[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / clang / lib / CodeGen / CGVTables.cpp
blob25e4b1c27932026e74825cb9d08760358e4b28f3
1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with C++ code generation of virtual tables.
11 //===----------------------------------------------------------------------===//
13 #include "CGCXXABI.h"
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Basic/CodeGenOptions.h"
20 #include "clang/CodeGen/CGFunctionInfo.h"
21 #include "clang/CodeGen/ConstantInitBuilder.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/Support/Format.h"
24 #include "llvm/Transforms/Utils/Cloning.h"
25 #include <algorithm>
26 #include <cstdio>
27 #include <utility>
29 using namespace clang;
30 using namespace CodeGen;
32 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM)
33 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {}
35 llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy,
36 GlobalDecl GD) {
37 return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true,
38 /*DontDefer=*/true, /*IsThunk=*/true);
41 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk,
42 llvm::Function *ThunkFn, bool ForVTable,
43 GlobalDecl GD) {
44 CGM.setFunctionLinkage(GD, ThunkFn);
45 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD,
46 !Thunk.Return.isEmpty());
48 // Set the right visibility.
49 CGM.setGVProperties(ThunkFn, GD);
51 if (!CGM.getCXXABI().exportThunk()) {
52 ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
53 ThunkFn->setDSOLocal(true);
56 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker())
57 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
60 #ifndef NDEBUG
61 static bool similar(const ABIArgInfo &infoL, CanQualType typeL,
62 const ABIArgInfo &infoR, CanQualType typeR) {
63 return (infoL.getKind() == infoR.getKind() &&
64 (typeL == typeR ||
65 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) ||
66 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR))));
68 #endif
70 static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
71 QualType ResultType, RValue RV,
72 const ThunkInfo &Thunk) {
73 // Emit the return adjustment.
74 bool NullCheckValue = !ResultType->isReferenceType();
76 llvm::BasicBlock *AdjustNull = nullptr;
77 llvm::BasicBlock *AdjustNotNull = nullptr;
78 llvm::BasicBlock *AdjustEnd = nullptr;
80 llvm::Value *ReturnValue = RV.getScalarVal();
82 if (NullCheckValue) {
83 AdjustNull = CGF.createBasicBlock("adjust.null");
84 AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
85 AdjustEnd = CGF.createBasicBlock("adjust.end");
87 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
88 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
89 CGF.EmitBlock(AdjustNotNull);
92 auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl();
93 auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl);
94 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(
95 CGF,
96 Address(ReturnValue, CGF.ConvertTypeForMem(ResultType->getPointeeType()),
97 ClassAlign),
98 Thunk.Return);
100 if (NullCheckValue) {
101 CGF.Builder.CreateBr(AdjustEnd);
102 CGF.EmitBlock(AdjustNull);
103 CGF.Builder.CreateBr(AdjustEnd);
104 CGF.EmitBlock(AdjustEnd);
106 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
107 PHI->addIncoming(ReturnValue, AdjustNotNull);
108 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()),
109 AdjustNull);
110 ReturnValue = PHI;
113 return RValue::get(ReturnValue);
116 /// This function clones a function's DISubprogram node and enters it into
117 /// a value map with the intent that the map can be utilized by the cloner
118 /// to short-circuit Metadata node mapping.
119 /// Furthermore, the function resolves any DILocalVariable nodes referenced
120 /// by dbg.value intrinsics so they can be properly mapped during cloning.
121 static void resolveTopLevelMetadata(llvm::Function *Fn,
122 llvm::ValueToValueMapTy &VMap) {
123 // Clone the DISubprogram node and put it into the Value map.
124 auto *DIS = Fn->getSubprogram();
125 if (!DIS)
126 return;
127 auto *NewDIS = DIS->replaceWithDistinct(DIS->clone());
128 VMap.MD()[DIS].reset(NewDIS);
130 // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes
131 // they are referencing.
132 for (auto &BB : *Fn) {
133 for (auto &I : BB) {
134 if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) {
135 auto *DILocal = DII->getVariable();
136 if (!DILocal->isResolved())
137 DILocal->resolve();
143 // This function does roughly the same thing as GenerateThunk, but in a
144 // very different way, so that va_start and va_end work correctly.
145 // FIXME: This function assumes "this" is the first non-sret LLVM argument of
146 // a function, and that there is an alloca built in the entry block
147 // for all accesses to "this".
148 // FIXME: This function assumes there is only one "ret" statement per function.
149 // FIXME: Cloning isn't correct in the presence of indirect goto!
150 // FIXME: This implementation of thunks bloats codesize by duplicating the
151 // function definition. There are alternatives:
152 // 1. Add some sort of stub support to LLVM for cases where we can
153 // do a this adjustment, then a sibcall.
154 // 2. We could transform the definition to take a va_list instead of an
155 // actual variable argument list, then have the thunks (including a
156 // no-op thunk for the regular definition) call va_start/va_end.
157 // There's a bit of per-call overhead for this solution, but it's
158 // better for codesize if the definition is long.
159 llvm::Function *
160 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn,
161 const CGFunctionInfo &FnInfo,
162 GlobalDecl GD, const ThunkInfo &Thunk) {
163 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
164 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
165 QualType ResultType = FPT->getReturnType();
167 // Get the original function
168 assert(FnInfo.isVariadic());
169 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo);
170 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
171 llvm::Function *BaseFn = cast<llvm::Function>(Callee);
173 // Cloning can't work if we don't have a definition. The Microsoft ABI may
174 // require thunks when a definition is not available. Emit an error in these
175 // cases.
176 if (!MD->isDefined()) {
177 CGM.ErrorUnsupported(MD, "return-adjusting thunk with variadic arguments");
178 return Fn;
180 assert(!BaseFn->isDeclaration() && "cannot clone undefined variadic method");
182 // Clone to thunk.
183 llvm::ValueToValueMapTy VMap;
185 // We are cloning a function while some Metadata nodes are still unresolved.
186 // Ensure that the value mapper does not encounter any of them.
187 resolveTopLevelMetadata(BaseFn, VMap);
188 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap);
189 Fn->replaceAllUsesWith(NewFn);
190 NewFn->takeName(Fn);
191 Fn->eraseFromParent();
192 Fn = NewFn;
194 // "Initialize" CGF (minimally).
