1 //===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This provides C++ code generation targeting the Itanium C++ ABI. The class
10 // in this file generates structures that follow the Itanium C++ ABI, which is
12 // https://itanium-cxx-abi.github.io/cxx-abi/abi.html
13 // https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html
15 // It also supports the closely-related ARM ABI, documented at:
16 // https://developer.arm.com/documentation/ihi0041/g/
18 //===----------------------------------------------------------------------===//
21 #include "CGCleanup.h"
22 #include "CGRecordLayout.h"
23 #include "CGVTables.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenModule.h"
26 #include "TargetInfo.h"
27 #include "clang/AST/Attr.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/Type.h"
31 #include "clang/CodeGen/ConstantInitBuilder.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/GlobalValue.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/ScopedPrinter.h"
41 using namespace clang
;
42 using namespace CodeGen
;
45 class ItaniumCXXABI
: public CodeGen::CGCXXABI
{
46 /// VTables - All the vtables which have been defined.
47 llvm::DenseMap
<const CXXRecordDecl
*, llvm::GlobalVariable
*> VTables
;
49 /// All the thread wrapper functions that have been used.
50 llvm::SmallVector
<std::pair
<const VarDecl
*, llvm::Function
*>, 8>
54 bool UseARMMethodPtrABI
;
55 bool UseARMGuardVarABI
;
56 bool Use32BitVTableOffsetABI
;
58 ItaniumMangleContext
&getMangleContext() {
59 return cast
<ItaniumMangleContext
>(CodeGen::CGCXXABI::getMangleContext());
63 ItaniumCXXABI(CodeGen::CodeGenModule
&CGM
,
64 bool UseARMMethodPtrABI
= false,
65 bool UseARMGuardVarABI
= false) :
66 CGCXXABI(CGM
), UseARMMethodPtrABI(UseARMMethodPtrABI
),
67 UseARMGuardVarABI(UseARMGuardVarABI
),
68 Use32BitVTableOffsetABI(false) { }
70 bool classifyReturnType(CGFunctionInfo
&FI
) const override
;
72 RecordArgABI
getRecordArgABI(const CXXRecordDecl
*RD
) const override
{
73 // If C++ prohibits us from making a copy, pass by address.
74 if (!RD
->canPassInRegisters())
79 bool isThisCompleteObject(GlobalDecl GD
) const override
{
80 // The Itanium ABI has separate complete-object vs. base-object
81 // variants of both constructors and destructors.
82 if (isa
<CXXDestructorDecl
>(GD
.getDecl())) {
83 switch (GD
.getDtorType()) {
92 llvm_unreachable("emitting dtor comdat as function?");
94 llvm_unreachable("bad dtor kind");
96 if (isa
<CXXConstructorDecl
>(GD
.getDecl())) {
97 switch (GD
.getCtorType()) {
104 case Ctor_CopyingClosure
:
105 case Ctor_DefaultClosure
:
106 llvm_unreachable("closure ctors in Itanium ABI?");
109 llvm_unreachable("emitting ctor comdat as function?");
111 llvm_unreachable("bad dtor kind");
118 bool isZeroInitializable(const MemberPointerType
*MPT
) override
;
120 llvm::Type
*ConvertMemberPointerType(const MemberPointerType
*MPT
) override
;
123 EmitLoadOfMemberFunctionPointer(CodeGenFunction
&CGF
,
126 llvm::Value
*&ThisPtrForCall
,
127 llvm::Value
*MemFnPtr
,
128 const MemberPointerType
*MPT
) override
;
131 EmitMemberDataPointerAddress(CodeGenFunction
&CGF
, const Expr
*E
,
134 const MemberPointerType
*MPT
) override
;
136 llvm::Value
*EmitMemberPointerConversion(CodeGenFunction
&CGF
,
138 llvm::Value
*Src
) override
;
139 llvm::Constant
*EmitMemberPointerConversion(const CastExpr
*E
,
140 llvm::Constant
*Src
) override
;
142 llvm::Constant
*EmitNullMemberPointer(const MemberPointerType
*MPT
) override
;
144 llvm::Constant
*EmitMemberFunctionPointer(const CXXMethodDecl
*MD
) override
;
145 llvm::Constant
*EmitMemberDataPointer(const MemberPointerType
*MPT
,
146 CharUnits offset
) override
;
147 llvm::Constant
*EmitMemberPointer(const APValue
&MP
, QualType MPT
) override
;
148 llvm::Constant
*BuildMemberPointer(const CXXMethodDecl
*MD
,
149 CharUnits ThisAdjustment
);
151 llvm::Value
*EmitMemberPointerComparison(CodeGenFunction
&CGF
,
152 llvm::Value
*L
, llvm::Value
*R
,
153 const MemberPointerType
*MPT
,
154 bool Inequality
) override
;
156 llvm::Value
*EmitMemberPointerIsNotNull(CodeGenFunction
&CGF
,
158 const MemberPointerType
*MPT
) override
;
160 void emitVirtualObjectDelete(CodeGenFunction
&CGF
, const CXXDeleteExpr
*DE
,
161 Address Ptr
, QualType ElementType
,
162 const CXXDestructorDecl
*Dtor
) override
;
164 void emitRethrow(CodeGenFunction
&CGF
, bool isNoReturn
) override
;
165 void emitThrow(CodeGenFunction
&CGF
, const CXXThrowExpr
*E
) override
;
167 void emitBeginCatch(CodeGenFunction
&CGF
, const CXXCatchStmt
*C
) override
;
170 emitTerminateForUnexpectedException(CodeGenFunction
&CGF
,
171 llvm::Value
*Exn
) override
;
173 void EmitFundamentalRTTIDescriptors(const CXXRecordDecl
*RD
);
174 llvm::Constant
*getAddrOfRTTIDescriptor(QualType Ty
) override
;
176 getAddrOfCXXCatchHandlerType(QualType Ty
,
177 QualType CatchHandlerType
) override
{
178 return CatchTypeInfo
{getAddrOfRTTIDescriptor(Ty
), 0};
181 bool shouldTypeidBeNullChecked(bool IsDeref
, QualType SrcRecordTy
) override
;
182 void EmitBadTypeidCall(CodeGenFunction
&CGF
) override
;
183 llvm::Value
*EmitTypeid(CodeGenFunction
&CGF
, QualType SrcRecordTy
,
185 llvm::Type
*StdTypeInfoPtrTy
) override
;
187 bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr
,
188 QualType SrcRecordTy
) override
;
190 /// Determine whether we know that all instances of type RecordTy will have
191 /// the same vtable pointer values, that is distinct from all other vtable
192 /// pointers. While this is required by the Itanium ABI, it doesn't happen in
193 /// practice in some cases due to language extensions.
194 bool hasUniqueVTablePointer(QualType RecordTy
) {
195 const CXXRecordDecl
*RD
= RecordTy
->getAsCXXRecordDecl();
197 // Under -fapple-kext, multiple definitions of the same vtable may be
199 if (!CGM
.getCodeGenOpts().AssumeUniqueVTables
||
200 getContext().getLangOpts().AppleKext
)
203 // If the type_info* would be null, the vtable might be merged with that of
205 if (!CGM
.shouldEmitRTTI())
208 // If there's only one definition of the vtable in the program, it has a
210 if (!llvm::GlobalValue::isWeakForLinker(CGM
.getVTableLinkage(RD
)))
213 // Even if there are multiple definitions of the vtable, they are required
214 // by the ABI to use the same symbol name, so should be merged at load
215 // time. However, if the class has hidden visibility, there can be
216 // different versions of the class in different modules, and the ABI
217 // library might treat them as being the same.
218 if (CGM
.GetLLVMVisibility(RD
->getVisibility()) !=
219 llvm::GlobalValue::DefaultVisibility
)
225 bool shouldEmitExactDynamicCast(QualType DestRecordTy
) override
{
226 return hasUniqueVTablePointer(DestRecordTy
);
229 llvm::Value
*emitDynamicCastCall(CodeGenFunction
&CGF
, Address Value
,
230 QualType SrcRecordTy
, QualType DestTy
,
231 QualType DestRecordTy
,
232 llvm::BasicBlock
*CastEnd
) override
;
234 llvm::Value
*emitExactDynamicCast(CodeGenFunction
&CGF
, Address ThisAddr
,
235 QualType SrcRecordTy
, QualType DestTy
,
236 QualType DestRecordTy
,
237 llvm::BasicBlock
*CastSuccess
,
238 llvm::BasicBlock
*CastFail
) override
;
240 llvm::Value
*emitDynamicCastToVoid(CodeGenFunction
&CGF
, Address Value
,
241 QualType SrcRecordTy
) override
;
243 bool EmitBadCastCall(CodeGenFunction
&CGF
) override
;
246 GetVirtualBaseClassOffset(CodeGenFunction
&CGF
, Address This
,
247 const CXXRecordDecl
*ClassDecl
,
248 const CXXRecordDecl
*BaseClassDecl
) override
;
250 void EmitCXXConstructors(const CXXConstructorDecl
*D
) override
;
252 AddedStructorArgCounts
253 buildStructorSignature(GlobalDecl GD
,
254 SmallVectorImpl
<CanQualType
> &ArgTys
) override
;
256 bool useThunkForDtorVariant(const CXXDestructorDecl
*Dtor
,
257 CXXDtorType DT
) const override
{
258 // Itanium does not emit any destructor variant as an inline thunk.
259 // Delegating may occur as an optimization, but all variants are either
260 // emitted with external linkage or as linkonce if they are inline and used.
264 void EmitCXXDestructors(const CXXDestructorDecl
*D
) override
;
266 void addImplicitStructorParams(CodeGenFunction
&CGF
, QualType
&ResTy
,
267 FunctionArgList
&Params
) override
;
269 void EmitInstanceFunctionProlog(CodeGenFunction
&CGF
) override
;
271 AddedStructorArgs
getImplicitConstructorArgs(CodeGenFunction
&CGF
,
272 const CXXConstructorDecl
*D
,
275 bool Delegating
) override
;
277 llvm::Value
*getCXXDestructorImplicitParam(CodeGenFunction
&CGF
,
278 const CXXDestructorDecl
*DD
,
281 bool Delegating
) override
;
283 void EmitDestructorCall(CodeGenFunction
&CGF
, const CXXDestructorDecl
*DD
,
284 CXXDtorType Type
, bool ForVirtualBase
,
285 bool Delegating
, Address This
,
286 QualType ThisTy
) override
;
288 void emitVTableDefinitions(CodeGenVTables
&CGVT
,
289 const CXXRecordDecl
*RD
) override
;
291 bool isVirtualOffsetNeededForVTableField(CodeGenFunction
&CGF
,
292 CodeGenFunction::VPtr Vptr
) override
;
294 bool doStructorsInitializeVPtrs(const CXXRecordDecl
*VTableClass
) override
{
299 getVTableAddressPoint(BaseSubobject Base
,
300 const CXXRecordDecl
*VTableClass
) override
;
302 llvm::Value
*getVTableAddressPointInStructor(
303 CodeGenFunction
&CGF
, const CXXRecordDecl
*VTableClass
,
304 BaseSubobject Base
, const CXXRecordDecl
*NearestVBase
) override
;
306 llvm::Value
*getVTableAddressPointInStructorWithVTT(
307 CodeGenFunction
&CGF
, const CXXRecordDecl
*VTableClass
,
308 BaseSubobject Base
, const CXXRecordDecl
*NearestVBase
);
311 getVTableAddressPointForConstExpr(BaseSubobject Base
,
312 const CXXRecordDecl
*VTableClass
) override
;
314 llvm::GlobalVariable
*getAddrOfVTable(const CXXRecordDecl
*RD
,
315 CharUnits VPtrOffset
) override
;
317 CGCallee
getVirtualFunctionPointer(CodeGenFunction
&CGF
, GlobalDecl GD
,
318 Address This
, llvm::Type
*Ty
,
319 SourceLocation Loc
) override
;
321 llvm::Value
*EmitVirtualDestructorCall(CodeGenFunction
&CGF
,
322 const CXXDestructorDecl
*Dtor
,
323 CXXDtorType DtorType
, Address This
,
324 DeleteOrMemberCallExpr E
) override
;
326 void emitVirtualInheritanceTables(const CXXRecordDecl
*RD
) override
;
328 bool canSpeculativelyEmitVTable(const CXXRecordDecl
*RD
) const override
;
329 bool canSpeculativelyEmitVTableAsBaseClass(const CXXRecordDecl
*RD
) const;
331 void setThunkLinkage(llvm::Function
*Thunk
, bool ForVTable
, GlobalDecl GD
,
332 bool ReturnAdjustment
) override
{
333 // Allow inlining of thunks by emitting them with available_externally
334 // linkage together with vtables when needed.
335 if (ForVTable
&& !Thunk
->hasLocalLinkage())
336 Thunk
->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage
);
337 CGM
.setGVProperties(Thunk
, GD
);
340 bool exportThunk() override
{ return true; }
342 llvm::Value
*performThisAdjustment(CodeGenFunction
&CGF
, Address This
,
343 const ThisAdjustment
&TA
) override
;
345 llvm::Value
*performReturnAdjustment(CodeGenFunction
&CGF
, Address Ret
,
346 const ReturnAdjustment
&RA
) override
;
348 size_t getSrcArgforCopyCtor(const CXXConstructorDecl
*,
349 FunctionArgList
&Args
) const override
{
350 assert(!Args
.empty() && "expected the arglist to not be empty!");
351 return Args
.size() - 1;
354 StringRef
GetPureVirtualCallName() override
{ return "__cxa_pure_virtual"; }
355 StringRef
GetDeletedVirtualCallName() override
356 { return "__cxa_deleted_virtual"; }
358 CharUnits
getArrayCookieSizeImpl(QualType elementType
) override
;
359 Address
InitializeArrayCookie(CodeGenFunction
&CGF
,
361 llvm::Value
*NumElements
,
362 const CXXNewExpr
*expr
,
363 QualType ElementType
) override
;
364 llvm::Value
*readArrayCookieImpl(CodeGenFunction
&CGF
,
366 CharUnits cookieSize
) override
;
368 void EmitGuardedInit(CodeGenFunction
&CGF
, const VarDecl
&D
,
369 llvm::GlobalVariable
*DeclPtr
,
370 bool PerformInit
) override
;
371 void registerGlobalDtor(CodeGenFunction
&CGF
, const VarDecl
&D
,
372 llvm::FunctionCallee dtor
,
373 llvm::Constant
*addr
) override
;
375 llvm::Function
*getOrCreateThreadLocalWrapper(const VarDecl
*VD
,
377 void EmitThreadLocalInitFuncs(
379 ArrayRef
<const VarDecl
*> CXXThreadLocals
,
380 ArrayRef
<llvm::Function
*> CXXThreadLocalInits
,
381 ArrayRef
<const VarDecl
*> CXXThreadLocalInitVars
) override
;
383 bool usesThreadWrapperFunction(const VarDecl
*VD
) const override
{
384 return !isEmittedWithConstantInitializer(VD
) ||
385 mayNeedDestruction(VD
);
387 LValue
EmitThreadLocalVarDeclLValue(CodeGenFunction
&CGF
, const VarDecl
*VD
,
388 QualType LValType
) override
;
390 bool NeedsVTTParameter(GlobalDecl GD
) override
;
392 /**************************** RTTI Uniqueness ******************************/
395 /// Returns true if the ABI requires RTTI type_info objects to be unique
396 /// across a program.
397 virtual bool shouldRTTIBeUnique() const { return true; }
400 /// What sort of unique-RTTI behavior should we use?
401 enum RTTIUniquenessKind
{
402 /// We are guaranteeing, or need to guarantee, that the RTTI string
406 /// We are not guaranteeing uniqueness for the RTTI string, so we
407 /// can demote to hidden visibility but must use string comparisons.
410 /// We are not guaranteeing uniqueness for the RTTI string, so we
411 /// have to use string comparisons, but we also have to emit it with
412 /// non-hidden visibility.
416 /// Return the required visibility status for the given type and linkage in
419 classifyRTTIUniqueness(QualType CanTy
,
420 llvm::GlobalValue::LinkageTypes Linkage
) const;
421 friend class ItaniumRTTIBuilder
;
423 void emitCXXStructor(GlobalDecl GD
) override
;
425 std::pair
<llvm::Value
*, const CXXRecordDecl
*>
426 LoadVTablePtr(CodeGenFunction
&CGF
, Address This
,
427 const CXXRecordDecl
*RD
) override
;
430 bool hasAnyUnusedVirtualInlineFunction(const CXXRecordDecl
*RD
) const {
431 const auto &VtableLayout
=
432 CGM
.getItaniumVTableContext().getVTableLayout(RD
);
434 for (const auto &VtableComponent
: VtableLayout
.vtable_components()) {
436 if (!VtableComponent
.isUsedFunctionPointerKind())
439 const CXXMethodDecl
*Method
= VtableComponent
.getFunctionDecl();
440 if (!Method
->getCanonicalDecl()->isInlined())
443 StringRef Name
= CGM
.getMangledName(VtableComponent
.getGlobalDecl());
444 auto *Entry
= CGM
.GetGlobalValue(Name
);
445 // This checks if virtual inline function has already been emitted.
446 // Note that it is possible that this inline function would be emitted
447 // after trying to emit vtable speculatively. Because of this we do
448 // an extra pass after emitting all deferred vtables to find and emit
449 // these vtables opportunistically.
450 if (!Entry
|| Entry
->isDeclaration())
456 bool isVTableHidden(const CXXRecordDecl
*RD
) const {
457 const auto &VtableLayout
=
458 CGM
.getItaniumVTableContext().getVTableLayout(RD
);
460 for (const auto &VtableComponent
: VtableLayout
.vtable_components()) {
461 if (VtableComponent
.isRTTIKind()) {
462 const CXXRecordDecl
*RTTIDecl
= VtableComponent
.getRTTIDecl();
463 if (RTTIDecl
->getVisibility() == Visibility::HiddenVisibility
)
465 } else if (VtableComponent
.isUsedFunctionPointerKind()) {
466 const CXXMethodDecl
*Method
= VtableComponent
.getFunctionDecl();
467 if (Method
->getVisibility() == Visibility::HiddenVisibility
&&
468 !Method
->isDefined())
476 class ARMCXXABI
: public ItaniumCXXABI
{
478 ARMCXXABI(CodeGen::CodeGenModule
&CGM
) :
479 ItaniumCXXABI(CGM
, /*UseARMMethodPtrABI=*/true,
480 /*UseARMGuardVarABI=*/true) {}
482 bool constructorsAndDestructorsReturnThis() const override
{ return true; }
484 void EmitReturnFromThunk(CodeGenFunction
&CGF
, RValue RV
,
485 QualType ResTy
) override
;
487 CharUnits
getArrayCookieSizeImpl(QualType elementType
) override
;
488 Address
InitializeArrayCookie(CodeGenFunction
&CGF
,
490 llvm::Value
*NumElements
,
491 const CXXNewExpr
*expr
,
492 QualType ElementType
) override
;
493 llvm::Value
*readArrayCookieImpl(CodeGenFunction
&CGF
, Address allocPtr
,
494 CharUnits cookieSize
) override
;
497 class AppleARM64CXXABI
: public ARMCXXABI
{
499 AppleARM64CXXABI(CodeGen::CodeGenModule
&CGM
) : ARMCXXABI(CGM
) {
500 Use32BitVTableOffsetABI
= true;
503 // ARM64 libraries are prepared for non-unique RTTI.
504 bool shouldRTTIBeUnique() const override
{ return false; }
507 class FuchsiaCXXABI final
: public ItaniumCXXABI
{
509 explicit FuchsiaCXXABI(CodeGen::CodeGenModule
&CGM
)
510 : ItaniumCXXABI(CGM
) {}
513 bool constructorsAndDestructorsReturnThis() const override
{ return true; }
516 class WebAssemblyCXXABI final
: public ItaniumCXXABI
{
518 explicit WebAssemblyCXXABI(CodeGen::CodeGenModule
&CGM
)
519 : ItaniumCXXABI(CGM
, /*UseARMMethodPtrABI=*/true,
520 /*UseARMGuardVarABI=*/true) {}
521 void emitBeginCatch(CodeGenFunction
&CGF
, const CXXCatchStmt
*C
) override
;
523 emitTerminateForUnexpectedException(CodeGenFunction
&CGF
,
524 llvm::Value
*Exn
) override
;
527 bool constructorsAndDestructorsReturnThis() const override
{ return true; }
528 bool canCallMismatchedFunctionType() const override
{ return false; }
531 class XLCXXABI final
: public ItaniumCXXABI
{
533 explicit XLCXXABI(CodeGen::CodeGenModule
&CGM
)
534 : ItaniumCXXABI(CGM
) {}
536 void registerGlobalDtor(CodeGenFunction
&CGF
, const VarDecl
&D
,
537 llvm::FunctionCallee dtor
,
538 llvm::Constant
*addr
) override
;
540 bool useSinitAndSterm() const override
{ return true; }
543 void emitCXXStermFinalizer(const VarDecl
&D
, llvm::Function
*dtorStub
,
544 llvm::Constant
*addr
);
548 CodeGen::CGCXXABI
*CodeGen::CreateItaniumCXXABI(CodeGenModule
&CGM
) {
549 switch (CGM
.getContext().getCXXABIKind()) {
550 // For IR-generation purposes, there's no significant difference
551 // between the ARM and iOS ABIs.
552 case TargetCXXABI::GenericARM
:
553 case TargetCXXABI::iOS
:
554 case TargetCXXABI::WatchOS
:
555 return new ARMCXXABI(CGM
);
557 case TargetCXXABI::AppleARM64
:
558 return new AppleARM64CXXABI(CGM
);
560 case TargetCXXABI::Fuchsia
:
561 return new FuchsiaCXXABI(CGM
);
563 // Note that AArch64 uses the generic ItaniumCXXABI class since it doesn't
564 // include the other 32-bit ARM oddities: constructor/destructor return values
565 // and array cookies.
566 case TargetCXXABI::GenericAArch64
:
567 return new ItaniumCXXABI(CGM
, /*UseARMMethodPtrABI=*/true,
568 /*UseARMGuardVarABI=*/true);
570 case TargetCXXABI::GenericMIPS
:
571 return new ItaniumCXXABI(CGM
, /*UseARMMethodPtrABI=*/true);
573 case TargetCXXABI::WebAssembly
:
574 return new WebAssemblyCXXABI(CGM
);
576 case TargetCXXABI::XL
:
577 return new XLCXXABI(CGM
);
579 case TargetCXXABI::GenericItanium
:
580 if (CGM
.getContext().getTargetInfo().getTriple().getArch()
581 == llvm::Triple::le32
) {
582 // For PNaCl, use ARM-style method pointers so that PNaCl code
583 // does not assume anything about the alignment of function
585 return new ItaniumCXXABI(CGM
, /*UseARMMethodPtrABI=*/true);
587 return new ItaniumCXXABI(CGM
);
589 case TargetCXXABI::Microsoft
:
590 llvm_unreachable("Microsoft ABI is not Itanium-based");
592 llvm_unreachable("bad ABI kind");
596 ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType
*MPT
) {
597 if (MPT
->isMemberDataPointer())
598 return CGM
.PtrDiffTy
;
599 return llvm::StructType::get(CGM
.PtrDiffTy
, CGM
.PtrDiffTy
);
602 /// In the Itanium and ARM ABIs, method pointers have the form:
603 /// struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr;
605 /// In the Itanium ABI:
606 /// - method pointers are virtual if (memptr.ptr & 1) is nonzero
607 /// - the this-adjustment is (memptr.adj)
608 /// - the virtual offset is (memptr.ptr - 1)
611 /// - method pointers are virtual if (memptr.adj & 1) is nonzero
612 /// - the this-adjustment is (memptr.adj >> 1)
613 /// - the virtual offset is (memptr.ptr)
614 /// ARM uses 'adj' for the virtual flag because Thumb functions
615 /// may be only single-byte aligned.
617 /// If the member is virtual, the adjusted 'this' pointer points
618 /// to a vtable pointer from which the virtual offset is applied.
620 /// If the member is non-virtual, memptr.ptr is the address of
621 /// the function to call.
622 CGCallee
ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(
623 CodeGenFunction
&CGF
, const Expr
*E
, Address ThisAddr
,
624 llvm::Value
*&ThisPtrForCall
,
625 llvm::Value
*MemFnPtr
, const MemberPointerType
*MPT
) {
626 CGBuilderTy
&Builder
= CGF
.Builder
;
628 const FunctionProtoType
*FPT
=
629 MPT
->getPointeeType()->castAs
<FunctionProtoType
>();
631 cast
<CXXRecordDecl
>(MPT
->getClass()->castAs
<RecordType
>()->getDecl());
633 llvm::Constant
*ptrdiff_1
= llvm::ConstantInt::get(CGM
.PtrDiffTy
, 1);
635 llvm::BasicBlock
*FnVirtual
= CGF
.createBasicBlock("memptr.virtual");
636 llvm::BasicBlock
*FnNonVirtual
= CGF
.createBasicBlock("memptr.nonvirtual");
637 llvm::BasicBlock
*FnEnd
= CGF
.createBasicBlock("memptr.end");
639 // Extract memptr.adj, which is in the second field.
640 llvm::Value
*RawAdj
= Builder
.CreateExtractValue(MemFnPtr
, 1, "memptr.adj");
642 // Compute the true adjustment.
643 llvm::Value
*Adj
= RawAdj
;
644 if (UseARMMethodPtrABI
)
645 Adj
= Builder
.CreateAShr(Adj
, ptrdiff_1
, "memptr.adj.shifted");
647 // Apply the adjustment and cast back to the original struct type
649 llvm::Value
*This
= ThisAddr
.getPointer();
650 This
= Builder
.CreateInBoundsGEP(Builder
.getInt8Ty(), This
, Adj
);
651 ThisPtrForCall
= This
;
653 // Load the function pointer.
654 llvm::Value
*FnAsInt
= Builder
.CreateExtractValue(MemFnPtr
, 0, "memptr.ptr");
656 // If the LSB in the function pointer is 1, the function pointer points to
657 // a virtual function.
658 llvm::Value
*IsVirtual
;
659 if (UseARMMethodPtrABI
)
660 IsVirtual
= Builder
.CreateAnd(RawAdj
, ptrdiff_1
);
662 IsVirtual
= Builder
.CreateAnd(FnAsInt
, ptrdiff_1
);
663 IsVirtual
= Builder
.CreateIsNotNull(IsVirtual
, "memptr.isvirtual");
664 Builder
.CreateCondBr(IsVirtual
, FnVirtual
, FnNonVirtual
);
666 // In the virtual path, the adjustment left 'This' pointing to the
667 // vtable of the correct base subobject. The "function pointer" is an
668 // offset within the vtable (+1 for the virtual flag on non-ARM).
669 CGF
.EmitBlock(FnVirtual
);
671 // Cast the adjusted this to a pointer to vtable pointer and load.
672 llvm::Type
*VTableTy
= CGF
.CGM
.GlobalsInt8PtrTy
;
673 CharUnits VTablePtrAlign
=
674 CGF
.CGM
.getDynamicOffsetAlignment(ThisAddr
.getAlignment(), RD
,
675 CGF
.getPointerAlign());
676 llvm::Value
*VTable
= CGF
.GetVTablePtr(
677 Address(This
, ThisAddr
.getElementType(), VTablePtrAlign
), VTableTy
, RD
);
680 // On ARM64, to reserve extra space in virtual member function pointers,
681 // we only pay attention to the low 32 bits of the offset.
682 llvm::Value
*VTableOffset
= FnAsInt
;
683 if (!UseARMMethodPtrABI
)
684 VTableOffset
= Builder
.CreateSub(VTableOffset
, ptrdiff_1
);
685 if (Use32BitVTableOffsetABI
) {
686 VTableOffset
= Builder
.CreateTrunc(VTableOffset
, CGF
.Int32Ty
);
687 VTableOffset
= Builder
.CreateZExt(VTableOffset
, CGM
.PtrDiffTy
);
690 // Check the address of the function pointer if CFI on member function
691 // pointers is enabled.
