1 //===- ARM.cpp ------------------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "ABIInfoImpl.h"
10 #include "TargetInfo.h"
12 using namespace clang
;
13 using namespace clang::CodeGen
;
15 //===----------------------------------------------------------------------===//
16 // ARM ABI Implementation
17 //===----------------------------------------------------------------------===//
21 class ARMABIInfo
: public ABIInfo
{
23 bool IsFloatABISoftFP
;
26 ARMABIInfo(CodeGenTypes
&CGT
, ARMABIKind Kind
) : ABIInfo(CGT
), Kind(Kind
) {
28 IsFloatABISoftFP
= CGT
.getCodeGenOpts().FloatABI
== "softfp" ||
29 CGT
.getCodeGenOpts().FloatABI
== ""; // default
33 switch (getTarget().getTriple().getEnvironment()) {
34 case llvm::Triple::Android
:
35 case llvm::Triple::EABI
:
36 case llvm::Triple::EABIHF
:
37 case llvm::Triple::GNUEABI
:
38 case llvm::Triple::GNUEABIHF
:
39 case llvm::Triple::MuslEABI
:
40 case llvm::Triple::MuslEABIHF
:
43 return getTarget().getTriple().isOHOSFamily();
47 bool isEABIHF() const {
48 switch (getTarget().getTriple().getEnvironment()) {
49 case llvm::Triple::EABIHF
:
50 case llvm::Triple::GNUEABIHF
:
51 case llvm::Triple::MuslEABIHF
:
58 ARMABIKind
getABIKind() const { return Kind
; }
60 bool allowBFloatArgsAndRet() const override
{
61 return !IsFloatABISoftFP
&& getTarget().hasBFloat16Type();
65 ABIArgInfo
classifyReturnType(QualType RetTy
, bool isVariadic
,
66 unsigned functionCallConv
) const;
67 ABIArgInfo
classifyArgumentType(QualType RetTy
, bool isVariadic
,
68 unsigned functionCallConv
) const;
69 ABIArgInfo
classifyHomogeneousAggregate(QualType Ty
, const Type
*Base
,
70 uint64_t Members
) const;
71 ABIArgInfo
coerceIllegalVector(QualType Ty
) const;
72 bool isIllegalVectorType(QualType Ty
) const;
73 bool containsAnyFP16Vectors(QualType Ty
) const;
75 bool isHomogeneousAggregateBaseType(QualType Ty
) const override
;
76 bool isHomogeneousAggregateSmallEnough(const Type
*Ty
,
77 uint64_t Members
) const override
;
78 bool isZeroLengthBitfieldPermittedInHomogeneousAggregate() const override
;
80 bool isEffectivelyAAPCS_VFP(unsigned callConvention
, bool acceptHalf
) const;
82 void computeInfo(CGFunctionInfo
&FI
) const override
;
84 Address
EmitVAArg(CodeGenFunction
&CGF
, Address VAListAddr
,
85 QualType Ty
) const override
;
87 llvm::CallingConv::ID
getLLVMDefaultCC() const;
88 llvm::CallingConv::ID
getABIDefaultCC() const;
92 class ARMSwiftABIInfo
: public SwiftABIInfo
{
94 explicit ARMSwiftABIInfo(CodeGenTypes
&CGT
)
95 : SwiftABIInfo(CGT
, /*SwiftErrorInRegister=*/true) {}
97 bool isLegalVectorType(CharUnits VectorSize
, llvm::Type
*EltTy
,
98 unsigned NumElts
) const override
;
101 class ARMTargetCodeGenInfo
: public TargetCodeGenInfo
{
103 ARMTargetCodeGenInfo(CodeGenTypes
&CGT
, ARMABIKind K
)
104 : TargetCodeGenInfo(std::make_unique
<ARMABIInfo
>(CGT
, K
)) {
105 SwiftInfo
= std::make_unique
<ARMSwiftABIInfo
>(CGT
);
108 int getDwarfEHStackPointer(CodeGen::CodeGenModule
&M
) const override
{
112 StringRef
getARCRetainAutoreleasedReturnValueMarker() const override
{
113 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
116 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction
&CGF
,
117 llvm::Value
*Address
) const override
{
118 llvm::Value
*Four8
= llvm::ConstantInt::get(CGF
.Int8Ty
, 4);
120 // 0-15 are the 16 integer registers.
