[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / clang / lib / Parse / ParseExpr.cpp
blobdd2d9400b7747e34b173e2c7886d270226f5c61b
1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Provides the Expression parsing implementation.
11 ///
12 /// Expressions in C99 basically consist of a bunch of binary operators with
13 /// unary operators and other random stuff at the leaves.
14 ///
15 /// In the C99 grammar, these unary operators bind tightest and are represented
16 /// as the 'cast-expression' production. Everything else is either a binary
17 /// operator (e.g. '/') or a ternary operator ("?:"). The unary leaves are
18 /// handled by ParseCastExpression, the higher level pieces are handled by
19 /// ParseBinaryExpression.
20 ///
21 //===----------------------------------------------------------------------===//
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/Basic/PrettyStackTrace.h"
26 #include "clang/Lex/LiteralSupport.h"
27 #include "clang/Parse/Parser.h"
28 #include "clang/Parse/RAIIObjectsForParser.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/EnterExpressionEvaluationContext.h"
31 #include "clang/Sema/ParsedTemplate.h"
32 #include "clang/Sema/Scope.h"
33 #include "clang/Sema/TypoCorrection.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include <optional>
36 using namespace clang;
38 /// Simple precedence-based parser for binary/ternary operators.
39 ///
40 /// Note: we diverge from the C99 grammar when parsing the assignment-expression
41 /// production. C99 specifies that the LHS of an assignment operator should be
42 /// parsed as a unary-expression, but consistency dictates that it be a
43 /// conditional-expession. In practice, the important thing here is that the
44 /// LHS of an assignment has to be an l-value, which productions between
45 /// unary-expression and conditional-expression don't produce. Because we want
46 /// consistency, we parse the LHS as a conditional-expression, then check for
47 /// l-value-ness in semantic analysis stages.
48 ///
49 /// \verbatim
50 /// pm-expression: [C++ 5.5]
51 /// cast-expression
52 /// pm-expression '.*' cast-expression
53 /// pm-expression '->*' cast-expression
54 ///
55 /// multiplicative-expression: [C99 6.5.5]
56 /// Note: in C++, apply pm-expression instead of cast-expression
57 /// cast-expression
58 /// multiplicative-expression '*' cast-expression
59 /// multiplicative-expression '/' cast-expression
60 /// multiplicative-expression '%' cast-expression
61 ///
62 /// additive-expression: [C99 6.5.6]
63 /// multiplicative-expression
64 /// additive-expression '+' multiplicative-expression
65 /// additive-expression '-' multiplicative-expression
66 ///
67 /// shift-expression: [C99 6.5.7]
68 /// additive-expression
69 /// shift-expression '<<' additive-expression
70 /// shift-expression '>>' additive-expression
71 ///
72 /// compare-expression: [C++20 expr.spaceship]
73 /// shift-expression
74 /// compare-expression '<=>' shift-expression
75 ///
76 /// relational-expression: [C99 6.5.8]
77 /// compare-expression
78 /// relational-expression '<' compare-expression
79 /// relational-expression '>' compare-expression
80 /// relational-expression '<=' compare-expression
81 /// relational-expression '>=' compare-expression
82 ///
83 /// equality-expression: [C99 6.5.9]
84 /// relational-expression
85 /// equality-expression '==' relational-expression
86 /// equality-expression '!=' relational-expression
87 ///
88 /// AND-expression: [C99 6.5.10]
89 /// equality-expression
90 /// AND-expression '&' equality-expression
91 ///
92 /// exclusive-OR-expression: [C99 6.5.11]
93 /// AND-expression
94 /// exclusive-OR-expression '^' AND-expression
95 ///
96 /// inclusive-OR-expression: [C99 6.5.12]
97 /// exclusive-OR-expression
98 /// inclusive-OR-expression '|' exclusive-OR-expression
99 ///
100 /// logical-AND-expression: [C99 6.5.13]
101 /// inclusive-OR-expression
102 /// logical-AND-expression '&&' inclusive-OR-expression
104 /// logical-OR-expression: [C99 6.5.14]
105 /// logical-AND-expression
106 /// logical-OR-expression '||' logical-AND-expression
108 /// conditional-expression: [C99 6.5.15]
109 /// logical-OR-expression
110 /// logical-OR-expression '?' expression ':' conditional-expression
111 /// [GNU] logical-OR-expression '?' ':' conditional-expression
112 /// [C++] the third operand is an assignment-expression
114 /// assignment-expression: [C99 6.5.16]
115 /// conditional-expression
116 /// unary-expression assignment-operator assignment-expression
117 /// [C++] throw-expression [C++ 15]
119 /// assignment-operator: one of
120 /// = *= /= %= += -= <<= >>= &= ^= |=
122 /// expression: [C99 6.5.17]
123 /// assignment-expression ...[opt]
124 /// expression ',' assignment-expression ...[opt]
125 /// \endverbatim
126 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
127 ExprResult LHS(ParseAssignmentExpression(isTypeCast));
128 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
131 /// This routine is called when the '@' is seen and consumed.
132 /// Current token is an Identifier and is not a 'try'. This
133 /// routine is necessary to disambiguate \@try-statement from,
134 /// for example, \@encode-expression.
136 ExprResult
137 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
138 ExprResult LHS(ParseObjCAtExpression(AtLoc));
139 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
142 /// This routine is called when a leading '__extension__' is seen and
143 /// consumed. This is necessary because the token gets consumed in the
144 /// process of disambiguating between an expression and a declaration.
145 ExprResult
146 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
147 ExprResult LHS(true);
149 // Silence extension warnings in the sub-expression
150 ExtensionRAIIObject O(Diags);
152 LHS = ParseCastExpression(AnyCastExpr);
155 if (!LHS.isInvalid())
156 LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
157 LHS.get());
159 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
162 /// Parse an expr that doesn't include (top-level) commas.
163 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
164 if (Tok.is(tok::code_completion)) {
165 cutOffParsing();
166 Actions.CodeCompleteExpression(getCurScope(),
167 PreferredType.get(Tok.getLocation()));
168 return ExprError();
171 if (Tok.is(tok::kw_throw))
172 return ParseThrowExpression();
173 if (Tok.is(tok::kw_co_yield))
174 return ParseCoyieldExpression();
176 ExprResult LHS = ParseCastExpression(AnyCastExpr,
177 /*isAddressOfOperand=*/false,
178 isTypeCast);
179 return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
182 /// Parse an assignment expression where part of an Objective-C message
183 /// send has already been parsed.
185 /// In this case \p LBracLoc indicates the location of the '[' of the message
186 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
187 /// the receiver of the message.
189 /// Since this handles full assignment-expression's, it handles postfix
190 /// expressions and other binary operators for these expressions as well.
191 ExprResult
192 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
193 SourceLocation SuperLoc,
194 ParsedType ReceiverType,
195 Expr *ReceiverExpr) {
196 ExprResult R
197 = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
198 ReceiverType, ReceiverExpr);
199 R = ParsePostfixExpressionSuffix(R);
200 return ParseRHSOfBinaryExpression(R, prec::Assignment);
203 ExprResult
204 Parser::ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast) {
205 assert(Actions.ExprEvalContexts.back().Context ==
206 Sema::ExpressionEvaluationContext::ConstantEvaluated &&
207 "Call this function only if your ExpressionEvaluationContext is "
208 "already ConstantEvaluated");
209 ExprResult LHS(ParseCastExpression(AnyCastExpr, false, isTypeCast));
210 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
211 return Actions.ActOnConstantExpression(Res);
214 ExprResult Parser::ParseConstantExpression() {
215 // C++03 [basic.def.odr]p2:
216 // An expression is potentially evaluated unless it appears where an
217 // integral constant expression is required (see 5.19) [...].
218 // C++98 and C++11 have no such rule, but this is only a defect in C++98.
219 EnterExpressionEvaluationContext ConstantEvaluated(
220 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
221 return ParseConstantExpressionInExprEvalContext(NotTypeCast);
224 ExprResult Parser::ParseArrayBoundExpression() {
225 EnterExpressionEvaluationContext ConstantEvaluated(
226 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
227 // If we parse the bound of a VLA... we parse a non-constant
228 // constant-expression!
229 Actions.ExprEvalContexts.back().InConditionallyConstantEvaluateContext = true;
230 return ParseConstantExpressionInExprEvalContext(NotTypeCast);
233 ExprResult Parser::ParseCaseExpression(SourceLocation CaseLoc) {
234 EnterExpressionEvaluationContext ConstantEvaluated(
235 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
236 ExprResult LHS(ParseCastExpression(AnyCastExpr, false, NotTypeCast));
237 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
238 return Actions.ActOnCaseExpr(CaseLoc, Res);
241 /// Parse a constraint-expression.
243 /// \verbatim
244 /// constraint-expression: C++2a[temp.constr.decl]p1
245 /// logical-or-expression
246 /// \endverbatim
247 ExprResult Parser::ParseConstraintExpression() {
248 EnterExpressionEvaluationContext ConstantEvaluated(
249 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
250 ExprResult LHS(ParseCastExpression(AnyCastExpr));
251 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr));
252 if (Res.isUsable() && !Actions.CheckConstraintExpression(Res.get())) {
253 Actions.CorrectDelayedTyposInExpr(Res);
254 return ExprError();
256 return Res;
259 /// \brief Parse a constraint-logical-and-expression.
261 /// \verbatim
262 /// C++2a[temp.constr.decl]p1
263 /// constraint-logical-and-expression:
264 /// primary-expression
265 /// constraint-logical-and-expression '&&' primary-expression
267 /// \endverbatim
268 ExprResult
269 Parser::ParseConstraintLogicalAndExpression(bool IsTrailingRequiresClause) {
270 EnterExpressionEvaluationContext ConstantEvaluated(
271 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
272 bool NotPrimaryExpression = false;
273 auto ParsePrimary = [&] () {
274 ExprResult E = ParseCastExpression(PrimaryExprOnly,
275 /*isAddressOfOperand=*/false,
276 /*isTypeCast=*/NotTypeCast,
277 /*isVectorLiteral=*/false,
278 &NotPrimaryExpression);
279 if (E.isInvalid())
280 return ExprError();
281 auto RecoverFromNonPrimary = [&] (ExprResult E, bool Note) {
282 E = ParsePostfixExpressionSuffix(E);
283 // Use InclusiveOr, the precedence just after '&&' to not parse the
284 // next arguments to the logical and.
285 E = ParseRHSOfBinaryExpression(E, prec::InclusiveOr);
286 if (!E.isInvalid())
287 Diag(E.get()->getExprLoc(),
288 Note
289 ? diag::note_unparenthesized_non_primary_expr_in_requires_clause
290 : diag::err_unparenthesized_non_primary_expr_in_requires_clause)
291 << FixItHint::CreateInsertion(E.get()->getBeginLoc(), "(")
292 << FixItHint::CreateInsertion(
293 PP.getLocForEndOfToken(E.get()->getEndLoc()), ")")
294 << E.get()->getSourceRange();
295 return E;
298 if (NotPrimaryExpression ||
299 // Check if the following tokens must be a part of a non-primary
300 // expression
301 getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
302 /*CPlusPlus11=*/true) > prec::LogicalAnd ||
303 // Postfix operators other than '(' (which will be checked for in
304 // CheckConstraintExpression).
305 Tok.isOneOf(tok::period, tok::plusplus, tok::minusminus) ||
306 (Tok.is(tok::l_square) && !NextToken().is(tok::l_square))) {
307 E = RecoverFromNonPrimary(E, /*Note=*/false);
308 if (E.isInvalid())
309 return ExprError();
310 NotPrimaryExpression = false;
312 bool PossibleNonPrimary;
313 bool IsConstraintExpr =
314 Actions.CheckConstraintExpression(E.get(), Tok, &PossibleNonPrimary,
315 IsTrailingRequiresClause);
316 if (!IsConstraintExpr || PossibleNonPrimary) {
317 // Atomic constraint might be an unparenthesized non-primary expression
318 // (such as a binary operator), in which case we might get here (e.g. in
319 // 'requires 0 + 1 && true' we would now be at '+', and parse and ignore
320 // the rest of the addition expression). Try to parse the rest of it here.
321 if (PossibleNonPrimary)
322 E = RecoverFromNonPrimary(E, /*Note=*/!IsConstraintExpr);
323 Actions.CorrectDelayedTyposInExpr(E);
324 return ExprError();
326 return E;
328 ExprResult LHS = ParsePrimary();
329 if (LHS.isInvalid())
330 return ExprError();
331 while (Tok.is(tok::ampamp)) {
332 SourceLocation LogicalAndLoc = ConsumeToken();
333 ExprResult RHS = ParsePrimary();
334 if (RHS.isInvalid()) {
335 Actions.CorrectDelayedTyposInExpr(LHS);
336 return ExprError();
338 ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalAndLoc,
339 tok::ampamp, LHS.get(), RHS.get());
340 if (!Op.isUsable()) {
341 Actions.CorrectDelayedTyposInExpr(RHS);
342 Actions.CorrectDelayedTyposInExpr(LHS);
343 return ExprError();
345 LHS = Op;
347 return LHS;
350 /// \brief Parse a constraint-logical-or-expression.
352 /// \verbatim
353 /// C++2a[temp.constr.decl]p1
354 /// constraint-logical-or-expression:
355 /// constraint-logical-and-expression
356 /// constraint-logical-or-expression '||'
357 /// constraint-logical-and-expression
359 /// \endverbatim
360 ExprResult
361 Parser::ParseConstraintLogicalOrExpression(bool IsTrailingRequiresClause) {
362 ExprResult LHS(ParseConstraintLogicalAndExpression(IsTrailingRequiresClause));
363 if (!LHS.isUsable())
364 return ExprError();
365 while (Tok.is(tok::pipepipe)) {
366 SourceLocation LogicalOrLoc = ConsumeToken();
367 ExprResult RHS =
368 ParseConstraintLogicalAndExpression(IsTrailingRequiresClause);
369 if (!RHS.isUsable()) {
370 Actions.CorrectDelayedTyposInExpr(LHS);
371 return ExprError();
373 ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalOrLoc,
374 tok::pipepipe, LHS.get(), RHS.get());
375 if (!Op.isUsable()) {
376 Actions.CorrectDelayedTyposInExpr(RHS);
377 Actions.CorrectDelayedTyposInExpr(LHS);
378 return ExprError();
380 LHS = Op;
382 return LHS;
385 bool Parser::isNotExpressionStart() {
386 tok::TokenKind K = Tok.getKind();
387 if (K == tok::l_brace || K == tok::r_brace ||
388 K == tok::kw_for || K == tok::kw_while ||
389 K == tok::kw_if || K == tok::kw_else ||
390 K == tok::kw_goto || K == tok::kw_try)
391 return true;
392 // If this is a decl-specifier, we can't be at the start of an expression.
393 return isKnownToBeDeclarationSpecifier();
396 bool Parser::isFoldOperator(prec::Level Level) const {
397 return Level > prec::Unknown && Level != prec::Conditional &&
398 Level != prec::Spaceship;
401 bool Parser::isFoldOperator(tok::TokenKind Kind) const {
402 return isFoldOperator(getBinOpPrecedence(Kind, GreaterThanIsOperator, true));
405 /// Parse a binary expression that starts with \p LHS and has a
406 /// precedence of at least \p MinPrec.
407 ExprResult
408 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
409 prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
410 GreaterThanIsOperator,
411 getLangOpts().CPlusPlus11);
412 SourceLocation ColonLoc;
414 auto SavedType = PreferredType;
415 while (true) {
416 // Every iteration may rely on a preferred type for the whole expression.
417 PreferredType = SavedType;
418 // If this token has a lower precedence than we are allowed to parse (e.g.
419 // because we are called recursively, or because the token is not a binop),
420 // then we are done!
421 if (NextTokPrec < MinPrec)
422 return LHS;
424 // Consume the operator, saving the operator token for error reporting.
425 Token OpToken = Tok;
426 ConsumeToken();
428 if (OpToken.is(tok::caretcaret)) {
429 return ExprError(Diag(Tok, diag::err_opencl_logical_exclusive_or));
432 // If we're potentially in a template-id, we may now be able to determine
433 // whether we're actually in one or not.
434 if (OpToken.isOneOf(tok::comma, tok::greater, tok::greatergreater,
435 tok::greatergreatergreater) &&
436 checkPotentialAngleBracketDelimiter(OpToken))
437 return ExprError();
439 // Bail out when encountering a comma followed by a token which can't
440 // possibly be the start of an expression. For instance:
441 // int f() { return 1, }
442 // We can't do this before consuming the comma, because
443 // isNotExpressionStart() looks at the token stream.
444 if (OpToken.is(tok::comma) && isNotExpressionStart()) {
445 PP.EnterToken(Tok, /*IsReinject*/true);
446 Tok = OpToken;
447 return LHS;
450 // If the next token is an ellipsis, then this is a fold-expression. Leave
451 // it alone so we can handle it in the paren expression.
452 if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) {
453 // FIXME: We can't check this via lookahead before we consume the token
454 // because that tickles a lexer bug.
455 PP.EnterToken(Tok, /*IsReinject*/true);
456 Tok = OpToken;
457 return LHS;
460 // In Objective-C++, alternative operator tokens can be used as keyword args
461 // in message expressions. Unconsume the token so that it can reinterpreted
462 // as an identifier in ParseObjCMessageExpressionBody. i.e., we support:
463 // [foo meth:0 and:0];
464 // [foo not_eq];
465 if (getLangOpts().ObjC && getLangOpts().CPlusPlus &&
466 Tok.isOneOf(tok::colon, tok::r_square) &&
467 OpToken.getIdentifierInfo() != nullptr) {
468 PP.EnterToken(Tok, /*IsReinject*/true);
469 Tok = OpToken;
470 return LHS;
473 // Special case handling for the ternary operator.
474 ExprResult TernaryMiddle(true);
475 if (NextTokPrec == prec::Conditional) {
476 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
477 // Parse a braced-init-list here for error recovery purposes.
