[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / clang / lib / CodeGen / CGRecordLayoutBuilder.cpp
blobcbfa79e10bfefcc95eaeafdde2ea35a52e112081
1 //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Builder implementation for CGRecordLayout objects.
11 //===----------------------------------------------------------------------===//
13 #include "CGRecordLayout.h"
14 #include "CGCXXABI.h"
15 #include "CodeGenTypes.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Type.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 using namespace clang;
30 using namespace CodeGen;
32 namespace {
33 /// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an
34 /// llvm::Type. Some of the lowering is straightforward, some is not. Here we
35 /// detail some of the complexities and weirdnesses here.
36 /// * LLVM does not have unions - Unions can, in theory be represented by any
37 /// llvm::Type with correct size. We choose a field via a specific heuristic
38 /// and add padding if necessary.
39 /// * LLVM does not have bitfields - Bitfields are collected into contiguous
40 /// runs and allocated as a single storage type for the run. ASTRecordLayout
41 /// contains enough information to determine where the runs break. Microsoft
42 /// and Itanium follow different rules and use different codepaths.
43 /// * It is desired that, when possible, bitfields use the appropriate iN type
44 /// when lowered to llvm types. For example unsigned x : 24 gets lowered to
45 /// i24. This isn't always possible because i24 has storage size of 32 bit
46 /// and if it is possible to use that extra byte of padding we must use
47 /// [i8 x 3] instead of i24. The function clipTailPadding does this.
48 /// C++ examples that require clipping:
49 /// struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3
50 /// struct A { int a : 24; }; // a must be clipped because a struct like B
51 // could exist: struct B : A { char b; }; // b goes at offset 3
52 /// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized
53 /// fields. The existing asserts suggest that LLVM assumes that *every* field
54 /// has an underlying storage type. Therefore empty structures containing
55 /// zero sized subobjects such as empty records or zero sized arrays still get
56 /// a zero sized (empty struct) storage type.
57 /// * Clang reads the complete type rather than the base type when generating
58 /// code to access fields. Bitfields in tail position with tail padding may
59 /// be clipped in the base class but not the complete class (we may discover
60 /// that the tail padding is not used in the complete class.) However,
61 /// because LLVM reads from the complete type it can generate incorrect code
62 /// if we do not clip the tail padding off of the bitfield in the complete
63 /// layout. This introduces a somewhat awkward extra unnecessary clip stage.
64 /// The location of the clip is stored internally as a sentinel of type
65 /// SCISSOR. If LLVM were updated to read base types (which it probably
66 /// should because locations of things such as VBases are bogus in the llvm
67 /// type anyway) then we could eliminate the SCISSOR.
68 /// * Itanium allows nearly empty primary virtual bases. These bases don't get
69 /// get their own storage because they're laid out as part of another base
70 /// or at the beginning of the structure. Determining if a VBase actually
71 /// gets storage awkwardly involves a walk of all bases.
72 /// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable.
73 struct CGRecordLowering {
74 // MemberInfo is a helper structure that contains information about a record
75 // member. In additional to the standard member types, there exists a
76 // sentinel member type that ensures correct rounding.
77 struct MemberInfo {
78 CharUnits Offset;
79 enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind;
80 llvm::Type *Data;
81 union {
82 const FieldDecl *FD;
83 const CXXRecordDecl *RD;
85 MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
86 const FieldDecl *FD = nullptr)
87 : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {}
88 MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
89 const CXXRecordDecl *RD)
90 : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {}
91 // MemberInfos are sorted so we define a < operator.
92 bool operator <(const MemberInfo& a) const { return Offset < a.Offset; }
94 // The constructor.
95 CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, bool Packed);
96 // Short helper routines.
97 /// Constructs a MemberInfo instance from an offset and llvm::Type *.
98 MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) {
99 return MemberInfo(Offset, MemberInfo::Field, Data);
102 /// The Microsoft bitfield layout rule allocates discrete storage
103 /// units of the field's formal type and only combines adjacent
104 /// fields of the same formal type. We want to emit a layout with
105 /// these discrete storage units instead of combining them into a
106 /// continuous run.
107 bool isDiscreteBitFieldABI() {
108 return Context.getTargetInfo().getCXXABI().isMicrosoft() ||
109 D->isMsStruct(Context);
112 /// Helper function to check if we are targeting AAPCS.
113 bool isAAPCS() const {
114 return Context.getTargetInfo().getABI().startswith("aapcs");
117 /// Helper function to check if the target machine is BigEndian.
118 bool isBE() const { return Context.getTargetInfo().isBigEndian(); }
120 /// The Itanium base layout rule allows virtual bases to overlap
121 /// other bases, which complicates layout in specific ways.
123 /// Note specifically that the ms_struct attribute doesn't change this.
124 bool isOverlappingVBaseABI() {
125 return !Context.getTargetInfo().getCXXABI().isMicrosoft();
128 /// Wraps llvm::Type::getIntNTy with some implicit arguments.
129 llvm::Type *getIntNType(uint64_t NumBits) {
130 unsigned AlignedBits = llvm::alignTo(NumBits, Context.getCharWidth());
131 return llvm::Type::getIntNTy(Types.getLLVMContext(), AlignedBits);
133 /// Get the LLVM type sized as one character unit.
134 llvm::Type *getCharType() {
135 return llvm::Type::getIntNTy(Types.getLLVMContext(),
136 Context.getCharWidth());
138 /// Gets an llvm type of size NumChars and alignment 1.