121 AssignToArrayRange(CGF
.Builder
, Address
, Four8
, 0, 15);
125 unsigned getSizeOfUnwindException() const override
{
126 if (getABIInfo
<ARMABIInfo
>().isEABI())
128 return TargetCodeGenInfo::getSizeOfUnwindException();
131 void setTargetAttributes(const Decl
*D
, llvm::GlobalValue
*GV
,
132 CodeGen::CodeGenModule
&CGM
) const override
{
133 if (GV
->isDeclaration())
135 const FunctionDecl
*FD
= dyn_cast_or_null
<FunctionDecl
>(D
);
138 auto *Fn
= cast
<llvm::Function
>(GV
);
140 if (const auto *TA
= FD
->getAttr
<TargetAttr
>()) {
141 ParsedTargetAttr Attr
=
142 CGM
.getTarget().parseTargetAttr(TA
->getFeaturesStr());
143 if (!Attr
.BranchProtection
.empty()) {
144 TargetInfo::BranchProtectionInfo BPI
;
147 Attr
.CPU
.empty() ? CGM
.getTarget().getTargetOpts().CPU
: Attr
.CPU
;
148 if (!CGM
.getTarget().validateBranchProtection(Attr
.BranchProtection
,
149 Arch
, BPI
, DiagMsg
)) {
150 CGM
.getDiags().Report(
152 diag::warn_target_unsupported_branch_protection_attribute
)
155 static const char *SignReturnAddrStr
[] = {"none", "non-leaf", "all"};
156 assert(static_cast<unsigned>(BPI
.SignReturnAddr
) <= 2 &&
157 "Unexpected SignReturnAddressScopeKind");
159 "sign-return-address",
160 SignReturnAddrStr
[static_cast<int>(BPI
.SignReturnAddr
)]);
162 Fn
->addFnAttr("branch-target-enforcement",
163 BPI
.BranchTargetEnforcement
? "true" : "false");
165 } else if (CGM
.getLangOpts().BranchTargetEnforcement
||
166 CGM
.getLangOpts().hasSignReturnAddress()) {
167 // If the Branch Protection attribute is missing, validate the target
168 // Architecture attribute against Branch Protection command line
170 if (!CGM
.getTarget().isBranchProtectionSupportedArch(Attr
.CPU
))
171 CGM
.getDiags().Report(
173 diag::warn_target_unsupported_branch_protection_attribute
)
178 const ARMInterruptAttr
*Attr
= FD
->getAttr
<ARMInterruptAttr
>();
183 switch (Attr
->getInterrupt()) {
184 case ARMInterruptAttr::Generic
: Kind
= ""; break;
185 case ARMInterruptAttr::IRQ
: Kind
= "IRQ"; break;
186 case ARMInterruptAttr::FIQ
: Kind
= "FIQ"; break;
187 case ARMInterruptAttr::SWI
: Kind
= "SWI"; break;
188 case ARMInterruptAttr::ABORT
: Kind
= "ABORT"; break;
189 case ARMInterruptAttr::UNDEF
: Kind
= "UNDEF"; break;
192 Fn
->addFnAttr("interrupt", Kind
);
194 ARMABIKind ABI
= getABIInfo
<ARMABIInfo
>().getABIKind();
195 if (ABI
== ARMABIKind::APCS
)
198 // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
199 // however this is not necessarily true on taking any interrupt. Instruct
200 // the backend to perform a realignment as part of the function prologue.