478 SourceLocation BraceLoc = Tok.getLocation();
479 TernaryMiddle = ParseBraceInitializer();
480 if (!TernaryMiddle.isInvalid()) {
481 Diag(BraceLoc, diag::err_init_list_bin_op)
482 << /*RHS*/ 1 << PP.getSpelling(OpToken)
483 << Actions.getExprRange(TernaryMiddle.get());
484 TernaryMiddle = ExprError();
486 } else if (Tok.isNot(tok::colon)) {
487 // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
488 ColonProtectionRAIIObject X(*this);
490 // Handle this production specially:
491 // logical-OR-expression '?' expression ':' conditional-expression
492 // In particular, the RHS of the '?' is 'expression', not
493 // 'logical-OR-expression' as we might expect.
494 TernaryMiddle = ParseExpression();
495 } else {
496 // Special case handling of "X ? Y : Z" where Y is empty:
497 // logical-OR-expression '?' ':' conditional-expression [GNU]
498 TernaryMiddle = nullptr;
499 Diag(Tok, diag::ext_gnu_conditional_expr);
502 if (TernaryMiddle.isInvalid()) {
503 Actions.CorrectDelayedTyposInExpr(LHS);
504 LHS = ExprError();
505 TernaryMiddle = nullptr;
508 if (!TryConsumeToken(tok::colon, ColonLoc)) {
509 // Otherwise, we're missing a ':'. Assume that this was a typo that
510 // the user forgot. If we're not in a macro expansion, we can suggest
511 // a fixit hint. If there were two spaces before the current token,
512 // suggest inserting the colon in between them, otherwise insert ": ".
513 SourceLocation FILoc = Tok.getLocation();
514 const char *FIText = ": ";
515 const SourceManager &SM = PP.getSourceManager();
516 if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
517 assert(FILoc.isFileID());
518 bool IsInvalid = false;
519 const char *SourcePtr =
520 SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
521 if (!IsInvalid && *SourcePtr == ' ') {
522 SourcePtr =
523 SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
524 if (!IsInvalid && *SourcePtr == ' ') {
525 FILoc = FILoc.getLocWithOffset(-1);
526 FIText = ":";
531 Diag(Tok, diag::err_expected)
532 << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
533 Diag(OpToken, diag::note_matching) << tok::question;
534 ColonLoc = Tok.getLocation();
538 PreferredType.enterBinary(Actions, Tok.getLocation(), LHS.get(),
539 OpToken.getKind());
540 // Parse another leaf here for the RHS of the operator.
541 // ParseCastExpression works here because all RHS expressions in C have it
542 // as a prefix, at least. However, in C++, an assignment-expression could
543 // be a throw-expression, which is not a valid cast-expression.
544 // Therefore we need some special-casing here.
545 // Also note that the third operand of the conditional operator is
546 // an assignment-expression in C++, and in C++11, we can have a
547 // braced-init-list on the RHS of an assignment. For better diagnostics,
548 // parse as if we were allowed braced-init-lists everywhere, and check that
549 // they only appear on the RHS of assignments later.
550 ExprResult RHS;
551 bool RHSIsInitList = false;
552 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
553 RHS = ParseBraceInitializer();
554 RHSIsInitList = true;
555 } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
556 RHS = ParseAssignmentExpression();
557 else
558 RHS = ParseCastExpression(AnyCastExpr);
560 if (RHS.isInvalid()) {
561 // FIXME: Errors generated by the delayed typo correction should be
562 // printed before errors from parsing the RHS, not after.
563 Actions.CorrectDelayedTyposInExpr(LHS);
564 if (TernaryMiddle.isUsable())
565 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
566 LHS = ExprError();
569 // Remember the precedence of this operator and get the precedence of the
570 // operator immediately to the right of the RHS.
571 prec::Level ThisPrec = NextTokPrec;
572 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
573 getLangOpts().CPlusPlus11);
575 // Assignment and conditional expressions are right-associative.
576 bool isRightAssoc = ThisPrec == prec::Conditional ||
577 ThisPrec == prec::Assignment;
579 // Get the precedence of the operator to the right of the RHS. If it binds
580 // more tightly with RHS than we do, evaluate it completely first.
581 if (ThisPrec < NextTokPrec ||
582 (ThisPrec == NextTokPrec && isRightAssoc)) {
583 if (!RHS.isInvalid() && RHSIsInitList) {
584 Diag(Tok, diag::err_init_list_bin_op)
585 << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
586 RHS = ExprError();
588 // If this is left-associative, only parse things on the RHS that bind
589 // more tightly than the current operator. If it is left-associative, it
590 // is okay, to bind exactly as tightly. For example, compile A=B=C=D as
591 // A=(B=(C=D)), where each paren is a level of recursion here.
592 // The function takes ownership of the RHS.
593 RHS = ParseRHSOfBinaryExpression(RHS,
594 static_cast<prec::Level>(ThisPrec + !isRightAssoc));
595 RHSIsInitList = false;
597 if (RHS.isInvalid()) {
598 // FIXME: Errors generated by the delayed typo correction should be
599 // printed before errors from ParseRHSOfBinaryExpression, not after.
600 Actions.CorrectDelayedTyposInExpr(LHS);
601 if (TernaryMiddle.isUsable())
602 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
603 LHS = ExprError();
606 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
607 getLangOpts().CPlusPlus11);
610 if (!RHS.isInvalid() && RHSIsInitList) {
611 if (ThisPrec == prec::Assignment) {
612 Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
613 << Actions.getExprRange(RHS.get());
614 } else if (ColonLoc.isValid()) {
615 Diag(ColonLoc, diag::err_init_list_bin_op)
616 << /*RHS*/1 << ":"
617 << Actions.getExprRange(RHS.get());
618 LHS = ExprError();
619 } else {
620 Diag(OpToken, diag::err_init_list_bin_op)
621 << /*RHS*/1 << PP.getSpelling(OpToken)
622 << Actions.getExprRange(RHS.get());
623 LHS = ExprError();
627 ExprResult OrigLHS = LHS;
628 if (!LHS.isInvalid()) {
629 // Combine the LHS and RHS into the LHS (e.g. build AST).
630 if (TernaryMiddle.isInvalid()) {
631 // If we're using '>>' as an operator within a template
632 // argument list (in C++98), suggest the addition of
633 // parentheses so that the code remains well-formed in C++0x.
634 if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
635 SuggestParentheses(OpToken.getLocation(),
636 diag::warn_cxx11_right_shift_in_template_arg,
637 SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
638 Actions.getExprRange(RHS.get()).getEnd()));
640 ExprResult BinOp =
641 Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
642 OpToken.getKind(), LHS.get(), RHS.get());
643 if (BinOp.isInvalid())
644 BinOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(),
645 RHS.get()->getEndLoc(),
646 {LHS.get(), RHS.get()});
648 LHS = BinOp;
649 } else {
650 ExprResult CondOp = Actions.ActOnConditionalOp(
651 OpToken.getLocation(), ColonLoc, LHS.get(), TernaryMiddle.get(),
652 RHS.get());
653 if (CondOp.isInvalid()) {
654 std::vector<clang::Expr *> Args;
655 // TernaryMiddle can be null for the GNU conditional expr extension.
656 if (TernaryMiddle.get())
657 Args = {LHS.get(), TernaryMiddle.get(), RHS.get()};
658 else
659 Args = {LHS.get(), RHS.get()};
660 CondOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(),
661 RHS.get()->getEndLoc(), Args);
664 LHS = CondOp;
666 // In this case, ActOnBinOp or ActOnConditionalOp performed the
667 // CorrectDelayedTyposInExpr check.
668 if (!getLangOpts().CPlusPlus)
669 continue;
672 // Ensure potential typos aren't left undiagnosed.
673 if (LHS.isInvalid()) {
674 Actions.CorrectDelayedTyposInExpr(OrigLHS);
675 Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
676 Actions.CorrectDelayedTyposInExpr(RHS);
681 /// Parse a cast-expression, unary-expression or primary-expression, based
682 /// on \p ExprType.
684 /// \p isAddressOfOperand exists because an id-expression that is the
685 /// operand of address-of gets special treatment due to member pointers.
687 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind,
688 bool isAddressOfOperand,
689 TypeCastState isTypeCast,
690 bool isVectorLiteral,
691 bool *NotPrimaryExpression) {
692 bool NotCastExpr;
693 ExprResult Res = ParseCastExpression(ParseKind,
694 isAddressOfOperand,
695 NotCastExpr,
696 isTypeCast,
697 isVectorLiteral,
698 NotPrimaryExpression);
699 if (NotCastExpr)
700 Diag(Tok, diag::err_expected_expression);
701 return Res;
704 namespace {
705 class CastExpressionIdValidator final : public CorrectionCandidateCallback {
706 public:
707 CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes)
708 : NextToken(Next), AllowNonTypes(AllowNonTypes) {
709 WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes;
712 bool ValidateCandidate(const TypoCorrection &candidate) override {
713 NamedDecl *ND = candidate.getCorrectionDecl();
714 if (!ND)
715 return candidate.isKeyword();
717 if (isa<TypeDecl>(ND))
718 return WantTypeSpecifiers;
720 if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate))
721 return false;
723 if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period))
724 return true;
726 for (auto *C : candidate) {
727 NamedDecl *ND = C->getUnderlyingDecl();
728 if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND))
729 return true;
731 return false;
734 std::unique_ptr<CorrectionCandidateCallback> clone() override {
735 return std::make_unique<CastExpressionIdValidator>(*this);
738 private:
739 Token NextToken;
740 bool AllowNonTypes;
744 /// Parse a cast-expression, or, if \pisUnaryExpression is true, parse
745 /// a unary-expression.
747 /// \p isAddressOfOperand exists because an id-expression that is the operand
748 /// of address-of gets special treatment due to member pointers. NotCastExpr
749 /// is set to true if the token is not the start of a cast-expression, and no
750 /// diagnostic is emitted in this case and no tokens are consumed.
752 /// \verbatim
753 /// cast-expression: [C99 6.5.4]
754 /// unary-expression
755 /// '(' type-name ')' cast-expression
757 /// unary-expression: [C99 6.5.3]
758 /// postfix-expression
759 /// '++' unary-expression
760 /// '--' unary-expression
761 /// [Coro] 'co_await' cast-expression
762 /// unary-operator cast-expression
763 /// 'sizeof' unary-expression
764 /// 'sizeof' '(' type-name ')'
765 /// [C++11] 'sizeof' '...' '(' identifier ')'
766 /// [GNU] '__alignof' unary-expression
767 /// [GNU] '__alignof' '(' type-name ')'
768 /// [C11] '_Alignof' '(' type-name ')'
769 /// [C++11] 'alignof' '(' type-id ')'
770 /// [GNU] '&&' identifier
771 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
772 /// [C++] new-expression
773 /// [C++] delete-expression
775 /// unary-operator: one of
776 /// '&' '*' '+' '-' '~' '!'
777 /// [GNU] '__extension__' '__real' '__imag'
779 /// primary-expression: [C99 6.5.1]
780 /// [C99] identifier
781 /// [C++] id-expression
782 /// constant
783 /// string-literal
784 /// [C++] boolean-literal [C++ 2.13.5]
785 /// [C++11] 'nullptr' [C++11 2.14.7]
786 /// [C++11] user-defined-literal
787 /// '(' expression ')'
788 /// [C11] generic-selection
789 /// [C++2a] requires-expression
790 /// '__func__' [C99 6.4.2.2]
791 /// [GNU] '__FUNCTION__'
792 /// [MS] '__FUNCDNAME__'
793 /// [MS] 'L__FUNCTION__'
794 /// [MS] '__FUNCSIG__'
795 /// [MS] 'L__FUNCSIG__'
796 /// [GNU] '__PRETTY_FUNCTION__'
797 /// [GNU] '(' compound-statement ')'
798 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
799 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
800 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
801 /// assign-expr ')'
802 /// [GNU] '__builtin_FILE' '(' ')'
803 /// [CLANG] '__builtin_FILE_NAME' '(' ')'
804 /// [GNU] '__builtin_FUNCTION' '(' ')'
805 /// [MS] '__builtin_FUNCSIG' '(' ')'
806 /// [GNU] '__builtin_LINE' '(' ')'
807 /// [CLANG] '__builtin_COLUMN' '(' ')'
808 /// [GNU] '__builtin_source_location' '(' ')'
809 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
810 /// [GNU] '__null'
811 /// [OBJC] '[' objc-message-expr ']'
812 /// [OBJC] '\@selector' '(' objc-selector-arg ')'
813 /// [OBJC] '\@protocol' '(' identifier ')'
814 /// [OBJC] '\@encode' '(' type-name ')'
815 /// [OBJC] objc-string-literal
816 /// [C++] simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
817 /// [C++11] simple-type-specifier braced-init-list [C++11 5.2.3]
818 /// [C++] typename-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
819 /// [C++11] typename-specifier braced-init-list [C++11 5.2.3]
820 /// [C++] 'const_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
821 /// [C++] 'dynamic_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
822 /// [C++] 'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
823 /// [C++] 'static_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
824 /// [C++] 'typeid' '(' expression ')' [C++ 5.2p1]
825 /// [C++] 'typeid' '(' type-id ')' [C++ 5.2p1]
826 /// [C++] 'this' [C++ 9.3.2]
827 /// [G++] unary-type-trait '(' type-id ')'
828 /// [G++] binary-type-trait '(' type-id ',' type-id ')' [TODO]
829 /// [EMBT] array-type-trait '(' type-id ',' integer ')'
830 /// [clang] '^' block-literal
832 /// constant: [C99 6.4.4]
833 /// integer-constant
834 /// floating-constant
835 /// enumeration-constant -> identifier
836 /// character-constant
838 /// id-expression: [C++ 5.1]
839 /// unqualified-id
840 /// qualified-id
842 /// unqualified-id: [C++ 5.1]
843 /// identifier
844 /// operator-function-id
845 /// conversion-function-id
846 /// '~' class-name
847 /// template-id
849 /// new-expression: [C++ 5.3.4]
850 /// '::'[opt] 'new' new-placement[opt] new-type-id
851 /// new-initializer[opt]
852 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
853 /// new-initializer[opt]
855 /// delete-expression: [C++ 5.3.5]
856 /// '::'[opt] 'delete' cast-expression
857 /// '::'[opt] 'delete' '[' ']' cast-expression
859 /// [GNU/Embarcadero] unary-type-trait:
860 /// '__is_arithmetic'
861 /// '__is_floating_point'
862 /// '__is_integral'
863 /// '__is_lvalue_expr'
864 /// '__is_rvalue_expr'
865 /// '__is_complete_type'
866 /// '__is_void'
867 /// '__is_array'
868 /// '__is_function'
869 /// '__is_reference'
870 /// '__is_lvalue_reference'
871 /// '__is_rvalue_reference'
872 /// '__is_fundamental'
873 /// '__is_object'
874 /// '__is_scalar'
875 /// '__is_compound'
876 /// '__is_pointer'
877 /// '__is_member_object_pointer'
878 /// '__is_member_function_pointer'
879 /// '__is_member_pointer'
880 /// '__is_const'
881 /// '__is_volatile'
882 /// '__is_trivial'
883 /// '__is_standard_layout'
884 /// '__is_signed'
885 /// '__is_unsigned'
887 /// [GNU] unary-type-trait:
888 /// '__has_nothrow_assign'
889 /// '__has_nothrow_copy'
890 /// '__has_nothrow_constructor'
891 /// '__has_trivial_assign' [TODO]
892 /// '__has_trivial_copy' [TODO]
893 /// '__has_trivial_constructor'
894 /// '__has_trivial_destructor'
895 /// '__has_virtual_destructor'
896 /// '__is_abstract' [TODO]
897 /// '__is_class'
898 /// '__is_empty' [TODO]
899 /// '__is_enum'
900 /// '__is_final'
901 /// '__is_pod'
902 /// '__is_polymorphic'
903 /// '__is_sealed' [MS]
904 /// '__is_trivial'
905 /// '__is_union'
906 /// '__has_unique_object_representations'
908 /// [Clang] unary-type-trait:
909 /// '__is_aggregate'
910 /// '__trivially_copyable'
912 /// binary-type-trait:
913 /// [GNU] '__is_base_of'
914 /// [MS] '__is_convertible_to'
915 /// '__is_convertible'
916 /// '__is_same'
918 /// [Embarcadero] array-type-trait:
919 /// '__array_rank'
920 /// '__array_extent'
922 /// [Embarcadero] expression-trait:
923 /// '__is_lvalue_expr'
924 /// '__is_rvalue_expr'
925 /// \endverbatim
927 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind,
928 bool isAddressOfOperand,
929 bool &NotCastExpr,
930 TypeCastState isTypeCast,
931 bool isVectorLiteral,
932 bool *NotPrimaryExpression) {
933 ExprResult Res;
934 tok::TokenKind SavedKind = Tok.getKind();
935 auto SavedType = PreferredType;
936 NotCastExpr = false;
938 // Are postfix-expression suffix operators permitted after this
939 // cast-expression? If not, and we find some, we'll parse them anyway and
940 // diagnose them.
941 bool AllowSuffix = true;
943 // This handles all of cast-expression, unary-expression, postfix-expression,
944 // and primary-expression. We handle them together like this for efficiency
945 // and to simplify handling of an expression starting with a '(' token: which
946 // may be one of a parenthesized expression, cast-expression, compound literal
947 // expression, or statement expression.
949 // If the parsed tokens consist of a primary-expression, the cases below
950 // break out of the switch; at the end we call ParsePostfixExpressionSuffix
951 // to handle the postfix expression suffixes. Cases that cannot be followed
952 // by postfix exprs should set AllowSuffix to false.
953 switch (SavedKind) {
954 case tok::l_paren: {
955 // If this expression is limited to being a unary-expression, the paren can
956 // not start a cast expression.
957 ParenParseOption ParenExprType;
958 switch (ParseKind) {
959 case CastParseKind::UnaryExprOnly:
960 assert(getLangOpts().CPlusPlus && "not possible to get here in C");
961 [[fallthrough]];
962 case CastParseKind::AnyCastExpr:
963 ParenExprType = ParenParseOption::CastExpr;
964 break;
965 case CastParseKind::PrimaryExprOnly:
966 ParenExprType = FoldExpr;
967 break;
969 ParsedType CastTy;
970 SourceLocation RParenLoc;
971 Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
972 isTypeCast == IsTypeCast, CastTy, RParenLoc);
974 // FIXME: What should we do if a vector literal is followed by a
975 // postfix-expression suffix? Usually postfix operators are permitted on
976 // literals.
