1 //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder ----*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Builder implementation for CGRecordLayout objects.
11 //===----------------------------------------------------------------------===//
13 #include "CGRecordLayout.h"
15 #include "CodeGenTypes.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Type.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 using namespace clang
;
30 using namespace CodeGen
;
33 /// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an
34 /// llvm::Type. Some of the lowering is straightforward, some is not. Here we
35 /// detail some of the complexities and weirdnesses here.
36 /// * LLVM does not have unions - Unions can, in theory be represented by any
37 /// llvm::Type with correct size. We choose a field via a specific heuristic
38 /// and add padding if necessary.
39 /// * LLVM does not have bitfields - Bitfields are collected into contiguous
40 /// runs and allocated as a single storage type for the run. ASTRecordLayout
41 /// contains enough information to determine where the runs break. Microsoft
42 /// and Itanium follow different rules and use different codepaths.
43 /// * It is desired that, when possible, bitfields use the appropriate iN type
44 /// when lowered to llvm types. For example unsigned x : 24 gets lowered to
45 /// i24. This isn't always possible because i24 has storage size of 32 bit
46 /// and if it is possible to use that extra byte of padding we must use
47 /// [i8 x 3] instead of i24. The function clipTailPadding does this.
48 /// C++ examples that require clipping:
49 /// struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3
50 /// struct A { int a : 24; }; // a must be clipped because a struct like B
51 // could exist: struct B : A { char b; }; // b goes at offset 3
52 /// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized
53 /// fields. The existing asserts suggest that LLVM assumes that *every* field
54 /// has an underlying storage type. Therefore empty structures containing
55 /// zero sized subobjects such as empty records or zero sized arrays still get
56 /// a zero sized (empty struct) storage type.
57 /// * Clang reads the complete type rather than the base type when generating
58 /// code to access fields. Bitfields in tail position with tail padding may
59 /// be clipped in the base class but not the complete class (we may discover
60 /// that the tail padding is not used in the complete class.) However,
61 /// because LLVM reads from the complete type it can generate incorrect code
62 /// if we do not clip the tail padding off of the bitfield in the complete
63 /// layout. This introduces a somewhat awkward extra unnecessary clip stage.
64 /// The location of the clip is stored internally as a sentinel of type
65 /// SCISSOR. If LLVM were updated to read base types (which it probably
66 /// should because locations of things such as VBases are bogus in the llvm
67 /// type anyway) then we could eliminate the SCISSOR.
68 /// * Itanium allows nearly empty primary virtual bases. These bases don't get
69 /// get their own storage because they're laid out as part of another base
70 /// or at the beginning of the structure. Determining if a VBase actually
71 /// gets storage awkwardly involves a walk of all bases.
72 /// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable.
73 struct CGRecordLowering
{
74 // MemberInfo is a helper structure that contains information about a record
75 // member. In additional to the standard member types, there exists a
76 // sentinel member type that ensures correct rounding.
79 enum InfoKind
{ VFPtr
, VBPtr
, Field
, Base
, VBase
, Scissor
} Kind
;
83 const CXXRecordDecl
*RD
;
85 MemberInfo(CharUnits Offset
, InfoKind Kind
, llvm::Type
*Data
,
86 const FieldDecl
*FD
= nullptr)
87 : Offset(Offset
), Kind(Kind
), Data(Data
), FD(FD
) {}
88 MemberInfo(CharUnits Offset
, InfoKind Kind
, llvm::Type
*Data
,
89 const CXXRecordDecl
*RD
)
90 : Offset(Offset
), Kind(Kind
), Data(Data
), RD(RD
) {}
91 // MemberInfos are sorted so we define a < operator.
92 bool operator <(const MemberInfo
& a
) const { return Offset
< a
.Offset
; }
95 CGRecordLowering(CodeGenTypes
&Types
, const RecordDecl
*D
, bool Packed
);
96 // Short helper routines.
97 /// Constructs a MemberInfo instance from an offset and llvm::Type *.
98 MemberInfo
StorageInfo(CharUnits Offset
, llvm::Type
*Data
) {
99 return MemberInfo(Offset
, MemberInfo::Field
, Data
);
102 /// The Microsoft bitfield layout rule allocates discrete storage
103 /// units of the field's formal type and only combines adjacent
104 /// fields of the same formal type. We want to emit a layout with
105 /// these discrete storage units instead of combining them into a
107 bool isDiscreteBitFieldABI() {
108 return Context
.getTargetInfo().getCXXABI().isMicrosoft() ||
109 D
->isMsStruct(Context
);
112 /// Helper function to check if we are targeting AAPCS.
113 bool isAAPCS() const {
114 return Context
.getTargetInfo().getABI().startswith("aapcs");
117 /// Helper function to check if the target machine is BigEndian.
118 bool isBE() const { return Context
.getTargetInfo().isBigEndian(); }
120 /// The Itanium base layout rule allows virtual bases to overlap
121 /// other bases, which complicates layout in specific ways.
123 /// Note specifically that the ms_struct attribute doesn't change this.
124 bool isOverlappingVBaseABI() {
125 return !Context
.getTargetInfo().getCXXABI().isMicrosoft();
128 /// Wraps llvm::Type::getIntNTy with some implicit arguments.
129 llvm::Type
*getIntNType(uint64_t NumBits
) {
130 unsigned AlignedBits
= llvm::alignTo(NumBits
, Context
.getCharWidth());
131 return llvm::Type::getIntNTy(Types
.getLLVMContext(), AlignedBits
);
133 /// Get the LLVM type sized as one character unit.
134 llvm::Type
*getCharType() {
135 return llvm::Type::getIntNTy(Types
.getLLVMContext(),
136 Context
.getCharWidth());
138 /// Gets an llvm type of size NumChars and alignment 1.