195 CurFn = Fn;
197 // Get the "this" value
198 llvm::Function::arg_iterator AI = Fn->arg_begin();
199 if (CGM.ReturnTypeUsesSRet(FnInfo))
200 ++AI;
202 // Find the first store of "this", which will be to the alloca associated
203 // with "this".
204 Address ThisPtr =
205 Address(&*AI, ConvertTypeForMem(MD->getFunctionObjectParameterType()),
206 CGM.getClassPointerAlignment(MD->getParent()));
207 llvm::BasicBlock *EntryBB = &Fn->front();
208 llvm::BasicBlock::iterator ThisStore =
209 llvm::find_if(*EntryBB, [&](llvm::Instruction &I) {
210 return isa<llvm::StoreInst>(I) &&
211 I.getOperand(0) == ThisPtr.getPointer();
213 assert(ThisStore != EntryBB->end() &&
214 "Store of this should be in entry block?");
215 // Adjust "this", if necessary.
216 Builder.SetInsertPoint(&*ThisStore);
217 llvm::Value *AdjustedThisPtr =
218 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This);
219 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr,
220 ThisStore->getOperand(0)->getType());
221 ThisStore->setOperand(0, AdjustedThisPtr);
223 if (!Thunk.Return.isEmpty()) {
224 // Fix up the returned value, if necessary.
225 for (llvm::BasicBlock &BB : *Fn) {
226 llvm::Instruction *T = BB.getTerminator();
227 if (isa<llvm::ReturnInst>(T)) {
228 RValue RV = RValue::get(T->getOperand(0));
229 T->eraseFromParent();
230 Builder.SetInsertPoint(&BB);
231 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
232 Builder.CreateRet(RV.getScalarVal());
233 break;
238 return Fn;
241 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD,
242 const CGFunctionInfo &FnInfo,
243 bool IsUnprototyped) {
244 assert(!CurGD.getDecl() && "CurGD was already set!");
245 CurGD = GD;
246 CurFuncIsThunk = true;
248 // Build FunctionArgs.
249 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
250 QualType ThisType = MD->getThisType();
251 QualType ResultType;
252 if (IsUnprototyped)
253 ResultType = CGM.getContext().VoidTy;
254 else if (CGM.getCXXABI().HasThisReturn(GD))
255 ResultType = ThisType;
256 else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
257 ResultType = CGM.getContext().VoidPtrTy;
258 else
259 ResultType = MD->getType()->castAs<FunctionProtoType>()->getReturnType();
260 FunctionArgList FunctionArgs;
262 // Create the implicit 'this' parameter declaration.
263 CGM.getCXXABI().buildThisParam(*this, FunctionArgs);
265 // Add the rest of the parameters, if we have a prototype to work with.
266 if (!IsUnprototyped) {
267 FunctionArgs.append(MD->param_begin(), MD->param_end());
269 if (isa<CXXDestructorDecl>(MD))
270 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType,
271 FunctionArgs);
274 // Start defining the function.
275 auto NL = ApplyDebugLocation::CreateEmpty(*this);
276 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs,
277 MD->getLocation());
278 // Create a scope with an artificial location for the body of this function.
279 auto AL = ApplyDebugLocation::CreateArtificial(*this);
281 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves.
282 CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
283 CXXThisValue = CXXABIThisValue;
284 CurCodeDecl = MD;
285 CurFuncDecl = MD;
288 void CodeGenFunction::FinishThunk() {
289 // Clear these to restore the invariants expected by
290 // StartFunction/FinishFunction.
291 CurCodeDecl = nullptr;
292 CurFuncDecl = nullptr;
294 FinishFunction();
297 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
298 const ThunkInfo *Thunk,
299 bool IsUnprototyped) {
300 assert(isa<CXXMethodDecl>(CurGD.getDecl()) &&
301 "Please use a new CGF for this thunk");
302 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl());
304 // Adjust the 'this' pointer if necessary
305 llvm::Value *AdjustedThisPtr =
306 Thunk ? CGM.getCXXABI().performThisAdjustment(
307 *this, LoadCXXThisAddress(), Thunk->This)
308 : LoadCXXThis();
310 // If perfect forwarding is required a variadic method, a method using
311 // inalloca, or an unprototyped thunk, use musttail. Emit an error if this
312 // thunk requires a return adjustment, since that is impossible with musttail.
313 if (CurFnInfo->usesInAlloca() || CurFnInfo->isVariadic() || IsUnprototyped) {
314 if (Thunk && !Thunk->Return.isEmpty()) {
315 if (IsUnprototyped)
316 CGM.ErrorUnsupported(
317 MD, "return-adjusting thunk with incomplete parameter type");
318 else if (CurFnInfo->isVariadic())
319 llvm_unreachable("shouldn't try to emit musttail return-adjusting "
320 "thunks for variadic functions");
321 else
322 CGM.ErrorUnsupported(
323 MD, "non-trivial argument copy for return-adjusting thunk");
325 EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee);
326 return;
329 // Start building CallArgs.
330 CallArgList CallArgs;
331 QualType ThisType = MD->getThisType();
332 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);
334 if (isa<CXXDestructorDecl>(MD))
335 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs);
337 #ifndef NDEBUG
338 unsigned PrefixArgs = CallArgs.size() - 1;
339 #endif
340 // Add the rest of the arguments.
341 for (const ParmVarDecl *PD : MD->parameters())
342 EmitDelegateCallArg(CallArgs, PD, SourceLocation());
344 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
346 #ifndef NDEBUG
347 const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall(
348 CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs);
349 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() &&
350 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() &&
351 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention());
352 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
353 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
354 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType()));
355 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size());
356 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i)
357 assert(similar(CallFnInfo.arg_begin()[i].info,
358 CallFnInfo.arg_begin()[i].type,
359 CurFnInfo->arg_begin()[i].info,
360 CurFnInfo->arg_begin()[i].type));
361 #endif
363 // Determine whether we have a return value slot to use.
364 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD)
365 ? ThisType
366 : CGM.getCXXABI().hasMostDerivedReturn(CurGD)
367 ? CGM.getContext().VoidPtrTy
368 : FPT->getReturnType();
369 ReturnValueSlot Slot;
370 if (!ResultType->isVoidType() &&
371 (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect ||
372 hasAggregateEvaluationKind(ResultType)))
373 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified(),
374 /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
376 // Now emit our call.
377 llvm::CallBase *CallOrInvoke;
378 RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot,
379 CallArgs, &CallOrInvoke);
381 // Consider return adjustment if we have ThunkInfo.