977 if (isVectorLiteral)
978 return Res;
980 switch (ParenExprType) {
981 case SimpleExpr: break; // Nothing else to do.
982 case CompoundStmt: break; // Nothing else to do.
983 case CompoundLiteral:
984 // We parsed '(' type-name ')' '{' ... '}'. If any suffixes of
985 // postfix-expression exist, parse them now.
986 break;
987 case CastExpr:
988 // We have parsed the cast-expression and no postfix-expr pieces are
989 // following.
990 return Res;
991 case FoldExpr:
992 // We only parsed a fold-expression. There might be postfix-expr pieces
993 // afterwards; parse them now.
994 break;
997 break;
1000 // primary-expression
1001 case tok::numeric_constant:
1002 // constant: integer-constant
1003 // constant: floating-constant
1005 Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
1006 ConsumeToken();
1007 break;
1009 case tok::kw_true:
1010 case tok::kw_false:
1011 Res = ParseCXXBoolLiteral();
1012 break;
1014 case tok::kw___objc_yes:
1015 case tok::kw___objc_no:
1016 Res = ParseObjCBoolLiteral();
1017 break;
1019 case tok::kw_nullptr:
1020 if (getLangOpts().CPlusPlus)
1021 Diag(Tok, diag::warn_cxx98_compat_nullptr);
1022 else
1023 Diag(Tok, getLangOpts().C23 ? diag::warn_c23_compat_keyword
1024 : diag::ext_c_nullptr) << Tok.getName();
1026 Res = Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
1027 break;
1029 case tok::annot_primary_expr:
1030 case tok::annot_overload_set:
1031 Res = getExprAnnotation(Tok);
1032 if (!Res.isInvalid() && Tok.getKind() == tok::annot_overload_set)
1033 Res = Actions.ActOnNameClassifiedAsOverloadSet(getCurScope(), Res.get());
1034 ConsumeAnnotationToken();
1035 if (!Res.isInvalid() && Tok.is(tok::less))
1036 checkPotentialAngleBracket(Res);
1037 break;
1039 case tok::annot_non_type:
1040 case tok::annot_non_type_dependent:
1041 case tok::annot_non_type_undeclared: {
1042 CXXScopeSpec SS;
1043 Token Replacement;
1044 Res = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
1045 assert(!Res.isUnset() &&
1046 "should not perform typo correction on annotation token");
1047 break;
1050 case tok::kw___super:
1051 case tok::kw_decltype:
1052 // Annotate the token and tail recurse.
1053 if (TryAnnotateTypeOrScopeToken())
1054 return ExprError();
1055 assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super));
1056 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1057 isVectorLiteral, NotPrimaryExpression);
1059 case tok::identifier:
1060 ParseIdentifier: { // primary-expression: identifier
1061 // unqualified-id: identifier
1062 // constant: enumeration-constant
1063 // Turn a potentially qualified name into a annot_typename or
1064 // annot_cxxscope if it would be valid. This handles things like x::y, etc.
1065 if (getLangOpts().CPlusPlus) {
1066 // Avoid the unnecessary parse-time lookup in the common case
1067 // where the syntax forbids a type.
1068 const Token &Next = NextToken();
1070 // If this identifier was reverted from a token ID, and the next token
1071 // is a parenthesis, this is likely to be a use of a type trait. Check
1072 // those tokens.
1073 if (Next.is(tok::l_paren) &&
1074 Tok.is(tok::identifier) &&
1075 Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
1076 IdentifierInfo *II = Tok.getIdentifierInfo();
1077 // Build up the mapping of revertible type traits, for future use.
1078 if (RevertibleTypeTraits.empty()) {
1079 #define RTT_JOIN(X,Y) X##Y
1080 #define REVERTIBLE_TYPE_TRAIT(Name) \
1081 RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \
1082 = RTT_JOIN(tok::kw_,Name)
1084 REVERTIBLE_TYPE_TRAIT(__is_abstract);
1085 REVERTIBLE_TYPE_TRAIT(__is_aggregate);
1086 REVERTIBLE_TYPE_TRAIT(__is_arithmetic);
1087 REVERTIBLE_TYPE_TRAIT(__is_array);
1088 REVERTIBLE_TYPE_TRAIT(__is_assignable);
1089 REVERTIBLE_TYPE_TRAIT(__is_base_of);
1090 REVERTIBLE_TYPE_TRAIT(__is_bounded_array);
1091 REVERTIBLE_TYPE_TRAIT(__is_class);
1092 REVERTIBLE_TYPE_TRAIT(__is_complete_type);
1093 REVERTIBLE_TYPE_TRAIT(__is_compound);
1094 REVERTIBLE_TYPE_TRAIT(__is_const);
1095 REVERTIBLE_TYPE_TRAIT(__is_constructible);
1096 REVERTIBLE_TYPE_TRAIT(__is_convertible);
1097 REVERTIBLE_TYPE_TRAIT(__is_convertible_to);
1098 REVERTIBLE_TYPE_TRAIT(__is_destructible);
1099 REVERTIBLE_TYPE_TRAIT(__is_empty);
1100 REVERTIBLE_TYPE_TRAIT(__is_enum);
1101 REVERTIBLE_TYPE_TRAIT(__is_floating_point);
1102 REVERTIBLE_TYPE_TRAIT(__is_final);
1103 REVERTIBLE_TYPE_TRAIT(__is_function);
1104 REVERTIBLE_TYPE_TRAIT(__is_fundamental);
1105 REVERTIBLE_TYPE_TRAIT(__is_integral);
1106 REVERTIBLE_TYPE_TRAIT(__is_interface_class);
1107 REVERTIBLE_TYPE_TRAIT(__is_literal);
1108 REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr);
1109 REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference);
1110 REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer);
1111 REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer);
1112 REVERTIBLE_TYPE_TRAIT(__is_member_pointer);
1113 REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable);
1114 REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible);
1115 REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible);
1116 REVERTIBLE_TYPE_TRAIT(__is_nullptr);
1117 REVERTIBLE_TYPE_TRAIT(__is_object);
1118 REVERTIBLE_TYPE_TRAIT(__is_pod);
1119 REVERTIBLE_TYPE_TRAIT(__is_pointer);
1120 REVERTIBLE_TYPE_TRAIT(__is_polymorphic);
1121 REVERTIBLE_TYPE_TRAIT(__is_reference);
1122 REVERTIBLE_TYPE_TRAIT(__is_referenceable);
1123 REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr);
1124 REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference);
1125 REVERTIBLE_TYPE_TRAIT(__is_same);
1126 REVERTIBLE_TYPE_TRAIT(__is_scalar);
1127 REVERTIBLE_TYPE_TRAIT(__is_scoped_enum);
1128 REVERTIBLE_TYPE_TRAIT(__is_sealed);
1129 REVERTIBLE_TYPE_TRAIT(__is_signed);
1130 REVERTIBLE_TYPE_TRAIT(__is_standard_layout);
1131 REVERTIBLE_TYPE_TRAIT(__is_trivial);
1132 REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable);
1133 REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible);
1134 REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable);
1135 REVERTIBLE_TYPE_TRAIT(__is_unbounded_array);
1136 REVERTIBLE_TYPE_TRAIT(__is_union);
1137 REVERTIBLE_TYPE_TRAIT(__is_unsigned);
1138 REVERTIBLE_TYPE_TRAIT(__is_void);
1139 REVERTIBLE_TYPE_TRAIT(__is_volatile);
1140 REVERTIBLE_TYPE_TRAIT(__reference_binds_to_temporary);
1141 REVERTIBLE_TYPE_TRAIT(__reference_constructs_from_temporary);
1142 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) \
1143 REVERTIBLE_TYPE_TRAIT(RTT_JOIN(__, Trait));
1144 #include "clang/Basic/TransformTypeTraits.def"
1145 #undef REVERTIBLE_TYPE_TRAIT
1146 #undef RTT_JOIN
1149 // If we find that this is in fact the name of a type trait,
1150 // update the token kind in place and parse again to treat it as
1151 // the appropriate kind of type trait.
1152 llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
1153 = RevertibleTypeTraits.find(II);
1154 if (Known != RevertibleTypeTraits.end()) {
1155 Tok.setKind(Known->second);
1156 return ParseCastExpression(ParseKind, isAddressOfOperand,
1157 NotCastExpr, isTypeCast,
1158 isVectorLiteral, NotPrimaryExpression);
1162 if ((!ColonIsSacred && Next.is(tok::colon)) ||
1163 Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren,
1164 tok::l_brace)) {
1165 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1166 if (TryAnnotateTypeOrScopeToken())
1167 return ExprError();
1168 if (!Tok.is(tok::identifier))
1169 return ParseCastExpression(ParseKind, isAddressOfOperand,
1170 NotCastExpr, isTypeCast,
1171 isVectorLiteral,
1172 NotPrimaryExpression);
1176 // Consume the identifier so that we can see if it is followed by a '(' or
1177 // '.'.
1178 IdentifierInfo &II = *Tok.getIdentifierInfo();
1179 SourceLocation ILoc = ConsumeToken();
1181 // Support 'Class.property' and 'super.property' notation.
1182 if (getLangOpts().ObjC && Tok.is(tok::period) &&
1183 (Actions.getTypeName(II, ILoc, getCurScope()) ||
1184 // Allow the base to be 'super' if in an objc-method.
1185 (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
1186 ConsumeToken();
1188 if (Tok.is(tok::code_completion) && &II != Ident_super) {
1189 cutOffParsing();
1190 Actions.CodeCompleteObjCClassPropertyRefExpr(
1191 getCurScope(), II, ILoc, ExprStatementTokLoc == ILoc);
1192 return ExprError();
1194 // Allow either an identifier or the keyword 'class' (in C++).
1195 if (Tok.isNot(tok::identifier) &&
1196 !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
1197 Diag(Tok, diag::err_expected_property_name);
1198 return ExprError();
1200 IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
1201 SourceLocation PropertyLoc = ConsumeToken();
1203 Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
1204 ILoc, PropertyLoc);
1205 break;
1208 // In an Objective-C method, if we have "super" followed by an identifier,
1209 // the token sequence is ill-formed. However, if there's a ':' or ']' after
1210 // that identifier, this is probably a message send with a missing open
1211 // bracket. Treat it as such.
1212 if (getLangOpts().ObjC && &II == Ident_super && !InMessageExpression &&
1213 getCurScope()->isInObjcMethodScope() &&
1214 ((Tok.is(tok::identifier) &&
1215 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
1216 Tok.is(tok::code_completion))) {
1217 Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, nullptr,
1218 nullptr);
1219 break;
1222 // If we have an Objective-C class name followed by an identifier
1223 // and either ':' or ']', this is an Objective-C class message
1224 // send that's missing the opening '['. Recovery
1225 // appropriately. Also take this path if we're performing code
1226 // completion after an Objective-C class name.
1227 if (getLangOpts().ObjC &&
1228 ((Tok.is(tok::identifier) && !InMessageExpression) ||
1229 Tok.is(tok::code_completion))) {
1230 const Token& Next = NextToken();
1231 if (Tok.is(tok::code_completion) ||
1232 Next.is(tok::colon) || Next.is(tok::r_square))
1233 if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
1234 if (Typ.get()->isObjCObjectOrInterfaceType()) {
1235 // Fake up a Declarator to use with ActOnTypeName.
1236 DeclSpec DS(AttrFactory);
1237 DS.SetRangeStart(ILoc);
1238 DS.SetRangeEnd(ILoc);
1239 const char *PrevSpec = nullptr;
1240 unsigned DiagID;
1241 DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
1242 Actions.getASTContext().getPrintingPolicy());
1244 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1245 DeclaratorContext::TypeName);
1246 TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
1247 DeclaratorInfo);
1248 if (Ty.isInvalid())
1249 break;
1251 Res = ParseObjCMessageExpressionBody(SourceLocation(),
1252 SourceLocation(),
1253 Ty.get(), nullptr);
1254 break;
1258 // Make sure to pass down the right value for isAddressOfOperand.
1259 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
1260 isAddressOfOperand = false;
1262 // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
1263 // need to know whether or not this identifier is a function designator or
1264 // not.
1265 UnqualifiedId Name;
1266 CXXScopeSpec ScopeSpec;
1267 SourceLocation TemplateKWLoc;
1268 Token Replacement;
1269 CastExpressionIdValidator Validator(
1270 /*Next=*/Tok,
1271 /*AllowTypes=*/isTypeCast != NotTypeCast,
1272 /*AllowNonTypes=*/isTypeCast != IsTypeCast);
1273 Validator.IsAddressOfOperand = isAddressOfOperand;
1274 if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) {
1275 Validator.WantExpressionKeywords = false;
1276 Validator.WantRemainingKeywords = false;
1277 } else {
1278 Validator.WantRemainingKeywords = Tok.isNot(tok::r_paren);
1280 Name.setIdentifier(&II, ILoc);
1281 Res = Actions.ActOnIdExpression(
1282 getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren),
1283 isAddressOfOperand, &Validator,
1284 /*IsInlineAsmIdentifier=*/false,
1285 Tok.is(tok::r_paren) ? nullptr : &Replacement);
1286 if (!Res.isInvalid() && Res.isUnset()) {
1287 UnconsumeToken(Replacement);
1288 return ParseCastExpression(ParseKind, isAddressOfOperand,
1289 NotCastExpr, isTypeCast,
1290 /*isVectorLiteral=*/false,
1291 NotPrimaryExpression);
1293 if (!Res.isInvalid() && Tok.is(tok::less))
1294 checkPotentialAngleBracket(Res);
1295 break;
1297 case tok::char_constant: // constant: character-constant
1298 case tok::wide_char_constant:
1299 case tok::utf8_char_constant:
1300 case tok::utf16_char_constant:
1301 case tok::utf32_char_constant:
1302 Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
1303 ConsumeToken();
1304 break;
1305 case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2]
1306 case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU]
1307 case tok::kw___FUNCDNAME__: // primary-expression: __FUNCDNAME__ [MS]
1308 case tok::kw___FUNCSIG__: // primary-expression: __FUNCSIG__ [MS]
1309 case tok::kw_L__FUNCTION__: // primary-expression: L__FUNCTION__ [MS]
1310 case tok::kw_L__FUNCSIG__: // primary-expression: L__FUNCSIG__ [MS]
1311 case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU]
1312 // Function local predefined macros are represented by PredefinedExpr except
1313 // when Microsoft extensions are enabled and one of these macros is adjacent
1314 // to a string literal or another one of these macros.
1315 if (!(getLangOpts().MicrosoftExt &&
1316 tokenIsLikeStringLiteral(Tok, getLangOpts()) &&
1317 tokenIsLikeStringLiteral(NextToken(), getLangOpts()))) {
1318 Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
1319 ConsumeToken();
1320 break;
1322 [[fallthrough]]; // treat MS function local macros as concatenable strings
1323 case tok::string_literal: // primary-expression: string-literal
1324 case tok::wide_string_literal:
1325 case tok::utf8_string_literal:
1326 case tok::utf16_string_literal:
1327 case tok::utf32_string_literal:
1328 Res = ParseStringLiteralExpression(true);
1329 break;
1330 case tok::kw__Generic: // primary-expression: generic-selection [C11 6.5.1]
1331 Res = ParseGenericSelectionExpression();
1332 break;
1333 case tok::kw___builtin_available:
1334 Res = ParseAvailabilityCheckExpr(Tok.getLocation());
1335 break;
1336 case tok::kw___builtin_va_arg:
1337 case tok::kw___builtin_offsetof:
1338 case tok::kw___builtin_choose_expr:
1339 case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
1340 case tok::kw___builtin_convertvector:
1341 case tok::kw___builtin_COLUMN:
1342 case tok::kw___builtin_FILE:
1343 case tok::kw___builtin_FILE_NAME:
1344 case tok::kw___builtin_FUNCTION:
1345 case tok::kw___builtin_FUNCSIG:
1346 case tok::kw___builtin_LINE:
1347 case tok::kw___builtin_source_location:
1348 if (NotPrimaryExpression)
1349 *NotPrimaryExpression = true;
1350 // This parses the complete suffix; we can return early.
1351 return ParseBuiltinPrimaryExpression();
1352 case tok::kw___null:
1353 Res = Actions.ActOnGNUNullExpr(ConsumeToken());
1354 break;
1356 case tok::plusplus: // unary-expression: '++' unary-expression [C99]
1357 case tok::minusminus: { // unary-expression: '--' unary-expression [C99]
1358 if (NotPrimaryExpression)
1359 *NotPrimaryExpression = true;
1360 // C++ [expr.unary] has:
1361 // unary-expression:
1362 // ++ cast-expression
1363 // -- cast-expression
1364 Token SavedTok = Tok;
1365 ConsumeToken();
1367 PreferredType.enterUnary(Actions, Tok.getLocation(), SavedTok.getKind(),
1368 SavedTok.getLocation());
1369 // One special case is implicitly handled here: if the preceding tokens are
1370 // an ambiguous cast expression, such as "(T())++", then we recurse to
1371 // determine whether the '++' is prefix or postfix.
1372 Res = ParseCastExpression(getLangOpts().CPlusPlus ?
1373 UnaryExprOnly : AnyCastExpr,
1374 /*isAddressOfOperand*/false, NotCastExpr,
1375 NotTypeCast);
1376 if (NotCastExpr) {
1377 // If we return with NotCastExpr = true, we must not consume any tokens,
1378 // so put the token back where we found it.