139 llvm::Type *getByteArrayType(CharUnits NumChars) {
140 assert(!NumChars.isZero() && "Empty byte arrays aren't allowed.");
141 llvm::Type *Type = getCharType();
142 return NumChars == CharUnits::One() ? Type :
143 (llvm::Type *)llvm::ArrayType::get(Type, NumChars.getQuantity());
145 /// Gets the storage type for a field decl and handles storage
146 /// for itanium bitfields that are smaller than their declared type.
147 llvm::Type *getStorageType(const FieldDecl *FD) {
148 llvm::Type *Type = Types.ConvertTypeForMem(FD->getType());
149 if (!FD->isBitField()) return Type;
150 if (isDiscreteBitFieldABI()) return Type;
151 return getIntNType(std::min(FD->getBitWidthValue(Context),
152 (unsigned)Context.toBits(getSize(Type))));
154 /// Gets the llvm Basesubobject type from a CXXRecordDecl.
155 llvm::Type *getStorageType(const CXXRecordDecl *RD) {
156 return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType();
158 CharUnits bitsToCharUnits(uint64_t BitOffset) {
159 return Context.toCharUnitsFromBits(BitOffset);
161 CharUnits getSize(llvm::Type *Type) {
162 return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type));
164 CharUnits getAlignment(llvm::Type *Type) {
165 return CharUnits::fromQuantity(DataLayout.getABITypeAlign(Type));
167 bool isZeroInitializable(const FieldDecl *FD) {
168 return Types.isZeroInitializable(FD->getType());
170 bool isZeroInitializable(const RecordDecl *RD) {
171 return Types.isZeroInitializable(RD);
173 void appendPaddingBytes(CharUnits Size) {
174 if (!Size.isZero())
175 FieldTypes.push_back(getByteArrayType(Size));
177 uint64_t getFieldBitOffset(const FieldDecl *FD) {
178 return Layout.getFieldOffset(FD->getFieldIndex());
180 // Layout routines.
181 void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset,
182 llvm::Type *StorageType);
183 /// Lowers an ASTRecordLayout to a llvm type.
184 void lower(bool NonVirtualBaseType);
185 void lowerUnion(bool isNoUniqueAddress);
186 void accumulateFields();
187 void accumulateBitFields(RecordDecl::field_iterator Field,
188 RecordDecl::field_iterator FieldEnd);
189 void computeVolatileBitfields();
190 void accumulateBases();
191 void accumulateVPtrs();
192 void accumulateVBases();
193 /// Recursively searches all of the bases to find out if a vbase is
194 /// not the primary vbase of some base class.
195 bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query);
196 void calculateZeroInit();
197 /// Lowers bitfield storage types to I8 arrays for bitfields with tail
198 /// padding that is or can potentially be used.
199 void clipTailPadding();
200 /// Determines if we need a packed llvm struct.
201 void determinePacked(bool NVBaseType);
202 /// Inserts padding everywhere it's needed.
203 void insertPadding();
204 /// Fills out the structures that are ultimately consumed.
205 void fillOutputFields();
206 // Input memoization fields.
207 CodeGenTypes &Types;
208 const ASTContext &Context;
209 const RecordDecl *D;
210 const CXXRecordDecl *RD;
211 const ASTRecordLayout &Layout;
212 const llvm::DataLayout &DataLayout;
213 // Helpful intermediate data-structures.
214 std::vector<MemberInfo> Members;
215 // Output fields, consumed by CodeGenTypes::ComputeRecordLayout.
216 SmallVector<llvm::Type *, 16> FieldTypes;
217 llvm::DenseMap<const FieldDecl *, unsigned> Fields;
218 llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
219 llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
220 llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases;
221 bool IsZeroInitializable : 1;
222 bool IsZeroInitializableAsBase : 1;
223 bool Packed : 1;
224 private:
225 CGRecordLowering(const CGRecordLowering &) = delete;
226 void operator =(const CGRecordLowering &) = delete;
228 } // namespace {
230 CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D,
231 bool Packed)
232 : Types(Types), Context(Types.getContext()), D(D),
233 RD(dyn_cast<CXXRecordDecl>(D)),
234 Layout(Types.getContext().getASTRecordLayout(D)),
235 DataLayout(Types.getDataLayout()), IsZeroInitializable(true),
236 IsZeroInitializableAsBase(true), Packed(Packed) {}
238 void CGRecordLowering::setBitFieldInfo(
239 const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) {
240 CGBitFieldInfo &Info = BitFields[FD->getCanonicalDecl()];
241 Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
242 Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset));
243 Info.Size = FD->getBitWidthValue(Context);
244 Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType);
245 Info.StorageOffset = StartOffset;
246 if (Info.Size > Info.StorageSize)
247 Info.Size = Info.StorageSize;
248 // Reverse the bit offsets for big endian machines. Because we represent
249 // a bitfield as a single large integer load, we can imagine the bits
250 // counting from the most-significant-bit instead of the
251 // least-significant-bit.
252 if (DataLayout.isBigEndian())
253 Info.Offset = Info.StorageSize - (Info.Offset + Info.Size);
255 Info.VolatileStorageSize = 0;
256 Info.VolatileOffset = 0;
257 Info.VolatileStorageOffset = CharUnits::Zero();
260 void CGRecordLowering::lower(bool NVBaseType) {
261 // The lowering process implemented in this function takes a variety of
262 // carefully ordered phases.