139 llvm::Type
*getByteArrayType(CharUnits NumChars
) {
140 assert(!NumChars
.isZero() && "Empty byte arrays aren't allowed.");
141 llvm::Type
*Type
= getCharType();
142 return NumChars
== CharUnits::One() ? Type
:
143 (llvm::Type
*)llvm::ArrayType::get(Type
, NumChars
.getQuantity());
145 /// Gets the storage type for a field decl and handles storage
146 /// for itanium bitfields that are smaller than their declared type.
147 llvm::Type
*getStorageType(const FieldDecl
*FD
) {
148 llvm::Type
*Type
= Types
.ConvertTypeForMem(FD
->getType());
149 if (!FD
->isBitField()) return Type
;
150 if (isDiscreteBitFieldABI()) return Type
;
151 return getIntNType(std::min(FD
->getBitWidthValue(Context
),
152 (unsigned)Context
.toBits(getSize(Type
))));
154 /// Gets the llvm Basesubobject type from a CXXRecordDecl.
155 llvm::Type
*getStorageType(const CXXRecordDecl
*RD
) {
156 return Types
.getCGRecordLayout(RD
).getBaseSubobjectLLVMType();
158 CharUnits
bitsToCharUnits(uint64_t BitOffset
) {
159 return Context
.toCharUnitsFromBits(BitOffset
);
161 CharUnits
getSize(llvm::Type
*Type
) {
162 return CharUnits::fromQuantity(DataLayout
.getTypeAllocSize(Type
));
164 CharUnits
getAlignment(llvm::Type
*Type
) {
165 return CharUnits::fromQuantity(DataLayout
.getABITypeAlign(Type
));
167 bool isZeroInitializable(const FieldDecl
*FD
) {
168 return Types
.isZeroInitializable(FD
->getType());
170 bool isZeroInitializable(const RecordDecl
*RD
) {
171 return Types
.isZeroInitializable(RD
);
173 void appendPaddingBytes(CharUnits Size
) {
175 FieldTypes
.push_back(getByteArrayType(Size
));
177 uint64_t getFieldBitOffset(const FieldDecl
*FD
) {
178 return Layout
.getFieldOffset(FD
->getFieldIndex());
181 void setBitFieldInfo(const FieldDecl
*FD
, CharUnits StartOffset
,
182 llvm::Type
*StorageType
);
183 /// Lowers an ASTRecordLayout to a llvm type.
184 void lower(bool NonVirtualBaseType
);
185 void lowerUnion(bool isNoUniqueAddress
);
186 void accumulateFields();
187 void accumulateBitFields(RecordDecl::field_iterator Field
,
188 RecordDecl::field_iterator FieldEnd
);
189 void computeVolatileBitfields();
190 void accumulateBases();
191 void accumulateVPtrs();
192 void accumulateVBases();
193 /// Recursively searches all of the bases to find out if a vbase is
194 /// not the primary vbase of some base class.
195 bool hasOwnStorage(const CXXRecordDecl
*Decl
, const CXXRecordDecl
*Query
);
196 void calculateZeroInit();
197 /// Lowers bitfield storage types to I8 arrays for bitfields with tail
198 /// padding that is or can potentially be used.
199 void clipTailPadding();
200 /// Determines if we need a packed llvm struct.
201 void determinePacked(bool NVBaseType
);
202 /// Inserts padding everywhere it's needed.
203 void insertPadding();
204 /// Fills out the structures that are ultimately consumed.
205 void fillOutputFields();
206 // Input memoization fields.
208 const ASTContext
&Context
;
210 const CXXRecordDecl
*RD
;
211 const ASTRecordLayout
&Layout
;
212 const llvm::DataLayout
&DataLayout
;
213 // Helpful intermediate data-structures.
214 std::vector
<MemberInfo
> Members
;
215 // Output fields, consumed by CodeGenTypes::ComputeRecordLayout.
216 SmallVector
<llvm::Type
*, 16> FieldTypes
;
217 llvm::DenseMap
<const FieldDecl
*, unsigned> Fields
;
218 llvm::DenseMap
<const FieldDecl
*, CGBitFieldInfo
> BitFields
;
219 llvm::DenseMap
<const CXXRecordDecl
*, unsigned> NonVirtualBases
;
220 llvm::DenseMap
<const CXXRecordDecl
*, unsigned> VirtualBases
;
221 bool IsZeroInitializable
: 1;
222 bool IsZeroInitializableAsBase
: 1;
225 CGRecordLowering(const CGRecordLowering
&) = delete;
226 void operator =(const CGRecordLowering
&) = delete;
230 CGRecordLowering::CGRecordLowering(CodeGenTypes
&Types
, const RecordDecl
*D
,
232 : Types(Types
), Context(Types
.getContext()), D(D
),
233 RD(dyn_cast
<CXXRecordDecl
>(D
)),
234 Layout(Types
.getContext().getASTRecordLayout(D
)),
235 DataLayout(Types
.getDataLayout()), IsZeroInitializable(true),
236 IsZeroInitializableAsBase(true), Packed(Packed
) {}
238 void CGRecordLowering::setBitFieldInfo(
239 const FieldDecl
*FD
, CharUnits StartOffset
, llvm::Type
*StorageType
) {
240 CGBitFieldInfo
&Info
= BitFields
[FD
->getCanonicalDecl()];
241 Info
.IsSigned
= FD
->getType()->isSignedIntegerOrEnumerationType();
242 Info
.Offset
= (unsigned)(getFieldBitOffset(FD
) - Context
.toBits(StartOffset
));
243 Info
.Size
= FD
->getBitWidthValue(Context
);
244 Info
.StorageSize
= (unsigned)DataLayout
.getTypeAllocSizeInBits(StorageType
);
245 Info
.StorageOffset
= StartOffset
;
246 if (Info
.Size
> Info
.StorageSize
)
247 Info
.Size
= Info
.StorageSize
;
248 // Reverse the bit offsets for big endian machines. Because we represent
249 // a bitfield as a single large integer load, we can imagine the bits
250 // counting from the most-significant-bit instead of the
251 // least-significant-bit.
