[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / clang / lib / CodeGen / CGOpenMPRuntimeGPU.cpp
blob0ed665e0dfb972254eed6c3798abcc4a822fef4e
1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a generalized class for OpenMP runtime code generation
10 // specialized by GPU targets NVPTX and AMDGCN.
12 //===----------------------------------------------------------------------===//
14 #include "CGOpenMPRuntimeGPU.h"
15 #include "CodeGenFunction.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclOpenMP.h"
18 #include "clang/AST/OpenMPClause.h"
19 #include "clang/AST/StmtOpenMP.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "clang/Basic/Cuda.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/Frontend/OpenMP/OMPGridValues.h"
24 #include "llvm/Support/MathExtras.h"
26 using namespace clang;
27 using namespace CodeGen;
28 using namespace llvm::omp;
30 namespace {
31 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
32 class NVPTXActionTy final : public PrePostActionTy {
33 llvm::FunctionCallee EnterCallee = nullptr;
34 ArrayRef<llvm::Value *> EnterArgs;
35 llvm::FunctionCallee ExitCallee = nullptr;
36 ArrayRef<llvm::Value *> ExitArgs;
37 bool Conditional = false;
38 llvm::BasicBlock *ContBlock = nullptr;
40 public:
41 NVPTXActionTy(llvm::FunctionCallee EnterCallee,
42 ArrayRef<llvm::Value *> EnterArgs,
43 llvm::FunctionCallee ExitCallee,
44 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
45 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
46 ExitArgs(ExitArgs), Conditional(Conditional) {}
47 void Enter(CodeGenFunction &CGF) override {
48 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
49 if (Conditional) {
50 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
51 auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
52 ContBlock = CGF.createBasicBlock("omp_if.end");
53 // Generate the branch (If-stmt)
54 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
55 CGF.EmitBlock(ThenBlock);
58 void Done(CodeGenFunction &CGF) {
59 // Emit the rest of blocks/branches
60 CGF.EmitBranch(ContBlock);
61 CGF.EmitBlock(ContBlock, true);
63 void Exit(CodeGenFunction &CGF) override {
64 CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
68 /// A class to track the execution mode when codegening directives within
69 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
70 /// to the target region and used by containing directives such as 'parallel'
71 /// to emit optimized code.
72 class ExecutionRuntimeModesRAII {
73 private:
74 CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode =
75 CGOpenMPRuntimeGPU::EM_Unknown;
76 CGOpenMPRuntimeGPU::ExecutionMode &ExecMode;
78 public:
79 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode,
80 CGOpenMPRuntimeGPU::ExecutionMode EntryMode)
81 : ExecMode(ExecMode) {
82 SavedExecMode = ExecMode;
83 ExecMode = EntryMode;
85 ~ExecutionRuntimeModesRAII() { ExecMode = SavedExecMode; }
88 /// GPU Configuration: This information can be derived from cuda registers,
89 /// however, providing compile time constants helps generate more efficient
90 /// code. For all practical purposes this is fine because the configuration
91 /// is the same for all known NVPTX architectures.
92 enum MachineConfiguration : unsigned {
93 /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target
94 /// specific Grid Values like GV_Warp_Size, GV_Slot_Size
96 /// Global memory alignment for performance.
97 GlobalMemoryAlignment = 128,
100 static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
101 RefExpr = RefExpr->IgnoreParens();
102 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
103 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
104 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
105 Base = TempASE->getBase()->IgnoreParenImpCasts();
106 RefExpr = Base;
107 } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) {
108 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
109 while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
110 Base = TempOASE->getBase()->IgnoreParenImpCasts();
111 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
112 Base = TempASE->getBase()->IgnoreParenImpCasts();
113 RefExpr = Base;
115 RefExpr = RefExpr->IgnoreParenImpCasts();
116 if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
117 return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
118 const auto *ME = cast<MemberExpr>(RefExpr);
119 return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
123 static RecordDecl *buildRecordForGlobalizedVars(
124 ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls,
125 ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
126 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
127 &MappedDeclsFields, int BufSize) {
128 using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>;
129 if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
130 return nullptr;
131 SmallVector<VarsDataTy, 4> GlobalizedVars;
132 for (const ValueDecl *D : EscapedDecls)
133 GlobalizedVars.emplace_back(
134 CharUnits::fromQuantity(std::max(
135 C.getDeclAlign(D).getQuantity(),
136 static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))),
138 for (const ValueDecl *D : EscapedDeclsForTeams)
139 GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
140 llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) {
141 return L.first > R.first;
144 // Build struct _globalized_locals_ty {
145 // /* globalized vars */[WarSize] align (max(decl_align,
146 // GlobalMemoryAlignment))
147 // /* globalized vars */ for EscapedDeclsForTeams
148 // };
149 RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
150 GlobalizedRD->startDefinition();
151 llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped(
152 EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
153 for (const auto &Pair : GlobalizedVars) {
154 const ValueDecl *VD = Pair.second;
155 QualType Type = VD->getType();
156 if (Type->isLValueReferenceType())
157 Type = C.getPointerType(Type.getNonReferenceType());
158 else
159 Type = Type.getNonReferenceType();
160 SourceLocation Loc = VD->getLocation();
161 FieldDecl *Field;
162 if (SingleEscaped.count(VD)) {
163 Field = FieldDecl::Create(
164 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
165 C.getTrivialTypeSourceInfo(Type, SourceLocation()),
166 /*BW=*/nullptr, /*Mutable=*/false,
167 /*InitStyle=*/ICIS_NoInit);
168 Field->setAccess(AS_public);
169 if (VD->hasAttrs()) {
170 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
171 E(VD->getAttrs().end());
172 I != E; ++I)
173 Field->addAttr(*I);
175 } else {
176 llvm::APInt ArraySize(32, BufSize);
177 Type = C.getConstantArrayType(Type, ArraySize, nullptr,
178 ArraySizeModifier::Normal, 0);
179 Field = FieldDecl::Create(
180 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
181 C.getTrivialTypeSourceInfo(Type, SourceLocation()),
182 /*BW=*/nullptr, /*Mutable=*/false,
183 /*InitStyle=*/ICIS_NoInit);
184 Field->setAccess(AS_public);
185 llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(),
186 static_cast<CharUnits::QuantityType>(
187 GlobalMemoryAlignment)));
188 Field->addAttr(AlignedAttr::CreateImplicit(
189 C, /*IsAlignmentExpr=*/true,
190 IntegerLiteral::Create(C, Align,
191 C.getIntTypeForBitwidth(32, /*Signed=*/0),
192 SourceLocation()),
193 {}, AlignedAttr::GNU_aligned));
195 GlobalizedRD->addDecl(Field);
196 MappedDeclsFields.try_emplace(VD, Field);
198 GlobalizedRD->completeDefinition();
199 return GlobalizedRD;
202 /// Get the list of variables that can escape their declaration context.
203 class CheckVarsEscapingDeclContext final
204 : public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
205 CodeGenFunction &CGF;
206 llvm::SetVector<const ValueDecl *> EscapedDecls;
207 llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
208 llvm::SetVector<const ValueDecl *> DelayedVariableLengthDecls;
209 llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
210 RecordDecl *GlobalizedRD = nullptr;
211 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
212 bool AllEscaped = false;
213 bool IsForCombinedParallelRegion = false;
215 void markAsEscaped(const ValueDecl *VD) {
216 // Do not globalize declare target variables.
217 if (!isa<VarDecl>(VD) ||
218 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
219 return;
220 VD = cast<ValueDecl>(VD->getCanonicalDecl());
221 // Use user-specified allocation.
222 if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>())
223 return;
224 // Variables captured by value must be globalized.
225 bool IsCaptured = false;
226 if (auto *CSI = CGF.CapturedStmtInfo) {
227 if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
228 // Check if need to capture the variable that was already captured by
229 // value in the outer region.
230 IsCaptured = true;
231 if (!IsForCombinedParallelRegion) {
232 if (!FD->hasAttrs())
233 return;
234 const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
235 if (!Attr)
236 return;
237 if (((Attr->getCaptureKind() != OMPC_map) &&
238 !isOpenMPPrivate(Attr->getCaptureKind())) ||
239 ((Attr->getCaptureKind() == OMPC_map) &&
240 !FD->getType()->isAnyPointerType()))
241 return;
243 if (!FD->getType()->isReferenceType()) {
244 assert(!VD->getType()->isVariablyModifiedType() &&
245 "Parameter captured by value with variably modified type");
246 EscapedParameters.insert(VD);
247 } else if (!IsForCombinedParallelRegion) {
248 return;
252 if ((!CGF.CapturedStmtInfo ||
253 (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
254 VD->getType()->isReferenceType())
255 // Do not globalize variables with reference type.
256 return;
257 if (VD->getType()->isVariablyModifiedType()) {
258 // If not captured at the target region level then mark the escaped
259 // variable as delayed.
260 if (IsCaptured)
261 EscapedVariableLengthDecls.insert(VD);
262 else
263 DelayedVariableLengthDecls.insert(VD);
264 } else
265 EscapedDecls.insert(VD);
268 void VisitValueDecl(const ValueDecl *VD) {
269 if (VD->getType()->isLValueReferenceType())
270 markAsEscaped(VD);
271 if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
272 if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
273 const bool SavedAllEscaped = AllEscaped;
274 AllEscaped = VD->getType()->isLValueReferenceType();
275 Visit(VarD->getInit());
276 AllEscaped = SavedAllEscaped;
280 void VisitOpenMPCapturedStmt(const CapturedStmt *S,
281 ArrayRef<OMPClause *> Clauses,
282 bool IsCombinedParallelRegion) {
283 if (!S)
284 return;
285 for (const CapturedStmt::Capture &C : S->captures()) {
286 if (C.capturesVariable() && !C.capturesVariableByCopy()) {
287 const ValueDecl *VD = C.getCapturedVar();
288 bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
289 if (IsCombinedParallelRegion) {
290 // Check if the variable is privatized in the combined construct and
291 // those private copies must be shared in the inner parallel
292 // directive.
293 IsForCombinedParallelRegion = false;
294 for (const OMPClause *C : Clauses) {
295 if (!isOpenMPPrivate(C->getClauseKind()) ||
296 C->getClauseKind() == OMPC_reduction ||
297 C->getClauseKind() == OMPC_linear ||
298 C->getClauseKind() == OMPC_private)
299 continue;
300 ArrayRef<const Expr *> Vars;
301 if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
302 Vars = PC->getVarRefs();
303 else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
304 Vars = PC->getVarRefs();
305 else
306 llvm_unreachable("Unexpected clause.");
307 for (const auto *E : Vars) {
308 const Decl *D =
309 cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
310 if (D == VD->getCanonicalDecl()) {
311 IsForCombinedParallelRegion = true;
312 break;
315 if (IsForCombinedParallelRegion)
316 break;
319 markAsEscaped(VD);
320 if (isa<OMPCapturedExprDecl>(VD))
321 VisitValueDecl(VD);
322 IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
327 void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
328 assert(!GlobalizedRD &&
329 "Record for globalized variables is built already.");
330 ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
331 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
332 if (IsInTTDRegion)
333 EscapedDeclsForTeams = EscapedDecls.getArrayRef();
334 else
335 EscapedDeclsForParallel = EscapedDecls.getArrayRef();
336 GlobalizedRD = ::buildRecordForGlobalizedVars(
337 CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
338 MappedDeclsFields, WarpSize);
341 public:
342 CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
343 ArrayRef<const ValueDecl *> TeamsReductions)
344 : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
346 virtual ~CheckVarsEscapingDeclContext() = default;
347 void VisitDeclStmt(const DeclStmt *S) {
348 if (!S)
349 return;
350 for (const Decl *D : S->decls())
351 if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
352 VisitValueDecl(VD);
354 void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
355 if (!D)
356 return;
357 if (!D->hasAssociatedStmt())
358 return;
359 if (const auto *S =
360 dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
361 // Do not analyze directives that do not actually require capturing,
362 // like `omp for` or `omp simd` directives.
363 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
364 getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
365 if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
366 VisitStmt(S->getCapturedStmt());
367 return;
369 VisitOpenMPCapturedStmt(
370 S, D->clauses(),
371 CaptureRegions.back() == OMPD_parallel &&
372 isOpenMPDistributeDirective(D->getDirectiveKind()));
375 void VisitCapturedStmt(const CapturedStmt *S) {
376 if (!S)
377 return;
378 for (const CapturedStmt::Capture &C : S->captures()) {
379 if (C.capturesVariable() && !C.capturesVariableByCopy()) {
380 const ValueDecl *VD = C.getCapturedVar();
381 markAsEscaped(VD);
382 if (isa<OMPCapturedExprDecl>(VD))
383 VisitValueDecl(VD);
387 void VisitLambdaExpr(const LambdaExpr *E) {
388 if (!E)
389 return;
390 for (const LambdaCapture &C : E->captures()) {
391 if (C.capturesVariable()) {
392 if (C.getCaptureKind() == LCK_ByRef) {
393 const ValueDecl *VD = C.getCapturedVar();
394 markAsEscaped(VD);
395 if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
396 VisitValueDecl(VD);
401 void VisitBlockExpr(const BlockExpr *E) {
402 if (!E)
403 return;
404 for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
405 if (C.isByRef()) {
406 const VarDecl *VD = C.getVariable();
407 markAsEscaped(VD);
408 if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
409 VisitValueDecl(VD);
413 void VisitCallExpr(const CallExpr *E) {
414 if (!E)
415 return;
416 for (const Expr *Arg : E->arguments()) {
417 if (!Arg)
418 continue;
419 if (Arg->isLValue()) {
420 const bool SavedAllEscaped = AllEscaped;
421 AllEscaped = true;
422 Visit(Arg);
423 AllEscaped = SavedAllEscaped;
424 } else {
425 Visit(Arg);
428 Visit(E->getCallee());
430 void VisitDeclRefExpr(const DeclRefExpr *E) {
431 if (!E)
432 return;
433 const ValueDecl *VD = E->getDecl();
434 if (AllEscaped)
435 markAsEscaped(VD);
436 if (isa<OMPCapturedExprDecl>(VD))
437 VisitValueDecl(VD);
438 else if (VD->isInitCapture())
439 VisitValueDecl(VD);
441 void VisitUnaryOperator(const UnaryOperator *E) {
442 if (!E)
443 return;
444 if (E->getOpcode() == UO_AddrOf) {
445 const bool SavedAllEscaped = AllEscaped;
446 AllEscaped = true;
447 Visit(E->getSubExpr());
448 AllEscaped = SavedAllEscaped;
449 } else {
450 Visit(E->getSubExpr());
453 void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
454 if (!E)
455 return;
456 if (E->getCastKind() == CK_ArrayToPointerDecay) {
457 const bool SavedAllEscaped = AllEscaped;
458 AllEscaped = true;
459 Visit(E->getSubExpr());
460 AllEscaped = SavedAllEscaped;
461 } else {
462 Visit(E->getSubExpr());
465 void VisitExpr(const Expr *E) {
466 if (!E)
467 return;
468 bool SavedAllEscaped = AllEscaped;
469 if (!E->isLValue())
470 AllEscaped = false;
471 for (const Stmt *Child : E->children())
472 if (Child)
473 Visit(Child);
474 AllEscaped = SavedAllEscaped;
476 void VisitStmt(const Stmt *S) {
477 if (!S)
478 return;
479 for (const Stmt *Child : S->children())
480 if (Child)
481 Visit(Child);
484 /// Returns the record that handles all the escaped local variables and used
485 /// instead of their original storage.
486 const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
487 if (!GlobalizedRD)
488 buildRecordForGlobalizedVars(IsInTTDRegion);
489 return GlobalizedRD;
492 /// Returns the field in the globalized record for the escaped variable.
493 const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
494 assert(GlobalizedRD &&
495 "Record for globalized variables must be generated already.");
496 return MappedDeclsFields.lookup(VD);
499 /// Returns the list of the escaped local variables/parameters.