263 // 1) Store all members (fields and bases) in a list and sort them by offset.
264 // 2) Add a 1-byte capstone member at the Size of the structure.
265 // 3) Clip bitfield storages members if their tail padding is or might be
266 // used by another field or base. The clipping process uses the capstone
267 // by treating it as another object that occurs after the record.
268 // 4) Determine if the llvm-struct requires packing. It's important that this
269 // phase occur after clipping, because clipping changes the llvm type.
270 // This phase reads the offset of the capstone when determining packedness
271 // and updates the alignment of the capstone to be equal of the alignment
272 // of the record after doing so.
273 // 5) Insert padding everywhere it is needed. This phase requires 'Packed' to
274 // have been computed and needs to know the alignment of the record in
275 // order to understand if explicit tail padding is needed.
276 // 6) Remove the capstone, we don't need it anymore.
277 // 7) Determine if this record can be zero-initialized. This phase could have
278 // been placed anywhere after phase 1.
279 // 8) Format the complete list of members in a way that can be consumed by
280 // CodeGenTypes::ComputeRecordLayout.
281 CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize();
282 if (D->isUnion()) {
283 lowerUnion(NVBaseType);
284 computeVolatileBitfields();
285 return;
287 accumulateFields();
288 // RD implies C++.
289 if (RD) {
290 accumulateVPtrs();
291 accumulateBases();
292 if (Members.empty()) {
293 appendPaddingBytes(Size);
294 computeVolatileBitfields();
295 return;
297 if (!NVBaseType)
298 accumulateVBases();
300 llvm::stable_sort(Members);
301 Members.push_back(StorageInfo(Size, getIntNType(8)));
302 clipTailPadding();
303 determinePacked(NVBaseType);
304 insertPadding();
305 Members.pop_back();
306 calculateZeroInit();
307 fillOutputFields();
308 computeVolatileBitfields();
311 void CGRecordLowering::lowerUnion(bool isNoUniqueAddress) {
312 CharUnits LayoutSize =
313 isNoUniqueAddress ? Layout.getDataSize() : Layout.getSize();
314 llvm::Type *StorageType = nullptr;
315 bool SeenNamedMember = false;
316 // Iterate through the fields setting bitFieldInfo and the Fields array. Also
317 // locate the "most appropriate" storage type. The heuristic for finding the
318 // storage type isn't necessary, the first (non-0-length-bitfield) field's
319 // type would work fine and be simpler but would be different than what we've
320 // been doing and cause lit tests to change.
321 for (const auto *Field : D->fields()) {
322 if (Field->isBitField()) {
323 if (Field->isZeroLengthBitField(Context))
324 continue;
325 llvm::Type *FieldType = getStorageType(Field);
326 if (LayoutSize < getSize(FieldType))
327 FieldType = getByteArrayType(LayoutSize);
328 setBitFieldInfo(Field, CharUnits::Zero(), FieldType);
330 Fields[Field->getCanonicalDecl()] = 0;
331 llvm::Type *FieldType = getStorageType(Field);
332 // Compute zero-initializable status.
333 // This union might not be zero initialized: it may contain a pointer to
334 // data member which might have some exotic initialization sequence.
335 // If this is the case, then we aught not to try and come up with a "better"
336 // type, it might not be very easy to come up with a Constant which
337 // correctly initializes it.
338 if (!SeenNamedMember) {
339 SeenNamedMember = Field->getIdentifier();
340 if (!SeenNamedMember)
341 if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
342 SeenNamedMember = FieldRD->findFirstNamedDataMember();
343 if (SeenNamedMember && !isZeroInitializable(Field)) {
344 IsZeroInitializable = IsZeroInitializableAsBase = false;
345 StorageType = FieldType;
348 // Because our union isn't zero initializable, we won't be getting a better
349 // storage type.
350 if (!IsZeroInitializable)
351 continue;
352 // Conditionally update our storage type if we've got a new "better" one.
353 if (!StorageType ||
354 getAlignment(FieldType) > getAlignment(StorageType) ||
355 (getAlignment(FieldType) == getAlignment(StorageType) &&
356 getSize(FieldType) > getSize(StorageType)))
357 StorageType = FieldType;
359 // If we have no storage type just pad to the appropriate size and return.
360 if (!StorageType)
361 return appendPaddingBytes(LayoutSize);
362 // If our storage size was bigger than our required size (can happen in the
363 // case of packed bitfields on Itanium) then just use an I8 array.
364 if (LayoutSize < getSize(StorageType))
365 StorageType = getByteArrayType(LayoutSize);
366 FieldTypes.push_back(StorageType);
367 appendPaddingBytes(LayoutSize - getSize(StorageType));
368 // Set packed if we need it.
369 const auto StorageAlignment = getAlignment(StorageType);
370 assert((Layout.getSize() % StorageAlignment == 0 ||
371 Layout.getDataSize() % StorageAlignment) &&
372 "Union's standard layout and no_unique_address layout must agree on "
373 "packedness");
374 if (Layout.getDataSize() % StorageAlignment)
375 Packed = true;
378 void CGRecordLowering::accumulateFields() {
379 for (RecordDecl::field_iterator Field = D->field_begin(),
380 FieldEnd = D->field_end();
381 Field != FieldEnd;) {
382 if (Field->isBitField()) {
383 RecordDecl::field_iterator Start = Field;
384 // Iterate to gather the list of bitfields.
