[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / clang / lib / CodeGen / CodeGenFunction.cpp
blob3682a2c6ae859eaee7cfd2a5dc42de457e762ce8
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
11 //===----------------------------------------------------------------------===//
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetInfo.h"
35 #include "clang/CodeGen/CGFunctionInfo.h"
36 #include "clang/Frontend/FrontendDiagnostic.h"
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/FPEnv.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/MDBuilder.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/Support/CRC.h"
47 #include "llvm/Support/xxhash.h"
48 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
49 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
50 #include <optional>
52 using namespace clang;
53 using namespace CodeGen;
55 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
56 /// markers.
57 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
58 const LangOptions &LangOpts) {
59 if (CGOpts.DisableLifetimeMarkers)
60 return false;
62 // Sanitizers may use markers.
63 if (CGOpts.SanitizeAddressUseAfterScope ||
64 LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
65 LangOpts.Sanitize.has(SanitizerKind::Memory))
66 return true;
68 // For now, only in optimized builds.
69 return CGOpts.OptimizationLevel != 0;
72 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
73 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
74 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
75 CGBuilderInserterTy(this)),
76 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
77 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
78 ShouldEmitLifetimeMarkers(
79 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
80 if (!suppressNewContext)
81 CGM.getCXXABI().getMangleContext().startNewFunction();
82 EHStack.setCGF(this);
84 SetFastMathFlags(CurFPFeatures);
87 CodeGenFunction::~CodeGenFunction() {
88 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
90 if (getLangOpts().OpenMP && CurFn)
91 CGM.getOpenMPRuntime().functionFinished(*this);
93 // If we have an OpenMPIRBuilder we want to finalize functions (incl.
94 // outlining etc) at some point. Doing it once the function codegen is done
95 // seems to be a reasonable spot. We do it here, as opposed to the deletion
96 // time of the CodeGenModule, because we have to ensure the IR has not yet
97 // been "emitted" to the outside, thus, modifications are still sensible.
98 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
99 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
102 // Map the LangOption for exception behavior into
103 // the corresponding enum in the IR.
104 llvm::fp::ExceptionBehavior
105 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
107 switch (Kind) {
108 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore;
109 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
110 case LangOptions::FPE_Strict: return llvm::fp::ebStrict;
111 default:
112 llvm_unreachable("Unsupported FP Exception Behavior");
116 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
117 llvm::FastMathFlags FMF;
118 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
119 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
120 FMF.setNoInfs(FPFeatures.getNoHonorInfs());
121 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
122 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
123 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
124 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
125 Builder.setFastMathFlags(FMF);
128 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
129 const Expr *E)
130 : CGF(CGF) {
131 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
134 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
135 FPOptions FPFeatures)
136 : CGF(CGF) {
137 ConstructorHelper(FPFeatures);
140 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
141 OldFPFeatures = CGF.CurFPFeatures;
142 CGF.CurFPFeatures = FPFeatures;
144 OldExcept = CGF.Builder.getDefaultConstrainedExcept();
145 OldRounding = CGF.Builder.getDefaultConstrainedRounding();
147 if (OldFPFeatures == FPFeatures)
148 return;
150 FMFGuard.emplace(CGF.Builder);
152 llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
153 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
154 auto NewExceptionBehavior =
155 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
156 FPFeatures.getExceptionMode()));
157 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
159 CGF.SetFastMathFlags(FPFeatures);
161 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
162 isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
163 isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
164 (NewExceptionBehavior == llvm::fp::ebIgnore &&
165 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
166 "FPConstrained should be enabled on entire function");
168 auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
169 auto OldValue =
170 CGF.CurFn->getFnAttribute(Name).getValueAsBool();
171 auto NewValue = OldValue & Value;
172 if (OldValue != NewValue)
173 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
175 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
176 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
177 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
178 mergeFnAttrValue(
179 "unsafe-fp-math",
180 FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() &&
181 FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() &&
182 FPFeatures.allowFPContractAcrossStatement());
185 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
186 CGF.CurFPFeatures = OldFPFeatures;
187 CGF.Builder.setDefaultConstrainedExcept(OldExcept);
188 CGF.Builder.setDefaultConstrainedRounding(OldRounding);
191 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
192 LValueBaseInfo BaseInfo;
193 TBAAAccessInfo TBAAInfo;
194 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
195 Address Addr(V, ConvertTypeForMem(T), Alignment);
196 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
199 /// Given a value of type T* that may not be to a complete object,
200 /// construct an l-value with the natural pointee alignment of T.
201 LValue
202 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
203 LValueBaseInfo BaseInfo;
204 TBAAAccessInfo TBAAInfo;
205 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
206 /* forPointeeType= */ true);
207 Address Addr(V, ConvertTypeForMem(T), Align);
208 return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
212 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
213 return CGM.getTypes().ConvertTypeForMem(T);
216 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
217 return CGM.getTypes().ConvertType(T);
220 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
221 type = type.getCanonicalType();
222 while (true) {
223 switch (type->getTypeClass()) {
224 #define TYPE(name, parent)
225 #define ABSTRACT_TYPE(name, parent)
226 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
227 #define DEPENDENT_TYPE(name, parent) case Type::name:
228 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
229 #include "clang/AST/TypeNodes.inc"
230 llvm_unreachable("non-canonical or dependent type in IR-generation");
232 case Type::Auto:
233 case Type::DeducedTemplateSpecialization:
234 llvm_unreachable("undeduced type in IR-generation");
236 // Various scalar types.
237 case Type::Builtin:
238 case Type::Pointer:
239 case Type::BlockPointer:
240 case Type::LValueReference:
241 case Type::RValueReference:
242 case Type::MemberPointer:
243 case Type::Vector:
244 case Type::ExtVector:
245 case Type::ConstantMatrix:
246 case Type::FunctionProto:
247 case Type::FunctionNoProto:
248 case Type::Enum:
249 case Type::ObjCObjectPointer:
250 case Type::Pipe:
251 case Type::BitInt:
252 return TEK_Scalar;
254 // Complexes.
255 case Type::Complex:
256 return TEK_Complex;
258 // Arrays, records, and Objective-C objects.
259 case Type::ConstantArray:
260 case Type::IncompleteArray:
261 case Type::VariableArray:
262 case Type::Record:
263 case Type::ObjCObject:
264 case Type::ObjCInterface:
265 return TEK_Aggregate;
267 // We operate on atomic values according to their underlying type.
268 case Type::Atomic:
269 type = cast<AtomicType>(type)->getValueType();
270 continue;
272 llvm_unreachable("unknown type kind!");
276 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
277 // For cleanliness, we try to avoid emitting the return block for
278 // simple cases.
279 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
281 if (CurBB) {
282 assert(!CurBB->getTerminator() && "Unexpected terminated block.");
284 // We have a valid insert point, reuse it if it is empty or there are no
285 // explicit jumps to the return block.
286 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
287 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
288 delete ReturnBlock.getBlock();
289 ReturnBlock = JumpDest();
290 } else
291 EmitBlock(ReturnBlock.getBlock());
292 return llvm::DebugLoc();
295 // Otherwise, if the return block is the target of a single direct
296 // branch then we can just put the code in that block instead. This
297 // cleans up functions which started with a unified return block.
298 if (ReturnBlock.getBlock()->hasOneUse()) {
299 llvm::BranchInst *BI =
300 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
301 if (BI && BI->isUnconditional() &&
302 BI->getSuccessor(0) == ReturnBlock.getBlock()) {
303 // Record/return the DebugLoc of the simple 'return' expression to be used
304 // later by the actual 'ret' instruction.
305 llvm::DebugLoc Loc = BI->getDebugLoc();
306 Builder.SetInsertPoint(BI->getParent());
307 BI->eraseFromParent();
308 delete ReturnBlock.getBlock();
309 ReturnBlock = JumpDest();
310 return Loc;
314 // FIXME: We are at an unreachable point, there is no reason to emit the block
315 // unless it has uses. However, we still need a place to put the debug
316 // region.end for now.
318 EmitBlock(ReturnBlock.getBlock());
319 return llvm::DebugLoc();
322 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
323 if (!BB) return;
324 if (!BB->use_empty()) {
325 CGF.CurFn->insert(CGF.CurFn->end(), BB);
326 return;
328 delete BB;
331 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
332 assert(BreakContinueStack.empty() &&
333 "mismatched push/pop in break/continue stack!");
335 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
336 && NumSimpleReturnExprs == NumReturnExprs
337 && ReturnBlock.getBlock()->use_empty();
338 // Usually the return expression is evaluated before the cleanup
339 // code. If the function contains only a simple return statement,
340 // such as a constant, the location before the cleanup code becomes
341 // the last useful breakpoint in the function, because the simple
342 // return expression will be evaluated after the cleanup code. To be
343 // safe, set the debug location for cleanup code to the location of
344 // the return statement. Otherwise the cleanup code should be at the
345 // end of the function's lexical scope.
347 // If there are multiple branches to the return block, the branch
348 // instructions will get the location of the return statements and
349 // all will be fine.
350 if (CGDebugInfo *DI = getDebugInfo()) {
351 if (OnlySimpleReturnStmts)
352 DI->EmitLocation(Builder, LastStopPoint);
353 else
354 DI->EmitLocation(Builder, EndLoc);
357 // Pop any cleanups that might have been associated with the
358 // parameters. Do this in whatever block we're currently in; it's
359 // important to do this before we enter the return block or return
360 // edges will be *really* confused.
361 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
362 bool HasOnlyLifetimeMarkers =
363 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
364 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
366 std::optional<ApplyDebugLocation> OAL;
367 if (HasCleanups) {
368 // Make sure the line table doesn't jump back into the body for
369 // the ret after it's been at EndLoc.
370 if (CGDebugInfo *DI = getDebugInfo()) {
371 if (OnlySimpleReturnStmts)
372 DI->EmitLocation(Builder, EndLoc);
373 else
374 // We may not have a valid end location. Try to apply it anyway, and
375 // fall back to an artificial location if needed.
376 OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
379 PopCleanupBlocks(PrologueCleanupDepth);
382 // Emit function epilog (to return).
383 llvm::DebugLoc Loc = EmitReturnBlock();
385 if (ShouldInstrumentFunction()) {
386 if (CGM.getCodeGenOpts().InstrumentFunctions)
387 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
388 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
389 CurFn->addFnAttr("instrument-function-exit-inlined",
390 "__cyg_profile_func_exit");
393 // Emit debug descriptor for function end.
394 if (CGDebugInfo *DI = getDebugInfo())
395 DI->EmitFunctionEnd(Builder, CurFn);
397 // Reset the debug location to that of the simple 'return' expression, if any
398 // rather than that of the end of the function's scope '}'.
399 ApplyDebugLocation AL(*this, Loc);
400 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
401 EmitEndEHSpec(CurCodeDecl);
403 assert(EHStack.empty() &&
404 "did not remove all scopes from cleanup stack!");
406 // If someone did an indirect goto, emit the indirect goto block at the end of
407 // the function.
408 if (IndirectBranch) {
409 EmitBlock(IndirectBranch->getParent());
410 Builder.ClearInsertionPoint();
413 // If some of our locals escaped, insert a call to llvm.localescape in the
414 // entry block.