500 ArrayRef<const ValueDecl *> getEscapedDecls() const {
501 return EscapedDecls.getArrayRef();
504 /// Checks if the escaped local variable is actually a parameter passed by
505 /// value.
506 const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
507 return EscapedParameters;
510 /// Returns the list of the escaped variables with the variably modified
511 /// types.
512 ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
513 return EscapedVariableLengthDecls.getArrayRef();
516 /// Returns the list of the delayed variables with the variably modified
517 /// types.
518 ArrayRef<const ValueDecl *> getDelayedVariableLengthDecls() const {
519 return DelayedVariableLengthDecls.getArrayRef();
522 } // anonymous namespace
524 /// Get the id of the warp in the block.
525 /// We assume that the warp size is 32, which is always the case
526 /// on the NVPTX device, to generate more efficient code.
527 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
528 CGBuilderTy &Bld = CGF.Builder;
529 unsigned LaneIDBits =
530 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
531 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
532 return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id");
535 /// Get the id of the current lane in the Warp.
536 /// We assume that the warp size is 32, which is always the case
537 /// on the NVPTX device, to generate more efficient code.
538 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
539 CGBuilderTy &Bld = CGF.Builder;
540 unsigned LaneIDBits =
541 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
542 assert(LaneIDBits < 32 && "Invalid LaneIDBits size in NVPTX device.");
543 unsigned LaneIDMask = ~0u >> (32u - LaneIDBits);
544 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
545 return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask),
546 "nvptx_lane_id");
549 CGOpenMPRuntimeGPU::ExecutionMode
550 CGOpenMPRuntimeGPU::getExecutionMode() const {
551 return CurrentExecutionMode;
554 CGOpenMPRuntimeGPU::DataSharingMode
555 CGOpenMPRuntimeGPU::getDataSharingMode() const {
556 return CurrentDataSharingMode;
559 /// Check for inner (nested) SPMD construct, if any
560 static bool hasNestedSPMDDirective(ASTContext &Ctx,
561 const OMPExecutableDirective &D) {
562 const auto *CS = D.getInnermostCapturedStmt();
563 const auto *Body =
564 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
565 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
567 if (const auto *NestedDir =
568 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
569 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
570 switch (D.getDirectiveKind()) {
571 case OMPD_target:
572 if (isOpenMPParallelDirective(DKind))
573 return true;
574 if (DKind == OMPD_teams) {
575 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
576 /*IgnoreCaptured=*/true);
577 if (!Body)
578 return false;
579 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
580 if (const auto *NND =
581 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
582 DKind = NND->getDirectiveKind();
583 if (isOpenMPParallelDirective(DKind))
584 return true;
587 return false;
588 case OMPD_target_teams:
589 return isOpenMPParallelDirective(DKind);
590 case OMPD_target_simd:
591 case OMPD_target_parallel:
592 case OMPD_target_parallel_for:
593 case OMPD_target_parallel_for_simd:
594 case OMPD_target_teams_distribute:
595 case OMPD_target_teams_distribute_simd:
596 case OMPD_target_teams_distribute_parallel_for:
597 case OMPD_target_teams_distribute_parallel_for_simd:
598 case OMPD_parallel:
599 case OMPD_for:
600 case OMPD_parallel_for:
601 case OMPD_parallel_master:
602 case OMPD_parallel_sections:
603 case OMPD_for_simd:
604 case OMPD_parallel_for_simd:
605 case OMPD_cancel:
606 case OMPD_cancellation_point:
607 case OMPD_ordered:
608 case OMPD_threadprivate:
609 case OMPD_allocate:
610 case OMPD_task:
611 case OMPD_simd:
612 case OMPD_sections:
613 case OMPD_section:
614 case OMPD_single:
615 case OMPD_master:
616 case OMPD_critical:
617 case OMPD_taskyield:
618 case OMPD_barrier:
619 case OMPD_taskwait:
620 case OMPD_taskgroup:
621 case OMPD_atomic:
622 case OMPD_flush:
623 case OMPD_depobj:
624 case OMPD_scan:
625 case OMPD_teams:
626 case OMPD_target_data:
627 case OMPD_target_exit_data:
628 case OMPD_target_enter_data:
629 case OMPD_distribute:
630 case OMPD_distribute_simd:
631 case OMPD_distribute_parallel_for:
632 case OMPD_distribute_parallel_for_simd:
633 case OMPD_teams_distribute:
634 case OMPD_teams_distribute_simd:
635 case OMPD_teams_distribute_parallel_for:
636 case OMPD_teams_distribute_parallel_for_simd:
637 case OMPD_target_update:
638 case OMPD_declare_simd:
639 case OMPD_declare_variant:
640 case OMPD_begin_declare_variant:
641 case OMPD_end_declare_variant:
642 case OMPD_declare_target:
643 case OMPD_end_declare_target:
644 case OMPD_declare_reduction:
645 case OMPD_declare_mapper:
646 case OMPD_taskloop:
647 case OMPD_taskloop_simd:
648 case OMPD_master_taskloop:
649 case OMPD_master_taskloop_simd:
650 case OMPD_parallel_master_taskloop:
651 case OMPD_parallel_master_taskloop_simd:
652 case OMPD_requires:
653 case OMPD_unknown:
654 default:
655 llvm_unreachable("Unexpected directive.");
659 return false;
662 static bool supportsSPMDExecutionMode(ASTContext &Ctx,
663 const OMPExecutableDirective &D) {
664 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
665 switch (DirectiveKind) {
666 case OMPD_target:
667 case OMPD_target_teams:
668 return hasNestedSPMDDirective(Ctx, D);
669 case OMPD_target_teams_loop:
670 case OMPD_target_parallel_loop:
671 case OMPD_target_parallel:
672 case OMPD_target_parallel_for:
673 case OMPD_target_parallel_for_simd:
674 case OMPD_target_teams_distribute_parallel_for:
675 case OMPD_target_teams_distribute_parallel_for_simd:
676 case OMPD_target_simd:
677 case OMPD_target_teams_distribute_simd:
678 return true;
679 case OMPD_target_teams_distribute:
680 return false;
681 case OMPD_parallel:
682 case OMPD_for:
683 case OMPD_parallel_for:
684 case OMPD_parallel_master:
685 case OMPD_parallel_sections:
686 case OMPD_for_simd:
687 case OMPD_parallel_for_simd:
688 case OMPD_cancel:
689 case OMPD_cancellation_point:
690 case OMPD_ordered:
691 case OMPD_threadprivate:
692 case OMPD_allocate:
693 case OMPD_task:
694 case OMPD_simd:
695 case OMPD_sections:
696 case OMPD_section:
697 case OMPD_single:
698 case OMPD_master:
699 case OMPD_critical:
700 case OMPD_taskyield:
701 case OMPD_barrier:
702 case OMPD_taskwait:
703 case OMPD_taskgroup:
704 case OMPD_atomic:
705 case OMPD_flush:
706 case OMPD_depobj:
707 case OMPD_scan:
708 case OMPD_teams:
709 case OMPD_target_data:
710 case OMPD_target_exit_data:
711 case OMPD_target_enter_data:
712 case OMPD_distribute:
713 case OMPD_distribute_simd:
714 case OMPD_distribute_parallel_for:
715 case OMPD_distribute_parallel_for_simd:
716 case OMPD_teams_distribute:
717 case OMPD_teams_distribute_simd:
718 case OMPD_teams_distribute_parallel_for:
719 case OMPD_teams_distribute_parallel_for_simd:
720 case OMPD_target_update:
721 case OMPD_declare_simd:
722 case OMPD_declare_variant:
723 case OMPD_begin_declare_variant:
724 case OMPD_end_declare_variant:
725 case OMPD_declare_target:
726 case OMPD_end_declare_target:
727 case OMPD_declare_reduction:
728 case OMPD_declare_mapper:
729 case OMPD_taskloop:
730 case OMPD_taskloop_simd:
731 case OMPD_master_taskloop:
732 case OMPD_master_taskloop_simd:
733 case OMPD_parallel_master_taskloop:
734 case OMPD_parallel_master_taskloop_simd:
735 case OMPD_requires:
736 case OMPD_unknown:
737 default:
738 break;
740 llvm_unreachable(
741 "Unknown programming model for OpenMP directive on NVPTX target.");
744 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D,
745 StringRef ParentName,
746 llvm::Function *&OutlinedFn,
747 llvm::Constant *&OutlinedFnID,
748 bool IsOffloadEntry,
749 const RegionCodeGenTy &CodeGen) {
750 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode, EM_NonSPMD);
751 EntryFunctionState EST;
752 WrapperFunctionsMap.clear();
754 [[maybe_unused]] bool IsBareKernel = D.getSingleClause<OMPXBareClause>();
755 assert(!IsBareKernel && "bare kernel should not be at generic mode");
757 // Emit target region as a standalone region.
758 class NVPTXPrePostActionTy : public PrePostActionTy {
759 CGOpenMPRuntimeGPU::EntryFunctionState &EST;
760 const OMPExecutableDirective &D;
762 public:
763 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST,
764 const OMPExecutableDirective &D)
765 : EST(EST), D(D) {}
766 void Enter(CodeGenFunction &CGF) override {
767 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
768 RT.emitKernelInit(D, CGF, EST, /* IsSPMD */ false);
769 // Skip target region initialization.
770 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
772 void Exit(CodeGenFunction &CGF) override {
773 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
774 RT.clearLocThreadIdInsertPt(CGF);
775 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false);
777 } Action(EST, D);
778 CodeGen.setAction(Action);
779 IsInTTDRegion = true;
780 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
781 IsOffloadEntry, CodeGen);
782 IsInTTDRegion = false;
785 void CGOpenMPRuntimeGPU::emitKernelInit(const OMPExecutableDirective &D,
786 CodeGenFunction &CGF,
787 EntryFunctionState &EST, bool IsSPMD) {
788 int32_t MinThreadsVal = 1, MaxThreadsVal = -1, MinTeamsVal = 1,
789 MaxTeamsVal = -1;
790 computeMinAndMaxThreadsAndTeams(D, CGF, MinThreadsVal, MaxThreadsVal,
791 MinTeamsVal, MaxTeamsVal);
793 CGBuilderTy &Bld = CGF.Builder;
794 Bld.restoreIP(OMPBuilder.createTargetInit(
795 Bld, IsSPMD, MinThreadsVal, MaxThreadsVal, MinTeamsVal, MaxTeamsVal));
796 if (!IsSPMD)
797 emitGenericVarsProlog(CGF, EST.Loc);
800 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF,
801 EntryFunctionState &EST,
802 bool IsSPMD) {
803 if (!IsSPMD)
804 emitGenericVarsEpilog(CGF);
806 // This is temporary until we remove the fixed sized buffer.
807 ASTContext &C = CGM.getContext();
808 RecordDecl *StaticRD = C.buildImplicitRecord(
809 "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union);
810 StaticRD->startDefinition();
811 for (const RecordDecl *TeamReductionRec : TeamsReductions) {
812 QualType RecTy = C.getRecordType(TeamReductionRec);
813 auto *Field = FieldDecl::Create(
814 C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy,
815 C.getTrivialTypeSourceInfo(RecTy, SourceLocation()),
816 /*BW=*/nullptr, /*Mutable=*/false,
817 /*InitStyle=*/ICIS_NoInit);
818 Field->setAccess(AS_public);
819 StaticRD->addDecl(Field);
821 StaticRD->completeDefinition();
822 QualType StaticTy = C.getRecordType(StaticRD);
823 llvm::Type *LLVMReductionsBufferTy =
824 CGM.getTypes().ConvertTypeForMem(StaticTy);
825 const auto &DL = CGM.getModule().getDataLayout();
826 uint64_t BufferSize =
827 DL.getTypeAllocSize(LLVMReductionsBufferTy).getFixedValue();
828 CGBuilderTy &Bld = CGF.Builder;
829 OMPBuilder.createTargetDeinit(Bld, BufferSize);
832 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D,
833 StringRef ParentName,
834 llvm::Function *&OutlinedFn,
835 llvm::Constant *&OutlinedFnID,
836 bool IsOffloadEntry,
837 const RegionCodeGenTy &CodeGen) {
838 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode, EM_SPMD);
839 EntryFunctionState EST;
841 bool IsBareKernel = D.getSingleClause<OMPXBareClause>();
843 // Emit target region as a standalone region.
844 class NVPTXPrePostActionTy : public PrePostActionTy {
845 CGOpenMPRuntimeGPU &RT;
846 CGOpenMPRuntimeGPU::EntryFunctionState &EST;
847 bool IsBareKernel;
848 DataSharingMode Mode;
849 const OMPExecutableDirective &D;
851 public:
852 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT,
853 CGOpenMPRuntimeGPU::EntryFunctionState &EST,
854 bool IsBareKernel, const OMPExecutableDirective &D)
855 : RT(RT), EST(EST), IsBareKernel(IsBareKernel),
856 Mode(RT.CurrentDataSharingMode), D(D) {}
857 void Enter(CodeGenFunction &CGF) override {
858 if (IsBareKernel) {
859 RT.CurrentDataSharingMode = DataSharingMode::DS_CUDA;
860 return;
862 RT.emitKernelInit(D, CGF, EST, /* IsSPMD */ true);
863 // Skip target region initialization.
864 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
866 void Exit(CodeGenFunction &CGF) override {
867 if (IsBareKernel) {
868 RT.CurrentDataSharingMode = Mode;
869 return;
871 RT.clearLocThreadIdInsertPt(CGF);
872 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true);
874 } Action(*this, EST, IsBareKernel, D);
875 CodeGen.setAction(Action);
876 IsInTTDRegion = true;
877 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
878 IsOffloadEntry, CodeGen);
879 IsInTTDRegion = false;
882 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction(
883 const OMPExecutableDirective &D, StringRef ParentName,
884 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
885 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
886 if (!IsOffloadEntry) // Nothing to do.
887 return;
889 assert(!ParentName.empty() && "Invalid target region parent name!");
891 bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D);
892 bool IsBareKernel = D.getSingleClause<OMPXBareClause>();
893 if (Mode || IsBareKernel)
894 emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
895 CodeGen);
896 else
897 emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
898 CodeGen);
901 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM)
902 : CGOpenMPRuntime(CGM) {
903 llvm::OpenMPIRBuilderConfig Config(
904 CGM.getLangOpts().OpenMPIsTargetDevice, isGPU(),
905 CGM.getLangOpts().OpenMPOffloadMandatory,
906 /*HasRequiresReverseOffload*/ false, /*HasRequiresUnifiedAddress*/ false,
907 hasRequiresUnifiedSharedMemory(), /*HasRequiresDynamicAllocators*/ false);
908 OMPBuilder.setConfig(Config);
910 if (!CGM.getLangOpts().OpenMPIsTargetDevice)
911 llvm_unreachable("OpenMP can only handle device code.");
913 if (CGM.getLangOpts().OpenMPCUDAMode)
914 CurrentDataSharingMode = CGOpenMPRuntimeGPU::DS_CUDA;
916 llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder();
917 if (CGM.getLangOpts().NoGPULib || CGM.getLangOpts().OMPHostIRFile.empty())
918 return;
920 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug,
921 "__omp_rtl_debug_kind");
922 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription,
923 "__omp_rtl_assume_teams_oversubscription");
924 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription,
925 "__omp_rtl_assume_threads_oversubscription");
926 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPNoThreadState,
927 "__omp_rtl_assume_no_thread_state");
928 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPNoNestedParallelism,
929 "__omp_rtl_assume_no_nested_parallelism");
932 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF,
933 ProcBindKind ProcBind,
934 SourceLocation Loc) {
935 // Nothing to do.
938 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF,
939 llvm::Value *NumThreads,
940 SourceLocation Loc) {
941 // Nothing to do.
944 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF,
945 const Expr *NumTeams,
946 const Expr *ThreadLimit,
947 SourceLocation Loc) {}
949 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction(
950 CodeGenFunction &CGF, const OMPExecutableDirective &D,
951 const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
952 const RegionCodeGenTy &CodeGen) {
953 // Emit target region as a standalone region.