385 for (++Field; Field != FieldEnd && Field->isBitField(); ++Field);
386 accumulateBitFields(Start, Field);
387 } else if (!Field->isZeroSize(Context)) {
388 // Use base subobject layout for the potentially-overlapping field,
389 // as it is done in RecordLayoutBuilder
390 Members.push_back(MemberInfo(
391 bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field,
392 Field->isPotentiallyOverlapping()
393 ? getStorageType(Field->getType()->getAsCXXRecordDecl())
394 : getStorageType(*Field),
395 *Field));
396 ++Field;
397 } else {
398 ++Field;
403 void
404 CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field,
405 RecordDecl::field_iterator FieldEnd) {
406 // Run stores the first element of the current run of bitfields. FieldEnd is
407 // used as a special value to note that we don't have a current run. A
408 // bitfield run is a contiguous collection of bitfields that can be stored in
409 // the same storage block. Zero-sized bitfields and bitfields that would
410 // cross an alignment boundary break a run and start a new one.
411 RecordDecl::field_iterator Run = FieldEnd;
412 // Tail is the offset of the first bit off the end of the current run. It's
413 // used to determine if the ASTRecordLayout is treating these two bitfields as
414 // contiguous. StartBitOffset is offset of the beginning of the Run.
415 uint64_t StartBitOffset, Tail = 0;
416 if (isDiscreteBitFieldABI()) {
417 for (; Field != FieldEnd; ++Field) {
418 uint64_t BitOffset = getFieldBitOffset(*Field);
419 // Zero-width bitfields end runs.
420 if (Field->isZeroLengthBitField(Context)) {
421 Run = FieldEnd;
422 continue;
424 llvm::Type *Type =
425 Types.ConvertTypeForMem(Field->getType(), /*ForBitField=*/true);
426 // If we don't have a run yet, or don't live within the previous run's
427 // allocated storage then we allocate some storage and start a new run.
428 if (Run == FieldEnd || BitOffset >= Tail) {
429 Run = Field;
430 StartBitOffset = BitOffset;
431 Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type);
432 // Add the storage member to the record. This must be added to the
433 // record before the bitfield members so that it gets laid out before
434 // the bitfields it contains get laid out.
435 Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
437 // Bitfields get the offset of their storage but come afterward and remain
438 // there after a stable sort.
439 Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
440 MemberInfo::Field, nullptr, *Field));
442 return;
445 // Check if OffsetInRecord (the size in bits of the current run) is better
446 // as a single field run. When OffsetInRecord has legal integer width, and
447 // its bitfield offset is naturally aligned, it is better to make the
448 // bitfield a separate storage component so as it can be accessed directly
449 // with lower cost.
450 auto IsBetterAsSingleFieldRun = [&](uint64_t OffsetInRecord,
451 uint64_t StartBitOffset) {
452 if (!Types.getCodeGenOpts().FineGrainedBitfieldAccesses)
453 return false;
454 if (OffsetInRecord < 8 || !llvm::isPowerOf2_64(OffsetInRecord) ||
455 !DataLayout.fitsInLegalInteger(OffsetInRecord))
456 return false;
457 // Make sure StartBitOffset is naturally aligned if it is treated as an
458 // IType integer.
459 if (StartBitOffset %
460 Context.toBits(getAlignment(getIntNType(OffsetInRecord))) !=
462 return false;
463 return true;
466 // The start field is better as a single field run.
467 bool StartFieldAsSingleRun = false;
468 for (;;) {
469 // Check to see if we need to start a new run.
470 if (Run == FieldEnd) {
471 // If we're out of fields, return.
472 if (Field == FieldEnd)
473 break;
474 // Any non-zero-length bitfield can start a new run.
475 if (!Field->isZeroLengthBitField(Context)) {
476 Run = Field;
477 StartBitOffset = getFieldBitOffset(*Field);
478 Tail = StartBitOffset + Field->getBitWidthValue(Context);
479 StartFieldAsSingleRun = IsBetterAsSingleFieldRun(Tail - StartBitOffset,
480 StartBitOffset);
482 ++Field;
483 continue;
486 // If the start field of a new run is better as a single run, or
487 // if current field (or consecutive fields) is better as a single run, or
488 // if current field has zero width bitfield and either
489 // UseZeroLengthBitfieldAlignment or UseBitFieldTypeAlignment is set to
490 // true, or
491 // if the offset of current field is inconsistent with the offset of
492 // previous field plus its offset,
493 // skip the block below and go ahead to emit the storage.
494 // Otherwise, try to add bitfields to the run.
495 if (!StartFieldAsSingleRun && Field != FieldEnd &&
496 !IsBetterAsSingleFieldRun(Tail - StartBitOffset, StartBitOffset) &&
497 (!Field->isZeroLengthBitField(Context) ||
498 (!Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
499 !Context.getTargetInfo().useBitFieldTypeAlignment())) &&
500 Tail == getFieldBitOffset(*Field)) {
501 Tail += Field->getBitWidthValue(Context);
502 ++Field;
503 continue;
506 // We've hit a break-point in the run and need to emit a storage field.
507 llvm::Type *Type = getIntNType(Tail - StartBitOffset);
508 // Add the storage member to the record and set the bitfield info for all of
509 // the bitfields in the run. Bitfields get the offset of their storage but
510 // come afterward and remain there after a stable sort.