692 llvm::Constant
*CheckSourceLocation
;
693 llvm::Constant
*CheckTypeDesc
;
694 bool ShouldEmitCFICheck
= CGF
.SanOpts
.has(SanitizerKind::CFIMFCall
) &&
695 CGM
.HasHiddenLTOVisibility(RD
);
696 bool ShouldEmitVFEInfo
= CGM
.getCodeGenOpts().VirtualFunctionElimination
&&
697 CGM
.HasHiddenLTOVisibility(RD
);
698 bool ShouldEmitWPDInfo
=
699 CGM
.getCodeGenOpts().WholeProgramVTables
&&
700 // Don't insert type tests if we are forcing public visibility.
701 !CGM
.AlwaysHasLTOVisibilityPublic(RD
);
702 llvm::Value
*VirtualFn
= nullptr;
705 CodeGenFunction::SanitizerScope
SanScope(&CGF
);
706 llvm::Value
*TypeId
= nullptr;
707 llvm::Value
*CheckResult
= nullptr;
709 if (ShouldEmitCFICheck
|| ShouldEmitVFEInfo
|| ShouldEmitWPDInfo
) {
710 // If doing CFI, VFE or WPD, we will need the metadata node to check
713 CGM
.CreateMetadataIdentifierForVirtualMemPtrType(QualType(MPT
, 0));
714 TypeId
= llvm::MetadataAsValue::get(CGF
.getLLVMContext(), MD
);
717 if (ShouldEmitVFEInfo
) {
718 llvm::Value
*VFPAddr
=
719 Builder
.CreateGEP(CGF
.Int8Ty
, VTable
, VTableOffset
);
721 // If doing VFE, load from the vtable with a type.checked.load intrinsic
722 // call. Note that we use the GEP to calculate the address to load from
723 // and pass 0 as the offset to the intrinsic. This is because every
724 // vtable slot of the correct type is marked with matching metadata, and
725 // we know that the load must be from one of these slots.
726 llvm::Value
*CheckedLoad
= Builder
.CreateCall(
727 CGM
.getIntrinsic(llvm::Intrinsic::type_checked_load
),
728 {VFPAddr
, llvm::ConstantInt::get(CGM
.Int32Ty
, 0), TypeId
});
729 CheckResult
= Builder
.CreateExtractValue(CheckedLoad
, 1);
730 VirtualFn
= Builder
.CreateExtractValue(CheckedLoad
, 0);
732 // When not doing VFE, emit a normal load, as it allows more
733 // optimisations than type.checked.load.
734 if (ShouldEmitCFICheck
|| ShouldEmitWPDInfo
) {
735 llvm::Value
*VFPAddr
=
736 Builder
.CreateGEP(CGF
.Int8Ty
, VTable
, VTableOffset
);
737 llvm::Intrinsic::ID IID
= CGM
.HasHiddenLTOVisibility(RD
)
738 ? llvm::Intrinsic::type_test
739 : llvm::Intrinsic::public_type_test
;
742 Builder
.CreateCall(CGM
.getIntrinsic(IID
), {VFPAddr
, TypeId
});
745 if (CGM
.getItaniumVTableContext().isRelativeLayout()) {
746 VirtualFn
= CGF
.Builder
.CreateCall(
747 CGM
.getIntrinsic(llvm::Intrinsic::load_relative
,
748 {VTableOffset
->getType()}),
749 {VTable
, VTableOffset
});
751 llvm::Value
*VFPAddr
=
752 CGF
.Builder
.CreateGEP(CGF
.Int8Ty
, VTable
, VTableOffset
);
753 VirtualFn
= CGF
.Builder
.CreateAlignedLoad(CGF
.UnqualPtrTy
, VFPAddr
,
754 CGF
.getPointerAlign(),
758 assert(VirtualFn
&& "Virtual fuction pointer not created!");
759 assert((!ShouldEmitCFICheck
|| !ShouldEmitVFEInfo
|| !ShouldEmitWPDInfo
||
761 "Check result required but not created!");
763 if (ShouldEmitCFICheck
) {
764 // If doing CFI, emit the check.
765 CheckSourceLocation
= CGF
.EmitCheckSourceLocation(E
->getBeginLoc());
766 CheckTypeDesc
= CGF
.EmitCheckTypeDescriptor(QualType(MPT
, 0));
767 llvm::Constant
*StaticData
[] = {
768 llvm::ConstantInt::get(CGF
.Int8Ty
, CodeGenFunction::CFITCK_VMFCall
),
773 if (CGM
.getCodeGenOpts().SanitizeTrap
.has(SanitizerKind::CFIMFCall
)) {
774 CGF
.EmitTrapCheck(CheckResult
, SanitizerHandler::CFICheckFail
);
776 llvm::Value
*AllVtables
= llvm::MetadataAsValue::get(
777 CGM
.getLLVMContext(),
778 llvm::MDString::get(CGM
.getLLVMContext(), "all-vtables"));
779 llvm::Value
*ValidVtable
= Builder
.CreateCall(
780 CGM
.getIntrinsic(llvm::Intrinsic::type_test
), {VTable
, AllVtables
});
781 CGF
.EmitCheck(std::make_pair(CheckResult
, SanitizerKind::CFIMFCall
),
782 SanitizerHandler::CFICheckFail
, StaticData
,
783 {VTable
, ValidVtable
});
786 FnVirtual
= Builder
.GetInsertBlock();
788 } // End of sanitizer scope
790 CGF
.EmitBranch(FnEnd
);
792 // In the non-virtual path, the function pointer is actually a
794 CGF
.EmitBlock(FnNonVirtual
);
795 llvm::Value
*NonVirtualFn
=
796 Builder
.CreateIntToPtr(FnAsInt
, CGF
.UnqualPtrTy
, "memptr.nonvirtualfn");
798 // Check the function pointer if CFI on member function pointers is enabled.
799 if (ShouldEmitCFICheck
) {
800 CXXRecordDecl
*RD
= MPT
->getClass()->getAsCXXRecordDecl();
801 if (RD
->hasDefinition()) {
802 CodeGenFunction::SanitizerScope
SanScope(&CGF
);
804 llvm::Constant
*StaticData
[] = {
805 llvm::ConstantInt::get(CGF
.Int8Ty
, CodeGenFunction::CFITCK_NVMFCall
),
810 llvm::Value
*Bit
= Builder
.getFalse();
811 for (const CXXRecordDecl
*Base
: CGM
.getMostBaseClasses(RD
)) {
812 llvm::Metadata
*MD
= CGM
.CreateMetadataIdentifierForType(
813 getContext().getMemberPointerType(
814 MPT
->getPointeeType(),
815 getContext().getRecordType(Base
).getTypePtr()));
816 llvm::Value
*TypeId
=
817 llvm::MetadataAsValue::get(CGF
.getLLVMContext(), MD
);
819 llvm::Value
*TypeTest
=
820 Builder
.CreateCall(CGM
.getIntrinsic(llvm::Intrinsic::type_test
),
821 {NonVirtualFn
, TypeId
});
822 Bit
= Builder
.CreateOr(Bit
, TypeTest
);
825 CGF
.EmitCheck(std::make_pair(Bit
, SanitizerKind::CFIMFCall
),
826 SanitizerHandler::CFICheckFail
, StaticData
,
827 {NonVirtualFn
, llvm::UndefValue::get(CGF
.IntPtrTy
)});
829 FnNonVirtual
= Builder
.GetInsertBlock();
834 CGF
.EmitBlock(FnEnd
);
835 llvm::PHINode
*CalleePtr
= Builder
.CreatePHI(CGF
.UnqualPtrTy
, 2);
836 CalleePtr
->addIncoming(VirtualFn
, FnVirtual
);
837 CalleePtr
->addIncoming(NonVirtualFn
, FnNonVirtual
);
839 CGCallee
Callee(FPT
, CalleePtr
);
843 /// Compute an l-value by applying the given pointer-to-member to a
845 llvm::Value
*ItaniumCXXABI::EmitMemberDataPointerAddress(
846 CodeGenFunction
&CGF
, const Expr
*E
, Address Base
, llvm::Value
*MemPtr
,
847 const MemberPointerType
*MPT
) {
848 assert(MemPtr
->getType() == CGM
.PtrDiffTy
);
850 CGBuilderTy
&Builder
= CGF
.Builder
;
852 // Apply the offset, which we assume is non-null.
853 return Builder
.CreateInBoundsGEP(CGF
.Int8Ty
, Base
.getPointer(), MemPtr
,
857 /// Perform a bitcast, derived-to-base, or base-to-derived member pointer
860 /// Bitcast conversions are always a no-op under Itanium.
862 /// Obligatory offset/adjustment diagram:
863 /// <-- offset --> <-- adjustment -->
864 /// |--------------------------|----------------------|--------------------|
865 /// ^Derived address point ^Base address point ^Member address point
867 /// So when converting a base member pointer to a derived member pointer,
868 /// we add the offset to the adjustment because the address point has
869 /// decreased; and conversely, when converting a derived MP to a base MP
870 /// we subtract the offset from the adjustment because the address point
873 /// The standard forbids (at compile time) conversion to and from
874 /// virtual bases, which is why we don't have to consider them here.
876 /// The standard forbids (at run time) casting a derived MP to a base
877 /// MP when the derived MP does not point to a member of the base.
878 /// This is why -1 is a reasonable choice for null data member
881 ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction
&CGF
,
884 assert(E
->getCastKind() == CK_DerivedToBaseMemberPointer
||
885 E
->getCastKind() == CK_BaseToDerivedMemberPointer
||
886 E
->getCastKind() == CK_ReinterpretMemberPointer
);
888 // Under Itanium, reinterprets don't require any additional processing.
889 if (E
->getCastKind() == CK_ReinterpretMemberPointer
) return src
;
891 // Use constant emission if we can.
892 if (isa
<llvm::Constant
>(src
))
893 return EmitMemberPointerConversion(E
, cast
<llvm::Constant
>(src
));
895 llvm::Constant
*adj
= getMemberPointerAdjustment(E
);
896 if (!adj
) return src
;
898 CGBuilderTy
&Builder
= CGF
.Builder
;
899 bool isDerivedToBase
= (E
->getCastKind() == CK_DerivedToBaseMemberPointer
);
901 const MemberPointerType
*destTy
=
902 E
->getType()->castAs
<MemberPointerType
>();
904 // For member data pointers, this is just a matter of adding the
905 // offset if the source is non-null.
906 if (destTy
->isMemberDataPointer()) {
909 dst
= Builder
.CreateNSWSub(src
, adj
, "adj");
911 dst
= Builder
.CreateNSWAdd(src
, adj
, "adj");
914 llvm::Value
*null
= llvm::Constant::getAllOnesValue(src
->getType());
915 llvm::Value
*isNull
= Builder
.CreateICmpEQ(src
, null
, "memptr.isnull");
916 return Builder
.CreateSelect(isNull
, src
, dst
);
919 // The this-adjustment is left-shifted by 1 on ARM.
920 if (UseARMMethodPtrABI
) {
921 uint64_t offset
= cast
<llvm::ConstantInt
>(adj
)->getZExtValue();
923 adj
= llvm::ConstantInt::get(adj
->getType(), offset
);
926 llvm::Value
*srcAdj
= Builder
.CreateExtractValue(src
, 1, "src.adj");
929 dstAdj
= Builder
.CreateNSWSub(srcAdj
, adj
, "adj");
931 dstAdj
= Builder
.CreateNSWAdd(srcAdj
, adj
, "adj");
933 return Builder
.CreateInsertValue(src
, dstAdj
, 1);
937 ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr
*E
,
938 llvm::Constant
*src
) {
939 assert(E
->getCastKind() == CK_DerivedToBaseMemberPointer
||
940 E
->getCastKind() == CK_BaseToDerivedMemberPointer
||
941 E
->getCastKind() == CK_ReinterpretMemberPointer
);
943 // Under Itanium, reinterprets don't require any additional processing.
944 if (E
->getCastKind() == CK_ReinterpretMemberPointer
) return src
;
946 // If the adjustment is trivial, we don't need to do anything.
947 llvm::Constant
*adj
= getMemberPointerAdjustment(E
);
948 if (!adj
) return src
;
950 bool isDerivedToBase
= (E
->getCastKind() == CK_DerivedToBaseMemberPointer
);
952 const MemberPointerType
*destTy
=
953 E
->getType()->castAs
<MemberPointerType
>();
955 // For member data pointers, this is just a matter of adding the
956 // offset if the source is non-null.
957 if (destTy
->isMemberDataPointer()) {
958 // null maps to null.
959 if (src
->isAllOnesValue()) return src
;
962 return llvm::ConstantExpr::getNSWSub(src
, adj
);
964 return llvm::ConstantExpr::getNSWAdd(src
, adj
);
967 // The this-adjustment is left-shifted by 1 on ARM.
968 if (UseARMMethodPtrABI
) {
969 uint64_t offset
= cast
<llvm::ConstantInt
>(adj
)->getZExtValue();
971 adj
= llvm::ConstantInt::get(adj
->getType(), offset
);
974 llvm::Constant
*srcAdj
= src
->getAggregateElement(1);
975 llvm::Constant
*dstAdj
;
977 dstAdj
= llvm::ConstantExpr::getNSWSub(srcAdj
, adj
);
979 dstAdj
= llvm::ConstantExpr::getNSWAdd(srcAdj
, adj
);
981 llvm::Constant
*res
= ConstantFoldInsertValueInstruction(src
, dstAdj
, 1);
982 assert(res
!= nullptr && "Folding must succeed");
987 ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType
*MPT
) {
988 // Itanium C++ ABI 2.3:
989 // A NULL pointer is represented as -1.
990 if (MPT
->isMemberDataPointer())
991 return llvm::ConstantInt::get(CGM
.PtrDiffTy
, -1ULL, /*isSigned=*/true);
993 llvm::Constant
*Zero
= llvm::ConstantInt::get(CGM
.PtrDiffTy
, 0);
994 llvm::Constant
*Values
[2] = { Zero
, Zero
};
995 return llvm::ConstantStruct::getAnon(Values
);
999 ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType
*MPT
,
1001 // Itanium C++ ABI 2.3:
1002 // A pointer to data member is an offset from the base address of
1003 // the class object containing it, represented as a ptrdiff_t
1004 return llvm::ConstantInt::get(CGM
.PtrDiffTy
, offset
.getQuantity());
1008 ItaniumCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl
*MD
) {
1009 return BuildMemberPointer(MD
, CharUnits::Zero());
1012 llvm::Constant
*ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl
*MD
,
1013 CharUnits ThisAdjustment
) {
1014 assert(MD
->isInstance() && "Member function must not be static!");
1016 CodeGenTypes
&Types
= CGM
.getTypes();
1018 // Get the function pointer (or index if this is a virtual function).
1019 llvm::Constant
*MemPtr
[2];
1020 if (MD
->isVirtual()) {
1021 uint64_t Index
= CGM
.getItaniumVTableContext().getMethodVTableIndex(MD
);
1022 uint64_t VTableOffset
;
1023 if (CGM
.getItaniumVTableContext().isRelativeLayout()) {
1024 // Multiply by 4-byte relative offsets.
1025 VTableOffset
= Index
* 4;
1027 const ASTContext
&Context
= getContext();
1028 CharUnits PointerWidth
= Context
.toCharUnitsFromBits(
1029 Context
.getTargetInfo().getPointerWidth(LangAS::Default
));
1030 VTableOffset
= Index
* PointerWidth
.getQuantity();
1033 if (UseARMMethodPtrABI
) {
1034 // ARM C++ ABI 3.2.1:
1035 // This ABI specifies that adj contains twice the this
1036 // adjustment, plus 1 if the member function is virtual. The
1037 // least significant bit of adj then makes exactly the same
1038 // discrimination as the least significant bit of ptr does for
1040 MemPtr
[0] = llvm::ConstantInt::get(CGM
.PtrDiffTy
, VTableOffset
);
1041 MemPtr
[1] = llvm::ConstantInt::get(CGM
.PtrDiffTy
,
1042 2 * ThisAdjustment
.getQuantity() + 1);
1044 // Itanium C++ ABI 2.3:
1045 // For a virtual function, [the pointer field] is 1 plus the
1046 // virtual table offset (in bytes) of the function,
1047 // represented as a ptrdiff_t.
1048 MemPtr
[0] = llvm::ConstantInt::get(CGM
.PtrDiffTy
, VTableOffset
+ 1);
1049 MemPtr
[1] = llvm::ConstantInt::get(CGM
.PtrDiffTy
,
1050 ThisAdjustment
.getQuantity());
1053 const FunctionProtoType
*FPT
= MD
->getType()->castAs
<FunctionProtoType
>();
1055 // Check whether the function has a computable LLVM signature.
1056 if (Types
.isFuncTypeConvertible(FPT
)) {
1057 // The function has a computable LLVM signature; use the correct type.
1058 Ty
= Types
.GetFunctionType(Types
.arrangeCXXMethodDeclaration(MD
));
1060 // Use an arbitrary non-function type to tell GetAddrOfFunction that the
1061 // function type is incomplete.
1064 llvm::Constant
*addr
= CGM
.GetAddrOfFunction(MD
, Ty
);
1066 MemPtr
[0] = llvm::ConstantExpr::getPtrToInt(addr
, CGM
.PtrDiffTy
);
1067 MemPtr
[1] = llvm::ConstantInt::get(CGM
.PtrDiffTy
,
1068 (UseARMMethodPtrABI
? 2 : 1) *
1069 ThisAdjustment
.getQuantity());
1072 return llvm::ConstantStruct::getAnon(MemPtr
);
1075 llvm::Constant
*ItaniumCXXABI::EmitMemberPointer(const APValue
&MP
,
1077 const MemberPointerType
*MPT
= MPType
->castAs
<MemberPointerType
>();
1078 const ValueDecl
*MPD
= MP
.getMemberPointerDecl();
1080 return EmitNullMemberPointer(MPT
);
1082 CharUnits ThisAdjustment
= getContext().getMemberPointerPathAdjustment(MP
);
1084 if (const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(MPD
))
1085 return BuildMemberPointer(MD
, ThisAdjustment
);
1087 CharUnits FieldOffset
=
1088 getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD
));
1089 return EmitMemberDataPointer(MPT
, ThisAdjustment
+ FieldOffset
);
1092 /// The comparison algorithm is pretty easy: the member pointers are
1093 /// the same if they're either bitwise identical *or* both null.
1095 /// ARM is different here only because null-ness is more complicated.
1097 ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction
&CGF
,
1100 const MemberPointerType
*MPT
,
1102 CGBuilderTy
&Builder
= CGF
.Builder
;
1104 llvm::ICmpInst::Predicate Eq
;
1105 llvm::Instruction::BinaryOps And
, Or
;
1107 Eq
= llvm::ICmpInst::ICMP_NE
;
1108 And
= llvm::Instruction::Or
;
1109 Or
= llvm::Instruction::And
;
1111 Eq
= llvm::ICmpInst::ICMP_EQ
;
1112 And
= llvm::Instruction::And
;
1113 Or
= llvm::Instruction::Or
;
1116 // Member data pointers are easy because there's a unique null
1117 // value, so it just comes down to bitwise equality.
1118 if (MPT
->isMemberDataPointer())
1119 return Builder
.CreateICmp(Eq
, L
, R
);
1121 // For member function pointers, the tautologies are more complex.
1122 // The Itanium tautology is:
1123 // (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj))
1124 // The ARM tautology is:
1125 // (L == R) <==> (L.ptr == R.ptr &&
1126 // (L.adj == R.adj ||
1127 // (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0)))
1128 // The inequality tautologies have exactly the same structure, except
1129 // applying De Morgan's laws.
1131 llvm::Value
*LPtr
= Builder
.CreateExtractValue(L
, 0, "lhs.memptr.ptr");
1132 llvm::Value
*RPtr
= Builder
.CreateExtractValue(R
, 0, "rhs.memptr.ptr");
1134 // This condition tests whether L.ptr == R.ptr. This must always be
1135 // true for equality to hold.
1136 llvm::Value
*PtrEq
= Builder
.CreateICmp(Eq
, LPtr
, RPtr
, "cmp.ptr");
1138 // This condition, together with the assumption that L.ptr == R.ptr,
1139 // tests whether the pointers are both null. ARM imposes an extra
1141 llvm::Value
*Zero
= llvm::Constant::getNullValue(LPtr
->getType());
1142 llvm::Value
*EqZero
= Builder
.CreateICmp(Eq
, LPtr
, Zero
, "cmp.ptr.null");
1144 // This condition tests whether L.adj == R.adj. If this isn't
1145 // true, the pointers are unequal unless they're both null.
1146 llvm::Value
*LAdj
= Builder
.CreateExtractValue(L
, 1, "lhs.memptr.adj");
1147 llvm::Value
*RAdj
= Builder
.CreateExtractValue(R
, 1, "rhs.memptr.adj");
1148 llvm::Value
*AdjEq
= Builder
.CreateICmp(Eq
, LAdj
, RAdj
, "cmp.adj");
1150 // Null member function pointers on ARM clear the low bit of Adj,
1151 // so the zero condition has to check that neither low bit is set.
1152 if (UseARMMethodPtrABI
) {
1153 llvm::Value
*One
= llvm::ConstantInt::get(LPtr
->getType(), 1);
1155 // Compute (l.adj | r.adj) & 1 and test it against zero.
1156 llvm::Value
*OrAdj
= Builder
.CreateOr(LAdj
, RAdj
, "or.adj");
1157 llvm::Value
*OrAdjAnd1
= Builder
.CreateAnd(OrAdj
, One
);
1158 llvm::Value
*OrAdjAnd1EqZero
= Builder
.CreateICmp(Eq
, OrAdjAnd1
, Zero
,
1160 EqZero
= Builder
.CreateBinOp(And
, EqZero
, OrAdjAnd1EqZero
);
1163 // Tie together all our conditions.
1164 llvm::Value
*Result
= Builder
.CreateBinOp(Or
, EqZero
, AdjEq
);
1165 Result
= Builder
.CreateBinOp(And
, PtrEq
, Result
,
1166 Inequality
? "memptr.ne" : "memptr.eq");
1171 ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction
&CGF
,
1172 llvm::Value
*MemPtr
,
1173 const MemberPointerType
*MPT
) {
1174 CGBuilderTy
&Builder
= CGF
.Builder
;
1176 /// For member data pointers, this is just a check against -1.
1177 if (MPT
->isMemberDataPointer()) {
1178 assert(MemPtr
->getType() == CGM
.PtrDiffTy
);
1179 llvm::Value
*NegativeOne
=
1180 llvm::Constant::getAllOnesValue(MemPtr
->getType());
1181 return Builder
.CreateICmpNE(MemPtr
, NegativeOne
, "memptr.tobool");
1184 // In Itanium, a member function pointer is not null if 'ptr' is not null.
1185 llvm::Value
*Ptr
= Builder
.CreateExtractValue(MemPtr
, 0, "memptr.ptr");
1187 llvm::Constant
*Zero
= llvm::ConstantInt::get(Ptr
->getType(), 0);
1188 llvm::Value
*Result
= Builder
.CreateICmpNE(Ptr
, Zero
, "memptr.tobool");
1190 // On ARM, a member function pointer is also non-null if the low bit of 'adj'
1191 // (the virtual bit) is set.
1192 if (UseARMMethodPtrABI
) {
1193 llvm::Constant
*One
= llvm::ConstantInt::get(Ptr
->getType(), 1);
1194 llvm::Value
*Adj
= Builder
.CreateExtractValue(MemPtr
, 1, "memptr.adj");
1195 llvm::Value
*VirtualBit
= Builder
.CreateAnd(Adj
, One
, "memptr.virtualbit");
1196 llvm::Value
*IsVirtual
= Builder
.CreateICmpNE(VirtualBit
, Zero
,
1197 "memptr.isvirtual");
1198 Result
= Builder
.CreateOr(Result
, IsVirtual
);
1204 bool ItaniumCXXABI::classifyReturnType(CGFunctionInfo
&FI
) const {
1205 const CXXRecordDecl
*RD
= FI
.getReturnType()->getAsCXXRecordDecl();
1209 // If C++ prohibits us from making a copy, return by address.
1210 if (!RD
->canPassInRegisters()) {
1211 auto Align
= CGM
.getContext().getTypeAlignInChars(FI
.getReturnType());
1212 FI
.getReturnInfo() = ABIArgInfo::getIndirect(Align
, /*ByVal=*/false);
1218 /// The Itanium ABI requires non-zero initialization only for data
1219 /// member pointers, for which '0' is a valid offset.
1220 bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType
*MPT
) {
1221 return MPT
->isMemberFunctionPointer();
1224 /// The Itanium ABI always places an offset to the complete object
1225 /// at entry -2 in the vtable.
1226 void ItaniumCXXABI::emitVirtualObjectDelete(CodeGenFunction
&CGF
,
1227 const CXXDeleteExpr
*DE
,
1229 QualType ElementType
,
1230 const CXXDestructorDecl
*Dtor
) {
1231 bool UseGlobalDelete
= DE
->isGlobalDelete();
1232 if (UseGlobalDelete
) {
1233 // Derive the complete-object pointer, which is what we need
1234 // to pass to the deallocation function.
1236 // Grab the vtable pointer as an intptr_t*.
1238 cast
<CXXRecordDecl
>(ElementType
->castAs
<RecordType
>()->getDecl());
1239 llvm::Value
*VTable
= CGF
.GetVTablePtr(Ptr
, CGF
.UnqualPtrTy
, ClassDecl
);
1241 // Track back to entry -2 and pull out the offset there.
1242 llvm::Value
*OffsetPtr
= CGF
.Builder
.CreateConstInBoundsGEP1_64(
1243 CGF
.IntPtrTy
, VTable
, -2, "complete-offset.ptr");
1244 llvm::Value
*Offset
= CGF
.Builder
.CreateAlignedLoad(CGF
.IntPtrTy
, OffsetPtr
,
1245 CGF
.getPointerAlign());
1247 // Apply the offset.
1248 llvm::Value
*CompletePtr
= Ptr
.getPointer();
1250 CGF
.Builder
.CreateInBoundsGEP(CGF
.Int8Ty
, CompletePtr
, Offset
);
1252 // If we're supposed to call the global delete, make sure we do so
1253 // even if the destructor throws.
1254 CGF
.pushCallObjectDeleteCleanup(DE
->getOperatorDelete(), CompletePtr
,
1258 // FIXME: Provide a source location here even though there's no
1259 // CXXMemberCallExpr for dtor call.
1260 CXXDtorType DtorType
= UseGlobalDelete
? Dtor_Complete
: Dtor_Deleting
;
1261 EmitVirtualDestructorCall(CGF
, Dtor
, DtorType
, Ptr
, DE
);
1263 if (UseGlobalDelete
)
1264 CGF
.PopCleanupBlock();
1267 void ItaniumCXXABI::emitRethrow(CodeGenFunction
&CGF
, bool isNoReturn
) {
1268 // void __cxa_rethrow();
1270 llvm::FunctionType
*FTy
=
1271 llvm::FunctionType::get(CGM
.VoidTy
, /*isVarArg=*/false);
1273 llvm::FunctionCallee Fn
= CGM
.CreateRuntimeFunction(FTy
, "__cxa_rethrow");
1276 CGF
.EmitNoreturnRuntimeCallOrInvoke(Fn
, std::nullopt
);
1278 CGF
.EmitRuntimeCallOrInvoke(Fn
);
1281 static llvm::FunctionCallee
getAllocateExceptionFn(CodeGenModule
&CGM
) {
1282 // void *__cxa_allocate_exception(size_t thrown_size);
1284 llvm::FunctionType
*FTy
=
1285 llvm::FunctionType::get(CGM
.Int8PtrTy
, CGM
.SizeTy
, /*isVarArg=*/false);
1287 return CGM
.CreateRuntimeFunction(FTy
, "__cxa_allocate_exception");
1290 static llvm::FunctionCallee
getThrowFn(CodeGenModule
&CGM
) {
1291 // void __cxa_throw(void *thrown_exception, std::type_info *tinfo,
1292 // void (*dest) (void *));
1294 llvm::Type
*Args
[3] = { CGM
.Int8PtrTy
, CGM
.GlobalsInt8PtrTy
, CGM
.Int8PtrTy
};
1295 llvm::FunctionType
*FTy
=
1296 llvm::FunctionType::get(CGM
.VoidTy
, Args
, /*isVarArg=*/false);
1298 return CGM
.CreateRuntimeFunction(FTy
, "__cxa_throw");
1301 void ItaniumCXXABI::emitThrow(CodeGenFunction
&CGF
, const CXXThrowExpr
*E
) {
1302 QualType ThrowType
= E
->getSubExpr()->getType();
1303 // Now allocate the exception object.