252 if (DataLayout
.isBigEndian())
253 Info
.Offset
= Info
.StorageSize
- (Info
.Offset
+ Info
.Size
);
255 Info
.VolatileStorageSize
= 0;
256 Info
.VolatileOffset
= 0;
257 Info
.VolatileStorageOffset
= CharUnits::Zero();
260 void CGRecordLowering::lower(bool NVBaseType
) {
261 // The lowering process implemented in this function takes a variety of
262 // carefully ordered phases.
263 // 1) Store all members (fields and bases) in a list and sort them by offset.
264 // 2) Add a 1-byte capstone member at the Size of the structure.
265 // 3) Clip bitfield storages members if their tail padding is or might be
266 // used by another field or base. The clipping process uses the capstone
267 // by treating it as another object that occurs after the record.
268 // 4) Determine if the llvm-struct requires packing. It's important that this
269 // phase occur after clipping, because clipping changes the llvm type.
270 // This phase reads the offset of the capstone when determining packedness
271 // and updates the alignment of the capstone to be equal of the alignment
272 // of the record after doing so.
273 // 5) Insert padding everywhere it is needed. This phase requires 'Packed' to
274 // have been computed and needs to know the alignment of the record in
275 // order to understand if explicit tail padding is needed.
276 // 6) Remove the capstone, we don't need it anymore.
277 // 7) Determine if this record can be zero-initialized. This phase could have
278 // been placed anywhere after phase 1.
279 // 8) Format the complete list of members in a way that can be consumed by
280 // CodeGenTypes::ComputeRecordLayout.
281 CharUnits Size
= NVBaseType
? Layout
.getNonVirtualSize() : Layout
.getSize();
283 lowerUnion(NVBaseType
);
284 computeVolatileBitfields();
292 if (Members
.empty()) {
293 appendPaddingBytes(Size
);
294 computeVolatileBitfields();
300 llvm::stable_sort(Members
);
301 Members
.push_back(StorageInfo(Size
, getIntNType(8)));
303 determinePacked(NVBaseType
);
308 computeVolatileBitfields();
311 void CGRecordLowering::lowerUnion(bool isNoUniqueAddress
) {
312 CharUnits LayoutSize
=
313 isNoUniqueAddress
? Layout
.getDataSize() : Layout
.getSize();
314 llvm::Type
*StorageType
= nullptr;
315 bool SeenNamedMember
= false;
316 // Iterate through the fields setting bitFieldInfo and the Fields array. Also
317 // locate the "most appropriate" storage type. The heuristic for finding the
318 // storage type isn't necessary, the first (non-0-length-bitfield) field's
319 // type would work fine and be simpler but would be different than what we've
320 // been doing and cause lit tests to change.
321 for (const auto *Field
: D
->fields()) {
322 if (Field
->isBitField()) {
323 if (Field
->isZeroLengthBitField(Context
))
325 llvm::Type
*FieldType
= getStorageType(Field
);
326 if (LayoutSize
< getSize(FieldType
))
327 FieldType
= getByteArrayType(LayoutSize
);
328 setBitFieldInfo(Field
, CharUnits::Zero(), FieldType
);
330 Fields
[Field
->getCanonicalDecl()] = 0;
331 llvm::Type
*FieldType
= getStorageType(Field
);
332 // Compute zero-initializable status.
333 // This union might not be zero initialized: it may contain a pointer to
334 // data member which might have some exotic initialization sequence.
335 // If this is the case, then we aught not to try and come up with a "better"
336 // type, it might not be very easy to come up with a Constant which
337 // correctly initializes it.
338 if (!SeenNamedMember
) {
339 SeenNamedMember
= Field
->getIdentifier();
340 if (!SeenNamedMember
)
341 if (const auto *FieldRD
= Field
->getType()->getAsRecordDecl())
342 SeenNamedMember
= FieldRD
->findFirstNamedDataMember();
343 if (SeenNamedMember
&& !isZeroInitializable(Field
)) {
344 IsZeroInitializable
= IsZeroInitializableAsBase
= false;
345 StorageType
= FieldType
;
348 // Because our union isn't zero initializable, we won't be getting a better
350 if (!IsZeroInitializable
)
352 // Conditionally update our storage type if we've got a new "better" one.
354 getAlignment(FieldType
) > getAlignment(StorageType
) ||
355 (getAlignment(FieldType
) == getAlignment(StorageType
) &&
356 getSize(FieldType
) > getSize(StorageType
)))
357 StorageType
= FieldType
;
359 // If we have no storage type just pad to the appropriate size and return.
361 return appendPaddingBytes(LayoutSize
);
362 // If our storage size was bigger than our required size (can happen in the
363 // case of packed bitfields on Itanium) then just use an I8 array.
364 if (LayoutSize
< getSize(StorageType
))
365 StorageType
= getByteArrayType(LayoutSize
);
366 FieldTypes
.push_back(StorageType
);
367 appendPaddingBytes(LayoutSize
- getSize(StorageType
));
368 // Set packed if we need it.
369 const auto StorageAlignment
= getAlignment(StorageType
);
370 assert((Layout
.getSize() % StorageAlignment
== 0 ||
371 Layout
.getDataSize() % StorageAlignment
) &&
372 "Union's standard layout and no_unique_address layout must agree on "
374 if (Layout
.getDataSize() % StorageAlignment
)
378 void CGRecordLowering::accumulateFields() {
379 for (RecordDecl::field_iterator Field
= D
->field_begin(),
380 FieldEnd
= D
->field_end();
381 Field
!= FieldEnd
;) {
382 if (Field
->isBitField()) {
383 RecordDecl::field_iterator Start
= Field
;
384 // Iterate to gather the list of bitfields.