511 Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
512 for (; Run != Field; ++Run)
513 Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
514 MemberInfo::Field, nullptr, *Run));
515 Run = FieldEnd;
516 StartFieldAsSingleRun = false;
520 void CGRecordLowering::accumulateBases() {
521 // If we've got a primary virtual base, we need to add it with the bases.
522 if (Layout.isPrimaryBaseVirtual()) {
523 const CXXRecordDecl *BaseDecl = Layout.getPrimaryBase();
524 Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base,
525 getStorageType(BaseDecl), BaseDecl));
527 // Accumulate the non-virtual bases.
528 for (const auto &Base : RD->bases()) {
529 if (Base.isVirtual())
530 continue;
532 // Bases can be zero-sized even if not technically empty if they
533 // contain only a trailing array member.
534 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
535 if (!BaseDecl->isEmpty() &&
536 !Context.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
537 Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl),
538 MemberInfo::Base, getStorageType(BaseDecl), BaseDecl));
542 /// The AAPCS that defines that, when possible, bit-fields should
543 /// be accessed using containers of the declared type width:
544 /// When a volatile bit-field is read, and its container does not overlap with
545 /// any non-bit-field member or any zero length bit-field member, its container
546 /// must be read exactly once using the access width appropriate to the type of
547 /// the container. When a volatile bit-field is written, and its container does
548 /// not overlap with any non-bit-field member or any zero-length bit-field
549 /// member, its container must be read exactly once and written exactly once
550 /// using the access width appropriate to the type of the container. The two
551 /// accesses are not atomic.
553 /// Enforcing the width restriction can be disabled using
554 /// -fno-aapcs-bitfield-width.
555 void CGRecordLowering::computeVolatileBitfields() {
556 if (!isAAPCS() || !Types.getCodeGenOpts().AAPCSBitfieldWidth)
557 return;
559 for (auto &I : BitFields) {
560 const FieldDecl *Field = I.first;
561 CGBitFieldInfo &Info = I.second;
562 llvm::Type *ResLTy = Types.ConvertTypeForMem(Field->getType());
563 // If the record alignment is less than the type width, we can't enforce a
564 // aligned load, bail out.
565 if ((uint64_t)(Context.toBits(Layout.getAlignment())) <
566 ResLTy->getPrimitiveSizeInBits())
567 continue;
568 // CGRecordLowering::setBitFieldInfo() pre-adjusts the bit-field offsets
569 // for big-endian targets, but it assumes a container of width
570 // Info.StorageSize. Since AAPCS uses a different container size (width
571 // of the type), we first undo that calculation here and redo it once
572 // the bit-field offset within the new container is calculated.
573 const unsigned OldOffset =
574 isBE() ? Info.StorageSize - (Info.Offset + Info.Size) : Info.Offset;
575 // Offset to the bit-field from the beginning of the struct.
576 const unsigned AbsoluteOffset =
577 Context.toBits(Info.StorageOffset) + OldOffset;
579 // Container size is the width of the bit-field type.
580 const unsigned StorageSize = ResLTy->getPrimitiveSizeInBits();
581 // Nothing to do if the access uses the desired
582 // container width and is naturally aligned.
583 if (Info.StorageSize == StorageSize && (OldOffset % StorageSize == 0))
584 continue;
586 // Offset within the container.
587 unsigned Offset = AbsoluteOffset & (StorageSize - 1);
588 // Bail out if an aligned load of the container cannot cover the entire
589 // bit-field. This can happen for example, if the bit-field is part of a
590 // packed struct. AAPCS does not define access rules for such cases, we let
591 // clang to follow its own rules.
592 if (Offset + Info.Size > StorageSize)
593 continue;
595 // Re-adjust offsets for big-endian targets.
596 if (isBE())
597 Offset = StorageSize - (Offset + Info.Size);
599 const CharUnits StorageOffset =
600 Context.toCharUnitsFromBits(AbsoluteOffset & ~(StorageSize - 1));
601 const CharUnits End = StorageOffset +
602 Context.toCharUnitsFromBits(StorageSize) -
603 CharUnits::One();
605 const ASTRecordLayout &Layout =
606 Context.getASTRecordLayout(Field->getParent());
607 // If we access outside memory outside the record, than bail out.
608 const CharUnits RecordSize = Layout.getSize();
609 if (End >= RecordSize)
610 continue;
612 // Bail out if performing this load would access non-bit-fields members.
613 bool Conflict = false;
614 for (const auto *F : D->fields()) {
615 // Allow sized bit-fields overlaps.
616 if (F->isBitField() && !F->isZeroLengthBitField(Context))
617 continue;
619 const CharUnits FOffset = Context.toCharUnitsFromBits(
620 Layout.getFieldOffset(F->getFieldIndex()));
622 // As C11 defines, a zero sized bit-field defines a barrier, so
623 // fields after and before it should be race condition free.
624 // The AAPCS acknowledges it and imposes no restritions when the
625 // natural container overlaps a zero-length bit-field.
626 if (F->isZeroLengthBitField(Context)) {
627 if (End > FOffset && StorageOffset < FOffset) {
628 Conflict = true;
629 break;
633 const CharUnits FEnd =
634 FOffset +
635 Context.toCharUnitsFromBits(
636 Types.ConvertTypeForMem(F->getType())->getPrimitiveSizeInBits()) -
637 CharUnits::One();
638 // If no overlap, continue.