954 bool PrevIsInTTDRegion = IsInTTDRegion;
955 IsInTTDRegion = false;
956 auto *OutlinedFun =
957 cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction(
958 CGF, D, ThreadIDVar, InnermostKind, CodeGen));
959 IsInTTDRegion = PrevIsInTTDRegion;
960 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) {
961 llvm::Function *WrapperFun =
962 createParallelDataSharingWrapper(OutlinedFun, D);
963 WrapperFunctionsMap[OutlinedFun] = WrapperFun;
966 return OutlinedFun;
969 /// Get list of lastprivate variables from the teams distribute ... or
970 /// teams {distribute ...} directives.
971 static void
972 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D,
973 llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
974 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
975 "expected teams directive.");
976 const OMPExecutableDirective *Dir = &D;
977 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
978 if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild(
979 Ctx,
980 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
981 /*IgnoreCaptured=*/true))) {
982 Dir = dyn_cast_or_null<OMPExecutableDirective>(S);
983 if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind()))
984 Dir = nullptr;
987 if (!Dir)
988 return;
989 for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
990 for (const Expr *E : C->getVarRefs())
991 Vars.push_back(getPrivateItem(E));
995 /// Get list of reduction variables from the teams ... directives.
996 static void
997 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D,
998 llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
999 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
1000 "expected teams directive.");
1001 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1002 for (const Expr *E : C->privates())
1003 Vars.push_back(getPrivateItem(E));
1007 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction(
1008 CodeGenFunction &CGF, const OMPExecutableDirective &D,
1009 const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
1010 const RegionCodeGenTy &CodeGen) {
1011 SourceLocation Loc = D.getBeginLoc();
1013 const RecordDecl *GlobalizedRD = nullptr;
1014 llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
1015 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
1016 unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size;
1017 // Globalize team reductions variable unconditionally in all modes.
1018 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1019 getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
1020 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
1021 getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
1022 if (!LastPrivatesReductions.empty()) {
1023 GlobalizedRD = ::buildRecordForGlobalizedVars(
1024 CGM.getContext(), std::nullopt, LastPrivatesReductions,
1025 MappedDeclsFields, WarpSize);
1027 } else if (!LastPrivatesReductions.empty()) {
1028 assert(!TeamAndReductions.first &&
1029 "Previous team declaration is not expected.");
1030 TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
1031 std::swap(TeamAndReductions.second, LastPrivatesReductions);
1034 // Emit target region as a standalone region.
1035 class NVPTXPrePostActionTy : public PrePostActionTy {
1036 SourceLocation &Loc;
1037 const RecordDecl *GlobalizedRD;
1038 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1039 &MappedDeclsFields;
1041 public:
1042 NVPTXPrePostActionTy(
1043 SourceLocation &Loc, const RecordDecl *GlobalizedRD,
1044 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1045 &MappedDeclsFields)
1046 : Loc(Loc), GlobalizedRD(GlobalizedRD),
1047 MappedDeclsFields(MappedDeclsFields) {}
1048 void Enter(CodeGenFunction &CGF) override {
1049 auto &Rt =
1050 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1051 if (GlobalizedRD) {
1052 auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
1053 I->getSecond().MappedParams =
1054 std::make_unique<CodeGenFunction::OMPMapVars>();
1055 DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
1056 for (const auto &Pair : MappedDeclsFields) {
1057 assert(Pair.getFirst()->isCanonicalDecl() &&
1058 "Expected canonical declaration");
1059 Data.insert(std::make_pair(Pair.getFirst(), MappedVarData()));
1062 Rt.emitGenericVarsProlog(CGF, Loc);
1064 void Exit(CodeGenFunction &CGF) override {
1065 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
1066 .emitGenericVarsEpilog(CGF);
1068 } Action(Loc, GlobalizedRD, MappedDeclsFields);
1069 CodeGen.setAction(Action);
1070 llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction(
1071 CGF, D, ThreadIDVar, InnermostKind, CodeGen);
1073 return OutlinedFun;
1076 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF,
1077 SourceLocation Loc) {
1078 if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic)
1079 return;
1081 CGBuilderTy &Bld = CGF.Builder;
1083 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1084 if (I == FunctionGlobalizedDecls.end())
1085 return;
1087 for (auto &Rec : I->getSecond().LocalVarData) {
1088 const auto *VD = cast<VarDecl>(Rec.first);
1089 bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
1090 QualType VarTy = VD->getType();
1092 // Get the local allocation of a firstprivate variable before sharing
1093 llvm::Value *ParValue;
1094 if (EscapedParam) {
1095 LValue ParLVal =
1096 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
1097 ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
1100 // Allocate space for the variable to be globalized
1101 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1102 llvm::CallBase *VoidPtr =
1103 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1104 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1105 AllocArgs, VD->getName());
1106 // FIXME: We should use the variables actual alignment as an argument.
1107 VoidPtr->addRetAttr(llvm::Attribute::get(
1108 CGM.getLLVMContext(), llvm::Attribute::Alignment,
1109 CGM.getContext().getTargetInfo().getNewAlign() / 8));
1111 // Cast the void pointer and get the address of the globalized variable.
1112 llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo();
1113 llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1114 VoidPtr, VarPtrTy, VD->getName() + "_on_stack");
1115 LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy);
1116 Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
1117 Rec.second.GlobalizedVal = VoidPtr;
1119 // Assign the local allocation to the newly globalized location.
1120 if (EscapedParam) {
1121 CGF.EmitStoreOfScalar(ParValue, VarAddr);
1122 I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF));
1124 if (auto *DI = CGF.getDebugInfo())
1125 VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation()));
1128 for (const auto *ValueD : I->getSecond().EscapedVariableLengthDecls) {
1129 const auto *VD = cast<VarDecl>(ValueD);
1130 std::pair<llvm::Value *, llvm::Value *> AddrSizePair =
1131 getKmpcAllocShared(CGF, VD);
1132 I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(AddrSizePair);
1133 LValue Base = CGF.MakeAddrLValue(AddrSizePair.first, VD->getType(),
1134 CGM.getContext().getDeclAlign(VD),
1135 AlignmentSource::Decl);
1136 I->getSecond().MappedParams->setVarAddr(CGF, VD, Base.getAddress(CGF));
1138 I->getSecond().MappedParams->apply(CGF);
1141 bool CGOpenMPRuntimeGPU::isDelayedVariableLengthDecl(CodeGenFunction &CGF,
1142 const VarDecl *VD) const {
1143 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1144 if (I == FunctionGlobalizedDecls.end())
1145 return false;
1147 // Check variable declaration is delayed:
1148 return llvm::is_contained(I->getSecond().DelayedVariableLengthDecls, VD);
1151 std::pair<llvm::Value *, llvm::Value *>
1152 CGOpenMPRuntimeGPU::getKmpcAllocShared(CodeGenFunction &CGF,
1153 const VarDecl *VD) {
1154 CGBuilderTy &Bld = CGF.Builder;
1156 // Compute size and alignment.
1157 llvm::Value *Size = CGF.getTypeSize(VD->getType());
1158 CharUnits Align = CGM.getContext().getDeclAlign(VD);
1159 Size = Bld.CreateNUWAdd(
1160 Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
1161 llvm::Value *AlignVal =
1162 llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
1163 Size = Bld.CreateUDiv(Size, AlignVal);
1164 Size = Bld.CreateNUWMul(Size, AlignVal);
1166 // Allocate space for this VLA object to be globalized.
1167 llvm::Value *AllocArgs[] = {Size};
1168 llvm::CallBase *VoidPtr =
1169 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1170 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1171 AllocArgs, VD->getName());
1172 VoidPtr->addRetAttr(llvm::Attribute::get(
1173 CGM.getLLVMContext(), llvm::Attribute::Alignment, Align.getQuantity()));
1175 return std::make_pair(VoidPtr, Size);
1178 void CGOpenMPRuntimeGPU::getKmpcFreeShared(
1179 CodeGenFunction &CGF,
1180 const std::pair<llvm::Value *, llvm::Value *> &AddrSizePair) {
1181 // Deallocate the memory for each globalized VLA object
1182 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1183 CGM.getModule(), OMPRTL___kmpc_free_shared),
1184 {AddrSizePair.first, AddrSizePair.second});
1187 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF) {
1188 if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic)
1189 return;
1191 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1192 if (I != FunctionGlobalizedDecls.end()) {
1193 // Deallocate the memory for each globalized VLA object that was
1194 // globalized in the prolog (i.e. emitGenericVarsProlog).
1195 for (const auto &AddrSizePair :
1196 llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
1197 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1198 CGM.getModule(), OMPRTL___kmpc_free_shared),
1199 {AddrSizePair.first, AddrSizePair.second});
1201 // Deallocate the memory for each globalized value
1202 for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) {
1203 const auto *VD = cast<VarDecl>(Rec.first);
1204 I->getSecond().MappedParams->restore(CGF);
1206 llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal,
1207 CGF.getTypeSize(VD->getType())};
1208 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1209 CGM.getModule(), OMPRTL___kmpc_free_shared),
1210 FreeArgs);
1215 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF,
1216 const OMPExecutableDirective &D,
1217 SourceLocation Loc,
1218 llvm::Function *OutlinedFn,
1219 ArrayRef<llvm::Value *> CapturedVars) {
1220 if (!CGF.HaveInsertPoint())
1221 return;
1223 bool IsBareKernel = D.getSingleClause<OMPXBareClause>();
1225 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
1226 /*Name=*/".zero.addr");
1227 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
1228 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
1229 // We don't emit any thread id function call in bare kernel, but because the
1230 // outlined function has a pointer argument, we emit a nullptr here.
1231 if (IsBareKernel)
1232 OutlinedFnArgs.push_back(llvm::ConstantPointerNull::get(CGM.VoidPtrTy));
1233 else
1234 OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer());
1235 OutlinedFnArgs.push_back(ZeroAddr.getPointer());
1236 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
1237 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
1240 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF,
1241 SourceLocation Loc,
1242 llvm::Function *OutlinedFn,
1243 ArrayRef<llvm::Value *> CapturedVars,
1244 const Expr *IfCond,
1245 llvm::Value *NumThreads) {
1246 if (!CGF.HaveInsertPoint())
1247 return;
1249 auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond,
1250 NumThreads](CodeGenFunction &CGF,
1251 PrePostActionTy &Action) {
1252 CGBuilderTy &Bld = CGF.Builder;
1253 llvm::Value *NumThreadsVal = NumThreads;
1254 llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn];
1255 llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
1256 if (WFn)
1257 ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
1258 llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy);
1260 // Create a private scope that will globalize the arguments
1261 // passed from the outside of the target region.
1262 // TODO: Is that needed?
1263 CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);
1265 Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca(
1266 llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()),
1267 "captured_vars_addrs");
1268 // There's something to share.
1269 if (!CapturedVars.empty()) {
1270 // Prepare for parallel region. Indicate the outlined function.
1271 ASTContext &Ctx = CGF.getContext();
1272 unsigned Idx = 0;
1273 for (llvm::Value *V : CapturedVars) {
1274 Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx);
1275 llvm::Value *PtrV;
1276 if (V->getType()->isIntegerTy())
1277 PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
1278 else
1279 PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy);
1280 CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
1281 Ctx.getPointerType(Ctx.VoidPtrTy));
1282 ++Idx;
1286 llvm::Value *IfCondVal = nullptr;
1287 if (IfCond)
1288 IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty,
1289 /* isSigned */ false);
1290 else
1291 IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1);
1293 if (!NumThreadsVal)
1294 NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1);
1295 else
1296 NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty),
1298 assert(IfCondVal && "Expected a value");
1299 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
1300 llvm::Value *Args[] = {
1301 RTLoc,
1302 getThreadID(CGF, Loc),
1303 IfCondVal,
1304 NumThreadsVal,
1305 llvm::ConstantInt::get(CGF.Int32Ty, -1),
1306 FnPtr,
1308 Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(),
1309 CGF.VoidPtrPtrTy),
1310 llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
1311 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1312 CGM.getModule(), OMPRTL___kmpc_parallel_51),
1313 Args);
1316 RegionCodeGenTy RCG(ParallelGen);
1317 RCG(CGF);
1320 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) {
1321 // Always emit simple barriers!
1322 if (!CGF.HaveInsertPoint())
1323 return;
1324 // Build call __kmpc_barrier_simple_spmd(nullptr, 0);
1325 // This function does not use parameters, so we can emit just default values.
1326 llvm::Value *Args[] = {
1327 llvm::ConstantPointerNull::get(
1328 cast<llvm::PointerType>(getIdentTyPointerTy())),
1329 llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
1330 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1331 CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd),
1332 Args);
1335 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF,
1336 SourceLocation Loc,
1337 OpenMPDirectiveKind Kind, bool,
1338 bool) {
1339 // Always emit simple barriers!
1340 if (!CGF.HaveInsertPoint())
1341 return;
1342 // Build call __kmpc_cancel_barrier(loc, thread_id);
1343 unsigned Flags = getDefaultFlagsForBarriers(Kind);
1344 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
1345 getThreadID(CGF, Loc)};
1347 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1348 CGM.getModule(), OMPRTL___kmpc_barrier),
1349 Args);
1352 void CGOpenMPRuntimeGPU::emitCriticalRegion(
1353 CodeGenFunction &CGF, StringRef CriticalName,
1354 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
1355 const Expr *Hint) {
1356 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
1357 llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
1358 llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
1359 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
1360 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");
1362 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1364 // Get the mask of active threads in the warp.
1365 llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1366 CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask));
1367 // Fetch team-local id of the thread.
1368 llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
1370 // Get the width of the team.
1371 llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF);
1373 // Initialize the counter variable for the loop.
1374 QualType Int32Ty =
1375 CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
1376 Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
1377 LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
1378 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
1379 /*isInit=*/true);
1381 // Block checks if loop counter exceeds upper bound.
1382 CGF.EmitBlock(LoopBB);
1383 llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1384 llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
1385 CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);
1387 // Block tests which single thread should execute region, and which threads
1388 // should go straight to synchronisation point.
1389 CGF.EmitBlock(TestBB);
1390 CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1391 llvm::Value *CmpThreadToCounter =
1392 CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
1393 CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);
1395 // Block emits the body of the critical region.
1396 CGF.EmitBlock(BodyBB);
1398 // Output the critical statement.
1399 CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
1400 Hint);
1402 // After the body surrounded by the critical region, the single executing
1403 // thread will jump to the synchronisation point.
1404 // Block waits for all threads in current team to finish then increments the
1405 // counter variable and returns to the loop.
1406 CGF.EmitBlock(SyncBB);
1407 // Reconverge active threads in the warp.
1408 (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1409 CGM.getModule(), OMPRTL___kmpc_syncwarp),
1410 Mask);
1412 llvm::Value *IncCounterVal =
1413 CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
1414 CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
1415 CGF.EmitBranch(LoopBB);
1417 // Block that is reached when all threads in the team complete the region.
1418 CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1421 /// Cast value to the specified type.
1422 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
1423 QualType ValTy, QualType CastTy,
1424 SourceLocation Loc) {
1425 assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&
1426 "Cast type must sized.");
1427 assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&
1428 "Val type must sized.");
1429 llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
1430 if (ValTy == CastTy)
1431 return Val;
1432 if (CGF.getContext().getTypeSizeInChars(ValTy) ==
1433 CGF.getContext().getTypeSizeInChars(CastTy))
1434 return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
1435 if (CastTy->isIntegerType() && ValTy->isIntegerType())
1436 return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
1437 CastTy->hasSignedIntegerRepresentation());
1438 Address CastItem = CGF.CreateMemTemp(CastTy);
1439 Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1440 CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()),
1441 Val->getType());
1442 CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy,
1443 LValueBaseInfo(AlignmentSource::Type),
1444 TBAAAccessInfo());
1445 return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc,
1446 LValueBaseInfo(AlignmentSource::Type),
1447 TBAAAccessInfo());
1450 /// This function creates calls to one of two shuffle functions to copy
1451 /// variables between lanes in a warp.