201 llvm::AttrBuilder
B(Fn
->getContext());
202 B
.addStackAlignmentAttr(8);
207 class WindowsARMTargetCodeGenInfo
: public ARMTargetCodeGenInfo
{
209 WindowsARMTargetCodeGenInfo(CodeGenTypes
&CGT
, ARMABIKind K
)
210 : ARMTargetCodeGenInfo(CGT
, K
) {}
212 void setTargetAttributes(const Decl
*D
, llvm::GlobalValue
*GV
,
213 CodeGen::CodeGenModule
&CGM
) const override
;
215 void getDependentLibraryOption(llvm::StringRef Lib
,
216 llvm::SmallString
<24> &Opt
) const override
{
217 Opt
= "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib
);
220 void getDetectMismatchOption(llvm::StringRef Name
, llvm::StringRef Value
,
221 llvm::SmallString
<32> &Opt
) const override
{
222 Opt
= "/FAILIFMISMATCH:\"" + Name
.str() + "=" + Value
.str() + "\"";
226 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
227 const Decl
*D
, llvm::GlobalValue
*GV
, CodeGen::CodeGenModule
&CGM
) const {
228 ARMTargetCodeGenInfo::setTargetAttributes(D
, GV
, CGM
);
229 if (GV
->isDeclaration())
231 addStackProbeTargetAttributes(D
, GV
, CGM
);
235 void ARMABIInfo::computeInfo(CGFunctionInfo
&FI
) const {
236 if (!::classifyReturnType(getCXXABI(), FI
, *this))
237 FI
.getReturnInfo() = classifyReturnType(FI
.getReturnType(), FI
.isVariadic(),
238 FI
.getCallingConvention());
240 for (auto &I
: FI
.arguments())
241 I
.info
= classifyArgumentType(I
.type
, FI
.isVariadic(),
242 FI
.getCallingConvention());
245 // Always honor user-specified calling convention.
246 if (FI
.getCallingConvention() != llvm::CallingConv::C
)
249 llvm::CallingConv::ID cc
= getRuntimeCC();
250 if (cc
!= llvm::CallingConv::C
)
251 FI
.setEffectiveCallingConvention(cc
);
254 /// Return the default calling convention that LLVM will use.
255 llvm::CallingConv::ID
ARMABIInfo::getLLVMDefaultCC() const {
256 // The default calling convention that LLVM will infer.
257 if (isEABIHF() || getTarget().getTriple().isWatchABI())
258 return llvm::CallingConv::ARM_AAPCS_VFP
;
260 return llvm::CallingConv::ARM_AAPCS
;
262 return llvm::CallingConv::ARM_APCS
;
265 /// Return the calling convention that our ABI would like us to use
266 /// as the C calling convention.
267 llvm::CallingConv::ID
ARMABIInfo::getABIDefaultCC() const {
268 switch (getABIKind()) {
269 case ARMABIKind::APCS
:
270 return llvm::CallingConv::ARM_APCS
;
271 case ARMABIKind::AAPCS
:
272 return llvm::CallingConv::ARM_AAPCS
;
273 case ARMABIKind::AAPCS_VFP
:
274 return llvm::CallingConv::ARM_AAPCS_VFP
;
275 case ARMABIKind::AAPCS16_VFP
:
276 return llvm::CallingConv::ARM_AAPCS_VFP
;
278 llvm_unreachable("bad ABI kind");
281 void ARMABIInfo::setCCs() {
282 assert(getRuntimeCC() == llvm::CallingConv::C
);
284 // Don't muddy up the IR with a ton of explicit annotations if
285 // they'd just match what LLVM will infer from the triple.
286 llvm::CallingConv::ID abiCC
= getABIDefaultCC();
287 if (abiCC
!= getLLVMDefaultCC())
291 ABIArgInfo
ARMABIInfo::coerceIllegalVector(QualType Ty
) const {
292 uint64_t Size
= getContext().getTypeSize(Ty
);
294 llvm::Type
*ResType
=
295 llvm::Type::getInt32Ty(getVMContext());
296 return ABIArgInfo::getDirect(ResType
);
298 if (Size
== 64 || Size
== 128) {
299 auto *ResType
= llvm::FixedVectorType::get(
300 llvm::Type::getInt32Ty(getVMContext()), Size
/ 32);
301 return ABIArgInfo::getDirect(ResType
);
303 return getNaturalAlignIndirect(Ty
, /*ByVal=*/false);
306 ABIArgInfo
ARMABIInfo::classifyHomogeneousAggregate(QualType Ty
,
308 uint64_t Members
) const {
309 assert(Base
&& "Base class should be set for homogeneous aggregate");
310 // Base can be a floating-point or a vector.