382 if (Thunk && !Thunk->Return.isEmpty())
383 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk);
384 else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke))
385 Call->setTailCallKind(llvm::CallInst::TCK_Tail);
387 // Emit return.
388 if (!ResultType->isVoidType() && Slot.isNull())
389 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);
391 // Disable the final ARC autorelease.
392 AutoreleaseResult = false;
394 FinishThunk();
397 void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD,
398 llvm::Value *AdjustedThisPtr,
399 llvm::FunctionCallee Callee) {
400 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery
401 // to translate AST arguments into LLVM IR arguments. For thunks, we know
402 // that the caller prototype more or less matches the callee prototype with
403 // the exception of 'this'.
404 SmallVector<llvm::Value *, 8> Args(llvm::make_pointer_range(CurFn->args()));
406 // Set the adjusted 'this' pointer.
407 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info;
408 if (ThisAI.isDirect()) {
409 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
410 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0;
411 llvm::Type *ThisType = Args[ThisArgNo]->getType();
412 if (ThisType != AdjustedThisPtr->getType())
413 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
414 Args[ThisArgNo] = AdjustedThisPtr;
415 } else {
416 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca");
417 Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl);
418 llvm::Type *ThisType = ThisAddr.getElementType();
419 if (ThisType != AdjustedThisPtr->getType())
420 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
421 Builder.CreateStore(AdjustedThisPtr, ThisAddr);
424 // Emit the musttail call manually. Even if the prologue pushed cleanups, we
425 // don't actually want to run them.
426 llvm::CallInst *Call = Builder.CreateCall(Callee, Args);
427 Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
429 // Apply the standard set of call attributes.
430 unsigned CallingConv;
431 llvm::AttributeList Attrs;
432 CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD,
433 Attrs, CallingConv, /*AttrOnCallSite=*/true,
434 /*IsThunk=*/false);
435 Call->setAttributes(Attrs);
436 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
438 if (Call->getType()->isVoidTy())
439 Builder.CreateRetVoid();
440 else
441 Builder.CreateRet(Call);
443 // Finish the function to maintain CodeGenFunction invariants.
444 // FIXME: Don't emit unreachable code.
445 EmitBlock(createBasicBlock());
447 FinishThunk();
450 void CodeGenFunction::generateThunk(llvm::Function *Fn,
451 const CGFunctionInfo &FnInfo, GlobalDecl GD,
452 const ThunkInfo &Thunk,
453 bool IsUnprototyped) {
454 StartThunk(Fn, GD, FnInfo, IsUnprototyped);
455 // Create a scope with an artificial location for the body of this function.
456 auto AL = ApplyDebugLocation::CreateArtificial(*this);
458 // Get our callee. Use a placeholder type if this method is unprototyped so
459 // that CodeGenModule doesn't try to set attributes.
460 llvm::Type *Ty;
461 if (IsUnprototyped)
462 Ty = llvm::StructType::get(getLLVMContext());
463 else
464 Ty = CGM.getTypes().GetFunctionType(FnInfo);
466 llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
468 // Fix up the function type for an unprototyped musttail call.
469 if (IsUnprototyped)
470 Callee = llvm::ConstantExpr::getBitCast(Callee, Fn->getType());
472 // Make the call and return the result.
473 EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee),
474 &Thunk, IsUnprototyped);
477 static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD,
478 bool IsUnprototyped, bool ForVTable) {
479 // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to
480 // provide thunks for us.
481 if (CGM.getTarget().getCXXABI().isMicrosoft())
482 return true;
484 // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide
485 // definitions of the main method. Therefore, emitting thunks with the vtable
486 // is purely an optimization. Emit the thunk if optimizations are enabled and
487 // all of the parameter types are complete.
488 if (ForVTable)
489 return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped;
491 // Always emit thunks along with the method definition.
492 return true;
495 llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD,
496 const ThunkInfo &TI,
497 bool ForVTable) {
498 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
500 // First, get a declaration. Compute the mangled name. Don't worry about
501 // getting the function prototype right, since we may only need this
502 // declaration to fill in a vtable slot.
503 SmallString<256> Name;
504 MangleContext &MCtx = CGM.getCXXABI().getMangleContext();
505 llvm::raw_svector_ostream Out(Name);
506 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD))
507 MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out);
508 else
509 MCtx.mangleThunk(MD, TI, Out);
510 llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
511 llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD);
513 // If we don't need to emit a definition, return this declaration as is.
514 bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible(
515 MD->getType()->castAs<FunctionType>());
516 if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable))
517 return Thunk;
519 // Arrange a function prototype appropriate for a function definition. In some
520 // cases in the MS ABI, we may need to build an unprototyped musttail thunk.
521 const CGFunctionInfo &FnInfo =
522 IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD)
523 : CGM.getTypes().arrangeGlobalDeclaration(GD);
524 llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo);
526 // If the type of the underlying GlobalValue is wrong, we'll have to replace
527 // it. It should be a declaration.
528 llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts());
529 if (ThunkFn->getFunctionType() != ThunkFnTy) {
530 llvm::GlobalValue *OldThunkFn = ThunkFn;
532 assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration");
534 // Remove the name from the old thunk function and get a new thunk.
535 OldThunkFn->setName(StringRef());
536 ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage,
537 Name.str(), &CGM.getModule());
538 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false);
540 // If needed, replace the old thunk with a bitcast.
541 if (!OldThunkFn->use_empty()) {
542 llvm::Constant *NewPtrForOldDecl =
543 llvm::ConstantExpr::getBitCast(ThunkFn, OldThunkFn->getType());
544 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl);
547 // Remove the old thunk.
548 OldThunkFn->eraseFromParent();
551 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions();
552 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions;
554 if (!ThunkFn->isDeclaration()) {
555 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) {
556 // There is already a thunk emitted for this function, do nothing.
557 return ThunkFn;
560 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
561 return ThunkFn;
564 // If this will be unprototyped, add the "thunk" attribute so that LLVM knows
565 // that the return type is meaningless. These thunks can be used to call
566 // functions with differing return types, and the caller is required to cast
567 // the prototype appropriately to extract the correct value.