1304 llvm::Type
*SizeTy
= CGF
.ConvertType(getContext().getSizeType());
1305 uint64_t TypeSize
= getContext().getTypeSizeInChars(ThrowType
).getQuantity();
1307 llvm::FunctionCallee AllocExceptionFn
= getAllocateExceptionFn(CGM
);
1308 llvm::CallInst
*ExceptionPtr
= CGF
.EmitNounwindRuntimeCall(
1309 AllocExceptionFn
, llvm::ConstantInt::get(SizeTy
, TypeSize
), "exception");
1311 CharUnits ExnAlign
= CGF
.getContext().getExnObjectAlignment();
1312 CGF
.EmitAnyExprToExn(
1313 E
->getSubExpr(), Address(ExceptionPtr
, CGM
.Int8Ty
, ExnAlign
));
1315 // Now throw the exception.
1316 llvm::Constant
*TypeInfo
= CGM
.GetAddrOfRTTIDescriptor(ThrowType
,
1319 // The address of the destructor. If the exception type has a
1320 // trivial destructor (or isn't a record), we just pass null.
1321 llvm::Constant
*Dtor
= nullptr;
1322 if (const RecordType
*RecordTy
= ThrowType
->getAs
<RecordType
>()) {
1323 CXXRecordDecl
*Record
= cast
<CXXRecordDecl
>(RecordTy
->getDecl());
1324 if (!Record
->hasTrivialDestructor()) {
1325 CXXDestructorDecl
*DtorD
= Record
->getDestructor();
1326 Dtor
= CGM
.getAddrOfCXXStructor(GlobalDecl(DtorD
, Dtor_Complete
));
1329 if (!Dtor
) Dtor
= llvm::Constant::getNullValue(CGM
.Int8PtrTy
);
1331 llvm::Value
*args
[] = { ExceptionPtr
, TypeInfo
, Dtor
};
1332 CGF
.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(CGM
), args
);
1335 static llvm::FunctionCallee
getItaniumDynamicCastFn(CodeGenFunction
&CGF
) {
1336 // void *__dynamic_cast(const void *sub,
1337 // global_as const abi::__class_type_info *src,
1338 // global_as const abi::__class_type_info *dst,
1339 // std::ptrdiff_t src2dst_offset);
1341 llvm::Type
*Int8PtrTy
= CGF
.Int8PtrTy
;
1342 llvm::Type
*GlobInt8PtrTy
= CGF
.GlobalsInt8PtrTy
;
1343 llvm::Type
*PtrDiffTy
=
1344 CGF
.ConvertType(CGF
.getContext().getPointerDiffType());
1346 llvm::Type
*Args
[4] = { Int8PtrTy
, GlobInt8PtrTy
, GlobInt8PtrTy
, PtrDiffTy
};
1348 llvm::FunctionType
*FTy
= llvm::FunctionType::get(Int8PtrTy
, Args
, false);
1350 // Mark the function as nounwind readonly.
1351 llvm::AttrBuilder
FuncAttrs(CGF
.getLLVMContext());
1352 FuncAttrs
.addAttribute(llvm::Attribute::NoUnwind
);
1353 FuncAttrs
.addMemoryAttr(llvm::MemoryEffects::readOnly());
1354 llvm::AttributeList Attrs
= llvm::AttributeList::get(
1355 CGF
.getLLVMContext(), llvm::AttributeList::FunctionIndex
, FuncAttrs
);
1357 return CGF
.CGM
.CreateRuntimeFunction(FTy
, "__dynamic_cast", Attrs
);
1360 static llvm::FunctionCallee
getBadCastFn(CodeGenFunction
&CGF
) {
1361 // void __cxa_bad_cast();
1362 llvm::FunctionType
*FTy
= llvm::FunctionType::get(CGF
.VoidTy
, false);
1363 return CGF
.CGM
.CreateRuntimeFunction(FTy
, "__cxa_bad_cast");
1366 /// Compute the src2dst_offset hint as described in the
1367 /// Itanium C++ ABI [2.9.7]
1368 static CharUnits
computeOffsetHint(ASTContext
&Context
,
1369 const CXXRecordDecl
*Src
,
1370 const CXXRecordDecl
*Dst
) {
1371 CXXBasePaths
Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1372 /*DetectVirtual=*/false);
1374 // If Dst is not derived from Src we can skip the whole computation below and
1375 // return that Src is not a public base of Dst. Record all inheritance paths.
1376 if (!Dst
->isDerivedFrom(Src
, Paths
))
1377 return CharUnits::fromQuantity(-2ULL);
1379 unsigned NumPublicPaths
= 0;
1382 // Now walk all possible inheritance paths.
1383 for (const CXXBasePath
&Path
: Paths
) {
1384 if (Path
.Access
!= AS_public
) // Ignore non-public inheritance.
1389 for (const CXXBasePathElement
&PathElement
: Path
) {
1390 // If the path contains a virtual base class we can't give any hint.
1392 if (PathElement
.Base
->isVirtual())
1393 return CharUnits::fromQuantity(-1ULL);
1395 if (NumPublicPaths
> 1) // Won't use offsets, skip computation.
1398 // Accumulate the base class offsets.
1399 const ASTRecordLayout
&L
= Context
.getASTRecordLayout(PathElement
.Class
);
1400 Offset
+= L
.getBaseClassOffset(
1401 PathElement
.Base
->getType()->getAsCXXRecordDecl());
1405 // -2: Src is not a public base of Dst.
1406 if (NumPublicPaths
== 0)
1407 return CharUnits::fromQuantity(-2ULL);
1409 // -3: Src is a multiple public base type but never a virtual base type.
1410 if (NumPublicPaths
> 1)
1411 return CharUnits::fromQuantity(-3ULL);
1413 // Otherwise, the Src type is a unique public nonvirtual base type of Dst.
1414 // Return the offset of Src from the origin of Dst.
1418 static llvm::FunctionCallee
getBadTypeidFn(CodeGenFunction
&CGF
) {
1419 // void __cxa_bad_typeid();
1420 llvm::FunctionType
*FTy
= llvm::FunctionType::get(CGF
.VoidTy
, false);
1422 return CGF
.CGM
.CreateRuntimeFunction(FTy
, "__cxa_bad_typeid");
1425 bool ItaniumCXXABI::shouldTypeidBeNullChecked(bool IsDeref
,
1426 QualType SrcRecordTy
) {
1430 void ItaniumCXXABI::EmitBadTypeidCall(CodeGenFunction
&CGF
) {
1431 llvm::FunctionCallee Fn
= getBadTypeidFn(CGF
);
1432 llvm::CallBase
*Call
= CGF
.EmitRuntimeCallOrInvoke(Fn
);
1433 Call
->setDoesNotReturn();
1434 CGF
.Builder
.CreateUnreachable();
1437 llvm::Value
*ItaniumCXXABI::EmitTypeid(CodeGenFunction
&CGF
,
1438 QualType SrcRecordTy
,
1440 llvm::Type
*StdTypeInfoPtrTy
) {
1442 cast
<CXXRecordDecl
>(SrcRecordTy
->castAs
<RecordType
>()->getDecl());
1443 llvm::Value
*Value
= CGF
.GetVTablePtr(ThisPtr
, CGM
.GlobalsInt8PtrTy
,
1446 if (CGM
.getItaniumVTableContext().isRelativeLayout()) {
1447 // Load the type info.
1448 Value
= CGF
.Builder
.CreateCall(
1449 CGM
.getIntrinsic(llvm::Intrinsic::load_relative
, {CGM
.Int32Ty
}),
1450 {Value
, llvm::ConstantInt::get(CGM
.Int32Ty
, -4)});
1452 // Load the type info.
1454 CGF
.Builder
.CreateConstInBoundsGEP1_64(StdTypeInfoPtrTy
, Value
, -1ULL);
1456 return CGF
.Builder
.CreateAlignedLoad(StdTypeInfoPtrTy
, Value
,
1457 CGF
.getPointerAlign());
1460 bool ItaniumCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr
,
1461 QualType SrcRecordTy
) {
1465 llvm::Value
*ItaniumCXXABI::emitDynamicCastCall(
1466 CodeGenFunction
&CGF
, Address ThisAddr
, QualType SrcRecordTy
,
1467 QualType DestTy
, QualType DestRecordTy
, llvm::BasicBlock
*CastEnd
) {
1468 llvm::Type
*PtrDiffLTy
=
1469 CGF
.ConvertType(CGF
.getContext().getPointerDiffType());
1471 llvm::Value
*SrcRTTI
=
1472 CGF
.CGM
.GetAddrOfRTTIDescriptor(SrcRecordTy
.getUnqualifiedType());
1473 llvm::Value
*DestRTTI
=
1474 CGF
.CGM
.GetAddrOfRTTIDescriptor(DestRecordTy
.getUnqualifiedType());
1476 // Compute the offset hint.
1477 const CXXRecordDecl
*SrcDecl
= SrcRecordTy
->getAsCXXRecordDecl();
1478 const CXXRecordDecl
*DestDecl
= DestRecordTy
->getAsCXXRecordDecl();
1479 llvm::Value
*OffsetHint
= llvm::ConstantInt::get(
1481 computeOffsetHint(CGF
.getContext(), SrcDecl
, DestDecl
).getQuantity());
1483 // Emit the call to __dynamic_cast.
1484 llvm::Value
*Args
[] = {ThisAddr
.getPointer(), SrcRTTI
, DestRTTI
, OffsetHint
};
1485 llvm::Value
*Value
=
1486 CGF
.EmitNounwindRuntimeCall(getItaniumDynamicCastFn(CGF
), Args
);
1488 /// C++ [expr.dynamic.cast]p9:
1489 /// A failed cast to reference type throws std::bad_cast
1490 if (DestTy
->isReferenceType()) {
1491 llvm::BasicBlock
*BadCastBlock
=
1492 CGF
.createBasicBlock("dynamic_cast.bad_cast");
1494 llvm::Value
*IsNull
= CGF
.Builder
.CreateIsNull(Value
);
1495 CGF
.Builder
.CreateCondBr(IsNull
, BadCastBlock
, CastEnd
);
1497 CGF
.EmitBlock(BadCastBlock
);
1498 EmitBadCastCall(CGF
);
1504 llvm::Value
*ItaniumCXXABI::emitExactDynamicCast(
1505 CodeGenFunction
&CGF
, Address ThisAddr
, QualType SrcRecordTy
,
1506 QualType DestTy
, QualType DestRecordTy
, llvm::BasicBlock
*CastSuccess
,
1507 llvm::BasicBlock
*CastFail
) {
1508 ASTContext
&Context
= getContext();
1510 // Find all the inheritance paths.
1511 const CXXRecordDecl
*SrcDecl
= SrcRecordTy
->getAsCXXRecordDecl();
1512 const CXXRecordDecl
*DestDecl
= DestRecordTy
->getAsCXXRecordDecl();
1513 CXXBasePaths
Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1514 /*DetectVirtual=*/false);
1515 (void)DestDecl
->isDerivedFrom(SrcDecl
, Paths
);
1517 // Find an offset within `DestDecl` where a `SrcDecl` instance and its vptr
1519 std::optional
<CharUnits
> Offset
;
1520 for (const CXXBasePath
&Path
: Paths
) {
1521 // dynamic_cast only finds public inheritance paths.
1522 if (Path
.Access
!= AS_public
)
1525 CharUnits PathOffset
;
1526 for (const CXXBasePathElement
&PathElement
: Path
) {
1527 // Find the offset along this inheritance step.
1528 const CXXRecordDecl
*Base
=
1529 PathElement
.Base
->getType()->getAsCXXRecordDecl();
1530 if (PathElement
.Base
->isVirtual()) {
1531 // For a virtual base class, we know that the derived class is exactly
1532 // DestDecl, so we can use the vbase offset from its layout.
1533 const ASTRecordLayout
&L
= Context
.getASTRecordLayout(DestDecl
);
1534 PathOffset
= L
.getVBaseClassOffset(Base
);
1536 const ASTRecordLayout
&L
=
1537 Context
.getASTRecordLayout(PathElement
.Class
);
1538 PathOffset
+= L
.getBaseClassOffset(Base
);
1543 Offset
= PathOffset
;
1544 else if (Offset
!= PathOffset
) {
1545 // Base appears in at least two different places. Find the most-derived
1546 // object and see if it's a DestDecl. Note that the most-derived object
1547 // must be at least as aligned as this base class subobject, and must
1548 // have a vptr at offset 0.
1549 ThisAddr
= Address(emitDynamicCastToVoid(CGF
, ThisAddr
, SrcRecordTy
),
1550 CGF
.VoidPtrTy
, ThisAddr
.getAlignment());
1552 Offset
= CharUnits::Zero();
1558 // If there are no public inheritance paths, the cast always fails.
1559 CGF
.EmitBranch(CastFail
);
1560 return llvm::PoisonValue::get(CGF
.VoidPtrTy
);
1563 // Compare the vptr against the expected vptr for the destination type at
1564 // this offset. Note that we do not know what type ThisAddr points to in
1565 // the case where the derived class multiply inherits from the base class
1566 // so we can't use GetVTablePtr, so we load the vptr directly instead.
1567 llvm::Instruction
*VPtr
= CGF
.Builder
.CreateLoad(
1568 ThisAddr
.withElementType(CGF
.VoidPtrPtrTy
), "vtable");
1569 CGM
.DecorateInstructionWithTBAA(
1570 VPtr
, CGM
.getTBAAVTablePtrAccessInfo(CGF
.VoidPtrPtrTy
));
1571 llvm::Value
*Success
= CGF
.Builder
.CreateICmpEQ(
1572 VPtr
, getVTableAddressPoint(BaseSubobject(SrcDecl
, *Offset
), DestDecl
));
1573 llvm::Value
*Result
= ThisAddr
.getPointer();
1574 if (!Offset
->isZero())
1575 Result
= CGF
.Builder
.CreateInBoundsGEP(
1577 {llvm::ConstantInt::get(CGF
.PtrDiffTy
, -Offset
->getQuantity())});
1578 CGF
.Builder
.CreateCondBr(Success
, CastSuccess
, CastFail
);
1582 llvm::Value
*ItaniumCXXABI::emitDynamicCastToVoid(CodeGenFunction
&CGF
,
1584 QualType SrcRecordTy
) {
1586 cast
<CXXRecordDecl
>(SrcRecordTy
->castAs
<RecordType
>()->getDecl());
1587 llvm::Value
*OffsetToTop
;
1588 if (CGM
.getItaniumVTableContext().isRelativeLayout()) {
1589 // Get the vtable pointer.
1590 llvm::Value
*VTable
=
1591 CGF
.GetVTablePtr(ThisAddr
, CGF
.UnqualPtrTy
, ClassDecl
);
1593 // Get the offset-to-top from the vtable.
1595 CGF
.Builder
.CreateConstInBoundsGEP1_32(CGM
.Int32Ty
, VTable
, -2U);
1596 OffsetToTop
= CGF
.Builder
.CreateAlignedLoad(
1597 CGM
.Int32Ty
, OffsetToTop
, CharUnits::fromQuantity(4), "offset.to.top");
1599 llvm::Type
*PtrDiffLTy
=
1600 CGF
.ConvertType(CGF
.getContext().getPointerDiffType());
1602 // Get the vtable pointer.
1603 llvm::Value
*VTable
=
1604 CGF
.GetVTablePtr(ThisAddr
, CGF
.UnqualPtrTy
, ClassDecl
);
1606 // Get the offset-to-top from the vtable.
1608 CGF
.Builder
.CreateConstInBoundsGEP1_64(PtrDiffLTy
, VTable
, -2ULL);
1609 OffsetToTop
= CGF
.Builder
.CreateAlignedLoad(
1610 PtrDiffLTy
, OffsetToTop
, CGF
.getPointerAlign(), "offset.to.top");
1612 // Finally, add the offset to the pointer.
1613 return CGF
.Builder
.CreateInBoundsGEP(CGF
.Int8Ty
, ThisAddr
.getPointer(),
1617 bool ItaniumCXXABI::EmitBadCastCall(CodeGenFunction
&CGF
) {
1618 llvm::FunctionCallee Fn
= getBadCastFn(CGF
);
1619 llvm::CallBase
*Call
= CGF
.EmitRuntimeCallOrInvoke(Fn
);
1620 Call
->setDoesNotReturn();
1621 CGF
.Builder
.CreateUnreachable();
1626 ItaniumCXXABI::GetVirtualBaseClassOffset(CodeGenFunction
&CGF
,
1628 const CXXRecordDecl
*ClassDecl
,
1629 const CXXRecordDecl
*BaseClassDecl
) {
1630 llvm::Value
*VTablePtr
= CGF
.GetVTablePtr(This
, CGM
.Int8PtrTy
, ClassDecl
);
1631 CharUnits VBaseOffsetOffset
=
1632 CGM
.getItaniumVTableContext().getVirtualBaseOffsetOffset(ClassDecl
,
1634 llvm::Value
*VBaseOffsetPtr
=
1635 CGF
.Builder
.CreateConstGEP1_64(
1636 CGF
.Int8Ty
, VTablePtr
, VBaseOffsetOffset
.getQuantity(),
1637 "vbase.offset.ptr");
1639 llvm::Value
*VBaseOffset
;
1640 if (CGM
.getItaniumVTableContext().isRelativeLayout()) {
1641 VBaseOffset
= CGF
.Builder
.CreateAlignedLoad(
1642 CGF
.Int32Ty
, VBaseOffsetPtr
, CharUnits::fromQuantity(4),
1645 VBaseOffset
= CGF
.Builder
.CreateAlignedLoad(
1646 CGM
.PtrDiffTy
, VBaseOffsetPtr
, CGF
.getPointerAlign(), "vbase.offset");
1651 void ItaniumCXXABI::EmitCXXConstructors(const CXXConstructorDecl
*D
) {
1652 // Just make sure we're in sync with TargetCXXABI.
1653 assert(CGM
.getTarget().getCXXABI().hasConstructorVariants());
1655 // The constructor used for constructing this as a base class;
1656 // ignores virtual bases.
1657 CGM
.EmitGlobal(GlobalDecl(D
, Ctor_Base
));
1659 // The constructor used for constructing this as a complete class;
1660 // constructs the virtual bases, then calls the base constructor.
1661 if (!D
->getParent()->isAbstract()) {
1662 // We don't need to emit the complete ctor if the class is abstract.
1663 CGM
.EmitGlobal(GlobalDecl(D
, Ctor_Complete
));
1667 CGCXXABI::AddedStructorArgCounts
1668 ItaniumCXXABI::buildStructorSignature(GlobalDecl GD
,
1669 SmallVectorImpl
<CanQualType
> &ArgTys
) {
1670 ASTContext
&Context
= getContext();
1672 // All parameters are already in place except VTT, which goes after 'this'.
1673 // These are Clang types, so we don't need to worry about sret yet.
1675 // Check if we need to add a VTT parameter (which has type global void **).
1676 if ((isa
<CXXConstructorDecl
>(GD
.getDecl()) ? GD
.getCtorType() == Ctor_Base
1677 : GD
.getDtorType() == Dtor_Base
) &&
1678 cast
<CXXMethodDecl
>(GD
.getDecl())->getParent()->getNumVBases() != 0) {
1679 LangAS AS
= CGM
.GetGlobalVarAddressSpace(nullptr);
1680 QualType Q
= Context
.getAddrSpaceQualType(Context
.VoidPtrTy
, AS
);
1681 ArgTys
.insert(ArgTys
.begin() + 1,
1682 Context
.getPointerType(CanQualType::CreateUnsafe(Q
)));
1683 return AddedStructorArgCounts::prefix(1);
1685 return AddedStructorArgCounts
{};
1688 void ItaniumCXXABI::EmitCXXDestructors(const CXXDestructorDecl
*D
) {
1689 // The destructor used for destructing this as a base class; ignores
1691 CGM
.EmitGlobal(GlobalDecl(D
, Dtor_Base
));
1693 // The destructor used for destructing this as a most-derived class;
1694 // call the base destructor and then destructs any virtual bases.
1695 CGM
.EmitGlobal(GlobalDecl(D
, Dtor_Complete
));
1697 // The destructor in a virtual table is always a 'deleting'
1698 // destructor, which calls the complete destructor and then uses the
1699 // appropriate operator delete.
1701 CGM
.EmitGlobal(GlobalDecl(D
, Dtor_Deleting
));
1704 void ItaniumCXXABI::addImplicitStructorParams(CodeGenFunction
&CGF
,
1706 FunctionArgList
&Params
) {
1707 const CXXMethodDecl
*MD
= cast
<CXXMethodDecl
>(CGF
.CurGD
.getDecl());
1708 assert(isa
<CXXConstructorDecl
>(MD
) || isa
<CXXDestructorDecl
>(MD
));
1710 // Check if we need a VTT parameter as well.
1711 if (NeedsVTTParameter(CGF
.CurGD
)) {
1712 ASTContext
&Context
= getContext();
1714 // FIXME: avoid the fake decl
1715 LangAS AS
= CGM
.GetGlobalVarAddressSpace(nullptr);
1716 QualType Q
= Context
.getAddrSpaceQualType(Context
.VoidPtrTy
, AS
);
1717 QualType T
= Context
.getPointerType(Q
);
1718 auto *VTTDecl
= ImplicitParamDecl::Create(
1719 Context
, /*DC=*/nullptr, MD
->getLocation(), &Context
.Idents
.get("vtt"),
1720 T
, ImplicitParamDecl::CXXVTT
);
1721 Params
.insert(Params
.begin() + 1, VTTDecl
);
1722 getStructorImplicitParamDecl(CGF
) = VTTDecl
;
1726 void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction
&CGF
) {
1727 // Naked functions have no prolog.
1728 if (CGF
.CurFuncDecl
&& CGF
.CurFuncDecl
->hasAttr
<NakedAttr
>())
1731 /// Initialize the 'this' slot. In the Itanium C++ ABI, no prologue
1732 /// adjustments are required, because they are all handled by thunks.
1733 setCXXABIThisValue(CGF
, loadIncomingCXXThis(CGF
));
1735 /// Initialize the 'vtt' slot if needed.
1736 if (getStructorImplicitParamDecl(CGF
)) {
1737 getStructorImplicitParamValue(CGF
) = CGF
.Builder
.CreateLoad(
1738 CGF
.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF
)), "vtt");
1741 /// If this is a function that the ABI specifies returns 'this', initialize
1742 /// the return slot to 'this' at the start of the function.
1744 /// Unlike the setting of return types, this is done within the ABI
1745 /// implementation instead of by clients of CGCXXABI because:
1746 /// 1) getThisValue is currently protected
1747 /// 2) in theory, an ABI could implement 'this' returns some other way;
1748 /// HasThisReturn only specifies a contract, not the implementation
1749 if (HasThisReturn(CGF
.CurGD
))
1750 CGF
.Builder
.CreateStore(getThisValue(CGF
), CGF
.ReturnValue
);
1753 CGCXXABI::AddedStructorArgs
ItaniumCXXABI::getImplicitConstructorArgs(
1754 CodeGenFunction
&CGF
, const CXXConstructorDecl
*D
, CXXCtorType Type
,
1755 bool ForVirtualBase
, bool Delegating
) {
1756 if (!NeedsVTTParameter(GlobalDecl(D
, Type
)))
1757 return AddedStructorArgs
{};
1759 // Insert the implicit 'vtt' argument as the second argument. Make sure to
1760 // correctly reflect its address space, which can differ from generic on
1763 CGF
.GetVTTParameter(GlobalDecl(D
, Type
), ForVirtualBase
, Delegating
);
1764 LangAS AS
= CGM
.GetGlobalVarAddressSpace(nullptr);
1765 QualType Q
= getContext().getAddrSpaceQualType(getContext().VoidPtrTy
, AS
);
1766 QualType VTTTy
= getContext().getPointerType(Q
);
1767 return AddedStructorArgs::prefix({{VTT
, VTTTy
}});
1770 llvm::Value
*ItaniumCXXABI::getCXXDestructorImplicitParam(
1771 CodeGenFunction
&CGF
, const CXXDestructorDecl
*DD
, CXXDtorType Type
,
1772 bool ForVirtualBase
, bool Delegating
) {
1773 GlobalDecl
GD(DD
, Type
);
1774 return CGF
.GetVTTParameter(GD
, ForVirtualBase
, Delegating
);
1777 void ItaniumCXXABI::EmitDestructorCall(CodeGenFunction
&CGF
,
1778 const CXXDestructorDecl
*DD
,
1779 CXXDtorType Type
, bool ForVirtualBase
,
1780 bool Delegating
, Address This
,
1782 GlobalDecl
GD(DD
, Type
);
1784 getCXXDestructorImplicitParam(CGF
, DD
, Type
, ForVirtualBase
, Delegating
);
1785 QualType VTTTy
= getContext().getPointerType(getContext().VoidPtrTy
);
1788 if (getContext().getLangOpts().AppleKext
&&
1789 Type
!= Dtor_Base
&& DD
->isVirtual())
1790 Callee
= CGF
.BuildAppleKextVirtualDestructorCall(DD
, Type
, DD
->getParent());
1792 Callee
= CGCallee::forDirect(CGM
.getAddrOfCXXStructor(GD
), GD
);
1794 CGF
.EmitCXXDestructorCall(GD
, Callee
, This
.getPointer(), ThisTy
, VTT
, VTTTy
,
1798 void ItaniumCXXABI::emitVTableDefinitions(CodeGenVTables
&CGVT
,
1799 const CXXRecordDecl
*RD
) {
1800 llvm::GlobalVariable
*VTable
= getAddrOfVTable(RD
, CharUnits());
1801 if (VTable
->hasInitializer())
1804 ItaniumVTableContext
&VTContext
= CGM
.getItaniumVTableContext();
1805 const VTableLayout
&VTLayout
= VTContext
.getVTableLayout(RD
);
1806 llvm::GlobalVariable::LinkageTypes Linkage
= CGM
.getVTableLinkage(RD
);
1807 llvm::Constant
*RTTI
=
1808 CGM
.GetAddrOfRTTIDescriptor(CGM
.getContext().getTagDeclType(RD
));
1810 // Create and set the initializer.
1811 ConstantInitBuilder
builder(CGM
);
1812 auto components
= builder
.beginStruct();
1813 CGVT
.createVTableInitializer(components
, VTLayout
, RTTI
,
1814 llvm::GlobalValue::isLocalLinkage(Linkage
));
1815 components
.finishAndSetAsInitializer(VTable
);
1817 // Set the correct linkage.
1818 VTable
->setLinkage(Linkage
);
1820 if (CGM
.supportsCOMDAT() && VTable
->isWeakForLinker())
1821 VTable
->setComdat(CGM
.getModule().getOrInsertComdat(VTable
->getName()));
1823 // Set the right visibility.
1824 CGM
.setGVProperties(VTable
, RD
);
1826 // If this is the magic class __cxxabiv1::__fundamental_type_info,
1827 // we will emit the typeinfo for the fundamental types. This is the
1828 // same behaviour as GCC.
1829 const DeclContext
*DC
= RD
->getDeclContext();
1830 if (RD
->getIdentifier() &&
1831 RD
->getIdentifier()->isStr("__fundamental_type_info") &&
1832 isa
<NamespaceDecl
>(DC
) && cast
<NamespaceDecl
>(DC
)->getIdentifier() &&
1833 cast
<NamespaceDecl
>(DC
)->getIdentifier()->isStr("__cxxabiv1") &&
1834 DC
->getParent()->isTranslationUnit())
1835 EmitFundamentalRTTIDescriptors(RD
);
1837 // Always emit type metadata on non-available_externally definitions, and on
1838 // available_externally definitions if we are performing whole program
1839 // devirtualization. For WPD we need the type metadata on all vtable
1840 // definitions to ensure we associate derived classes with base classes
1841 // defined in headers but with a strong definition only in a shared library.