1379 assert(Res.isInvalid());
1380 UnconsumeToken(SavedTok);
1381 return ExprError();
1383 if (!Res.isInvalid()) {
1384 Expr *Arg = Res.get();
1385 Res = Actions.ActOnUnaryOp(getCurScope(), SavedTok.getLocation(),
1386 SavedKind, Arg);
1387 if (Res.isInvalid())
1388 Res = Actions.CreateRecoveryExpr(SavedTok.getLocation(),
1389 Arg->getEndLoc(), Arg);
1391 return Res;
1393 case tok::amp: { // unary-expression: '&' cast-expression
1394 if (NotPrimaryExpression)
1395 *NotPrimaryExpression = true;
1396 // Special treatment because of member pointers
1397 SourceLocation SavedLoc = ConsumeToken();
1398 PreferredType.enterUnary(Actions, Tok.getLocation(), tok::amp, SavedLoc);
1400 Res = ParseCastExpression(AnyCastExpr, /*isAddressOfOperand=*/true);
1401 if (!Res.isInvalid()) {
1402 Expr *Arg = Res.get();
1403 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg);
1404 if (Res.isInvalid())
1405 Res = Actions.CreateRecoveryExpr(Tok.getLocation(), Arg->getEndLoc(),
1406 Arg);
1408 return Res;
1411 case tok::star: // unary-expression: '*' cast-expression
1412 case tok::plus: // unary-expression: '+' cast-expression
1413 case tok::minus: // unary-expression: '-' cast-expression
1414 case tok::tilde: // unary-expression: '~' cast-expression
1415 case tok::exclaim: // unary-expression: '!' cast-expression
1416 case tok::kw___real: // unary-expression: '__real' cast-expression [GNU]
1417 case tok::kw___imag: { // unary-expression: '__imag' cast-expression [GNU]
1418 if (NotPrimaryExpression)
1419 *NotPrimaryExpression = true;
1420 SourceLocation SavedLoc = ConsumeToken();
1421 PreferredType.enterUnary(Actions, Tok.getLocation(), SavedKind, SavedLoc);
1422 Res = ParseCastExpression(AnyCastExpr);
1423 if (!Res.isInvalid()) {
1424 Expr *Arg = Res.get();
1425 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg,
1426 isAddressOfOperand);
1427 if (Res.isInvalid())
1428 Res = Actions.CreateRecoveryExpr(SavedLoc, Arg->getEndLoc(), Arg);
1430 return Res;
1433 case tok::kw_co_await: { // unary-expression: 'co_await' cast-expression
1434 if (NotPrimaryExpression)
1435 *NotPrimaryExpression = true;
1436 SourceLocation CoawaitLoc = ConsumeToken();
1437 Res = ParseCastExpression(AnyCastExpr);
1438 if (!Res.isInvalid())
1439 Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get());
1440 return Res;
1443 case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
1444 // __extension__ silences extension warnings in the subexpression.
1445 if (NotPrimaryExpression)
1446 *NotPrimaryExpression = true;
1447 ExtensionRAIIObject O(Diags); // Use RAII to do this.
1448 SourceLocation SavedLoc = ConsumeToken();
1449 Res = ParseCastExpression(AnyCastExpr);
1450 if (!Res.isInvalid())
1451 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1452 return Res;
1454 case tok::kw__Alignof: // unary-expression: '_Alignof' '(' type-name ')'
1455 if (!getLangOpts().C11)
1456 Diag(Tok, diag::ext_c11_feature) << Tok.getName();
1457 [[fallthrough]];
1458 case tok::kw_alignof: // unary-expression: 'alignof' '(' type-id ')'
1459 case tok::kw___alignof: // unary-expression: '__alignof' unary-expression
1460 // unary-expression: '__alignof' '(' type-name ')'
1461 case tok::kw_sizeof: // unary-expression: 'sizeof' unary-expression
1462 // unary-expression: 'sizeof' '(' type-name ')'
1463 case tok::kw_vec_step: // unary-expression: OpenCL 'vec_step' expression
1464 // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')'
1465 case tok::kw___builtin_omp_required_simd_align:
1466 case tok::kw___builtin_vectorelements:
1467 if (NotPrimaryExpression)
1468 *NotPrimaryExpression = true;
1469 AllowSuffix = false;
1470 Res = ParseUnaryExprOrTypeTraitExpression();
1471 break;
1472 case tok::ampamp: { // unary-expression: '&&' identifier
1473 if (NotPrimaryExpression)
1474 *NotPrimaryExpression = true;
1475 SourceLocation AmpAmpLoc = ConsumeToken();
1476 if (Tok.isNot(tok::identifier))
1477 return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
1479 if (getCurScope()->getFnParent() == nullptr)
1480 return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
1482 Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
1483 LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
1484 Tok.getLocation());
1485 Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
1486 ConsumeToken();
1487 AllowSuffix = false;
1488 break;
1490 case tok::kw_const_cast:
1491 case tok::kw_dynamic_cast:
1492 case tok::kw_reinterpret_cast:
1493 case tok::kw_static_cast:
1494 case tok::kw_addrspace_cast:
1495 if (NotPrimaryExpression)
1496 *NotPrimaryExpression = true;
1497 Res = ParseCXXCasts();
1498 break;
1499 case tok::kw___builtin_bit_cast:
1500 if (NotPrimaryExpression)
1501 *NotPrimaryExpression = true;
1502 Res = ParseBuiltinBitCast();
1503 break;
1504 case tok::kw_typeid:
1505 if (NotPrimaryExpression)
1506 *NotPrimaryExpression = true;
1507 Res = ParseCXXTypeid();
1508 break;
1509 case tok::kw___uuidof:
1510 if (NotPrimaryExpression)
1511 *NotPrimaryExpression = true;
1512 Res = ParseCXXUuidof();
1513 break;
1514 case tok::kw_this:
1515 Res = ParseCXXThis();
1516 break;
1517 case tok::kw___builtin_sycl_unique_stable_name:
1518 Res = ParseSYCLUniqueStableNameExpression();
1519 break;
1521 case tok::annot_typename:
1522 if (isStartOfObjCClassMessageMissingOpenBracket()) {
1523 TypeResult Type = getTypeAnnotation(Tok);
1525 // Fake up a Declarator to use with ActOnTypeName.
1526 DeclSpec DS(AttrFactory);
1527 DS.SetRangeStart(Tok.getLocation());
1528 DS.SetRangeEnd(Tok.getLastLoc());
1530 const char *PrevSpec = nullptr;
1531 unsigned DiagID;
1532 DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
1533 PrevSpec, DiagID, Type,
1534 Actions.getASTContext().getPrintingPolicy());
1536 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1537 DeclaratorContext::TypeName);
1538 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
1539 if (Ty.isInvalid())
1540 break;
1542 ConsumeAnnotationToken();
1543 Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1544 Ty.get(), nullptr);
1545 break;
1547 [[fallthrough]];
1549 case tok::annot_decltype:
1550 case tok::kw_char:
1551 case tok::kw_wchar_t:
1552 case tok::kw_char8_t:
1553 case tok::kw_char16_t:
1554 case tok::kw_char32_t:
1555 case tok::kw_bool:
1556 case tok::kw_short:
1557 case tok::kw_int:
1558 case tok::kw_long:
1559 case tok::kw___int64:
1560 case tok::kw___int128:
1561 case tok::kw__ExtInt:
1562 case tok::kw__BitInt:
1563 case tok::kw_signed:
1564 case tok::kw_unsigned:
1565 case tok::kw_half:
1566 case tok::kw_float:
1567 case tok::kw_double:
1568 case tok::kw___bf16:
1569 case tok::kw__Float16:
1570 case tok::kw___float128:
1571 case tok::kw___ibm128:
1572 case tok::kw_void:
1573 case tok::kw_auto:
1574 case tok::kw_typename:
1575 case tok::kw_typeof:
1576 case tok::kw___vector:
1577 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
1578 #include "clang/Basic/OpenCLImageTypes.def"
1580 if (!getLangOpts().CPlusPlus) {
1581 Diag(Tok, diag::err_expected_expression);
1582 return ExprError();
1585 // Everything henceforth is a postfix-expression.
1586 if (NotPrimaryExpression)
1587 *NotPrimaryExpression = true;
1589 if (SavedKind == tok::kw_typename) {
1590 // postfix-expression: typename-specifier '(' expression-list[opt] ')'
1591 // typename-specifier braced-init-list
1592 if (TryAnnotateTypeOrScopeToken())
1593 return ExprError();
1595 if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
1596 // We are trying to parse a simple-type-specifier but might not get such
1597 // a token after error recovery.
1598 return ExprError();
1601 // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1602 // simple-type-specifier braced-init-list
1604 DeclSpec DS(AttrFactory);
1606 ParseCXXSimpleTypeSpecifier(DS);
1607 if (Tok.isNot(tok::l_paren) &&
1608 (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1609 return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1610 << DS.getSourceRange());
1612 if (Tok.is(tok::l_brace))
1613 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1615 Res = ParseCXXTypeConstructExpression(DS);
1616 break;
1619 case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1620 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1621 // (We can end up in this situation after tentative parsing.)
1622 if (TryAnnotateTypeOrScopeToken())
1623 return ExprError();
1624 if (!Tok.is(tok::annot_cxxscope))
1625 return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr,
1626 isTypeCast, isVectorLiteral,
1627 NotPrimaryExpression);
1629 Token Next = NextToken();
1630 if (Next.is(tok::annot_template_id)) {
1631 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1632 if (TemplateId->Kind == TNK_Type_template) {
1633 // We have a qualified template-id that we know refers to a
1634 // type, translate it into a type and continue parsing as a
1635 // cast expression.
1636 CXXScopeSpec SS;
1637 ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
1638 /*ObjectHasErrors=*/false,
1639 /*EnteringContext=*/false);
1640 AnnotateTemplateIdTokenAsType(SS, ImplicitTypenameContext::Yes);
1641 return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr,
1642 isTypeCast, isVectorLiteral,
1643 NotPrimaryExpression);
1647 // Parse as an id-expression.
1648 Res = ParseCXXIdExpression(isAddressOfOperand);
1649 break;
1652 case tok::annot_template_id: { // [C++] template-id
1653 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1654 if (TemplateId->Kind == TNK_Type_template) {
1655 // We have a template-id that we know refers to a type,
1656 // translate it into a type and continue parsing as a cast
1657 // expression.
1658 CXXScopeSpec SS;
1659 AnnotateTemplateIdTokenAsType(SS, ImplicitTypenameContext::Yes);
1660 return ParseCastExpression(ParseKind, isAddressOfOperand,
1661 NotCastExpr, isTypeCast, isVectorLiteral,
1662 NotPrimaryExpression);
1665 // Fall through to treat the template-id as an id-expression.
1666 [[fallthrough]];
1669 case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1670 Res = ParseCXXIdExpression(isAddressOfOperand);
1671 break;
1673 case tok::coloncolon: {
1674 // ::foo::bar -> global qualified name etc. If TryAnnotateTypeOrScopeToken
1675 // annotates the token, tail recurse.
1676 if (TryAnnotateTypeOrScopeToken())
1677 return ExprError();
1678 if (!Tok.is(tok::coloncolon))
1679 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1680 isVectorLiteral, NotPrimaryExpression);
1682 // ::new -> [C++] new-expression
1683 // ::delete -> [C++] delete-expression
1684 SourceLocation CCLoc = ConsumeToken();
1685 if (Tok.is(tok::kw_new)) {
1686 if (NotPrimaryExpression)
1687 *NotPrimaryExpression = true;
1688 Res = ParseCXXNewExpression(true, CCLoc);
1689 AllowSuffix = false;
1690 break;
1692 if (Tok.is(tok::kw_delete)) {
1693 if (NotPrimaryExpression)
1694 *NotPrimaryExpression = true;
1695 Res = ParseCXXDeleteExpression(true, CCLoc);
1696 AllowSuffix = false;
1697 break;
1700 // This is not a type name or scope specifier, it is an invalid expression.
1701 Diag(CCLoc, diag::err_expected_expression);
1702 return ExprError();
1705 case tok::kw_new: // [C++] new-expression
1706 if (NotPrimaryExpression)
1707 *NotPrimaryExpression = true;
1708 Res = ParseCXXNewExpression(false, Tok.getLocation());
1709 AllowSuffix = false;
1710 break;
1712 case tok::kw_delete: // [C++] delete-expression
1713 if (NotPrimaryExpression)
1714 *NotPrimaryExpression = true;
1715 Res = ParseCXXDeleteExpression(false, Tok.getLocation());
1716 AllowSuffix = false;
1717 break;
1719 case tok::kw_requires: // [C++2a] requires-expression
1720 Res = ParseRequiresExpression();
1721 AllowSuffix = false;
1722 break;
1724 case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1725 if (NotPrimaryExpression)
1726 *NotPrimaryExpression = true;
1727 Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1728 SourceLocation KeyLoc = ConsumeToken();
1729 BalancedDelimiterTracker T(*this, tok::l_paren);
1731 if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1732 return ExprError();
1733 // C++11 [expr.unary.noexcept]p1:
1734 // The noexcept operator determines whether the evaluation of its operand,
1735 // which is an unevaluated operand, can throw an exception.
1736 EnterExpressionEvaluationContext Unevaluated(
1737 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
1738 Res = ParseExpression();
1740 T.consumeClose();
1742 if (!Res.isInvalid())
1743 Res = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(), Res.get(),
1744 T.getCloseLocation());
1745 AllowSuffix = false;
1746 break;
1749 #define TYPE_TRAIT(N,Spelling,K) \
1750 case tok::kw_##Spelling:
1751 #include "clang/Basic/TokenKinds.def"
1752 Res = ParseTypeTrait();
1753 break;
1755 case tok::kw___array_rank:
1756 case tok::kw___array_extent:
1757 if (NotPrimaryExpression)
1758 *NotPrimaryExpression = true;
1759 Res = ParseArrayTypeTrait();
1760 break;
1762 case tok::kw___is_lvalue_expr:
1763 case tok::kw___is_rvalue_expr:
1764 if (NotPrimaryExpression)
1765 *NotPrimaryExpression = true;
1766 Res = ParseExpressionTrait();
1767 break;
1769 case tok::at: {
1770 if (NotPrimaryExpression)
1771 *NotPrimaryExpression = true;
1772 SourceLocation AtLoc = ConsumeToken();
1773 return ParseObjCAtExpression(AtLoc);
1775 case tok::caret:
1776 Res = ParseBlockLiteralExpression();
1777 break;
1778 case tok::code_completion: {
1779 cutOffParsing();
1780 Actions.CodeCompleteExpression(getCurScope(),
1781 PreferredType.get(Tok.getLocation()));
1782 return ExprError();
1784 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
1785 #include "clang/Basic/TransformTypeTraits.def"
1786 // HACK: libstdc++ uses some of the transform-type-traits as alias
1787 // templates, so we need to work around this.
1788 if (!NextToken().is(tok::l_paren)) {
1789 Tok.setKind(tok::identifier);
1790 Diag(Tok, diag::ext_keyword_as_ident)
1791 << Tok.getIdentifierInfo()->getName() << 0;
1792 goto ParseIdentifier;
1794 goto ExpectedExpression;
1795 case tok::l_square:
1796 if (getLangOpts().CPlusPlus11) {
1797 if (getLangOpts().ObjC) {
1798 // C++11 lambda expressions and Objective-C message sends both start with a
1799 // square bracket. There are three possibilities here:
1800 // we have a valid lambda expression, we have an invalid lambda
1801 // expression, or we have something that doesn't appear to be a lambda.
1802 // If we're in the last case, we fall back to ParseObjCMessageExpression.
1803 Res = TryParseLambdaExpression();
1804 if (!Res.isInvalid() && !Res.get()) {
1805 // We assume Objective-C++ message expressions are not
1806 // primary-expressions.
1807 if (NotPrimaryExpression)
1808 *NotPrimaryExpression = true;
1809 Res = ParseObjCMessageExpression();
1811 break;
1813 Res = ParseLambdaExpression();
1814 break;
1816 if (getLangOpts().ObjC) {
1817 Res = ParseObjCMessageExpression();
1818 break;
1820 [[fallthrough]];
1821 default:
1822 ExpectedExpression:
1823 NotCastExpr = true;
1824 return ExprError();
1827 // Check to see whether Res is a function designator only. If it is and we
1828 // are compiling for OpenCL, we need to return an error as this implies
1829 // that the address of the function is being taken, which is illegal in CL.
1831 if (ParseKind == PrimaryExprOnly)
1832 // This is strictly a primary-expression - no postfix-expr pieces should be
1833 // parsed.
1834 return Res;
1836 if (!AllowSuffix) {
1837 // FIXME: Don't parse a primary-expression suffix if we encountered a parse
1838 // error already.
1839 if (Res.isInvalid())
1840 return Res;
1842 switch (Tok.getKind()) {
1843 case tok::l_square:
1844 case tok::l_paren:
1845 case tok::plusplus:
1846 case tok::minusminus:
1847 // "expected ';'" or similar is probably the right diagnostic here. Let
1848 // the caller decide what to do.
1849 if (Tok.isAtStartOfLine())
1850 return Res;
1852 [[fallthrough]];
1853 case tok::period:
1854 case tok::arrow:
1855 break;
1857 default:
1858 return Res;
1861 // This was a unary-expression for which a postfix-expression suffix is
1862 // not permitted by the grammar (eg, a sizeof expression or
1863 // new-expression or similar). Diagnose but parse the suffix anyway.
1864 Diag(Tok.getLocation(), diag::err_postfix_after_unary_requires_parens)
1865 << Tok.getKind() << Res.get()->getSourceRange()
1866 << FixItHint::CreateInsertion(Res.get()->getBeginLoc(), "(")
1867 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(PrevTokLocation),
1868 ")");
1871 // These can be followed by postfix-expr pieces.
1872 PreferredType = SavedType;
1873 Res = ParsePostfixExpressionSuffix(Res);
1874 if (getLangOpts().OpenCL &&
1875 !getActions().getOpenCLOptions().isAvailableOption(
1876 "__cl_clang_function_pointers", getLangOpts()))
1877 if (Expr *PostfixExpr = Res.get()) {
1878 QualType Ty = PostfixExpr->getType();
1879 if (!Ty.isNull() && Ty->isFunctionType()) {
1880 Diag(PostfixExpr->getExprLoc(),
1881 diag::err_opencl_taking_function_address_parser);
1882 return ExprError();
1886 return Res;
1889 /// Once the leading part of a postfix-expression is parsed, this
1890 /// method parses any suffixes that apply.