415 if (!EscapedLocals.empty()) {
416 // Invert the map from local to index into a simple vector. There should be
417 // no holes.
418 SmallVector<llvm::Value *, 4> EscapeArgs;
419 EscapeArgs.resize(EscapedLocals.size());
420 for (auto &Pair : EscapedLocals)
421 EscapeArgs[Pair.second] = Pair.first;
422 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
423 &CGM.getModule(), llvm::Intrinsic::localescape);
424 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
427 // Remove the AllocaInsertPt instruction, which is just a convenience for us.
428 llvm::Instruction *Ptr = AllocaInsertPt;
429 AllocaInsertPt = nullptr;
430 Ptr->eraseFromParent();
432 // PostAllocaInsertPt, if created, was lazily created when it was required,
433 // remove it now since it was just created for our own convenience.
434 if (PostAllocaInsertPt) {
435 llvm::Instruction *PostPtr = PostAllocaInsertPt;
436 PostAllocaInsertPt = nullptr;
437 PostPtr->eraseFromParent();
440 // If someone took the address of a label but never did an indirect goto, we
441 // made a zero entry PHI node, which is illegal, zap it now.
442 if (IndirectBranch) {
443 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
444 if (PN->getNumIncomingValues() == 0) {
445 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
446 PN->eraseFromParent();
450 EmitIfUsed(*this, EHResumeBlock);
451 EmitIfUsed(*this, TerminateLandingPad);
452 EmitIfUsed(*this, TerminateHandler);
453 EmitIfUsed(*this, UnreachableBlock);
455 for (const auto &FuncletAndParent : TerminateFunclets)
456 EmitIfUsed(*this, FuncletAndParent.second);
458 if (CGM.getCodeGenOpts().EmitDeclMetadata)
459 EmitDeclMetadata();
461 for (const auto &R : DeferredReplacements) {
462 if (llvm::Value *Old = R.first) {
463 Old->replaceAllUsesWith(R.second);
464 cast<llvm::Instruction>(Old)->eraseFromParent();
467 DeferredReplacements.clear();
469 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
470 // PHIs if the current function is a coroutine. We don't do it for all
471 // functions as it may result in slight increase in numbers of instructions
472 // if compiled with no optimizations. We do it for coroutine as the lifetime
473 // of CleanupDestSlot alloca make correct coroutine frame building very
474 // difficult.
475 if (NormalCleanupDest.isValid() && isCoroutine()) {
476 llvm::DominatorTree DT(*CurFn);
477 llvm::PromoteMemToReg(
478 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
479 NormalCleanupDest = Address::invalid();
482 // Scan function arguments for vector width.
483 for (llvm::Argument &A : CurFn->args())
484 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
485 LargestVectorWidth =
486 std::max((uint64_t)LargestVectorWidth,
487 VT->getPrimitiveSizeInBits().getKnownMinValue());
489 // Update vector width based on return type.
490 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
491 LargestVectorWidth =
492 std::max((uint64_t)LargestVectorWidth,
493 VT->getPrimitiveSizeInBits().getKnownMinValue());
495 if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
496 LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
498 // Add the required-vector-width attribute. This contains the max width from:
499 // 1. min-vector-width attribute used in the source program.
500 // 2. Any builtins used that have a vector width specified.
501 // 3. Values passed in and out of inline assembly.
502 // 4. Width of vector arguments and return types for this function.
503 // 5. Width of vector aguments and return types for functions called by this
504 // function.
505 if (getContext().getTargetInfo().getTriple().isX86())
506 CurFn->addFnAttr("min-legal-vector-width",
507 llvm::utostr(LargestVectorWidth));
509 // Add vscale_range attribute if appropriate.
510 std::optional<std::pair<unsigned, unsigned>> VScaleRange =
511 getContext().getTargetInfo().getVScaleRange(getLangOpts());
512 if (VScaleRange) {
513 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
514 getLLVMContext(), VScaleRange->first, VScaleRange->second));
517 // If we generated an unreachable return block, delete it now.
518 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
519 Builder.ClearInsertionPoint();
520 ReturnBlock.getBlock()->eraseFromParent();
522 if (ReturnValue.isValid()) {
523 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
524 if (RetAlloca && RetAlloca->use_empty()) {
525 RetAlloca->eraseFromParent();
526 ReturnValue = Address::invalid();
531 /// ShouldInstrumentFunction - Return true if the current function should be
532 /// instrumented with __cyg_profile_func_* calls
533 bool CodeGenFunction::ShouldInstrumentFunction() {
534 if (!CGM.getCodeGenOpts().InstrumentFunctions &&
535 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
536 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
537 return false;
538 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
539 return false;
540 return true;
543 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
544 if (!CurFuncDecl)
545 return false;
546 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
549 /// ShouldXRayInstrument - Return true if the current function should be
550 /// instrumented with XRay nop sleds.
551 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
552 return CGM.getCodeGenOpts().XRayInstrumentFunctions;
555 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
556 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
557 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
558 return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
559 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
560 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
561 XRayInstrKind::Custom);
564 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
565 return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
566 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
567 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
568 XRayInstrKind::Typed);
571 llvm::ConstantInt *
572 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const {
573 // Remove any (C++17) exception specifications, to allow calling e.g. a
574 // noexcept function through a non-noexcept pointer.
575 if (!Ty->isFunctionNoProtoType())
576 Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None);
577 std::string Mangled;
578 llvm::raw_string_ostream Out(Mangled);
579 CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false);
580 return llvm::ConstantInt::get(
581 CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled)));
584 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
585 llvm::Function *Fn) {
586 if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
587 return;
589 llvm::LLVMContext &Context = getLLVMContext();
591 CGM.GenKernelArgMetadata(Fn, FD, this);
593 if (!getLangOpts().OpenCL)
594 return;
596 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
597 QualType HintQTy = A->getTypeHint();
598 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
599 bool IsSignedInteger =
600 HintQTy->isSignedIntegerType() ||
601 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
602 llvm::Metadata *AttrMDArgs[] = {
603 llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
604 CGM.getTypes().ConvertType(A->getTypeHint()))),
605 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
606 llvm::IntegerType::get(Context, 32),
607 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
608 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
611 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
612 llvm::Metadata *AttrMDArgs[] = {
613 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
614 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
615 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
616 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
619 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
620 llvm::Metadata *AttrMDArgs[] = {
621 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
622 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
623 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
624 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
627 if (const OpenCLIntelReqdSubGroupSizeAttr *A =
628 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
629 llvm::Metadata *AttrMDArgs[] = {
630 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
631 Fn->setMetadata("intel_reqd_sub_group_size",
632 llvm::MDNode::get(Context, AttrMDArgs));
636 /// Determine whether the function F ends with a return stmt.
637 static bool endsWithReturn(const Decl* F) {
638 const Stmt *Body = nullptr;
639 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
640 Body = FD->getBody();
641 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
642 Body = OMD->getBody();
644 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
645 auto LastStmt = CS->body_rbegin();
646 if (LastStmt != CS->body_rend())
647 return isa<ReturnStmt>(*LastStmt);
649 return false;
652 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
653 if (SanOpts.has(SanitizerKind::Thread)) {
654 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
655 Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
659 /// Check if the return value of this function requires sanitization.
660 bool CodeGenFunction::requiresReturnValueCheck() const {
661 return requiresReturnValueNullabilityCheck() ||
662 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
663 CurCodeDecl->getAttr<ReturnsNonNullAttr>());
666 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
667 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
668 if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
669 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
670 (MD->getNumParams() != 1 && MD->getNumParams() != 2))
671 return false;
673 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
674 return false;
676 if (MD->getNumParams() == 2) {
677 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
678 if (!PT || !PT->isVoidPointerType() ||
679 !PT->getPointeeType().isConstQualified())
680 return false;
683 return true;
686 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) {
687 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
688 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
691 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) {
692 return getTarget().getTriple().getArch() == llvm::Triple::x86 &&
693 getTarget().getCXXABI().isMicrosoft() &&
694 llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) {
695 return isInAllocaArgument(CGM.getCXXABI(), P->getType());
699 /// Return the UBSan prologue signature for \p FD if one is available.
700 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
701 const FunctionDecl *FD) {
702 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
703 if (!MD->isStatic())
704 return nullptr;
705 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
708 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
709 llvm::Function *Fn,
710 const CGFunctionInfo &FnInfo,
711 const FunctionArgList &Args,
712 SourceLocation Loc,
713 SourceLocation StartLoc) {
714 assert(!CurFn &&
715 "Do not use a CodeGenFunction object for more than one function");
717 const Decl *D = GD.getDecl();
719 DidCallStackSave = false;
720 CurCodeDecl = D;
721 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
722 if (FD && FD->usesSEHTry())
723 CurSEHParent = GD;
724 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
725 FnRetTy = RetTy;
726 CurFn = Fn;
727 CurFnInfo = &FnInfo;
728 assert(CurFn->isDeclaration() && "Function already has body?");
730 // If this function is ignored for any of the enabled sanitizers,
731 // disable the sanitizer for the function.
732 do {
733 #define SANITIZER(NAME, ID) \
734 if (SanOpts.empty()) \
735 break; \
736 if (SanOpts.has(SanitizerKind::ID)) \
737 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \
738 SanOpts.set(SanitizerKind::ID, false);
740 #include "clang/Basic/Sanitizers.def"
741 #undef SANITIZER
742 } while (false);
744 if (D) {
745 const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
746 SanitizerMask no_sanitize_mask;
747 bool NoSanitizeCoverage = false;
749 for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
750 no_sanitize_mask |= Attr->getMask();
751 // SanitizeCoverage is not handled by SanOpts.
752 if (Attr->hasCoverage())
753 NoSanitizeCoverage = true;
756 // Apply the no_sanitize* attributes to SanOpts.
757 SanOpts.Mask &= ~no_sanitize_mask;
758 if (no_sanitize_mask & SanitizerKind::Address)
759 SanOpts.set(SanitizerKind::KernelAddress, false);
760 if (no_sanitize_mask & SanitizerKind::KernelAddress)
761 SanOpts.set(SanitizerKind::Address, false);
762 if (no_sanitize_mask & SanitizerKind::HWAddress)
763 SanOpts.set(SanitizerKind::KernelHWAddress, false);
764 if (no_sanitize_mask & SanitizerKind::KernelHWAddress)
765 SanOpts.set(SanitizerKind::HWAddress, false);
767 if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
768 Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
770 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
771 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
773 // Some passes need the non-negated no_sanitize attribute. Pass them on.
774 if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
775 if (no_sanitize_mask & SanitizerKind::Thread)
776 Fn->addFnAttr("no_sanitize_thread");
780 if (ShouldSkipSanitizerInstrumentation()) {
781 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
782 } else {
783 // Apply sanitizer attributes to the function.
784 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
785 Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
786 if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
787 SanitizerKind::KernelHWAddress))
788 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
789 if (SanOpts.has(SanitizerKind::MemtagStack))
790 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
791 if (SanOpts.has(SanitizerKind::Thread))
792 Fn->addFnAttr(llvm::Attribute::SanitizeThread);
793 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
794 Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
796 if (SanOpts.has(SanitizerKind::SafeStack))
797 Fn->addFnAttr(llvm::Attribute::SafeStack);
798 if (SanOpts.has(SanitizerKind::ShadowCallStack))
799 Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
801 // Apply fuzzing attribute to the function.