1452 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
1453 llvm::Value *Elem,
1454 QualType ElemType,
1455 llvm::Value *Offset,
1456 SourceLocation Loc) {
1457 CodeGenModule &CGM = CGF.CGM;
1458 CGBuilderTy &Bld = CGF.Builder;
1459 CGOpenMPRuntimeGPU &RT =
1460 *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime()));
1461 llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder();
1463 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1464 assert(Size.getQuantity() <= 8 &&
1465 "Unsupported bitwidth in shuffle instruction.");
1467 RuntimeFunction ShuffleFn = Size.getQuantity() <= 4
1468 ? OMPRTL___kmpc_shuffle_int32
1469 : OMPRTL___kmpc_shuffle_int64;
1471 // Cast all types to 32- or 64-bit values before calling shuffle routines.
1472 QualType CastTy = CGF.getContext().getIntTypeForBitwidth(
1473 Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1);
1474 llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc);
1475 llvm::Value *WarpSize =
1476 Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);
1478 llvm::Value *ShuffledVal = CGF.EmitRuntimeCall(
1479 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn),
1480 {ElemCast, Offset, WarpSize});
1482 return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc);
1485 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr,
1486 Address DestAddr, QualType ElemType,
1487 llvm::Value *Offset, SourceLocation Loc) {
1488 CGBuilderTy &Bld = CGF.Builder;
1490 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1491 // Create the loop over the big sized data.
1492 // ptr = (void*)Elem;
1493 // ptrEnd = (void*) Elem + 1;
1494 // Step = 8;
1495 // while (ptr + Step < ptrEnd)
1496 // shuffle((int64_t)*ptr);
1497 // Step = 4;
1498 // while (ptr + Step < ptrEnd)
1499 // shuffle((int32_t)*ptr);
1500 // ...
1501 Address ElemPtr = DestAddr;
1502 Address Ptr = SrcAddr;
1503 Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast(
1504 Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy, CGF.Int8Ty);
1505 for (int IntSize = 8; IntSize >= 1; IntSize /= 2) {
1506 if (Size < CharUnits::fromQuantity(IntSize))
1507 continue;
1508 QualType IntType = CGF.getContext().getIntTypeForBitwidth(
1509 CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)),
1510 /*Signed=*/1);
1511 llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType);
1512 Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo(),
1513 IntTy);
1514 ElemPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1515 ElemPtr, IntTy->getPointerTo(), IntTy);
1516 if (Size.getQuantity() / IntSize > 1) {
1517 llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond");
1518 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then");
1519 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit");
1520 llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock();
1521 CGF.EmitBlock(PreCondBB);
1522 llvm::PHINode *PhiSrc =
1523 Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2);
1524 PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB);
1525 llvm::PHINode *PhiDest =
1526 Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2);
1527 PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB);
1528 Ptr = Address(PhiSrc, Ptr.getElementType(), Ptr.getAlignment());
1529 ElemPtr =
1530 Address(PhiDest, ElemPtr.getElementType(), ElemPtr.getAlignment());
1531 llvm::Value *PtrDiff = Bld.CreatePtrDiff(
1532 CGF.Int8Ty, PtrEnd.getPointer(),
1533 Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr.getPointer(),
1534 CGF.VoidPtrTy));
1535 Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)),
1536 ThenBB, ExitBB);
1537 CGF.EmitBlock(ThenBB);
1538 llvm::Value *Res = createRuntimeShuffleFunction(
1539 CGF,
1540 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1541 LValueBaseInfo(AlignmentSource::Type),
1542 TBAAAccessInfo()),
1543 IntType, Offset, Loc);
1544 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1545 LValueBaseInfo(AlignmentSource::Type),
1546 TBAAAccessInfo());
1547 Address LocalPtr = Bld.CreateConstGEP(Ptr, 1);
1548 Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1549 PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB);
1550 PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB);
1551 CGF.EmitBranch(PreCondBB);
1552 CGF.EmitBlock(ExitBB);
1553 } else {
1554 llvm::Value *Res = createRuntimeShuffleFunction(
1555 CGF,
1556 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1557 LValueBaseInfo(AlignmentSource::Type),
1558 TBAAAccessInfo()),
1559 IntType, Offset, Loc);
1560 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1561 LValueBaseInfo(AlignmentSource::Type),
1562 TBAAAccessInfo());
1563 Ptr = Bld.CreateConstGEP(Ptr, 1);
1564 ElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1566 Size = Size % IntSize;
1570 namespace {
1571 enum CopyAction : unsigned {
1572 // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
1573 // the warp using shuffle instructions.
1574 RemoteLaneToThread,
1575 // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
1576 ThreadCopy,
1577 // ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
1578 ThreadToScratchpad,
1579 // ScratchpadToThread: Copy from a scratchpad array in global memory
1580 // containing team-reduced data to a thread's stack.
1581 ScratchpadToThread,
1583 } // namespace
1585 struct CopyOptionsTy {
1586 llvm::Value *RemoteLaneOffset;
1587 llvm::Value *ScratchpadIndex;
1588 llvm::Value *ScratchpadWidth;
1591 /// Emit instructions to copy a Reduce list, which contains partially
1592 /// aggregated values, in the specified direction.
1593 static void emitReductionListCopy(
1594 CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
1595 ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
1596 CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
1598 CodeGenModule &CGM = CGF.CGM;
1599 ASTContext &C = CGM.getContext();
1600 CGBuilderTy &Bld = CGF.Builder;
1602 llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
1603 llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex;
1604 llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth;
1606 // Iterates, element-by-element, through the source Reduce list and
1607 // make a copy.
1608 unsigned Idx = 0;
1609 unsigned Size = Privates.size();
1610 for (const Expr *Private : Privates) {
1611 Address SrcElementAddr = Address::invalid();
1612 Address DestElementAddr = Address::invalid();
1613 Address DestElementPtrAddr = Address::invalid();
1614 // Should we shuffle in an element from a remote lane?
1615 bool ShuffleInElement = false;
1616 // Set to true to update the pointer in the dest Reduce list to a
1617 // newly created element.
1618 bool UpdateDestListPtr = false;
1619 // Increment the src or dest pointer to the scratchpad, for each
1620 // new element.
1621 bool IncrScratchpadSrc = false;
1622 bool IncrScratchpadDest = false;
1623 QualType PrivatePtrType = C.getPointerType(Private->getType());
1624 llvm::Type *PrivateLlvmPtrType = CGF.ConvertType(PrivatePtrType);
1626 switch (Action) {
1627 case RemoteLaneToThread: {
1628 // Step 1.1: Get the address for the src element in the Reduce list.
1629 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1630 SrcElementAddr = CGF.EmitLoadOfPointer(
1631 SrcElementPtrAddr.withElementType(PrivateLlvmPtrType),
1632 PrivatePtrType->castAs<PointerType>());
1634 // Step 1.2: Create a temporary to store the element in the destination
1635 // Reduce list.
1636 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1637 DestElementAddr =
1638 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1639 ShuffleInElement = true;
1640 UpdateDestListPtr = true;
1641 break;
1643 case ThreadCopy: {
1644 // Step 1.1: Get the address for the src element in the Reduce list.
1645 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1646 SrcElementAddr = CGF.EmitLoadOfPointer(
1647 SrcElementPtrAddr.withElementType(PrivateLlvmPtrType),
1648 PrivatePtrType->castAs<PointerType>());
1650 // Step 1.2: Get the address for dest element. The destination
1651 // element has already been created on the thread's stack.
1652 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1653 DestElementAddr = CGF.EmitLoadOfPointer(
1654 DestElementPtrAddr.withElementType(PrivateLlvmPtrType),
1655 PrivatePtrType->castAs<PointerType>());
1656 break;
1658 case ThreadToScratchpad: {
1659 // Step 1.1: Get the address for the src element in the Reduce list.
1660 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1661 SrcElementAddr = CGF.EmitLoadOfPointer(
1662 SrcElementPtrAddr.withElementType(PrivateLlvmPtrType),
1663 PrivatePtrType->castAs<PointerType>());
1665 // Step 1.2: Get the address for dest element:
1666 // address = base + index * ElementSizeInChars.
1667 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1668 llvm::Value *CurrentOffset =
1669 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
1670 llvm::Value *ScratchPadElemAbsolutePtrVal =
1671 Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset);
1672 ScratchPadElemAbsolutePtrVal =
1673 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1674 DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty,
1675 C.getTypeAlignInChars(Private->getType()));
1676 IncrScratchpadDest = true;
1677 break;
1679 case ScratchpadToThread: {
1680 // Step 1.1: Get the address for the src element in the scratchpad.
1681 // address = base + index * ElementSizeInChars.
1682 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1683 llvm::Value *CurrentOffset =
1684 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
1685 llvm::Value *ScratchPadElemAbsolutePtrVal =
1686 Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset);
1687 ScratchPadElemAbsolutePtrVal =
1688 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1689 SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty,
1690 C.getTypeAlignInChars(Private->getType()));
1691 IncrScratchpadSrc = true;
1693 // Step 1.2: Create a temporary to store the element in the destination
1694 // Reduce list.
1695 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1696 DestElementAddr =
1697 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1698 UpdateDestListPtr = true;
1699 break;
1703 // Regardless of src and dest of copy, we emit the load of src
1704 // element as this is required in all directions
1705 SrcElementAddr = SrcElementAddr.withElementType(
1706 CGF.ConvertTypeForMem(Private->getType()));
1707 DestElementAddr =
1708 DestElementAddr.withElementType(SrcElementAddr.getElementType());
1710 // Now that all active lanes have read the element in the
1711 // Reduce list, shuffle over the value from the remote lane.
1712 if (ShuffleInElement) {
1713 shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(),
1714 RemoteLaneOffset, Private->getExprLoc());
1715 } else {
1716 switch (CGF.getEvaluationKind(Private->getType())) {
1717 case TEK_Scalar: {
1718 llvm::Value *Elem = CGF.EmitLoadOfScalar(
1719 SrcElementAddr, /*Volatile=*/false, Private->getType(),
1720 Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type),
1721 TBAAAccessInfo());
1722 // Store the source element value to the dest element address.
1723 CGF.EmitStoreOfScalar(
1724 Elem, DestElementAddr, /*Volatile=*/false, Private->getType(),
1725 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
1726 break;
1728 case TEK_Complex: {
1729 CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex(
1730 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
1731 Private->getExprLoc());
1732 CGF.EmitStoreOfComplex(
1733 Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
1734 /*isInit=*/false);
1735 break;
1737 case TEK_Aggregate:
1738 CGF.EmitAggregateCopy(
1739 CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
1740 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
1741 Private->getType(), AggValueSlot::DoesNotOverlap);
1742 break;
1746 // Step 3.1: Modify reference in dest Reduce list as needed.
1747 // Modifying the reference in Reduce list to point to the newly
1748 // created element. The element is live in the current function
1749 // scope and that of functions it invokes (i.e., reduce_function).
1750 // RemoteReduceData[i] = (void*)&RemoteElem
1751 if (UpdateDestListPtr) {
1752 CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
1753 DestElementAddr.getPointer(), CGF.VoidPtrTy),
1754 DestElementPtrAddr, /*Volatile=*/false,
1755 C.VoidPtrTy);
1758 // Step 4.1: Increment SrcBase/DestBase so that it points to the starting
1759 // address of the next element in scratchpad memory, unless we're currently
1760 // processing the last one. Memory alignment is also taken care of here.
1761 if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
1762 // FIXME: This code doesn't make any sense, it's trying to perform
1763 // integer arithmetic on pointers.
1764 llvm::Value *ScratchpadBasePtr =
1765 IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
1766 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1767 ScratchpadBasePtr = Bld.CreateNUWAdd(
1768 ScratchpadBasePtr,
1769 Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars));
1771 // Take care of global memory alignment for performance
1772 ScratchpadBasePtr = Bld.CreateNUWSub(
1773 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
1774 ScratchpadBasePtr = Bld.CreateUDiv(
1775 ScratchpadBasePtr,
1776 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
1777 ScratchpadBasePtr = Bld.CreateNUWAdd(
1778 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
1779 ScratchpadBasePtr = Bld.CreateNUWMul(
1780 ScratchpadBasePtr,
1781 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
1783 if (IncrScratchpadDest)
1784 DestBase =
1785 Address(ScratchpadBasePtr, CGF.VoidPtrTy, CGF.getPointerAlign());
1786 else /* IncrScratchpadSrc = true */
1787 SrcBase =
1788 Address(ScratchpadBasePtr, CGF.VoidPtrTy, CGF.getPointerAlign());
1791 ++Idx;
1795 /// This function emits a helper that gathers Reduce lists from the first
1796 /// lane of every active warp to lanes in the first warp.
1798 /// void inter_warp_copy_func(void* reduce_data, num_warps)
1799 /// shared smem[warp_size];
1800 /// For all data entries D in reduce_data:
1801 /// sync
1802 /// If (I am the first lane in each warp)
1803 /// Copy my local D to smem[warp_id]
1804 /// sync
1805 /// if (I am the first warp)
1806 /// Copy smem[thread_id] to my local D
1807 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
1808 ArrayRef<const Expr *> Privates,
1809 QualType ReductionArrayTy,
1810 SourceLocation Loc) {
1811 ASTContext &C = CGM.getContext();
1812 llvm::Module &M = CGM.getModule();
1814 // ReduceList: thread local Reduce list.
1815 // At the stage of the computation when this function is called, partially
1816 // aggregated values reside in the first lane of every active warp.
1817 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
1818 C.VoidPtrTy, ImplicitParamDecl::Other);
1819 // NumWarps: number of warps active in the parallel region. This could
1820 // be smaller than 32 (max warps in a CTA) for partial block reduction.
1821 ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
1822 C.getIntTypeForBitwidth(32, /* Signed */ true),
1823 ImplicitParamDecl::Other);
1824 FunctionArgList Args;
1825 Args.push_back(&ReduceListArg);
1826 Args.push_back(&NumWarpsArg);
1828 const CGFunctionInfo &CGFI =
1829 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
1830 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
1831 llvm::GlobalValue::InternalLinkage,
1832 "_omp_reduction_inter_warp_copy_func", &M);
1833 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
1834 Fn->setDoesNotRecurse();
1835 CodeGenFunction CGF(CGM);
1836 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
1838 CGBuilderTy &Bld = CGF.Builder;
1840 // This array is used as a medium to transfer, one reduce element at a time,
1841 // the data from the first lane of every warp to lanes in the first warp
1842 // in order to perform the final step of a reduction in a parallel region
1843 // (reduction across warps). The array is placed in NVPTX __shared__ memory
1844 // for reduced latency, as well as to have a distinct copy for concurrently
1845 // executing target regions. The array is declared with common linkage so
1846 // as to be shared across compilation units.
1847 StringRef TransferMediumName =
1848 "__openmp_nvptx_data_transfer_temporary_storage";
1849 llvm::GlobalVariable *TransferMedium =
1850 M.getGlobalVariable(TransferMediumName);
1851 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
1852 if (!TransferMedium) {
1853 auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize);
1854 unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
1855 TransferMedium = new llvm::GlobalVariable(
1856 M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage,
1857 llvm::UndefValue::get(Ty), TransferMediumName,
1858 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
1859 SharedAddressSpace);
1860 CGM.addCompilerUsedGlobal(TransferMedium);
1863 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1864 // Get the CUDA thread id of the current OpenMP thread on the GPU.