311 if (const VectorType
*VT
= Base
->getAs
<VectorType
>()) {
312 // FP16 vectors should be converted to integer vectors
313 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty
)) {
314 uint64_t Size
= getContext().getTypeSize(VT
);
315 auto *NewVecTy
= llvm::FixedVectorType::get(
316 llvm::Type::getInt32Ty(getVMContext()), Size
/ 32);
317 llvm::Type
*Ty
= llvm::ArrayType::get(NewVecTy
, Members
);
318 return ABIArgInfo::getDirect(Ty
, 0, nullptr, false);
322 if (getABIKind() == ARMABIKind::AAPCS
||
323 getABIKind() == ARMABIKind::AAPCS_VFP
) {
324 // For alignment adjusted HFAs, cap the argument alignment to 8, leave it
325 // default otherwise.
326 Align
= getContext().getTypeUnadjustedAlignInChars(Ty
).getQuantity();
327 unsigned BaseAlign
= getContext().getTypeAlignInChars(Base
).getQuantity();
328 Align
= (Align
> BaseAlign
&& Align
>= 8) ? 8 : 0;
330 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align
);
333 ABIArgInfo
ARMABIInfo::classifyArgumentType(QualType Ty
, bool isVariadic
,
334 unsigned functionCallConv
) const {
335 // 6.1.2.1 The following argument types are VFP CPRCs:
336 // A single-precision floating-point type (including promoted
337 // half-precision types); A double-precision floating-point type;
338 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
339 // with a Base Type of a single- or double-precision floating-point type,
340 // 64-bit containerized vectors or 128-bit containerized vectors with one
342 // Variadic functions should always marshal to the base standard.
344 !isVariadic
&& isEffectivelyAAPCS_VFP(functionCallConv
, /* AAPCS16 */ false);
346 Ty
= useFirstFieldIfTransparentUnion(Ty
);
348 // Handle illegal vector types here.
349 if (isIllegalVectorType(Ty
))
350 return coerceIllegalVector(Ty
);
352 if (!isAggregateTypeForABI(Ty
)) {
353 // Treat an enum type as its underlying type.
354 if (const EnumType
*EnumTy
= Ty
->getAs
<EnumType
>()) {
355 Ty
= EnumTy
->getDecl()->getIntegerType();
358 if (const auto *EIT
= Ty
->getAs
<BitIntType
>())
359 if (EIT
->getNumBits() > 64)
360 return getNaturalAlignIndirect(Ty
, /*ByVal=*/true);
362 return (isPromotableIntegerTypeForABI(Ty
) ? ABIArgInfo::getExtend(Ty
)
363 : ABIArgInfo::getDirect());
366 if (CGCXXABI::RecordArgABI RAA
= getRecordArgABI(Ty
, getCXXABI())) {
367 return getNaturalAlignIndirect(Ty
, RAA
== CGCXXABI::RAA_DirectInMemory
);
370 // Ignore empty records.
371 if (isEmptyRecord(getContext(), Ty
, true))
372 return ABIArgInfo::getIgnore();
375 // Homogeneous Aggregates need to be expanded when we can fit the aggregate
376 // into VFP registers.
377 const Type
*Base
= nullptr;
378 uint64_t Members
= 0;
379 if (isHomogeneousAggregate(Ty
, Base
, Members
))
380 return classifyHomogeneousAggregate(Ty
, Base
, Members
);
381 } else if (getABIKind() == ARMABIKind::AAPCS16_VFP
) {
382 // WatchOS does have homogeneous aggregates. Note that we intentionally use
383 // this convention even for a variadic function: the backend will use GPRs
385 const Type
*Base
= nullptr;
386 uint64_t Members
= 0;
387 if (isHomogeneousAggregate(Ty
, Base
, Members
)) {
388 assert(Base
&& Members
<= 4 && "unexpected homogeneous aggregate");
390 llvm::ArrayType::get(CGT
.ConvertType(QualType(Base
, 0)), Members
);
391 return ABIArgInfo::getDirect(Ty
, 0, nullptr, false);
395 if (getABIKind() == ARMABIKind::AAPCS16_VFP
&&
396 getContext().getTypeSizeInChars(Ty
) > CharUnits::fromQuantity(16)) {
397 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
398 // bigger than 128-bits, they get placed in space allocated by the caller,
399 // and a pointer is passed.