802 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
803 Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
805 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
806 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
807 if (SanOpts.has(SanitizerKind::Thread)) {
808 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
809 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
810 if (OMD->getMethodFamily() == OMF_dealloc ||
811 OMD->getMethodFamily() == OMF_initialize ||
812 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
813 markAsIgnoreThreadCheckingAtRuntime(Fn);
818 // Ignore unrelated casts in STL allocate() since the allocator must cast
819 // from void* to T* before object initialization completes. Don't match on the
820 // namespace because not all allocators are in std::
821 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
822 if (matchesStlAllocatorFn(D, getContext()))
823 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
826 // Ignore null checks in coroutine functions since the coroutines passes
827 // are not aware of how to move the extra UBSan instructions across the split
828 // coroutine boundaries.
829 if (D && SanOpts.has(SanitizerKind::Null))
830 if (FD && FD->getBody() &&
831 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
832 SanOpts.Mask &= ~SanitizerKind::Null;
834 // Apply xray attributes to the function (as a string, for now)
835 bool AlwaysXRayAttr = false;
836 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
837 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
838 XRayInstrKind::FunctionEntry) ||
839 CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
840 XRayInstrKind::FunctionExit)) {
841 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
842 Fn->addFnAttr("function-instrument", "xray-always");
843 AlwaysXRayAttr = true;
845 if (XRayAttr->neverXRayInstrument())
846 Fn->addFnAttr("function-instrument", "xray-never");
847 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
848 if (ShouldXRayInstrumentFunction())
849 Fn->addFnAttr("xray-log-args",
850 llvm::utostr(LogArgs->getArgumentCount()));
852 } else {
853 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
854 Fn->addFnAttr(
855 "xray-instruction-threshold",
856 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
859 if (ShouldXRayInstrumentFunction()) {
860 if (CGM.getCodeGenOpts().XRayIgnoreLoops)
861 Fn->addFnAttr("xray-ignore-loops");
863 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
864 XRayInstrKind::FunctionExit))
865 Fn->addFnAttr("xray-skip-exit");
867 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
868 XRayInstrKind::FunctionEntry))
869 Fn->addFnAttr("xray-skip-entry");
871 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
872 if (FuncGroups > 1) {
873 auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
874 CurFn->getName().bytes_end());
875 auto Group = crc32(FuncName) % FuncGroups;
876 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
877 !AlwaysXRayAttr)
878 Fn->addFnAttr("function-instrument", "xray-never");
882 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
883 switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
884 case ProfileList::Skip:
885 Fn->addFnAttr(llvm::Attribute::SkipProfile);
886 break;
887 case ProfileList::Forbid:
888 Fn->addFnAttr(llvm::Attribute::NoProfile);
889 break;
890 case ProfileList::Allow:
891 break;
895 unsigned Count, Offset;
896 if (const auto *Attr =
897 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
898 Count = Attr->getCount();
899 Offset = Attr->getOffset();
900 } else {
901 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
902 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
904 if (Count && Offset <= Count) {
905 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
906 if (Offset)
907 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
909 // Instruct that functions for COFF/CodeView targets should start with a
910 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
911 // backends as they don't need it -- instructions on these architectures are
912 // always atomically patchable at runtime.
913 if (CGM.getCodeGenOpts().HotPatch &&
914 getContext().getTargetInfo().getTriple().isX86() &&
915 getContext().getTargetInfo().getTriple().getEnvironment() !=
916 llvm::Triple::CODE16)
917 Fn->addFnAttr("patchable-function", "prologue-short-redirect");
919 // Add no-jump-tables value.
920 if (CGM.getCodeGenOpts().NoUseJumpTables)
921 Fn->addFnAttr("no-jump-tables", "true");
923 // Add no-inline-line-tables value.
924 if (CGM.getCodeGenOpts().NoInlineLineTables)
925 Fn->addFnAttr("no-inline-line-tables");
927 // Add profile-sample-accurate value.
928 if (CGM.getCodeGenOpts().ProfileSampleAccurate)
929 Fn->addFnAttr("profile-sample-accurate");
931 if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
932 Fn->addFnAttr("use-sample-profile");
934 if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
935 Fn->addFnAttr("cfi-canonical-jump-table");
937 if (D && D->hasAttr<NoProfileFunctionAttr>())
938 Fn->addFnAttr(llvm::Attribute::NoProfile);
940 if (D) {
941 // Function attributes take precedence over command line flags.
942 if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
943 switch (A->getThunkType()) {
944 case FunctionReturnThunksAttr::Kind::Keep:
945 break;
946 case FunctionReturnThunksAttr::Kind::Extern:
947 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
948 break;
950 } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
951 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
954 if (FD && (getLangOpts().OpenCL ||
955 (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) {
956 // Add metadata for a kernel function.
957 EmitKernelMetadata(FD, Fn);
960 // If we are checking function types, emit a function type signature as
961 // prologue data.
962 if (FD && SanOpts.has(SanitizerKind::Function)) {
963 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
964 llvm::LLVMContext &Ctx = Fn->getContext();
965 llvm::MDBuilder MDB(Ctx);
966 Fn->setMetadata(
967 llvm::LLVMContext::MD_func_sanitize,
968 MDB.createRTTIPointerPrologue(
969 PrologueSig, getUBSanFunctionTypeHash(FD->getType())));
973 // If we're checking nullability, we need to know whether we can check the
974 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
975 if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
976 auto Nullability = FnRetTy->getNullability();
977 if (Nullability && *Nullability == NullabilityKind::NonNull) {
978 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
979 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
980 RetValNullabilityPrecondition =
981 llvm::ConstantInt::getTrue(getLLVMContext());
985 // If we're in C++ mode and the function name is "main", it is guaranteed
986 // to be norecurse by the standard (3.6.1.3 "The function main shall not be
987 // used within a program").
989 // OpenCL C 2.0 v2.2-11 s6.9.i:
990 // Recursion is not supported.
992 // SYCL v1.2.1 s3.10:
993 // kernels cannot include RTTI information, exception classes,
994 // recursive code, virtual functions or make use of C++ libraries that
995 // are not compiled for the device.
996 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
997 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
998 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
999 Fn->addFnAttr(llvm::Attribute::NoRecurse);
1001 llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
1002 llvm::fp::ExceptionBehavior FPExceptionBehavior =
1003 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1004 Builder.setDefaultConstrainedRounding(RM);
1005 Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
1006 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
1007 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
1008 RM != llvm::RoundingMode::NearestTiesToEven))) {
1009 Builder.setIsFPConstrained(true);
1010 Fn->addFnAttr(llvm::Attribute::StrictFP);
1013 // If a custom alignment is used, force realigning to this alignment on
1014 // any main function which certainly will need it.
1015 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1016 CGM.getCodeGenOpts().StackAlignment))
1017 Fn->addFnAttr("stackrealign");
1019 // "main" doesn't need to zero out call-used registers.
1020 if (FD && FD->isMain())
1021 Fn->removeFnAttr("zero-call-used-regs");
1023 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1025 // Create a marker to make it easy to insert allocas into the entryblock
1026 // later. Don't create this with the builder, because we don't want it
1027 // folded.
1028 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1029 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1031 ReturnBlock = getJumpDestInCurrentScope("return");
1033 Builder.SetInsertPoint(EntryBB);
1035 // If we're checking the return value, allocate space for a pointer to a
1036 // precise source location of the checked return statement.
1037 if (requiresReturnValueCheck()) {
1038 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1039 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1040 ReturnLocation);
1043 // Emit subprogram debug descriptor.
1044 if (CGDebugInfo *DI = getDebugInfo()) {
1045 // Reconstruct the type from the argument list so that implicit parameters,
1046 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1047 // convention.
1048 DI->emitFunctionStart(GD, Loc, StartLoc,
1049 DI->getFunctionType(FD, RetTy, Args), CurFn,
1050 CurFuncIsThunk);
1053 if (ShouldInstrumentFunction()) {
1054 if (CGM.getCodeGenOpts().InstrumentFunctions)
1055 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1056 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1057 CurFn->addFnAttr("instrument-function-entry-inlined",
1058 "__cyg_profile_func_enter");
1059 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1060 CurFn->addFnAttr("instrument-function-entry-inlined",
1061 "__cyg_profile_func_enter_bare");
1064 // Since emitting the mcount call here impacts optimizations such as function
1065 // inlining, we just add an attribute to insert a mcount call in backend.
1066 // The attribute "counting-function" is set to mcount function name which is
1067 // architecture dependent.
1068 if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1069 // Calls to fentry/mcount should not be generated if function has
1070 // the no_instrument_function attribute.
1071 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1072 if (CGM.getCodeGenOpts().CallFEntry)
1073 Fn->addFnAttr("fentry-call", "true");
1074 else {
1075 Fn->addFnAttr("instrument-function-entry-inlined",
1076 getTarget().getMCountName());
1078 if (CGM.getCodeGenOpts().MNopMCount) {
1079 if (!CGM.getCodeGenOpts().CallFEntry)
1080 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1081 << "-mnop-mcount" << "-mfentry";
1082 Fn->addFnAttr("mnop-mcount");
1085 if (CGM.getCodeGenOpts().RecordMCount) {
1086 if (!CGM.getCodeGenOpts().CallFEntry)
1087 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1088 << "-mrecord-mcount" << "-mfentry";
1089 Fn->addFnAttr("mrecord-mcount");
1094 if (CGM.getCodeGenOpts().PackedStack) {
1095 if (getContext().getTargetInfo().getTriple().getArch() !=
1096 llvm::Triple::systemz)
1097 CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1098 << "-mpacked-stack";
1099 Fn->addFnAttr("packed-stack");
1102 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1103 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1104 Fn->addFnAttr("warn-stack-size",
1105 std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1107 if (RetTy->isVoidType()) {
1108 // Void type; nothing to return.
1109 ReturnValue = Address::invalid();
1111 // Count the implicit return.
1112 if (!endsWithReturn(D))
1113 ++NumReturnExprs;
1114 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1115 // Indirect return; emit returned value directly into sret slot.
1116 // This reduces code size, and affects correctness in C++.
1117 auto AI = CurFn->arg_begin();
1118 if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1119 ++AI;
1120 ReturnValue =
1121 Address(&*AI, ConvertType(RetTy),
1122 CurFnInfo->getReturnInfo().getIndirectAlign(), KnownNonNull);
1123 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1124 ReturnValuePointer =
1125 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1126 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1127 ReturnValue.getPointer(), Int8PtrTy),
1128 ReturnValuePointer);
1130 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1131 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1132 // Load the sret pointer from the argument struct and return into that.
1133 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1134 llvm::Function::arg_iterator EI = CurFn->arg_end();
1135 --EI;
1136 llvm::Value *Addr = Builder.CreateStructGEP(
1137 CurFnInfo->getArgStruct(), &*EI, Idx);
1138 llvm::Type *Ty =
1139 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1140 ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1141 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1142 ReturnValue = Address(Addr, ConvertType(RetTy),
1143 CGM.getNaturalTypeAlignment(RetTy), KnownNonNull);
1144 } else {
1145 ReturnValue = CreateIRTemp(RetTy, "retval");
1147 // Tell the epilog emitter to autorelease the result. We do this
1148 // now so that various specialized functions can suppress it
1149 // during their IR-generation.