1865 llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
1866 // nvptx_lane_id = nvptx_id % warpsize
1867 llvm::Value *LaneID = getNVPTXLaneID(CGF);
1868 // nvptx_warp_id = nvptx_id / warpsize
1869 llvm::Value *WarpID = getNVPTXWarpID(CGF);
1871 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
1872 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
1873 Address LocalReduceList(
1874 Bld.CreatePointerBitCastOrAddrSpaceCast(
1875 CGF.EmitLoadOfScalar(
1876 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc,
1877 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()),
1878 ElemTy->getPointerTo()),
1879 ElemTy, CGF.getPointerAlign());
1881 unsigned Idx = 0;
1882 for (const Expr *Private : Privates) {
1884 // Warp master copies reduce element to transfer medium in __shared__
1885 // memory.
1887 unsigned RealTySize =
1888 C.getTypeSizeInChars(Private->getType())
1889 .alignTo(C.getTypeAlignInChars(Private->getType()))
1890 .getQuantity();
1891 for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) {
1892 unsigned NumIters = RealTySize / TySize;
1893 if (NumIters == 0)
1894 continue;
1895 QualType CType = C.getIntTypeForBitwidth(
1896 C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1);
1897 llvm::Type *CopyType = CGF.ConvertTypeForMem(CType);
1898 CharUnits Align = CharUnits::fromQuantity(TySize);
1899 llvm::Value *Cnt = nullptr;
1900 Address CntAddr = Address::invalid();
1901 llvm::BasicBlock *PrecondBB = nullptr;
1902 llvm::BasicBlock *ExitBB = nullptr;
1903 if (NumIters > 1) {
1904 CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr");
1905 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr,
1906 /*Volatile=*/false, C.IntTy);
1907 PrecondBB = CGF.createBasicBlock("precond");
1908 ExitBB = CGF.createBasicBlock("exit");
1909 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body");
1910 // There is no need to emit line number for unconditional branch.
1911 (void)ApplyDebugLocation::CreateEmpty(CGF);
1912 CGF.EmitBlock(PrecondBB);
1913 Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc);
1914 llvm::Value *Cmp =
1915 Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters));
1916 Bld.CreateCondBr(Cmp, BodyBB, ExitBB);
1917 CGF.EmitBlock(BodyBB);
1919 // kmpc_barrier.
1920 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
1921 /*EmitChecks=*/false,
1922 /*ForceSimpleCall=*/true);
1923 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
1924 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
1925 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
1927 // if (lane_id == 0)
1928 llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master");
1929 Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
1930 CGF.EmitBlock(ThenBB);
1932 // Reduce element = LocalReduceList[i]
1933 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
1934 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
1935 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
1936 // elemptr = ((CopyType*)(elemptrptr)) + I
1937 Address ElemPtr(ElemPtrPtr, CopyType, Align);
1938 if (NumIters > 1)
1939 ElemPtr = Bld.CreateGEP(ElemPtr, Cnt);
1941 // Get pointer to location in transfer medium.
1942 // MediumPtr = &medium[warp_id]
1943 llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
1944 TransferMedium->getValueType(), TransferMedium,
1945 {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
1946 // Casting to actual data type.
1947 // MediumPtr = (CopyType*)MediumPtrAddr;
1948 Address MediumPtr(
1949 Bld.CreateBitCast(
1950 MediumPtrVal,
1951 CopyType->getPointerTo(
1952 MediumPtrVal->getType()->getPointerAddressSpace())),
1953 CopyType, Align);
1955 // elem = *elemptr
1956 //*MediumPtr = elem
1957 llvm::Value *Elem = CGF.EmitLoadOfScalar(
1958 ElemPtr, /*Volatile=*/false, CType, Loc,
1959 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
1960 // Store the source element value to the dest element address.
1961 CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType,
1962 LValueBaseInfo(AlignmentSource::Type),
1963 TBAAAccessInfo());
1965 Bld.CreateBr(MergeBB);
1967 CGF.EmitBlock(ElseBB);
1968 Bld.CreateBr(MergeBB);
1970 CGF.EmitBlock(MergeBB);
1972 // kmpc_barrier.
1973 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
1974 /*EmitChecks=*/false,
1975 /*ForceSimpleCall=*/true);
1978 // Warp 0 copies reduce element from transfer medium.
1980 llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
1981 llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
1982 llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
1984 Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
1985 llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
1986 AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc);
1988 // Up to 32 threads in warp 0 are active.
1989 llvm::Value *IsActiveThread =
1990 Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
1991 Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
1993 CGF.EmitBlock(W0ThenBB);
1995 // SrcMediumPtr = &medium[tid]
1996 llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
1997 TransferMedium->getValueType(), TransferMedium,
1998 {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
1999 // SrcMediumVal = *SrcMediumPtr;
2000 Address SrcMediumPtr(
2001 Bld.CreateBitCast(
2002 SrcMediumPtrVal,
2003 CopyType->getPointerTo(
2004 SrcMediumPtrVal->getType()->getPointerAddressSpace())),
2005 CopyType, Align);
2007 // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
2008 Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2009 llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
2010 TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc);
2011 Address TargetElemPtr(TargetElemPtrVal, CopyType, Align);
2012 if (NumIters > 1)
2013 TargetElemPtr = Bld.CreateGEP(TargetElemPtr, Cnt);
2015 // *TargetElemPtr = SrcMediumVal;
2016 llvm::Value *SrcMediumValue =
2017 CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc);
2018 CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
2019 CType);
2020 Bld.CreateBr(W0MergeBB);
2022 CGF.EmitBlock(W0ElseBB);
2023 Bld.CreateBr(W0MergeBB);
2025 CGF.EmitBlock(W0MergeBB);
2027 if (NumIters > 1) {
2028 Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1));
2029 CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy);
2030 CGF.EmitBranch(PrecondBB);
2031 (void)ApplyDebugLocation::CreateEmpty(CGF);
2032 CGF.EmitBlock(ExitBB);
2034 RealTySize %= TySize;
2036 ++Idx;
2039 CGF.FinishFunction();
2040 return Fn;
2043 /// Emit a helper that reduces data across two OpenMP threads (lanes)
2044 /// in the same warp. It uses shuffle instructions to copy over data from
2045 /// a remote lane's stack. The reduction algorithm performed is specified
2046 /// by the fourth parameter.
2048 /// Algorithm Versions.
2049 /// Full Warp Reduce (argument value 0):
2050 /// This algorithm assumes that all 32 lanes are active and gathers
2051 /// data from these 32 lanes, producing a single resultant value.
2052 /// Contiguous Partial Warp Reduce (argument value 1):
2053 /// This algorithm assumes that only a *contiguous* subset of lanes
2054 /// are active. This happens for the last warp in a parallel region
2055 /// when the user specified num_threads is not an integer multiple of
2056 /// 32. This contiguous subset always starts with the zeroth lane.
2057 /// Partial Warp Reduce (argument value 2):
2058 /// This algorithm gathers data from any number of lanes at any position.
2059 /// All reduced values are stored in the lowest possible lane. The set
2060 /// of problems every algorithm addresses is a super set of those
2061 /// addressable by algorithms with a lower version number. Overhead
2062 /// increases as algorithm version increases.
2064 /// Terminology
2065 /// Reduce element:
2066 /// Reduce element refers to the individual data field with primitive
2067 /// data types to be combined and reduced across threads.
2068 /// Reduce list:
2069 /// Reduce list refers to a collection of local, thread-private
2070 /// reduce elements.
2071 /// Remote Reduce list:
2072 /// Remote Reduce list refers to a collection of remote (relative to
2073 /// the current thread) reduce elements.
2075 /// We distinguish between three states of threads that are important to
2076 /// the implementation of this function.
2077 /// Alive threads:
2078 /// Threads in a warp executing the SIMT instruction, as distinguished from
2079 /// threads that are inactive due to divergent control flow.
2080 /// Active threads:
2081 /// The minimal set of threads that has to be alive upon entry to this
2082 /// function. The computation is correct iff active threads are alive.
2083 /// Some threads are alive but they are not active because they do not
2084 /// contribute to the computation in any useful manner. Turning them off
2085 /// may introduce control flow overheads without any tangible benefits.
2086 /// Effective threads:
2087 /// In order to comply with the argument requirements of the shuffle
2088 /// function, we must keep all lanes holding data alive. But at most
2089 /// half of them perform value aggregation; we refer to this half of
2090 /// threads as effective. The other half is simply handing off their
2091 /// data.
2093 /// Procedure
2094 /// Value shuffle:
2095 /// In this step active threads transfer data from higher lane positions
2096 /// in the warp to lower lane positions, creating Remote Reduce list.
2097 /// Value aggregation:
2098 /// In this step, effective threads combine their thread local Reduce list
2099 /// with Remote Reduce list and store the result in the thread local
2100 /// Reduce list.
2101 /// Value copy:
2102 /// In this step, we deal with the assumption made by algorithm 2
2103 /// (i.e. contiguity assumption). When we have an odd number of lanes
2104 /// active, say 2k+1, only k threads will be effective and therefore k
2105 /// new values will be produced. However, the Reduce list owned by the
2106 /// (2k+1)th thread is ignored in the value aggregation. Therefore
2107 /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
2108 /// that the contiguity assumption still holds.
2109 static llvm::Function *emitShuffleAndReduceFunction(
2110 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2111 QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) {
2112 ASTContext &C = CGM.getContext();
2114 // Thread local Reduce list used to host the values of data to be reduced.
2115 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2116 C.VoidPtrTy, ImplicitParamDecl::Other);
2117 // Current lane id; could be logical.
2118 ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
2119 ImplicitParamDecl::Other);
2120 // Offset of the remote source lane relative to the current lane.
2121 ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2122 C.ShortTy, ImplicitParamDecl::Other);
2123 // Algorithm version. This is expected to be known at compile time.
2124 ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2125 C.ShortTy, ImplicitParamDecl::Other);
2126 FunctionArgList Args;
2127 Args.push_back(&ReduceListArg);
2128 Args.push_back(&LaneIDArg);
2129 Args.push_back(&RemoteLaneOffsetArg);
2130 Args.push_back(&AlgoVerArg);
2132 const CGFunctionInfo &CGFI =
2133 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2134 auto *Fn = llvm::Function::Create(
2135 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2136 "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
2137 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2138 Fn->setDoesNotRecurse();
2140 CodeGenFunction CGF(CGM);
2141 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2143 CGBuilderTy &Bld = CGF.Builder;
2145 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2146 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2147 Address LocalReduceList(
2148 Bld.CreatePointerBitCastOrAddrSpaceCast(
2149 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2150 C.VoidPtrTy, SourceLocation()),
2151 ElemTy->getPointerTo()),
2152 ElemTy, CGF.getPointerAlign());
2154 Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
2155 llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
2156 AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2158 Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
2159 llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
2160 AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2162 Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
2163 llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
2164 AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2166 // Create a local thread-private variable to host the Reduce list
2167 // from a remote lane.
2168 Address RemoteReduceList =
2169 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
2171 // This loop iterates through the list of reduce elements and copies,
2172 // element by element, from a remote lane in the warp to RemoteReduceList,
2173 // hosted on the thread's stack.
2174 emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
2175 LocalReduceList, RemoteReduceList,
2176 {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
2177 /*ScratchpadIndex=*/nullptr,
2178 /*ScratchpadWidth=*/nullptr});
2180 // The actions to be performed on the Remote Reduce list is dependent
2181 // on the algorithm version.
2183 // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
2184 // LaneId % 2 == 0 && Offset > 0):
2185 // do the reduction value aggregation
2187 // The thread local variable Reduce list is mutated in place to host the
2188 // reduced data, which is the aggregated value produced from local and
2189 // remote lanes.
2191 // Note that AlgoVer is expected to be a constant integer known at compile
2192 // time.
2193 // When AlgoVer==0, the first conjunction evaluates to true, making
2194 // the entire predicate true during compile time.
2195 // When AlgoVer==1, the second conjunction has only the second part to be
2196 // evaluated during runtime. Other conjunctions evaluates to false
2197 // during compile time.
2198 // When AlgoVer==2, the third conjunction has only the second part to be
2199 // evaluated during runtime. Other conjunctions evaluates to false
2200 // during compile time.
2201 llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal);
2203 llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2204 llvm::Value *CondAlgo1 = Bld.CreateAnd(
2205 Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
2207 llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
2208 llvm::Value *CondAlgo2 = Bld.CreateAnd(
2209 Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1))));
2210 CondAlgo2 = Bld.CreateAnd(
2211 CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
2213 llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
2214 CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
2216 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2217 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2218 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2219 Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
2221 CGF.EmitBlock(ThenBB);
2222 // reduce_function(LocalReduceList, RemoteReduceList)
2223 llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2224 LocalReduceList.getPointer(), CGF.VoidPtrTy);
2225 llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2226 RemoteReduceList.getPointer(), CGF.VoidPtrTy);
2227 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2228 CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
2229 Bld.CreateBr(MergeBB);
2231 CGF.EmitBlock(ElseBB);
2232 Bld.CreateBr(MergeBB);
2234 CGF.EmitBlock(MergeBB);
2236 // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
2237 // Reduce list.
2238 Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2239 llvm::Value *CondCopy = Bld.CreateAnd(
2240 Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
2242 llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
2243 llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
2244 llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
2245 Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
2247 CGF.EmitBlock(CpyThenBB);
2248 emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
2249 RemoteReduceList, LocalReduceList);
2250 Bld.CreateBr(CpyMergeBB);
2252 CGF.EmitBlock(CpyElseBB);
2253 Bld.CreateBr(CpyMergeBB);
2255 CGF.EmitBlock(CpyMergeBB);
2257 CGF.FinishFunction();
2258 return Fn;
2261 /// This function emits a helper that copies all the reduction variables from
2262 /// the team into the provided global buffer for the reduction variables.
2264 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2265 /// For all data entries D in reduce_data:
2266 /// Copy local D to buffer.D[Idx]
2267 static llvm::Value *emitListToGlobalCopyFunction(
2268 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2269 QualType ReductionArrayTy, SourceLocation Loc,
2270 const RecordDecl *TeamReductionRec,
2271 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2272 &VarFieldMap) {
2273 ASTContext &C = CGM.getContext();
2275 // Buffer: global reduction buffer.
2276 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2277 C.VoidPtrTy, ImplicitParamDecl::Other);
2278 // Idx: index of the buffer.
2279 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2280 ImplicitParamDecl::Other);
2281 // ReduceList: thread local Reduce list.
2282 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2283 C.VoidPtrTy, ImplicitParamDecl::Other);
2284 FunctionArgList Args;
2285 Args.push_back(&BufferArg);
2286 Args.push_back(&IdxArg);
2287 Args.push_back(&ReduceListArg);
2289 const CGFunctionInfo &CGFI =
2290 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2291 auto *Fn = llvm::Function::Create(
2292 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2293 "_omp_reduction_list_to_global_copy_func", &CGM.getModule());
2294 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2295 Fn->setDoesNotRecurse();
2296 CodeGenFunction CGF(CGM);
2297 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2299 CGBuilderTy &Bld = CGF.Builder;
2301 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2302 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2303 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2304 Address LocalReduceList(
2305 Bld.CreatePointerBitCastOrAddrSpaceCast(
2306 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2307 C.VoidPtrTy, Loc),
2308 ElemTy->getPointerTo()),
2309 ElemTy, CGF.getPointerAlign());
2310 QualType StaticTy = C.getRecordType(TeamReductionRec);
2311 llvm::Type *LLVMReductionsBufferTy =
2312 CGM.getTypes().ConvertTypeForMem(StaticTy);
2313 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2314 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2315 LLVMReductionsBufferTy->getPointerTo());
2316 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2317 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2318 /*Volatile=*/false, C.IntTy,
2319 Loc)};
2320 unsigned Idx = 0;
2321 for (const Expr *Private : Privates) {
2322 // Reduce element = LocalReduceList[i]
2323 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2324 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2325 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2326 // elemptr = ((CopyType*)(elemptrptr)) + I
2327 ElemTy = CGF.ConvertTypeForMem(Private->getType());
2328 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2329 ElemPtrPtr, ElemTy->getPointerTo());
2330 Address ElemPtr =
2331 Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType()));
2332 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2333 // Global = Buffer.VD[Idx];
2334 const FieldDecl *FD = VarFieldMap.lookup(VD);
2335 LValue GlobLVal = CGF.EmitLValueForField(
2336 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2337 Address GlobAddr = GlobLVal.getAddress(CGF);
2338 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(GlobAddr.getElementType(),
2339 GlobAddr.getPointer(), Idxs);
2340 GlobLVal.setAddress(Address(BufferPtr,
2341 CGF.ConvertTypeForMem(Private->getType()),
2342 GlobAddr.getAlignment()));
2343 switch (CGF.getEvaluationKind(Private->getType())) {
2344 case TEK_Scalar: {
2345 llvm::Value *V = CGF.EmitLoadOfScalar(
2346 ElemPtr, /*Volatile=*/false, Private->getType(), Loc,
2347 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2348 CGF.EmitStoreOfScalar(V, GlobLVal);
2349 break;
2351 case TEK_Complex: {
2352 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(
2353 CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc);
2354 CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false);
2355 break;
2357 case TEK_Aggregate:
2358 CGF.EmitAggregateCopy(GlobLVal,
2359 CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2360 Private->getType(), AggValueSlot::DoesNotOverlap);
2361 break;
2363 ++Idx;
2366 CGF.FinishFunction();
2367 return Fn;
2370 /// This function emits a helper that reduces all the reduction variables from
2371 /// the team into the provided global buffer for the reduction variables.