385 for (++Field
; Field
!= FieldEnd
&& Field
->isBitField(); ++Field
);
386 accumulateBitFields(Start
, Field
);
387 } else if (!Field
->isZeroSize(Context
)) {
388 // Use base subobject layout for the potentially-overlapping field,
389 // as it is done in RecordLayoutBuilder
390 Members
.push_back(MemberInfo(
391 bitsToCharUnits(getFieldBitOffset(*Field
)), MemberInfo::Field
,
392 Field
->isPotentiallyOverlapping()
393 ? getStorageType(Field
->getType()->getAsCXXRecordDecl())
394 : getStorageType(*Field
),
404 CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field
,
405 RecordDecl::field_iterator FieldEnd
) {
406 // Run stores the first element of the current run of bitfields. FieldEnd is
407 // used as a special value to note that we don't have a current run. A
408 // bitfield run is a contiguous collection of bitfields that can be stored in
409 // the same storage block. Zero-sized bitfields and bitfields that would
410 // cross an alignment boundary break a run and start a new one.
411 RecordDecl::field_iterator Run
= FieldEnd
;
412 // Tail is the offset of the first bit off the end of the current run. It's
413 // used to determine if the ASTRecordLayout is treating these two bitfields as
414 // contiguous. StartBitOffset is offset of the beginning of the Run.
415 uint64_t StartBitOffset
, Tail
= 0;
416 if (isDiscreteBitFieldABI()) {
417 for (; Field
!= FieldEnd
; ++Field
) {
418 uint64_t BitOffset
= getFieldBitOffset(*Field
);
419 // Zero-width bitfields end runs.
420 if (Field
->isZeroLengthBitField(Context
)) {
425 Types
.ConvertTypeForMem(Field
->getType(), /*ForBitField=*/true);
426 // If we don't have a run yet, or don't live within the previous run's
427 // allocated storage then we allocate some storage and start a new run.
428 if (Run
== FieldEnd
|| BitOffset
>= Tail
) {
430 StartBitOffset
= BitOffset
;
431 Tail
= StartBitOffset
+ DataLayout
.getTypeAllocSizeInBits(Type
);
432 // Add the storage member to the record. This must be added to the
433 // record before the bitfield members so that it gets laid out before
434 // the bitfields it contains get laid out.
435 Members
.push_back(StorageInfo(bitsToCharUnits(StartBitOffset
), Type
));
437 // Bitfields get the offset of their storage but come afterward and remain
438 // there after a stable sort.
439 Members
.push_back(MemberInfo(bitsToCharUnits(StartBitOffset
),
440 MemberInfo::Field
, nullptr, *Field
));
445 // Check if OffsetInRecord (the size in bits of the current run) is better
446 // as a single field run. When OffsetInRecord has legal integer width, and
447 // its bitfield offset is naturally aligned, it is better to make the
448 // bitfield a separate storage component so as it can be accessed directly
450 auto IsBetterAsSingleFieldRun
= [&](uint64_t OffsetInRecord
,
451 uint64_t StartBitOffset
) {
452 if (!Types
.getCodeGenOpts().FineGrainedBitfieldAccesses
)
454 if (OffsetInRecord
< 8 || !llvm::isPowerOf2_64(OffsetInRecord
) ||
455 !DataLayout
.fitsInLegalInteger(OffsetInRecord
))
457 // Make sure StartBitOffset is naturally aligned if it is treated as an
460 Context
.toBits(getAlignment(getIntNType(OffsetInRecord
))) !=
466 // The start field is better as a single field run.
467 bool StartFieldAsSingleRun
= false;
469 // Check to see if we need to start a new run.
470 if (Run
== FieldEnd
) {
471 // If we're out of fields, return.
472 if (Field
== FieldEnd
)
474 // Any non-zero-length bitfield can start a new run.
475 if (!Field
->isZeroLengthBitField(Context
)) {
477 StartBitOffset
= getFieldBitOffset(*Field
);
478 Tail
= StartBitOffset
+ Field
->getBitWidthValue(Context
);
479 StartFieldAsSingleRun
= IsBetterAsSingleFieldRun(Tail
- StartBitOffset
,
486 // If the start field of a new run is better as a single run, or
487 // if current field (or consecutive fields) is better as a single run, or
488 // if current field has zero width bitfield and either
489 // UseZeroLengthBitfieldAlignment or UseBitFieldTypeAlignment is set to
491 // if the offset of current field is inconsistent with the offset of
492 // previous field plus its offset,
493 // skip the block below and go ahead to emit the storage.
494 // Otherwise, try to add bitfields to the run.
495 if (!StartFieldAsSingleRun
&& Field
!= FieldEnd
&&
496 !IsBetterAsSingleFieldRun(Tail
- StartBitOffset
, StartBitOffset
) &&
497 (!Field
->isZeroLengthBitField(Context
) ||
498 (!Context
.getTargetInfo().useZeroLengthBitfieldAlignment() &&
499 !Context
.getTargetInfo().useBitFieldTypeAlignment())) &&
500 Tail
== getFieldBitOffset(*Field
)) {
501 Tail
+= Field
->getBitWidthValue(Context
);
506 // We've hit a break-point in the run and need to emit a storage field.
507 llvm::Type
*Type
= getIntNType(Tail
- StartBitOffset
);
508 // Add the storage member to the record and set the bitfield info for all of
509 // the bitfields in the run. Bitfields get the offset of their storage but
510 // come afterward and remain there after a stable sort.
511 Members
.push_back(StorageInfo(bitsToCharUnits(StartBitOffset
), Type
));
512 for (; Run
!= Field
; ++Run
)
513 Members
.push_back(MemberInfo(bitsToCharUnits(StartBitOffset
),
514 MemberInfo::Field
, nullptr, *Run
));
516 StartFieldAsSingleRun
= false;
520 void CGRecordLowering::accumulateBases() {
521 // If we've got a primary virtual base, we need to add it with the bases.
522 if (Layout
.isPrimaryBaseVirtual()) {
523 const CXXRecordDecl
*BaseDecl
= Layout
.getPrimaryBase();
524 Members
.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base
,
525 getStorageType(BaseDecl
), BaseDecl
));
527 // Accumulate the non-virtual bases.
528 for (const auto &Base
: RD
->bases()) {
529 if (Base
.isVirtual())
532 // Bases can be zero-sized even if not technically empty if they
533 // contain only a trailing array member.
