[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / clang / lib / Parse / ParseExprCXX.cpp
blob99b4931004546c105bb93e61d1f360eb04f06be0
1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expression parsing implementation for C++.
11 //===----------------------------------------------------------------------===//
12 #include "clang/AST/ASTContext.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/AST/DeclTemplate.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/PrettyStackTrace.h"
17 #include "clang/Basic/TokenKinds.h"
18 #include "clang/Lex/LiteralSupport.h"
19 #include "clang/Parse/ParseDiagnostic.h"
20 #include "clang/Parse/Parser.h"
21 #include "clang/Parse/RAIIObjectsForParser.h"
22 #include "clang/Sema/DeclSpec.h"
23 #include "clang/Sema/EnterExpressionEvaluationContext.h"
24 #include "clang/Sema/ParsedTemplate.h"
25 #include "clang/Sema/Scope.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include <numeric>
30 using namespace clang;
32 static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
33 switch (Kind) {
34 // template name
35 case tok::unknown: return 0;
36 // casts
37 case tok::kw_addrspace_cast: return 1;
38 case tok::kw_const_cast: return 2;
39 case tok::kw_dynamic_cast: return 3;
40 case tok::kw_reinterpret_cast: return 4;
41 case tok::kw_static_cast: return 5;
42 default:
43 llvm_unreachable("Unknown type for digraph error message.");
47 // Are the two tokens adjacent in the same source file?
48 bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
49 SourceManager &SM = PP.getSourceManager();
50 SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
51 SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
52 return FirstEnd == SM.getSpellingLoc(Second.getLocation());
55 // Suggest fixit for "<::" after a cast.
56 static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
57 Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
58 // Pull '<:' and ':' off token stream.
59 if (!AtDigraph)
60 PP.Lex(DigraphToken);
61 PP.Lex(ColonToken);
63 SourceRange Range;
64 Range.setBegin(DigraphToken.getLocation());
65 Range.setEnd(ColonToken.getLocation());
66 P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
67 << SelectDigraphErrorMessage(Kind)
68 << FixItHint::CreateReplacement(Range, "< ::");
70 // Update token information to reflect their change in token type.
71 ColonToken.setKind(tok::coloncolon);
72 ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
73 ColonToken.setLength(2);
74 DigraphToken.setKind(tok::less);
75 DigraphToken.setLength(1);
77 // Push new tokens back to token stream.
78 PP.EnterToken(ColonToken, /*IsReinject*/ true);
79 if (!AtDigraph)
80 PP.EnterToken(DigraphToken, /*IsReinject*/ true);
83 // Check for '<::' which should be '< ::' instead of '[:' when following
84 // a template name.
85 void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
86 bool EnteringContext,
87 IdentifierInfo &II, CXXScopeSpec &SS) {
88 if (!Next.is(tok::l_square) || Next.getLength() != 2)
89 return;
91 Token SecondToken = GetLookAheadToken(2);
92 if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
93 return;
95 TemplateTy Template;
96 UnqualifiedId TemplateName;
97 TemplateName.setIdentifier(&II, Tok.getLocation());
98 bool MemberOfUnknownSpecialization;
99 if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
100 TemplateName, ObjectType, EnteringContext,
101 Template, MemberOfUnknownSpecialization))
102 return;
104 FixDigraph(*this, PP, Next, SecondToken, tok::unknown,
105 /*AtDigraph*/false);
108 /// Parse global scope or nested-name-specifier if present.
110 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
111 /// may be preceded by '::'). Note that this routine will not parse ::new or
112 /// ::delete; it will just leave them in the token stream.
114 /// '::'[opt] nested-name-specifier
115 /// '::'
117 /// nested-name-specifier:
118 /// type-name '::'
119 /// namespace-name '::'
120 /// nested-name-specifier identifier '::'
121 /// nested-name-specifier 'template'[opt] simple-template-id '::'
124 /// \param SS the scope specifier that will be set to the parsed
125 /// nested-name-specifier (or empty)
127 /// \param ObjectType if this nested-name-specifier is being parsed following
128 /// the "." or "->" of a member access expression, this parameter provides the
129 /// type of the object whose members are being accessed.
131 /// \param ObjectHadErrors if this unqualified-id occurs within a member access
132 /// expression, indicates whether the original subexpressions had any errors.
133 /// When true, diagnostics for missing 'template' keyword will be supressed.
135 /// \param EnteringContext whether we will be entering into the context of
136 /// the nested-name-specifier after parsing it.
138 /// \param MayBePseudoDestructor When non-NULL, points to a flag that
139 /// indicates whether this nested-name-specifier may be part of a
140 /// pseudo-destructor name. In this case, the flag will be set false
141 /// if we don't actually end up parsing a destructor name. Moreover,
142 /// if we do end up determining that we are parsing a destructor name,
143 /// the last component of the nested-name-specifier is not parsed as
144 /// part of the scope specifier.
146 /// \param IsTypename If \c true, this nested-name-specifier is known to be
147 /// part of a type name. This is used to improve error recovery.