400 return ABIArgInfo::getIndirect(
401 CharUnits::fromQuantity(getContext().getTypeAlign(Ty
) / 8), false);
404 // Support byval for ARM.
405 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
406 // most 8-byte. We realign the indirect argument if type alignment is bigger
407 // than ABI alignment.
408 uint64_t ABIAlign
= 4;
410 if (getABIKind() == ARMABIKind::AAPCS_VFP
||
411 getABIKind() == ARMABIKind::AAPCS
) {
412 TyAlign
= getContext().getTypeUnadjustedAlignInChars(Ty
).getQuantity();
413 ABIAlign
= std::clamp(TyAlign
, (uint64_t)4, (uint64_t)8);
415 TyAlign
= getContext().getTypeAlignInChars(Ty
).getQuantity();
417 if (getContext().getTypeSizeInChars(Ty
) > CharUnits::fromQuantity(64)) {
418 assert(getABIKind() != ARMABIKind::AAPCS16_VFP
&& "unexpected byval");
419 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign
),
421 /*Realign=*/TyAlign
> ABIAlign
);
424 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
425 // same size and alignment.
426 if (getTarget().isRenderScriptTarget()) {
427 return coerceToIntArray(Ty
, getContext(), getVMContext());
430 // Otherwise, pass by coercing to a structure of the appropriate size.
433 // FIXME: Try to match the types of the arguments more accurately where
436 ElemTy
= llvm::Type::getInt32Ty(getVMContext());
437 SizeRegs
= (getContext().getTypeSize(Ty
) + 31) / 32;
439 ElemTy
= llvm::Type::getInt64Ty(getVMContext());
440 SizeRegs
= (getContext().getTypeSize(Ty
) + 63) / 64;
443 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy
, SizeRegs
));
446 static bool isIntegerLikeType(QualType Ty
, ASTContext
&Context
,
447 llvm::LLVMContext
&VMContext
) {
448 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
449 // is called integer-like if its size is less than or equal to one word, and
450 // the offset of each of its addressable sub-fields is zero.
452 uint64_t Size
= Context
.getTypeSize(Ty
);
454 // Check that the type fits in a word.
458 // FIXME: Handle vector types!
459 if (Ty
->isVectorType())
462 // Float types are never treated as "integer like".
463 if (Ty
->isRealFloatingType())
466 // If this is a builtin or pointer type then it is ok.
467 if (Ty
->getAs
<BuiltinType
>() || Ty
->isPointerType())
470 // Small complex integer types are "integer like".
471 if (const ComplexType
*CT
= Ty
->getAs
<ComplexType
>())
472 return isIntegerLikeType(CT
->getElementType(), Context
, VMContext
);
474 // Single element and zero sized arrays should be allowed, by the definition
475 // above, but they are not.
477 // Otherwise, it must be a record type.
478 const RecordType
*RT
= Ty
->getAs
<RecordType
>();
479 if (!RT
) return false;
481 // Ignore records with flexible arrays.
482 const RecordDecl
*RD
= RT
->getDecl();
483 if (RD
->hasFlexibleArrayMember())
486 // Check that all sub-fields are at offset 0, and are themselves "integer
488 const ASTRecordLayout
&Layout
= Context
.getASTRecordLayout(RD
);
490 bool HadField
= false;
492 for (RecordDecl::field_iterator i
= RD
->field_begin(), e
= RD
->field_end();
493 i
!= e
; ++i
, ++idx
) {
494 const FieldDecl
*FD
= *i
;
496 // Bit-fields are not addressable, we only need to verify they are "integer
497 // like". We still have to disallow a subsequent non-bitfield, for example:
498 // struct { int : 0; int x }
499 // is non-integer like according to gcc.
500 if (FD
->isBitField()) {
504 if (!isIntegerLikeType(FD
->getType(), Context
, VMContext
))
510 // Check if this field is at offset 0.