2373 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data)
2374 /// void *GlobPtrs[];
2375 /// GlobPtrs[0] = (void*)&buffer.D0[Idx];
2376 /// ...
2377 /// GlobPtrs[N] = (void*)&buffer.DN[Idx];
2378 /// reduce_function(GlobPtrs, reduce_data);
2379 static llvm::Value *emitListToGlobalReduceFunction(
2380 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2381 QualType ReductionArrayTy, SourceLocation Loc,
2382 const RecordDecl *TeamReductionRec,
2383 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2384 &VarFieldMap,
2385 llvm::Function *ReduceFn) {
2386 ASTContext &C = CGM.getContext();
2388 // Buffer: global reduction buffer.
2389 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2390 C.VoidPtrTy, ImplicitParamDecl::Other);
2391 // Idx: index of the buffer.
2392 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2393 ImplicitParamDecl::Other);
2394 // ReduceList: thread local Reduce list.
2395 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2396 C.VoidPtrTy, ImplicitParamDecl::Other);
2397 FunctionArgList Args;
2398 Args.push_back(&BufferArg);
2399 Args.push_back(&IdxArg);
2400 Args.push_back(&ReduceListArg);
2402 const CGFunctionInfo &CGFI =
2403 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2404 auto *Fn = llvm::Function::Create(
2405 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2406 "_omp_reduction_list_to_global_reduce_func", &CGM.getModule());
2407 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2408 Fn->setDoesNotRecurse();
2409 CodeGenFunction CGF(CGM);
2410 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2412 CGBuilderTy &Bld = CGF.Builder;
2414 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2415 QualType StaticTy = C.getRecordType(TeamReductionRec);
2416 llvm::Type *LLVMReductionsBufferTy =
2417 CGM.getTypes().ConvertTypeForMem(StaticTy);
2418 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2419 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2420 LLVMReductionsBufferTy->getPointerTo());
2422 // 1. Build a list of reduction variables.
2423 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2424 Address ReductionList =
2425 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2426 auto IPriv = Privates.begin();
2427 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2428 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2429 /*Volatile=*/false, C.IntTy,
2430 Loc)};
2431 unsigned Idx = 0;
2432 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2433 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2434 // Global = Buffer.VD[Idx];
2435 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2436 const FieldDecl *FD = VarFieldMap.lookup(VD);
2437 LValue GlobLVal = CGF.EmitLValueForField(
2438 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2439 Address GlobAddr = GlobLVal.getAddress(CGF);
2440 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2441 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2442 CGF.EmitStoreOfScalar(BufferPtr, Elem, /*Volatile=*/false, C.VoidPtrTy);
2443 if ((*IPriv)->getType()->isVariablyModifiedType()) {
2444 // Store array size.
2445 ++Idx;
2446 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2447 llvm::Value *Size = CGF.Builder.CreateIntCast(
2448 CGF.getVLASize(
2449 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2450 .NumElts,
2451 CGF.SizeTy, /*isSigned=*/false);
2452 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2453 Elem);
2457 // Call reduce_function(GlobalReduceList, ReduceList)
2458 llvm::Value *GlobalReduceList = ReductionList.getPointer();
2459 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2460 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2461 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2462 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2463 CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr});
2464 CGF.FinishFunction();
2465 return Fn;
2468 /// This function emits a helper that copies all the reduction variables from
2469 /// the team into the provided global buffer for the reduction variables.
2471 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2472 /// For all data entries D in reduce_data:
2473 /// Copy buffer.D[Idx] to local D;
2474 static llvm::Value *emitGlobalToListCopyFunction(
2475 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2476 QualType ReductionArrayTy, SourceLocation Loc,
2477 const RecordDecl *TeamReductionRec,
2478 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2479 &VarFieldMap) {
2480 ASTContext &C = CGM.getContext();
2482 // Buffer: global reduction buffer.
2483 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2484 C.VoidPtrTy, ImplicitParamDecl::Other);
2485 // Idx: index of the buffer.
2486 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2487 ImplicitParamDecl::Other);
2488 // ReduceList: thread local Reduce list.
2489 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2490 C.VoidPtrTy, ImplicitParamDecl::Other);
2491 FunctionArgList Args;
2492 Args.push_back(&BufferArg);
2493 Args.push_back(&IdxArg);
2494 Args.push_back(&ReduceListArg);
2496 const CGFunctionInfo &CGFI =
2497 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2498 auto *Fn = llvm::Function::Create(
2499 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2500 "_omp_reduction_global_to_list_copy_func", &CGM.getModule());
2501 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2502 Fn->setDoesNotRecurse();
2503 CodeGenFunction CGF(CGM);
2504 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2506 CGBuilderTy &Bld = CGF.Builder;
2508 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2509 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2510 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2511 Address LocalReduceList(
2512 Bld.CreatePointerBitCastOrAddrSpaceCast(
2513 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2514 C.VoidPtrTy, Loc),
2515 ElemTy->getPointerTo()),
2516 ElemTy, CGF.getPointerAlign());
2517 QualType StaticTy = C.getRecordType(TeamReductionRec);
2518 llvm::Type *LLVMReductionsBufferTy =
2519 CGM.getTypes().ConvertTypeForMem(StaticTy);
2520 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2521 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2522 LLVMReductionsBufferTy->getPointerTo());
2524 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2525 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2526 /*Volatile=*/false, C.IntTy,
2527 Loc)};
2528 unsigned Idx = 0;
2529 for (const Expr *Private : Privates) {
2530 // Reduce element = LocalReduceList[i]
2531 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2532 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2533 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2534 // elemptr = ((CopyType*)(elemptrptr)) + I
2535 ElemTy = CGF.ConvertTypeForMem(Private->getType());
2536 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2537 ElemPtrPtr, ElemTy->getPointerTo());
2538 Address ElemPtr =
2539 Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType()));
2540 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2541 // Global = Buffer.VD[Idx];
2542 const FieldDecl *FD = VarFieldMap.lookup(VD);
2543 LValue GlobLVal = CGF.EmitLValueForField(
2544 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2545 Address GlobAddr = GlobLVal.getAddress(CGF);
2546 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(GlobAddr.getElementType(),
2547 GlobAddr.getPointer(), Idxs);
2548 GlobLVal.setAddress(Address(BufferPtr,
2549 CGF.ConvertTypeForMem(Private->getType()),
2550 GlobAddr.getAlignment()));
2551 switch (CGF.getEvaluationKind(Private->getType())) {
2552 case TEK_Scalar: {
2553 llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc);
2554 CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(),
2555 LValueBaseInfo(AlignmentSource::Type),
2556 TBAAAccessInfo());
2557 break;
2559 case TEK_Complex: {
2560 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc);
2561 CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2562 /*isInit=*/false);
2563 break;
2565 case TEK_Aggregate:
2566 CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2567 GlobLVal, Private->getType(),
2568 AggValueSlot::DoesNotOverlap);
2569 break;
2571 ++Idx;
2574 CGF.FinishFunction();
2575 return Fn;
2578 /// This function emits a helper that reduces all the reduction variables from
2579 /// the team into the provided global buffer for the reduction variables.
2581 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data)
2582 /// void *GlobPtrs[];
2583 /// GlobPtrs[0] = (void*)&buffer.D0[Idx];
2584 /// ...
2585 /// GlobPtrs[N] = (void*)&buffer.DN[Idx];
2586 /// reduce_function(reduce_data, GlobPtrs);
2587 static llvm::Value *emitGlobalToListReduceFunction(
2588 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2589 QualType ReductionArrayTy, SourceLocation Loc,
2590 const RecordDecl *TeamReductionRec,
2591 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2592 &VarFieldMap,
2593 llvm::Function *ReduceFn) {
2594 ASTContext &C = CGM.getContext();
2596 // Buffer: global reduction buffer.
2597 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2598 C.VoidPtrTy, ImplicitParamDecl::Other);
2599 // Idx: index of the buffer.
2600 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2601 ImplicitParamDecl::Other);
2602 // ReduceList: thread local Reduce list.
2603 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2604 C.VoidPtrTy, ImplicitParamDecl::Other);
2605 FunctionArgList Args;
2606 Args.push_back(&BufferArg);
2607 Args.push_back(&IdxArg);
2608 Args.push_back(&ReduceListArg);
2610 const CGFunctionInfo &CGFI =
2611 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2612 auto *Fn = llvm::Function::Create(
2613 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2614 "_omp_reduction_global_to_list_reduce_func", &CGM.getModule());
2615 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2616 Fn->setDoesNotRecurse();
2617 CodeGenFunction CGF(CGM);
2618 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2620 CGBuilderTy &Bld = CGF.Builder;
2622 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2623 QualType StaticTy = C.getRecordType(TeamReductionRec);
2624 llvm::Type *LLVMReductionsBufferTy =
2625 CGM.getTypes().ConvertTypeForMem(StaticTy);
2626 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2627 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2628 LLVMReductionsBufferTy->getPointerTo());
2630 // 1. Build a list of reduction variables.
2631 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2632 Address ReductionList =
2633 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2634 auto IPriv = Privates.begin();
2635 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2636 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2637 /*Volatile=*/false, C.IntTy,
2638 Loc)};
2639 unsigned Idx = 0;
2640 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2641 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2642 // Global = Buffer.VD[Idx];
2643 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2644 const FieldDecl *FD = VarFieldMap.lookup(VD);
2645 LValue GlobLVal = CGF.EmitLValueForField(
2646 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2647 Address GlobAddr = GlobLVal.getAddress(CGF);
2648 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2649 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2650 CGF.EmitStoreOfScalar(BufferPtr, Elem, /*Volatile=*/false, C.VoidPtrTy);
2651 if ((*IPriv)->getType()->isVariablyModifiedType()) {
2652 // Store array size.
2653 ++Idx;
2654 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2655 llvm::Value *Size = CGF.Builder.CreateIntCast(
2656 CGF.getVLASize(
2657 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2658 .NumElts,
2659 CGF.SizeTy, /*isSigned=*/false);
2660 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2661 Elem);
2665 // Call reduce_function(ReduceList, GlobalReduceList)
2666 llvm::Value *GlobalReduceList = ReductionList.getPointer();
2667 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2668 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2669 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2670 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2671 CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList});
2672 CGF.FinishFunction();
2673 return Fn;
2677 /// Design of OpenMP reductions on the GPU
2679 /// Consider a typical OpenMP program with one or more reduction
2680 /// clauses:
2682 /// float foo;
2683 /// double bar;
2684 /// #pragma omp target teams distribute parallel for \
2685 /// reduction(+:foo) reduction(*:bar)
2686 /// for (int i = 0; i < N; i++) {
2687 /// foo += A[i]; bar *= B[i];
2688 /// }
2690 /// where 'foo' and 'bar' are reduced across all OpenMP threads in
2691 /// all teams. In our OpenMP implementation on the NVPTX device an
2692 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
2693 /// within a team are mapped to CUDA threads within a threadblock.
2694 /// Our goal is to efficiently aggregate values across all OpenMP
2695 /// threads such that:
2697 /// - the compiler and runtime are logically concise, and
2698 /// - the reduction is performed efficiently in a hierarchical
2699 /// manner as follows: within OpenMP threads in the same warp,
2700 /// across warps in a threadblock, and finally across teams on
2701 /// the NVPTX device.
2703 /// Introduction to Decoupling
2705 /// We would like to decouple the compiler and the runtime so that the
2706 /// latter is ignorant of the reduction variables (number, data types)
2707 /// and the reduction operators. This allows a simpler interface
2708 /// and implementation while still attaining good performance.
2710 /// Pseudocode for the aforementioned OpenMP program generated by the
2711 /// compiler is as follows:
2713 /// 1. Create private copies of reduction variables on each OpenMP
2714 /// thread: 'foo_private', 'bar_private'
2715 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
2716 /// to it and writes the result in 'foo_private' and 'bar_private'
2717 /// respectively.
2718 /// 3. Call the OpenMP runtime on the GPU to reduce within a team
2719 /// and store the result on the team master:
2721 /// __kmpc_nvptx_parallel_reduce_nowait_v2(...,
2722 /// reduceData, shuffleReduceFn, interWarpCpyFn)
2724 /// where:
2725 /// struct ReduceData {
2726 /// double *foo;
2727 /// double *bar;
2728 /// } reduceData
2729 /// reduceData.foo = &foo_private
2730 /// reduceData.bar = &bar_private
2732 /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
2733 /// auxiliary functions generated by the compiler that operate on
2734 /// variables of type 'ReduceData'. They aid the runtime perform
2735 /// algorithmic steps in a data agnostic manner.
2737 /// 'shuffleReduceFn' is a pointer to a function that reduces data
2738 /// of type 'ReduceData' across two OpenMP threads (lanes) in the
2739 /// same warp. It takes the following arguments as input:
2741 /// a. variable of type 'ReduceData' on the calling lane,
2742 /// b. its lane_id,
2743 /// c. an offset relative to the current lane_id to generate a
2744 /// remote_lane_id. The remote lane contains the second
2745 /// variable of type 'ReduceData' that is to be reduced.
2746 /// d. an algorithm version parameter determining which reduction
2747 /// algorithm to use.
2749 /// 'shuffleReduceFn' retrieves data from the remote lane using
2750 /// efficient GPU shuffle intrinsics and reduces, using the
2751 /// algorithm specified by the 4th parameter, the two operands
2752 /// element-wise. The result is written to the first operand.
2754 /// Different reduction algorithms are implemented in different
2755 /// runtime functions, all calling 'shuffleReduceFn' to perform
2756 /// the essential reduction step. Therefore, based on the 4th
2757 /// parameter, this function behaves slightly differently to
2758 /// cooperate with the runtime to ensure correctness under
2759 /// different circumstances.
2761 /// 'InterWarpCpyFn' is a pointer to a function that transfers
2762 /// reduced variables across warps. It tunnels, through CUDA
2763 /// shared memory, the thread-private data of type 'ReduceData'
2764 /// from lane 0 of each warp to a lane in the first warp.
2765 /// 4. Call the OpenMP runtime on the GPU to reduce across teams.
2766 /// The last team writes the global reduced value to memory.
2768 /// ret = __kmpc_nvptx_teams_reduce_nowait(...,
2769 /// reduceData, shuffleReduceFn, interWarpCpyFn,
2770 /// scratchpadCopyFn, loadAndReduceFn)
2772 /// 'scratchpadCopyFn' is a helper that stores reduced
2773 /// data from the team master to a scratchpad array in
2774 /// global memory.
2776 /// 'loadAndReduceFn' is a helper that loads data from
2777 /// the scratchpad array and reduces it with the input
2778 /// operand.