1892 /// \verbatim
1893 /// postfix-expression: [C99 6.5.2]
1894 /// primary-expression
1895 /// postfix-expression '[' expression ']'
1896 /// postfix-expression '[' braced-init-list ']'
1897 /// postfix-expression '[' expression-list [opt] ']' [C++23 12.4.5]
1898 /// postfix-expression '(' argument-expression-list[opt] ')'
1899 /// postfix-expression '.' identifier
1900 /// postfix-expression '->' identifier
1901 /// postfix-expression '++'
1902 /// postfix-expression '--'
1903 /// '(' type-name ')' '{' initializer-list '}'
1904 /// '(' type-name ')' '{' initializer-list ',' '}'
1906 /// argument-expression-list: [C99 6.5.2]
1907 /// argument-expression ...[opt]
1908 /// argument-expression-list ',' assignment-expression ...[opt]
1909 /// \endverbatim
1910 ExprResult
1911 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1912 // Now that the primary-expression piece of the postfix-expression has been
1913 // parsed, see if there are any postfix-expression pieces here.
1914 SourceLocation Loc;
1915 auto SavedType = PreferredType;
1916 while (true) {
1917 // Each iteration relies on preferred type for the whole expression.
1918 PreferredType = SavedType;
1919 switch (Tok.getKind()) {
1920 case tok::code_completion:
1921 if (InMessageExpression)
1922 return LHS;
1924 cutOffParsing();
1925 Actions.CodeCompletePostfixExpression(
1926 getCurScope(), LHS, PreferredType.get(Tok.getLocation()));
1927 return ExprError();
1929 case tok::identifier:
1930 // If we see identifier: after an expression, and we're not already in a
1931 // message send, then this is probably a message send with a missing
1932 // opening bracket '['.
1933 if (getLangOpts().ObjC && !InMessageExpression &&
1934 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
1935 LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1936 nullptr, LHS.get());
1937 break;
1939 // Fall through; this isn't a message send.
1940 [[fallthrough]];
1942 default: // Not a postfix-expression suffix.
1943 return LHS;
1944 case tok::l_square: { // postfix-expression: p-e '[' expression ']'
1945 // If we have a array postfix expression that starts on a new line and
1946 // Objective-C is enabled, it is highly likely that the user forgot a
1947 // semicolon after the base expression and that the array postfix-expr is
1948 // actually another message send. In this case, do some look-ahead to see
1949 // if the contents of the square brackets are obviously not a valid
1950 // expression and recover by pretending there is no suffix.
1951 if (getLangOpts().ObjC && Tok.isAtStartOfLine() &&
1952 isSimpleObjCMessageExpression())
1953 return LHS;
1955 // Reject array indices starting with a lambda-expression. '[[' is
1956 // reserved for attributes.
1957 if (CheckProhibitedCXX11Attribute()) {
1958 (void)Actions.CorrectDelayedTyposInExpr(LHS);
1959 return ExprError();
1961 BalancedDelimiterTracker T(*this, tok::l_square);
1962 T.consumeOpen();
1963 Loc = T.getOpenLocation();
1964 ExprResult Length, Stride;
1965 SourceLocation ColonLocFirst, ColonLocSecond;
1966 ExprVector ArgExprs;
1967 bool HasError = false;
1968 PreferredType.enterSubscript(Actions, Tok.getLocation(), LHS.get());
1970 // We try to parse a list of indexes in all language mode first
1971 // and, in we find 0 or one index, we try to parse an OpenMP array
1972 // section. This allow us to support C++23 multi dimensional subscript and
1973 // OpenMp sections in the same language mode.
1974 if (!getLangOpts().OpenMP || Tok.isNot(tok::colon)) {
1975 if (!getLangOpts().CPlusPlus23) {
1976 ExprResult Idx;
1977 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1978 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1979 Idx = ParseBraceInitializer();
1980 } else {
1981 Idx = ParseExpression(); // May be a comma expression
1983 LHS = Actions.CorrectDelayedTyposInExpr(LHS);
1984 Idx = Actions.CorrectDelayedTyposInExpr(Idx);
1985 if (Idx.isInvalid()) {
1986 HasError = true;
1987 } else {
1988 ArgExprs.push_back(Idx.get());
1990 } else if (Tok.isNot(tok::r_square)) {
1991 if (ParseExpressionList(ArgExprs)) {
1992 LHS = Actions.CorrectDelayedTyposInExpr(LHS);
1993 HasError = true;
1998 if (ArgExprs.size() <= 1 && getLangOpts().OpenMP) {
1999 ColonProtectionRAIIObject RAII(*this);
2000 if (Tok.is(tok::colon)) {
2001 // Consume ':'
2002 ColonLocFirst = ConsumeToken();
2003 if (Tok.isNot(tok::r_square) &&
2004 (getLangOpts().OpenMP < 50 ||
2005 ((Tok.isNot(tok::colon) && getLangOpts().OpenMP >= 50)))) {
2006 Length = ParseExpression();
2007 Length = Actions.CorrectDelayedTyposInExpr(Length);
2010 if (getLangOpts().OpenMP >= 50 &&
2011 (OMPClauseKind == llvm::omp::Clause::OMPC_to ||
2012 OMPClauseKind == llvm::omp::Clause::OMPC_from) &&
2013 Tok.is(tok::colon)) {
2014 // Consume ':'
2015 ColonLocSecond = ConsumeToken();
2016 if (Tok.isNot(tok::r_square)) {
2017 Stride = ParseExpression();
2022 SourceLocation RLoc = Tok.getLocation();
2023 LHS = Actions.CorrectDelayedTyposInExpr(LHS);
2025 if (!LHS.isInvalid() && !HasError && !Length.isInvalid() &&
2026 !Stride.isInvalid() && Tok.is(tok::r_square)) {
2027 if (ColonLocFirst.isValid() || ColonLocSecond.isValid()) {
2028 LHS = Actions.ActOnOMPArraySectionExpr(
2029 LHS.get(), Loc, ArgExprs.empty() ? nullptr : ArgExprs[0],
2030 ColonLocFirst, ColonLocSecond, Length.get(), Stride.get(), RLoc);
2031 } else {
2032 LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
2033 ArgExprs, RLoc);
2035 } else {
2036 LHS = ExprError();
2039 // Match the ']'.
2040 T.consumeClose();
2041 break;
2044 case tok::l_paren: // p-e: p-e '(' argument-expression-list[opt] ')'
2045 case tok::lesslessless: { // p-e: p-e '<<<' argument-expression-list '>>>'
2046 // '(' argument-expression-list[opt] ')'
2047 tok::TokenKind OpKind = Tok.getKind();
2048 InMessageExpressionRAIIObject InMessage(*this, false);
2050 Expr *ExecConfig = nullptr;
2052 BalancedDelimiterTracker PT(*this, tok::l_paren);
2054 if (OpKind == tok::lesslessless) {
2055 ExprVector ExecConfigExprs;
2056 SourceLocation OpenLoc = ConsumeToken();
2058 if (ParseSimpleExpressionList(ExecConfigExprs)) {
2059 (void)Actions.CorrectDelayedTyposInExpr(LHS);
2060 LHS = ExprError();
2063 SourceLocation CloseLoc;
2064 if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
2065 } else if (LHS.isInvalid()) {
2066 SkipUntil(tok::greatergreatergreater, StopAtSemi);
2067 } else {
2068 // There was an error closing the brackets
2069 Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
2070 Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
2071 SkipUntil(tok::greatergreatergreater, StopAtSemi);
2072 LHS = ExprError();
2075 if (!LHS.isInvalid()) {
2076 if (ExpectAndConsume(tok::l_paren))
2077 LHS = ExprError();
2078 else
2079 Loc = PrevTokLocation;
2082 if (!LHS.isInvalid()) {
2083 ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
2084 OpenLoc,
2085 ExecConfigExprs,
2086 CloseLoc);
2087 if (ECResult.isInvalid())
2088 LHS = ExprError();
2089 else
2090 ExecConfig = ECResult.get();
2092 } else {
2093 PT.consumeOpen();
2094 Loc = PT.getOpenLocation();
2097 ExprVector ArgExprs;
2098 auto RunSignatureHelp = [&]() -> QualType {
2099 QualType PreferredType = Actions.ProduceCallSignatureHelp(
2100 LHS.get(), ArgExprs, PT.getOpenLocation());
2101 CalledSignatureHelp = true;
2102 return PreferredType;
2104 if (OpKind == tok::l_paren || !LHS.isInvalid()) {
2105 if (Tok.isNot(tok::r_paren)) {
2106 if (ParseExpressionList(ArgExprs, [&] {
2107 PreferredType.enterFunctionArgument(Tok.getLocation(),
2108 RunSignatureHelp);
2109 })) {
2110 (void)Actions.CorrectDelayedTyposInExpr(LHS);
2111 // If we got an error when parsing expression list, we don't call
2112 // the CodeCompleteCall handler inside the parser. So call it here
2113 // to make sure we get overload suggestions even when we are in the
2114 // middle of a parameter.
2115 if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
2116 RunSignatureHelp();
2117 LHS = ExprError();
2118 } else if (LHS.isInvalid()) {
2119 for (auto &E : ArgExprs)
2120 Actions.CorrectDelayedTyposInExpr(E);
2125 // Match the ')'.
2126 if (LHS.isInvalid()) {
2127 SkipUntil(tok::r_paren, StopAtSemi);
2128 } else if (Tok.isNot(tok::r_paren)) {
2129 bool HadDelayedTypo = false;
2130 if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get())
2131 HadDelayedTypo = true;
2132 for (auto &E : ArgExprs)
2133 if (Actions.CorrectDelayedTyposInExpr(E).get() != E)
2134 HadDelayedTypo = true;
2135 // If there were delayed typos in the LHS or ArgExprs, call SkipUntil
2136 // instead of PT.consumeClose() to avoid emitting extra diagnostics for
2137 // the unmatched l_paren.
2138 if (HadDelayedTypo)
2139 SkipUntil(tok::r_paren, StopAtSemi);
2140 else
2141 PT.consumeClose();
2142 LHS = ExprError();
2143 } else {
2144 Expr *Fn = LHS.get();
2145 SourceLocation RParLoc = Tok.getLocation();
2146 LHS = Actions.ActOnCallExpr(getCurScope(), Fn, Loc, ArgExprs, RParLoc,
2147 ExecConfig);
2148 if (LHS.isInvalid()) {
2149 ArgExprs.insert(ArgExprs.begin(), Fn);
2150 LHS =
2151 Actions.CreateRecoveryExpr(Fn->getBeginLoc(), RParLoc, ArgExprs);
2153 PT.consumeClose();
2156 break;
2158 case tok::arrow:
2159 case tok::period: {
2160 // postfix-expression: p-e '->' template[opt] id-expression
2161 // postfix-expression: p-e '.' template[opt] id-expression
2162 tok::TokenKind OpKind = Tok.getKind();
2163 SourceLocation OpLoc = ConsumeToken(); // Eat the "." or "->" token.
2165 CXXScopeSpec SS;
2166 ParsedType ObjectType;
2167 bool MayBePseudoDestructor = false;
2168 Expr* OrigLHS = !LHS.isInvalid() ? LHS.get() : nullptr;
2170 PreferredType.enterMemAccess(Actions, Tok.getLocation(), OrigLHS);
2172 if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
2173 Expr *Base = OrigLHS;
2174 const Type* BaseType = Base->getType().getTypePtrOrNull();
2175 if (BaseType && Tok.is(tok::l_paren) &&
2176 (BaseType->isFunctionType() ||
2177 BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
2178 Diag(OpLoc, diag::err_function_is_not_record)
2179 << OpKind << Base->getSourceRange()
2180 << FixItHint::CreateRemoval(OpLoc);
2181 return ParsePostfixExpressionSuffix(Base);
2184 LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base, OpLoc,
2185 OpKind, ObjectType,
2186 MayBePseudoDestructor);
2187 if (LHS.isInvalid()) {
2188 // Clang will try to perform expression based completion as a
2189 // fallback, which is confusing in case of member references. So we
2190 // stop here without any completions.
2191 if (Tok.is(tok::code_completion)) {
2192 cutOffParsing();
2193 return ExprError();
2195 break;
2197 ParseOptionalCXXScopeSpecifier(
2198 SS, ObjectType, LHS.get() && LHS.get()->containsErrors(),
2199 /*EnteringContext=*/false, &MayBePseudoDestructor);
2200 if (SS.isNotEmpty())
2201 ObjectType = nullptr;
2204 if (Tok.is(tok::code_completion)) {
2205 tok::TokenKind CorrectedOpKind =
2206 OpKind == tok::arrow ? tok::period : tok::arrow;
2207 ExprResult CorrectedLHS(/*Invalid=*/true);
2208 if (getLangOpts().CPlusPlus && OrigLHS) {
2209 // FIXME: Creating a TentativeAnalysisScope from outside Sema is a
2210 // hack.
2211 Sema::TentativeAnalysisScope Trap(Actions);
2212 CorrectedLHS = Actions.ActOnStartCXXMemberReference(
2213 getCurScope(), OrigLHS, OpLoc, CorrectedOpKind, ObjectType,
2214 MayBePseudoDestructor);
2217 Expr *Base = LHS.get();
2218 Expr *CorrectedBase = CorrectedLHS.get();
2219 if (!CorrectedBase && !getLangOpts().CPlusPlus)
2220 CorrectedBase = Base;
2222 // Code completion for a member access expression.
2223 cutOffParsing();
2224 Actions.CodeCompleteMemberReferenceExpr(
2225 getCurScope(), Base, CorrectedBase, OpLoc, OpKind == tok::arrow,
2226 Base && ExprStatementTokLoc == Base->getBeginLoc(),
2227 PreferredType.get(Tok.getLocation()));
2229 return ExprError();
2232 if (MayBePseudoDestructor && !LHS.isInvalid()) {
2233 LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
2234 ObjectType);
2235 break;
2238 // Either the action has told us that this cannot be a
2239 // pseudo-destructor expression (based on the type of base
2240 // expression), or we didn't see a '~' in the right place. We
2241 // can still parse a destructor name here, but in that case it
2242 // names a real destructor.
2243 // Allow explicit constructor calls in Microsoft mode.
2244 // FIXME: Add support for explicit call of template constructor.
2245 SourceLocation TemplateKWLoc;
2246 UnqualifiedId Name;
2247 if (getLangOpts().ObjC && OpKind == tok::period &&
2248 Tok.is(tok::kw_class)) {
2249 // Objective-C++:
2250 // After a '.' in a member access expression, treat the keyword
2251 // 'class' as if it were an identifier.
2253 // This hack allows property access to the 'class' method because it is
2254 // such a common method name. For other C++ keywords that are
2255 // Objective-C method names, one must use the message send syntax.
2256 IdentifierInfo *Id = Tok.getIdentifierInfo();
2257 SourceLocation Loc = ConsumeToken();
2258 Name.setIdentifier(Id, Loc);
2259 } else if (ParseUnqualifiedId(
2260 SS, ObjectType, LHS.get() && LHS.get()->containsErrors(),
2261 /*EnteringContext=*/false,
2262 /*AllowDestructorName=*/true,
2263 /*AllowConstructorName=*/
2264 getLangOpts().MicrosoftExt && SS.isNotEmpty(),
2265 /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name)) {
2266 (void)Actions.CorrectDelayedTyposInExpr(LHS);
2267 LHS = ExprError();
2270 if (!LHS.isInvalid())
2271 LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
2272 OpKind, SS, TemplateKWLoc, Name,
2273 CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
2274 : nullptr);
2275 if (!LHS.isInvalid()) {
2276 if (Tok.is(tok::less))
2277 checkPotentialAngleBracket(LHS);
2278 } else if (OrigLHS && Name.isValid()) {
2279 // Preserve the LHS if the RHS is an invalid member.
2280 LHS = Actions.CreateRecoveryExpr(OrigLHS->getBeginLoc(),
2281 Name.getEndLoc(), {OrigLHS});
2283 break;
2285 case tok::plusplus: // postfix-expression: postfix-expression '++'
2286 case tok::minusminus: // postfix-expression: postfix-expression '--'
2287 if (!LHS.isInvalid()) {
2288 Expr *Arg = LHS.get();
2289 LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
2290 Tok.getKind(), Arg);
2291 if (LHS.isInvalid())
2292 LHS = Actions.CreateRecoveryExpr(Arg->getBeginLoc(),
2293 Tok.getLocation(), Arg);
2295 ConsumeToken();
2296 break;
2301 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
2302 /// vec_step and we are at the start of an expression or a parenthesized
2303 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
2304 /// expression (isCastExpr == false) or the type (isCastExpr == true).
2306 /// \verbatim
2307 /// unary-expression: [C99 6.5.3]
2308 /// 'sizeof' unary-expression
2309 /// 'sizeof' '(' type-name ')'
2310 /// [GNU] '__alignof' unary-expression
2311 /// [GNU] '__alignof' '(' type-name ')'
2312 /// [C11] '_Alignof' '(' type-name ')'
2313 /// [C++0x] 'alignof' '(' type-id ')'
2315 /// [GNU] typeof-specifier:
2316 /// typeof ( expressions )
2317 /// typeof ( type-name )
2318 /// [GNU/C++] typeof unary-expression
2319 /// [C23] typeof-specifier:
2320 /// typeof '(' typeof-specifier-argument ')'
2321 /// typeof_unqual '(' typeof-specifier-argument ')'
2323 /// typeof-specifier-argument:
2324 /// expression
2325 /// type-name
2327 /// [OpenCL 1.1 6.11.12] vec_step built-in function:
2328 /// vec_step ( expressions )
2329 /// vec_step ( type-name )
2330 /// \endverbatim
2331 ExprResult
2332 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
2333 bool &isCastExpr,
2334 ParsedType &CastTy,
2335 SourceRange &CastRange) {
2337 assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual, tok::kw_sizeof,
2338 tok::kw___alignof, tok::kw_alignof, tok::kw__Alignof,
2339 tok::kw_vec_step,
2340 tok::kw___builtin_omp_required_simd_align,
2341 tok::kw___builtin_vectorelements) &&
2342 "Not a typeof/sizeof/alignof/vec_step expression!");
2344 ExprResult Operand;
2346 // If the operand doesn't start with an '(', it must be an expression.
2347 if (Tok.isNot(tok::l_paren)) {
2348 // If construct allows a form without parenthesis, user may forget to put
2349 // pathenthesis around type name.