1842 if (!VTable
->isDeclarationForLinker() ||
1843 CGM
.getCodeGenOpts().WholeProgramVTables
) {
1844 CGM
.EmitVTableTypeMetadata(RD
, VTable
, VTLayout
);
1845 // For available_externally definitions, add the vtable to
1846 // @llvm.compiler.used so that it isn't deleted before whole program
1848 if (VTable
->isDeclarationForLinker()) {
1849 assert(CGM
.getCodeGenOpts().WholeProgramVTables
);
1850 CGM
.addCompilerUsedGlobal(VTable
);
1854 if (VTContext
.isRelativeLayout()) {
1855 CGVT
.RemoveHwasanMetadata(VTable
);
1856 if (!VTable
->isDSOLocal())
1857 CGVT
.GenerateRelativeVTableAlias(VTable
, VTable
->getName());
1861 bool ItaniumCXXABI::isVirtualOffsetNeededForVTableField(
1862 CodeGenFunction
&CGF
, CodeGenFunction::VPtr Vptr
) {
1863 if (Vptr
.NearestVBase
== nullptr)
1865 return NeedsVTTParameter(CGF
.CurGD
);
1868 llvm::Value
*ItaniumCXXABI::getVTableAddressPointInStructor(
1869 CodeGenFunction
&CGF
, const CXXRecordDecl
*VTableClass
, BaseSubobject Base
,
1870 const CXXRecordDecl
*NearestVBase
) {
1872 if ((Base
.getBase()->getNumVBases() || NearestVBase
!= nullptr) &&
1873 NeedsVTTParameter(CGF
.CurGD
)) {
1874 return getVTableAddressPointInStructorWithVTT(CGF
, VTableClass
, Base
,
1877 return getVTableAddressPoint(Base
, VTableClass
);
1881 ItaniumCXXABI::getVTableAddressPoint(BaseSubobject Base
,
1882 const CXXRecordDecl
*VTableClass
) {
1883 llvm::GlobalValue
*VTable
= getAddrOfVTable(VTableClass
, CharUnits());
1885 // Find the appropriate vtable within the vtable group, and the address point
1886 // within that vtable.
1887 VTableLayout::AddressPointLocation AddressPoint
=
1888 CGM
.getItaniumVTableContext()
1889 .getVTableLayout(VTableClass
)
1890 .getAddressPoint(Base
);
1891 llvm::Value
*Indices
[] = {
1892 llvm::ConstantInt::get(CGM
.Int32Ty
, 0),
1893 llvm::ConstantInt::get(CGM
.Int32Ty
, AddressPoint
.VTableIndex
),
1894 llvm::ConstantInt::get(CGM
.Int32Ty
, AddressPoint
.AddressPointIndex
),
1897 return llvm::ConstantExpr::getGetElementPtr(VTable
->getValueType(), VTable
,
1898 Indices
, /*InBounds=*/true,
1899 /*InRangeIndex=*/1);
1902 // Check whether all the non-inline virtual methods for the class have the
1903 // specified attribute.
1904 template <typename T
>
1905 static bool CXXRecordAllNonInlineVirtualsHaveAttr(const CXXRecordDecl
*RD
) {
1906 bool FoundNonInlineVirtualMethodWithAttr
= false;
1907 for (const auto *D
: RD
->noload_decls()) {
1908 if (const auto *FD
= dyn_cast
<FunctionDecl
>(D
)) {
1909 if (!FD
->isVirtualAsWritten() || FD
->isInlineSpecified() ||
1910 FD
->doesThisDeclarationHaveABody())
1912 if (!D
->hasAttr
<T
>())
1914 FoundNonInlineVirtualMethodWithAttr
= true;
1918 // We didn't find any non-inline virtual methods missing the attribute. We
1919 // will return true when we found at least one non-inline virtual with the
1920 // attribute. (This lets our caller know that the attribute needs to be
1921 // propagated up to the vtable.)
1922 return FoundNonInlineVirtualMethodWithAttr
;
1925 llvm::Value
*ItaniumCXXABI::getVTableAddressPointInStructorWithVTT(
1926 CodeGenFunction
&CGF
, const CXXRecordDecl
*VTableClass
, BaseSubobject Base
,
1927 const CXXRecordDecl
*NearestVBase
) {
1928 assert((Base
.getBase()->getNumVBases() || NearestVBase
!= nullptr) &&
1929 NeedsVTTParameter(CGF
.CurGD
) && "This class doesn't have VTT");
1931 // Get the secondary vpointer index.
1932 uint64_t VirtualPointerIndex
=
1933 CGM
.getVTables().getSecondaryVirtualPointerIndex(VTableClass
, Base
);
1936 llvm::Value
*VTT
= CGF
.LoadCXXVTT();
1937 if (VirtualPointerIndex
)
1938 VTT
= CGF
.Builder
.CreateConstInBoundsGEP1_64(CGF
.GlobalsVoidPtrTy
, VTT
,
1939 VirtualPointerIndex
);
1941 // And load the address point from the VTT.
1942 return CGF
.Builder
.CreateAlignedLoad(CGF
.GlobalsVoidPtrTy
, VTT
,
1943 CGF
.getPointerAlign());
1946 llvm::Constant
*ItaniumCXXABI::getVTableAddressPointForConstExpr(
1947 BaseSubobject Base
, const CXXRecordDecl
*VTableClass
) {
1948 return getVTableAddressPoint(Base
, VTableClass
);
1951 llvm::GlobalVariable
*ItaniumCXXABI::getAddrOfVTable(const CXXRecordDecl
*RD
,
1952 CharUnits VPtrOffset
) {
1953 assert(VPtrOffset
.isZero() && "Itanium ABI only supports zero vptr offsets");
1955 llvm::GlobalVariable
*&VTable
= VTables
[RD
];
1959 // Queue up this vtable for possible deferred emission.
1960 CGM
.addDeferredVTable(RD
);
1962 SmallString
<256> Name
;
1963 llvm::raw_svector_ostream
Out(Name
);
1964 getMangleContext().mangleCXXVTable(RD
, Out
);
1966 const VTableLayout
&VTLayout
=
1967 CGM
.getItaniumVTableContext().getVTableLayout(RD
);
1968 llvm::Type
*VTableType
= CGM
.getVTables().getVTableType(VTLayout
);
1970 // Use pointer to global alignment for the vtable. Otherwise we would align
1971 // them based on the size of the initializer which doesn't make sense as only
1972 // single values are read.
1973 LangAS AS
= CGM
.GetGlobalVarAddressSpace(nullptr);
1974 unsigned PAlign
= CGM
.getItaniumVTableContext().isRelativeLayout()
1976 : CGM
.getTarget().getPointerAlign(AS
);
1978 VTable
= CGM
.CreateOrReplaceCXXRuntimeVariable(
1979 Name
, VTableType
, llvm::GlobalValue::ExternalLinkage
,
1980 getContext().toCharUnitsFromBits(PAlign
).getAsAlign());
1981 VTable
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
1983 // In MS C++ if you have a class with virtual functions in which you are using
1984 // selective member import/export, then all virtual functions must be exported
1985 // unless they are inline, otherwise a link error will result. To match this
1986 // behavior, for such classes, we dllimport the vtable if it is defined
1987 // externally and all the non-inline virtual methods are marked dllimport, and
1988 // we dllexport the vtable if it is defined in this TU and all the non-inline
1989 // virtual methods are marked dllexport.
1990 if (CGM
.getTarget().hasPS4DLLImportExport()) {
1991 if ((!RD
->hasAttr
<DLLImportAttr
>()) && (!RD
->hasAttr
<DLLExportAttr
>())) {
1992 if (CGM
.getVTables().isVTableExternal(RD
)) {
1993 if (CXXRecordAllNonInlineVirtualsHaveAttr
<DLLImportAttr
>(RD
))
1994 VTable
->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass
);
1996 if (CXXRecordAllNonInlineVirtualsHaveAttr
<DLLExportAttr
>(RD
))
1997 VTable
->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass
);
2001 CGM
.setGVProperties(VTable
, RD
);
2006 CGCallee
ItaniumCXXABI::getVirtualFunctionPointer(CodeGenFunction
&CGF
,
2010 SourceLocation Loc
) {
2011 llvm::Type
*PtrTy
= CGM
.GlobalsInt8PtrTy
;
2012 auto *MethodDecl
= cast
<CXXMethodDecl
>(GD
.getDecl());
2013 llvm::Value
*VTable
= CGF
.GetVTablePtr(This
, PtrTy
, MethodDecl
->getParent());
2015 uint64_t VTableIndex
= CGM
.getItaniumVTableContext().getMethodVTableIndex(GD
);
2017 if (CGF
.ShouldEmitVTableTypeCheckedLoad(MethodDecl
->getParent())) {
2018 VFunc
= CGF
.EmitVTableTypeCheckedLoad(
2019 MethodDecl
->getParent(), VTable
, PtrTy
,
2021 CGM
.getContext().getTargetInfo().getPointerWidth(LangAS::Default
) /
2024 CGF
.EmitTypeMetadataCodeForVCall(MethodDecl
->getParent(), VTable
, Loc
);
2026 llvm::Value
*VFuncLoad
;
2027 if (CGM
.getItaniumVTableContext().isRelativeLayout()) {
2028 VFuncLoad
= CGF
.Builder
.CreateCall(
2029 CGM
.getIntrinsic(llvm::Intrinsic::load_relative
, {CGM
.Int32Ty
}),
2030 {VTable
, llvm::ConstantInt::get(CGM
.Int32Ty
, 4 * VTableIndex
)});
2032 llvm::Value
*VTableSlotPtr
= CGF
.Builder
.CreateConstInBoundsGEP1_64(
2033 PtrTy
, VTable
, VTableIndex
, "vfn");
2034 VFuncLoad
= CGF
.Builder
.CreateAlignedLoad(PtrTy
, VTableSlotPtr
,
2035 CGF
.getPointerAlign());
2038 // Add !invariant.load md to virtual function load to indicate that
2039 // function didn't change inside vtable.
2040 // It's safe to add it without -fstrict-vtable-pointers, but it would not
2041 // help in devirtualization because it will only matter if we will have 2
2042 // the same virtual function loads from the same vtable load, which won't
2043 // happen without enabled devirtualization with -fstrict-vtable-pointers.
2044 if (CGM
.getCodeGenOpts().OptimizationLevel
> 0 &&
2045 CGM
.getCodeGenOpts().StrictVTablePointers
) {
2046 if (auto *VFuncLoadInstr
= dyn_cast
<llvm::Instruction
>(VFuncLoad
)) {
2047 VFuncLoadInstr
->setMetadata(
2048 llvm::LLVMContext::MD_invariant_load
,
2049 llvm::MDNode::get(CGM
.getLLVMContext(),
2050 llvm::ArrayRef
<llvm::Metadata
*>()));
2056 CGCallee
Callee(GD
, VFunc
);
2060 llvm::Value
*ItaniumCXXABI::EmitVirtualDestructorCall(
2061 CodeGenFunction
&CGF
, const CXXDestructorDecl
*Dtor
, CXXDtorType DtorType
,
2062 Address This
, DeleteOrMemberCallExpr E
) {
2063 auto *CE
= E
.dyn_cast
<const CXXMemberCallExpr
*>();
2064 auto *D
= E
.dyn_cast
<const CXXDeleteExpr
*>();
2065 assert((CE
!= nullptr) ^ (D
!= nullptr));
2066 assert(CE
== nullptr || CE
->arg_begin() == CE
->arg_end());
2067 assert(DtorType
== Dtor_Deleting
|| DtorType
== Dtor_Complete
);
2069 GlobalDecl
GD(Dtor
, DtorType
);
2070 const CGFunctionInfo
*FInfo
=
2071 &CGM
.getTypes().arrangeCXXStructorDeclaration(GD
);
2072 llvm::FunctionType
*Ty
= CGF
.CGM
.getTypes().GetFunctionType(*FInfo
);
2073 CGCallee Callee
= CGCallee::forVirtual(CE
, GD
, This
, Ty
);
2077 ThisTy
= CE
->getObjectType();
2079 ThisTy
= D
->getDestroyedType();
2082 CGF
.EmitCXXDestructorCall(GD
, Callee
, This
.getPointer(), ThisTy
, nullptr,
2083 QualType(), nullptr);
2087 void ItaniumCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl
*RD
) {
2088 CodeGenVTables
&VTables
= CGM
.getVTables();
2089 llvm::GlobalVariable
*VTT
= VTables
.GetAddrOfVTT(RD
);
2090 VTables
.EmitVTTDefinition(VTT
, CGM
.getVTableLinkage(RD
), RD
);
2093 bool ItaniumCXXABI::canSpeculativelyEmitVTableAsBaseClass(
2094 const CXXRecordDecl
*RD
) const {
2095 // We don't emit available_externally vtables if we are in -fapple-kext mode
2096 // because kext mode does not permit devirtualization.
2097 if (CGM
.getLangOpts().AppleKext
)
2100 // If the vtable is hidden then it is not safe to emit an available_externally
2102 if (isVTableHidden(RD
))
2105 if (CGM
.getCodeGenOpts().ForceEmitVTables
)
2108 // If we don't have any not emitted inline virtual function then we are safe
2109 // to emit an available_externally copy of vtable.
2110 // FIXME we can still emit a copy of the vtable if we
2111 // can emit definition of the inline functions.
2112 if (hasAnyUnusedVirtualInlineFunction(RD
))
2115 // For a class with virtual bases, we must also be able to speculatively
2116 // emit the VTT, because CodeGen doesn't have separate notions of "can emit
2117 // the vtable" and "can emit the VTT". For a base subobject, this means we
2118 // need to be able to emit non-virtual base vtables.
2119 if (RD
->getNumVBases()) {
2120 for (const auto &B
: RD
->bases()) {
2121 auto *BRD
= B
.getType()->getAsCXXRecordDecl();
2122 assert(BRD
&& "no class for base specifier");
2123 if (B
.isVirtual() || !BRD
->isDynamicClass())
2125 if (!canSpeculativelyEmitVTableAsBaseClass(BRD
))
2133 bool ItaniumCXXABI::canSpeculativelyEmitVTable(const CXXRecordDecl
*RD
) const {
2134 if (!canSpeculativelyEmitVTableAsBaseClass(RD
))
2137 // For a complete-object vtable (or more specifically, for the VTT), we need
2138 // to be able to speculatively emit the vtables of all dynamic virtual bases.
2139 for (const auto &B
: RD
->vbases()) {
2140 auto *BRD
= B
.getType()->getAsCXXRecordDecl();
2141 assert(BRD
&& "no class for base specifier");
2142 if (!BRD
->isDynamicClass())
2144 if (!canSpeculativelyEmitVTableAsBaseClass(BRD
))
2150 static llvm::Value
*performTypeAdjustment(CodeGenFunction
&CGF
,
2152 int64_t NonVirtualAdjustment
,
2153 int64_t VirtualAdjustment
,
2154 bool IsReturnAdjustment
) {
2155 if (!NonVirtualAdjustment
&& !VirtualAdjustment
)
2156 return InitialPtr
.getPointer();
2158 Address V
= InitialPtr
.withElementType(CGF
.Int8Ty
);
2160 // In a base-to-derived cast, the non-virtual adjustment is applied first.
2161 if (NonVirtualAdjustment
&& !IsReturnAdjustment
) {
2162 V
= CGF
.Builder
.CreateConstInBoundsByteGEP(V
,
2163 CharUnits::fromQuantity(NonVirtualAdjustment
));
2166 // Perform the virtual adjustment if we have one.
2167 llvm::Value
*ResultPtr
;
2168 if (VirtualAdjustment
) {
2169 Address VTablePtrPtr
= V
.withElementType(CGF
.Int8PtrTy
);
2170 llvm::Value
*VTablePtr
= CGF
.Builder
.CreateLoad(VTablePtrPtr
);
2172 llvm::Value
*Offset
;
2173 llvm::Value
*OffsetPtr
= CGF
.Builder
.CreateConstInBoundsGEP1_64(
2174 CGF
.Int8Ty
, VTablePtr
, VirtualAdjustment
);
2175 if (CGF
.CGM
.getItaniumVTableContext().isRelativeLayout()) {
2176 // Load the adjustment offset from the vtable as a 32-bit int.
2178 CGF
.Builder
.CreateAlignedLoad(CGF
.Int32Ty
, OffsetPtr
,
2179 CharUnits::fromQuantity(4));
2181 llvm::Type
*PtrDiffTy
=
2182 CGF
.ConvertType(CGF
.getContext().getPointerDiffType());
2184 // Load the adjustment offset from the vtable.
2185 Offset
= CGF
.Builder
.CreateAlignedLoad(PtrDiffTy
, OffsetPtr
,
2186 CGF
.getPointerAlign());
2188 // Adjust our pointer.
2189 ResultPtr
= CGF
.Builder
.CreateInBoundsGEP(
2190 V
.getElementType(), V
.getPointer(), Offset
);
2192 ResultPtr
= V
.getPointer();
2195 // In a derived-to-base conversion, the non-virtual adjustment is
2197 if (NonVirtualAdjustment
&& IsReturnAdjustment
) {
2198 ResultPtr
= CGF
.Builder
.CreateConstInBoundsGEP1_64(CGF
.Int8Ty
, ResultPtr
,
2199 NonVirtualAdjustment
);
2205 llvm::Value
*ItaniumCXXABI::performThisAdjustment(CodeGenFunction
&CGF
,
2207 const ThisAdjustment
&TA
) {
2208 return performTypeAdjustment(CGF
, This
, TA
.NonVirtual
,
2209 TA
.Virtual
.Itanium
.VCallOffsetOffset
,
2210 /*IsReturnAdjustment=*/false);
2214 ItaniumCXXABI::performReturnAdjustment(CodeGenFunction
&CGF
, Address Ret
,
2215 const ReturnAdjustment
&RA
) {
2216 return performTypeAdjustment(CGF
, Ret
, RA
.NonVirtual
,
2217 RA
.Virtual
.Itanium
.VBaseOffsetOffset
,
2218 /*IsReturnAdjustment=*/true);
2221 void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction
&CGF
,
2222 RValue RV
, QualType ResultType
) {
2223 if (!isa
<CXXDestructorDecl
>(CGF
.CurGD
.getDecl()))
2224 return ItaniumCXXABI::EmitReturnFromThunk(CGF
, RV
, ResultType
);
2226 // Destructor thunks in the ARM ABI have indeterminate results.
2227 llvm::Type
*T
= CGF
.ReturnValue
.getElementType();
2228 RValue Undef
= RValue::get(llvm::UndefValue::get(T
));
2229 return ItaniumCXXABI::EmitReturnFromThunk(CGF
, Undef
, ResultType
);
2232 /************************** Array allocation cookies **************************/
2234 CharUnits
ItaniumCXXABI::getArrayCookieSizeImpl(QualType elementType
) {
2235 // The array cookie is a size_t; pad that up to the element alignment.
2236 // The cookie is actually right-justified in that space.
2237 return std::max(CharUnits::fromQuantity(CGM
.SizeSizeInBytes
),
2238 CGM
.getContext().getPreferredTypeAlignInChars(elementType
));
2241 Address
ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction
&CGF
,
2243 llvm::Value
*NumElements
,
2244 const CXXNewExpr
*expr
,
2245 QualType ElementType
) {
2246 assert(requiresArrayCookie(expr
));
2248 unsigned AS
= NewPtr
.getAddressSpace();
2250 ASTContext
&Ctx
= getContext();
2251 CharUnits SizeSize
= CGF
.getSizeSize();
2253 // The size of the cookie.
2254 CharUnits CookieSize
=
2255 std::max(SizeSize
, Ctx
.getPreferredTypeAlignInChars(ElementType
));
2256 assert(CookieSize
== getArrayCookieSizeImpl(ElementType
));
2258 // Compute an offset to the cookie.
2259 Address CookiePtr
= NewPtr
;
2260 CharUnits CookieOffset
= CookieSize
- SizeSize
;
2261 if (!CookieOffset
.isZero())
2262 CookiePtr
= CGF
.Builder
.CreateConstInBoundsByteGEP(CookiePtr
, CookieOffset
);
2264 // Write the number of elements into the appropriate slot.
2265 Address NumElementsPtr
= CookiePtr
.withElementType(CGF
.SizeTy
);
2266 llvm::Instruction
*SI
= CGF
.Builder
.CreateStore(NumElements
, NumElementsPtr
);
2268 // Handle the array cookie specially in ASan.
2269 if (CGM
.getLangOpts().Sanitize
.has(SanitizerKind::Address
) && AS
== 0 &&
2270 (expr
->getOperatorNew()->isReplaceableGlobalAllocationFunction() ||
2271 CGM
.getCodeGenOpts().SanitizeAddressPoisonCustomArrayCookie
)) {
2272 // The store to the CookiePtr does not need to be instrumented.
2273 SI
->setNoSanitizeMetadata();
2274 llvm::FunctionType
*FTy
=
2275 llvm::FunctionType::get(CGM
.VoidTy
, NumElementsPtr
.getType(), false);
2276 llvm::FunctionCallee F
=
2277 CGM
.CreateRuntimeFunction(FTy
, "__asan_poison_cxx_array_cookie");
2278 CGF
.Builder
.CreateCall(F
, NumElementsPtr
.getPointer());
2281 // Finally, compute a pointer to the actual data buffer by skipping
2282 // over the cookie completely.
2283 return CGF
.Builder
.CreateConstInBoundsByteGEP(NewPtr
, CookieSize
);
2286 llvm::Value
*ItaniumCXXABI::readArrayCookieImpl(CodeGenFunction
&CGF
,
2288 CharUnits cookieSize
) {
2289 // The element size is right-justified in the cookie.
2290 Address numElementsPtr
= allocPtr
;
2291 CharUnits numElementsOffset
= cookieSize
- CGF
.getSizeSize();
2292 if (!numElementsOffset
.isZero())
2294 CGF
.Builder
.CreateConstInBoundsByteGEP(numElementsPtr
, numElementsOffset
);
2296 unsigned AS
= allocPtr
.getAddressSpace();
2297 numElementsPtr
= numElementsPtr
.withElementType(CGF
.SizeTy
);
2298 if (!CGM
.getLangOpts().Sanitize
.has(SanitizerKind::Address
) || AS
!= 0)
2299 return CGF
.Builder
.CreateLoad(numElementsPtr
);
2300 // In asan mode emit a function call instead of a regular load and let the
2301 // run-time deal with it: if the shadow is properly poisoned return the
2302 // cookie, otherwise return 0 to avoid an infinite loop calling DTORs.
2303 // We can't simply ignore this load using nosanitize metadata because
2304 // the metadata may be lost.
2305 llvm::FunctionType
*FTy
=
2306 llvm::FunctionType::get(CGF
.SizeTy
, CGF
.UnqualPtrTy
, false);
2307 llvm::FunctionCallee F
=
2308 CGM
.CreateRuntimeFunction(FTy
, "__asan_load_cxx_array_cookie");
2309 return CGF
.Builder
.CreateCall(F
, numElementsPtr
.getPointer());
2312 CharUnits
ARMCXXABI::getArrayCookieSizeImpl(QualType elementType
) {
2313 // ARM says that the cookie is always:
2314 // struct array_cookie {
2315 // std::size_t element_size; // element_size != 0
2316 // std::size_t element_count;
2318 // But the base ABI doesn't give anything an alignment greater than
2319 // 8, so we can dismiss this as typical ABI-author blindness to
2320 // actual language complexity and round up to the element alignment.
2321 return std::max(CharUnits::fromQuantity(2 * CGM
.SizeSizeInBytes
),
2322 CGM
.getContext().getTypeAlignInChars(elementType
));
2325 Address
ARMCXXABI::InitializeArrayCookie(CodeGenFunction
&CGF
,
2327 llvm::Value
*numElements
,
2328 const CXXNewExpr
*expr
,
2329 QualType elementType
) {
2330 assert(requiresArrayCookie(expr
));
2332 // The cookie is always at the start of the buffer.
2333 Address cookie
= newPtr
;
2335 // The first element is the element size.
2336 cookie
= cookie
.withElementType(CGF
.SizeTy
);
2337 llvm::Value
*elementSize
= llvm::ConstantInt::get(CGF
.SizeTy
,
2338 getContext().getTypeSizeInChars(elementType
).getQuantity());
2339 CGF
.Builder
.CreateStore(elementSize
, cookie
);
2341 // The second element is the element count.
2342 cookie
= CGF
.Builder
.CreateConstInBoundsGEP(cookie
, 1);
2343 CGF
.Builder
.CreateStore(numElements
, cookie
);
2345 // Finally, compute a pointer to the actual data buffer by skipping
2346 // over the cookie completely.
2347 CharUnits cookieSize
= ARMCXXABI::getArrayCookieSizeImpl(elementType
);
2348 return CGF
.Builder
.CreateConstInBoundsByteGEP(newPtr
, cookieSize
);
2351 llvm::Value
*ARMCXXABI::readArrayCookieImpl(CodeGenFunction
&CGF
,
2353 CharUnits cookieSize
) {
2354 // The number of elements is at offset sizeof(size_t) relative to
2355 // the allocated pointer.
2356 Address numElementsPtr
2357 = CGF
.Builder
.CreateConstInBoundsByteGEP(allocPtr
, CGF
.getSizeSize());
2359 numElementsPtr
= numElementsPtr
.withElementType(CGF
.SizeTy
);
2360 return CGF
.Builder
.CreateLoad(numElementsPtr
);
2363 /*********************** Static local initialization **************************/
2365 static llvm::FunctionCallee
getGuardAcquireFn(CodeGenModule
&CGM
,
2366 llvm::PointerType
*GuardPtrTy
) {
2367 // int __cxa_guard_acquire(__guard *guard_object);
2368 llvm::FunctionType
*FTy
=
2369 llvm::FunctionType::get(CGM
.getTypes().ConvertType(CGM
.getContext().IntTy
),
2370 GuardPtrTy
, /*isVarArg=*/false);
2371 return CGM
.CreateRuntimeFunction(
2372 FTy
, "__cxa_guard_acquire",
2373 llvm::AttributeList::get(CGM
.getLLVMContext(),
2374 llvm::AttributeList::FunctionIndex
,
2375 llvm::Attribute::NoUnwind
));
2378 static llvm::FunctionCallee
getGuardReleaseFn(CodeGenModule
&CGM
,
2379 llvm::PointerType
*GuardPtrTy
) {
2380 // void __cxa_guard_release(__guard *guard_object);
2381 llvm::FunctionType
*FTy
=
2382 llvm::FunctionType::get(CGM
.VoidTy
, GuardPtrTy
, /*isVarArg=*/false);
2383 return CGM
.CreateRuntimeFunction(
2384 FTy
, "__cxa_guard_release",
2385 llvm::AttributeList::get(CGM
.getLLVMContext(),
2386 llvm::AttributeList::FunctionIndex
,
2387 llvm::Attribute::NoUnwind
));
2390 static llvm::FunctionCallee
getGuardAbortFn(CodeGenModule
&CGM
,
2391 llvm::PointerType
*GuardPtrTy
) {
2392 // void __cxa_guard_abort(__guard *guard_object);
2393 llvm::FunctionType
*FTy
=
2394 llvm::FunctionType::get(CGM
.VoidTy
, GuardPtrTy
, /*isVarArg=*/false);
2395 return CGM
.CreateRuntimeFunction(
2396 FTy
, "__cxa_guard_abort",
2397 llvm::AttributeList::get(CGM
.getLLVMContext(),
2398 llvm::AttributeList::FunctionIndex
,
2399 llvm::Attribute::NoUnwind
));
2403 struct CallGuardAbort final
: EHScopeStack::Cleanup
{
2404 llvm::GlobalVariable
*Guard
;
2405 CallGuardAbort(llvm::GlobalVariable
*Guard
) : Guard(Guard
) {}
2407 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2408 CGF
.EmitNounwindRuntimeCall(getGuardAbortFn(CGF
.CGM
, Guard
->getType()),
2414 /// The ARM code here follows the Itanium code closely enough that we
2415 /// just special-case it at particular places.
2416 void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction
&CGF
,
2418 llvm::GlobalVariable
*var
,
2419 bool shouldPerformInit
) {
2420 CGBuilderTy
&Builder
= CGF
.Builder
;
2422 // Inline variables that weren't instantiated from variable templates have
2423 // partially-ordered initialization within their translation unit.
2424 bool NonTemplateInline
=
2426 !isTemplateInstantiation(D
.getTemplateSpecializationKind());
2428 // We only need to use thread-safe statics for local non-TLS variables and
2429 // inline variables; other global initialization is always single-threaded
2430 // or (through lazy dynamic loading in multiple threads) unsequenced.
2431 bool threadsafe
= getContext().getLangOpts().ThreadsafeStatics
&&
2432 (D
.isLocalVarDecl() || NonTemplateInline
) &&
2435 // If we have a global variable with internal linkage and thread-safe statics
2436 // are disabled, we can just let the guard variable be of type i8.