2780 /// These compiler generated functions hide address
2781 /// calculation and alignment information from the runtime.
2782 /// 5. if ret == 1:
2783 /// The team master of the last team stores the reduced
2784 /// result to the globals in memory.
2785 /// foo += reduceData.foo; bar *= reduceData.bar
2788 /// Warp Reduction Algorithms
2790 /// On the warp level, we have three algorithms implemented in the
2791 /// OpenMP runtime depending on the number of active lanes:
2793 /// Full Warp Reduction
2795 /// The reduce algorithm within a warp where all lanes are active
2796 /// is implemented in the runtime as follows:
2798 /// full_warp_reduce(void *reduce_data,
2799 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
2800 /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
2801 /// ShuffleReduceFn(reduce_data, 0, offset, 0);
2802 /// }
2804 /// The algorithm completes in log(2, WARPSIZE) steps.
2806 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
2807 /// not used therefore we save instructions by not retrieving lane_id
2808 /// from the corresponding special registers. The 4th parameter, which
2809 /// represents the version of the algorithm being used, is set to 0 to
2810 /// signify full warp reduction.
2812 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
2814 /// #reduce_elem refers to an element in the local lane's data structure
2815 /// #remote_elem is retrieved from a remote lane
2816 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
2817 /// reduce_elem = reduce_elem REDUCE_OP remote_elem;
2819 /// Contiguous Partial Warp Reduction
2821 /// This reduce algorithm is used within a warp where only the first
2822 /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the
2823 /// number of OpenMP threads in a parallel region is not a multiple of
2824 /// WARPSIZE. The algorithm is implemented in the runtime as follows:
2826 /// void
2827 /// contiguous_partial_reduce(void *reduce_data,
2828 /// kmp_ShuffleReductFctPtr ShuffleReduceFn,
2829 /// int size, int lane_id) {
2830 /// int curr_size;
2831 /// int offset;
2832 /// curr_size = size;
2833 /// mask = curr_size/2;
2834 /// while (offset>0) {
2835 /// ShuffleReduceFn(reduce_data, lane_id, offset, 1);
2836 /// curr_size = (curr_size+1)/2;
2837 /// offset = curr_size/2;
2838 /// }
2839 /// }
2841 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
2843 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
2844 /// if (lane_id < offset)
2845 /// reduce_elem = reduce_elem REDUCE_OP remote_elem
2846 /// else
2847 /// reduce_elem = remote_elem
2849 /// This algorithm assumes that the data to be reduced are located in a
2850 /// contiguous subset of lanes starting from the first. When there is
2851 /// an odd number of active lanes, the data in the last lane is not
2852 /// aggregated with any other lane's dat but is instead copied over.
2854 /// Dispersed Partial Warp Reduction
2856 /// This algorithm is used within a warp when any discontiguous subset of
2857 /// lanes are active. It is used to implement the reduction operation
2858 /// across lanes in an OpenMP simd region or in a nested parallel region.
2860 /// void
2861 /// dispersed_partial_reduce(void *reduce_data,
2862 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
2863 /// int size, remote_id;
2864 /// int logical_lane_id = number_of_active_lanes_before_me() * 2;
2865 /// do {
2866 /// remote_id = next_active_lane_id_right_after_me();
2867 /// # the above function returns 0 of no active lane
2868 /// # is present right after the current lane.
2869 /// size = number_of_active_lanes_in_this_warp();
2870 /// logical_lane_id /= 2;
2871 /// ShuffleReduceFn(reduce_data, logical_lane_id,
2872 /// remote_id-1-threadIdx.x, 2);
2873 /// } while (logical_lane_id % 2 == 0 && size > 1);
2874 /// }
2876 /// There is no assumption made about the initial state of the reduction.
2877 /// Any number of lanes (>=1) could be active at any position. The reduction
2878 /// result is returned in the first active lane.
2880 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
2882 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
2883 /// if (lane_id % 2 == 0 && offset > 0)
2884 /// reduce_elem = reduce_elem REDUCE_OP remote_elem
2885 /// else
2886 /// reduce_elem = remote_elem
2889 /// Intra-Team Reduction
2891 /// This function, as implemented in the runtime call
2892 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
2893 /// threads in a team. It first reduces within a warp using the
2894 /// aforementioned algorithms. We then proceed to gather all such
2895 /// reduced values at the first warp.
2897 /// The runtime makes use of the function 'InterWarpCpyFn', which copies
2898 /// data from each of the "warp master" (zeroth lane of each warp, where
2899 /// warp-reduced data is held) to the zeroth warp. This step reduces (in
2900 /// a mathematical sense) the problem of reduction across warp masters in
2901 /// a block to the problem of warp reduction.
2904 /// Inter-Team Reduction
2906 /// Once a team has reduced its data to a single value, it is stored in
2907 /// a global scratchpad array. Since each team has a distinct slot, this
2908 /// can be done without locking.
2910 /// The last team to write to the scratchpad array proceeds to reduce the
2911 /// scratchpad array. One or more workers in the last team use the helper
2912 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
2913 /// the k'th worker reduces every k'th element.
2915 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
2916 /// reduce across workers and compute a globally reduced value.
2918 void CGOpenMPRuntimeGPU::emitReduction(
2919 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
2920 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
2921 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
2922 if (!CGF.HaveInsertPoint())
2923 return;
2925 bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
2926 #ifndef NDEBUG
2927 bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
2928 #endif
2930 if (Options.SimpleReduction) {
2931 assert(!TeamsReduction && !ParallelReduction &&
2932 "Invalid reduction selection in emitReduction.");
2933 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
2934 ReductionOps, Options);
2935 return;
2938 assert((TeamsReduction || ParallelReduction) &&
2939 "Invalid reduction selection in emitReduction.");
2941 // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
2942 // RedList, shuffle_reduce_func, interwarp_copy_func);
2943 // or
2944 // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
2945 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
2946 llvm::Value *ThreadId = getThreadID(CGF, Loc);
2948 llvm::Value *Res;
2949 ASTContext &C = CGM.getContext();
2950 // 1. Build a list of reduction variables.
2951 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2952 auto Size = RHSExprs.size();
2953 for (const Expr *E : Privates) {
2954 if (E->getType()->isVariablyModifiedType())
2955 // Reserve place for array size.
2956 ++Size;
2958 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
2959 QualType ReductionArrayTy = C.getConstantArrayType(
2960 C.VoidPtrTy, ArraySize, nullptr, ArraySizeModifier::Normal,
2961 /*IndexTypeQuals=*/0);
2962 Address ReductionList =
2963 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2964 auto IPriv = Privates.begin();
2965 unsigned Idx = 0;
2966 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
2967 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2968 CGF.Builder.CreateStore(
2969 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2970 CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
2971 Elem);
2972 if ((*IPriv)->getType()->isVariablyModifiedType()) {
2973 // Store array size.
2974 ++Idx;
2975 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2976 llvm::Value *Size = CGF.Builder.CreateIntCast(
2977 CGF.getVLASize(
2978 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2979 .NumElts,
2980 CGF.SizeTy, /*isSigned=*/false);
2981 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2982 Elem);
2986 llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2987 ReductionList.getPointer(), CGF.VoidPtrTy);
2988 llvm::Function *ReductionFn = emitReductionFunction(
2989 CGF.CurFn->getName(), Loc, CGF.ConvertTypeForMem(ReductionArrayTy),
2990 Privates, LHSExprs, RHSExprs, ReductionOps);
2991 llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
2992 llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
2993 CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
2994 llvm::Value *InterWarpCopyFn =
2995 emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);
2997 if (ParallelReduction) {
2998 llvm::Value *Args[] = {RTLoc,
2999 ThreadId,
3000 CGF.Builder.getInt32(RHSExprs.size()),
3001 ReductionArrayTySize,
3003 ShuffleAndReduceFn,
3004 InterWarpCopyFn};
3006 Res = CGF.EmitRuntimeCall(
3007 OMPBuilder.getOrCreateRuntimeFunction(
3008 CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2),
3009 Args);
3010 } else {
3011 assert(TeamsReduction && "expected teams reduction.");
3012 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap;
3013 llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size());
3014 int Cnt = 0;
3015 for (const Expr *DRE : Privates) {
3016 PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl();
3017 ++Cnt;
3019 const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars(
3020 CGM.getContext(), PrivatesReductions, std::nullopt, VarFieldMap,
3021 C.getLangOpts().OpenMPCUDAReductionBufNum);
3022 TeamsReductions.push_back(TeamReductionRec);
3023 auto *KernelTeamsReductionPtr = CGF.EmitRuntimeCall(
3024 OMPBuilder.getOrCreateRuntimeFunction(
3025 CGM.getModule(), OMPRTL___kmpc_reduction_get_fixed_buffer),
3026 {}, "_openmp_teams_reductions_buffer_$_$ptr");
3027 llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction(
3028 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
3029 llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction(
3030 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
3031 ReductionFn);
3032 llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction(
3033 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
3034 llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction(
3035 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
3036 ReductionFn);
3038 llvm::Value *Args[] = {
3039 RTLoc,
3040 ThreadId,
3041 KernelTeamsReductionPtr,
3042 CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum),
3044 ShuffleAndReduceFn,
3045 InterWarpCopyFn,
3046 GlobalToBufferCpyFn,
3047 GlobalToBufferRedFn,
3048 BufferToGlobalCpyFn,
3049 BufferToGlobalRedFn};
3051 Res = CGF.EmitRuntimeCall(
3052 OMPBuilder.getOrCreateRuntimeFunction(
3053 CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2),
3054 Args);
3057 // 5. Build if (res == 1)
3058 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done");
3059 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then");
3060 llvm::Value *Cond = CGF.Builder.CreateICmpEQ(
3061 Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1));
3062 CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB);
3064 // 6. Build then branch: where we have reduced values in the master
3065 // thread in each team.
3066 // __kmpc_end_reduce{_nowait}(<gtid>);
3067 // break;
3068 CGF.EmitBlock(ThenBB);
3070 // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
3071 auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps,
3072 this](CodeGenFunction &CGF, PrePostActionTy &Action) {
3073 auto IPriv = Privates.begin();
3074 auto ILHS = LHSExprs.begin();
3075 auto IRHS = RHSExprs.begin();
3076 for (const Expr *E : ReductionOps) {
3077 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
3078 cast<DeclRefExpr>(*IRHS));
3079 ++IPriv;
3080 ++ILHS;
3081 ++IRHS;
3084 llvm::Value *EndArgs[] = {ThreadId};
3085 RegionCodeGenTy RCG(CodeGen);
3086 NVPTXActionTy Action(
3087 nullptr, std::nullopt,
3088 OMPBuilder.getOrCreateRuntimeFunction(
3089 CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait),
3090 EndArgs);
3091 RCG.setAction(Action);
3092 RCG(CGF);
3093 // There is no need to emit line number for unconditional branch.
3094 (void)ApplyDebugLocation::CreateEmpty(CGF);
3095 CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
3098 const VarDecl *
3099 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD,
3100 const VarDecl *NativeParam) const {
3101 if (!NativeParam->getType()->isReferenceType())
3102 return NativeParam;
3103 QualType ArgType = NativeParam->getType();
3104 QualifierCollector QC;
3105 const Type *NonQualTy = QC.strip(ArgType);
3106 QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3107 if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
3108 if (Attr->getCaptureKind() == OMPC_map) {
3109 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
3110 LangAS::opencl_global);
3113 ArgType = CGM.getContext().getPointerType(PointeeTy);
3114 QC.addRestrict();
3115 enum { NVPTX_local_addr = 5 };
3116 QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
3117 ArgType = QC.apply(CGM.getContext(), ArgType);
3118 if (isa<ImplicitParamDecl>(NativeParam))
3119 return ImplicitParamDecl::Create(
3120 CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
3121 NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other);
3122 return ParmVarDecl::Create(
3123 CGM.getContext(),
3124 const_cast<DeclContext *>(NativeParam->getDeclContext()),
3125 NativeParam->getBeginLoc(), NativeParam->getLocation(),
3126 NativeParam->getIdentifier(), ArgType,
3127 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
3130 Address
3131 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF,
3132 const VarDecl *NativeParam,
3133 const VarDecl *TargetParam) const {
3134 assert(NativeParam != TargetParam &&
3135 NativeParam->getType()->isReferenceType() &&
3136 "Native arg must not be the same as target arg.");
3137 Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
3138 QualType NativeParamType = NativeParam->getType();
3139 QualifierCollector QC;
3140 const Type *NonQualTy = QC.strip(NativeParamType);
3141 QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3142 unsigned NativePointeeAddrSpace =
3143 CGF.getTypes().getTargetAddressSpace(NativePointeeTy);
3144 QualType TargetTy = TargetParam->getType();
3145 llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(LocalAddr, /*Volatile=*/false,
3146 TargetTy, SourceLocation());
3147 // First cast to generic.
3148 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3149 TargetAddr,
3150 llvm::PointerType::get(CGF.getLLVMContext(), /*AddrSpace=*/0));
3151 // Cast from generic to native address space.
3152 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3153 TargetAddr,
3154 llvm::PointerType::get(CGF.getLLVMContext(), NativePointeeAddrSpace));
3155 Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
3156 CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
3157 NativeParamType);
3158 return NativeParamAddr;
3161 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall(
3162 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
3163 ArrayRef<llvm::Value *> Args) const {
3164 SmallVector<llvm::Value *, 4> TargetArgs;
3165 TargetArgs.reserve(Args.size());
3166 auto *FnType = OutlinedFn.getFunctionType();
3167 for (unsigned I = 0, E = Args.size(); I < E; ++I) {
3168 if (FnType->isVarArg() && FnType->getNumParams() <= I) {
3169 TargetArgs.append(std::next(Args.begin(), I), Args.end());
3170 break;
3172 llvm::Type *TargetType = FnType->getParamType(I);
3173 llvm::Value *NativeArg = Args[I];
3174 if (!TargetType->isPointerTy()) {
3175 TargetArgs.emplace_back(NativeArg);
3176 continue;
3178 llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3179 NativeArg,
3180 llvm::PointerType::get(CGF.getLLVMContext(), /*AddrSpace*/ 0));
3181 TargetArgs.emplace_back(
3182 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType));
3184 CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
3187 /// Emit function which wraps the outline parallel region
3188 /// and controls the arguments which are passed to this function.
3189 /// The wrapper ensures that the outlined function is called
3190 /// with the correct arguments when data is shared.
3191 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper(
3192 llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
3193 ASTContext &Ctx = CGM.getContext();
3194 const auto &CS = *D.getCapturedStmt(OMPD_parallel);
3196 // Create a function that takes as argument the source thread.
3197 FunctionArgList WrapperArgs;
3198 QualType Int16QTy =
3199 Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
3200 QualType Int32QTy =
3201 Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
3202 ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3203 /*Id=*/nullptr, Int16QTy,
3204 ImplicitParamDecl::Other);
3205 ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3206 /*Id=*/nullptr, Int32QTy,
3207 ImplicitParamDecl::Other);
3208 WrapperArgs.emplace_back(&ParallelLevelArg);
3209 WrapperArgs.emplace_back(&WrapperArg);
3211 const CGFunctionInfo &CGFI =
3212 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);
3214 auto *Fn = llvm::Function::Create(
3215 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3216 Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
3218 // Ensure we do not inline the function. This is trivially true for the ones
3219 // passed to __kmpc_fork_call but the ones calles in serialized regions
3220 // could be inlined. This is not a perfect but it is closer to the invariant
3221 // we want, namely, every data environment starts with a new function.
3222 // TODO: We should pass the if condition to the runtime function and do the
3223 // handling there. Much cleaner code.
3224 Fn->addFnAttr(llvm::Attribute::NoInline);
3226 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3227 Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
3228 Fn->setDoesNotRecurse();
3230 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
3231 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
3232 D.getBeginLoc(), D.getBeginLoc());
3234 const auto *RD = CS.getCapturedRecordDecl();
3235 auto CurField = RD->field_begin();
3237 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
3238 /*Name=*/".zero.addr");
3239 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
3240 // Get the array of arguments.