511 if (Layout
.getFieldOffset(idx
) != 0)
514 if (!isIntegerLikeType(FD
->getType(), Context
, VMContext
))
517 // Only allow at most one field in a structure. This doesn't match the
518 // wording above, but follows gcc in situations with a field following an
520 if (!RD
->isUnion()) {
531 ABIArgInfo
ARMABIInfo::classifyReturnType(QualType RetTy
, bool isVariadic
,
532 unsigned functionCallConv
) const {
534 // Variadic functions should always marshal to the base standard.
536 !isVariadic
&& isEffectivelyAAPCS_VFP(functionCallConv
, /* AAPCS16 */ true);
538 if (RetTy
->isVoidType())
539 return ABIArgInfo::getIgnore();
541 if (const VectorType
*VT
= RetTy
->getAs
<VectorType
>()) {
542 // Large vector types should be returned via memory.
543 if (getContext().getTypeSize(RetTy
) > 128)
544 return getNaturalAlignIndirect(RetTy
);
545 // TODO: FP16/BF16 vectors should be converted to integer vectors
546 // This check is similar to isIllegalVectorType - refactor?
547 if ((!getTarget().hasLegalHalfType() &&
548 (VT
->getElementType()->isFloat16Type() ||
549 VT
->getElementType()->isHalfType())) ||
551 VT
->getElementType()->isBFloat16Type()))
552 return coerceIllegalVector(RetTy
);
555 if (!isAggregateTypeForABI(RetTy
)) {
556 // Treat an enum type as its underlying type.
557 if (const EnumType
*EnumTy
= RetTy
->getAs
<EnumType
>())
558 RetTy
= EnumTy
->getDecl()->getIntegerType();
560 if (const auto *EIT
= RetTy
->getAs
<BitIntType
>())
561 if (EIT
->getNumBits() > 64)
562 return getNaturalAlignIndirect(RetTy
, /*ByVal=*/false);
564 return isPromotableIntegerTypeForABI(RetTy
) ? ABIArgInfo::getExtend(RetTy
)
565 : ABIArgInfo::getDirect();
568 // Are we following APCS?
569 if (getABIKind() == ARMABIKind::APCS
) {
570 if (isEmptyRecord(getContext(), RetTy
, false))
571 return ABIArgInfo::getIgnore();
573 // Complex types are all returned as packed integers.
575 // FIXME: Consider using 2 x vector types if the back end handles them
577 if (RetTy
->isAnyComplexType())
578 return ABIArgInfo::getDirect(llvm::IntegerType::get(
579 getVMContext(), getContext().getTypeSize(RetTy
)));
581 // Integer like structures are returned in r0.
582 if (isIntegerLikeType(RetTy
, getContext(), getVMContext())) {
583 // Return in the smallest viable integer type.
584 uint64_t Size
= getContext().getTypeSize(RetTy
);
586 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
588 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
589 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
592 // Otherwise return in memory.
593 return getNaturalAlignIndirect(RetTy
);
596 // Otherwise this is an AAPCS variant.
598 if (isEmptyRecord(getContext(), RetTy
, true))
599 return ABIArgInfo::getIgnore();
601 // Check for homogeneous aggregates with AAPCS-VFP.
603 const Type
*Base
= nullptr;
604 uint64_t Members
= 0;
605 if (isHomogeneousAggregate(RetTy
, Base
, Members
))
606 return classifyHomogeneousAggregate(RetTy
, Base
, Members
);
609 // Aggregates <= 4 bytes are returned in r0; other aggregates
610 // are returned indirectly.
611 uint64_t Size
= getContext().getTypeSize(RetTy
);
613 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
614 // same size and alignment.
615 if (getTarget().isRenderScriptTarget()) {
616 return coerceToIntArray(RetTy
, getContext(), getVMContext());
618 if (getDataLayout().isBigEndian())
619 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
620 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
622 // Return in the smallest viable integer type.
