instead call `objc_exception_throw` with an explicit
4048 // argument.
4049 llvm::CallBase *Throw = CGF.EmitRuntimeCallOrInvoke(ExceptionReThrowFn);
4050 Throw->setDoesNotReturn();
4052 else {
4053 ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
4054 llvm::CallBase *Throw =
4055 CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject);
4056 Throw->setDoesNotReturn();
4058 CGF.Builder.CreateUnreachable();
4059 if (ClearInsertionPoint)
4060 CGF.Builder.ClearInsertionPoint();
4063 llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
4064 Address AddrWeakObj) {
4065 CGBuilderTy &B = CGF.Builder;
4066 return B.CreateCall(WeakReadFn,
4067 EnforceType(B, AddrWeakObj.getPointer(), PtrToIdTy));
4070 void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
4071 llvm::Value *src, Address dst) {
4072 CGBuilderTy &B = CGF.Builder;
4073 src = EnforceType(B, src, IdTy);
4074 llvm::Value *dstVal = EnforceType(B, dst.getPointer(), PtrToIdTy);
4075 B.CreateCall(WeakAssignFn, {src, dstVal});
4078 void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
4079 llvm::Value *src, Address dst,
4080 bool threadlocal) {
4081 CGBuilderTy &B = CGF.Builder;
4082 src = EnforceType(B, src, IdTy);
4083 llvm::Value *dstVal = EnforceType(B, dst.getPointer(), PtrToIdTy);
4084 // FIXME. Add threadloca assign API
4085 assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI");
4086 B.CreateCall(GlobalAssignFn, {src, dstVal});
4089 void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
4090 llvm::Value *src, Address dst,
4091 llvm::Value *ivarOffset) {
4092 CGBuilderTy &B = CGF.Builder;
4093 src = EnforceType(B, src, IdTy);
4094 llvm::Value *dstVal = EnforceType(B, dst.getPointer(), IdTy);
4095 B.CreateCall(IvarAssignFn, {src, dstVal, ivarOffset});
4098 void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
4099 llvm::Value *src, Address dst) {
4100 CGBuilderTy &B = CGF.Builder;
4101 src = EnforceType(B, src, IdTy);
4102 llvm::Value *dstVal = EnforceType(B, dst.getPointer(), PtrToIdTy);
4103 B.CreateCall(StrongCastAssignFn, {src, dstVal});
4106 void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
4107 Address DestPtr,
4108 Address SrcPtr,
4109 llvm::Value *Size) {
4110 CGBuilderTy &B = CGF.Builder;
4111 llvm::Value *DestPtrVal = EnforceType(B, DestPtr.getPointer(), PtrTy);
4112 llvm::Value *SrcPtrVal = EnforceType(B, SrcPtr.getPointer(), PtrTy);
4114 B.CreateCall(MemMoveFn, {DestPtrVal, SrcPtrVal, Size});
4117 llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
4118 const ObjCInterfaceDecl *ID,
4119 const ObjCIvarDecl *Ivar) {
4120 const std::string Name = GetIVarOffsetVariableName(ID, Ivar);
4121 // Emit the variable and initialize it with what we think the correct value
4122 // is. This allows code compiled with non-fragile ivars to work correctly
4123 // when linked against code which isn't (most of the time).
4124 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
4125 if (!IvarOffsetPointer)
4126 IvarOffsetPointer = new llvm::GlobalVariable(
4127 TheModule, llvm::PointerType::getUnqual(VMContext), false,
4128 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
4129 return IvarOffsetPointer;
4132 LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
4133 QualType ObjectTy,
4134 llvm::Value *BaseValue,
4135 const ObjCIvarDecl *Ivar,
4136 unsigned CVRQualifiers) {
4137 const ObjCInterfaceDecl *ID =
4138 ObjectTy->castAs<ObjCObjectType>()->getInterface();
4139 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
4140 EmitIvarOffset(CGF, ID, Ivar));
4143 static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context,
4144 const ObjCInterfaceDecl *OID,
4145 const ObjCIvarDecl *OIVD) {
4146 for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
4147 next = next->getNextIvar()) {
4148 if (OIVD == next)
4149 return OID;
4152 // Otherwise check in the super class.
4153 if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
4154 return FindIvarInterface(Context, Super, OIVD);
4156 return nullptr;
4159 llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
4160 const ObjCInterfaceDecl *Interface,
4161 const ObjCIvarDecl *Ivar) {
4162 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
4163 Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar);
4165 // The MSVC linker cannot have a single global defined as LinkOnceAnyLinkage
4166 // and ExternalLinkage, so create a reference to the ivar global and rely on
4167 // the definition being created as part of GenerateClass.
4168 if (RuntimeVersion < 10 ||
4169 CGF.CGM.getTarget().getTriple().isKnownWindowsMSVCEnvironment())
4170 return CGF.Builder.CreateZExtOrBitCast(
4171 CGF.Builder.CreateAlignedLoad(
4172 Int32Ty,
4173 CGF.Builder.CreateAlignedLoad(
4174 llvm::PointerType::getUnqual(VMContext),
4175 ObjCIvarOffsetVariable(Interface, Ivar),
4176 CGF.getPointerAlign(), "ivar"),
4177 CharUnits::fromQuantity(4)),
4178 PtrDiffTy);
4179 std::string name = "__objc_ivar_offset_value_" +
4180 Interface->getNameAsString() +"." + Ivar->getNameAsString();
4181 CharUnits Align = CGM.getIntAlign();
4182 llvm::Value *Offset = TheModule.getGlobalVariable(name);
4183 if (!Offset) {
4184 auto GV = new llvm::GlobalVariable(TheModule, IntTy,
4185 false, llvm::GlobalValue::LinkOnceAnyLinkage,
4186 llvm::Constant::getNullValue(IntTy), name);
4187 GV->setAlignment(Align.getAsAlign());
4188 Offset = GV;
4190 Offset = CGF.Builder.CreateAlignedLoad(IntTy, Offset, Align);
4191 if (Offset->getType() != PtrDiffTy)
4192 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
4193 return Offset;
4195 uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
4196 return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
4199 CGObjCRuntime *
4200 clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) {
4201 auto Runtime = CGM.getLangOpts().ObjCRuntime;
4202 switch (Runtime.getKind()) {
4203 case ObjCRuntime::GNUstep:
4204 if (Runtime.getVersion() >= VersionTuple(2, 0))
4205 return new CGObjCGNUstep2(CGM);
4206 return new CGObjCGNUstep(CGM);
4208 case ObjCRuntime::GCC:
4209 return new CGObjCGCC(CGM);
4211 case ObjCRuntime::ObjFW:
4212 return new CGObjCObjFW(CGM);
4214 case ObjCRuntime::FragileMacOSX:
4215 case ObjCRuntime::MacOSX:
4216 case ObjCRuntime::iOS:
4217 case ObjCRuntime::WatchOS:
4218 llvm_unreachable("these runtimes are not GNU runtimes");
4220 llvm_unreachable("bad runtime");