2350 if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
2351 tok::kw__Alignof)) {
2352 if (isTypeIdUnambiguously()) {
2353 DeclSpec DS(AttrFactory);
2354 ParseSpecifierQualifierList(DS);
2355 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
2356 DeclaratorContext::TypeName);
2357 ParseDeclarator(DeclaratorInfo);
2359 SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
2360 SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
2361 if (LParenLoc.isInvalid() || RParenLoc.isInvalid()) {
2362 Diag(OpTok.getLocation(),
2363 diag::err_expected_parentheses_around_typename)
2364 << OpTok.getName();
2365 } else {
2366 Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
2367 << OpTok.getName() << FixItHint::CreateInsertion(LParenLoc, "(")
2368 << FixItHint::CreateInsertion(RParenLoc, ")");
2370 isCastExpr = true;
2371 return ExprEmpty();
2375 isCastExpr = false;
2376 if (OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual) &&
2377 !getLangOpts().CPlusPlus) {
2378 Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
2379 << tok::l_paren;
2380 return ExprError();
2383 Operand = ParseCastExpression(UnaryExprOnly);
2384 } else {
2385 // If it starts with a '(', we know that it is either a parenthesized
2386 // type-name, or it is a unary-expression that starts with a compound
2387 // literal, or starts with a primary-expression that is a parenthesized
2388 // expression.
2389 ParenParseOption ExprType = CastExpr;
2390 SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
2392 Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
2393 false, CastTy, RParenLoc);
2394 CastRange = SourceRange(LParenLoc, RParenLoc);
2396 // If ParseParenExpression parsed a '(typename)' sequence only, then this is
2397 // a type.
2398 if (ExprType == CastExpr) {
2399 isCastExpr = true;
2400 return ExprEmpty();
2403 if (getLangOpts().CPlusPlus ||
2404 !OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual)) {
2405 // GNU typeof in C requires the expression to be parenthesized. Not so for
2406 // sizeof/alignof or in C++. Therefore, the parenthesized expression is
2407 // the start of a unary-expression, but doesn't include any postfix
2408 // pieces. Parse these now if present.
2409 if (!Operand.isInvalid())
2410 Operand = ParsePostfixExpressionSuffix(Operand.get());
2414 // If we get here, the operand to the typeof/sizeof/alignof was an expression.
2415 isCastExpr = false;
2416 return Operand;
2419 /// Parse a __builtin_sycl_unique_stable_name expression. Accepts a type-id as
2420 /// a parameter.
2421 ExprResult Parser::ParseSYCLUniqueStableNameExpression() {
2422 assert(Tok.is(tok::kw___builtin_sycl_unique_stable_name) &&
2423 "Not __builtin_sycl_unique_stable_name");
2425 SourceLocation OpLoc = ConsumeToken();
2426 BalancedDelimiterTracker T(*this, tok::l_paren);
2428 // __builtin_sycl_unique_stable_name expressions are always parenthesized.
2429 if (T.expectAndConsume(diag::err_expected_lparen_after,
2430 "__builtin_sycl_unique_stable_name"))
2431 return ExprError();
2433 TypeResult Ty = ParseTypeName();
2435 if (Ty.isInvalid()) {
2436 T.skipToEnd();
2437 return ExprError();
2440 if (T.consumeClose())
2441 return ExprError();
2443 return Actions.ActOnSYCLUniqueStableNameExpr(OpLoc, T.getOpenLocation(),
2444 T.getCloseLocation(), Ty.get());
2447 /// Parse a sizeof or alignof expression.
2449 /// \verbatim
2450 /// unary-expression: [C99 6.5.3]
2451 /// 'sizeof' unary-expression
2452 /// 'sizeof' '(' type-name ')'
2453 /// [C++11] 'sizeof' '...' '(' identifier ')'
2454 /// [GNU] '__alignof' unary-expression
2455 /// [GNU] '__alignof' '(' type-name ')'
2456 /// [C11] '_Alignof' '(' type-name ')'
2457 /// [C++11] 'alignof' '(' type-id ')'
2458 /// \endverbatim
2459 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
2460 assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
2461 tok::kw__Alignof, tok::kw_vec_step,
2462 tok::kw___builtin_omp_required_simd_align,
2463 tok::kw___builtin_vectorelements) &&
2464 "Not a sizeof/alignof/vec_step expression!");
2465 Token OpTok = Tok;
2466 ConsumeToken();
2468 // [C++11] 'sizeof' '...' '(' identifier ')'
2469 if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
2470 SourceLocation EllipsisLoc = ConsumeToken();
2471 SourceLocation LParenLoc, RParenLoc;
2472 IdentifierInfo *Name = nullptr;
2473 SourceLocation NameLoc;
2474 if (Tok.is(tok::l_paren)) {
2475 BalancedDelimiterTracker T(*this, tok::l_paren);
2476 T.consumeOpen();
2477 LParenLoc = T.getOpenLocation();
2478 if (Tok.is(tok::identifier)) {
2479 Name = Tok.getIdentifierInfo();
2480 NameLoc = ConsumeToken();
2481 T.consumeClose();
2482 RParenLoc = T.getCloseLocation();
2483 if (RParenLoc.isInvalid())
2484 RParenLoc = PP.getLocForEndOfToken(NameLoc);
2485 } else {
2486 Diag(Tok, diag::err_expected_parameter_pack);
2487 SkipUntil(tok::r_paren, StopAtSemi);
2489 } else if (Tok.is(tok::identifier)) {
2490 Name = Tok.getIdentifierInfo();
2491 NameLoc = ConsumeToken();
2492 LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
2493 RParenLoc = PP.getLocForEndOfToken(NameLoc);
2494 Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
2495 << Name
2496 << FixItHint::CreateInsertion(LParenLoc, "(")
2497 << FixItHint::CreateInsertion(RParenLoc, ")");
2498 } else {
2499 Diag(Tok, diag::err_sizeof_parameter_pack);
2502 if (!Name)
2503 return ExprError();
2505 EnterExpressionEvaluationContext Unevaluated(
2506 Actions, Sema::ExpressionEvaluationContext::Unevaluated,
2507 Sema::ReuseLambdaContextDecl);
2509 return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
2510 OpTok.getLocation(),
2511 *Name, NameLoc,
2512 RParenLoc);
2515 if (getLangOpts().CPlusPlus &&
2516 OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2517 Diag(OpTok, diag::warn_cxx98_compat_alignof);
2518 else if (getLangOpts().C23 && OpTok.is(tok::kw_alignof))
2519 Diag(OpTok, diag::warn_c23_compat_keyword) << OpTok.getName();
2521 EnterExpressionEvaluationContext Unevaluated(
2522 Actions, Sema::ExpressionEvaluationContext::Unevaluated,
2523 Sema::ReuseLambdaContextDecl);
2525 bool isCastExpr;
2526 ParsedType CastTy;
2527 SourceRange CastRange;
2528 ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
2529 isCastExpr,
2530 CastTy,
2531 CastRange);
2533 UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
2534 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2535 ExprKind = UETT_AlignOf;
2536 else if (OpTok.is(tok::kw___alignof))
2537 ExprKind = UETT_PreferredAlignOf;
2538 else if (OpTok.is(tok::kw_vec_step))
2539 ExprKind = UETT_VecStep;
2540 else if (OpTok.is(tok::kw___builtin_omp_required_simd_align))
2541 ExprKind = UETT_OpenMPRequiredSimdAlign;
2542 else if (OpTok.is(tok::kw___builtin_vectorelements))
2543 ExprKind = UETT_VectorElements;
2545 if (isCastExpr)
2546 return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2547 ExprKind,
2548 /*IsType=*/true,
2549 CastTy.getAsOpaquePtr(),
2550 CastRange);
2552 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2553 Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
2555 // If we get here, the operand to the sizeof/alignof was an expression.
2556 if (!Operand.isInvalid())
2557 Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2558 ExprKind,
2559 /*IsType=*/false,
2560 Operand.get(),
2561 CastRange);
2562 return Operand;
2565 /// ParseBuiltinPrimaryExpression
2567 /// \verbatim
2568 /// primary-expression: [C99 6.5.1]
2569 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
2570 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
2571 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
2572 /// assign-expr ')'
2573 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
2574 /// [GNU] '__builtin_FILE' '(' ')'
2575 /// [CLANG] '__builtin_FILE_NAME' '(' ')'
2576 /// [GNU] '__builtin_FUNCTION' '(' ')'
2577 /// [MS] '__builtin_FUNCSIG' '(' ')'
2578 /// [GNU] '__builtin_LINE' '(' ')'
2579 /// [CLANG] '__builtin_COLUMN' '(' ')'
2580 /// [GNU] '__builtin_source_location' '(' ')'
2581 /// [OCL] '__builtin_astype' '(' assignment-expression ',' type-name ')'
2583 /// [GNU] offsetof-member-designator:
2584 /// [GNU] identifier
2585 /// [GNU] offsetof-member-designator '.' identifier
2586 /// [GNU] offsetof-member-designator '[' expression ']'
2587 /// \endverbatim
2588 ExprResult Parser::ParseBuiltinPrimaryExpression() {
2589 ExprResult Res;
2590 const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2592 tok::TokenKind T = Tok.getKind();
2593 SourceLocation StartLoc = ConsumeToken(); // Eat the builtin identifier.
2595 // All of these start with an open paren.
2596 if (Tok.isNot(tok::l_paren))
2597 return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
2598 << tok::l_paren);
2600 BalancedDelimiterTracker PT(*this, tok::l_paren);
2601 PT.consumeOpen();
2603 // TODO: Build AST.
2605 switch (T) {
2606 default: llvm_unreachable("Not a builtin primary expression!");
2607 case tok::kw___builtin_va_arg: {
2608 ExprResult Expr(ParseAssignmentExpression());
2610 if (ExpectAndConsume(tok::comma)) {
2611 SkipUntil(tok::r_paren, StopAtSemi);
2612 Expr = ExprError();
2615 TypeResult Ty = ParseTypeName();
2617 if (Tok.isNot(tok::r_paren)) {
2618 Diag(Tok, diag::err_expected) << tok::r_paren;
2619 Expr = ExprError();
2622 if (Expr.isInvalid() || Ty.isInvalid())
2623 Res = ExprError();
2624 else
2625 Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
2626 break;
2628 case tok::kw___builtin_offsetof: {
2629 SourceLocation TypeLoc = Tok.getLocation();
2630 auto OOK = Sema::OffsetOfKind::OOK_Builtin;
2631 if (Tok.getLocation().isMacroID()) {
2632 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
2633 Tok.getLocation(), PP.getSourceManager(), getLangOpts());
2634 if (MacroName == "offsetof")
2635 OOK = Sema::OffsetOfKind::OOK_Macro;
2637 TypeResult Ty;
2639 OffsetOfStateRAIIObject InOffsetof(*this, OOK);
2640 Ty = ParseTypeName();
2641 if (Ty.isInvalid()) {
2642 SkipUntil(tok::r_paren, StopAtSemi);
2643 return ExprError();
2647 if (ExpectAndConsume(tok::comma)) {
2648 SkipUntil(tok::r_paren, StopAtSemi);
2649 return ExprError();
2652 // We must have at least one identifier here.
2653 if (Tok.isNot(tok::identifier)) {
2654 Diag(Tok, diag::err_expected) << tok::identifier;
2655 SkipUntil(tok::r_paren, StopAtSemi);
2656 return ExprError();
2659 // Keep track of the various subcomponents we see.
2660 SmallVector<Sema::OffsetOfComponent, 4> Comps;
2662 Comps.push_back(Sema::OffsetOfComponent());
2663 Comps.back().isBrackets = false;
2664 Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2665 Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
2667 // FIXME: This loop leaks the index expressions on error.
2668 while (true) {
2669 if (Tok.is(tok::period)) {
2670 // offsetof-member-designator: offsetof-member-designator '.' identifier
2671 Comps.push_back(Sema::OffsetOfComponent());
2672 Comps.back().isBrackets = false;
2673 Comps.back().LocStart = ConsumeToken();
2675 if (Tok.isNot(tok::identifier)) {
2676 Diag(Tok, diag::err_expected) << tok::identifier;
2677 SkipUntil(tok::r_paren, StopAtSemi);
2678 return ExprError();
2680 Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2681 Comps.back().LocEnd = ConsumeToken();
2682 } else if (Tok.is(tok::l_square)) {
2683 if (CheckProhibitedCXX11Attribute())
2684 return ExprError();
2686 // offsetof-member-designator: offsetof-member-design '[' expression ']'
2687 Comps.push_back(Sema::OffsetOfComponent());
2688 Comps.back().isBrackets = true;
2689 BalancedDelimiterTracker ST(*this, tok::l_square);
2690 ST.consumeOpen();
2691 Comps.back().LocStart = ST.getOpenLocation();
2692 Res = ParseExpression();
2693 if (Res.isInvalid()) {
2694 SkipUntil(tok::r_paren, StopAtSemi);
2695 return Res;
2697 Comps.back().U.E = Res.get();
2699 ST.consumeClose();
2700 Comps.back().LocEnd = ST.getCloseLocation();
2701 } else {
2702 if (Tok.isNot(tok::r_paren)) {
2703 PT.consumeClose();
2704 Res = ExprError();
2705 } else if (Ty.isInvalid()) {
2706 Res = ExprError();
2707 } else {
2708 PT.consumeClose();
2709 Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
2710 Ty.get(), Comps,
2711 PT.getCloseLocation());
2713 break;
2716 break;
2718 case tok::kw___builtin_choose_expr: {
2719 ExprResult Cond(ParseAssignmentExpression());
2720 if (Cond.isInvalid()) {
2721 SkipUntil(tok::r_paren, StopAtSemi);
2722 return Cond;
2724 if (ExpectAndConsume(tok::comma)) {
2725 SkipUntil(tok::r_paren, StopAtSemi);
2726 return ExprError();
2729 ExprResult Expr1(ParseAssignmentExpression());
2730 if (Expr1.isInvalid()) {
2731 SkipUntil(tok::r_paren, StopAtSemi);
2732 return Expr1;
2734 if (ExpectAndConsume(tok::comma)) {
2735 SkipUntil(tok::r_paren, StopAtSemi);
2736 return ExprError();
2739 ExprResult Expr2(ParseAssignmentExpression());
2740 if (Expr2.isInvalid()) {
2741 SkipUntil(tok::r_paren, StopAtSemi);
2742 return Expr2;
2744 if (Tok.isNot(tok::r_paren)) {
2745 Diag(Tok, diag::err_expected) << tok::r_paren;
2746 return ExprError();
2748 Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
2749 Expr2.get(), ConsumeParen());
2750 break;
2752 case tok::kw___builtin_astype: {
2753 // The first argument is an expression to be converted, followed by a comma.
2754 ExprResult Expr(ParseAssignmentExpression());
2755 if (Expr.isInvalid()) {
2756 SkipUntil(tok::r_paren, StopAtSemi);
2757 return ExprError();
2760 if (ExpectAndConsume(tok::comma)) {
2761 SkipUntil(tok::r_paren, StopAtSemi);
2762 return ExprError();
2765 // Second argument is the type to bitcast to.
2766 TypeResult DestTy = ParseTypeName();
2767 if (DestTy.isInvalid())
2768 return ExprError();
2770 // Attempt to consume the r-paren.
2771 if (Tok.isNot(tok::r_paren)) {
2772 Diag(Tok, diag::err_expected) << tok::r_paren;
2773 SkipUntil(tok::r_paren, StopAtSemi);
2774 return ExprError();
2777 Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
2778 ConsumeParen());
2779 break;
2781 case tok::kw___builtin_convertvector: {
2782 // The first argument is an expression to be converted, followed by a comma.
2783 ExprResult Expr(ParseAssignmentExpression());
2784 if (Expr.isInvalid()) {
2785 SkipUntil(tok::r_paren, StopAtSemi);
2786 return ExprError();
2789 if (ExpectAndConsume(tok::comma)) {
2790 SkipUntil(tok::r_paren, StopAtSemi);
2791 return ExprError();
2794 // Second argument is the type to bitcast to.
2795 TypeResult DestTy = ParseTypeName();
2796 if (DestTy.isInvalid())
2797 return ExprError();
2799 // Attempt to consume the r-paren.
2800 if (Tok.isNot(tok::r_paren)) {
2801 Diag(Tok, diag::err_expected) << tok::r_paren;
2802 SkipUntil(tok::r_paren, StopAtSemi);
2803 return ExprError();
2806 Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
2807 ConsumeParen());
2808 break;
2810 case tok::kw___builtin_COLUMN:
2811 case tok::kw___builtin_FILE:
2812 case tok::kw___builtin_FILE_NAME:
2813 case tok::kw___builtin_FUNCTION:
2814 case tok::kw___builtin_FUNCSIG:
2815 case tok::kw___builtin_LINE:
2816 case tok::kw___builtin_source_location: {
2817 // Attempt to consume the r-paren.
2818 if (Tok.isNot(tok::r_paren)) {
2819 Diag(Tok, diag::err_expected) << tok::r_paren;
2820 SkipUntil(tok::r_paren, StopAtSemi);
2821 return ExprError();
2823 SourceLocExpr::IdentKind Kind = [&] {
2824 switch (T) {
2825 case tok::kw___builtin_FILE:
2826 return SourceLocExpr::File;
2827 case tok::kw___builtin_FILE_NAME:
2828 return SourceLocExpr::FileName;
2829 case tok::kw___builtin_FUNCTION:
2830 return SourceLocExpr::Function;
2831 case tok::kw___builtin_FUNCSIG:
2832 return SourceLocExpr::FuncSig;
2833 case tok::kw___builtin_LINE:
2834 return SourceLocExpr::Line;
2835 case tok::kw___builtin_COLUMN:
2836 return SourceLocExpr::Column;
2837 case tok::kw___builtin_source_location:
2838 return SourceLocExpr::SourceLocStruct;
2839 default:
2840 llvm_unreachable("invalid keyword");
2842 }();
2843 Res = Actions.ActOnSourceLocExpr(Kind, StartLoc, ConsumeParen());
2844 break;
2848 if (Res.isInvalid())
2849 return ExprError();
2851 // These can be followed by postfix-expr pieces because they are
2852 // primary-expressions.