2437 bool useInt8GuardVariable
= !threadsafe
&& var
->hasInternalLinkage();
2439 llvm::IntegerType
*guardTy
;
2440 CharUnits guardAlignment
;
2441 if (useInt8GuardVariable
) {
2442 guardTy
= CGF
.Int8Ty
;
2443 guardAlignment
= CharUnits::One();
2445 // Guard variables are 64 bits in the generic ABI and size width on ARM
2446 // (i.e. 32-bit on AArch32, 64-bit on AArch64).
2447 if (UseARMGuardVarABI
) {
2448 guardTy
= CGF
.SizeTy
;
2449 guardAlignment
= CGF
.getSizeAlign();
2451 guardTy
= CGF
.Int64Ty
;
2453 CharUnits::fromQuantity(CGM
.getDataLayout().getABITypeAlign(guardTy
));
2456 llvm::PointerType
*guardPtrTy
= llvm::PointerType::get(
2457 CGF
.CGM
.getLLVMContext(),
2458 CGF
.CGM
.getDataLayout().getDefaultGlobalsAddressSpace());
2460 // Create the guard variable if we don't already have it (as we
2461 // might if we're double-emitting this function body).
2462 llvm::GlobalVariable
*guard
= CGM
.getStaticLocalDeclGuardAddress(&D
);
2464 // Mangle the name for the guard.
2465 SmallString
<256> guardName
;
2467 llvm::raw_svector_ostream
out(guardName
);
2468 getMangleContext().mangleStaticGuardVariable(&D
, out
);
2471 // Create the guard variable with a zero-initializer.
2472 // Just absorb linkage, visibility and dll storage class from the guarded
2474 guard
= new llvm::GlobalVariable(CGM
.getModule(), guardTy
,
2475 false, var
->getLinkage(),
2476 llvm::ConstantInt::get(guardTy
, 0),
2478 guard
->setDSOLocal(var
->isDSOLocal());
2479 guard
->setVisibility(var
->getVisibility());
2480 guard
->setDLLStorageClass(var
->getDLLStorageClass());
2481 // If the variable is thread-local, so is its guard variable.
2482 guard
->setThreadLocalMode(var
->getThreadLocalMode());
2483 guard
->setAlignment(guardAlignment
.getAsAlign());
2485 // The ABI says: "It is suggested that it be emitted in the same COMDAT
2486 // group as the associated data object." In practice, this doesn't work for
2487 // non-ELF and non-Wasm object formats, so only do it for ELF and Wasm.
2488 llvm::Comdat
*C
= var
->getComdat();
2489 if (!D
.isLocalVarDecl() && C
&&
2490 (CGM
.getTarget().getTriple().isOSBinFormatELF() ||
2491 CGM
.getTarget().getTriple().isOSBinFormatWasm())) {
2492 guard
->setComdat(C
);
2493 } else if (CGM
.supportsCOMDAT() && guard
->isWeakForLinker()) {
2494 guard
->setComdat(CGM
.getModule().getOrInsertComdat(guard
->getName()));
2497 CGM
.setStaticLocalDeclGuardAddress(&D
, guard
);
2500 Address guardAddr
= Address(guard
, guard
->getValueType(), guardAlignment
);
2502 // Test whether the variable has completed initialization.
2504 // Itanium C++ ABI 3.3.2:
2505 // The following is pseudo-code showing how these functions can be used:
2506 // if (obj_guard.first_byte == 0) {
2507 // if ( __cxa_guard_acquire (&obj_guard) ) {
2509 // ... initialize the object ...;
2511 // __cxa_guard_abort (&obj_guard);
2514 // ... queue object destructor with __cxa_atexit() ...;
2515 // __cxa_guard_release (&obj_guard);
2519 // If threadsafe statics are enabled, but we don't have inline atomics, just
2520 // call __cxa_guard_acquire unconditionally. The "inline" check isn't
2521 // actually inline, and the user might not expect calls to __atomic libcalls.
2523 unsigned MaxInlineWidthInBits
= CGF
.getTarget().getMaxAtomicInlineWidth();
2524 llvm::BasicBlock
*EndBlock
= CGF
.createBasicBlock("init.end");
2525 if (!threadsafe
|| MaxInlineWidthInBits
) {
2526 // Load the first byte of the guard variable.
2527 llvm::LoadInst
*LI
=
2528 Builder
.CreateLoad(guardAddr
.withElementType(CGM
.Int8Ty
));
2531 // An implementation supporting thread-safety on multiprocessor
2532 // systems must also guarantee that references to the initialized
2533 // object do not occur before the load of the initialization flag.
2535 // In LLVM, we do this by marking the load Acquire.
2537 LI
->setAtomic(llvm::AtomicOrdering::Acquire
);
2539 // For ARM, we should only check the first bit, rather than the entire byte:
2541 // ARM C++ ABI 3.2.3.1:
2542 // To support the potential use of initialization guard variables
2543 // as semaphores that are the target of ARM SWP and LDREX/STREX
2544 // synchronizing instructions we define a static initialization
2545 // guard variable to be a 4-byte aligned, 4-byte word with the
2546 // following inline access protocol.
2547 // #define INITIALIZED 1
2548 // if ((obj_guard & INITIALIZED) != INITIALIZED) {
2549 // if (__cxa_guard_acquire(&obj_guard))
2553 // and similarly for ARM64:
2555 // ARM64 C++ ABI 3.2.2:
2556 // This ABI instead only specifies the value bit 0 of the static guard
2557 // variable; all other bits are platform defined. Bit 0 shall be 0 when the
2558 // variable is not initialized and 1 when it is.
2560 (UseARMGuardVarABI
&& !useInt8GuardVariable
)
2561 ? Builder
.CreateAnd(LI
, llvm::ConstantInt::get(CGM
.Int8Ty
, 1))
2563 llvm::Value
*NeedsInit
= Builder
.CreateIsNull(V
, "guard.uninitialized");
2565 llvm::BasicBlock
*InitCheckBlock
= CGF
.createBasicBlock("init.check");
2567 // Check if the first byte of the guard variable is zero.
2568 CGF
.EmitCXXGuardedInitBranch(NeedsInit
, InitCheckBlock
, EndBlock
,
2569 CodeGenFunction::GuardKind::VariableGuard
, &D
);
2571 CGF
.EmitBlock(InitCheckBlock
);
2574 // The semantics of dynamic initialization of variables with static or thread
2575 // storage duration depends on whether they are declared at block-scope. The
2576 // initialization of such variables at block-scope can be aborted with an
2577 // exception and later retried (per C++20 [stmt.dcl]p4), and recursive entry
2578 // to their initialization has undefined behavior (also per C++20
2579 // [stmt.dcl]p4). For such variables declared at non-block scope, exceptions
2580 // lead to termination (per C++20 [except.terminate]p1), and recursive
2581 // references to the variables are governed only by the lifetime rules (per
2582 // C++20 [class.cdtor]p2), which means such references are perfectly fine as
2583 // long as they avoid touching memory. As a result, block-scope variables must
2584 // not be marked as initialized until after initialization completes (unless
2585 // the mark is reverted following an exception), but non-block-scope variables
2586 // must be marked prior to initialization so that recursive accesses during
2587 // initialization do not restart initialization.
2589 // Variables used when coping with thread-safe statics and exceptions.
2591 // Call __cxa_guard_acquire.
2593 = CGF
.EmitNounwindRuntimeCall(getGuardAcquireFn(CGM
, guardPtrTy
), guard
);
2595 llvm::BasicBlock
*InitBlock
= CGF
.createBasicBlock("init");
2597 Builder
.CreateCondBr(Builder
.CreateIsNotNull(V
, "tobool"),
2598 InitBlock
, EndBlock
);
2600 // Call __cxa_guard_abort along the exceptional edge.
2601 CGF
.EHStack
.pushCleanup
<CallGuardAbort
>(EHCleanup
, guard
);
2603 CGF
.EmitBlock(InitBlock
);
2604 } else if (!D
.isLocalVarDecl()) {
2605 // For non-local variables, store 1 into the first byte of the guard
2606 // variable before the object initialization begins so that references
2607 // to the variable during initialization don't restart initialization.
2608 Builder
.CreateStore(llvm::ConstantInt::get(CGM
.Int8Ty
, 1),
2609 guardAddr
.withElementType(CGM
.Int8Ty
));
2612 // Emit the initializer and add a global destructor if appropriate.
2613 CGF
.EmitCXXGlobalVarDeclInit(D
, var
, shouldPerformInit
);
2616 // Pop the guard-abort cleanup if we pushed one.
2617 CGF
.PopCleanupBlock();
2619 // Call __cxa_guard_release. This cannot throw.
2620 CGF
.EmitNounwindRuntimeCall(getGuardReleaseFn(CGM
, guardPtrTy
),
2621 guardAddr
.getPointer());
2622 } else if (D
.isLocalVarDecl()) {
2623 // For local variables, store 1 into the first byte of the guard variable
2624 // after the object initialization completes so that initialization is
2625 // retried if initialization is interrupted by an exception.
2626 Builder
.CreateStore(llvm::ConstantInt::get(CGM
.Int8Ty
, 1),
2627 guardAddr
.withElementType(CGM
.Int8Ty
));
2630 CGF
.EmitBlock(EndBlock
);
2633 /// Register a global destructor using __cxa_atexit.
2634 static void emitGlobalDtorWithCXAAtExit(CodeGenFunction
&CGF
,
2635 llvm::FunctionCallee dtor
,
2636 llvm::Constant
*addr
, bool TLS
) {
2637 assert(!CGF
.getTarget().getTriple().isOSAIX() &&
2638 "unexpected call to emitGlobalDtorWithCXAAtExit");
2639 assert((TLS
|| CGF
.getTypes().getCodeGenOpts().CXAAtExit
) &&
2640 "__cxa_atexit is disabled");
2641 const char *Name
= "__cxa_atexit";
2643 const llvm::Triple
&T
= CGF
.getTarget().getTriple();
2644 Name
= T
.isOSDarwin() ? "_tlv_atexit" : "__cxa_thread_atexit";
2647 // We're assuming that the destructor function is something we can
2648 // reasonably call with the default CC.
2649 llvm::Type
*dtorTy
= CGF
.UnqualPtrTy
;
2651 // Preserve address space of addr.
2652 auto AddrAS
= addr
? addr
->getType()->getPointerAddressSpace() : 0;
2653 auto AddrPtrTy
= AddrAS
? llvm::PointerType::get(CGF
.getLLVMContext(), AddrAS
)
2656 // Create a variable that binds the atexit to this shared object.
2657 llvm::Constant
*handle
=
2658 CGF
.CGM
.CreateRuntimeVariable(CGF
.Int8Ty
, "__dso_handle");
2659 auto *GV
= cast
<llvm::GlobalValue
>(handle
->stripPointerCasts());
2660 GV
->setVisibility(llvm::GlobalValue::HiddenVisibility
);
2662 // extern "C" int __cxa_atexit(void (*f)(void *), void *p, void *d);
2663 llvm::Type
*paramTys
[] = {dtorTy
, AddrPtrTy
, handle
->getType()};
2664 llvm::FunctionType
*atexitTy
=
2665 llvm::FunctionType::get(CGF
.IntTy
, paramTys
, false);
2667 // Fetch the actual function.
2668 llvm::FunctionCallee atexit
= CGF
.CGM
.CreateRuntimeFunction(atexitTy
, Name
);
2669 if (llvm::Function
*fn
= dyn_cast
<llvm::Function
>(atexit
.getCallee()))
2670 fn
->setDoesNotThrow();
2673 // addr is null when we are trying to register a dtor annotated with
2674 // __attribute__((destructor)) in a constructor function. Using null here is
2675 // okay because this argument is just passed back to the destructor
2677 addr
= llvm::Constant::getNullValue(CGF
.Int8PtrTy
);
2679 llvm::Value
*args
[] = {dtor
.getCallee(), addr
, handle
};
2680 CGF
.EmitNounwindRuntimeCall(atexit
, args
);
2683 static llvm::Function
*createGlobalInitOrCleanupFn(CodeGen::CodeGenModule
&CGM
,
2685 // Create a function that registers/unregisters destructors that have the same
2687 llvm::FunctionType
*FTy
= llvm::FunctionType::get(CGM
.VoidTy
, false);
2688 llvm::Function
*GlobalInitOrCleanupFn
= CGM
.CreateGlobalInitOrCleanUpFunction(
2689 FTy
, FnName
, CGM
.getTypes().arrangeNullaryFunction(), SourceLocation());
2691 return GlobalInitOrCleanupFn
;
2694 void CodeGenModule::unregisterGlobalDtorsWithUnAtExit() {
2695 for (const auto &I
: DtorsUsingAtExit
) {
2696 int Priority
= I
.first
;
2697 std::string GlobalCleanupFnName
=
2698 std::string("__GLOBAL_cleanup_") + llvm::to_string(Priority
);
2700 llvm::Function
*GlobalCleanupFn
=
2701 createGlobalInitOrCleanupFn(*this, GlobalCleanupFnName
);
2703 CodeGenFunction
CGF(*this);
2704 CGF
.StartFunction(GlobalDecl(), getContext().VoidTy
, GlobalCleanupFn
,
2705 getTypes().arrangeNullaryFunction(), FunctionArgList(),
2706 SourceLocation(), SourceLocation());
2707 auto AL
= ApplyDebugLocation::CreateArtificial(CGF
);
2709 // Get the destructor function type, void(*)(void).
2710 llvm::FunctionType
*dtorFuncTy
= llvm::FunctionType::get(CGF
.VoidTy
, false);
2712 // Destructor functions are run/unregistered in non-ascending
2713 // order of their priorities.
2714 const llvm::TinyPtrVector
<llvm::Function
*> &Dtors
= I
.second
;
2715 auto itv
= Dtors
.rbegin();
2716 while (itv
!= Dtors
.rend()) {
2717 llvm::Function
*Dtor
= *itv
;
2719 // We're assuming that the destructor function is something we can
2720 // reasonably call with the correct CC.
2721 llvm::Value
*V
= CGF
.unregisterGlobalDtorWithUnAtExit(Dtor
);
2722 llvm::Value
*NeedsDestruct
=
2723 CGF
.Builder
.CreateIsNull(V
, "needs_destruct");
2725 llvm::BasicBlock
*DestructCallBlock
=
2726 CGF
.createBasicBlock("destruct.call");
2727 llvm::BasicBlock
*EndBlock
= CGF
.createBasicBlock(
2728 (itv
+ 1) != Dtors
.rend() ? "unatexit.call" : "destruct.end");
2729 // Check if unatexit returns a value of 0. If it does, jump to
2730 // DestructCallBlock, otherwise jump to EndBlock directly.
2731 CGF
.Builder
.CreateCondBr(NeedsDestruct
, DestructCallBlock
, EndBlock
);
2733 CGF
.EmitBlock(DestructCallBlock
);
2735 // Emit the call to casted Dtor.
2736 llvm::CallInst
*CI
= CGF
.Builder
.CreateCall(dtorFuncTy
, Dtor
);
2737 // Make sure the call and the callee agree on calling convention.
2738 CI
->setCallingConv(Dtor
->getCallingConv());
2740 CGF
.EmitBlock(EndBlock
);
2745 CGF
.FinishFunction();
2746 AddGlobalDtor(GlobalCleanupFn
, Priority
);
2750 void CodeGenModule::registerGlobalDtorsWithAtExit() {
2751 for (const auto &I
: DtorsUsingAtExit
) {
2752 int Priority
= I
.first
;
2753 std::string GlobalInitFnName
=
2754 std::string("__GLOBAL_init_") + llvm::to_string(Priority
);
2755 llvm::Function
*GlobalInitFn
=
2756 createGlobalInitOrCleanupFn(*this, GlobalInitFnName
);
2758 CodeGenFunction
CGF(*this);
2759 CGF
.StartFunction(GlobalDecl(), getContext().VoidTy
, GlobalInitFn
,
2760 getTypes().arrangeNullaryFunction(), FunctionArgList(),
2761 SourceLocation(), SourceLocation());
2762 auto AL
= ApplyDebugLocation::CreateArtificial(CGF
);
2764 // Since constructor functions are run in non-descending order of their
2765 // priorities, destructors are registered in non-descending order of their
2766 // priorities, and since destructor functions are run in the reverse order
2767 // of their registration, destructor functions are run in non-ascending
2768 // order of their priorities.
2769 const llvm::TinyPtrVector
<llvm::Function
*> &Dtors
= I
.second
;
2770 for (auto *Dtor
: Dtors
) {
2771 // Register the destructor function calling __cxa_atexit if it is
2772 // available. Otherwise fall back on calling atexit.
2773 if (getCodeGenOpts().CXAAtExit
) {
2774 emitGlobalDtorWithCXAAtExit(CGF
, Dtor
, nullptr, false);
2776 // We're assuming that the destructor function is something we can
2777 // reasonably call with the correct CC.
2778 CGF
.registerGlobalDtorWithAtExit(Dtor
);
2782 CGF
.FinishFunction();
2783 AddGlobalCtor(GlobalInitFn
, Priority
);
2786 if (getCXXABI().useSinitAndSterm())
2787 unregisterGlobalDtorsWithUnAtExit();
2790 /// Register a global destructor as best as we know how.
2791 void ItaniumCXXABI::registerGlobalDtor(CodeGenFunction
&CGF
, const VarDecl
&D
,
2792 llvm::FunctionCallee dtor
,
2793 llvm::Constant
*addr
) {
2794 if (D
.isNoDestroy(CGM
.getContext()))
2797 // emitGlobalDtorWithCXAAtExit will emit a call to either __cxa_thread_atexit
2798 // or __cxa_atexit depending on whether this VarDecl is a thread-local storage
2799 // or not. CXAAtExit controls only __cxa_atexit, so use it if it is enabled.
2800 // We can always use __cxa_thread_atexit.
2801 if (CGM
.getCodeGenOpts().CXAAtExit
|| D
.getTLSKind())
2802 return emitGlobalDtorWithCXAAtExit(CGF
, dtor
, addr
, D
.getTLSKind());
2804 // In Apple kexts, we want to add a global destructor entry.
2805 // FIXME: shouldn't this be guarded by some variable?
2806 if (CGM
.getLangOpts().AppleKext
) {
2807 // Generate a global destructor entry.
2808 return CGM
.AddCXXDtorEntry(dtor
, addr
);
2811 CGF
.registerGlobalDtorWithAtExit(D
, dtor
, addr
);
2814 static bool isThreadWrapperReplaceable(const VarDecl
*VD
,
2815 CodeGen::CodeGenModule
&CGM
) {
2816 assert(!VD
->isStaticLocal() && "static local VarDecls don't need wrappers!");
2817 // Darwin prefers to have references to thread local variables to go through
2818 // the thread wrapper instead of directly referencing the backing variable.
2819 return VD
->getTLSKind() == VarDecl::TLS_Dynamic
&&
2820 CGM
.getTarget().getTriple().isOSDarwin();
2823 /// Get the appropriate linkage for the wrapper function. This is essentially
2824 /// the weak form of the variable's linkage; every translation unit which needs
2825 /// the wrapper emits a copy, and we want the linker to merge them.
2826 static llvm::GlobalValue::LinkageTypes
2827 getThreadLocalWrapperLinkage(const VarDecl
*VD
, CodeGen::CodeGenModule
&CGM
) {
2828 llvm::GlobalValue::LinkageTypes VarLinkage
=
2829 CGM
.getLLVMLinkageVarDefinition(VD
);
2831 // For internal linkage variables, we don't need an external or weak wrapper.
2832 if (llvm::GlobalValue::isLocalLinkage(VarLinkage
))
2835 // If the thread wrapper is replaceable, give it appropriate linkage.
2836 if (isThreadWrapperReplaceable(VD
, CGM
))
2837 if (!llvm::GlobalVariable::isLinkOnceLinkage(VarLinkage
) &&
2838 !llvm::GlobalVariable::isWeakODRLinkage(VarLinkage
))
2840 return llvm::GlobalValue::WeakODRLinkage
;
2844 ItaniumCXXABI::getOrCreateThreadLocalWrapper(const VarDecl
*VD
,
2846 // Mangle the name for the thread_local wrapper function.
2847 SmallString
<256> WrapperName
;
2849 llvm::raw_svector_ostream
Out(WrapperName
);
2850 getMangleContext().mangleItaniumThreadLocalWrapper(VD
, Out
);
2853 // FIXME: If VD is a definition, we should regenerate the function attributes
2854 // before returning.
2855 if (llvm::Value
*V
= CGM
.getModule().getNamedValue(WrapperName
))
2856 return cast
<llvm::Function
>(V
);
2858 QualType RetQT
= VD
->getType();
2859 if (RetQT
->isReferenceType())
2860 RetQT
= RetQT
.getNonReferenceType();
2862 const CGFunctionInfo
&FI
= CGM
.getTypes().arrangeBuiltinFunctionDeclaration(
2863 getContext().getPointerType(RetQT
), FunctionArgList());
2865 llvm::FunctionType
*FnTy
= CGM
.getTypes().GetFunctionType(FI
);
2866 llvm::Function
*Wrapper
=
2867 llvm::Function::Create(FnTy
, getThreadLocalWrapperLinkage(VD
, CGM
),
2868 WrapperName
.str(), &CGM
.getModule());
2870 if (CGM
.supportsCOMDAT() && Wrapper
->isWeakForLinker())
2871 Wrapper
->setComdat(CGM
.getModule().getOrInsertComdat(Wrapper
->getName()));
2873 CGM
.SetLLVMFunctionAttributes(GlobalDecl(), FI
, Wrapper
, /*IsThunk=*/false);
2875 // Always resolve references to the wrapper at link time.
2876 if (!Wrapper
->hasLocalLinkage())
2877 if (!isThreadWrapperReplaceable(VD
, CGM
) ||
2878 llvm::GlobalVariable::isLinkOnceLinkage(Wrapper
->getLinkage()) ||
2879 llvm::GlobalVariable::isWeakODRLinkage(Wrapper
->getLinkage()) ||
2880 VD
->getVisibility() == HiddenVisibility
)
2881 Wrapper
->setVisibility(llvm::GlobalValue::HiddenVisibility
);
2883 if (isThreadWrapperReplaceable(VD
, CGM
)) {
2884 Wrapper
->setCallingConv(llvm::CallingConv::CXX_FAST_TLS
);
2885 Wrapper
->addFnAttr(llvm::Attribute::NoUnwind
);
2888 ThreadWrappers
.push_back({VD
, Wrapper
});
2892 void ItaniumCXXABI::EmitThreadLocalInitFuncs(
2893 CodeGenModule
&CGM
, ArrayRef
<const VarDecl
*> CXXThreadLocals
,
2894 ArrayRef
<llvm::Function
*> CXXThreadLocalInits
,
2895 ArrayRef
<const VarDecl
*> CXXThreadLocalInitVars
) {
2896 llvm::Function
*InitFunc
= nullptr;
2898 // Separate initializers into those with ordered (or partially-ordered)
2899 // initialization and those with unordered initialization.
2900 llvm::SmallVector
<llvm::Function
*, 8> OrderedInits
;
2901 llvm::SmallDenseMap
<const VarDecl
*, llvm::Function
*> UnorderedInits
;
2902 for (unsigned I
= 0; I
!= CXXThreadLocalInits
.size(); ++I
) {
2903 if (isTemplateInstantiation(
2904 CXXThreadLocalInitVars
[I
]->getTemplateSpecializationKind()))
2905 UnorderedInits
[CXXThreadLocalInitVars
[I
]->getCanonicalDecl()] =
2906 CXXThreadLocalInits
[I
];
2908 OrderedInits
.push_back(CXXThreadLocalInits
[I
]);
2911 if (!OrderedInits
.empty()) {
2912 // Generate a guarded initialization function.
2913 llvm::FunctionType
*FTy
=
2914 llvm::FunctionType::get(CGM
.VoidTy
, /*isVarArg=*/false);
2915 const CGFunctionInfo
&FI
= CGM
.getTypes().arrangeNullaryFunction();
2916 InitFunc
= CGM
.CreateGlobalInitOrCleanUpFunction(FTy
, "__tls_init", FI
,
2919 llvm::GlobalVariable
*Guard
= new llvm::GlobalVariable(
2920 CGM
.getModule(), CGM
.Int8Ty
, /*isConstant=*/false,
2921 llvm::GlobalVariable::InternalLinkage
,
2922 llvm::ConstantInt::get(CGM
.Int8Ty
, 0), "__tls_guard");
2923 Guard
->setThreadLocal(true);
2924 Guard
->setThreadLocalMode(CGM
.GetDefaultLLVMTLSModel());
2926 CharUnits GuardAlign
= CharUnits::One();
2927 Guard
->setAlignment(GuardAlign
.getAsAlign());
2929 CodeGenFunction(CGM
).GenerateCXXGlobalInitFunc(
2930 InitFunc
, OrderedInits
, ConstantAddress(Guard
, CGM
.Int8Ty
, GuardAlign
));
2931 // On Darwin platforms, use CXX_FAST_TLS calling convention.
2932 if (CGM
.getTarget().getTriple().isOSDarwin()) {
2933 InitFunc
->setCallingConv(llvm::CallingConv::CXX_FAST_TLS
);
2934 InitFunc
->addFnAttr(llvm::Attribute::NoUnwind
);
2938 // Create declarations for thread wrappers for all thread-local variables
2939 // with non-discardable definitions in this translation unit.
2940 for (const VarDecl
*VD
: CXXThreadLocals
) {
2941 if (VD
->hasDefinition() &&
2942 !isDiscardableGVALinkage(getContext().GetGVALinkageForVariable(VD
))) {
2943 llvm::GlobalValue
*GV
= CGM
.GetGlobalValue(CGM
.getMangledName(VD
));
2944 getOrCreateThreadLocalWrapper(VD
, GV
);
2948 // Emit all referenced thread wrappers.
2949 for (auto VDAndWrapper
: ThreadWrappers
) {
2950 const VarDecl
*VD
= VDAndWrapper
.first
;
2951 llvm::GlobalVariable
*Var
=
2952 cast
<llvm::GlobalVariable
>(CGM
.GetGlobalValue(CGM
.getMangledName(VD
)));
2953 llvm::Function
*Wrapper
= VDAndWrapper
.second
;
2955 // Some targets require that all access to thread local variables go through
2956 // the thread wrapper. This means that we cannot attempt to create a thread
2957 // wrapper or a thread helper.
2958 if (!VD
->hasDefinition()) {
2959 if (isThreadWrapperReplaceable(VD
, CGM
)) {
2960 Wrapper
->setLinkage(llvm::Function::ExternalLinkage
);
2964 // If this isn't a TU in which this variable is defined, the thread
2965 // wrapper is discardable.
2966 if (Wrapper
->getLinkage() == llvm::Function::WeakODRLinkage
)
2967 Wrapper
->setLinkage(llvm::Function::LinkOnceODRLinkage
);
2970 CGM
.SetLLVMFunctionAttributesForDefinition(nullptr, Wrapper
);
2972 // Mangle the name for the thread_local initialization function.
2973 SmallString
<256> InitFnName
;
2975 llvm::raw_svector_ostream
Out(InitFnName
);
2976 getMangleContext().mangleItaniumThreadLocalInit(VD
, Out
);
2979 llvm::FunctionType
*InitFnTy
= llvm::FunctionType::get(CGM
.VoidTy
, false);
2981 // If we have a definition for the variable, emit the initialization
2982 // function as an alias to the global Init function (if any). Otherwise,
2983 // produce a declaration of the initialization function.
2984 llvm::GlobalValue
*Init
= nullptr;
2985 bool InitIsInitFunc
= false;
2986 bool HasConstantInitialization
= false;
2987 if (!usesThreadWrapperFunction(VD
)) {
2988 HasConstantInitialization
= true;
2989 } else if (VD
->hasDefinition()) {
2990 InitIsInitFunc
= true;
2991 llvm::Function
*InitFuncToUse
= InitFunc
;
2992 if (isTemplateInstantiation(VD
->getTemplateSpecializationKind()))
2993 InitFuncToUse
= UnorderedInits
.lookup(VD
->getCanonicalDecl());
2995 Init
= llvm::GlobalAlias::create(Var
->getLinkage(), InitFnName
.str(),
2998 // Emit a weak global function referring to the initialization function.
2999 // This function will not exist if the TU defining the thread_local
3000 // variable in question does not need any dynamic initialization for
3001 // its thread_local variables.