534 const CXXRecordDecl
*BaseDecl
= Base
.getType()->getAsCXXRecordDecl();
535 if (!BaseDecl
->isEmpty() &&
536 !Context
.getASTRecordLayout(BaseDecl
).getNonVirtualSize().isZero())
537 Members
.push_back(MemberInfo(Layout
.getBaseClassOffset(BaseDecl
),
538 MemberInfo::Base
, getStorageType(BaseDecl
), BaseDecl
));
542 /// The AAPCS that defines that, when possible, bit-fields should
543 /// be accessed using containers of the declared type width:
544 /// When a volatile bit-field is read, and its container does not overlap with
545 /// any non-bit-field member or any zero length bit-field member, its container
546 /// must be read exactly once using the access width appropriate to the type of
547 /// the container. When a volatile bit-field is written, and its container does
548 /// not overlap with any non-bit-field member or any zero-length bit-field
549 /// member, its container must be read exactly once and written exactly once
550 /// using the access width appropriate to the type of the container. The two
551 /// accesses are not atomic.
553 /// Enforcing the width restriction can be disabled using
554 /// -fno-aapcs-bitfield-width.
555 void CGRecordLowering::computeVolatileBitfields() {
556 if (!isAAPCS() || !Types
.getCodeGenOpts().AAPCSBitfieldWidth
)
559 for (auto &I
: BitFields
) {
560 const FieldDecl
*Field
= I
.first
;
561 CGBitFieldInfo
&Info
= I
.second
;
562 llvm::Type
*ResLTy
= Types
.ConvertTypeForMem(Field
->getType());
563 // If the record alignment is less than the type width, we can't enforce a
564 // aligned load, bail out.
565 if ((uint64_t)(Context
.toBits(Layout
.getAlignment())) <
566 ResLTy
->getPrimitiveSizeInBits())
568 // CGRecordLowering::setBitFieldInfo() pre-adjusts the bit-field offsets
569 // for big-endian targets, but it assumes a container of width
570 // Info.StorageSize. Since AAPCS uses a different container size (width
571 // of the type), we first undo that calculation here and redo it once
572 // the bit-field offset within the new container is calculated.
573 const unsigned OldOffset
=
574 isBE() ? Info
.StorageSize
- (Info
.Offset
+ Info
.Size
) : Info
.Offset
;
575 // Offset to the bit-field from the beginning of the struct.
576 const unsigned AbsoluteOffset
=
577 Context
.toBits(Info
.StorageOffset
) + OldOffset
;
579 // Container size is the width of the bit-field type.
580 const unsigned StorageSize
= ResLTy
->getPrimitiveSizeInBits();
581 // Nothing to do if the access uses the desired
582 // container width and is naturally aligned.
583 if (Info
.StorageSize
== StorageSize
&& (OldOffset
% StorageSize
== 0))
586 // Offset within the container.
587 unsigned Offset
= AbsoluteOffset
& (StorageSize
- 1);
588 // Bail out if an aligned load of the container cannot cover the entire
589 // bit-field. This can happen for example, if the bit-field is part of a
590 // packed struct. AAPCS does not define access rules for such cases, we let
591 // clang to follow its own rules.
592 if (Offset
+ Info
.Size
> StorageSize
)
595 // Re-adjust offsets for big-endian targets.
597 Offset
= StorageSize
- (Offset
+ Info
.Size
);
599 const CharUnits StorageOffset
=
600 Context
.toCharUnitsFromBits(AbsoluteOffset
& ~(StorageSize
- 1));
601 const CharUnits End
= StorageOffset
+
602 Context
.toCharUnitsFromBits(StorageSize
) -
605 const ASTRecordLayout
&Layout
=
606 Context
.getASTRecordLayout(Field
->getParent());
607 // If we access outside memory outside the record, than bail out.
608 const CharUnits RecordSize
= Layout
.getSize();
609 if (End
>= RecordSize
)
612 // Bail out if performing this load would access non-bit-fields members.
613 bool Conflict
= false;
614 for (const auto *F
: D
->fields()) {
615 // Allow sized bit-fields overlaps.
616 if (F
->isBitField() && !F
->isZeroLengthBitField(Context
))
619 const CharUnits FOffset
= Context
.toCharUnitsFromBits(
620 Layout
.getFieldOffset(F
->getFieldIndex()));
622 // As C11 defines, a zero sized bit-field defines a barrier, so
623 // fields after and before it should be race condition free.
624 // The AAPCS acknowledges it and imposes no restritions when the
625 // natural container overlaps a zero-length bit-field.
626 if (F
->isZeroLengthBitField(Context
)) {
627 if (End
> FOffset
&& StorageOffset
< FOffset
) {
633 const CharUnits FEnd
=
635 Context
.toCharUnitsFromBits(
636 Types
.ConvertTypeForMem(F
->getType())->getPrimitiveSizeInBits()) -
638 // If no overlap, continue.
639 if (End
< FOffset
|| FEnd
< StorageOffset
)
642 // The desired load overlaps a non-bit-field member, bail out.
649 // Write the new bit-field access parameters.
650 // As the storage offset now is defined as the number of elements from the
651 // start of the structure, we should divide the Offset by the element size.
652 Info
.VolatileStorageOffset
=
653 StorageOffset
/ Context
.toCharUnitsFromBits(StorageSize
).getQuantity();
654 Info
.VolatileStorageSize
= StorageSize
;
655 Info
.VolatileOffset
= Offset
;
659 void CGRecordLowering::accumulateVPtrs() {
660 if (Layout
.hasOwnVFPtr())
662 MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr
,
663 llvm::PointerType::getUnqual(Types
.getLLVMContext())));
664 if (Layout
.hasOwnVBPtr())
666 MemberInfo(Layout
.getVBPtrOffset(), MemberInfo::VBPtr
,
667 llvm::PointerType::getUnqual(Types
.getLLVMContext())));
670 void CGRecordLowering::accumulateVBases() {
671 CharUnits ScissorOffset
= Layout
.getNonVirtualSize();
672 // In the itanium ABI, it's possible to place a vbase at a dsize that is
673 // smaller than the nvsize. Here we check to see if such a base is placed
674 // before the nvsize and set the scissor offset to that, instead of the
676 if (isOverlappingVBaseABI())
677 for (const auto &Base
: RD
->vbases()) {
678 const CXXRecordDecl
*BaseDecl
= Base
.getType()->getAsCXXRecordDecl();
679 if (BaseDecl
->isEmpty())
681 // If the vbase is a primary virtual base of some base, then it doesn't
682 // get its own storage location but instead lives inside of that base.