639 if (End < FOffset || FEnd < StorageOffset)
640 continue;
642 // The desired load overlaps a non-bit-field member, bail out.
643 Conflict = true;
644 break;
647 if (Conflict)
648 continue;
649 // Write the new bit-field access parameters.
650 // As the storage offset now is defined as the number of elements from the
651 // start of the structure, we should divide the Offset by the element size.
652 Info.VolatileStorageOffset =
653 StorageOffset / Context.toCharUnitsFromBits(StorageSize).getQuantity();
654 Info.VolatileStorageSize = StorageSize;
655 Info.VolatileOffset = Offset;
659 void CGRecordLowering::accumulateVPtrs() {
660 if (Layout.hasOwnVFPtr())
661 Members.push_back(
662 MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr,
663 llvm::PointerType::getUnqual(Types.getLLVMContext())));
664 if (Layout.hasOwnVBPtr())
665 Members.push_back(
666 MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr,
667 llvm::PointerType::getUnqual(Types.getLLVMContext())));
670 void CGRecordLowering::accumulateVBases() {
671 CharUnits ScissorOffset = Layout.getNonVirtualSize();
672 // In the itanium ABI, it's possible to place a vbase at a dsize that is
673 // smaller than the nvsize. Here we check to see if such a base is placed
674 // before the nvsize and set the scissor offset to that, instead of the
675 // nvsize.
676 if (isOverlappingVBaseABI())
677 for (const auto &Base : RD->vbases()) {
678 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
679 if (BaseDecl->isEmpty())
680 continue;
681 // If the vbase is a primary virtual base of some base, then it doesn't
682 // get its own storage location but instead lives inside of that base.
683 if (Context.isNearlyEmpty(BaseDecl) && !hasOwnStorage(RD, BaseDecl))
684 continue;
685 ScissorOffset = std::min(ScissorOffset,
686 Layout.getVBaseClassOffset(BaseDecl));
688 Members.push_back(MemberInfo(ScissorOffset, MemberInfo::Scissor, nullptr,
689 RD));
690 for (const auto &Base : RD->vbases()) {
691 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
692 if (BaseDecl->isEmpty())
693 continue;
694 CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl);
695 // If the vbase is a primary virtual base of some base, then it doesn't
696 // get its own storage location but instead lives inside of that base.
697 if (isOverlappingVBaseABI() &&
698 Context.isNearlyEmpty(BaseDecl) &&
699 !hasOwnStorage(RD, BaseDecl)) {
700 Members.push_back(MemberInfo(Offset, MemberInfo::VBase, nullptr,
701 BaseDecl));
702 continue;
704 // If we've got a vtordisp, add it as a storage type.
705 if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp())
706 Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4),
707 getIntNType(32)));
708 Members.push_back(MemberInfo(Offset, MemberInfo::VBase,
709 getStorageType(BaseDecl), BaseDecl));
713 bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl,
714 const CXXRecordDecl *Query) {
715 const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl);
716 if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query)
717 return false;
718 for (const auto &Base : Decl->bases())
719 if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query))
720 return false;
721 return true;
724 void CGRecordLowering::calculateZeroInit() {
725 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
726 MemberEnd = Members.end();
727 IsZeroInitializableAsBase && Member != MemberEnd; ++Member) {
728 if (Member->Kind == MemberInfo::Field) {
729 if (!Member->FD || isZeroInitializable(Member->FD))
730 continue;
731 IsZeroInitializable = IsZeroInitializableAsBase = false;
732 } else if (Member->Kind == MemberInfo::Base ||
733 Member->Kind == MemberInfo::VBase) {
734 if (isZeroInitializable(Member->RD))
735 continue;
736 IsZeroInitializable = false;
737 if (Member->Kind == MemberInfo::Base)
738 IsZeroInitializableAsBase = false;
743 void CGRecordLowering::clipTailPadding() {
744 std::vector<MemberInfo>::iterator Prior = Members.begin();
745 CharUnits Tail = getSize(Prior->Data);
746 for (std::vector<MemberInfo>::iterator Member = Prior + 1,
747 MemberEnd = Members.end();
748 Member != MemberEnd; ++Member) {
749 // Only members with data and the scissor can cut into tail padding.
750 if (!Member->Data && Member->Kind != MemberInfo::Scissor)
751 continue;
752 if (Member->Offset < Tail) {
753 assert(Prior->Kind == MemberInfo::Field &&
754 "Only storage fields have tail padding!");
755 if (!Prior->FD || Prior->FD->isBitField())
756 Prior->Data = getByteArrayType(bitsToCharUnits(llvm::alignTo(
757 cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8)));
758 else {
759 assert(Prior->FD->hasAttr<NoUniqueAddressAttr>() &&
760 "should not have reused this field's tail padding");
761 Prior->Data = getByteArrayType(
762 Context.getTypeInfoDataSizeInChars(Prior->FD->getType()).Width);
765 if (Member->Data)
766 Prior = Member;
767 Tail = Prior->Offset + getSize(Prior->Data);
771 void CGRecordLowering::determinePacked(bool NVBaseType) {
772 if (Packed)
773 return;
774 CharUnits Alignment = CharUnits::One();
775 CharUnits NVAlignment = CharUnits::One();
776 CharUnits NVSize =
777 !NVBaseType && RD ? Layout.getNonVirtualSize() : CharUnits::Zero();
778 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
779 MemberEnd = Members.end();
780 Member != MemberEnd; ++Member) {
781 if (!Member->Data)
782 continue;
783 // If any member falls at an offset that it not a multiple of its alignment,
784 // then the entire record must be packed.