3241 SmallVector<llvm::Value *, 8> Args;
3243 Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer());
3244 Args.emplace_back(ZeroAddr.getPointer());
3246 CGBuilderTy &Bld = CGF.Builder;
3247 auto CI = CS.capture_begin();
3249 // Use global memory for data sharing.
3250 // Handle passing of global args to workers.
3251 Address GlobalArgs =
3252 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
3253 llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
3254 llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
3255 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
3256 CGM.getModule(), OMPRTL___kmpc_get_shared_variables),
3257 DataSharingArgs);
3259 // Retrieve the shared variables from the list of references returned
3260 // by the runtime. Pass the variables to the outlined function.
3261 Address SharedArgListAddress = Address::invalid();
3262 if (CS.capture_size() > 0 ||
3263 isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3264 SharedArgListAddress = CGF.EmitLoadOfPointer(
3265 GlobalArgs, CGF.getContext()
3266 .getPointerType(CGF.getContext().VoidPtrTy)
3267 .castAs<PointerType>());
3269 unsigned Idx = 0;
3270 if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3271 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3272 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3273 Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy);
3274 llvm::Value *LB = CGF.EmitLoadOfScalar(
3275 TypedAddress,
3276 /*Volatile=*/false,
3277 CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3278 cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
3279 Args.emplace_back(LB);
3280 ++Idx;
3281 Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3282 TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3283 Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy);
3284 llvm::Value *UB = CGF.EmitLoadOfScalar(
3285 TypedAddress,
3286 /*Volatile=*/false,
3287 CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3288 cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
3289 Args.emplace_back(UB);
3290 ++Idx;
3292 if (CS.capture_size() > 0) {
3293 ASTContext &CGFContext = CGF.getContext();
3294 for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
3295 QualType ElemTy = CurField->getType();
3296 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx);
3297 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3298 Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)),
3299 CGF.ConvertTypeForMem(ElemTy));
3300 llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
3301 /*Volatile=*/false,
3302 CGFContext.getPointerType(ElemTy),
3303 CI->getLocation());
3304 if (CI->capturesVariableByCopy() &&
3305 !CI->getCapturedVar()->getType()->isAnyPointerType()) {
3306 Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
3307 CI->getLocation());
3309 Args.emplace_back(Arg);
3313 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
3314 CGF.FinishFunction();
3315 return Fn;
3318 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF,
3319 const Decl *D) {
3320 if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic)
3321 return;
3323 assert(D && "Expected function or captured|block decl.");
3324 assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&
3325 "Function is registered already.");
3326 assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&
3327 "Team is set but not processed.");
3328 const Stmt *Body = nullptr;
3329 bool NeedToDelayGlobalization = false;
3330 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3331 Body = FD->getBody();
3332 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
3333 Body = BD->getBody();
3334 } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
3335 Body = CD->getBody();
3336 NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
3337 if (NeedToDelayGlobalization &&
3338 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
3339 return;
3341 if (!Body)
3342 return;
3343 CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
3344 VarChecker.Visit(Body);
3345 const RecordDecl *GlobalizedVarsRecord =
3346 VarChecker.getGlobalizedRecord(IsInTTDRegion);
3347 TeamAndReductions.first = nullptr;
3348 TeamAndReductions.second.clear();
3349 ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
3350 VarChecker.getEscapedVariableLengthDecls();
3351 ArrayRef<const ValueDecl *> DelayedVariableLengthDecls =
3352 VarChecker.getDelayedVariableLengthDecls();
3353 if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty() &&
3354 DelayedVariableLengthDecls.empty())
3355 return;
3356 auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
3357 I->getSecond().MappedParams =
3358 std::make_unique<CodeGenFunction::OMPMapVars>();
3359 I->getSecond().EscapedParameters.insert(
3360 VarChecker.getEscapedParameters().begin(),
3361 VarChecker.getEscapedParameters().end());
3362 I->getSecond().EscapedVariableLengthDecls.append(
3363 EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
3364 I->getSecond().DelayedVariableLengthDecls.append(
3365 DelayedVariableLengthDecls.begin(), DelayedVariableLengthDecls.end());
3366 DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
3367 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
3368 assert(VD->isCanonicalDecl() && "Expected canonical declaration");
3369 Data.insert(std::make_pair(VD, MappedVarData()));
3371 if (!NeedToDelayGlobalization) {
3372 emitGenericVarsProlog(CGF, D->getBeginLoc());
3373 struct GlobalizationScope final : EHScopeStack::Cleanup {
3374 GlobalizationScope() = default;
3376 void Emit(CodeGenFunction &CGF, Flags flags) override {
3377 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
3378 .emitGenericVarsEpilog(CGF);
3381 CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
3385 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF,
3386 const VarDecl *VD) {
3387 if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) {
3388 const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3389 auto AS = LangAS::Default;
3390 switch (A->getAllocatorType()) {
3391 // Use the default allocator here as by default local vars are
3392 // threadlocal.
3393 case OMPAllocateDeclAttr::OMPNullMemAlloc:
3394 case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3395 case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3396 case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3397 case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3398 // Follow the user decision - use default allocation.
3399 return Address::invalid();
3400 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3401 // TODO: implement aupport for user-defined allocators.
3402 return Address::invalid();
3403 case OMPAllocateDeclAttr::OMPConstMemAlloc:
3404 AS = LangAS::cuda_constant;
3405 break;
3406 case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3407 AS = LangAS::cuda_shared;
3408 break;
3409 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3410 case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3411 break;
3413 llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
3414 auto *GV = new llvm::GlobalVariable(
3415 CGM.getModule(), VarTy, /*isConstant=*/false,
3416 llvm::GlobalValue::InternalLinkage, llvm::PoisonValue::get(VarTy),
3417 VD->getName(),
3418 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
3419 CGM.getContext().getTargetAddressSpace(AS));
3420 CharUnits Align = CGM.getContext().getDeclAlign(VD);
3421 GV->setAlignment(Align.getAsAlign());
3422 return Address(
3423 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3424 GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace(
3425 VD->getType().getAddressSpace()))),
3426 VarTy, Align);
3429 if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic)
3430 return Address::invalid();
3432 VD = VD->getCanonicalDecl();
3433 auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
3434 if (I == FunctionGlobalizedDecls.end())
3435 return Address::invalid();
3436 auto VDI = I->getSecond().LocalVarData.find(VD);
3437 if (VDI != I->getSecond().LocalVarData.end())
3438 return VDI->second.PrivateAddr;
3439 if (VD->hasAttrs()) {
3440 for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()),
3441 E(VD->attr_end());
3442 IT != E; ++IT) {
3443 auto VDI = I->getSecond().LocalVarData.find(
3444 cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
3445 ->getCanonicalDecl());
3446 if (VDI != I->getSecond().LocalVarData.end())
3447 return VDI->second.PrivateAddr;
3451 return Address::invalid();
3454 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) {
3455 FunctionGlobalizedDecls.erase(CGF.CurFn);
3456 CGOpenMPRuntime::functionFinished(CGF);
3459 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk(
3460 CodeGenFunction &CGF, const OMPLoopDirective &S,
3461 OpenMPDistScheduleClauseKind &ScheduleKind,
3462 llvm::Value *&Chunk) const {
3463 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
3464 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
3465 ScheduleKind = OMPC_DIST_SCHEDULE_static;
3466 Chunk = CGF.EmitScalarConversion(
3467 RT.getGPUNumThreads(CGF),
3468 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3469 S.getIterationVariable()->getType(), S.getBeginLoc());
3470 return;
3472 CGOpenMPRuntime::getDefaultDistScheduleAndChunk(
3473 CGF, S, ScheduleKind, Chunk);
3476 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk(
3477 CodeGenFunction &CGF, const OMPLoopDirective &S,
3478 OpenMPScheduleClauseKind &ScheduleKind,
3479 const Expr *&ChunkExpr) const {
3480 ScheduleKind = OMPC_SCHEDULE_static;
3481 // Chunk size is 1 in this case.
3482 llvm::APInt ChunkSize(32, 1);
3483 ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
3484 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3485 SourceLocation());
3488 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas(
3489 CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
3490 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
3491 " Expected target-based directive.");
3492 const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
3493 for (const CapturedStmt::Capture &C : CS->captures()) {
3494 // Capture variables captured by reference in lambdas for target-based
3495 // directives.
3496 if (!C.capturesVariable())
3497 continue;
3498 const VarDecl *VD = C.getCapturedVar();
3499 const auto *RD = VD->getType()
3500 .getCanonicalType()
3501 .getNonReferenceType()
3502 ->getAsCXXRecordDecl();
3503 if (!RD || !RD->isLambda())
3504 continue;
3505 Address VDAddr = CGF.GetAddrOfLocalVar(VD);
3506 LValue VDLVal;
3507 if (VD->getType().getCanonicalType()->isReferenceType())
3508 VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
3509 else
3510 VDLVal = CGF.MakeAddrLValue(
3511 VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
3512 llvm::DenseMap<const ValueDecl *, FieldDecl *> Captures;
3513 FieldDecl *ThisCapture = nullptr;
3514 RD->getCaptureFields(Captures, ThisCapture);
3515 if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
3516 LValue ThisLVal =
3517 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
3518 llvm::Value *CXXThis = CGF.LoadCXXThis();
3519 CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
3521 for (const LambdaCapture &LC : RD->captures()) {
3522 if (LC.getCaptureKind() != LCK_ByRef)
3523 continue;
3524 const ValueDecl *VD = LC.getCapturedVar();
3525 // FIXME: For now VD is always a VarDecl because OpenMP does not support
3526 // capturing structured bindings in lambdas yet.
3527 if (!CS->capturesVariable(cast<VarDecl>(VD)))
3528 continue;
3529 auto It = Captures.find(VD);
3530 assert(It != Captures.end() && "Found lambda capture without field.");
3531 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
3532 Address VDAddr = CGF.GetAddrOfLocalVar(cast<VarDecl>(VD));
3533 if (VD->getType().getCanonicalType()->isReferenceType())
3534 VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
3535 VD->getType().getCanonicalType())
3536 .getAddress(CGF);
3537 CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal);
3542 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
3543 LangAS &AS) {
3544 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
3545 return false;
3546 const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3547 switch(A->getAllocatorType()) {
3548 case OMPAllocateDeclAttr::OMPNullMemAlloc:
3549 case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3550 // Not supported, fallback to the default mem space.
3551 case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3552 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3553 case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3554 case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3555 case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3556 AS = LangAS::Default;
3557 return true;
3558 case OMPAllocateDeclAttr::OMPConstMemAlloc:
3559 AS = LangAS::cuda_constant;
3560 return true;
3561 case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3562 AS = LangAS::cuda_shared;
3563 return true;
3564 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3565 llvm_unreachable("Expected predefined allocator for the variables with the "
3566 "static storage.");
3568 return false;
3571 // Get current CudaArch and ignore any unknown values
3572 static CudaArch getCudaArch(CodeGenModule &CGM) {
3573 if (!CGM.getTarget().hasFeature("ptx"))
3574 return CudaArch::UNKNOWN;
3575 for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) {
3576 if (Feature.getValue()) {
3577 CudaArch Arch = StringToCudaArch(Feature.getKey());
3578 if (Arch != CudaArch::UNKNOWN)
3579 return Arch;
3582 return CudaArch::UNKNOWN;
3585 /// Check to see if target architecture supports unified addressing which is
3586 /// a restriction for OpenMP requires clause "unified_shared_memory".
3587 void CGOpenMPRuntimeGPU::processRequiresDirective(
3588 const OMPRequiresDecl *D) {
3589 for (const OMPClause *Clause : D->clauselists()) {
3590 if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
3591 CudaArch Arch = getCudaArch(CGM);
3592 switch (Arch) {
3593 case CudaArch::SM_20:
3594 case CudaArch::SM_21:
3595 case CudaArch::SM_30:
3596 case CudaArch::SM_32:
3597 case CudaArch::SM_35:
3598 case CudaArch::SM_37:
3599 case CudaArch::SM_50:
3600 case CudaArch::SM_52:
3601 case CudaArch::SM_53: {
3602 SmallString<256> Buffer;
3603 llvm::raw_svector_ostream Out(Buffer);
3604 Out << "Target architecture " << CudaArchToString(Arch)
3605 << " does not support unified addressing";
3606 CGM.Error(Clause->getBeginLoc(), Out.str());
3607 return;
3609 case CudaArch::SM_60:
3610 case CudaArch::SM_61:
3611 case CudaArch::SM_62:
3612 case CudaArch::SM_70:
3613 case CudaArch::SM_72:
3614 case CudaArch::SM_75:
3615 case CudaArch::SM_80:
3616 case CudaArch::SM_86:
3617 case CudaArch::SM_87:
3618 case CudaArch::SM_89:
3619 case CudaArch::SM_90:
3620 case CudaArch::GFX600:
3621 case CudaArch::GFX601:
3622 case CudaArch::GFX602:
3623 case CudaArch::GFX700:
3624 case CudaArch::GFX701:
3625 case CudaArch::GFX702:
3626 case CudaArch::GFX703:
3627 case CudaArch::GFX704:
3628 case CudaArch::GFX705:
3629 case CudaArch::GFX801:
3630 case CudaArch::GFX802:
3631 case CudaArch::GFX803:
3632 case CudaArch::GFX805:
3633 case CudaArch::GFX810:
3634 case CudaArch::GFX900:
3635 case CudaArch::GFX902:
3636 case CudaArch::GFX904:
3637 case CudaArch::GFX906:
3638 case CudaArch::GFX908:
3639 case CudaArch::GFX909:
3640 case CudaArch::GFX90a:
3641 case CudaArch::GFX90c:
3642 case CudaArch::GFX940:
3643 case CudaArch::GFX941:
3644 case CudaArch::GFX942:
3645 case CudaArch::GFX1010:
3646 case CudaArch::GFX1011:
3647 case CudaArch::GFX1012:
3648 case CudaArch::GFX1013:
3649 case CudaArch::GFX1030:
3650 case CudaArch::GFX1031:
3651 case CudaArch::GFX1032:
3652 case CudaArch::GFX1033:
3653 case CudaArch::GFX1034:
3654 case CudaArch::GFX1035:
3655 case CudaArch::GFX1036:
3656 case CudaArch::GFX1100:
3657 case CudaArch::GFX1101:
3658 case CudaArch::GFX1102:
3659 case CudaArch::GFX1103:
3660 case CudaArch::GFX1150:
3661 case CudaArch::GFX1151:
3662 case CudaArch::Generic:
3663 case CudaArch::UNUSED:
3664 case CudaArch::UNKNOWN:
3665 break;
3666 case CudaArch::LAST:
3667 llvm_unreachable("Unexpected Cuda arch.");
3671 CGOpenMPRuntime::processRequiresDirective(D);
3674 llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) {
3675 CGBuilderTy &Bld = CGF.Builder;
3676 llvm::Module *M = &CGF.CGM.getModule();
3677 const char *LocSize = "__kmpc_get_hardware_num_threads_in_block";
3678 llvm::Function *F = M->getFunction(LocSize);
3679 if (!F) {
3680 F = llvm::Function::Create(
3681 llvm::FunctionType::get(CGF.Int32Ty, std::nullopt, false),
3682 llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule());
3684 return Bld.CreateCall(F, std::nullopt, "nvptx_num_threads");
3687 llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) {
3688 ArrayRef<llvm::Value *> Args{};
3689 return CGF.EmitRuntimeCall(
3690 OMPBuilder.getOrCreateRuntimeFunction(
3691 CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block),
3692 Args);
3695 llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) {
3696 ArrayRef<llvm::Value *> Args{};
3697 return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
3698 CGM.getModule(), OMPRTL___kmpc_get_warp_size),
3699 Args);