1150 if (getLangOpts().ObjCAutoRefCount &&
1151 !CurFnInfo->isReturnsRetained() &&
1152 RetTy->isObjCRetainableType())
1153 AutoreleaseResult = true;
1156 EmitStartEHSpec(CurCodeDecl);
1158 PrologueCleanupDepth = EHStack.stable_begin();
1160 // Emit OpenMP specific initialization of the device functions.
1161 if (getLangOpts().OpenMP && CurCodeDecl)
1162 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1164 // Handle emitting HLSL entry functions.
1165 if (D && D->hasAttr<HLSLShaderAttr>())
1166 CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1168 EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1170 if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D);
1171 MD && !MD->isStatic()) {
1172 bool IsInLambda =
1173 MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call;
1174 if (MD->isImplicitObjectMemberFunction())
1175 CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1176 if (IsInLambda) {
1177 // We're in a lambda; figure out the captures.
1178 MD->getParent()->getCaptureFields(LambdaCaptureFields,
1179 LambdaThisCaptureField);
1180 if (LambdaThisCaptureField) {
1181 // If the lambda captures the object referred to by '*this' - either by
1182 // value or by reference, make sure CXXThisValue points to the correct
1183 // object.
1185 // Get the lvalue for the field (which is a copy of the enclosing object
1186 // or contains the address of the enclosing object).
1187 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1188 if (!LambdaThisCaptureField->getType()->isPointerType()) {
1189 // If the enclosing object was captured by value, just use its address.
1190 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1191 } else {
1192 // Load the lvalue pointed to by the field, since '*this' was captured
1193 // by reference.
1194 CXXThisValue =
1195 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1198 for (auto *FD : MD->getParent()->fields()) {
1199 if (FD->hasCapturedVLAType()) {
1200 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1201 SourceLocation()).getScalarVal();
1202 auto VAT = FD->getCapturedVLAType();
1203 VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1206 } else if (MD->isImplicitObjectMemberFunction()) {
1207 // Not in a lambda; just use 'this' from the method.
1208 // FIXME: Should we generate a new load for each use of 'this'? The
1209 // fast register allocator would be happier...
1210 CXXThisValue = CXXABIThisValue;
1213 // Check the 'this' pointer once per function, if it's available.
1214 if (CXXABIThisValue) {
1215 SanitizerSet SkippedChecks;
1216 SkippedChecks.set(SanitizerKind::ObjectSize, true);
1217 QualType ThisTy = MD->getThisType();
1219 // If this is the call operator of a lambda with no captures, it
1220 // may have a static invoker function, which may call this operator with
1221 // a null 'this' pointer.
1222 if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda())
1223 SkippedChecks.set(SanitizerKind::Null, true);
1225 EmitTypeCheck(
1226 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1227 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1231 // If any of the arguments have a variably modified type, make sure to
1232 // emit the type size, but only if the function is not naked. Naked functions
1233 // have no prolog to run this evaluation.
1234 if (!FD || !FD->hasAttr<NakedAttr>()) {
1235 for (const VarDecl *VD : Args) {
1236 // Dig out the type as written from ParmVarDecls; it's unclear whether
1237 // the standard (C99 6.9.1p10) requires this, but we're following the
1238 // precedent set by gcc.
1239 QualType Ty;
1240 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1241 Ty = PVD->getOriginalType();
1242 else
1243 Ty = VD->getType();
1245 if (Ty->isVariablyModifiedType())
1246 EmitVariablyModifiedType(Ty);
1249 // Emit a location at the end of the prologue.
1250 if (CGDebugInfo *DI = getDebugInfo())
1251 DI->EmitLocation(Builder, StartLoc);
1252 // TODO: Do we need to handle this in two places like we do with
1253 // target-features/target-cpu?
1254 if (CurFuncDecl)
1255 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1256 LargestVectorWidth = VecWidth->getVectorWidth();
1259 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1260 incrementProfileCounter(Body);
1261 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1262 EmitCompoundStmtWithoutScope(*S);
1263 else
1264 EmitStmt(Body);
1266 // This is checked after emitting the function body so we know if there
1267 // are any permitted infinite loops.
1268 if (checkIfFunctionMustProgress())
1269 CurFn->addFnAttr(llvm::Attribute::MustProgress);
1272 /// When instrumenting to collect profile data, the counts for some blocks
1273 /// such as switch cases need to not include the fall-through counts, so
1274 /// emit a branch around the instrumentation code. When not instrumenting,
1275 /// this just calls EmitBlock().
1276 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1277 const Stmt *S) {
1278 llvm::BasicBlock *SkipCountBB = nullptr;
1279 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1280 // When instrumenting for profiling, the fallthrough to certain
1281 // statements needs to skip over the instrumentation code so that we
1282 // get an accurate count.
1283 SkipCountBB = createBasicBlock("skipcount");
1284 EmitBranch(SkipCountBB);
1286 EmitBlock(BB);
1287 uint64_t CurrentCount = getCurrentProfileCount();
1288 incrementProfileCounter(S);
1289 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1290 if (SkipCountBB)
1291 EmitBlock(SkipCountBB);
1294 /// Tries to mark the given function nounwind based on the
1295 /// non-existence of any throwing calls within it. We believe this is
1296 /// lightweight enough to do at -O0.
1297 static void TryMarkNoThrow(llvm::Function *F) {
1298 // LLVM treats 'nounwind' on a function as part of the type, so we
1299 // can't do this on functions that can be overwritten.
1300 if (F->isInterposable()) return;
1302 for (llvm::BasicBlock &BB : *F)
1303 for (llvm::Instruction &I : BB)
1304 if (I.mayThrow())
1305 return;
1307 F->setDoesNotThrow();
1310 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1311 FunctionArgList &Args) {
1312 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1313 QualType ResTy = FD->getReturnType();
1315 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1316 if (MD && MD->isImplicitObjectMemberFunction()) {
1317 if (CGM.getCXXABI().HasThisReturn(GD))
1318 ResTy = MD->getThisType();
1319 else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1320 ResTy = CGM.getContext().VoidPtrTy;
1321 CGM.getCXXABI().buildThisParam(*this, Args);
1324 // The base version of an inheriting constructor whose constructed base is a
1325 // virtual base is not passed any arguments (because it doesn't actually call
1326 // the inherited constructor).
1327 bool PassedParams = true;
1328 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1329 if (auto Inherited = CD->getInheritedConstructor())
1330 PassedParams =
1331 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1333 if (PassedParams) {
1334 for (auto *Param : FD->parameters()) {
1335 Args.push_back(Param);
1336 if (!Param->hasAttr<PassObjectSizeAttr>())
1337 continue;
1339 auto *Implicit = ImplicitParamDecl::Create(
1340 getContext(), Param->getDeclContext(), Param->getLocation(),
1341 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1342 SizeArguments[Param] = Implicit;
1343 Args.push_back(Implicit);
1347 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1348 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1350 return ResTy;
1353 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1354 const CGFunctionInfo &FnInfo) {
1355 assert(Fn && "generating code for null Function");
1356 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1357 CurGD = GD;
1359 FunctionArgList Args;
1360 QualType ResTy = BuildFunctionArgList(GD, Args);
1362 if (FD->isInlineBuiltinDeclaration()) {
1363 // When generating code for a builtin with an inline declaration, use a
1364 // mangled name to hold the actual body, while keeping an external
1365 // definition in case the function pointer is referenced somewhere.
1366 std::string FDInlineName = (Fn->getName() + ".inline").str();
1367 llvm::Module *M = Fn->getParent();
1368 llvm::Function *Clone = M->getFunction(FDInlineName);
1369 if (!Clone) {
1370 Clone = llvm::Function::Create(Fn->getFunctionType(),
1371 llvm::GlobalValue::InternalLinkage,
1372 Fn->getAddressSpace(), FDInlineName, M);
1373 Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1375 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1376 Fn = Clone;
1377 } else {
1378 // Detect the unusual situation where an inline version is shadowed by a
1379 // non-inline version. In that case we should pick the external one
1380 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1381 // to detect that situation before we reach codegen, so do some late
1382 // replacement.
1383 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1384 PD = PD->getPreviousDecl()) {
1385 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1386 std::string FDInlineName = (Fn->getName() + ".inline").str();
1387 llvm::Module *M = Fn->getParent();
1388 if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1389 Clone->replaceAllUsesWith(Fn);
1390 Clone->eraseFromParent();
1392 break;
1397 // Check if we should generate debug info for this function.
1398 if (FD->hasAttr<NoDebugAttr>()) {
1399 // Clear non-distinct debug info that was possibly attached to the function
1400 // due to an earlier declaration without the nodebug attribute
1401 Fn->setSubprogram(nullptr);
1402 // Disable debug info indefinitely for this function
1403 DebugInfo = nullptr;
1406 // The function might not have a body if we're generating thunks for a
1407 // function declaration.
1408 SourceRange BodyRange;
1409 if (Stmt *Body = FD->getBody())
1410 BodyRange = Body->getSourceRange();
1411 else
1412 BodyRange = FD->getLocation();
1413 CurEHLocation = BodyRange.getEnd();
1415 // Use the location of the start of the function to determine where
1416 // the function definition is located. By default use the location
1417 // of the declaration as the location for the subprogram. A function
1418 // may lack a declaration in the source code if it is created by code
1419 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1420 SourceLocation Loc = FD->getLocation();
1422 // If this is a function specialization then use the pattern body
1423 // as the location for the function.
1424 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1425 if (SpecDecl->hasBody(SpecDecl))
1426 Loc = SpecDecl->getLocation();
1428 Stmt *Body = FD->getBody();
1430 if (Body) {
1431 // Coroutines always emit lifetime markers.
1432 if (isa<CoroutineBodyStmt>(Body))
1433 ShouldEmitLifetimeMarkers = true;
1435 // Initialize helper which will detect jumps which can cause invalid
1436 // lifetime markers.
1437 if (ShouldEmitLifetimeMarkers)
1438 Bypasses.Init(Body);
1441 // Emit the standard function prologue.
1442 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1444 // Save parameters for coroutine function.
1445 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1446 llvm::append_range(FnArgs, FD->parameters());
1448 // Generate the body of the function.
1449 PGO.assignRegionCounters(GD, CurFn);
1450 if (isa<CXXDestructorDecl>(FD))
1451 EmitDestructorBody(Args);
1452 else if (isa<CXXConstructorDecl>(FD))
1453 EmitConstructorBody(Args);
1454 else if (getLangOpts().CUDA &&
1455 !getLangOpts().CUDAIsDevice &&
1456 FD->hasAttr<CUDAGlobalAttr>())
1457 CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1458 else if (isa<CXXMethodDecl>(FD) &&
1459 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1460 // The lambda static invoker function is special, because it forwards or
1461 // clones the body of the function call operator (but is actually static).