568 if (IsUnprototyped)
569 ThunkFn->addFnAttr("thunk");
571 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn);
573 // Thunks for variadic methods are special because in general variadic
574 // arguments cannot be perfectly forwarded. In the general case, clang
575 // implements such thunks by cloning the original function body. However, for
576 // thunks with no return adjustment on targets that support musttail, we can
577 // use musttail to perfectly forward the variadic arguments.
578 bool ShouldCloneVarArgs = false;
579 if (!IsUnprototyped && ThunkFn->isVarArg()) {
580 ShouldCloneVarArgs = true;
581 if (TI.Return.isEmpty()) {
582 switch (CGM.getTriple().getArch()) {
583 case llvm::Triple::x86_64:
584 case llvm::Triple::x86:
585 case llvm::Triple::aarch64:
586 ShouldCloneVarArgs = false;
587 break;
588 default:
589 break;
594 if (ShouldCloneVarArgs) {
595 if (UseAvailableExternallyLinkage)
596 return ThunkFn;
597 ThunkFn =
598 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, TI);
599 } else {
600 // Normal thunk body generation.
601 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped);
604 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
605 return ThunkFn;
608 void CodeGenVTables::EmitThunks(GlobalDecl GD) {
609 const CXXMethodDecl *MD =
610 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl();
612 // We don't need to generate thunks for the base destructor.
613 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
614 return;
616 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector =
617 VTContext->getThunkInfo(GD);
619 if (!ThunkInfoVector)
620 return;
622 for (const ThunkInfo& Thunk : *ThunkInfoVector)
623 maybeEmitThunk(GD, Thunk, /*ForVTable=*/false);
626 void CodeGenVTables::addRelativeComponent(ConstantArrayBuilder &builder,
627 llvm::Constant *component,
628 unsigned vtableAddressPoint,
629 bool vtableHasLocalLinkage,
630 bool isCompleteDtor) const {
631 // No need to get the offset of a nullptr.
632 if (component->isNullValue())
633 return builder.add(llvm::ConstantInt::get(CGM.Int32Ty, 0));
635 auto *globalVal =
636 cast<llvm::GlobalValue>(component->stripPointerCastsAndAliases());
637 llvm::Module &module = CGM.getModule();
639 // We don't want to copy the linkage of the vtable exactly because we still
640 // want the stub/proxy to be emitted for properly calculating the offset.
641 // Examples where there would be no symbol emitted are available_externally
642 // and private linkages.
644 // `internal` linkage results in STB_LOCAL Elf binding while still manifesting a
645 // local symbol.
647 // `linkonce_odr` linkage results in a STB_DEFAULT Elf binding but also allows for
648 // the rtti_proxy to be transparently replaced with a GOTPCREL reloc by a
649 // target that supports this replacement.
650 auto stubLinkage = vtableHasLocalLinkage
651 ? llvm::GlobalValue::InternalLinkage
652 : llvm::GlobalValue::LinkOnceODRLinkage;
654 llvm::Constant *target;
655 if (auto *func = dyn_cast<llvm::Function>(globalVal)) {
656 target = llvm::DSOLocalEquivalent::get(func);
657 } else {
658 llvm::SmallString<16> rttiProxyName(globalVal->getName());
659 rttiProxyName.append(".rtti_proxy");
661 // The RTTI component may not always be emitted in the same linkage unit as
662 // the vtable. As a general case, we can make a dso_local proxy to the RTTI
663 // that points to the actual RTTI struct somewhere. This will result in a
664 // GOTPCREL relocation when taking the relative offset to the proxy.
665 llvm::GlobalVariable *proxy = module.getNamedGlobal(rttiProxyName);
666 if (!proxy) {
667 proxy = new llvm::GlobalVariable(module, globalVal->getType(),
668 /*isConstant=*/true, stubLinkage,
669 globalVal, rttiProxyName);
670 proxy->setDSOLocal(true);
671 proxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
672 if (!proxy->hasLocalLinkage()) {
673 proxy->setVisibility(llvm::GlobalValue::HiddenVisibility);
674 proxy->setComdat(module.getOrInsertComdat(rttiProxyName));
676 // Do not instrument the rtti proxies with hwasan to avoid a duplicate
677 // symbol error. Aliases generated by hwasan will retain the same namebut
678 // the addresses they are set to may have different tags from different
679 // compilation units. We don't run into this without hwasan because the
680 // proxies are in comdat groups, but those aren't propagated to the alias.
681 RemoveHwasanMetadata(proxy);
683 target = proxy;
686 builder.addRelativeOffsetToPosition(CGM.Int32Ty, target,
687 /*position=*/vtableAddressPoint);
690 static bool UseRelativeLayout(const CodeGenModule &CGM) {
691 return CGM.getTarget().getCXXABI().isItaniumFamily() &&
692 CGM.getItaniumVTableContext().isRelativeLayout();
695 bool CodeGenVTables::useRelativeLayout() const {
696 return UseRelativeLayout(CGM);
699 llvm::Type *CodeGenModule::getVTableComponentType() const {
700 if (UseRelativeLayout(*this))
701 return Int32Ty;
702 return GlobalsInt8PtrTy;
705 llvm::Type *CodeGenVTables::getVTableComponentType() const {
706 return CGM.getVTableComponentType();
709 static void AddPointerLayoutOffset(const CodeGenModule &CGM,
710 ConstantArrayBuilder &builder,
711 CharUnits offset) {
712 builder.add(llvm::ConstantExpr::getIntToPtr(
713 llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()),
714 CGM.GlobalsInt8PtrTy));
717 static void AddRelativeLayoutOffset(const CodeGenModule &CGM,
718 ConstantArrayBuilder &builder,
719 CharUnits offset) {
720 builder.add(llvm::ConstantInt::get(CGM.Int32Ty, offset.getQuantity()));
723 void CodeGenVTables::addVTableComponent(ConstantArrayBuilder &builder,
724 const VTableLayout &layout,
725 unsigned componentIndex,
726 llvm::Constant *rtti,
727 unsigned &nextVTableThunkIndex,
728 unsigned vtableAddressPoint,
729 bool vtableHasLocalLinkage) {
730 auto &component = layout.vtable_components()[componentIndex];
732 auto addOffsetConstant =
733 useRelativeLayout() ? AddRelativeLayoutOffset : AddPointerLayoutOffset;
735 switch (component.getKind()) {
736 case VTableComponent::CK_VCallOffset:
737 return addOffsetConstant(CGM, builder, component.getVCallOffset());
739 case VTableComponent::CK_VBaseOffset:
740 return addOffsetConstant(CGM, builder, component.getVBaseOffset());
742 case VTableComponent::CK_OffsetToTop:
743 return addOffsetConstant(CGM, builder, component.getOffsetToTop());
745 case VTableComponent::CK_RTTI:
746 if (useRelativeLayout())
747 return addRelativeComponent(builder, rtti, vtableAddressPoint,
748 vtableHasLocalLinkage,
749 /*isCompleteDtor=*/false);
750 else
751 return builder.add(rtti);
753 case VTableComponent::CK_FunctionPointer:
754 case VTableComponent::CK_CompleteDtorPointer:
755 case VTableComponent::CK_DeletingDtorPointer: {
756 GlobalDecl GD = component.getGlobalDecl();
758 if (CGM.getLangOpts().CUDA) {
759 // Emit NULL for methods we can't codegen on this
760 // side. Otherwise we'd end up with vtable with unresolved
761 // references.