2853 return ParsePostfixExpressionSuffix(Res.get());
2856 bool Parser::tryParseOpenMPArrayShapingCastPart() {
2857 assert(Tok.is(tok::l_square) && "Expected open bracket");
2858 bool ErrorFound = true;
2859 TentativeParsingAction TPA(*this);
2860 do {
2861 if (Tok.isNot(tok::l_square))
2862 break;
2863 // Consume '['
2864 ConsumeBracket();
2865 // Skip inner expression.
2866 while (!SkipUntil(tok::r_square, tok::annot_pragma_openmp_end,
2867 StopAtSemi | StopBeforeMatch))
2869 if (Tok.isNot(tok::r_square))
2870 break;
2871 // Consume ']'
2872 ConsumeBracket();
2873 // Found ')' - done.
2874 if (Tok.is(tok::r_paren)) {
2875 ErrorFound = false;
2876 break;
2878 } while (Tok.isNot(tok::annot_pragma_openmp_end));
2879 TPA.Revert();
2880 return !ErrorFound;
2883 /// ParseParenExpression - This parses the unit that starts with a '(' token,
2884 /// based on what is allowed by ExprType. The actual thing parsed is returned
2885 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
2886 /// not the parsed cast-expression.
2888 /// \verbatim
2889 /// primary-expression: [C99 6.5.1]
2890 /// '(' expression ')'
2891 /// [GNU] '(' compound-statement ')' (if !ParenExprOnly)
2892 /// postfix-expression: [C99 6.5.2]
2893 /// '(' type-name ')' '{' initializer-list '}'
2894 /// '(' type-name ')' '{' initializer-list ',' '}'
2895 /// cast-expression: [C99 6.5.4]
2896 /// '(' type-name ')' cast-expression
2897 /// [ARC] bridged-cast-expression
2898 /// [ARC] bridged-cast-expression:
2899 /// (__bridge type-name) cast-expression
2900 /// (__bridge_transfer type-name) cast-expression
2901 /// (__bridge_retained type-name) cast-expression
2902 /// fold-expression: [C++1z]
2903 /// '(' cast-expression fold-operator '...' ')'
2904 /// '(' '...' fold-operator cast-expression ')'
2905 /// '(' cast-expression fold-operator '...'
2906 /// fold-operator cast-expression ')'
2907 /// [OPENMP] Array shaping operation
2908 /// '(' '[' expression ']' { '[' expression ']' } cast-expression
2909 /// \endverbatim
2910 ExprResult
2911 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
2912 bool isTypeCast, ParsedType &CastTy,
2913 SourceLocation &RParenLoc) {
2914 assert(Tok.is(tok::l_paren) && "Not a paren expr!");
2915 ColonProtectionRAIIObject ColonProtection(*this, false);
2916 BalancedDelimiterTracker T(*this, tok::l_paren);
2917 if (T.consumeOpen())
2918 return ExprError();
2919 SourceLocation OpenLoc = T.getOpenLocation();
2921 PreferredType.enterParenExpr(Tok.getLocation(), OpenLoc);
2923 ExprResult Result(true);
2924 bool isAmbiguousTypeId;
2925 CastTy = nullptr;
2927 if (Tok.is(tok::code_completion)) {
2928 cutOffParsing();
2929 Actions.CodeCompleteExpression(
2930 getCurScope(), PreferredType.get(Tok.getLocation()),
2931 /*IsParenthesized=*/ExprType >= CompoundLiteral);
2932 return ExprError();
2935 // Diagnose use of bridge casts in non-arc mode.
2936 bool BridgeCast = (getLangOpts().ObjC &&
2937 Tok.isOneOf(tok::kw___bridge,
2938 tok::kw___bridge_transfer,
2939 tok::kw___bridge_retained,
2940 tok::kw___bridge_retain));
2941 if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
2942 if (!TryConsumeToken(tok::kw___bridge)) {
2943 StringRef BridgeCastName = Tok.getName();
2944 SourceLocation BridgeKeywordLoc = ConsumeToken();
2945 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2946 Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
2947 << BridgeCastName
2948 << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
2950 BridgeCast = false;
2953 // None of these cases should fall through with an invalid Result
2954 // unless they've already reported an error.
2955 if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
2956 Diag(Tok, OpenLoc.isMacroID() ? diag::ext_gnu_statement_expr_macro
2957 : diag::ext_gnu_statement_expr);
2959 checkCompoundToken(OpenLoc, tok::l_paren, CompoundToken::StmtExprBegin);
2961 if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) {
2962 Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope));
2963 } else {
2964 // Find the nearest non-record decl context. Variables declared in a
2965 // statement expression behave as if they were declared in the enclosing
2966 // function, block, or other code construct.
2967 DeclContext *CodeDC = Actions.CurContext;
2968 while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) {
2969 CodeDC = CodeDC->getParent();
2970 assert(CodeDC && !CodeDC->isFileContext() &&
2971 "statement expr not in code context");
2973 Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false);
2975 Actions.ActOnStartStmtExpr();
2977 StmtResult Stmt(ParseCompoundStatement(true));
2978 ExprType = CompoundStmt;
2980 // If the substmt parsed correctly, build the AST node.
2981 if (!Stmt.isInvalid()) {
2982 Result = Actions.ActOnStmtExpr(getCurScope(), OpenLoc, Stmt.get(),
2983 Tok.getLocation());
2984 } else {
2985 Actions.ActOnStmtExprError();
2988 } else if (ExprType >= CompoundLiteral && BridgeCast) {
2989 tok::TokenKind tokenKind = Tok.getKind();
2990 SourceLocation BridgeKeywordLoc = ConsumeToken();
2992 // Parse an Objective-C ARC ownership cast expression.
2993 ObjCBridgeCastKind Kind;
2994 if (tokenKind == tok::kw___bridge)
2995 Kind = OBC_Bridge;
2996 else if (tokenKind == tok::kw___bridge_transfer)
2997 Kind = OBC_BridgeTransfer;
2998 else if (tokenKind == tok::kw___bridge_retained)
2999 Kind = OBC_BridgeRetained;
3000 else {
3001 // As a hopefully temporary workaround, allow __bridge_retain as
3002 // a synonym for __bridge_retained, but only in system headers.
3003 assert(tokenKind == tok::kw___bridge_retain);
3004 Kind = OBC_BridgeRetained;
3005 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
3006 Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
3007 << FixItHint::CreateReplacement(BridgeKeywordLoc,
3008 "__bridge_retained");
3011 TypeResult Ty = ParseTypeName();
3012 T.consumeClose();
3013 ColonProtection.restore();
3014 RParenLoc = T.getCloseLocation();
3016 PreferredType.enterTypeCast(Tok.getLocation(), Ty.get().get());
3017 ExprResult SubExpr = ParseCastExpression(AnyCastExpr);
3019 if (Ty.isInvalid() || SubExpr.isInvalid())
3020 return ExprError();
3022 return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
3023 BridgeKeywordLoc, Ty.get(),
3024 RParenLoc, SubExpr.get());
3025 } else if (ExprType >= CompoundLiteral &&
3026 isTypeIdInParens(isAmbiguousTypeId)) {
3028 // Otherwise, this is a compound literal expression or cast expression.
3030 // In C++, if the type-id is ambiguous we disambiguate based on context.
3031 // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
3032 // in which case we should treat it as type-id.
3033 // if stopIfCastExpr is false, we need to determine the context past the
3034 // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
3035 if (isAmbiguousTypeId && !stopIfCastExpr) {
3036 ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
3037 ColonProtection);
3038 RParenLoc = T.getCloseLocation();
3039 return res;
3042 // Parse the type declarator.
3043 DeclSpec DS(AttrFactory);
3044 ParseSpecifierQualifierList(DS);
3045 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3046 DeclaratorContext::TypeName);
3047 ParseDeclarator(DeclaratorInfo);
3049 // If our type is followed by an identifier and either ':' or ']', then
3050 // this is probably an Objective-C message send where the leading '[' is
3051 // missing. Recover as if that were the case.
3052 if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
3053 !InMessageExpression && getLangOpts().ObjC &&
3054 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
3055 TypeResult Ty;
3057 InMessageExpressionRAIIObject InMessage(*this, false);
3058 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3060 Result = ParseObjCMessageExpressionBody(SourceLocation(),
3061 SourceLocation(),
3062 Ty.get(), nullptr);
3063 } else {
3064 // Match the ')'.
3065 T.consumeClose();
3066 ColonProtection.restore();
3067 RParenLoc = T.getCloseLocation();
3068 if (Tok.is(tok::l_brace)) {
3069 ExprType = CompoundLiteral;
3070 TypeResult Ty;
3072 InMessageExpressionRAIIObject InMessage(*this, false);
3073 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3075 return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
3078 if (Tok.is(tok::l_paren)) {
3079 // This could be OpenCL vector Literals
3080 if (getLangOpts().OpenCL)
3082 TypeResult Ty;
3084 InMessageExpressionRAIIObject InMessage(*this, false);
3085 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3087 if(Ty.isInvalid())
3089 return ExprError();
3091 QualType QT = Ty.get().get().getCanonicalType();
3092 if (QT->isVectorType())
3094 // We parsed '(' vector-type-name ')' followed by '('
3096 // Parse the cast-expression that follows it next.
3097 // isVectorLiteral = true will make sure we don't parse any
3098 // Postfix expression yet
3099 Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr,
3100 /*isAddressOfOperand=*/false,
3101 /*isTypeCast=*/IsTypeCast,
3102 /*isVectorLiteral=*/true);
3104 if (!Result.isInvalid()) {
3105 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
3106 DeclaratorInfo, CastTy,
3107 RParenLoc, Result.get());
3110 // After we performed the cast we can check for postfix-expr pieces.
3111 if (!Result.isInvalid()) {
3112 Result = ParsePostfixExpressionSuffix(Result);
3115 return Result;
3120 if (ExprType == CastExpr) {
3121 // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
3123 if (DeclaratorInfo.isInvalidType())
3124 return ExprError();
3126 // Note that this doesn't parse the subsequent cast-expression, it just
3127 // returns the parsed type to the callee.
3128 if (stopIfCastExpr) {
3129 TypeResult Ty;
3131 InMessageExpressionRAIIObject InMessage(*this, false);
3132 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3134 CastTy = Ty.get();
3135 return ExprResult();
3138 // Reject the cast of super idiom in ObjC.
3139 if (Tok.is(tok::identifier) && getLangOpts().ObjC &&
3140 Tok.getIdentifierInfo() == Ident_super &&
3141 getCurScope()->isInObjcMethodScope() &&
3142 GetLookAheadToken(1).isNot(tok::period)) {
3143 Diag(Tok.getLocation(), diag::err_illegal_super_cast)
3144 << SourceRange(OpenLoc, RParenLoc);
3145 return ExprError();
3148 PreferredType.enterTypeCast(Tok.getLocation(), CastTy.get());
3149 // Parse the cast-expression that follows it next.
3150 // TODO: For cast expression with CastTy.
3151 Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr,
3152 /*isAddressOfOperand=*/false,
3153 /*isTypeCast=*/IsTypeCast);
3154 if (!Result.isInvalid()) {
3155 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
3156 DeclaratorInfo, CastTy,
3157 RParenLoc, Result.get());
3159 return Result;
3162 Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
3163 return ExprError();
3165 } else if (ExprType >= FoldExpr && Tok.is(tok::ellipsis) &&
3166 isFoldOperator(NextToken().getKind())) {
3167 ExprType = FoldExpr;
3168 return ParseFoldExpression(ExprResult(), T);
3169 } else if (isTypeCast) {
3170 // Parse the expression-list.
3171 InMessageExpressionRAIIObject InMessage(*this, false);
3172 ExprVector ArgExprs;
3174 if (!ParseSimpleExpressionList(ArgExprs)) {
3175 // FIXME: If we ever support comma expressions as operands to
3176 // fold-expressions, we'll need to allow multiple ArgExprs here.
3177 if (ExprType >= FoldExpr && ArgExprs.size() == 1 &&
3178 isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis)) {
3179 ExprType = FoldExpr;
3180 return ParseFoldExpression(ArgExprs[0], T);
3183 ExprType = SimpleExpr;
3184 Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
3185 ArgExprs);
3187 } else if (getLangOpts().OpenMP >= 50 && OpenMPDirectiveParsing &&
3188 ExprType == CastExpr && Tok.is(tok::l_square) &&
3189 tryParseOpenMPArrayShapingCastPart()) {
3190 bool ErrorFound = false;
3191 SmallVector<Expr *, 4> OMPDimensions;
3192 SmallVector<SourceRange, 4> OMPBracketsRanges;
3193 do {
3194 BalancedDelimiterTracker TS(*this, tok::l_square);
3195 TS.consumeOpen();
3196 ExprResult NumElements =
3197 Actions.CorrectDelayedTyposInExpr(ParseExpression());
3198 if (!NumElements.isUsable()) {
3199 ErrorFound = true;
3200 while (!SkipUntil(tok::r_square, tok::r_paren,
3201 StopAtSemi | StopBeforeMatch))
3204 TS.consumeClose();
3205 OMPDimensions.push_back(NumElements.get());
3206 OMPBracketsRanges.push_back(TS.getRange());
3207 } while (Tok.isNot(tok::r_paren));
3208 // Match the ')'.
3209 T.consumeClose();
3210 RParenLoc = T.getCloseLocation();
3211 Result = Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
3212 if (ErrorFound) {
3213 Result = ExprError();
3214 } else if (!Result.isInvalid()) {
3215 Result = Actions.ActOnOMPArrayShapingExpr(
3216 Result.get(), OpenLoc, RParenLoc, OMPDimensions, OMPBracketsRanges);
3218 return Result;
3219 } else {
3220 InMessageExpressionRAIIObject InMessage(*this, false);
3222 Result = ParseExpression(MaybeTypeCast);
3223 if (!getLangOpts().CPlusPlus && Result.isUsable()) {
3224 // Correct typos in non-C++ code earlier so that implicit-cast-like
3225 // expressions are parsed correctly.
3226 Result = Actions.CorrectDelayedTyposInExpr(Result);
3229 if (ExprType >= FoldExpr && isFoldOperator(Tok.getKind()) &&
3230 NextToken().is(tok::ellipsis)) {
3231 ExprType = FoldExpr;
3232 return ParseFoldExpression(Result, T);
3234 ExprType = SimpleExpr;
3236 // Don't build a paren expression unless we actually match a ')'.
3237 if (!Result.isInvalid() && Tok.is(tok::r_paren))
3238 Result =
3239 Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
3242 // Match the ')'.
3243 if (Result.isInvalid()) {
3244 SkipUntil(tok::r_paren, StopAtSemi);
3245 return ExprError();
3248 T.consumeClose();
3249 RParenLoc = T.getCloseLocation();
3250 return Result;
3253 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
3254 /// and we are at the left brace.
3256 /// \verbatim
3257 /// postfix-expression: [C99 6.5.2]
3258 /// '(' type-name ')' '{' initializer-list '}'
3259 /// '(' type-name ')' '{' initializer-list ',' '}'
3260 /// \endverbatim
3261 ExprResult
3262 Parser::ParseCompoundLiteralExpression(ParsedType Ty,
3263 SourceLocation LParenLoc,
3264 SourceLocation RParenLoc) {
3265 assert(Tok.is(tok::l_brace) && "Not a compound literal!");
3266 if (!getLangOpts().C99) // Compound literals don't exist in C90.
3267 Diag(LParenLoc, diag::ext_c99_compound_literal);
3268 PreferredType.enterTypeCast(Tok.getLocation(), Ty.get());
3269 ExprResult Result = ParseInitializer();
3270 if (!Result.isInvalid() && Ty)
3271 return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
3272 return Result;
3275 /// ParseStringLiteralExpression - This handles the various token types that
3276 /// form string literals, and also handles string concatenation [C99 5.1.1.2,
3277 /// translation phase #6].
3279 /// \verbatim
3280 /// primary-expression: [C99 6.5.1]
3281 /// string-literal
3282 /// \verbatim
3283 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
3284 return ParseStringLiteralExpression(AllowUserDefinedLiteral,
3285 /*Unevaluated=*/false);
3288 ExprResult Parser::ParseUnevaluatedStringLiteralExpression() {
3289 return ParseStringLiteralExpression(/*AllowUserDefinedLiteral=*/false,
3290 /*Unevaluated=*/true);
3293 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral,
3294 bool Unevaluated) {
3295 assert(tokenIsLikeStringLiteral(Tok, getLangOpts()) &&
3296 "Not a string-literal-like token!");
3298 // String concatenation.
3299 // Note: some keywords like __FUNCTION__ are not considered to be strings
3300 // for concatenation purposes, unless Microsoft extensions are enabled.
3301 SmallVector<Token, 4> StringToks;
3303 do {
3304 StringToks.push_back(Tok);
3305 ConsumeAnyToken();
3306 } while (tokenIsLikeStringLiteral(Tok, getLangOpts()));
3308 if (Unevaluated) {
3309 assert(!AllowUserDefinedLiteral && "UDL are always evaluated");
3310 return Actions.ActOnUnevaluatedStringLiteral(StringToks);
3313 // Pass the set of string tokens, ready for concatenation, to the actions.
3314 return Actions.ActOnStringLiteral(StringToks,
3315 AllowUserDefinedLiteral ? getCurScope()
3316 : nullptr);
3319 /// ParseGenericSelectionExpression - Parse a C11 generic-selection
3320 /// [C11 6.5.1.1].
3322 /// \verbatim
3323 /// generic-selection:
3324 /// _Generic ( assignment-expression , generic-assoc-list )
3325 /// generic-assoc-list:
3326 /// generic-association
3327 /// generic-assoc-list , generic-association
3328 /// generic-association:
3329 /// type-name : assignment-expression
3330 /// default : assignment-expression
3331 /// \endverbatim
3333 /// As an extension, Clang also accepts:
3334 /// \verbatim
3335 /// generic-selection:
3336 /// _Generic ( type-name, generic-assoc-list )
3337 /// \endverbatim
3338 ExprResult Parser::ParseGenericSelectionExpression() {
3339 assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
3340 if (!getLangOpts().C11)
3341 Diag(Tok, diag::ext_c11_feature) << Tok.getName();
3343 SourceLocation KeyLoc = ConsumeToken();
3344 BalancedDelimiterTracker T(*this, tok::l_paren);
3345 if (T.expectAndConsume())
3346 return ExprError();
3348 // We either have a controlling expression or we have a controlling type, and
3349 // we need to figure out which it is.