1462 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1463 } else if (isa<CXXMethodDecl>(FD) &&
1464 isLambdaCallOperator(cast<CXXMethodDecl>(FD)) &&
1465 !FnInfo.isDelegateCall() &&
1466 cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() &&
1467 hasInAllocaArg(cast<CXXMethodDecl>(FD))) {
1468 // If emitting a lambda with static invoker on X86 Windows, change
1469 // the call operator body.
1470 // Make sure that this is a call operator with an inalloca arg and check
1471 // for delegate call to make sure this is the original call op and not the
1472 // new forwarding function for the static invoker.
1473 EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD));
1474 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1475 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1476 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1477 // Implicit copy-assignment gets the same special treatment as implicit
1478 // copy-constructors.
1479 emitImplicitAssignmentOperatorBody(Args);
1480 } else if (Body) {
1481 EmitFunctionBody(Body);
1482 } else
1483 llvm_unreachable("no definition for emitted function");
1485 // C++11 [stmt.return]p2:
1486 // Flowing off the end of a function [...] results in undefined behavior in
1487 // a value-returning function.
1488 // C11 6.9.1p12:
1489 // If the '}' that terminates a function is reached, and the value of the
1490 // function call is used by the caller, the behavior is undefined.
1491 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1492 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1493 bool ShouldEmitUnreachable =
1494 CGM.getCodeGenOpts().StrictReturn ||
1495 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1496 if (SanOpts.has(SanitizerKind::Return)) {
1497 SanitizerScope SanScope(this);
1498 llvm::Value *IsFalse = Builder.getFalse();
1499 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1500 SanitizerHandler::MissingReturn,
1501 EmitCheckSourceLocation(FD->getLocation()), std::nullopt);
1502 } else if (ShouldEmitUnreachable) {
1503 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1504 EmitTrapCall(llvm::Intrinsic::trap);
1506 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1507 Builder.CreateUnreachable();
1508 Builder.ClearInsertionPoint();
1512 // Emit the standard function epilogue.
1513 FinishFunction(BodyRange.getEnd());
1515 // If we haven't marked the function nothrow through other means, do
1516 // a quick pass now to see if we can.
1517 if (!CurFn->doesNotThrow())
1518 TryMarkNoThrow(CurFn);
1521 /// ContainsLabel - Return true if the statement contains a label in it. If
1522 /// this statement is not executed normally, it not containing a label means
1523 /// that we can just remove the code.
1524 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1525 // Null statement, not a label!
1526 if (!S) return false;
1528 // If this is a label, we have to emit the code, consider something like:
1529 // if (0) { ... foo: bar(); } goto foo;
1531 // TODO: If anyone cared, we could track __label__'s, since we know that you
1532 // can't jump to one from outside their declared region.
1533 if (isa<LabelStmt>(S))
1534 return true;
1536 // If this is a case/default statement, and we haven't seen a switch, we have
1537 // to emit the code.
1538 if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1539 return true;
1541 // If this is a switch statement, we want to ignore cases below it.
1542 if (isa<SwitchStmt>(S))
1543 IgnoreCaseStmts = true;
1545 // Scan subexpressions for verboten labels.
1546 for (const Stmt *SubStmt : S->children())
1547 if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1548 return true;
1550 return false;
1553 /// containsBreak - Return true if the statement contains a break out of it.
1554 /// If the statement (recursively) contains a switch or loop with a break
1555 /// inside of it, this is fine.
1556 bool CodeGenFunction::containsBreak(const Stmt *S) {
1557 // Null statement, not a label!
1558 if (!S) return false;
1560 // If this is a switch or loop that defines its own break scope, then we can
1561 // include it and anything inside of it.
1562 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1563 isa<ForStmt>(S))
1564 return false;
1566 if (isa<BreakStmt>(S))
1567 return true;
1569 // Scan subexpressions for verboten breaks.
1570 for (const Stmt *SubStmt : S->children())
1571 if (containsBreak(SubStmt))
1572 return true;
1574 return false;
1577 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1578 if (!S) return false;
1580 // Some statement kinds add a scope and thus never add a decl to the current
1581 // scope. Note, this list is longer than the list of statements that might
1582 // have an unscoped decl nested within them, but this way is conservatively
1583 // correct even if more statement kinds are added.
1584 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1585 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1586 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1587 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1588 return false;
1590 if (isa<DeclStmt>(S))
1591 return true;
1593 for (const Stmt *SubStmt : S->children())
1594 if (mightAddDeclToScope(SubStmt))
1595 return true;
1597 return false;
1600 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1601 /// to a constant, or if it does but contains a label, return false. If it
1602 /// constant folds return true and set the boolean result in Result.
1603 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1604 bool &ResultBool,
1605 bool AllowLabels) {
1606 llvm::APSInt ResultInt;
1607 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1608 return false;
1610 ResultBool = ResultInt.getBoolValue();
1611 return true;
1614 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1615 /// to a constant, or if it does but contains a label, return false. If it
1616 /// constant folds return true and set the folded value.
1617 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1618 llvm::APSInt &ResultInt,
1619 bool AllowLabels) {
1620 // FIXME: Rename and handle conversion of other evaluatable things
1621 // to bool.
1622 Expr::EvalResult Result;
1623 if (!Cond->EvaluateAsInt(Result, getContext()))
1624 return false; // Not foldable, not integer or not fully evaluatable.
1626 llvm::APSInt Int = Result.Val.getInt();
1627 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1628 return false; // Contains a label.
1630 ResultInt = Int;
1631 return true;
1634 /// Determine whether the given condition is an instrumentable condition
1635 /// (i.e. no "&&" or "||").
1636 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1637 // Bypass simplistic logical-NOT operator before determining whether the
1638 // condition contains any other logical operator.
1639 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1640 if (UnOp->getOpcode() == UO_LNot)
1641 C = UnOp->getSubExpr();
1643 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1644 return (!BOp || !BOp->isLogicalOp());
1647 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1648 /// increments a profile counter based on the semantics of the given logical
1649 /// operator opcode. This is used to instrument branch condition coverage for
1650 /// logical operators.
1651 void CodeGenFunction::EmitBranchToCounterBlock(
1652 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1653 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1654 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1655 // If not instrumenting, just emit a branch.
1656 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1657 if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1658 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1660 llvm::BasicBlock *ThenBlock = nullptr;
1661 llvm::BasicBlock *ElseBlock = nullptr;
1662 llvm::BasicBlock *NextBlock = nullptr;
1664 // Create the block we'll use to increment the appropriate counter.
1665 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1667 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1668 // means we need to evaluate the condition and increment the counter on TRUE:
1670 // if (Cond)
1671 // goto CounterIncrBlock;
1672 // else
1673 // goto FalseBlock;
1675 // CounterIncrBlock:
1676 // Counter++;
1677 // goto TrueBlock;
1679 if (LOp == BO_LAnd) {
1680 ThenBlock = CounterIncrBlock;
1681 ElseBlock = FalseBlock;
1682 NextBlock = TrueBlock;
1685 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1686 // we need to evaluate the condition and increment the counter on FALSE:
1688 // if (Cond)
1689 // goto TrueBlock;
1690 // else
1691 // goto CounterIncrBlock;
1693 // CounterIncrBlock:
1694 // Counter++;
1695 // goto FalseBlock;
1697 else if (LOp == BO_LOr) {
1698 ThenBlock = TrueBlock;
1699 ElseBlock = CounterIncrBlock;
1700 NextBlock = FalseBlock;
1701 } else {
1702 llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1705 // Emit Branch based on condition.
1706 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1708 // Emit the block containing the counter increment(s).
1709 EmitBlock(CounterIncrBlock);
1711 // Increment corresponding counter; if index not provided, use Cond as index.
1712 incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1714 // Go to the next block.
1715 EmitBranch(NextBlock);
1718 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1719 /// statement) to the specified blocks. Based on the condition, this might try
1720 /// to simplify the codegen of the conditional based on the branch.
1721 /// \param LH The value of the likelihood attribute on the True branch.
1722 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1723 llvm::BasicBlock *TrueBlock,
1724 llvm::BasicBlock *FalseBlock,
1725 uint64_t TrueCount,
1726 Stmt::Likelihood LH) {
1727 Cond = Cond->IgnoreParens();
1729 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1731 // Handle X && Y in a condition.
1732 if (CondBOp->getOpcode() == BO_LAnd) {
1733 // If we have "1 && X", simplify the code. "0 && X" would have constant
1734 // folded if the case was simple enough.
1735 bool ConstantBool = false;
1736 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1737 ConstantBool) {
1738 // br(1 && X) -> br(X).
1739 incrementProfileCounter(CondBOp);
1740 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1741 FalseBlock, TrueCount, LH);
1744 // If we have "X && 1", simplify the code to use an uncond branch.
1745 // "X && 0" would have been constant folded to 0.
1746 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1747 ConstantBool) {
1748 // br(X && 1) -> br(X).
1749 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1750 FalseBlock, TrueCount, LH, CondBOp);
1753 // Emit the LHS as a conditional. If the LHS conditional is false, we
1754 // want to jump to the FalseBlock.
1755 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1756 // The counter tells us how often we evaluate RHS, and all of TrueCount
1757 // can be propagated to that branch.
1758 uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1760 ConditionalEvaluation eval(*this);
1762 ApplyDebugLocation DL(*this, Cond);
1763 // Propagate the likelihood attribute like __builtin_expect
1764 // __builtin_expect(X && Y, 1) -> X and Y are likely
1765 // __builtin_expect(X && Y, 0) -> only Y is unlikely
1766 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1767 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1768 EmitBlock(LHSTrue);
1771 incrementProfileCounter(CondBOp);
1772 setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1774 // Any temporaries created here are conditional.
1775 eval.begin(*this);
1776 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1777 FalseBlock, TrueCount, LH);
1778 eval.end(*this);
1780 return;
1783 if (CondBOp->getOpcode() == BO_LOr) {
1784 // If we have "0 || X", simplify the code. "1 || X" would have constant
1785 // folded if the case was simple enough.
1786 bool ConstantBool = false;
1787 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1788 !ConstantBool) {
1789 // br(0 || X) -> br(X).
1790 incrementProfileCounter(CondBOp);
1791 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1792 FalseBlock, TrueCount, LH);
1795 // If we have "X || 0", simplify the code to use an uncond branch.
1796 // "X || 1" would have been constant folded to 1.
1797 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1798 !ConstantBool) {
1799 // br(X || 0) -> br(X).
1800 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1801 FalseBlock, TrueCount, LH, CondBOp);
1804 // Emit the LHS as a conditional. If the LHS conditional is true, we
1805 // want to jump to the TrueBlock.
1806 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1807 // We have the count for entry to the RHS and for the whole expression
1808 // being true, so we can divy up True count between the short circuit and
1809 // the RHS.
1810 uint64_t LHSCount =
1811 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1812 uint64_t RHSCount = TrueCount - LHSCount;
1814 ConditionalEvaluation eval(*this);
1816 // Propagate the likelihood attribute like __builtin_expect
1817 // __builtin_expect(X || Y, 1) -> only Y is likely
1818 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1819 ApplyDebugLocation DL(*this, Cond);
1820 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1821 LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1822 EmitBlock(LHSFalse);
1825 incrementProfileCounter(CondBOp);
1826 setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1828 // Any temporaries created here are conditional.