762 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
763 // OK on device side: functions w/ __device__ attribute
764 // OK on host side: anything except __device__-only functions.
765 bool CanEmitMethod =
766 CGM.getLangOpts().CUDAIsDevice
767 ? MD->hasAttr<CUDADeviceAttr>()
768 : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>());
769 if (!CanEmitMethod)
770 return builder.add(
771 llvm::ConstantExpr::getNullValue(CGM.GlobalsInt8PtrTy));
772 // Method is acceptable, continue processing as usual.
775 auto getSpecialVirtualFn = [&](StringRef name) -> llvm::Constant * {
776 // FIXME(PR43094): When merging comdat groups, lld can select a local
777 // symbol as the signature symbol even though it cannot be accessed
778 // outside that symbol's TU. The relative vtables ABI would make
779 // __cxa_pure_virtual and __cxa_deleted_virtual local symbols, and
780 // depending on link order, the comdat groups could resolve to the one
781 // with the local symbol. As a temporary solution, fill these components
782 // with zero. We shouldn't be calling these in the first place anyway.
783 if (useRelativeLayout())
784 return llvm::ConstantPointerNull::get(CGM.GlobalsInt8PtrTy);
786 // For NVPTX devices in OpenMP emit special functon as null pointers,
787 // otherwise linking ends up with unresolved references.
788 if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPIsTargetDevice &&
789 CGM.getTriple().isNVPTX())
790 return llvm::ConstantPointerNull::get(CGM.GlobalsInt8PtrTy);
791 llvm::FunctionType *fnTy =
792 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
793 llvm::Constant *fn = cast<llvm::Constant>(
794 CGM.CreateRuntimeFunction(fnTy, name).getCallee());
795 if (auto f = dyn_cast<llvm::Function>(fn))
796 f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
797 return fn;
800 llvm::Constant *fnPtr;
802 // Pure virtual member functions.
803 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) {
804 if (!PureVirtualFn)
805 PureVirtualFn =
806 getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName());
807 fnPtr = PureVirtualFn;
809 // Deleted virtual member functions.
810 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) {
811 if (!DeletedVirtualFn)
812 DeletedVirtualFn =
813 getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName());
814 fnPtr = DeletedVirtualFn;
816 // Thunks.
817 } else if (nextVTableThunkIndex < layout.vtable_thunks().size() &&
818 layout.vtable_thunks()[nextVTableThunkIndex].first ==
819 componentIndex) {
820 auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second;
822 nextVTableThunkIndex++;
823 fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true);
825 // Otherwise we can use the method definition directly.
826 } else {
827 llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
828 fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true);
831 if (useRelativeLayout()) {
832 return addRelativeComponent(
833 builder, fnPtr, vtableAddressPoint, vtableHasLocalLinkage,
834 component.getKind() == VTableComponent::CK_CompleteDtorPointer);
835 } else {
836 // TODO: this icky and only exists due to functions being in the generic
837 // address space, rather than the global one, even though they are
838 // globals; fixing said issue might be intrusive, and will be done
839 // later.
840 unsigned FnAS = fnPtr->getType()->getPointerAddressSpace();
841 unsigned GVAS = CGM.GlobalsInt8PtrTy->getPointerAddressSpace();
843 if (FnAS != GVAS)
844 fnPtr =
845 llvm::ConstantExpr::getAddrSpaceCast(fnPtr, CGM.GlobalsInt8PtrTy);
846 return builder.add(fnPtr);
850 case VTableComponent::CK_UnusedFunctionPointer:
851 if (useRelativeLayout())
852 return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int32Ty));
853 else
854 return builder.addNullPointer(CGM.GlobalsInt8PtrTy);
857 llvm_unreachable("Unexpected vtable component kind");
860 llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) {
861 SmallVector<llvm::Type *, 4> tys;
862 llvm::Type *componentType = getVTableComponentType();
863 for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i)
864 tys.push_back(llvm::ArrayType::get(componentType, layout.getVTableSize(i)));
866 return llvm::StructType::get(CGM.getLLVMContext(), tys);
869 void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder,
870 const VTableLayout &layout,
871 llvm::Constant *rtti,
872 bool vtableHasLocalLinkage) {
873 llvm::Type *componentType = getVTableComponentType();
875 const auto &addressPoints = layout.getAddressPointIndices();
876 unsigned nextVTableThunkIndex = 0;
877 for (unsigned vtableIndex = 0, endIndex = layout.getNumVTables();
878 vtableIndex != endIndex; ++vtableIndex) {
879 auto vtableElem = builder.beginArray(componentType);
881 size_t vtableStart = layout.getVTableOffset(vtableIndex);
882 size_t vtableEnd = vtableStart + layout.getVTableSize(vtableIndex);
883 for (size_t componentIndex = vtableStart; componentIndex < vtableEnd;
884 ++componentIndex) {
885 addVTableComponent(vtableElem, layout, componentIndex, rtti,
886 nextVTableThunkIndex, addressPoints[vtableIndex],
887 vtableHasLocalLinkage);
889 vtableElem.finishAndAddTo(builder);
893 llvm::GlobalVariable *CodeGenVTables::GenerateConstructionVTable(
894 const CXXRecordDecl *RD, const BaseSubobject &Base, bool BaseIsVirtual,
895 llvm::GlobalVariable::LinkageTypes Linkage,
896 VTableAddressPointsMapTy &AddressPoints) {
897 if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
898 DI->completeClassData(Base.getBase());
900 std::unique_ptr<VTableLayout> VTLayout(
901 getItaniumVTableContext().createConstructionVTableLayout(
902 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD));
904 // Add the address points.