683 if (Context
.isNearlyEmpty(BaseDecl
) && !hasOwnStorage(RD
, BaseDecl
))
685 ScissorOffset
= std::min(ScissorOffset
,
686 Layout
.getVBaseClassOffset(BaseDecl
));
688 Members
.push_back(MemberInfo(ScissorOffset
, MemberInfo::Scissor
, nullptr,
690 for (const auto &Base
: RD
->vbases()) {
691 const CXXRecordDecl
*BaseDecl
= Base
.getType()->getAsCXXRecordDecl();
692 if (BaseDecl
->isEmpty())
694 CharUnits Offset
= Layout
.getVBaseClassOffset(BaseDecl
);
695 // If the vbase is a primary virtual base of some base, then it doesn't
696 // get its own storage location but instead lives inside of that base.
697 if (isOverlappingVBaseABI() &&
698 Context
.isNearlyEmpty(BaseDecl
) &&
699 !hasOwnStorage(RD
, BaseDecl
)) {
700 Members
.push_back(MemberInfo(Offset
, MemberInfo::VBase
, nullptr,
704 // If we've got a vtordisp, add it as a storage type.
705 if (Layout
.getVBaseOffsetsMap().find(BaseDecl
)->second
.hasVtorDisp())
706 Members
.push_back(StorageInfo(Offset
- CharUnits::fromQuantity(4),
708 Members
.push_back(MemberInfo(Offset
, MemberInfo::VBase
,
709 getStorageType(BaseDecl
), BaseDecl
));
713 bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl
*Decl
,
714 const CXXRecordDecl
*Query
) {
715 const ASTRecordLayout
&DeclLayout
= Context
.getASTRecordLayout(Decl
);
716 if (DeclLayout
.isPrimaryBaseVirtual() && DeclLayout
.getPrimaryBase() == Query
)
718 for (const auto &Base
: Decl
->bases())
719 if (!hasOwnStorage(Base
.getType()->getAsCXXRecordDecl(), Query
))
724 void CGRecordLowering::calculateZeroInit() {
725 for (std::vector
<MemberInfo
>::const_iterator Member
= Members
.begin(),
726 MemberEnd
= Members
.end();
727 IsZeroInitializableAsBase
&& Member
!= MemberEnd
; ++Member
) {
728 if (Member
->Kind
== MemberInfo::Field
) {
729 if (!Member
->FD
|| isZeroInitializable(Member
->FD
))
731 IsZeroInitializable
= IsZeroInitializableAsBase
= false;
732 } else if (Member
->Kind
== MemberInfo::Base
||
733 Member
->Kind
== MemberInfo::VBase
) {
734 if (isZeroInitializable(Member
->RD
))
736 IsZeroInitializable
= false;
737 if (Member
->Kind
== MemberInfo::Base
)
738 IsZeroInitializableAsBase
= false;
743 void CGRecordLowering::clipTailPadding() {
744 std::vector
<MemberInfo
>::iterator Prior
= Members
.begin();
745 CharUnits Tail
= getSize(Prior
->Data
);
746 for (std::vector
<MemberInfo
>::iterator Member
= Prior
+ 1,
747 MemberEnd
= Members
.end();
748 Member
!= MemberEnd
; ++Member
) {
749 // Only members with data and the scissor can cut into tail padding.
750 if (!Member
->Data
&& Member
->Kind
!= MemberInfo::Scissor
)
752 if (Member
->Offset
< Tail
) {
753 assert(Prior
->Kind
== MemberInfo::Field
&&
754 "Only storage fields have tail padding!");
755 if (!Prior
->FD
|| Prior
->FD
->isBitField())
756 Prior
->Data
= getByteArrayType(bitsToCharUnits(llvm::alignTo(
757 cast
<llvm::IntegerType
>(Prior
->Data
)->getIntegerBitWidth(), 8)));
759 assert(Prior
->FD
->hasAttr
<NoUniqueAddressAttr
>() &&
760 "should not have reused this field's tail padding");
761 Prior
->Data
= getByteArrayType(
762 Context
.getTypeInfoDataSizeInChars(Prior
->FD
->getType()).Width
);
767 Tail
= Prior
->Offset
+ getSize(Prior
->Data
);
771 void CGRecordLowering::determinePacked(bool NVBaseType
) {
774 CharUnits Alignment
= CharUnits::One();
775 CharUnits NVAlignment
= CharUnits::One();
777 !NVBaseType
&& RD
? Layout
.getNonVirtualSize() : CharUnits::Zero();
778 for (std::vector
<MemberInfo
>::const_iterator Member
= Members
.begin(),
779 MemberEnd
= Members
.end();
780 Member
!= MemberEnd
; ++Member
) {
783 // If any member falls at an offset that it not a multiple of its alignment,
784 // then the entire record must be packed.
785 if (Member
->Offset
% getAlignment(Member
->Data
))
787 if (Member
->Offset
< NVSize
)
788 NVAlignment
= std::max(NVAlignment
, getAlignment(Member
->Data
));
789 Alignment
= std::max(Alignment
, getAlignment(Member
->Data
));
791 // If the size of the record (the capstone's offset) is not a multiple of the
792 // record's alignment, it must be packed.
793 if (Members
.back().Offset
% Alignment
)
795 // If the non-virtual sub-object is not a multiple of the non-virtual
796 // sub-object's alignment, it must be packed. We cannot have a packed
797 // non-virtual sub-object and an unpacked complete object or vise versa.