3002 Init
= llvm::Function::Create(InitFnTy
,
3003 llvm::GlobalVariable::ExternalWeakLinkage
,
3004 InitFnName
.str(), &CGM
.getModule());
3005 const CGFunctionInfo
&FI
= CGM
.getTypes().arrangeNullaryFunction();
3006 CGM
.SetLLVMFunctionAttributes(
3007 GlobalDecl(), FI
, cast
<llvm::Function
>(Init
), /*IsThunk=*/false);
3011 Init
->setVisibility(Var
->getVisibility());
3012 // Don't mark an extern_weak function DSO local on windows.
3013 if (!CGM
.getTriple().isOSWindows() || !Init
->hasExternalWeakLinkage())
3014 Init
->setDSOLocal(Var
->isDSOLocal());
3017 llvm::LLVMContext
&Context
= CGM
.getModule().getContext();
3019 // The linker on AIX is not happy with missing weak symbols. However,
3020 // other TUs will not know whether the initialization routine exists
3021 // so create an empty, init function to satisfy the linker.
3022 // This is needed whenever a thread wrapper function is not used, and
3023 // also when the symbol is weak.
3024 if (CGM
.getTriple().isOSAIX() && VD
->hasDefinition() &&
3025 isEmittedWithConstantInitializer(VD
, true) &&
3026 !mayNeedDestruction(VD
)) {
3027 // Init should be null. If it were non-null, then the logic above would
3028 // either be defining the function to be an alias or declaring the
3029 // function with the expectation that the definition of the variable
3031 assert(Init
== nullptr && "Expected Init to be null.");
3033 llvm::Function
*Func
= llvm::Function::Create(
3034 InitFnTy
, Var
->getLinkage(), InitFnName
.str(), &CGM
.getModule());
3035 const CGFunctionInfo
&FI
= CGM
.getTypes().arrangeNullaryFunction();
3036 CGM
.SetLLVMFunctionAttributes(GlobalDecl(), FI
,
3037 cast
<llvm::Function
>(Func
),
3039 // Create a function body that just returns
3040 llvm::BasicBlock
*Entry
= llvm::BasicBlock::Create(Context
, "", Func
);
3041 CGBuilderTy
Builder(CGM
, Entry
);
3042 Builder
.CreateRetVoid();
3045 llvm::BasicBlock
*Entry
= llvm::BasicBlock::Create(Context
, "", Wrapper
);
3046 CGBuilderTy
Builder(CGM
, Entry
);
3047 if (HasConstantInitialization
) {
3048 // No dynamic initialization to invoke.
3049 } else if (InitIsInitFunc
) {
3051 llvm::CallInst
*CallVal
= Builder
.CreateCall(InitFnTy
, Init
);
3052 if (isThreadWrapperReplaceable(VD
, CGM
)) {
3053 CallVal
->setCallingConv(llvm::CallingConv::CXX_FAST_TLS
);
3054 llvm::Function
*Fn
=
3055 cast
<llvm::Function
>(cast
<llvm::GlobalAlias
>(Init
)->getAliasee());
3056 Fn
->setCallingConv(llvm::CallingConv::CXX_FAST_TLS
);
3059 } else if (CGM
.getTriple().isOSAIX()) {
3060 // On AIX, except if constinit and also neither of class type or of
3061 // (possibly multi-dimensional) array of class type, thread_local vars
3062 // will have init routines regardless of whether they are
3063 // const-initialized. Since the routine is guaranteed to exist, we can
3064 // unconditionally call it without testing for its existance. This
3065 // avoids potentially unresolved weak symbols which the AIX linker
3066 // isn't happy with.
3067 Builder
.CreateCall(InitFnTy
, Init
);
3069 // Don't know whether we have an init function. Call it if it exists.
3070 llvm::Value
*Have
= Builder
.CreateIsNotNull(Init
);
3071 llvm::BasicBlock
*InitBB
= llvm::BasicBlock::Create(Context
, "", Wrapper
);
3072 llvm::BasicBlock
*ExitBB
= llvm::BasicBlock::Create(Context
, "", Wrapper
);
3073 Builder
.CreateCondBr(Have
, InitBB
, ExitBB
);
3075 Builder
.SetInsertPoint(InitBB
);
3076 Builder
.CreateCall(InitFnTy
, Init
);
3077 Builder
.CreateBr(ExitBB
);
3079 Builder
.SetInsertPoint(ExitBB
);
3082 // For a reference, the result of the wrapper function is a pointer to
3083 // the referenced object.
3084 llvm::Value
*Val
= Builder
.CreateThreadLocalAddress(Var
);
3086 if (VD
->getType()->isReferenceType()) {
3087 CharUnits Align
= CGM
.getContext().getDeclAlign(VD
);
3088 Val
= Builder
.CreateAlignedLoad(Var
->getValueType(), Val
, Align
);
3090 if (Val
->getType() != Wrapper
->getReturnType())
3091 Val
= Builder
.CreatePointerBitCastOrAddrSpaceCast(
3092 Val
, Wrapper
->getReturnType(), "");
3094 Builder
.CreateRet(Val
);
3098 LValue
ItaniumCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction
&CGF
,
3100 QualType LValType
) {
3101 llvm::Value
*Val
= CGF
.CGM
.GetAddrOfGlobalVar(VD
);
3102 llvm::Function
*Wrapper
= getOrCreateThreadLocalWrapper(VD
, Val
);
3104 llvm::CallInst
*CallVal
= CGF
.Builder
.CreateCall(Wrapper
);
3105 CallVal
->setCallingConv(Wrapper
->getCallingConv());
3108 if (VD
->getType()->isReferenceType())
3109 LV
= CGF
.MakeNaturalAlignAddrLValue(CallVal
, LValType
);
3111 LV
= CGF
.MakeAddrLValue(CallVal
, LValType
,
3112 CGF
.getContext().getDeclAlign(VD
));
3113 // FIXME: need setObjCGCLValueClass?
3117 /// Return whether the given global decl needs a VTT parameter, which it does
3118 /// if it's a base constructor or destructor with virtual bases.
3119 bool ItaniumCXXABI::NeedsVTTParameter(GlobalDecl GD
) {
3120 const CXXMethodDecl
*MD
= cast
<CXXMethodDecl
>(GD
.getDecl());
3122 // We don't have any virtual bases, just return early.
3123 if (!MD
->getParent()->getNumVBases())
3126 // Check if we have a base constructor.
3127 if (isa
<CXXConstructorDecl
>(MD
) && GD
.getCtorType() == Ctor_Base
)
3130 // Check if we have a base destructor.
3131 if (isa
<CXXDestructorDecl
>(MD
) && GD
.getDtorType() == Dtor_Base
)
3138 class ItaniumRTTIBuilder
{
3139 CodeGenModule
&CGM
; // Per-module state.
3140 llvm::LLVMContext
&VMContext
;
3141 const ItaniumCXXABI
&CXXABI
; // Per-module state.
3143 /// Fields - The fields of the RTTI descriptor currently being built.
3144 SmallVector
<llvm::Constant
*, 16> Fields
;
3146 /// GetAddrOfTypeName - Returns the mangled type name of the given type.
3147 llvm::GlobalVariable
*
3148 GetAddrOfTypeName(QualType Ty
, llvm::GlobalVariable::LinkageTypes Linkage
);
3150 /// GetAddrOfExternalRTTIDescriptor - Returns the constant for the RTTI
3151 /// descriptor of the given type.
3152 llvm::Constant
*GetAddrOfExternalRTTIDescriptor(QualType Ty
);
3154 /// BuildVTablePointer - Build the vtable pointer for the given type.
3155 void BuildVTablePointer(const Type
*Ty
);
3157 /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single
3158 /// inheritance, according to the Itanium C++ ABI, 2.9.5p6b.
3159 void BuildSIClassTypeInfo(const CXXRecordDecl
*RD
);
3161 /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for
3162 /// classes with bases that do not satisfy the abi::__si_class_type_info
3163 /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c.
3164 void BuildVMIClassTypeInfo(const CXXRecordDecl
*RD
);
3166 /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, used
3167 /// for pointer types.
3168 void BuildPointerTypeInfo(QualType PointeeTy
);
3170 /// BuildObjCObjectTypeInfo - Build the appropriate kind of
3171 /// type_info for an object type.
3172 void BuildObjCObjectTypeInfo(const ObjCObjectType
*Ty
);
3174 /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info
3175 /// struct, used for member pointer types.
3176 void BuildPointerToMemberTypeInfo(const MemberPointerType
*Ty
);
3179 ItaniumRTTIBuilder(const ItaniumCXXABI
&ABI
)
3180 : CGM(ABI
.CGM
), VMContext(CGM
.getModule().getContext()), CXXABI(ABI
) {}
3182 // Pointer type info flags.
3184 /// PTI_Const - Type has const qualifier.
3187 /// PTI_Volatile - Type has volatile qualifier.
3190 /// PTI_Restrict - Type has restrict qualifier.
3193 /// PTI_Incomplete - Type is incomplete.
3194 PTI_Incomplete
= 0x8,
3196 /// PTI_ContainingClassIncomplete - Containing class is incomplete.
3197 /// (in pointer to member).
3198 PTI_ContainingClassIncomplete
= 0x10,
3200 /// PTI_TransactionSafe - Pointee is transaction_safe function (C++ TM TS).
3201 //PTI_TransactionSafe = 0x20,
3203 /// PTI_Noexcept - Pointee is noexcept function (C++1z).
3204 PTI_Noexcept
= 0x40,
3207 // VMI type info flags.
3209 /// VMI_NonDiamondRepeat - Class has non-diamond repeated inheritance.
3210 VMI_NonDiamondRepeat
= 0x1,
3212 /// VMI_DiamondShaped - Class is diamond shaped.
3213 VMI_DiamondShaped
= 0x2
3216 // Base class type info flags.
3218 /// BCTI_Virtual - Base class is virtual.
3221 /// BCTI_Public - Base class is public.
3225 /// BuildTypeInfo - Build the RTTI type info struct for the given type, or
3226 /// link to an existing RTTI descriptor if one already exists.
3227 llvm::Constant
*BuildTypeInfo(QualType Ty
);
3229 /// BuildTypeInfo - Build the RTTI type info struct for the given type.
3230 llvm::Constant
*BuildTypeInfo(
3232 llvm::GlobalVariable::LinkageTypes Linkage
,
3233 llvm::GlobalValue::VisibilityTypes Visibility
,
3234 llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass
);
3238 llvm::GlobalVariable
*ItaniumRTTIBuilder::GetAddrOfTypeName(
3239 QualType Ty
, llvm::GlobalVariable::LinkageTypes Linkage
) {
3240 SmallString
<256> Name
;
3241 llvm::raw_svector_ostream
Out(Name
);
3242 CGM
.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty
, Out
);
3244 // We know that the mangled name of the type starts at index 4 of the
3245 // mangled name of the typename, so we can just index into it in order to
3246 // get the mangled name of the type.
3247 llvm::Constant
*Init
= llvm::ConstantDataArray::getString(VMContext
,
3249 auto Align
= CGM
.getContext().getTypeAlignInChars(CGM
.getContext().CharTy
);
3251 llvm::GlobalVariable
*GV
= CGM
.CreateOrReplaceCXXRuntimeVariable(
3252 Name
, Init
->getType(), Linkage
, Align
.getAsAlign());
3254 GV
->setInitializer(Init
);
3260 ItaniumRTTIBuilder::GetAddrOfExternalRTTIDescriptor(QualType Ty
) {
3261 // Mangle the RTTI name.
3262 SmallString
<256> Name
;
3263 llvm::raw_svector_ostream
Out(Name
);
3264 CGM
.getCXXABI().getMangleContext().mangleCXXRTTI(Ty
, Out
);
3266 // Look for an existing global.
3267 llvm::GlobalVariable
*GV
= CGM
.getModule().getNamedGlobal(Name
);
3270 // Create a new global variable.
3271 // Note for the future: If we would ever like to do deferred emission of
3272 // RTTI, check if emitting vtables opportunistically need any adjustment.
3274 GV
= new llvm::GlobalVariable(
3275 CGM
.getModule(), CGM
.GlobalsInt8PtrTy
,
3276 /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage
, nullptr, Name
);
3277 const CXXRecordDecl
*RD
= Ty
->getAsCXXRecordDecl();
3278 CGM
.setGVProperties(GV
, RD
);
3279 // Import the typeinfo symbol when all non-inline virtual methods are
3281 if (CGM
.getTarget().hasPS4DLLImportExport()) {
3282 if (RD
&& CXXRecordAllNonInlineVirtualsHaveAttr
<DLLImportAttr
>(RD
)) {
3283 GV
->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass
);
3284 CGM
.setDSOLocal(GV
);
3292 /// TypeInfoIsInStandardLibrary - Given a builtin type, returns whether the type
3293 /// info for that type is defined in the standard library.
3294 static bool TypeInfoIsInStandardLibrary(const BuiltinType
*Ty
) {
3295 // Itanium C++ ABI 2.9.2:
3296 // Basic type information (e.g. for "int", "bool", etc.) will be kept in
3297 // the run-time support library. Specifically, the run-time support
3298 // library should contain type_info objects for the types X, X* and
3299 // X const*, for every X in: void, std::nullptr_t, bool, wchar_t, char,
3300 // unsigned char, signed char, short, unsigned short, int, unsigned int,
3301 // long, unsigned long, long long, unsigned long long, float, double,
3302 // long double, char16_t, char32_t, and the IEEE 754r decimal and
3303 // half-precision floating point types.
3305 // GCC also emits RTTI for __int128.
3306 // FIXME: We do not emit RTTI information for decimal types here.
3308 // Types added here must also be added to EmitFundamentalRTTIDescriptors.
3309 switch (Ty
->getKind()) {
3310 case BuiltinType::Void
:
3311 case BuiltinType::NullPtr
:
3312 case BuiltinType::Bool
:
3313 case BuiltinType::WChar_S
:
3314 case BuiltinType::WChar_U
:
3315 case BuiltinType::Char_U
:
3316 case BuiltinType::Char_S
:
3317 case BuiltinType::UChar
:
3318 case BuiltinType::SChar
:
3319 case BuiltinType::Short
:
3320 case BuiltinType::UShort
:
3321 case BuiltinType::Int
:
3322 case BuiltinType::UInt
:
3323 case BuiltinType::Long
:
3324 case BuiltinType::ULong
:
3325 case BuiltinType::LongLong
:
3326 case BuiltinType::ULongLong
:
3327 case BuiltinType::Half
:
3328 case BuiltinType::Float
:
3329 case BuiltinType::Double
:
3330 case BuiltinType::LongDouble
:
3331 case BuiltinType::Float16
:
3332 case BuiltinType::Float128
:
3333 case BuiltinType::Ibm128
:
3334 case BuiltinType::Char8
:
3335 case BuiltinType::Char16
:
3336 case BuiltinType::Char32
:
3337 case BuiltinType::Int128
:
3338 case BuiltinType::UInt128
:
3341 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
3342 case BuiltinType::Id:
3343 #include "clang/Basic/OpenCLImageTypes.def"
3344 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
3345 case BuiltinType::Id:
3346 #include "clang/Basic/OpenCLExtensionTypes.def"
3347 case BuiltinType::OCLSampler
:
3348 case BuiltinType::OCLEvent
:
3349 case BuiltinType::OCLClkEvent
:
3350 case BuiltinType::OCLQueue
:
3351 case BuiltinType::OCLReserveID
:
3352 #define SVE_TYPE(Name, Id, SingletonId) \
3353 case BuiltinType::Id:
3354 #include "clang/Basic/AArch64SVEACLETypes.def"
3355 #define PPC_VECTOR_TYPE(Name, Id, Size) \
3356 case BuiltinType::Id:
3357 #include "clang/Basic/PPCTypes.def"
3358 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
3359 #include "clang/Basic/RISCVVTypes.def"
3360 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
3361 #include "clang/Basic/WebAssemblyReferenceTypes.def"
3362 case BuiltinType::ShortAccum
:
3363 case BuiltinType::Accum
:
3364 case BuiltinType::LongAccum
:
3365 case BuiltinType::UShortAccum
:
3366 case BuiltinType::UAccum
:
3367 case BuiltinType::ULongAccum
:
3368 case BuiltinType::ShortFract
:
3369 case BuiltinType::Fract
:
3370 case BuiltinType::LongFract
:
3371 case BuiltinType::UShortFract
:
3372 case BuiltinType::UFract
:
3373 case BuiltinType::ULongFract
:
3374 case BuiltinType::SatShortAccum
:
3375 case BuiltinType::SatAccum
:
3376 case BuiltinType::SatLongAccum
:
3377 case BuiltinType::SatUShortAccum
:
3378 case BuiltinType::SatUAccum
:
3379 case BuiltinType::SatULongAccum
:
3380 case BuiltinType::SatShortFract
:
3381 case BuiltinType::SatFract
:
3382 case BuiltinType::SatLongFract
:
3383 case BuiltinType::SatUShortFract
:
3384 case BuiltinType::SatUFract
:
3385 case BuiltinType::SatULongFract
:
3386 case BuiltinType::BFloat16
:
3389 case BuiltinType::Dependent
:
3390 #define BUILTIN_TYPE(Id, SingletonId)
3391 #define PLACEHOLDER_TYPE(Id, SingletonId) \
3392 case BuiltinType::Id:
3393 #include "clang/AST/BuiltinTypes.def"
3394 llvm_unreachable("asking for RRTI for a placeholder type!");
3396 case BuiltinType::ObjCId
:
3397 case BuiltinType::ObjCClass
:
3398 case BuiltinType::ObjCSel
:
3399 llvm_unreachable("FIXME: Objective-C types are unsupported!");
3402 llvm_unreachable("Invalid BuiltinType Kind!");
3405 static bool TypeInfoIsInStandardLibrary(const PointerType
*PointerTy
) {
3406 QualType PointeeTy
= PointerTy
->getPointeeType();
3407 const BuiltinType
*BuiltinTy
= dyn_cast
<BuiltinType
>(PointeeTy
);
3411 // Check the qualifiers.
3412 Qualifiers Quals
= PointeeTy
.getQualifiers();
3413 Quals
.removeConst();
3418 return TypeInfoIsInStandardLibrary(BuiltinTy
);
3421 /// IsStandardLibraryRTTIDescriptor - Returns whether the type
3422 /// information for the given type exists in the standard library.
3423 static bool IsStandardLibraryRTTIDescriptor(QualType Ty
) {
3424 // Type info for builtin types is defined in the standard library.
3425 if (const BuiltinType
*BuiltinTy
= dyn_cast
<BuiltinType
>(Ty
))
3426 return TypeInfoIsInStandardLibrary(BuiltinTy
);
3428 // Type info for some pointer types to builtin types is defined in the
3429 // standard library.
3430 if (const PointerType
*PointerTy
= dyn_cast
<PointerType
>(Ty
))
3431 return TypeInfoIsInStandardLibrary(PointerTy
);
3436 /// ShouldUseExternalRTTIDescriptor - Returns whether the type information for
3437 /// the given type exists somewhere else, and that we should not emit the type
3438 /// information in this translation unit. Assumes that it is not a
3439 /// standard-library type.
3440 static bool ShouldUseExternalRTTIDescriptor(CodeGenModule
&CGM
,
3442 ASTContext
&Context
= CGM
.getContext();
3444 // If RTTI is disabled, assume it might be disabled in the
3445 // translation unit that defines any potential key function, too.
3446 if (!Context
.getLangOpts().RTTI
) return false;
3448 if (const RecordType
*RecordTy
= dyn_cast
<RecordType
>(Ty
)) {
3449 const CXXRecordDecl
*RD
= cast
<CXXRecordDecl
>(RecordTy
->getDecl());
3450 if (!RD
->hasDefinition())
3453 if (!RD
->isDynamicClass())
3456 // FIXME: this may need to be reconsidered if the key function
3458 // N.B. We must always emit the RTTI data ourselves if there exists a key
3460 bool IsDLLImport
= RD
->hasAttr
<DLLImportAttr
>();
3462 // Don't import the RTTI but emit it locally.
3463 if (CGM
.getTriple().isWindowsGNUEnvironment())
3466 if (CGM
.getVTables().isVTableExternal(RD
)) {
3467 if (CGM
.getTarget().hasPS4DLLImportExport())
3470 return IsDLLImport
&& !CGM
.getTriple().isWindowsItaniumEnvironment()
3481 /// IsIncompleteClassType - Returns whether the given record type is incomplete.
3482 static bool IsIncompleteClassType(const RecordType
*RecordTy
) {
3483 return !RecordTy
->getDecl()->isCompleteDefinition();
3486 /// ContainsIncompleteClassType - Returns whether the given type contains an
3487 /// incomplete class type. This is true if
3489 /// * The given type is an incomplete class type.
3490 /// * The given type is a pointer type whose pointee type contains an
3491 /// incomplete class type.
3492 /// * The given type is a member pointer type whose class is an incomplete
3494 /// * The given type is a member pointer type whoise pointee type contains an
3495 /// incomplete class type.
3496 /// is an indirect or direct pointer to an incomplete class type.
3497 static bool ContainsIncompleteClassType(QualType Ty
) {
3498 if (const RecordType
*RecordTy
= dyn_cast
<RecordType
>(Ty
)) {
3499 if (IsIncompleteClassType(RecordTy
))
3503 if (const PointerType
*PointerTy
= dyn_cast
<PointerType
>(Ty
))
3504 return ContainsIncompleteClassType(PointerTy
->getPointeeType());
3506 if (const MemberPointerType
*MemberPointerTy
=
3507 dyn_cast
<MemberPointerType
>(Ty
)) {
3508 // Check if the class type is incomplete.
3509 const RecordType
*ClassType
= cast
<RecordType
>(MemberPointerTy
->getClass());
3510 if (IsIncompleteClassType(ClassType
))
3513 return ContainsIncompleteClassType(MemberPointerTy
->getPointeeType());
3519 // CanUseSingleInheritance - Return whether the given record decl has a "single,
3520 // public, non-virtual base at offset zero (i.e. the derived class is dynamic
3521 // iff the base is)", according to Itanium C++ ABI, 2.95p6b.
3522 static bool CanUseSingleInheritance(const CXXRecordDecl
*RD
) {
3523 // Check the number of bases.
3524 if (RD
->getNumBases() != 1)
3528 CXXRecordDecl::base_class_const_iterator Base
= RD
->bases_begin();
3530 // Check that the base is not virtual.
3531 if (Base
->isVirtual())
3534 // Check that the base is public.
3535 if (Base
->getAccessSpecifier() != AS_public
)
3538 // Check that the class is dynamic iff the base is.
3540 cast
<CXXRecordDecl
>(Base
->getType()->castAs
<RecordType
>()->getDecl());
3541 if (!BaseDecl
->isEmpty() &&
3542 BaseDecl
->isDynamicClass() != RD
->isDynamicClass())
3548 void ItaniumRTTIBuilder::BuildVTablePointer(const Type
*Ty
) {
3549 // abi::__class_type_info.
3550 static const char * const ClassTypeInfo
=
3551 "_ZTVN10__cxxabiv117__class_type_infoE";
3552 // abi::__si_class_type_info.
3553 static const char * const SIClassTypeInfo
=
3554 "_ZTVN10__cxxabiv120__si_class_type_infoE";
3555 // abi::__vmi_class_type_info.
3556 static const char * const VMIClassTypeInfo
=
3557 "_ZTVN10__cxxabiv121__vmi_class_type_infoE";
3559 const char *VTableName
= nullptr;
3561 switch (Ty
->getTypeClass()) {
3562 #define TYPE(Class, Base)
3563 #define ABSTRACT_TYPE(Class, Base)
3564 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
3565 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3566 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
3567 #include "clang/AST/TypeNodes.inc"
3568 llvm_unreachable("Non-canonical and dependent types shouldn't get here");
3570 case Type::LValueReference
:
3571 case Type::RValueReference
:
3572 llvm_unreachable("References shouldn't get here");
3575 case Type::DeducedTemplateSpecialization
:
3576 llvm_unreachable("Undeduced type shouldn't get here");
3579 llvm_unreachable("Pipe types shouldn't get here");
3583 // GCC treats vector and complex types as fundamental types.
3585 case Type::ExtVector
:
3586 case Type::ConstantMatrix
:
3589 // FIXME: GCC treats block pointers as fundamental types?!
3590 case Type::BlockPointer
:
3591 // abi::__fundamental_type_info.
3592 VTableName
= "_ZTVN10__cxxabiv123__fundamental_type_infoE";
3595 case Type::ConstantArray
:
3596 case Type::IncompleteArray
:
3597 case Type::VariableArray
:
3598 // abi::__array_type_info.
3599 VTableName
= "_ZTVN10__cxxabiv117__array_type_infoE";
3602 case Type::FunctionNoProto
:
3603 case Type::FunctionProto
:
3604 // abi::__function_type_info.
3605 VTableName
= "_ZTVN10__cxxabiv120__function_type_infoE";
3609 // abi::__enum_type_info.
3610 VTableName
= "_ZTVN10__cxxabiv116__enum_type_infoE";
3613 case Type::Record
: {
3614 const CXXRecordDecl
*RD
=
3615 cast
<CXXRecordDecl
>(cast
<RecordType
>(Ty
)->getDecl());
3617 if (!RD
->hasDefinition() || !RD
->getNumBases()) {
3618 VTableName
= ClassTypeInfo
;
3619 } else if (CanUseSingleInheritance(RD
)) {
3620 VTableName
= SIClassTypeInfo
;
3622 VTableName
= VMIClassTypeInfo
;
3628 case Type::ObjCObject
:
3629 // Ignore protocol qualifiers.
3630 Ty
= cast
<ObjCObjectType
>(Ty
)->getBaseType().getTypePtr();
3632 // Handle id and Class.
3633 if (isa
<BuiltinType
>(Ty
)) {
3634 VTableName
= ClassTypeInfo
;
3638 assert(isa
<ObjCInterfaceType
>(Ty
));
3641 case Type::ObjCInterface
:
3642 if (cast
<ObjCInterfaceType
>(Ty
)->getDecl()->getSuperClass()) {
3643 VTableName
= SIClassTypeInfo
;
3645 VTableName
= ClassTypeInfo
;
3649 case Type::ObjCObjectPointer
:
3651 // abi::__pointer_type_info.
3652 VTableName
= "_ZTVN10__cxxabiv119__pointer_type_infoE";
3655 case Type::MemberPointer
:
3656 // abi::__pointer_to_member_type_info.
3657 VTableName
= "_ZTVN10__cxxabiv129__pointer_to_member_type_infoE";
3661 llvm::Constant
*VTable
= nullptr;
3663 // Check if the alias exists. If it doesn't, then get or create the global.
3664 if (CGM
.getItaniumVTableContext().isRelativeLayout())
3665 VTable
= CGM
.getModule().getNamedAlias(VTableName
);
3667 llvm::Type
*Ty
= llvm::ArrayType::get(CGM
.GlobalsInt8PtrTy
, 0);
3668 VTable
= CGM
.getModule().getOrInsertGlobal(VTableName
, Ty
);
3671 CGM
.setDSOLocal(cast
<llvm::GlobalValue
>(VTable
->stripPointerCasts()));
3673 llvm::Type
*PtrDiffTy
=
3674 CGM
.getTypes().ConvertType(CGM
.getContext().getPointerDiffType());
3676 // The vtable address point is 2.
3677 if (CGM
.getItaniumVTableContext().isRelativeLayout()) {
3678 // The vtable address point is 8 bytes after its start:
3679 // 4 for the offset to top + 4 for the relative offset to rtti.
3680 llvm::Constant
*Eight
= llvm::ConstantInt::get(CGM
.Int32Ty
, 8);
3682 llvm::ConstantExpr::getInBoundsGetElementPtr(CGM
.Int8Ty
, VTable
, Eight
);
3684 llvm::Constant
*Two
= llvm::ConstantInt::get(PtrDiffTy
, 2);
3685 VTable
= llvm::ConstantExpr::getInBoundsGetElementPtr(CGM
.GlobalsInt8PtrTy
,
3689 Fields
.push_back(VTable
);
3692 /// Return the linkage that the type info and type info name constants
3693 /// should have for the given type.