624 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
626 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
627 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
628 } else if (Size
<= 128 && getABIKind() == ARMABIKind::AAPCS16_VFP
) {
629 llvm::Type
*Int32Ty
= llvm::Type::getInt32Ty(getVMContext());
630 llvm::Type
*CoerceTy
=
631 llvm::ArrayType::get(Int32Ty
, llvm::alignTo(Size
, 32) / 32);
632 return ABIArgInfo::getDirect(CoerceTy
);
635 return getNaturalAlignIndirect(RetTy
);
638 /// isIllegalVector - check whether Ty is an illegal vector type.
639 bool ARMABIInfo::isIllegalVectorType(QualType Ty
) const {
640 if (const VectorType
*VT
= Ty
->getAs
<VectorType
> ()) {
641 // On targets that don't support half, fp16 or bfloat, they are expanded
642 // into float, and we don't want the ABI to depend on whether or not they
643 // are supported in hardware. Thus return false to coerce vectors of these
644 // types into integer vectors.
645 // We do not depend on hasLegalHalfType for bfloat as it is a
647 if ((!getTarget().hasLegalHalfType() &&
648 (VT
->getElementType()->isFloat16Type() ||
649 VT
->getElementType()->isHalfType())) ||
651 VT
->getElementType()->isBFloat16Type()))
654 // Android shipped using Clang 3.1, which supported a slightly different
655 // vector ABI. The primary differences were that 3-element vector types
656 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
657 // accepts that legacy behavior for Android only.
658 // Check whether VT is legal.
659 unsigned NumElements
= VT
->getNumElements();
660 // NumElements should be power of 2 or equal to 3.
661 if (!llvm::isPowerOf2_32(NumElements
) && NumElements
!= 3)
664 // Check whether VT is legal.
665 unsigned NumElements
= VT
->getNumElements();
666 uint64_t Size
= getContext().getTypeSize(VT
);
667 // NumElements should be power of 2.
668 if (!llvm::isPowerOf2_32(NumElements
))
670 // Size should be greater than 32 bits.
677 /// Return true if a type contains any 16-bit floating point vectors
678 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty
) const {
679 if (const ConstantArrayType
*AT
= getContext().getAsConstantArrayType(Ty
)) {
680 uint64_t NElements
= AT
->getSize().getZExtValue();
683 return containsAnyFP16Vectors(AT
->getElementType());
684 } else if (const RecordType
*RT
= Ty
->getAs
<RecordType
>()) {
685 const RecordDecl
*RD
= RT
->getDecl();
687 // If this is a C++ record, check the bases first.
688 if (const CXXRecordDecl
*CXXRD
= dyn_cast
<CXXRecordDecl
>(RD
))
689 if (llvm::any_of(CXXRD
->bases(), [this](const CXXBaseSpecifier
&B
) {
690 return containsAnyFP16Vectors(B
.getType());
694 if (llvm::any_of(RD
->fields(), [this](FieldDecl
*FD
) {
695 return FD
&& containsAnyFP16Vectors(FD
->getType());
701 if (const VectorType
*VT
= Ty
->getAs
<VectorType
>())
702 return (VT
->getElementType()->isFloat16Type() ||
703 VT
->getElementType()->isBFloat16Type() ||
704 VT
->getElementType()->isHalfType());
709 bool ARMSwiftABIInfo::isLegalVectorType(CharUnits VectorSize
, llvm::Type
*EltTy
,
710 unsigned NumElts
) const {
711 if (!llvm::isPowerOf2_32(NumElts
))
713 unsigned size
= CGT
.getDataLayout().getTypeStoreSizeInBits(EltTy
);
716 if (VectorSize
.getQuantity() != 8 &&
717 (VectorSize
.getQuantity() != 16 || NumElts
== 1))
722 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty
) const {
723 // Homogeneous aggregates for AAPCS-VFP must have base types of float,
724 // double, or 64-bit or 128-bit vectors.
725 if (const BuiltinType
*BT
= Ty
->getAs
<BuiltinType
>()) {
726 if (BT
->getKind() == BuiltinType::Float
||
727 BT
->getKind() == BuiltinType::Double
||
728 BT
->getKind() == BuiltinType::LongDouble
)
730 } else if (const VectorType
*VT
= Ty
->getAs
<VectorType
>()) {
731 unsigned VecSize
= getContext().getTypeSize(VT
);
732 if (VecSize
== 64 || VecSize
== 128)
738 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type
*Base
,
739 uint64_t Members
) const {
743 bool ARMABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate() const {
744 // AAPCS32 says that the rule for whether something is a homogeneous
745 // aggregate is applied to the output of the data layout decision. So
746 // anything that doesn't affect the data layout also does not affect
747 // homogeneity. In particular, zero-length bitfields don't stop a struct
748 // being homogeneous.