798 if (NVSize
% NVAlignment
)
800 // Update the alignment of the sentinel.
802 Members
.back().Data
= getIntNType(Context
.toBits(Alignment
));
805 void CGRecordLowering::insertPadding() {
806 std::vector
<std::pair
<CharUnits
, CharUnits
> > Padding
;
807 CharUnits Size
= CharUnits::Zero();
808 for (std::vector
<MemberInfo
>::const_iterator Member
= Members
.begin(),
809 MemberEnd
= Members
.end();
810 Member
!= MemberEnd
; ++Member
) {
813 CharUnits Offset
= Member
->Offset
;
814 assert(Offset
>= Size
);
815 // Insert padding if we need to.
817 Size
.alignTo(Packed
? CharUnits::One() : getAlignment(Member
->Data
)))
818 Padding
.push_back(std::make_pair(Size
, Offset
- Size
));
819 Size
= Offset
+ getSize(Member
->Data
);
823 // Add the padding to the Members list and sort it.
824 for (std::vector
<std::pair
<CharUnits
, CharUnits
> >::const_iterator
825 Pad
= Padding
.begin(), PadEnd
= Padding
.end();
826 Pad
!= PadEnd
; ++Pad
)
827 Members
.push_back(StorageInfo(Pad
->first
, getByteArrayType(Pad
->second
)));
828 llvm::stable_sort(Members
);
831 void CGRecordLowering::fillOutputFields() {
832 for (std::vector
<MemberInfo
>::const_iterator Member
= Members
.begin(),
833 MemberEnd
= Members
.end();
834 Member
!= MemberEnd
; ++Member
) {
836 FieldTypes
.push_back(Member
->Data
);
837 if (Member
->Kind
== MemberInfo::Field
) {
839 Fields
[Member
->FD
->getCanonicalDecl()] = FieldTypes
.size() - 1;
840 // A field without storage must be a bitfield.
842 setBitFieldInfo(Member
->FD
, Member
->Offset
, FieldTypes
.back());
843 } else if (Member
->Kind
== MemberInfo::Base
)
844 NonVirtualBases
[Member
->RD
] = FieldTypes
.size() - 1;
845 else if (Member
->Kind
== MemberInfo::VBase
)
846 VirtualBases
[Member
->RD
] = FieldTypes
.size() - 1;
850 CGBitFieldInfo
CGBitFieldInfo::MakeInfo(CodeGenTypes
&Types
,
852 uint64_t Offset
, uint64_t Size
,
853 uint64_t StorageSize
,
854 CharUnits StorageOffset
) {
855 // This function is vestigial from CGRecordLayoutBuilder days but is still
856 // used in GCObjCRuntime.cpp. That usage has a "fixme" attached to it that
857 // when addressed will allow for the removal of this function.
858 llvm::Type
*Ty
= Types
.ConvertTypeForMem(FD
->getType());
859 CharUnits TypeSizeInBytes
=
860 CharUnits::fromQuantity(Types
.getDataLayout().getTypeAllocSize(Ty
));
861 uint64_t TypeSizeInBits
= Types
.getContext().toBits(TypeSizeInBytes
);
863 bool IsSigned
= FD
->getType()->isSignedIntegerOrEnumerationType();
865 if (Size
> TypeSizeInBits
) {
866 // We have a wide bit-field. The extra bits are only used for padding, so
867 // if we have a bitfield of type T, with size N:
871 // We can just assume that it's:
875 Size
= TypeSizeInBits
;
878 // Reverse the bit offsets for big endian machines. Because we represent
879 // a bitfield as a single large integer load, we can imagine the bits
880 // counting from the most-significant-bit instead of the
881 // least-significant-bit.
882 if (Types
.getDataLayout().isBigEndian()) {
883 Offset
= StorageSize
- (Offset
+ Size
);
886 return CGBitFieldInfo(Offset
, Size
, IsSigned
, StorageSize
, StorageOffset
);
889 std::unique_ptr
<CGRecordLayout
>
890 CodeGenTypes::ComputeRecordLayout(const RecordDecl
*D
, llvm::StructType
*Ty
) {
891 CGRecordLowering
Builder(*this, D
, /*Packed=*/false);
893 Builder
.lower(/*NonVirtualBaseType=*/false);
895 // If we're in C++, compute the base subobject type.
896 llvm::StructType
*BaseTy
= nullptr;
897 if (isa
<CXXRecordDecl
>(D
)) {
899 if (Builder
.Layout
.getNonVirtualSize() != Builder
.Layout
.getSize()) {
900 CGRecordLowering
BaseBuilder(*this, D
, /*Packed=*/Builder
.Packed
);
901 BaseBuilder
.lower(/*NonVirtualBaseType=*/true);
902 BaseTy
= llvm::StructType::create(
903 getLLVMContext(), BaseBuilder
.FieldTypes
, "", BaseBuilder
.Packed
);
904 addRecordTypeName(D
, BaseTy
, ".base");
905 // BaseTy and Ty must agree on their packedness for getLLVMFieldNo to work
906 // on both of them with the same index.
907 assert(Builder
.Packed
== BaseBuilder
.Packed
&&
908 "Non-virtual and complete types must agree on packedness");
912 // Fill in the struct *after* computing the base type. Filling in the body
913 // signifies that the type is no longer opaque and record layout is complete,
914 // but we may need to recursively layout D while laying D out as a base type.
915 Ty
->setBody(Builder
.FieldTypes
, Builder
.Packed
);
917 auto RL
= std::make_unique
<CGRecordLayout
>(
918 Ty
, BaseTy
, (bool)Builder
.IsZeroInitializable
,
919 (bool)Builder
.IsZeroInitializableAsBase
);
921 RL
->NonVirtualBases
.swap(Builder
.NonVirtualBases
);
922 RL
->CompleteObjectVirtualBases
.swap(Builder
.VirtualBases
);
924 // Add all the field numbers.
925 RL
->FieldInfo
.swap(Builder
.Fields
);
927 // Add bitfield info.