3694 static llvm::GlobalVariable::LinkageTypes
getTypeInfoLinkage(CodeGenModule
&CGM
,
3696 // Itanium C++ ABI 2.9.5p7:
3697 // In addition, it and all of the intermediate abi::__pointer_type_info
3698 // structs in the chain down to the abi::__class_type_info for the
3699 // incomplete class type must be prevented from resolving to the
3700 // corresponding type_info structs for the complete class type, possibly
3701 // by making them local static objects. Finally, a dummy class RTTI is
3702 // generated for the incomplete type that will not resolve to the final
3703 // complete class RTTI (because the latter need not exist), possibly by
3704 // making it a local static object.
3705 if (ContainsIncompleteClassType(Ty
))
3706 return llvm::GlobalValue::InternalLinkage
;
3708 switch (Ty
->getLinkage()) {
3710 case InternalLinkage
:
3711 case UniqueExternalLinkage
:
3712 return llvm::GlobalValue::InternalLinkage
;
3714 case VisibleNoLinkage
:
3716 case ExternalLinkage
:
3717 // RTTI is not enabled, which means that this type info struct is going
3718 // to be used for exception handling. Give it linkonce_odr linkage.
3719 if (!CGM
.getLangOpts().RTTI
)
3720 return llvm::GlobalValue::LinkOnceODRLinkage
;
3722 if (const RecordType
*Record
= dyn_cast
<RecordType
>(Ty
)) {
3723 const CXXRecordDecl
*RD
= cast
<CXXRecordDecl
>(Record
->getDecl());
3724 if (RD
->hasAttr
<WeakAttr
>())
3725 return llvm::GlobalValue::WeakODRLinkage
;
3726 if (CGM
.getTriple().isWindowsItaniumEnvironment())
3727 if (RD
->hasAttr
<DLLImportAttr
>() &&
3728 ShouldUseExternalRTTIDescriptor(CGM
, Ty
))
3729 return llvm::GlobalValue::ExternalLinkage
;
3730 // MinGW always uses LinkOnceODRLinkage for type info.
3731 if (RD
->isDynamicClass() &&
3735 .isWindowsGNUEnvironment())
3736 return CGM
.getVTableLinkage(RD
);
3739 return llvm::GlobalValue::LinkOnceODRLinkage
;
3742 llvm_unreachable("Invalid linkage!");
3745 llvm::Constant
*ItaniumRTTIBuilder::BuildTypeInfo(QualType Ty
) {
3746 // We want to operate on the canonical type.
3747 Ty
= Ty
.getCanonicalType();
3749 // Check if we've already emitted an RTTI descriptor for this type.
3750 SmallString
<256> Name
;
3751 llvm::raw_svector_ostream
Out(Name
);
3752 CGM
.getCXXABI().getMangleContext().mangleCXXRTTI(Ty
, Out
);
3754 llvm::GlobalVariable
*OldGV
= CGM
.getModule().getNamedGlobal(Name
);
3755 if (OldGV
&& !OldGV
->isDeclaration()) {
3756 assert(!OldGV
->hasAvailableExternallyLinkage() &&
3757 "available_externally typeinfos not yet implemented");
3762 // Check if there is already an external RTTI descriptor for this type.
3763 if (IsStandardLibraryRTTIDescriptor(Ty
) ||
3764 ShouldUseExternalRTTIDescriptor(CGM
, Ty
))
3765 return GetAddrOfExternalRTTIDescriptor(Ty
);
3767 // Emit the standard library with external linkage.
3768 llvm::GlobalVariable::LinkageTypes Linkage
= getTypeInfoLinkage(CGM
, Ty
);
3770 // Give the type_info object and name the formal visibility of the
3772 llvm::GlobalValue::VisibilityTypes llvmVisibility
;
3773 if (llvm::GlobalValue::isLocalLinkage(Linkage
))
3774 // If the linkage is local, only default visibility makes sense.
3775 llvmVisibility
= llvm::GlobalValue::DefaultVisibility
;
3776 else if (CXXABI
.classifyRTTIUniqueness(Ty
, Linkage
) ==
3777 ItaniumCXXABI::RUK_NonUniqueHidden
)
3778 llvmVisibility
= llvm::GlobalValue::HiddenVisibility
;
3780 llvmVisibility
= CodeGenModule::GetLLVMVisibility(Ty
->getVisibility());
3782 llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass
=
3783 llvm::GlobalValue::DefaultStorageClass
;
3784 if (auto RD
= Ty
->getAsCXXRecordDecl()) {
3785 if ((CGM
.getTriple().isWindowsItaniumEnvironment() &&
3786 RD
->hasAttr
<DLLExportAttr
>()) ||
3787 (CGM
.shouldMapVisibilityToDLLExport(RD
) &&
3788 !llvm::GlobalValue::isLocalLinkage(Linkage
) &&
3789 llvmVisibility
== llvm::GlobalValue::DefaultVisibility
))
3790 DLLStorageClass
= llvm::GlobalValue::DLLExportStorageClass
;
3792 return BuildTypeInfo(Ty
, Linkage
, llvmVisibility
, DLLStorageClass
);
3795 llvm::Constant
*ItaniumRTTIBuilder::BuildTypeInfo(
3797 llvm::GlobalVariable::LinkageTypes Linkage
,
3798 llvm::GlobalValue::VisibilityTypes Visibility
,
3799 llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass
) {
3800 // Add the vtable pointer.
3801 BuildVTablePointer(cast
<Type
>(Ty
));
3804 llvm::GlobalVariable
*TypeName
= GetAddrOfTypeName(Ty
, Linkage
);
3805 llvm::Constant
*TypeNameField
;
3807 // If we're supposed to demote the visibility, be sure to set a flag
3808 // to use a string comparison for type_info comparisons.
3809 ItaniumCXXABI::RTTIUniquenessKind RTTIUniqueness
=
3810 CXXABI
.classifyRTTIUniqueness(Ty
, Linkage
);
3811 if (RTTIUniqueness
!= ItaniumCXXABI::RUK_Unique
) {
3812 // The flag is the sign bit, which on ARM64 is defined to be clear
3813 // for global pointers. This is very ARM64-specific.
3814 TypeNameField
= llvm::ConstantExpr::getPtrToInt(TypeName
, CGM
.Int64Ty
);
3815 llvm::Constant
*flag
=
3816 llvm::ConstantInt::get(CGM
.Int64Ty
, ((uint64_t)1) << 63);
3817 TypeNameField
= llvm::ConstantExpr::getAdd(TypeNameField
, flag
);
3819 llvm::ConstantExpr::getIntToPtr(TypeNameField
, CGM
.GlobalsInt8PtrTy
);
3821 TypeNameField
= TypeName
;
3823 Fields
.push_back(TypeNameField
);
3825 switch (Ty
->getTypeClass()) {
3826 #define TYPE(Class, Base)
3827 #define ABSTRACT_TYPE(Class, Base)
3828 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
3829 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3830 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
3831 #include "clang/AST/TypeNodes.inc"
3832 llvm_unreachable("Non-canonical and dependent types shouldn't get here");
3834 // GCC treats vector types as fundamental types.
3837 case Type::ExtVector
:
3838 case Type::ConstantMatrix
:
3840 case Type::BlockPointer
:
3841 // Itanium C++ ABI 2.9.5p4:
3842 // abi::__fundamental_type_info adds no data members to std::type_info.
3845 case Type::LValueReference
:
3846 case Type::RValueReference
:
3847 llvm_unreachable("References shouldn't get here");
3850 case Type::DeducedTemplateSpecialization
:
3851 llvm_unreachable("Undeduced type shouldn't get here");
3859 case Type::ConstantArray
:
3860 case Type::IncompleteArray
:
3861 case Type::VariableArray
:
3862 // Itanium C++ ABI 2.9.5p5:
3863 // abi::__array_type_info adds no data members to std::type_info.
3866 case Type::FunctionNoProto
:
3867 case Type::FunctionProto
:
3868 // Itanium C++ ABI 2.9.5p5:
3869 // abi::__function_type_info adds no data members to std::type_info.
3873 // Itanium C++ ABI 2.9.5p5:
3874 // abi::__enum_type_info adds no data members to std::type_info.
3877 case Type::Record
: {
3878 const CXXRecordDecl
*RD
=
3879 cast
<CXXRecordDecl
>(cast
<RecordType
>(Ty
)->getDecl());
3880 if (!RD
->hasDefinition() || !RD
->getNumBases()) {
3881 // We don't need to emit any fields.
3885 if (CanUseSingleInheritance(RD
))
3886 BuildSIClassTypeInfo(RD
);
3888 BuildVMIClassTypeInfo(RD
);
3893 case Type::ObjCObject
:
3894 case Type::ObjCInterface
:
3895 BuildObjCObjectTypeInfo(cast
<ObjCObjectType
>(Ty
));
3898 case Type::ObjCObjectPointer
:
3899 BuildPointerTypeInfo(cast
<ObjCObjectPointerType
>(Ty
)->getPointeeType());
3903 BuildPointerTypeInfo(cast
<PointerType
>(Ty
)->getPointeeType());
3906 case Type::MemberPointer
:
3907 BuildPointerToMemberTypeInfo(cast
<MemberPointerType
>(Ty
));
3911 // No fields, at least for the moment.
3915 llvm::Constant
*Init
= llvm::ConstantStruct::getAnon(Fields
);
3917 SmallString
<256> Name
;
3918 llvm::raw_svector_ostream
Out(Name
);
3919 CGM
.getCXXABI().getMangleContext().mangleCXXRTTI(Ty
, Out
);
3920 llvm::Module
&M
= CGM
.getModule();
3921 llvm::GlobalVariable
*OldGV
= M
.getNamedGlobal(Name
);
3922 llvm::GlobalVariable
*GV
=
3923 new llvm::GlobalVariable(M
, Init
->getType(),
3924 /*isConstant=*/true, Linkage
, Init
, Name
);
3926 // Export the typeinfo in the same circumstances as the vtable is exported.
3927 auto GVDLLStorageClass
= DLLStorageClass
;
3928 if (CGM
.getTarget().hasPS4DLLImportExport()) {
3929 if (const RecordType
*RecordTy
= dyn_cast
<RecordType
>(Ty
)) {
3930 const CXXRecordDecl
*RD
= cast
<CXXRecordDecl
>(RecordTy
->getDecl());
3931 if (RD
->hasAttr
<DLLExportAttr
>() ||
3932 CXXRecordAllNonInlineVirtualsHaveAttr
<DLLExportAttr
>(RD
)) {
3933 GVDLLStorageClass
= llvm::GlobalVariable::DLLExportStorageClass
;
3938 // If there's already an old global variable, replace it with the new one.
3940 GV
->takeName(OldGV
);
3941 OldGV
->replaceAllUsesWith(GV
);
3942 OldGV
->eraseFromParent();
3945 if (CGM
.supportsCOMDAT() && GV
->isWeakForLinker())
3946 GV
->setComdat(M
.getOrInsertComdat(GV
->getName()));
3948 CharUnits Align
= CGM
.getContext().toCharUnitsFromBits(
3949 CGM
.getTarget().getPointerAlign(CGM
.GetGlobalVarAddressSpace(nullptr)));
3950 GV
->setAlignment(Align
.getAsAlign());
3952 // The Itanium ABI specifies that type_info objects must be globally
3953 // unique, with one exception: if the type is an incomplete class
3954 // type or a (possibly indirect) pointer to one. That exception
3955 // affects the general case of comparing type_info objects produced
3956 // by the typeid operator, which is why the comparison operators on
3957 // std::type_info generally use the type_info name pointers instead
3958 // of the object addresses. However, the language's built-in uses
3959 // of RTTI generally require class types to be complete, even when
3960 // manipulating pointers to those class types. This allows the
3961 // implementation of dynamic_cast to rely on address equality tests,
3962 // which is much faster.
3964 // All of this is to say that it's important that both the type_info
3965 // object and the type_info name be uniqued when weakly emitted.
3967 TypeName
->setVisibility(Visibility
);
3968 CGM
.setDSOLocal(TypeName
);
3970 GV
->setVisibility(Visibility
);
3971 CGM
.setDSOLocal(GV
);
3973 TypeName
->setDLLStorageClass(DLLStorageClass
);
3974 GV
->setDLLStorageClass(CGM
.getTarget().hasPS4DLLImportExport()
3978 TypeName
->setPartition(CGM
.getCodeGenOpts().SymbolPartition
);
3979 GV
->setPartition(CGM
.getCodeGenOpts().SymbolPartition
);
3984 /// BuildObjCObjectTypeInfo - Build the appropriate kind of type_info
3985 /// for the given Objective-C object type.
3986 void ItaniumRTTIBuilder::BuildObjCObjectTypeInfo(const ObjCObjectType
*OT
) {
3988 const Type
*T
= OT
->getBaseType().getTypePtr();
3989 assert(isa
<BuiltinType
>(T
) || isa
<ObjCInterfaceType
>(T
));
3991 // The builtin types are abi::__class_type_infos and don't require
3993 if (isa
<BuiltinType
>(T
)) return;
3995 ObjCInterfaceDecl
*Class
= cast
<ObjCInterfaceType
>(T
)->getDecl();
3996 ObjCInterfaceDecl
*Super
= Class
->getSuperClass();
3998 // Root classes are also __class_type_info.
4001 QualType SuperTy
= CGM
.getContext().getObjCInterfaceType(Super
);
4003 // Everything else is single inheritance.
4004 llvm::Constant
*BaseTypeInfo
=
4005 ItaniumRTTIBuilder(CXXABI
).BuildTypeInfo(SuperTy
);
4006 Fields
.push_back(BaseTypeInfo
);
4009 /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single
4010 /// inheritance, according to the Itanium C++ ABI, 2.95p6b.
4011 void ItaniumRTTIBuilder::BuildSIClassTypeInfo(const CXXRecordDecl
*RD
) {
4012 // Itanium C++ ABI 2.9.5p6b:
4013 // It adds to abi::__class_type_info a single member pointing to the
4014 // type_info structure for the base type,
4015 llvm::Constant
*BaseTypeInfo
=
4016 ItaniumRTTIBuilder(CXXABI
).BuildTypeInfo(RD
->bases_begin()->getType());
4017 Fields
.push_back(BaseTypeInfo
);
4021 /// SeenBases - Contains virtual and non-virtual bases seen when traversing
4022 /// a class hierarchy.
4024 llvm::SmallPtrSet
<const CXXRecordDecl
*, 16> NonVirtualBases
;
4025 llvm::SmallPtrSet
<const CXXRecordDecl
*, 16> VirtualBases
;
4029 /// ComputeVMIClassTypeInfoFlags - Compute the value of the flags member in
4030 /// abi::__vmi_class_type_info.
4032 static unsigned ComputeVMIClassTypeInfoFlags(const CXXBaseSpecifier
*Base
,
4038 cast
<CXXRecordDecl
>(Base
->getType()->castAs
<RecordType
>()->getDecl());
4040 if (Base
->isVirtual()) {
4041 // Mark the virtual base as seen.
4042 if (!Bases
.VirtualBases
.insert(BaseDecl
).second
) {
4043 // If this virtual base has been seen before, then the class is diamond
4045 Flags
|= ItaniumRTTIBuilder::VMI_DiamondShaped
;
4047 if (Bases
.NonVirtualBases
.count(BaseDecl
))
4048 Flags
|= ItaniumRTTIBuilder::VMI_NonDiamondRepeat
;
4051 // Mark the non-virtual base as seen.
4052 if (!Bases
.NonVirtualBases
.insert(BaseDecl
).second
) {
4053 // If this non-virtual base has been seen before, then the class has non-
4054 // diamond shaped repeated inheritance.
4055 Flags
|= ItaniumRTTIBuilder::VMI_NonDiamondRepeat
;
4057 if (Bases
.VirtualBases
.count(BaseDecl
))
4058 Flags
|= ItaniumRTTIBuilder::VMI_NonDiamondRepeat
;
4063 for (const auto &I
: BaseDecl
->bases())
4064 Flags
|= ComputeVMIClassTypeInfoFlags(&I
, Bases
);
4069 static unsigned ComputeVMIClassTypeInfoFlags(const CXXRecordDecl
*RD
) {
4074 for (const auto &I
: RD
->bases())
4075 Flags
|= ComputeVMIClassTypeInfoFlags(&I
, Bases
);
4080 /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for
4081 /// classes with bases that do not satisfy the abi::__si_class_type_info
4082 /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c.
4083 void ItaniumRTTIBuilder::BuildVMIClassTypeInfo(const CXXRecordDecl
*RD
) {
4084 llvm::Type
*UnsignedIntLTy
=
4085 CGM
.getTypes().ConvertType(CGM
.getContext().UnsignedIntTy
);
4087 // Itanium C++ ABI 2.9.5p6c:
4088 // __flags is a word with flags describing details about the class
4089 // structure, which may be referenced by using the __flags_masks
4090 // enumeration. These flags refer to both direct and indirect bases.
4091 unsigned Flags
= ComputeVMIClassTypeInfoFlags(RD
);
4092 Fields
.push_back(llvm::ConstantInt::get(UnsignedIntLTy
, Flags
));
4094 // Itanium C++ ABI 2.9.5p6c:
4095 // __base_count is a word with the number of direct proper base class
4096 // descriptions that follow.
4097 Fields
.push_back(llvm::ConstantInt::get(UnsignedIntLTy
, RD
->getNumBases()));
4099 if (!RD
->getNumBases())
4102 // Now add the base class descriptions.
4104 // Itanium C++ ABI 2.9.5p6c:
4105 // __base_info[] is an array of base class descriptions -- one for every
4106 // direct proper base. Each description is of the type:
4108 // struct abi::__base_class_type_info {
4110 // const __class_type_info *__base_type;
4111 // long __offset_flags;
4113 // enum __offset_flags_masks {
4114 // __virtual_mask = 0x1,
4115 // __public_mask = 0x2,
4116 // __offset_shift = 8
4120 // If we're in mingw and 'long' isn't wide enough for a pointer, use 'long
4121 // long' instead of 'long' for __offset_flags. libstdc++abi uses long long on
4123 // FIXME: Consider updating libc++abi to match, and extend this logic to all
4125 QualType OffsetFlagsTy
= CGM
.getContext().LongTy
;
4126 const TargetInfo
&TI
= CGM
.getContext().getTargetInfo();
4127 if (TI
.getTriple().isOSCygMing() &&
4128 TI
.getPointerWidth(LangAS::Default
) > TI
.getLongWidth())
4129 OffsetFlagsTy
= CGM
.getContext().LongLongTy
;
4130 llvm::Type
*OffsetFlagsLTy
=
4131 CGM
.getTypes().ConvertType(OffsetFlagsTy
);
4133 for (const auto &Base
: RD
->bases()) {
4134 // The __base_type member points to the RTTI for the base type.
4135 Fields
.push_back(ItaniumRTTIBuilder(CXXABI
).BuildTypeInfo(Base
.getType()));
4138 cast
<CXXRecordDecl
>(Base
.getType()->castAs
<RecordType
>()->getDecl());
4140 int64_t OffsetFlags
= 0;
4142 // All but the lower 8 bits of __offset_flags are a signed offset.
4143 // For a non-virtual base, this is the offset in the object of the base
4144 // subobject. For a virtual base, this is the offset in the virtual table of
4145 // the virtual base offset for the virtual base referenced (negative).
4147 if (Base
.isVirtual())
4149 CGM
.getItaniumVTableContext().getVirtualBaseOffsetOffset(RD
, BaseDecl
);
4151 const ASTRecordLayout
&Layout
= CGM
.getContext().getASTRecordLayout(RD
);
4152 Offset
= Layout
.getBaseClassOffset(BaseDecl
);
4155 OffsetFlags
= uint64_t(Offset
.getQuantity()) << 8;
4157 // The low-order byte of __offset_flags contains flags, as given by the
4158 // masks from the enumeration __offset_flags_masks.
4159 if (Base
.isVirtual())
4160 OffsetFlags
|= BCTI_Virtual
;
4161 if (Base
.getAccessSpecifier() == AS_public
)
4162 OffsetFlags
|= BCTI_Public
;
4164 Fields
.push_back(llvm::ConstantInt::get(OffsetFlagsLTy
, OffsetFlags
));
4168 /// Compute the flags for a __pbase_type_info, and remove the corresponding
4169 /// pieces from \p Type.
4170 static unsigned extractPBaseFlags(ASTContext
&Ctx
, QualType
&Type
) {
4173 if (Type
.isConstQualified())
4174 Flags
|= ItaniumRTTIBuilder::PTI_Const
;
4175 if (Type
.isVolatileQualified())
4176 Flags
|= ItaniumRTTIBuilder::PTI_Volatile
;
4177 if (Type
.isRestrictQualified())
4178 Flags
|= ItaniumRTTIBuilder::PTI_Restrict
;
4179 Type
= Type
.getUnqualifiedType();
4181 // Itanium C++ ABI 2.9.5p7:
4182 // When the abi::__pbase_type_info is for a direct or indirect pointer to an
4183 // incomplete class type, the incomplete target type flag is set.
4184 if (ContainsIncompleteClassType(Type
))
4185 Flags
|= ItaniumRTTIBuilder::PTI_Incomplete
;
4187 if (auto *Proto
= Type
->getAs
<FunctionProtoType
>()) {
4188 if (Proto
->isNothrow()) {
4189 Flags
|= ItaniumRTTIBuilder::PTI_Noexcept
;
4190 Type
= Ctx
.getFunctionTypeWithExceptionSpec(Type
, EST_None
);
4197 /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct,
4198 /// used for pointer types.
4199 void ItaniumRTTIBuilder::BuildPointerTypeInfo(QualType PointeeTy
) {
4200 // Itanium C++ ABI 2.9.5p7:
4201 // __flags is a flag word describing the cv-qualification and other
4202 // attributes of the type pointed to
4203 unsigned Flags
= extractPBaseFlags(CGM
.getContext(), PointeeTy
);
4205 llvm::Type
*UnsignedIntLTy
=
4206 CGM
.getTypes().ConvertType(CGM
.getContext().UnsignedIntTy
);
4207 Fields
.push_back(llvm::ConstantInt::get(UnsignedIntLTy
, Flags
));
4209 // Itanium C++ ABI 2.9.5p7:
4210 // __pointee is a pointer to the std::type_info derivation for the
4211 // unqualified type being pointed to.
4212 llvm::Constant
*PointeeTypeInfo
=
4213 ItaniumRTTIBuilder(CXXABI
).BuildTypeInfo(PointeeTy
);
4214 Fields
.push_back(PointeeTypeInfo
);
4217 /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info
4218 /// struct, used for member pointer types.
4220 ItaniumRTTIBuilder::BuildPointerToMemberTypeInfo(const MemberPointerType
*Ty
) {
4221 QualType PointeeTy
= Ty
->getPointeeType();
4223 // Itanium C++ ABI 2.9.5p7:
4224 // __flags is a flag word describing the cv-qualification and other
4225 // attributes of the type pointed to.
4226 unsigned Flags
= extractPBaseFlags(CGM
.getContext(), PointeeTy
);
4228 const RecordType
*ClassType
= cast
<RecordType
>(Ty
->getClass());
4229 if (IsIncompleteClassType(ClassType
))
4230 Flags
|= PTI_ContainingClassIncomplete
;
4232 llvm::Type
*UnsignedIntLTy
=
4233 CGM
.getTypes().ConvertType(CGM
.getContext().UnsignedIntTy
);
4234 Fields
.push_back(llvm::ConstantInt::get(UnsignedIntLTy
, Flags
));
4236 // Itanium C++ ABI 2.9.5p7:
4237 // __pointee is a pointer to the std::type_info derivation for the
4238 // unqualified type being pointed to.
4239 llvm::Constant
*PointeeTypeInfo
=
4240 ItaniumRTTIBuilder(CXXABI
).BuildTypeInfo(PointeeTy
);
4241 Fields
.push_back(PointeeTypeInfo
);
4243 // Itanium C++ ABI 2.9.5p9:
4244 // __context is a pointer to an abi::__class_type_info corresponding to the
4245 // class type containing the member pointed to
4246 // (e.g., the "A" in "int A::*").
4248 ItaniumRTTIBuilder(CXXABI
).BuildTypeInfo(QualType(ClassType
, 0)));
4251 llvm::Constant
*ItaniumCXXABI::getAddrOfRTTIDescriptor(QualType Ty
) {
4252 return ItaniumRTTIBuilder(*this).BuildTypeInfo(Ty
);
4255 void ItaniumCXXABI::EmitFundamentalRTTIDescriptors(const CXXRecordDecl
*RD
) {
4256 // Types added here must also be added to TypeInfoIsInStandardLibrary.
4257 QualType FundamentalTypes
[] = {
4258 getContext().VoidTy
, getContext().NullPtrTy
,
4259 getContext().BoolTy
, getContext().WCharTy
,
4260 getContext().CharTy
, getContext().UnsignedCharTy
,
4261 getContext().SignedCharTy
, getContext().ShortTy
,
4262 getContext().UnsignedShortTy
, getContext().IntTy
,
4263 getContext().UnsignedIntTy
, getContext().LongTy
,
4264 getContext().UnsignedLongTy
, getContext().LongLongTy
,
4265 getContext().UnsignedLongLongTy
, getContext().Int128Ty
,
4266 getContext().UnsignedInt128Ty
, getContext().HalfTy
,
4267 getContext().FloatTy
, getContext().DoubleTy
,
4268 getContext().LongDoubleTy
, getContext().Float128Ty
,
4269 getContext().Char8Ty
, getContext().Char16Ty
,
4270 getContext().Char32Ty
4272 llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass
=
4273 RD
->hasAttr
<DLLExportAttr
>() || CGM
.shouldMapVisibilityToDLLExport(RD
)
4274 ? llvm::GlobalValue::DLLExportStorageClass
4275 : llvm::GlobalValue::DefaultStorageClass
;
4276 llvm::GlobalValue::VisibilityTypes Visibility
=
4277 CodeGenModule::GetLLVMVisibility(RD
->getVisibility());
4278 for (const QualType
&FundamentalType
: FundamentalTypes
) {
4279 QualType PointerType
= getContext().getPointerType(FundamentalType
);
4280 QualType PointerTypeConst
= getContext().getPointerType(
4281 FundamentalType
.withConst());
4282 for (QualType Type
: {FundamentalType
, PointerType
, PointerTypeConst
})
4283 ItaniumRTTIBuilder(*this).BuildTypeInfo(
4284 Type
, llvm::GlobalValue::ExternalLinkage
,
4285 Visibility
, DLLStorageClass
);
4289 /// What sort of uniqueness rules should we use for the RTTI for the
4291 ItaniumCXXABI::RTTIUniquenessKind
ItaniumCXXABI::classifyRTTIUniqueness(
4292 QualType CanTy
, llvm::GlobalValue::LinkageTypes Linkage
) const {
4293 if (shouldRTTIBeUnique())
4296 // It's only necessary for linkonce_odr or weak_odr linkage.
4297 if (Linkage
!= llvm::GlobalValue::LinkOnceODRLinkage
&&
4298 Linkage
!= llvm::GlobalValue::WeakODRLinkage
)
4301 // It's only necessary with default visibility.
4302 if (CanTy
->getVisibility() != DefaultVisibility
)
4305 // If we're not required to publish this symbol, hide it.
4306 if (Linkage
== llvm::GlobalValue::LinkOnceODRLinkage
)
4307 return RUK_NonUniqueHidden
;
4309 // If we're required to publish this symbol, as we might be under an
4310 // explicit instantiation, leave it with default visibility but
4311 // enable string-comparisons.
4312 assert(Linkage
== llvm::GlobalValue::WeakODRLinkage
);
4313 return RUK_NonUniqueVisible
;
4316 // Find out how to codegen the complete destructor and constructor
4318 enum class StructorCodegen
{ Emit
, RAUW
, Alias
, COMDAT
};
4320 static StructorCodegen
getCodegenToUse(CodeGenModule
&CGM
,
4321 const CXXMethodDecl
*MD
) {
4322 if (!CGM
.getCodeGenOpts().CXXCtorDtorAliases
)
4323 return StructorCodegen::Emit
;
4325 // The complete and base structors are not equivalent if there are any virtual
4326 // bases, so emit separate functions.
4327 if (MD
->getParent()->getNumVBases())
4328 return StructorCodegen::Emit
;
4330 GlobalDecl AliasDecl
;
4331 if (const auto *DD
= dyn_cast
<CXXDestructorDecl
>(MD
)) {
4332 AliasDecl
= GlobalDecl(DD
, Dtor_Complete
);
4334 const auto *CD
= cast
<CXXConstructorDecl
>(MD
);
4335 AliasDecl
= GlobalDecl(CD
, Ctor_Complete
);
4337 llvm::GlobalValue::LinkageTypes Linkage
= CGM
.getFunctionLinkage(AliasDecl
);
4339 if (llvm::GlobalValue::isDiscardableIfUnused(Linkage
))
4340 return StructorCodegen::RAUW
;
4342 // FIXME: Should we allow available_externally aliases?