752 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention
,
753 bool acceptHalf
) const {
754 // Give precedence to user-specified calling conventions.
755 if (callConvention
!= llvm::CallingConv::C
)
756 return (callConvention
== llvm::CallingConv::ARM_AAPCS_VFP
);
758 return (getABIKind() == ARMABIKind::AAPCS_VFP
) ||
759 (acceptHalf
&& (getABIKind() == ARMABIKind::AAPCS16_VFP
));
762 Address
ARMABIInfo::EmitVAArg(CodeGenFunction
&CGF
, Address VAListAddr
,
764 CharUnits SlotSize
= CharUnits::fromQuantity(4);
766 // Empty records are ignored for parameter passing purposes.
767 if (isEmptyRecord(getContext(), Ty
, true)) {
768 VAListAddr
= VAListAddr
.withElementType(CGF
.Int8PtrTy
);
769 auto *Load
= CGF
.Builder
.CreateLoad(VAListAddr
);
770 return Address(Load
, CGF
.ConvertTypeForMem(Ty
), SlotSize
);
773 CharUnits TySize
= getContext().getTypeSizeInChars(Ty
);
774 CharUnits TyAlignForABI
= getContext().getTypeUnadjustedAlignInChars(Ty
);
776 // Use indirect if size of the illegal vector is bigger than 16 bytes.
777 bool IsIndirect
= false;
778 const Type
*Base
= nullptr;
779 uint64_t Members
= 0;
780 if (TySize
> CharUnits::fromQuantity(16) && isIllegalVectorType(Ty
)) {
783 // ARMv7k passes structs bigger than 16 bytes indirectly, in space
784 // allocated by the caller.
785 } else if (TySize
> CharUnits::fromQuantity(16) &&
786 getABIKind() == ARMABIKind::AAPCS16_VFP
&&
787 !isHomogeneousAggregate(Ty
, Base
, Members
)) {
790 // Otherwise, bound the type's ABI alignment.
791 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
792 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
793 // Our callers should be prepared to handle an under-aligned address.
794 } else if (getABIKind() == ARMABIKind::AAPCS_VFP
||
795 getABIKind() == ARMABIKind::AAPCS
) {
796 TyAlignForABI
= std::max(TyAlignForABI
, CharUnits::fromQuantity(4));
797 TyAlignForABI
= std::min(TyAlignForABI
, CharUnits::fromQuantity(8));
798 } else if (getABIKind() == ARMABIKind::AAPCS16_VFP
) {
799 // ARMv7k allows type alignment up to 16 bytes.
800 TyAlignForABI
= std::max(TyAlignForABI
, CharUnits::fromQuantity(4));
801 TyAlignForABI
= std::min(TyAlignForABI
, CharUnits::fromQuantity(16));
803 TyAlignForABI
= CharUnits::fromQuantity(4);
806 TypeInfoChars
TyInfo(TySize
, TyAlignForABI
, AlignRequirementKind::None
);
807 return emitVoidPtrVAArg(CGF
, VAListAddr
, Ty
, IsIndirect
, TyInfo
,
808 SlotSize
, /*AllowHigherAlign*/ true);
811 std::unique_ptr
<TargetCodeGenInfo
>
812 CodeGen::createARMTargetCodeGenInfo(CodeGenModule
&CGM
, ARMABIKind Kind
) {
813 return std::make_unique
<ARMTargetCodeGenInfo
>(CGM
.getTypes(), Kind
);
816 std::unique_ptr
<TargetCodeGenInfo
>
817 CodeGen::createWindowsARMTargetCodeGenInfo(CodeGenModule
&CGM
, ARMABIKind K
) {
818 return std::make_unique
<WindowsARMTargetCodeGenInfo
>(CGM
.getTypes(), K
);