1829 eval.begin(*this);
1830 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1831 RHSCount, LH);
1833 eval.end(*this);
1835 return;
1839 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1840 // br(!x, t, f) -> br(x, f, t)
1841 if (CondUOp->getOpcode() == UO_LNot) {
1842 // Negate the count.
1843 uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1844 // The values of the enum are chosen to make this negation possible.
1845 LH = static_cast<Stmt::Likelihood>(-LH);
1846 // Negate the condition and swap the destination blocks.
1847 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1848 FalseCount, LH);
1852 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1853 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1854 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1855 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1857 // The ConditionalOperator itself has no likelihood information for its
1858 // true and false branches. This matches the behavior of __builtin_expect.
1859 ConditionalEvaluation cond(*this);
1860 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1861 getProfileCount(CondOp), Stmt::LH_None);
1863 // When computing PGO branch weights, we only know the overall count for
1864 // the true block. This code is essentially doing tail duplication of the
1865 // naive code-gen, introducing new edges for which counts are not
1866 // available. Divide the counts proportionally between the LHS and RHS of
1867 // the conditional operator.
1868 uint64_t LHSScaledTrueCount = 0;
1869 if (TrueCount) {
1870 double LHSRatio =
1871 getProfileCount(CondOp) / (double)getCurrentProfileCount();
1872 LHSScaledTrueCount = TrueCount * LHSRatio;
1875 cond.begin(*this);
1876 EmitBlock(LHSBlock);
1877 incrementProfileCounter(CondOp);
1879 ApplyDebugLocation DL(*this, Cond);
1880 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1881 LHSScaledTrueCount, LH);
1883 cond.end(*this);
1885 cond.begin(*this);
1886 EmitBlock(RHSBlock);
1887 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1888 TrueCount - LHSScaledTrueCount, LH);
1889 cond.end(*this);
1891 return;
1894 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1895 // Conditional operator handling can give us a throw expression as a
1896 // condition for a case like:
1897 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1898 // Fold this to:
1899 // br(c, throw x, br(y, t, f))
1900 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1901 return;
1904 // Emit the code with the fully general case.
1905 llvm::Value *CondV;
1907 ApplyDebugLocation DL(*this, Cond);
1908 CondV = EvaluateExprAsBool(Cond);
1911 llvm::MDNode *Weights = nullptr;
1912 llvm::MDNode *Unpredictable = nullptr;
1914 // If the branch has a condition wrapped by __builtin_unpredictable,
1915 // create metadata that specifies that the branch is unpredictable.
1916 // Don't bother if not optimizing because that metadata would not be used.
1917 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1918 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1919 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1920 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1921 llvm::MDBuilder MDHelper(getLLVMContext());
1922 Unpredictable = MDHelper.createUnpredictable();
1926 // If there is a Likelihood knowledge for the cond, lower it.
1927 // Note that if not optimizing this won't emit anything.
1928 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1929 if (CondV != NewCondV)
1930 CondV = NewCondV;
1931 else {
1932 // Otherwise, lower profile counts. Note that we do this even at -O0.
1933 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1934 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1937 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1940 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1941 /// specified stmt yet.
1942 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1943 CGM.ErrorUnsupported(S, Type);
1946 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1947 /// variable-length array whose elements have a non-zero bit-pattern.
1949 /// \param baseType the inner-most element type of the array
1950 /// \param src - a char* pointing to the bit-pattern for a single
1951 /// base element of the array
1952 /// \param sizeInChars - the total size of the VLA, in chars
1953 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1954 Address dest, Address src,
1955 llvm::Value *sizeInChars) {
1956 CGBuilderTy &Builder = CGF.Builder;
1958 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1959 llvm::Value *baseSizeInChars
1960 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1962 Address begin = dest.withElementType(CGF.Int8Ty);
1963 llvm::Value *end = Builder.CreateInBoundsGEP(
1964 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1966 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1967 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1968 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1970 // Make a loop over the VLA. C99 guarantees that the VLA element
1971 // count must be nonzero.
1972 CGF.EmitBlock(loopBB);
1974 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1975 cur->addIncoming(begin.getPointer(), originBB);
1977 CharUnits curAlign =
1978 dest.getAlignment().alignmentOfArrayElement(baseSize);
1980 // memcpy the individual element bit-pattern.
1981 Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
1982 /*volatile*/ false);
1984 // Go to the next element.
1985 llvm::Value *next =
1986 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1988 // Leave if that's the end of the VLA.
1989 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1990 Builder.CreateCondBr(done, contBB, loopBB);
1991 cur->addIncoming(next, loopBB);
1993 CGF.EmitBlock(contBB);
1996 void
1997 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1998 // Ignore empty classes in C++.
1999 if (getLangOpts().CPlusPlus) {
2000 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2001 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
2002 return;
2006 if (DestPtr.getElementType() != Int8Ty)
2007 DestPtr = DestPtr.withElementType(Int8Ty);
2009 // Get size and alignment info for this aggregate.
2010 CharUnits size = getContext().getTypeSizeInChars(Ty);
2012 llvm::Value *SizeVal;
2013 const VariableArrayType *vla;
2015 // Don't bother emitting a zero-byte memset.
2016 if (size.isZero()) {
2017 // But note that getTypeInfo returns 0 for a VLA.
2018 if (const VariableArrayType *vlaType =
2019 dyn_cast_or_null<VariableArrayType>(
2020 getContext().getAsArrayType(Ty))) {
2021 auto VlaSize = getVLASize(vlaType);
2022 SizeVal = VlaSize.NumElts;
2023 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2024 if (!eltSize.isOne())
2025 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2026 vla = vlaType;
2027 } else {
2028 return;
2030 } else {
2031 SizeVal = CGM.getSize(size);
2032 vla = nullptr;
2035 // If the type contains a pointer to data member we can't memset it to zero.
2036 // Instead, create a null constant and copy it to the destination.
2037 // TODO: there are other patterns besides zero that we can usefully memset,
2038 // like -1, which happens to be the pattern used by member-pointers.
2039 if (!CGM.getTypes().isZeroInitializable(Ty)) {
2040 // For a VLA, emit a single element, then splat that over the VLA.
2041 if (vla) Ty = getContext().getBaseElementType(vla);
2043 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2045 llvm::GlobalVariable *NullVariable =
2046 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2047 /*isConstant=*/true,
2048 llvm::GlobalVariable::PrivateLinkage,
2049 NullConstant, Twine());
2050 CharUnits NullAlign = DestPtr.getAlignment();
2051 NullVariable->setAlignment(NullAlign.getAsAlign());
2052 Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign);
2054 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2056 // Get and call the appropriate llvm.memcpy overload.
2057 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2058 return;
2061 // Otherwise, just memset the whole thing to zero. This is legal
2062 // because in LLVM, all default initializers (other than the ones we just
2063 // handled above) are guaranteed to have a bit pattern of all zeros.
2064 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2067 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2068 // Make sure that there is a block for the indirect goto.
2069 if (!IndirectBranch)
2070 GetIndirectGotoBlock();
2072 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2074 // Make sure the indirect branch includes all of the address-taken blocks.
2075 IndirectBranch->addDestination(BB);
2076 return llvm::BlockAddress::get(CurFn, BB);
2079 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2080 // If we already made the indirect branch for indirect goto, return its block.
2081 if (IndirectBranch) return IndirectBranch->getParent();
2083 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2085 // Create the PHI node that indirect gotos will add entries to.
2086 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2087 "indirect.goto.dest");
2089 // Create the indirect branch instruction.
2090 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2091 return IndirectBranch->getParent();
2094 /// Computes the length of an array in elements, as well as the base
2095 /// element type and a properly-typed first element pointer.
2096 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2097 QualType &baseType,
2098 Address &addr) {
2099 const ArrayType *arrayType = origArrayType;
2101 // If it's a VLA, we have to load the stored size. Note that
2102 // this is the size of the VLA in bytes, not its size in elements.
2103 llvm::Value *numVLAElements = nullptr;
2104 if (isa<VariableArrayType>(arrayType)) {
2105 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2107 // Walk into all VLAs. This doesn't require changes to addr,
2108 // which has type T* where T is the first non-VLA element type.
2109 do {
2110 QualType elementType = arrayType->getElementType();
2111 arrayType = getContext().getAsArrayType(elementType);
2113 // If we only have VLA components, 'addr' requires no adjustment.
2114 if (!arrayType) {
2115 baseType = elementType;
2116 return numVLAElements;
2118 } while (isa<VariableArrayType>(arrayType));
2120 // We get out here only if we find a constant array type
2121 // inside the VLA.
2124 // We have some number of constant-length arrays, so addr should
2125 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks
2126 // down to the first element of addr.
2127 SmallVector<llvm::Value*, 8> gepIndices;
2129 // GEP down to the array type.
2130 llvm::ConstantInt *zero = Builder.getInt32(0);
2131 gepIndices.push_back(zero);
2133 uint64_t countFromCLAs = 1;
2134 QualType eltType;
2136 llvm::ArrayType *llvmArrayType =
2137 dyn_cast<llvm::ArrayType>(addr.getElementType());
2138 while (llvmArrayType) {
2139 assert(isa<ConstantArrayType>(arrayType));
2140 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2141 == llvmArrayType->getNumElements());
2143 gepIndices.push_back(zero);
2144 countFromCLAs *= llvmArrayType->getNumElements();
2145 eltType = arrayType->getElementType();
2147 llvmArrayType =
2148 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2149 arrayType = getContext().getAsArrayType(arrayType->getElementType());
2150 assert((!llvmArrayType || arrayType) &&
2151 "LLVM and Clang types are out-of-synch");
2154 if (arrayType) {
2155 // From this point onwards, the Clang array type has been emitted
2156 // as some other type (probably a packed struct). Compute the array
2157 // size, and just emit the 'begin' expression as a bitcast.
2158 while (arrayType) {
2159 countFromCLAs *=
2160 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2161 eltType = arrayType->getElementType();
2162 arrayType = getContext().getAsArrayType(eltType);
2165 llvm::Type *baseType = ConvertType(eltType);
2166 addr = addr.withElementType(baseType);
2167 } else {
2168 // Create the actual GEP.
2169 addr = Address(Builder.CreateInBoundsGEP(
2170 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2171 ConvertTypeForMem(eltType),
2172 addr.getAlignment());
2175 baseType = eltType;
2177 llvm::Value *numElements
2178 = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2180 // If we had any VLA dimensions, factor them in.
2181 if (numVLAElements)
2182 numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2184 return numElements;
2187 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2188 const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2189 assert(vla && "type was not a variable array type!");
2190 return getVLASize(vla);
2193 CodeGenFunction::VlaSizePair
2194 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2195 // The number of elements so far; always size_t.
2196 llvm::Value *numElements = nullptr;
2198 QualType elementType;
2199 do {
2200 elementType = type->getElementType();
2201 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2202 assert(vlaSize && "no size for VLA!");
2203 assert(vlaSize->getType() == SizeTy);
2205 if (!numElements) {
2206 numElements = vlaSize;
2207 } else {
2208 // It's undefined behavior if this wraps around, so mark it that way.
2209 // FIXME: Teach -fsanitize=undefined to trap this.