905 AddressPoints = VTLayout->getAddressPoints();
907 // Get the mangled construction vtable name.
908 SmallString<256> OutName;
909 llvm::raw_svector_ostream Out(OutName);
910 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext())
911 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(),
912 Base.getBase(), Out);
913 SmallString<256> Name(OutName);
915 bool UsingRelativeLayout = getItaniumVTableContext().isRelativeLayout();
916 bool VTableAliasExists =
917 UsingRelativeLayout && CGM.getModule().getNamedAlias(Name);
918 if (VTableAliasExists) {
919 // We previously made the vtable hidden and changed its name.
920 Name.append(".local");
923 llvm::Type *VTType = getVTableType(*VTLayout);
925 // Construction vtable symbols are not part of the Itanium ABI, so we cannot
926 // guarantee that they actually will be available externally. Instead, when
927 // emitting an available_externally VTT, we provide references to an internal
928 // linkage construction vtable. The ABI only requires complete-object vtables
929 // to be the same for all instances of a type, not construction vtables.
930 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
931 Linkage = llvm::GlobalVariable::InternalLinkage;
933 llvm::Align Align = CGM.getDataLayout().getABITypeAlign(VTType);
935 // Create the variable that will hold the construction vtable.
936 llvm::GlobalVariable *VTable =
937 CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align);
939 // V-tables are always unnamed_addr.
940 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
942 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(
943 CGM.getContext().getTagDeclType(Base.getBase()));
945 // Create and set the initializer.
946 ConstantInitBuilder builder(CGM);
947 auto components = builder.beginStruct();
948 createVTableInitializer(components, *VTLayout, RTTI,
949 VTable->hasLocalLinkage());
950 components.finishAndSetAsInitializer(VTable);
952 // Set properties only after the initializer has been set to ensure that the
953 // GV is treated as definition and not declaration.
954 assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration");
955 CGM.setGVProperties(VTable, RD);
957 CGM.EmitVTableTypeMetadata(RD, VTable, *VTLayout.get());
959 if (UsingRelativeLayout) {
960 RemoveHwasanMetadata(VTable);
961 if (!VTable->isDSOLocal())
962 GenerateRelativeVTableAlias(VTable, OutName);
965 return VTable;
968 // Ensure this vtable is not instrumented by hwasan. That is, a global alias is
969 // not generated for it. This is mainly used by the relative-vtables ABI where
970 // vtables instead contain 32-bit offsets between the vtable and function
971 // pointers. Hwasan is disabled for these vtables for now because the tag in a
972 // vtable pointer may fail the overflow check when resolving 32-bit PLT
973 // relocations. A future alternative for this would be finding which usages of
974 // the vtable can continue to use the untagged hwasan value without any loss of
975 // value in hwasan.
976 void CodeGenVTables::RemoveHwasanMetadata(llvm::GlobalValue *GV) const {
977 if (CGM.getLangOpts().Sanitize.has(SanitizerKind::HWAddress)) {
978 llvm::GlobalValue::SanitizerMetadata Meta;
979 if (GV->hasSanitizerMetadata())
980 Meta = GV->getSanitizerMetadata();
981 Meta.NoHWAddress = true;
982 GV->setSanitizerMetadata(Meta);
986 // If the VTable is not dso_local, then we will not be able to indicate that
987 // the VTable does not need a relocation and move into rodata. A frequent
988 // time this can occur is for classes that should be made public from a DSO
989 // (like in libc++). For cases like these, we can make the vtable hidden or
990 // private and create a public alias with the same visibility and linkage as
991 // the original vtable type.
992 void CodeGenVTables::GenerateRelativeVTableAlias(llvm::GlobalVariable *VTable,
993 llvm::StringRef AliasNameRef) {
994 assert(getItaniumVTableContext().isRelativeLayout() &&
995 "Can only use this if the relative vtable ABI is used");
996 assert(!VTable->isDSOLocal() && "This should be called only if the vtable is "
997 "not guaranteed to be dso_local");
999 // If the vtable is available_externally, we shouldn't (or need to) generate
1000 // an alias for it in the first place since the vtable won't actually by
1001 // emitted in this compilation unit.
1002 if (VTable->hasAvailableExternallyLinkage())
1003 return;
1005 // Create a new string in the event the alias is already the name of the
1006 // vtable. Using the reference directly could lead to use of an inititialized
1007 // value in the module's StringMap.
1008 llvm::SmallString<256> AliasName(AliasNameRef);
1009 VTable->setName(AliasName + ".local");
1011 auto Linkage = VTable->getLinkage();
1012 assert(llvm::GlobalAlias::isValidLinkage(Linkage) &&
1013 "Invalid vtable alias linkage");
1015 llvm::GlobalAlias *VTableAlias = CGM.getModule().getNamedAlias(AliasName);
1016 if (!VTableAlias) {
1017 VTableAlias = llvm::GlobalAlias::create(VTable->getValueType(),
1018 VTable->getAddressSpace(), Linkage,
1019 AliasName, &CGM.getModule());
1020 } else {
1021 assert(VTableAlias->getValueType() == VTable->getValueType());
1022 assert(VTableAlias->getLinkage() == Linkage);
1024 VTableAlias->setVisibility(VTable->getVisibility());
1025 VTableAlias->setUnnamedAddr(VTable->getUnnamedAddr());
1027 // Both of these imply dso_local for the vtable.
1028 if (!VTable->hasComdat()) {
1029 // If this is in a comdat, then we shouldn't make the linkage private due to
1030 // an issue in lld where private symbols can be used as the key symbol when
1031 // choosing the prevelant group. This leads to "relocation refers to a
1032 // symbol in a discarded section".
1033 VTable->setLinkage(llvm::GlobalValue::PrivateLinkage);
1034 } else {
1035 // We should at least make this hidden since we don't want to expose it.
1036 VTable->setVisibility(llvm::GlobalValue::HiddenVisibility);
1039 VTableAlias->setAliasee(VTable);
1042 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM,
1043 const CXXRecordDecl *RD) {
1044 return CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1045 CGM.getCXXABI().canSpeculativelyEmitVTable(RD);
1048 /// Compute the required linkage of the vtable for the given class.
1050 /// Note that we only call this at the end of the translation unit.