785 if (Member->Offset % getAlignment(Member->Data))
786 Packed = true;
787 if (Member->Offset < NVSize)
788 NVAlignment = std::max(NVAlignment, getAlignment(Member->Data));
789 Alignment = std::max(Alignment, getAlignment(Member->Data));
791 // If the size of the record (the capstone's offset) is not a multiple of the
792 // record's alignment, it must be packed.
793 if (Members.back().Offset % Alignment)
794 Packed = true;
795 // If the non-virtual sub-object is not a multiple of the non-virtual
796 // sub-object's alignment, it must be packed. We cannot have a packed
797 // non-virtual sub-object and an unpacked complete object or vise versa.
798 if (NVSize % NVAlignment)
799 Packed = true;
800 // Update the alignment of the sentinel.
801 if (!Packed)
802 Members.back().Data = getIntNType(Context.toBits(Alignment));
805 void CGRecordLowering::insertPadding() {
806 std::vector<std::pair<CharUnits, CharUnits> > Padding;
807 CharUnits Size = CharUnits::Zero();
808 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
809 MemberEnd = Members.end();
810 Member != MemberEnd; ++Member) {
811 if (!Member->Data)
812 continue;
813 CharUnits Offset = Member->Offset;
814 assert(Offset >= Size);
815 // Insert padding if we need to.
816 if (Offset !=
817 Size.alignTo(Packed ? CharUnits::One() : getAlignment(Member->Data)))
818 Padding.push_back(std::make_pair(Size, Offset - Size));
819 Size = Offset + getSize(Member->Data);
821 if (Padding.empty())
822 return;
823 // Add the padding to the Members list and sort it.
824 for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator
825 Pad = Padding.begin(), PadEnd = Padding.end();
826 Pad != PadEnd; ++Pad)
827 Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second)));
828 llvm::stable_sort(Members);
831 void CGRecordLowering::fillOutputFields() {
832 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
833 MemberEnd = Members.end();
834 Member != MemberEnd; ++Member) {
835 if (Member->Data)
836 FieldTypes.push_back(Member->Data);
837 if (Member->Kind == MemberInfo::Field) {
838 if (Member->FD)
839 Fields[Member->FD->getCanonicalDecl()] = FieldTypes.size() - 1;
840 // A field without storage must be a bitfield.
841 if (!Member->Data)
842 setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back());
843 } else if (Member->Kind == MemberInfo::Base)
844 NonVirtualBases[Member->RD] = FieldTypes.size() - 1;
845 else if (Member->Kind == MemberInfo::VBase)
846 VirtualBases[Member->RD] = FieldTypes.size() - 1;
850 CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
851 const FieldDecl *FD,
852 uint64_t Offset, uint64_t Size,
853 uint64_t StorageSize,
854 CharUnits StorageOffset) {
855 // This function is vestigial from CGRecordLayoutBuilder days but is still
856 // used in GCObjCRuntime.cpp. That usage has a "fixme" attached to it that
857 // when addressed will allow for the removal of this function.
858 llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
859 CharUnits TypeSizeInBytes =
860 CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty));
861 uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);
863 bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
865 if (Size > TypeSizeInBits) {
866 // We have a wide bit-field. The extra bits are only used for padding, so
867 // if we have a bitfield of type T, with size N:
869 // T t : N;
871 // We can just assume that it's:
873 // T t : sizeof(T);
875 Size = TypeSizeInBits;
878 // Reverse the bit offsets for big endian machines. Because we represent
879 // a bitfield as a single large integer load, we can imagine the bits
880 // counting from the most-significant-bit instead of the
881 // least-significant-bit.
882 if (Types.getDataLayout().isBigEndian()) {
883 Offset = StorageSize - (Offset + Size);
886 return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageOffset);
889 std::unique_ptr<CGRecordLayout>
890 CodeGenTypes::ComputeRecordLayout(const RecordDecl *D, llvm::StructType *Ty) {
891 CGRecordLowering Builder(*this, D, /*Packed=*/false);
893 Builder.lower(/*NonVirtualBaseType=*/false);
895 // If we're in C++, compute the base subobject type.
896 llvm::StructType *BaseTy = nullptr;
897 if (isa<CXXRecordDecl>(D)) {
898 BaseTy = Ty;
899 if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) {
900 CGRecordLowering BaseBuilder(*this, D, /*Packed=*/Builder.Packed);
901 BaseBuilder.lower(/*NonVirtualBaseType=*/true);
902 BaseTy = llvm::StructType::create(
903 getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed);
904 addRecordTypeName(D, BaseTy, ".base");
905 // BaseTy and Ty must agree on their packedness for getLLVMFieldNo to work
906 // on both of them with the same index.
907 assert(Builder.Packed == BaseBuilder.Packed &&
908 "Non-virtual and complete types must agree on packedness");
912 // Fill in the struct *after* computing the base type. Filling in the body
913 // signifies that the type is no longer opaque and record layout is complete,
914 // but we may need to recursively layout D while laying D out as a base type.