2210 numElements = Builder.CreateNUWMul(numElements, vlaSize);
2212 } while ((type = getContext().getAsVariableArrayType(elementType)));
2214 return { numElements, elementType };
2217 CodeGenFunction::VlaSizePair
2218 CodeGenFunction::getVLAElements1D(QualType type) {
2219 const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2220 assert(vla && "type was not a variable array type!");
2221 return getVLAElements1D(vla);
2224 CodeGenFunction::VlaSizePair
2225 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2226 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2227 assert(VlaSize && "no size for VLA!");
2228 assert(VlaSize->getType() == SizeTy);
2229 return { VlaSize, Vla->getElementType() };
2232 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2233 assert(type->isVariablyModifiedType() &&
2234 "Must pass variably modified type to EmitVLASizes!");
2236 EnsureInsertPoint();
2238 // We're going to walk down into the type and look for VLA
2239 // expressions.
2240 do {
2241 assert(type->isVariablyModifiedType());
2243 const Type *ty = type.getTypePtr();
2244 switch (ty->getTypeClass()) {
2246 #define TYPE(Class, Base)
2247 #define ABSTRACT_TYPE(Class, Base)
2248 #define NON_CANONICAL_TYPE(Class, Base)
2249 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2250 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2251 #include "clang/AST/TypeNodes.inc"
2252 llvm_unreachable("unexpected dependent type!");
2254 // These types are never variably-modified.
2255 case Type::Builtin:
2256 case Type::Complex:
2257 case Type::Vector:
2258 case Type::ExtVector:
2259 case Type::ConstantMatrix:
2260 case Type::Record:
2261 case Type::Enum:
2262 case Type::Using:
2263 case Type::TemplateSpecialization:
2264 case Type::ObjCTypeParam:
2265 case Type::ObjCObject:
2266 case Type::ObjCInterface:
2267 case Type::ObjCObjectPointer:
2268 case Type::BitInt:
2269 llvm_unreachable("type class is never variably-modified!");
2271 case Type::Elaborated:
2272 type = cast<ElaboratedType>(ty)->getNamedType();
2273 break;
2275 case Type::Adjusted:
2276 type = cast<AdjustedType>(ty)->getAdjustedType();
2277 break;
2279 case Type::Decayed:
2280 type = cast<DecayedType>(ty)->getPointeeType();
2281 break;
2283 case Type::Pointer:
2284 type = cast<PointerType>(ty)->getPointeeType();
2285 break;
2287 case Type::BlockPointer:
2288 type = cast<BlockPointerType>(ty)->getPointeeType();
2289 break;
2291 case Type::LValueReference:
2292 case Type::RValueReference:
2293 type = cast<ReferenceType>(ty)->getPointeeType();
2294 break;
2296 case Type::MemberPointer:
2297 type = cast<MemberPointerType>(ty)->getPointeeType();
2298 break;
2300 case Type::ConstantArray:
2301 case Type::IncompleteArray:
2302 // Losing element qualification here is fine.
2303 type = cast<ArrayType>(ty)->getElementType();
2304 break;
2306 case Type::VariableArray: {
2307 // Losing element qualification here is fine.
2308 const VariableArrayType *vat = cast<VariableArrayType>(ty);
2310 // Unknown size indication requires no size computation.
2311 // Otherwise, evaluate and record it.
2312 if (const Expr *sizeExpr = vat->getSizeExpr()) {
2313 // It's possible that we might have emitted this already,
2314 // e.g. with a typedef and a pointer to it.
2315 llvm::Value *&entry = VLASizeMap[sizeExpr];
2316 if (!entry) {
2317 llvm::Value *size = EmitScalarExpr(sizeExpr);
2319 // C11 6.7.6.2p5:
2320 // If the size is an expression that is not an integer constant
2321 // expression [...] each time it is evaluated it shall have a value
2322 // greater than zero.
2323 if (SanOpts.has(SanitizerKind::VLABound)) {
2324 SanitizerScope SanScope(this);
2325 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2326 clang::QualType SEType = sizeExpr->getType();
2327 llvm::Value *CheckCondition =
2328 SEType->isSignedIntegerType()
2329 ? Builder.CreateICmpSGT(size, Zero)
2330 : Builder.CreateICmpUGT(size, Zero);
2331 llvm::Constant *StaticArgs[] = {
2332 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2333 EmitCheckTypeDescriptor(SEType)};
2334 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2335 SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2338 // Always zexting here would be wrong if it weren't
2339 // undefined behavior to have a negative bound.
2340 // FIXME: What about when size's type is larger than size_t?
2341 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2344 type = vat->getElementType();
2345 break;
2348 case Type::FunctionProto:
2349 case Type::FunctionNoProto:
2350 type = cast<FunctionType>(ty)->getReturnType();
2351 break;
2353 case Type::Paren:
2354 case Type::TypeOf:
2355 case Type::UnaryTransform:
2356 case Type::Attributed:
2357 case Type::BTFTagAttributed:
2358 case Type::SubstTemplateTypeParm:
2359 case Type::MacroQualified:
2360 // Keep walking after single level desugaring.
2361 type = type.getSingleStepDesugaredType(getContext());
2362 break;
2364 case Type::Typedef:
2365 case Type::Decltype:
2366 case Type::Auto:
2367 case Type::DeducedTemplateSpecialization:
2368 // Stop walking: nothing to do.
2369 return;
2371 case Type::TypeOfExpr:
2372 // Stop walking: emit typeof expression.
2373 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2374 return;
2376 case Type::Atomic:
2377 type = cast<AtomicType>(ty)->getValueType();
2378 break;
2380 case Type::Pipe:
2381 type = cast<PipeType>(ty)->getElementType();
2382 break;
2384 } while (type->isVariablyModifiedType());
2387 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2388 if (getContext().getBuiltinVaListType()->isArrayType())
2389 return EmitPointerWithAlignment(E);
2390 return EmitLValue(E).getAddress(*this);
2393 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2394 return EmitLValue(E).getAddress(*this);
2397 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2398 const APValue &Init) {
2399 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2400 if (CGDebugInfo *Dbg = getDebugInfo())
2401 if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2402 Dbg->EmitGlobalVariable(E->getDecl(), Init);
2405 CodeGenFunction::PeepholeProtection
2406 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2407 // At the moment, the only aggressive peephole we do in IR gen
2408 // is trunc(zext) folding, but if we add more, we can easily
2409 // extend this protection.
2411 if (!rvalue.isScalar()) return PeepholeProtection();
2412 llvm::Value *value = rvalue.getScalarVal();
2413 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2415 // Just make an extra bitcast.
2416 assert(HaveInsertPoint());
2417 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2418 Builder.GetInsertBlock());
2420 PeepholeProtection protection;
2421 protection.Inst = inst;
2422 return protection;
2425 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2426 if (!protection.Inst) return;
2428 // In theory, we could try to duplicate the peepholes now, but whatever.
2429 protection.Inst->eraseFromParent();
2432 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2433 QualType Ty, SourceLocation Loc,
2434 SourceLocation AssumptionLoc,
2435 llvm::Value *Alignment,
2436 llvm::Value *OffsetValue) {
2437 if (Alignment->getType() != IntPtrTy)
2438 Alignment =
2439 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2440 if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2441 OffsetValue =
2442 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2443 llvm::Value *TheCheck = nullptr;
2444 if (SanOpts.has(SanitizerKind::Alignment)) {
2445 llvm::Value *PtrIntValue =
2446 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2448 if (OffsetValue) {
2449 bool IsOffsetZero = false;
2450 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2451 IsOffsetZero = CI->isZero();
2453 if (!IsOffsetZero)
2454 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2457 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2458 llvm::Value *Mask =
2459 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2460 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2461 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2463 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2464 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2466 if (!SanOpts.has(SanitizerKind::Alignment))
2467 return;
2468 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2469 OffsetValue, TheCheck, Assumption);
2472 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2473 const Expr *E,
2474 SourceLocation AssumptionLoc,
2475 llvm::Value *Alignment,
2476 llvm::Value *OffsetValue) {
2477 QualType Ty = E->getType();
2478 SourceLocation Loc = E->getExprLoc();
2480 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2481 OffsetValue);
2484 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2485 llvm::Value *AnnotatedVal,
2486 StringRef AnnotationStr,
2487 SourceLocation Location,
2488 const AnnotateAttr *Attr) {
2489 SmallVector<llvm::Value *, 5> Args = {
2490 AnnotatedVal,
2491 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr),
2492 ConstGlobalsPtrTy),
2493 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location),
2494 ConstGlobalsPtrTy),
2495 CGM.EmitAnnotationLineNo(Location),
2497 if (Attr)
2498 Args.push_back(CGM.EmitAnnotationArgs(Attr));
2499 return Builder.CreateCall(AnnotationFn, Args);
2502 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2503 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2504 // FIXME We create a new bitcast for every annotation because that's what
2505 // llvm-gcc was doing.
2506 unsigned AS = V->getType()->getPointerAddressSpace();
2507 llvm::Type *I8PtrTy = Builder.getPtrTy(AS);
2508 for (const auto *I : D->specific_attrs<AnnotateAttr>())
2509 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2510 {I8PtrTy, CGM.ConstGlobalsPtrTy}),
2511 Builder.CreateBitCast(V, I8PtrTy, V->getName()),
2512 I->getAnnotation(), D->getLocation(), I);
2515 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2516 Address Addr) {
2517 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2518 llvm::Value *V = Addr.getPointer();
2519 llvm::Type *VTy = V->getType();
2520 auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2521 unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2522 llvm::PointerType *IntrinTy =
2523 llvm::PointerType::get(CGM.getLLVMContext(), AS);
2524 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2525 {IntrinTy, CGM.ConstGlobalsPtrTy});
2527 for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2528 // FIXME Always emit the cast inst so we can differentiate between
2529 // annotation on the first field of a struct and annotation on the struct
2530 // itself.
2531 if (VTy != IntrinTy)
2532 V = Builder.CreateBitCast(V, IntrinTy);
2533 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2534 V = Builder.CreateBitCast(V, VTy);
2537 return Address(V, Addr.getElementType(), Addr.getAlignment());
2540 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2542 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2543 : CGF(CGF) {
2544 assert(!CGF->IsSanitizerScope);
2545 CGF->IsSanitizerScope = true;
2548 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2549 CGF->IsSanitizerScope = false;
2552 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2553 const llvm::Twine &Name,
2554 llvm::BasicBlock *BB,
2555 llvm::BasicBlock::iterator InsertPt) const {
2556 LoopStack.InsertHelper(I);
2557 if (IsSanitizerScope)
2558 I->setNoSanitizeMetadata();
2561 void CGBuilderInserter::InsertHelper(
2562 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2563 llvm::BasicBlock::iterator InsertPt) const {
2564 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2565 if (CGF)
2566 CGF->InsertHelper(I, Name, BB, InsertPt);
2569 // Emits an error if we don't have a valid set of target features for the
2570 // called function.
2571 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2572 const FunctionDecl *TargetDecl) {
2573 return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2576 // Emits an error if we don't have a valid set of target features for the
2577 // called function.
2578 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2579 const FunctionDecl *TargetDecl) {
2580 // Early exit if this is an indirect call.