1051 llvm::GlobalVariable::LinkageTypes
1052 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1053 if (!RD->isExternallyVisible())
1054 return llvm::GlobalVariable::InternalLinkage;
1056 // We're at the end of the translation unit, so the current key
1057 // function is fully correct.
1058 const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD);
1059 if (keyFunction && !RD->hasAttr<DLLImportAttr>()) {
1060 // If this class has a key function, use that to determine the
1061 // linkage of the vtable.
1062 const FunctionDecl *def = nullptr;
1063 if (keyFunction->hasBody(def))
1064 keyFunction = cast<CXXMethodDecl>(def);
1066 switch (keyFunction->getTemplateSpecializationKind()) {
1067 case TSK_Undeclared:
1068 case TSK_ExplicitSpecialization:
1069 assert(
1070 (def || CodeGenOpts.OptimizationLevel > 0 ||
1071 CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo) &&
1072 "Shouldn't query vtable linkage without key function, "
1073 "optimizations, or debug info");
1074 if (!def && CodeGenOpts.OptimizationLevel > 0)
1075 return llvm::GlobalVariable::AvailableExternallyLinkage;
1077 if (keyFunction->isInlined())
1078 return !Context.getLangOpts().AppleKext
1079 ? llvm::GlobalVariable::LinkOnceODRLinkage
1080 : llvm::Function::InternalLinkage;
1082 return llvm::GlobalVariable::ExternalLinkage;
1084 case TSK_ImplicitInstantiation:
1085 return !Context.getLangOpts().AppleKext ?
1086 llvm::GlobalVariable::LinkOnceODRLinkage :
1087 llvm::Function::InternalLinkage;
1089 case TSK_ExplicitInstantiationDefinition:
1090 return !Context.getLangOpts().AppleKext ?
1091 llvm::GlobalVariable::WeakODRLinkage :
1092 llvm::Function::InternalLinkage;
1094 case TSK_ExplicitInstantiationDeclaration:
1095 llvm_unreachable("Should not have been asked to emit this");
1099 // -fapple-kext mode does not support weak linkage, so we must use
1100 // internal linkage.
1101 if (Context.getLangOpts().AppleKext)
1102 return llvm::Function::InternalLinkage;
1104 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage =
1105 llvm::GlobalValue::LinkOnceODRLinkage;
1106 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage =
1107 llvm::GlobalValue::WeakODRLinkage;
1108 if (RD->hasAttr<DLLExportAttr>()) {
1109 // Cannot discard exported vtables.
1110 DiscardableODRLinkage = NonDiscardableODRLinkage;
1111 } else if (RD->hasAttr<DLLImportAttr>()) {
1112 // Imported vtables are available externally.
1113 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
1114 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
1117 switch (RD->getTemplateSpecializationKind()) {
1118 case TSK_Undeclared:
1119 case TSK_ExplicitSpecialization:
1120 case TSK_ImplicitInstantiation:
1121 return DiscardableODRLinkage;
1123 case TSK_ExplicitInstantiationDeclaration:
1124 // Explicit instantiations in MSVC do not provide vtables, so we must emit
1125 // our own.
1126 if (getTarget().getCXXABI().isMicrosoft())
1127 return DiscardableODRLinkage;
1128 return shouldEmitAvailableExternallyVTable(*this, RD)
1129 ? llvm::GlobalVariable::AvailableExternallyLinkage
1130 : llvm::GlobalVariable::ExternalLinkage;
1132 case TSK_ExplicitInstantiationDefinition:
1133 return NonDiscardableODRLinkage;
1136 llvm_unreachable("Invalid TemplateSpecializationKind!");
1139 /// This is a callback from Sema to tell us that a particular vtable is
1140 /// required to be emitted in this translation unit.
1142 /// This is only called for vtables that _must_ be emitted (mainly due to key
1143 /// functions). For weak vtables, CodeGen tracks when they are needed and
1144 /// emits them as-needed.
1145 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) {
1146 VTables.GenerateClassData(theClass);
1149 void
1150 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) {
1151 if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
1152 DI->completeClassData(RD);
1154 if (RD->getNumVBases())
1155 CGM.getCXXABI().emitVirtualInheritanceTables(RD);
1157 CGM.getCXXABI().emitVTableDefinitions(*this, RD);
1160 /// At this point in the translation unit, does it appear that can we
1161 /// rely on the vtable being defined elsewhere in the program?
1163 /// The response is really only definitive when called at the end of
1164 /// the translation unit.
1166 /// The only semantic restriction here is that the object file should
1167 /// not contain a vtable definition when that vtable is defined
1168 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting
1169 /// vtables when unnecessary.
1170 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) {
1171 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable.");
1173 // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't
1174 // emit them even if there is an explicit template instantiation.
1175 if (CGM.getTarget().getCXXABI().isMicrosoft())
1176 return false;
1178 // If we have an explicit instantiation declaration (and not a
1179 // definition), the vtable is defined elsewhere.
1180 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
1181 if (TSK == TSK_ExplicitInstantiationDeclaration)
1182 return true;
1184 // Otherwise, if the class is an instantiated template, the
1185 // vtable must be defined here.
1186 if (TSK == TSK_ImplicitInstantiation ||
1187 TSK == TSK_ExplicitInstantiationDefinition)
1188 return false;
1190 // Otherwise, if the class doesn't have a key function (possibly
1191 // anymore), the vtable must be defined here.
1192 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD);
1193 if (!keyFunction)
1194 return false;
1196 const FunctionDecl *Def;
1197 // Otherwise, if we don't have a definition of the key function, the
1198 // vtable must be defined somewhere else.
1199 if (!keyFunction->hasBody(Def))
1200 return true;
1202 assert(Def && "The body of the key function is not assigned to Def?");
1203 // If the non-inline key function comes from another module unit, the vtable
1204 // must be defined there.
1205 return Def->isInAnotherModuleUnit() && !Def->isInlineSpecified();
1208 /// Given that we're currently at the end of the translation unit, and
1209 /// we've emitted a reference to the vtable for this class, should
1210 /// we define that vtable?
1211 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM,
1212 const CXXRecordDecl *RD) {
1213 // If vtable is internal then it has to be done.
1214 if (!CGM.getVTables().isVTableExternal(RD))
1215 return true;
1217 // If it's external then maybe we will need it as available_externally.