3350 TypeResult ControllingType;
3351 ExprResult ControllingExpr;
3352 if (isTypeIdForGenericSelection()) {
3353 ControllingType = ParseTypeName();
3354 if (ControllingType.isInvalid()) {
3355 SkipUntil(tok::r_paren, StopAtSemi);
3356 return ExprError();
3358 const auto *LIT = cast<LocInfoType>(ControllingType.get().get());
3359 SourceLocation Loc = LIT->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
3360 Diag(Loc, diag::ext_generic_with_type_arg);
3361 } else {
3362 // C11 6.5.1.1p3 "The controlling expression of a generic selection is
3363 // not evaluated."
3364 EnterExpressionEvaluationContext Unevaluated(
3365 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
3366 ControllingExpr =
3367 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
3368 if (ControllingExpr.isInvalid()) {
3369 SkipUntil(tok::r_paren, StopAtSemi);
3370 return ExprError();
3374 if (ExpectAndConsume(tok::comma)) {
3375 SkipUntil(tok::r_paren, StopAtSemi);
3376 return ExprError();
3379 SourceLocation DefaultLoc;
3380 SmallVector<ParsedType, 12> Types;
3381 ExprVector Exprs;
3382 do {
3383 ParsedType Ty;
3384 if (Tok.is(tok::kw_default)) {
3385 // C11 6.5.1.1p2 "A generic selection shall have no more than one default
3386 // generic association."
3387 if (!DefaultLoc.isInvalid()) {
3388 Diag(Tok, diag::err_duplicate_default_assoc);
3389 Diag(DefaultLoc, diag::note_previous_default_assoc);
3390 SkipUntil(tok::r_paren, StopAtSemi);
3391 return ExprError();
3393 DefaultLoc = ConsumeToken();
3394 Ty = nullptr;
3395 } else {
3396 ColonProtectionRAIIObject X(*this);
3397 TypeResult TR = ParseTypeName(nullptr, DeclaratorContext::Association);
3398 if (TR.isInvalid()) {
3399 SkipUntil(tok::r_paren, StopAtSemi);
3400 return ExprError();
3402 Ty = TR.get();
3404 Types.push_back(Ty);
3406 if (ExpectAndConsume(tok::colon)) {
3407 SkipUntil(tok::r_paren, StopAtSemi);
3408 return ExprError();
3411 // FIXME: These expressions should be parsed in a potentially potentially
3412 // evaluated context.
3413 ExprResult ER(
3414 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
3415 if (ER.isInvalid()) {
3416 SkipUntil(tok::r_paren, StopAtSemi);
3417 return ExprError();
3419 Exprs.push_back(ER.get());
3420 } while (TryConsumeToken(tok::comma));
3422 T.consumeClose();
3423 if (T.getCloseLocation().isInvalid())
3424 return ExprError();
3426 void *ExprOrTy = ControllingExpr.isUsable()
3427 ? ControllingExpr.get()
3428 : ControllingType.get().getAsOpaquePtr();
3430 return Actions.ActOnGenericSelectionExpr(
3431 KeyLoc, DefaultLoc, T.getCloseLocation(), ControllingExpr.isUsable(),
3432 ExprOrTy, Types, Exprs);
3435 /// Parse A C++1z fold-expression after the opening paren and optional
3436 /// left-hand-side expression.
3438 /// \verbatim
3439 /// fold-expression:
3440 /// ( cast-expression fold-operator ... )
3441 /// ( ... fold-operator cast-expression )
3442 /// ( cast-expression fold-operator ... fold-operator cast-expression )
3443 ExprResult Parser::ParseFoldExpression(ExprResult LHS,
3444 BalancedDelimiterTracker &T) {
3445 if (LHS.isInvalid()) {
3446 T.skipToEnd();
3447 return true;
3450 tok::TokenKind Kind = tok::unknown;
3451 SourceLocation FirstOpLoc;
3452 if (LHS.isUsable()) {
3453 Kind = Tok.getKind();
3454 assert(isFoldOperator(Kind) && "missing fold-operator");
3455 FirstOpLoc = ConsumeToken();
3458 assert(Tok.is(tok::ellipsis) && "not a fold-expression");
3459 SourceLocation EllipsisLoc = ConsumeToken();
3461 ExprResult RHS;
3462 if (Tok.isNot(tok::r_paren)) {
3463 if (!isFoldOperator(Tok.getKind()))
3464 return Diag(Tok.getLocation(), diag::err_expected_fold_operator);
3466 if (Kind != tok::unknown && Tok.getKind() != Kind)
3467 Diag(Tok.getLocation(), diag::err_fold_operator_mismatch)
3468 << SourceRange(FirstOpLoc);
3469 Kind = Tok.getKind();
3470 ConsumeToken();
3472 RHS = ParseExpression();
3473 if (RHS.isInvalid()) {
3474 T.skipToEnd();
3475 return true;
3479 Diag(EllipsisLoc, getLangOpts().CPlusPlus17
3480 ? diag::warn_cxx14_compat_fold_expression
3481 : diag::ext_fold_expression);
3483 T.consumeClose();
3484 return Actions.ActOnCXXFoldExpr(getCurScope(), T.getOpenLocation(), LHS.get(),
3485 Kind, EllipsisLoc, RHS.get(),
3486 T.getCloseLocation());
3489 /// ParseExpressionList - Used for C/C++ (argument-)expression-list.
3491 /// \verbatim
3492 /// argument-expression-list:
3493 /// assignment-expression
3494 /// argument-expression-list , assignment-expression
3496 /// [C++] expression-list:
3497 /// [C++] assignment-expression
3498 /// [C++] expression-list , assignment-expression
3500 /// [C++0x] expression-list:
3501 /// [C++0x] initializer-list
3503 /// [C++0x] initializer-list
3504 /// [C++0x] initializer-clause ...[opt]
3505 /// [C++0x] initializer-list , initializer-clause ...[opt]
3507 /// [C++0x] initializer-clause:
3508 /// [C++0x] assignment-expression
3509 /// [C++0x] braced-init-list
3510 /// \endverbatim
3511 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs,
3512 llvm::function_ref<void()> ExpressionStarts,
3513 bool FailImmediatelyOnInvalidExpr,
3514 bool EarlyTypoCorrection) {
3515 bool SawError = false;
3516 while (true) {
3517 if (ExpressionStarts)
3518 ExpressionStarts();
3520 ExprResult Expr;
3521 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
3522 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
3523 Expr = ParseBraceInitializer();
3524 } else
3525 Expr = ParseAssignmentExpression();
3527 if (EarlyTypoCorrection)
3528 Expr = Actions.CorrectDelayedTyposInExpr(Expr);
3530 if (Tok.is(tok::ellipsis))
3531 Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
3532 else if (Tok.is(tok::code_completion)) {
3533 // There's nothing to suggest in here as we parsed a full expression.
3534 // Instead fail and propagate the error since caller might have something
3535 // the suggest, e.g. signature help in function call. Note that this is
3536 // performed before pushing the \p Expr, so that signature help can report
3537 // current argument correctly.
3538 SawError = true;
3539 cutOffParsing();
3540 break;
3542 if (Expr.isInvalid()) {
3543 SawError = true;
3544 if (FailImmediatelyOnInvalidExpr)
3545 break;
3546 SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch);
3547 } else {
3548 Exprs.push_back(Expr.get());
3551 if (Tok.isNot(tok::comma))
3552 break;
3553 // Move to the next argument, remember where the comma was.
3554 Token Comma = Tok;
3555 ConsumeToken();
3556 checkPotentialAngleBracketDelimiter(Comma);
3558 if (SawError) {
3559 // Ensure typos get diagnosed when errors were encountered while parsing the
3560 // expression list.
3561 for (auto &E : Exprs) {
3562 ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
3563 if (Expr.isUsable()) E = Expr.get();
3566 return SawError;
3569 /// ParseSimpleExpressionList - A simple comma-separated list of expressions,
3570 /// used for misc language extensions.
3572 /// \verbatim
3573 /// simple-expression-list:
3574 /// assignment-expression
3575 /// simple-expression-list , assignment-expression
3576 /// \endverbatim
3577 bool Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr *> &Exprs) {
3578 while (true) {
3579 ExprResult Expr = ParseAssignmentExpression();
3580 if (Expr.isInvalid())
3581 return true;
3583 Exprs.push_back(Expr.get());
3585 // We might be parsing the LHS of a fold-expression. If we reached the fold
3586 // operator, stop.
3587 if (Tok.isNot(tok::comma) || NextToken().is(tok::ellipsis))
3588 return false;
3590 // Move to the next argument, remember where the comma was.
3591 Token Comma = Tok;
3592 ConsumeToken();
3593 checkPotentialAngleBracketDelimiter(Comma);
3597 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
3599 /// \verbatim
3600 /// [clang] block-id:
3601 /// [clang] specifier-qualifier-list block-declarator
3602 /// \endverbatim
3603 void Parser::ParseBlockId(SourceLocation CaretLoc) {
3604 if (Tok.is(tok::code_completion)) {
3605 cutOffParsing();
3606 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
3607 return;
3610 // Parse the specifier-qualifier-list piece.
3611 DeclSpec DS(AttrFactory);
3612 ParseSpecifierQualifierList(DS);
3614 // Parse the block-declarator.
3615 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3616 DeclaratorContext::BlockLiteral);
3617 DeclaratorInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
3618 ParseDeclarator(DeclaratorInfo);
3620 MaybeParseGNUAttributes(DeclaratorInfo);
3622 // Inform sema that we are starting a block.
3623 Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
3626 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
3627 /// like ^(int x){ return x+1; }
3629 /// \verbatim
3630 /// block-literal:
3631 /// [clang] '^' block-args[opt] compound-statement
3632 /// [clang] '^' block-id compound-statement
3633 /// [clang] block-args:
3634 /// [clang] '(' parameter-list ')'
3635 /// \endverbatim
3636 ExprResult Parser::ParseBlockLiteralExpression() {
3637 assert(Tok.is(tok::caret) && "block literal starts with ^");
3638 SourceLocation CaretLoc = ConsumeToken();
3640 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
3641 "block literal parsing");
3643 // Enter a scope to hold everything within the block. This includes the
3644 // argument decls, decls within the compound expression, etc. This also
3645 // allows determining whether a variable reference inside the block is
3646 // within or outside of the block.
3647 ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
3648 Scope::CompoundStmtScope | Scope::DeclScope);
3650 // Inform sema that we are starting a block.
3651 Actions.ActOnBlockStart(CaretLoc, getCurScope());
3653 // Parse the return type if present.
3654 DeclSpec DS(AttrFactory);
3655 Declarator ParamInfo(DS, ParsedAttributesView::none(),
3656 DeclaratorContext::BlockLiteral);
3657 ParamInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
3658 // FIXME: Since the return type isn't actually parsed, it can't be used to
3659 // fill ParamInfo with an initial valid range, so do it manually.
3660 ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
3662 // If this block has arguments, parse them. There is no ambiguity here with
3663 // the expression case, because the expression case requires a parameter list.
3664 if (Tok.is(tok::l_paren)) {
3665 ParseParenDeclarator(ParamInfo);
3666 // Parse the pieces after the identifier as if we had "int(...)".
3667 // SetIdentifier sets the source range end, but in this case we're past
3668 // that location.
3669 SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
3670 ParamInfo.SetIdentifier(nullptr, CaretLoc);
3671 ParamInfo.SetRangeEnd(Tmp);
3672 if (ParamInfo.isInvalidType()) {
3673 // If there was an error parsing the arguments, they may have
3674 // tried to use ^(x+y) which requires an argument list. Just
3675 // skip the whole block literal.
3676 Actions.ActOnBlockError(CaretLoc, getCurScope());
3677 return ExprError();
3680 MaybeParseGNUAttributes(ParamInfo);
3682 // Inform sema that we are starting a block.
3683 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3684 } else if (!Tok.is(tok::l_brace)) {
3685 ParseBlockId(CaretLoc);
3686 } else {
3687 // Otherwise, pretend we saw (void).
3688 SourceLocation NoLoc;
3689 ParamInfo.AddTypeInfo(
3690 DeclaratorChunk::getFunction(/*HasProto=*/true,
3691 /*IsAmbiguous=*/false,
3692 /*RParenLoc=*/NoLoc,
3693 /*ArgInfo=*/nullptr,
3694 /*NumParams=*/0,
3695 /*EllipsisLoc=*/NoLoc,
3696 /*RParenLoc=*/NoLoc,
3697 /*RefQualifierIsLvalueRef=*/true,
3698 /*RefQualifierLoc=*/NoLoc,
3699 /*MutableLoc=*/NoLoc, EST_None,
3700 /*ESpecRange=*/SourceRange(),
3701 /*Exceptions=*/nullptr,
3702 /*ExceptionRanges=*/nullptr,
3703 /*NumExceptions=*/0,
3704 /*NoexceptExpr=*/nullptr,
3705 /*ExceptionSpecTokens=*/nullptr,
3706 /*DeclsInPrototype=*/std::nullopt,
3707 CaretLoc, CaretLoc, ParamInfo),
3708 CaretLoc);
3710 MaybeParseGNUAttributes(ParamInfo);
3712 // Inform sema that we are starting a block.
3713 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3717 ExprResult Result(true);
3718 if (!Tok.is(tok::l_brace)) {
3719 // Saw something like: ^expr
3720 Diag(Tok, diag::err_expected_expression);
3721 Actions.ActOnBlockError(CaretLoc, getCurScope());
3722 return ExprError();
3725 StmtResult Stmt(ParseCompoundStatementBody());
3726 BlockScope.Exit();
3727 if (!Stmt.isInvalid())
3728 Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
3729 else
3730 Actions.ActOnBlockError(CaretLoc, getCurScope());
3731 return Result;
3734 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
3736 /// '__objc_yes'
3737 /// '__objc_no'
3738 ExprResult Parser::ParseObjCBoolLiteral() {
3739 tok::TokenKind Kind = Tok.getKind();
3740 return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
3743 /// Validate availability spec list, emitting diagnostics if necessary. Returns
3744 /// true if invalid.
3745 static bool CheckAvailabilitySpecList(Parser &P,
3746 ArrayRef<AvailabilitySpec> AvailSpecs) {
3747 llvm::SmallSet<StringRef, 4> Platforms;
3748 bool HasOtherPlatformSpec = false;
3749 bool Valid = true;
3750 for (const auto &Spec : AvailSpecs) {
3751 if (Spec.isOtherPlatformSpec()) {
3752 if (HasOtherPlatformSpec) {
3753 P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_star);
3754 Valid = false;
3757 HasOtherPlatformSpec = true;
3758 continue;
3761 bool Inserted = Platforms.insert(Spec.getPlatform()).second;
3762 if (!Inserted) {
3763 // Rule out multiple version specs referring to the same platform.
3764 // For example, we emit an error for:
3765 // @available(macos 10.10, macos 10.11, *)
3766 StringRef Platform = Spec.getPlatform();
3767 P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_platform)
3768 << Spec.getEndLoc() << Platform;
3769 Valid = false;
3773 if (!HasOtherPlatformSpec) {
3774 SourceLocation InsertWildcardLoc = AvailSpecs.back().getEndLoc();
3775 P.Diag(InsertWildcardLoc, diag::err_availability_query_wildcard_required)
3776 << FixItHint::CreateInsertion(InsertWildcardLoc, ", *");
3777 return true;
3780 return !Valid;
3783 /// Parse availability query specification.
3785 /// availability-spec:
3786 /// '*'
3787 /// identifier version-tuple
3788 std::optional<AvailabilitySpec> Parser::ParseAvailabilitySpec() {
3789 if (Tok.is(tok::star)) {
3790 return AvailabilitySpec(ConsumeToken());
3791 } else {
3792 // Parse the platform name.
3793 if (Tok.is(tok::code_completion)) {
3794 cutOffParsing();
3795 Actions.CodeCompleteAvailabilityPlatformName();
3796 return std::nullopt;
3798 if (Tok.isNot(tok::identifier)) {
3799 Diag(Tok, diag::err_avail_query_expected_platform_name);
3800 return std::nullopt;
3803 IdentifierLoc *PlatformIdentifier = ParseIdentifierLoc();
3804 SourceRange VersionRange;
3805 VersionTuple Version = ParseVersionTuple(VersionRange);
3807 if (Version.empty())
3808 return std::nullopt;
3810 StringRef GivenPlatform = PlatformIdentifier->Ident->getName();
3811 StringRef Platform =
3812 AvailabilityAttr::canonicalizePlatformName(GivenPlatform);
3814 if (AvailabilityAttr::getPrettyPlatformName(Platform).empty()) {
3815 Diag(PlatformIdentifier->Loc,
3816 diag::err_avail_query_unrecognized_platform_name)
3817 << GivenPlatform;
3818 return std::nullopt;
3821 return AvailabilitySpec(Version, Platform, PlatformIdentifier->Loc,
3822 VersionRange.getEnd());
3826 ExprResult Parser::ParseAvailabilityCheckExpr(SourceLocation BeginLoc) {
3827 assert(Tok.is(tok::kw___builtin_available) ||
3828 Tok.isObjCAtKeyword(tok::objc_available));
3830 // Eat the available or __builtin_available.
3831 ConsumeToken();
3833 BalancedDelimiterTracker Parens(*this, tok::l_paren);
3834 if (Parens.expectAndConsume())
3835 return ExprError();
3837 SmallVector<AvailabilitySpec, 4> AvailSpecs;
3838 bool HasError = false;
3839 while (true) {
3840 std::optional<AvailabilitySpec> Spec = ParseAvailabilitySpec();
3841 if (!Spec)
3842 HasError = true;
3843 else
3844 AvailSpecs.push_back(*Spec);
3846 if (!TryConsumeToken(tok::comma))
3847 break;
3850 if (HasError) {
3851 SkipUntil(tok::r_paren, StopAtSemi);
3852 return ExprError();
3855 CheckAvailabilitySpecList(*this, AvailSpecs);
3857 if (Parens.consumeClose())
3858 return ExprError();
3860 return Actions.ActOnObjCAvailabilityCheckExpr(AvailSpecs, BeginLoc,
3861 Parens.getCloseLocation());