2581 if (!TargetDecl)
2582 return;
2584 // Get the current enclosing function if it exists. If it doesn't
2585 // we can't check the target features anyhow.
2586 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2587 if (!FD)
2588 return;
2590 // Grab the required features for the call. For a builtin this is listed in
2591 // the td file with the default cpu, for an always_inline function this is any
2592 // listed cpu and any listed features.
2593 unsigned BuiltinID = TargetDecl->getBuiltinID();
2594 std::string MissingFeature;
2595 llvm::StringMap<bool> CallerFeatureMap;
2596 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2597 // When compiling in HipStdPar mode we have to be conservative in rejecting
2598 // target specific features in the FE, and defer the possible error to the
2599 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2600 // referenced by an accelerator executable function, we emit an error.
2601 bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2602 if (BuiltinID) {
2603 StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2604 if (!Builtin::evaluateRequiredTargetFeatures(
2605 FeatureList, CallerFeatureMap) && !IsHipStdPar) {
2606 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2607 << TargetDecl->getDeclName()
2608 << FeatureList;
2610 } else if (!TargetDecl->isMultiVersion() &&
2611 TargetDecl->hasAttr<TargetAttr>()) {
2612 // Get the required features for the callee.
2614 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2615 ParsedTargetAttr ParsedAttr =
2616 CGM.getContext().filterFunctionTargetAttrs(TD);
2618 SmallVector<StringRef, 1> ReqFeatures;
2619 llvm::StringMap<bool> CalleeFeatureMap;
2620 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2622 for (const auto &F : ParsedAttr.Features) {
2623 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2624 ReqFeatures.push_back(StringRef(F).substr(1));
2627 for (const auto &F : CalleeFeatureMap) {
2628 // Only positive features are "required".
2629 if (F.getValue())
2630 ReqFeatures.push_back(F.getKey());
2632 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2633 if (!CallerFeatureMap.lookup(Feature)) {
2634 MissingFeature = Feature.str();
2635 return false;
2637 return true;
2638 }) && !IsHipStdPar)
2639 CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2640 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2641 } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) {
2642 llvm::StringMap<bool> CalleeFeatureMap;
2643 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2645 for (const auto &F : CalleeFeatureMap) {
2646 if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) ||
2647 !CallerFeatureMap.find(F.getKey())->getValue()) &&
2648 !IsHipStdPar)
2649 CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2650 << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey();
2655 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2656 if (!CGM.getCodeGenOpts().SanitizeStats)
2657 return;
2659 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2660 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2661 CGM.getSanStats().create(IRB, SSK);
2664 void CodeGenFunction::EmitKCFIOperandBundle(
2665 const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2666 const FunctionProtoType *FP =
2667 Callee.getAbstractInfo().getCalleeFunctionProtoType();
2668 if (FP)
2669 Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2672 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition(
2673 const MultiVersionResolverOption &RO) {
2674 llvm::SmallVector<StringRef, 8> CondFeatures;
2675 for (const StringRef &Feature : RO.Conditions.Features) {
2676 // Form condition for features which are not yet enabled in target
2677 if (!getContext().getTargetInfo().hasFeature(Feature))
2678 CondFeatures.push_back(Feature);
2680 if (!CondFeatures.empty()) {
2681 return EmitAArch64CpuSupports(CondFeatures);
2683 return nullptr;
2686 llvm::Value *CodeGenFunction::FormX86ResolverCondition(
2687 const MultiVersionResolverOption &RO) {
2688 llvm::Value *Condition = nullptr;
2690 if (!RO.Conditions.Architecture.empty()) {
2691 StringRef Arch = RO.Conditions.Architecture;
2692 // If arch= specifies an x86-64 micro-architecture level, test the feature
2693 // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2694 if (Arch.starts_with("x86-64"))
2695 Condition = EmitX86CpuSupports({Arch});
2696 else
2697 Condition = EmitX86CpuIs(Arch);
2700 if (!RO.Conditions.Features.empty()) {
2701 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2702 Condition =
2703 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2705 return Condition;
2708 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2709 llvm::Function *Resolver,
2710 CGBuilderTy &Builder,
2711 llvm::Function *FuncToReturn,
2712 bool SupportsIFunc) {
2713 if (SupportsIFunc) {
2714 Builder.CreateRet(FuncToReturn);
2715 return;
2718 llvm::SmallVector<llvm::Value *, 10> Args(
2719 llvm::make_pointer_range(Resolver->args()));
2721 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2722 Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2724 if (Resolver->getReturnType()->isVoidTy())
2725 Builder.CreateRetVoid();
2726 else
2727 Builder.CreateRet(Result);
2730 void CodeGenFunction::EmitMultiVersionResolver(
2731 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2733 llvm::Triple::ArchType ArchType =
2734 getContext().getTargetInfo().getTriple().getArch();
2736 switch (ArchType) {
2737 case llvm::Triple::x86:
2738 case llvm::Triple::x86_64:
2739 EmitX86MultiVersionResolver(Resolver, Options);
2740 return;
2741 case llvm::Triple::aarch64:
2742 EmitAArch64MultiVersionResolver(Resolver, Options);
2743 return;
2745 default:
2746 assert(false && "Only implemented for x86 and AArch64 targets");
2750 void CodeGenFunction::EmitAArch64MultiVersionResolver(
2751 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2752 assert(!Options.empty() && "No multiversion resolver options found");
2753 assert(Options.back().Conditions.Features.size() == 0 &&
2754 "Default case must be last");
2755 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2756 assert(SupportsIFunc &&
2757 "Multiversion resolver requires target IFUNC support");
2758 bool AArch64CpuInitialized = false;
2759 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2761 for (const MultiVersionResolverOption &RO : Options) {
2762 Builder.SetInsertPoint(CurBlock);
2763 llvm::Value *Condition = FormAArch64ResolverCondition(RO);
2765 // The 'default' or 'all features enabled' case.
2766 if (!Condition) {
2767 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2768 SupportsIFunc);
2769 return;
2772 if (!AArch64CpuInitialized) {
2773 Builder.SetInsertPoint(CurBlock, CurBlock->begin());
2774 EmitAArch64CpuInit();
2775 AArch64CpuInitialized = true;
2776 Builder.SetInsertPoint(CurBlock);
2779 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2780 CGBuilderTy RetBuilder(*this, RetBlock);
2781 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2782 SupportsIFunc);
2783 CurBlock = createBasicBlock("resolver_else", Resolver);
2784 Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2787 // If no default, emit an unreachable.
2788 Builder.SetInsertPoint(CurBlock);
2789 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2790 TrapCall->setDoesNotReturn();
2791 TrapCall->setDoesNotThrow();
2792 Builder.CreateUnreachable();
2793 Builder.ClearInsertionPoint();
2796 void CodeGenFunction::EmitX86MultiVersionResolver(
2797 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2799 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2801 // Main function's basic block.
2802 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2803 Builder.SetInsertPoint(CurBlock);
2804 EmitX86CpuInit();
2806 for (const MultiVersionResolverOption &RO : Options) {
2807 Builder.SetInsertPoint(CurBlock);
2808 llvm::Value *Condition = FormX86ResolverCondition(RO);
2810 // The 'default' or 'generic' case.
2811 if (!Condition) {
2812 assert(&RO == Options.end() - 1 &&
2813 "Default or Generic case must be last");
2814 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2815 SupportsIFunc);
2816 return;
2819 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2820 CGBuilderTy RetBuilder(*this, RetBlock);
2821 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2822 SupportsIFunc);
2823 CurBlock = createBasicBlock("resolver_else", Resolver);
2824 Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2827 // If no generic/default, emit an unreachable.
2828 Builder.SetInsertPoint(CurBlock);
2829 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2830 TrapCall->setDoesNotReturn();
2831 TrapCall->setDoesNotThrow();
2832 Builder.CreateUnreachable();
2833 Builder.ClearInsertionPoint();
2836 // Loc - where the diagnostic will point, where in the source code this
2837 // alignment has failed.
2838 // SecondaryLoc - if present (will be present if sufficiently different from
2839 // Loc), the diagnostic will additionally point a "Note:" to this location.
2840 // It should be the location where the __attribute__((assume_aligned))
2841 // was written e.g.
2842 void CodeGenFunction::emitAlignmentAssumptionCheck(
2843 llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2844 SourceLocation SecondaryLoc, llvm::Value *Alignment,
2845 llvm::Value *OffsetValue, llvm::Value *TheCheck,
2846 llvm::Instruction *Assumption) {
2847 assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2848 cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2849 llvm::Intrinsic::getDeclaration(
2850 Builder.GetInsertBlock()->getParent()->getParent(),
2851 llvm::Intrinsic::assume) &&
2852 "Assumption should be a call to llvm.assume().");
2853 assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2854 "Assumption should be the last instruction of the basic block, "
2855 "since the basic block is still being generated.");
2857 if (!SanOpts.has(SanitizerKind::Alignment))
2858 return;
2860 // Don't check pointers to volatile data. The behavior here is implementation-
2861 // defined.
2862 if (Ty->getPointeeType().isVolatileQualified())
2863 return;
2865 // We need to temorairly remove the assumption so we can insert the
2866 // sanitizer check before it, else the check will be dropped by optimizations.
2867 Assumption->removeFromParent();
2870 SanitizerScope SanScope(this);
2872 if (!OffsetValue)
2873 OffsetValue = Builder.getInt1(false); // no offset.
2875 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2876 EmitCheckSourceLocation(SecondaryLoc),
2877 EmitCheckTypeDescriptor(Ty)};
2878 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2879 EmitCheckValue(Alignment),
2880 EmitCheckValue(OffsetValue)};
2881 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2882 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2885 // We are now in the (new, empty) "cont" basic block.
2886 // Reintroduce the assumption.
2887 Builder.Insert(Assumption);
2888 // FIXME: Assumption still has it's original basic block as it's Parent.
2891 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2892 if (CGDebugInfo *DI = getDebugInfo())
2893 return DI->SourceLocToDebugLoc(Location);
2895 return llvm::DebugLoc();
2898 llvm::Value *
2899 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2900 Stmt::Likelihood LH) {
2901 switch (LH) {
2902 case Stmt::LH_None:
2903 return Cond;
2904 case Stmt::LH_Likely:
2905 case Stmt::LH_Unlikely:
2906 // Don't generate llvm.expect on -O0 as the backend won't use it for
2907 // anything.
2908 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2909 return Cond;
2910 llvm::Type *CondTy = Cond->getType();
2911 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2912 llvm::Function *FnExpect =
2913 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2914 llvm::Value *ExpectedValueOfCond =
2915 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2916 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2917 Cond->getName() + ".expval");
2919 llvm_unreachable("Unknown Likelihood");
2922 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
2923 unsigned NumElementsDst,
2924 const llvm::Twine &Name) {
2925 auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
2926 unsigned NumElementsSrc = SrcTy->getNumElements();
2927 if (NumElementsSrc == NumElementsDst)
2928 return SrcVec;
2930 std::vector<int> ShuffleMask(NumElementsDst, -1);
2931 for (unsigned MaskIdx = 0;
2932 MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
2933 ShuffleMask[MaskIdx] = MaskIdx;
2935 return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);