915 Ty->setBody(Builder.FieldTypes, Builder.Packed);
917 auto RL = std::make_unique<CGRecordLayout>(
918 Ty, BaseTy, (bool)Builder.IsZeroInitializable,
919 (bool)Builder.IsZeroInitializableAsBase);
921 RL->NonVirtualBases.swap(Builder.NonVirtualBases);
922 RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases);
924 // Add all the field numbers.
925 RL->FieldInfo.swap(Builder.Fields);
927 // Add bitfield info.
928 RL->BitFields.swap(Builder.BitFields);
930 // Dump the layout, if requested.
931 if (getContext().getLangOpts().DumpRecordLayouts) {
932 llvm::outs() << "\n*** Dumping IRgen Record Layout\n";
933 llvm::outs() << "Record: ";
934 D->dump(llvm::outs());
935 llvm::outs() << "\nLayout: ";
936 RL->print(llvm::outs());
939 #ifndef NDEBUG
940 // Verify that the computed LLVM struct size matches the AST layout size.
941 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);
943 uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize());
944 assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) &&
945 "Type size mismatch!");
947 if (BaseTy) {
948 CharUnits NonVirtualSize = Layout.getNonVirtualSize();
950 uint64_t AlignedNonVirtualTypeSizeInBits =
951 getContext().toBits(NonVirtualSize);
953 assert(AlignedNonVirtualTypeSizeInBits ==
954 getDataLayout().getTypeAllocSizeInBits(BaseTy) &&
955 "Type size mismatch!");
958 // Verify that the LLVM and AST field offsets agree.
959 llvm::StructType *ST = RL->getLLVMType();
960 const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST);
962 const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
963 RecordDecl::field_iterator it = D->field_begin();
964 for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
965 const FieldDecl *FD = *it;
967 // Ignore zero-sized fields.
968 if (FD->isZeroSize(getContext()))
969 continue;
971 // For non-bit-fields, just check that the LLVM struct offset matches the
972 // AST offset.
973 if (!FD->isBitField()) {
974 unsigned FieldNo = RL->getLLVMFieldNo(FD);
975 assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
976 "Invalid field offset!");
977 continue;
980 // Ignore unnamed bit-fields.
981 if (!FD->getDeclName())
982 continue;
984 const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
985 llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD));
987 // Unions have overlapping elements dictating their layout, but for
988 // non-unions we can verify that this section of the layout is the exact
989 // expected size.
990 if (D->isUnion()) {
991 // For unions we verify that the start is zero and the size
992 // is in-bounds. However, on BE systems, the offset may be non-zero, but
993 // the size + offset should match the storage size in that case as it
994 // "starts" at the back.
995 if (getDataLayout().isBigEndian())
996 assert(static_cast<unsigned>(Info.Offset + Info.Size) ==
997 Info.StorageSize &&
998 "Big endian union bitfield does not end at the back");
999 else
1000 assert(Info.Offset == 0 &&
1001 "Little endian union bitfield with a non-zero offset");
1002 assert(Info.StorageSize <= SL->getSizeInBits() &&
1003 "Union not large enough for bitfield storage");
1004 } else {
1005 assert((Info.StorageSize ==
1006 getDataLayout().getTypeAllocSizeInBits(ElementTy) ||
1007 Info.VolatileStorageSize ==
1008 getDataLayout().getTypeAllocSizeInBits(ElementTy)) &&
1009 "Storage size does not match the element type size");
1011 assert(Info.Size > 0 && "Empty bitfield!");
1012 assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize &&
1013 "Bitfield outside of its allocated storage");
1015 #endif
1017 return RL;
1020 void CGRecordLayout::print(raw_ostream &OS) const {
1021 OS << "<CGRecordLayout\n";
1022 OS << " LLVMType:" << *CompleteObjectType << "\n";
1023 if (BaseSubobjectType)
1024 OS << " NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n";
1025 OS << " IsZeroInitializable:" << IsZeroInitializable << "\n";
1026 OS << " BitFields:[\n";
1028 // Print bit-field infos in declaration order.
1029 std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
1030 for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
1031 it = BitFields.begin(), ie = BitFields.end();
1032 it != ie; ++it) {
1033 const RecordDecl *RD = it->first->getParent();
1034 unsigned Index = 0;
1035 for (RecordDecl::field_iterator
1036 it2 = RD->field_begin(); *it2 != it->first; ++it2)
1037 ++Index;
1038 BFIs.push_back(std::make_pair(Index, &it->second));
1040 llvm::array_pod_sort(BFIs.begin(), BFIs.end());
1041 for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
1042 OS.indent(4);
1043 BFIs[i].second->print(OS);
1044 OS << "\n";
1047 OS << "]>\n";
1050 LLVM_DUMP_METHOD void CGRecordLayout::dump() const {
1051 print(llvm::errs());
1054 void CGBitFieldInfo::print(raw_ostream &OS) const {
1055 OS << "<CGBitFieldInfo"
1056 << " Offset:" << Offset << " Size:" << Size << " IsSigned:" << IsSigned
1057 << " StorageSize:" << StorageSize
1058 << " StorageOffset:" << StorageOffset.getQuantity()
1059 << " VolatileOffset:" << VolatileOffset
1060 << " VolatileStorageSize:" << VolatileStorageSize
1061 << " VolatileStorageOffset:" << VolatileStorageOffset.getQuantity() << ">";
1064 LLVM_DUMP_METHOD void CGBitFieldInfo::dump() const {
1065 print(llvm::errs());