928 RL
->BitFields
.swap(Builder
.BitFields
);
930 // Dump the layout, if requested.
931 if (getContext().getLangOpts().DumpRecordLayouts
) {
932 llvm::outs() << "\n*** Dumping IRgen Record Layout\n";
933 llvm::outs() << "Record: ";
934 D
->dump(llvm::outs());
935 llvm::outs() << "\nLayout: ";
936 RL
->print(llvm::outs());
940 // Verify that the computed LLVM struct size matches the AST layout size.
941 const ASTRecordLayout
&Layout
= getContext().getASTRecordLayout(D
);
943 uint64_t TypeSizeInBits
= getContext().toBits(Layout
.getSize());
944 assert(TypeSizeInBits
== getDataLayout().getTypeAllocSizeInBits(Ty
) &&
945 "Type size mismatch!");
948 CharUnits NonVirtualSize
= Layout
.getNonVirtualSize();
950 uint64_t AlignedNonVirtualTypeSizeInBits
=
951 getContext().toBits(NonVirtualSize
);
953 assert(AlignedNonVirtualTypeSizeInBits
==
954 getDataLayout().getTypeAllocSizeInBits(BaseTy
) &&
955 "Type size mismatch!");
958 // Verify that the LLVM and AST field offsets agree.
959 llvm::StructType
*ST
= RL
->getLLVMType();
960 const llvm::StructLayout
*SL
= getDataLayout().getStructLayout(ST
);
962 const ASTRecordLayout
&AST_RL
= getContext().getASTRecordLayout(D
);
963 RecordDecl::field_iterator it
= D
->field_begin();
964 for (unsigned i
= 0, e
= AST_RL
.getFieldCount(); i
!= e
; ++i
, ++it
) {
965 const FieldDecl
*FD
= *it
;
967 // Ignore zero-sized fields.
968 if (FD
->isZeroSize(getContext()))
971 // For non-bit-fields, just check that the LLVM struct offset matches the
973 if (!FD
->isBitField()) {
974 unsigned FieldNo
= RL
->getLLVMFieldNo(FD
);
975 assert(AST_RL
.getFieldOffset(i
) == SL
->getElementOffsetInBits(FieldNo
) &&
976 "Invalid field offset!");
980 // Ignore unnamed bit-fields.
981 if (!FD
->getDeclName())
984 const CGBitFieldInfo
&Info
= RL
->getBitFieldInfo(FD
);
985 llvm::Type
*ElementTy
= ST
->getTypeAtIndex(RL
->getLLVMFieldNo(FD
));
987 // Unions have overlapping elements dictating their layout, but for
988 // non-unions we can verify that this section of the layout is the exact
991 // For unions we verify that the start is zero and the size
992 // is in-bounds. However, on BE systems, the offset may be non-zero, but
993 // the size + offset should match the storage size in that case as it
994 // "starts" at the back.
995 if (getDataLayout().isBigEndian())
996 assert(static_cast<unsigned>(Info
.Offset
+ Info
.Size
) ==
998 "Big endian union bitfield does not end at the back");
1000 assert(Info
.Offset
== 0 &&
1001 "Little endian union bitfield with a non-zero offset");
1002 assert(Info
.StorageSize
<= SL
->getSizeInBits() &&
1003 "Union not large enough for bitfield storage");
1005 assert((Info
.StorageSize
==
1006 getDataLayout().getTypeAllocSizeInBits(ElementTy
) ||
1007 Info
.VolatileStorageSize
==
1008 getDataLayout().getTypeAllocSizeInBits(ElementTy
)) &&
1009 "Storage size does not match the element type size");
1011 assert(Info
.Size
> 0 && "Empty bitfield!");
1012 assert(static_cast<unsigned>(Info
.Offset
) + Info
.Size
<= Info
.StorageSize
&&
1013 "Bitfield outside of its allocated storage");
1020 void CGRecordLayout::print(raw_ostream
&OS
) const {
1021 OS
<< "<CGRecordLayout\n";
1022 OS
<< " LLVMType:" << *CompleteObjectType
<< "\n";
1023 if (BaseSubobjectType
)
1024 OS
<< " NonVirtualBaseLLVMType:" << *BaseSubobjectType
<< "\n";
1025 OS
<< " IsZeroInitializable:" << IsZeroInitializable
<< "\n";
1026 OS
<< " BitFields:[\n";
1028 // Print bit-field infos in declaration order.
1029 std::vector
<std::pair
<unsigned, const CGBitFieldInfo
*> > BFIs
;
1030 for (llvm::DenseMap
<const FieldDecl
*, CGBitFieldInfo
>::const_iterator
1031 it
= BitFields
.begin(), ie
= BitFields
.end();
1033 const RecordDecl
*RD
= it
->first
->getParent();
1035 for (RecordDecl::field_iterator
1036 it2
= RD
->field_begin(); *it2
!= it
->first
; ++it2
)
1038 BFIs
.push_back(std::make_pair(Index
, &it
->second
));
1040 llvm::array_pod_sort(BFIs
.begin(), BFIs
.end());
1041 for (unsigned i
= 0, e
= BFIs
.size(); i
!= e
; ++i
) {
1043 BFIs
[i
].second
->print(OS
);
1050 LLVM_DUMP_METHOD
void CGRecordLayout::dump() const {
1051 print(llvm::errs());
1054 void CGBitFieldInfo::print(raw_ostream
&OS
) const {
1055 OS
<< "<CGBitFieldInfo"
1056 << " Offset:" << Offset
<< " Size:" << Size
<< " IsSigned:" << IsSigned
1057 << " StorageSize:" << StorageSize
1058 << " StorageOffset:" << StorageOffset
.getQuantity()
1059 << " VolatileOffset:" << VolatileOffset
1060 << " VolatileStorageSize:" << VolatileStorageSize
1061 << " VolatileStorageOffset:" << VolatileStorageOffset
.getQuantity() << ">";
1064 LLVM_DUMP_METHOD
void CGBitFieldInfo::dump() const {
1065 print(llvm::errs());