1218 return shouldEmitAvailableExternallyVTable(CGM, RD);
1221 /// Given that at some point we emitted a reference to one or more
1222 /// vtables, and that we are now at the end of the translation unit,
1223 /// decide whether we should emit them.
1224 void CodeGenModule::EmitDeferredVTables() {
1225 #ifndef NDEBUG
1226 // Remember the size of DeferredVTables, because we're going to assume
1227 // that this entire operation doesn't modify it.
1228 size_t savedSize = DeferredVTables.size();
1229 #endif
1231 for (const CXXRecordDecl *RD : DeferredVTables)
1232 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD))
1233 VTables.GenerateClassData(RD);
1234 else if (shouldOpportunisticallyEmitVTables())
1235 OpportunisticVTables.push_back(RD);
1237 assert(savedSize == DeferredVTables.size() &&
1238 "deferred extra vtables during vtable emission?");
1239 DeferredVTables.clear();
1242 bool CodeGenModule::AlwaysHasLTOVisibilityPublic(const CXXRecordDecl *RD) {
1243 if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>() ||
1244 RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>())
1245 return true;
1247 if (!getCodeGenOpts().LTOVisibilityPublicStd)
1248 return false;
1250 const DeclContext *DC = RD;
1251 while (true) {
1252 auto *D = cast<Decl>(DC);
1253 DC = DC->getParent();
1254 if (isa<TranslationUnitDecl>(DC->getRedeclContext())) {
1255 if (auto *ND = dyn_cast<NamespaceDecl>(D))
1256 if (const IdentifierInfo *II = ND->getIdentifier())
1257 if (II->isStr("std") || II->isStr("stdext"))
1258 return true;
1259 break;
1263 return false;
1266 bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) {
1267 LinkageInfo LV = RD->getLinkageAndVisibility();
1268 if (!isExternallyVisible(LV.getLinkage()))
1269 return true;
1271 if (!getTriple().isOSBinFormatCOFF() &&
1272 LV.getVisibility() != HiddenVisibility)
1273 return false;
1275 return !AlwaysHasLTOVisibilityPublic(RD);
1278 llvm::GlobalObject::VCallVisibility CodeGenModule::GetVCallVisibilityLevel(
1279 const CXXRecordDecl *RD, llvm::DenseSet<const CXXRecordDecl *> &Visited) {
1280 // If we have already visited this RD (which means this is a recursive call
1281 // since the initial call should have an empty Visited set), return the max
1282 // visibility. The recursive calls below compute the min between the result
1283 // of the recursive call and the current TypeVis, so returning the max here
1284 // ensures that it will have no effect on the current TypeVis.
1285 if (!Visited.insert(RD).second)
1286 return llvm::GlobalObject::VCallVisibilityTranslationUnit;
1288 LinkageInfo LV = RD->getLinkageAndVisibility();
1289 llvm::GlobalObject::VCallVisibility TypeVis;
1290 if (!isExternallyVisible(LV.getLinkage()))
1291 TypeVis = llvm::GlobalObject::VCallVisibilityTranslationUnit;
1292 else if (HasHiddenLTOVisibility(RD))
1293 TypeVis = llvm::GlobalObject::VCallVisibilityLinkageUnit;
1294 else
1295 TypeVis = llvm::GlobalObject::VCallVisibilityPublic;
1297 for (const auto &B : RD->bases())
1298 if (B.getType()->getAsCXXRecordDecl()->isDynamicClass())
1299 TypeVis = std::min(
1300 TypeVis,
1301 GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited));
1303 for (const auto &B : RD->vbases())
1304 if (B.getType()->getAsCXXRecordDecl()->isDynamicClass())
1305 TypeVis = std::min(
1306 TypeVis,
1307 GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited));
1309 return TypeVis;
1312 void CodeGenModule::EmitVTableTypeMetadata(const CXXRecordDecl *RD,
1313 llvm::GlobalVariable *VTable,
1314 const VTableLayout &VTLayout) {
1315 if (!getCodeGenOpts().LTOUnit)
1316 return;
1318 CharUnits ComponentWidth = GetTargetTypeStoreSize(getVTableComponentType());
1320 struct AddressPoint {
1321 const CXXRecordDecl *Base;
1322 size_t Offset;
1323 std::string TypeName;
1324 bool operator<(const AddressPoint &RHS) const {
1325 int D = TypeName.compare(RHS.TypeName);
1326 return D < 0 || (D == 0 && Offset < RHS.Offset);
1329 std::vector<AddressPoint> AddressPoints;
1330 for (auto &&AP : VTLayout.getAddressPoints()) {
1331 AddressPoint N{AP.first.getBase(),
1332 VTLayout.getVTableOffset(AP.second.VTableIndex) +
1333 AP.second.AddressPointIndex,
1334 {}};
1335 llvm::raw_string_ostream Stream(N.TypeName);
1336 getCXXABI().getMangleContext().mangleCanonicalTypeName(
1337 QualType(N.Base->getTypeForDecl(), 0), Stream);
1338 AddressPoints.push_back(std::move(N));
1341 // Sort the address points for determinism.
1342 llvm::sort(AddressPoints);
1344 ArrayRef<VTableComponent> Comps = VTLayout.vtable_components();
1345 for (auto AP : AddressPoints) {
1346 // Create type metadata for the address point.
1347 AddVTableTypeMetadata(VTable, ComponentWidth * AP.Offset, AP.Base);
1349 // The class associated with each address point could also potentially be
1350 // used for indirect calls via a member function pointer, so we need to
1351 // annotate the address of each function pointer with the appropriate member
1352 // function pointer type.
1353 for (unsigned I = 0; I != Comps.size(); ++I) {
1354 if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer)
1355 continue;
1356 llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType(
1357 Context.getMemberPointerType(
1358 Comps[I].getFunctionDecl()->getType(),
1359 Context.getRecordType(AP.Base).getTypePtr()));
1360 VTable->addTypeMetadata((ComponentWidth * I).getQuantity(), MD);
1364 if (getCodeGenOpts().VirtualFunctionElimination ||
1365 getCodeGenOpts().WholeProgramVTables) {
1366 llvm::DenseSet<const CXXRecordDecl *> Visited;
1367 llvm::GlobalObject::VCallVisibility TypeVis =
1368 GetVCallVisibilityLevel(RD, Visited);
1369 if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic)
1370 VTable->setVCallVisibilityMetadata(TypeVis);