4343 if (!llvm::GlobalAlias::isValidLinkage(Linkage
))
4344 return StructorCodegen::RAUW
;
4346 if (llvm::GlobalValue::isWeakForLinker(Linkage
)) {
4347 // Only ELF and wasm support COMDATs with arbitrary names (C5/D5).
4348 if (CGM
.getTarget().getTriple().isOSBinFormatELF() ||
4349 CGM
.getTarget().getTriple().isOSBinFormatWasm())
4350 return StructorCodegen::COMDAT
;
4351 return StructorCodegen::Emit
;
4354 return StructorCodegen::Alias
;
4357 static void emitConstructorDestructorAlias(CodeGenModule
&CGM
,
4358 GlobalDecl AliasDecl
,
4359 GlobalDecl TargetDecl
) {
4360 llvm::GlobalValue::LinkageTypes Linkage
= CGM
.getFunctionLinkage(AliasDecl
);
4362 StringRef MangledName
= CGM
.getMangledName(AliasDecl
);
4363 llvm::GlobalValue
*Entry
= CGM
.GetGlobalValue(MangledName
);
4364 if (Entry
&& !Entry
->isDeclaration())
4367 auto *Aliasee
= cast
<llvm::GlobalValue
>(CGM
.GetAddrOfGlobal(TargetDecl
));
4369 // Create the alias with no name.
4370 auto *Alias
= llvm::GlobalAlias::create(Linkage
, "", Aliasee
);
4372 // Constructors and destructors are always unnamed_addr.
4373 Alias
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
4375 // Switch any previous uses to the alias.
4377 assert(Entry
->getType() == Aliasee
->getType() &&
4378 "declaration exists with different type");
4379 Alias
->takeName(Entry
);
4380 Entry
->replaceAllUsesWith(Alias
);
4381 Entry
->eraseFromParent();
4383 Alias
->setName(MangledName
);
4386 // Finally, set up the alias with its proper name and attributes.
4387 CGM
.SetCommonAttributes(AliasDecl
, Alias
);
4390 void ItaniumCXXABI::emitCXXStructor(GlobalDecl GD
) {
4391 auto *MD
= cast
<CXXMethodDecl
>(GD
.getDecl());
4392 auto *CD
= dyn_cast
<CXXConstructorDecl
>(MD
);
4393 const CXXDestructorDecl
*DD
= CD
? nullptr : cast
<CXXDestructorDecl
>(MD
);
4395 StructorCodegen CGType
= getCodegenToUse(CGM
, MD
);
4397 if (CD
? GD
.getCtorType() == Ctor_Complete
4398 : GD
.getDtorType() == Dtor_Complete
) {
4399 GlobalDecl BaseDecl
;
4401 BaseDecl
= GD
.getWithCtorType(Ctor_Base
);
4403 BaseDecl
= GD
.getWithDtorType(Dtor_Base
);
4405 if (CGType
== StructorCodegen::Alias
|| CGType
== StructorCodegen::COMDAT
) {
4406 emitConstructorDestructorAlias(CGM
, GD
, BaseDecl
);
4410 if (CGType
== StructorCodegen::RAUW
) {
4411 StringRef MangledName
= CGM
.getMangledName(GD
);
4412 auto *Aliasee
= CGM
.GetAddrOfGlobal(BaseDecl
);
4413 CGM
.addReplacement(MangledName
, Aliasee
);
4418 // The base destructor is equivalent to the base destructor of its
4419 // base class if there is exactly one non-virtual base class with a
4420 // non-trivial destructor, there are no fields with a non-trivial
4421 // destructor, and the body of the destructor is trivial.
4422 if (DD
&& GD
.getDtorType() == Dtor_Base
&&
4423 CGType
!= StructorCodegen::COMDAT
&&
4424 !CGM
.TryEmitBaseDestructorAsAlias(DD
))
4427 // FIXME: The deleting destructor is equivalent to the selected operator
4429 // * either the delete is a destroying operator delete or the destructor
4430 // would be trivial if it weren't virtual,
4431 // * the conversion from the 'this' parameter to the first parameter of the
4432 // destructor is equivalent to a bitcast,
4433 // * the destructor does not have an implicit "this" return, and
4434 // * the operator delete has the same calling convention and IR function type
4435 // as the destructor.
4436 // In such cases we should try to emit the deleting dtor as an alias to the
4437 // selected 'operator delete'.
4439 llvm::Function
*Fn
= CGM
.codegenCXXStructor(GD
);
4441 if (CGType
== StructorCodegen::COMDAT
) {
4442 SmallString
<256> Buffer
;
4443 llvm::raw_svector_ostream
Out(Buffer
);
4445 getMangleContext().mangleCXXDtorComdat(DD
, Out
);
4447 getMangleContext().mangleCXXCtorComdat(CD
, Out
);
4448 llvm::Comdat
*C
= CGM
.getModule().getOrInsertComdat(Out
.str());
4451 CGM
.maybeSetTrivialComdat(*MD
, *Fn
);
4455 static llvm::FunctionCallee
getBeginCatchFn(CodeGenModule
&CGM
) {
4456 // void *__cxa_begin_catch(void*);
4457 llvm::FunctionType
*FTy
= llvm::FunctionType::get(
4458 CGM
.Int8PtrTy
, CGM
.Int8PtrTy
, /*isVarArg=*/false);
4460 return CGM
.CreateRuntimeFunction(FTy
, "__cxa_begin_catch");
4463 static llvm::FunctionCallee
getEndCatchFn(CodeGenModule
&CGM
) {
4464 // void __cxa_end_catch();
4465 llvm::FunctionType
*FTy
=
4466 llvm::FunctionType::get(CGM
.VoidTy
, /*isVarArg=*/false);
4468 return CGM
.CreateRuntimeFunction(FTy
, "__cxa_end_catch");
4471 static llvm::FunctionCallee
getGetExceptionPtrFn(CodeGenModule
&CGM
) {
4472 // void *__cxa_get_exception_ptr(void*);
4473 llvm::FunctionType
*FTy
= llvm::FunctionType::get(
4474 CGM
.Int8PtrTy
, CGM
.Int8PtrTy
, /*isVarArg=*/false);
4476 return CGM
.CreateRuntimeFunction(FTy
, "__cxa_get_exception_ptr");
4480 /// A cleanup to call __cxa_end_catch. In many cases, the caught
4481 /// exception type lets us state definitively that the thrown exception
4482 /// type does not have a destructor. In particular:
4483 /// - Catch-alls tell us nothing, so we have to conservatively
4484 /// assume that the thrown exception might have a destructor.
4485 /// - Catches by reference behave according to their base types.
4486 /// - Catches of non-record types will only trigger for exceptions
4487 /// of non-record types, which never have destructors.
4488 /// - Catches of record types can trigger for arbitrary subclasses
4489 /// of the caught type, so we have to assume the actual thrown
4490 /// exception type might have a throwing destructor, even if the
4491 /// caught type's destructor is trivial or nothrow.
4492 struct CallEndCatch final
: EHScopeStack::Cleanup
{
4493 CallEndCatch(bool MightThrow
) : MightThrow(MightThrow
) {}
4496 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
4498 CGF
.EmitNounwindRuntimeCall(getEndCatchFn(CGF
.CGM
));
4502 CGF
.EmitRuntimeCallOrInvoke(getEndCatchFn(CGF
.CGM
));
4507 /// Emits a call to __cxa_begin_catch and enters a cleanup to call
4508 /// __cxa_end_catch.
4510 /// \param EndMightThrow - true if __cxa_end_catch might throw
4511 static llvm::Value
*CallBeginCatch(CodeGenFunction
&CGF
,
4513 bool EndMightThrow
) {
4514 llvm::CallInst
*call
=
4515 CGF
.EmitNounwindRuntimeCall(getBeginCatchFn(CGF
.CGM
), Exn
);
4517 CGF
.EHStack
.pushCleanup
<CallEndCatch
>(NormalAndEHCleanup
, EndMightThrow
);
4522 /// A "special initializer" callback for initializing a catch
4523 /// parameter during catch initialization.
4524 static void InitCatchParam(CodeGenFunction
&CGF
,
4525 const VarDecl
&CatchParam
,
4527 SourceLocation Loc
) {
4528 // Load the exception from where the landing pad saved it.
4529 llvm::Value
*Exn
= CGF
.getExceptionFromSlot();
4531 CanQualType CatchType
=
4532 CGF
.CGM
.getContext().getCanonicalType(CatchParam
.getType());
4533 llvm::Type
*LLVMCatchTy
= CGF
.ConvertTypeForMem(CatchType
);
4535 // If we're catching by reference, we can just cast the object
4536 // pointer to the appropriate pointer.
4537 if (isa
<ReferenceType
>(CatchType
)) {
4538 QualType CaughtType
= cast
<ReferenceType
>(CatchType
)->getPointeeType();
4539 bool EndCatchMightThrow
= CaughtType
->isRecordType();
4541 // __cxa_begin_catch returns the adjusted object pointer.
4542 llvm::Value
*AdjustedExn
= CallBeginCatch(CGF
, Exn
, EndCatchMightThrow
);
4544 // We have no way to tell the personality function that we're
4545 // catching by reference, so if we're catching a pointer,
4546 // __cxa_begin_catch will actually return that pointer by value.
4547 if (const PointerType
*PT
= dyn_cast
<PointerType
>(CaughtType
)) {
4548 QualType PointeeType
= PT
->getPointeeType();
4550 // When catching by reference, generally we should just ignore
4551 // this by-value pointer and use the exception object instead.
4552 if (!PointeeType
->isRecordType()) {
4554 // Exn points to the struct _Unwind_Exception header, which
4555 // we have to skip past in order to reach the exception data.
4556 unsigned HeaderSize
=
4557 CGF
.CGM
.getTargetCodeGenInfo().getSizeOfUnwindException();
4559 CGF
.Builder
.CreateConstGEP1_32(CGF
.Int8Ty
, Exn
, HeaderSize
);
4561 // However, if we're catching a pointer-to-record type that won't
4562 // work, because the personality function might have adjusted
4563 // the pointer. There's actually no way for us to fully satisfy
4564 // the language/ABI contract here: we can't use Exn because it
4565 // might have the wrong adjustment, but we can't use the by-value
4566 // pointer because it's off by a level of abstraction.
4568 // The current solution is to dump the adjusted pointer into an
4569 // alloca, which breaks language semantics (because changing the
4570 // pointer doesn't change the exception) but at least works.
4571 // The better solution would be to filter out non-exact matches
4572 // and rethrow them, but this is tricky because the rethrow
4573 // really needs to be catchable by other sites at this landing
4574 // pad. The best solution is to fix the personality function.
4576 // Pull the pointer for the reference type off.
4577 llvm::Type
*PtrTy
= CGF
.ConvertTypeForMem(CaughtType
);
4579 // Create the temporary and write the adjusted pointer into it.
4581 CGF
.CreateTempAlloca(PtrTy
, CGF
.getPointerAlign(), "exn.byref.tmp");
4582 llvm::Value
*Casted
= CGF
.Builder
.CreateBitCast(AdjustedExn
, PtrTy
);
4583 CGF
.Builder
.CreateStore(Casted
, ExnPtrTmp
);
4585 // Bind the reference to the temporary.
4586 AdjustedExn
= ExnPtrTmp
.getPointer();
4590 llvm::Value
*ExnCast
=
4591 CGF
.Builder
.CreateBitCast(AdjustedExn
, LLVMCatchTy
, "exn.byref");
4592 CGF
.Builder
.CreateStore(ExnCast
, ParamAddr
);
4596 // Scalars and complexes.
4597 TypeEvaluationKind TEK
= CGF
.getEvaluationKind(CatchType
);
4598 if (TEK
!= TEK_Aggregate
) {
4599 llvm::Value
*AdjustedExn
= CallBeginCatch(CGF
, Exn
, false);
4601 // If the catch type is a pointer type, __cxa_begin_catch returns
4602 // the pointer by value.
4603 if (CatchType
->hasPointerRepresentation()) {
4604 llvm::Value
*CastExn
=
4605 CGF
.Builder
.CreateBitCast(AdjustedExn
, LLVMCatchTy
, "exn.casted");
4607 switch (CatchType
.getQualifiers().getObjCLifetime()) {
4608 case Qualifiers::OCL_Strong
:
4609 CastExn
= CGF
.EmitARCRetainNonBlock(CastExn
);
4612 case Qualifiers::OCL_None
:
4613 case Qualifiers::OCL_ExplicitNone
:
4614 case Qualifiers::OCL_Autoreleasing
:
4615 CGF
.Builder
.CreateStore(CastExn
, ParamAddr
);
4618 case Qualifiers::OCL_Weak
:
4619 CGF
.EmitARCInitWeak(ParamAddr
, CastExn
);
4622 llvm_unreachable("bad ownership qualifier!");
4625 // Otherwise, it returns a pointer into the exception object.
4627 LValue srcLV
= CGF
.MakeNaturalAlignAddrLValue(AdjustedExn
, CatchType
);
4628 LValue destLV
= CGF
.MakeAddrLValue(ParamAddr
, CatchType
);
4631 CGF
.EmitStoreOfComplex(CGF
.EmitLoadOfComplex(srcLV
, Loc
), destLV
,
4635 llvm::Value
*ExnLoad
= CGF
.EmitLoadOfScalar(srcLV
, Loc
);
4636 CGF
.EmitStoreOfScalar(ExnLoad
, destLV
, /*init*/ true);
4640 llvm_unreachable("evaluation kind filtered out!");
4642 llvm_unreachable("bad evaluation kind");
4645 assert(isa
<RecordType
>(CatchType
) && "unexpected catch type!");
4646 auto catchRD
= CatchType
->getAsCXXRecordDecl();
4647 CharUnits caughtExnAlignment
= CGF
.CGM
.getClassPointerAlignment(catchRD
);
4649 llvm::Type
*PtrTy
= CGF
.UnqualPtrTy
; // addrspace 0 ok
4651 // Check for a copy expression. If we don't have a copy expression,
4652 // that means a trivial copy is okay.
4653 const Expr
*copyExpr
= CatchParam
.getInit();
4655 llvm::Value
*rawAdjustedExn
= CallBeginCatch(CGF
, Exn
, true);
4656 Address
adjustedExn(CGF
.Builder
.CreateBitCast(rawAdjustedExn
, PtrTy
),
4657 LLVMCatchTy
, caughtExnAlignment
);
4658 LValue Dest
= CGF
.MakeAddrLValue(ParamAddr
, CatchType
);
4659 LValue Src
= CGF
.MakeAddrLValue(adjustedExn
, CatchType
);
4660 CGF
.EmitAggregateCopy(Dest
, Src
, CatchType
, AggValueSlot::DoesNotOverlap
);
4664 // We have to call __cxa_get_exception_ptr to get the adjusted
4665 // pointer before copying.
4666 llvm::CallInst
*rawAdjustedExn
=
4667 CGF
.EmitNounwindRuntimeCall(getGetExceptionPtrFn(CGF
.CGM
), Exn
);
4669 // Cast that to the appropriate type.
4670 Address
adjustedExn(CGF
.Builder
.CreateBitCast(rawAdjustedExn
, PtrTy
),
4671 LLVMCatchTy
, caughtExnAlignment
);
4673 // The copy expression is defined in terms of an OpaqueValueExpr.
4674 // Find it and map it to the adjusted expression.
4675 CodeGenFunction::OpaqueValueMapping
4676 opaque(CGF
, OpaqueValueExpr::findInCopyConstruct(copyExpr
),
4677 CGF
.MakeAddrLValue(adjustedExn
, CatchParam
.getType()));
4679 // Call the copy ctor in a terminate scope.
4680 CGF
.EHStack
.pushTerminate();
4682 // Perform the copy construction.
4683 CGF
.EmitAggExpr(copyExpr
,
4684 AggValueSlot::forAddr(ParamAddr
, Qualifiers(),
4685 AggValueSlot::IsNotDestructed
,
4686 AggValueSlot::DoesNotNeedGCBarriers
,
4687 AggValueSlot::IsNotAliased
,
4688 AggValueSlot::DoesNotOverlap
));
4690 // Leave the terminate scope.
4691 CGF
.EHStack
.popTerminate();
4693 // Undo the opaque value mapping.
4696 // Finally we can call __cxa_begin_catch.
4697 CallBeginCatch(CGF
, Exn
, true);
4700 /// Begins a catch statement by initializing the catch variable and
4701 /// calling __cxa_begin_catch.
4702 void ItaniumCXXABI::emitBeginCatch(CodeGenFunction
&CGF
,
4703 const CXXCatchStmt
*S
) {
4704 // We have to be very careful with the ordering of cleanups here:
4705 // C++ [except.throw]p4:
4706 // The destruction [of the exception temporary] occurs
4707 // immediately after the destruction of the object declared in
4708 // the exception-declaration in the handler.
4710 // So the precise ordering is:
4711 // 1. Construct catch variable.
4712 // 2. __cxa_begin_catch
4713 // 3. Enter __cxa_end_catch cleanup
4714 // 4. Enter dtor cleanup
4716 // We do this by using a slightly abnormal initialization process.
4717 // Delegation sequence:
4718 // - ExitCXXTryStmt opens a RunCleanupsScope
4719 // - EmitAutoVarAlloca creates the variable and debug info
4720 // - InitCatchParam initializes the variable from the exception
4721 // - CallBeginCatch calls __cxa_begin_catch
4722 // - CallBeginCatch enters the __cxa_end_catch cleanup
4723 // - EmitAutoVarCleanups enters the variable destructor cleanup
4724 // - EmitCXXTryStmt emits the code for the catch body
4725 // - EmitCXXTryStmt close the RunCleanupsScope
4727 VarDecl
*CatchParam
= S
->getExceptionDecl();
4729 llvm::Value
*Exn
= CGF
.getExceptionFromSlot();
4730 CallBeginCatch(CGF
, Exn
, true);
4735 CodeGenFunction::AutoVarEmission var
= CGF
.EmitAutoVarAlloca(*CatchParam
);
4736 InitCatchParam(CGF
, *CatchParam
, var
.getObjectAddress(CGF
), S
->getBeginLoc());
4737 CGF
.EmitAutoVarCleanups(var
);
4740 /// Get or define the following function:
4741 /// void @__clang_call_terminate(i8* %exn) nounwind noreturn
4742 /// This code is used only in C++.
4743 static llvm::FunctionCallee
getClangCallTerminateFn(CodeGenModule
&CGM
) {
4744 ASTContext
&C
= CGM
.getContext();
4745 const CGFunctionInfo
&FI
= CGM
.getTypes().arrangeBuiltinFunctionDeclaration(
4746 C
.VoidTy
, {C
.getPointerType(C
.CharTy
)});
4747 llvm::FunctionType
*fnTy
= CGM
.getTypes().GetFunctionType(FI
);
4748 llvm::FunctionCallee fnRef
= CGM
.CreateRuntimeFunction(
4749 fnTy
, "__clang_call_terminate", llvm::AttributeList(), /*Local=*/true);
4750 llvm::Function
*fn
=
4751 cast
<llvm::Function
>(fnRef
.getCallee()->stripPointerCasts());
4753 CGM
.SetLLVMFunctionAttributes(GlobalDecl(), FI
, fn
, /*IsThunk=*/false);
4754 CGM
.SetLLVMFunctionAttributesForDefinition(nullptr, fn
);
4755 fn
->setDoesNotThrow();
4756 fn
->setDoesNotReturn();
4758 // What we really want is to massively penalize inlining without
4759 // forbidding it completely. The difference between that and
4760 // 'noinline' is negligible.
4761 fn
->addFnAttr(llvm::Attribute::NoInline
);
4763 // Allow this function to be shared across translation units, but
4764 // we don't want it to turn into an exported symbol.
4765 fn
->setLinkage(llvm::Function::LinkOnceODRLinkage
);
4766 fn
->setVisibility(llvm::Function::HiddenVisibility
);
4767 if (CGM
.supportsCOMDAT())
4768 fn
->setComdat(CGM
.getModule().getOrInsertComdat(fn
->getName()));
4770 // Set up the function.
4771 llvm::BasicBlock
*entry
=
4772 llvm::BasicBlock::Create(CGM
.getLLVMContext(), "", fn
);
4773 CGBuilderTy
builder(CGM
, entry
);
4775 // Pull the exception pointer out of the parameter list.
4776 llvm::Value
*exn
= &*fn
->arg_begin();
4778 // Call __cxa_begin_catch(exn).
4779 llvm::CallInst
*catchCall
= builder
.CreateCall(getBeginCatchFn(CGM
), exn
);
4780 catchCall
->setDoesNotThrow();
4781 catchCall
->setCallingConv(CGM
.getRuntimeCC());
4783 // Call std::terminate().
4784 llvm::CallInst
*termCall
= builder
.CreateCall(CGM
.getTerminateFn());
4785 termCall
->setDoesNotThrow();
4786 termCall
->setDoesNotReturn();
4787 termCall
->setCallingConv(CGM
.getRuntimeCC());
4789 // std::terminate cannot return.
4790 builder
.CreateUnreachable();
4796 ItaniumCXXABI::emitTerminateForUnexpectedException(CodeGenFunction
&CGF
,
4798 // In C++, we want to call __cxa_begin_catch() before terminating.
4800 assert(CGF
.CGM
.getLangOpts().CPlusPlus
);
4801 return CGF
.EmitNounwindRuntimeCall(getClangCallTerminateFn(CGF
.CGM
), Exn
);
4803 return CGF
.EmitNounwindRuntimeCall(CGF
.CGM
.getTerminateFn());
4806 std::pair
<llvm::Value
*, const CXXRecordDecl
*>
4807 ItaniumCXXABI::LoadVTablePtr(CodeGenFunction
&CGF
, Address This
,
4808 const CXXRecordDecl
*RD
) {
4809 return {CGF
.GetVTablePtr(This
, CGM
.Int8PtrTy
, RD
), RD
};
4812 void WebAssemblyCXXABI::emitBeginCatch(CodeGenFunction
&CGF
,
4813 const CXXCatchStmt
*C
) {
4814 if (CGF
.getTarget().hasFeature("exception-handling"))
4815 CGF
.EHStack
.pushCleanup
<CatchRetScope
>(
4816 NormalCleanup
, cast
<llvm::CatchPadInst
>(CGF
.CurrentFuncletPad
));
4817 ItaniumCXXABI::emitBeginCatch(CGF
, C
);
4821 WebAssemblyCXXABI::emitTerminateForUnexpectedException(CodeGenFunction
&CGF
,
4823 // Itanium ABI calls __clang_call_terminate(), which __cxa_begin_catch() on
4824 // the violating exception to mark it handled, but it is currently hard to do
4825 // with wasm EH instruction structure with catch/catch_all, we just call
4826 // std::terminate and ignore the violating exception as in CGCXXABI.
4827 // TODO Consider code transformation that makes calling __clang_call_terminate
4829 return CGCXXABI::emitTerminateForUnexpectedException(CGF
, Exn
);
4832 /// Register a global destructor as best as we know how.
4833 void XLCXXABI::registerGlobalDtor(CodeGenFunction
&CGF
, const VarDecl
&D
,
4834 llvm::FunctionCallee Dtor
,
4835 llvm::Constant
*Addr
) {
4836 if (D
.getTLSKind() != VarDecl::TLS_None
) {
4837 llvm::PointerType
*PtrTy
= CGF
.UnqualPtrTy
;
4839 // extern "C" int __pt_atexit_np(int flags, int(*)(int,...), ...);
4840 llvm::FunctionType
*AtExitTy
=
4841 llvm::FunctionType::get(CGM
.IntTy
, {CGM
.IntTy
, PtrTy
}, true);
4843 // Fetch the actual function.
4844 llvm::FunctionCallee AtExit
=
4845 CGM
.CreateRuntimeFunction(AtExitTy
, "__pt_atexit_np");
4847 // Create __dtor function for the var decl.
4848 llvm::Function
*DtorStub
= CGF
.createTLSAtExitStub(D
, Dtor
, Addr
, AtExit
);
4850 // Register above __dtor with atexit().
4851 // First param is flags and must be 0, second param is function ptr
4852 llvm::Value
*NV
= llvm::Constant::getNullValue(CGM
.IntTy
);
4853 CGF
.EmitNounwindRuntimeCall(AtExit
, {NV
, DtorStub
});
4855 // Cannot unregister TLS __dtor so done
4859 // Create __dtor function for the var decl.
4860 llvm::Function
*DtorStub
= CGF
.createAtExitStub(D
, Dtor
, Addr
);
4862 // Register above __dtor with atexit().
4863 CGF
.registerGlobalDtorWithAtExit(DtorStub
);
4865 // Emit __finalize function to unregister __dtor and (as appropriate) call
4867 emitCXXStermFinalizer(D
, DtorStub
, Addr
);
4870 void XLCXXABI::emitCXXStermFinalizer(const VarDecl
&D
, llvm::Function
*dtorStub
,
4871 llvm::Constant
*addr
) {
4872 llvm::FunctionType
*FTy
= llvm::FunctionType::get(CGM
.VoidTy
, false);
4873 SmallString
<256> FnName
;
4875 llvm::raw_svector_ostream
Out(FnName
);
4876 getMangleContext().mangleDynamicStermFinalizer(&D
, Out
);
4879 // Create the finalization action associated with a variable.
4880 const CGFunctionInfo
&FI
= CGM
.getTypes().arrangeNullaryFunction();
4881 llvm::Function
*StermFinalizer
= CGM
.CreateGlobalInitOrCleanUpFunction(
4882 FTy
, FnName
.str(), FI
, D
.getLocation());
4884 CodeGenFunction
CGF(CGM
);
4886 CGF
.StartFunction(GlobalDecl(), CGM
.getContext().VoidTy
, StermFinalizer
, FI
,
4887 FunctionArgList(), D
.getLocation(),
4888 D
.getInit()->getExprLoc());
4890 // The unatexit subroutine unregisters __dtor functions that were previously
4891 // registered by the atexit subroutine. If the referenced function is found,
4892 // the unatexit returns a value of 0, meaning that the cleanup is still
4893 // pending (and we should call the __dtor function).
4894 llvm::Value
*V
= CGF
.unregisterGlobalDtorWithUnAtExit(dtorStub
);
4896 llvm::Value
*NeedsDestruct
= CGF
.Builder
.CreateIsNull(V
, "needs_destruct");
4898 llvm::BasicBlock
*DestructCallBlock
= CGF
.createBasicBlock("destruct.call");
4899 llvm::BasicBlock
*EndBlock
= CGF
.createBasicBlock("destruct.end");
4901 // Check if unatexit returns a value of 0. If it does, jump to
4902 // DestructCallBlock, otherwise jump to EndBlock directly.
4903 CGF
.Builder
.CreateCondBr(NeedsDestruct
, DestructCallBlock
, EndBlock
);
4905 CGF
.EmitBlock(DestructCallBlock
);
4907 // Emit the call to dtorStub.
4908 llvm::CallInst
*CI
= CGF
.Builder
.CreateCall(dtorStub
);
4910 // Make sure the call and the callee agree on calling convention.
4911 CI
->setCallingConv(dtorStub
->getCallingConv());
4913 CGF
.EmitBlock(EndBlock
);
4915 CGF
.FinishFunction();
4917 if (auto *IPA
= D
.getAttr
<InitPriorityAttr
>()) {
4918 CGM
.AddCXXPrioritizedStermFinalizerEntry(StermFinalizer
,
4919 IPA
->getPriority());
4920 } else if (isTemplateInstantiation(D
.getTemplateSpecializationKind()) ||
4921 getContext().GetGVALinkageForVariable(&D
) == GVA_DiscardableODR
) {
4922 // According to C++ [basic.start.init]p2, class template static data
4923 // members (i.e., implicitly or explicitly instantiated specializations)
4924 // have unordered initialization. As a consequence, we can put them into
4925 // their own llvm.global_dtors entry.
4926 CGM
.AddCXXStermFinalizerToGlobalDtor(StermFinalizer
, 65535);
4928 CGM
.AddCXXStermFinalizerEntry(StermFinalizer
);