149 /// \param LastII When non-NULL, points to an IdentifierInfo* that will be
150 /// filled in with the leading identifier in the last component of the
151 /// nested-name-specifier, if any.
153 /// \param OnlyNamespace If true, only considers namespaces in lookup.
156 /// \returns true if there was an error parsing a scope specifier
157 bool Parser::ParseOptionalCXXScopeSpecifier(
158 CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
159 bool EnteringContext, bool *MayBePseudoDestructor, bool IsTypename,
160 IdentifierInfo **LastII, bool OnlyNamespace, bool InUsingDeclaration) {
161 assert(getLangOpts().CPlusPlus &&
162 "Call sites of this function should be guarded by checking for C++");
164 if (Tok.is(tok::annot_cxxscope)) {
165 assert(!LastII && "want last identifier but have already annotated scope");
166 assert(!MayBePseudoDestructor && "unexpected annot_cxxscope");
167 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
168 Tok.getAnnotationRange(),
169 SS);
170 ConsumeAnnotationToken();
171 return false;
174 // Has to happen before any "return false"s in this function.
175 bool CheckForDestructor = false;
176 if (MayBePseudoDestructor && *MayBePseudoDestructor) {
177 CheckForDestructor = true;
178 *MayBePseudoDestructor = false;
181 if (LastII)
182 *LastII = nullptr;
184 bool HasScopeSpecifier = false;
186 if (Tok.is(tok::coloncolon)) {
187 // ::new and ::delete aren't nested-name-specifiers.
188 tok::TokenKind NextKind = NextToken().getKind();
189 if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
190 return false;
192 if (NextKind == tok::l_brace) {
193 // It is invalid to have :: {, consume the scope qualifier and pretend
194 // like we never saw it.
195 Diag(ConsumeToken(), diag::err_expected) << tok::identifier;
196 } else {
197 // '::' - Global scope qualifier.
198 if (Actions.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS))
199 return true;
201 HasScopeSpecifier = true;
205 if (Tok.is(tok::kw___super)) {
206 SourceLocation SuperLoc = ConsumeToken();
207 if (!Tok.is(tok::coloncolon)) {
208 Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super);
209 return true;
212 return Actions.ActOnSuperScopeSpecifier(SuperLoc, ConsumeToken(), SS);
215 if (!HasScopeSpecifier &&
216 Tok.isOneOf(tok::kw_decltype, tok::annot_decltype)) {
217 DeclSpec DS(AttrFactory);
218 SourceLocation DeclLoc = Tok.getLocation();
219 SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
221 SourceLocation CCLoc;
222 // Work around a standard defect: 'decltype(auto)::' is not a
223 // nested-name-specifier.
224 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto ||
225 !TryConsumeToken(tok::coloncolon, CCLoc)) {
226 AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
227 return false;
230 if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
231 SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
233 HasScopeSpecifier = true;
236 // Preferred type might change when parsing qualifiers, we need the original.
237 auto SavedType = PreferredType;
238 while (true) {
239 if (HasScopeSpecifier) {
240 if (Tok.is(tok::code_completion)) {
241 cutOffParsing();
242 // Code completion for a nested-name-specifier, where the code
243 // completion token follows the '::'.
244 Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext,
245 InUsingDeclaration, ObjectType.get(),
246 SavedType.get(SS.getBeginLoc()));
247 // Include code completion token into the range of the scope otherwise
248 // when we try to annotate the scope tokens the dangling code completion
249 // token will cause assertion in
250 // Preprocessor::AnnotatePreviousCachedTokens.
251 SS.setEndLoc(Tok.getLocation());
252 return true;
255 // C++ [basic.lookup.classref]p5:
256 // If the qualified-id has the form
258 // ::class-name-or-namespace-name::...
260 // the class-name-or-namespace-name is looked up in global scope as a
261 // class-name or namespace-name.
263 // To implement this, we clear out the object type as soon as we've
264 // seen a leading '::' or part of a nested-name-specifier.
265 ObjectType = nullptr;
268 // nested-name-specifier:
269 // nested-name-specifier 'template'[opt] simple-template-id '::'
271 // Parse the optional 'template' keyword, then make sure we have
272 // 'identifier <' after it.
273 if (Tok.is(tok::kw_template)) {
274 // If we don't have a scope specifier or an object type, this isn't a
275 // nested-name-specifier, since they aren't allowed to start with
276 // 'template'.
277 if (!HasScopeSpecifier && !ObjectType)
278 break;
280 TentativeParsingAction TPA(*this);
281 SourceLocation TemplateKWLoc = ConsumeToken();
283 UnqualifiedId TemplateName;
284 if (Tok.is(tok::identifier)) {
285 // Consume the identifier.
286 TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
287 ConsumeToken();
288 } else if (Tok.is(tok::kw_operator)) {
289 // We don't need to actually parse the unqualified-id in this case,
290 // because a simple-template-id cannot start with 'operator', but
291 // go ahead and parse it anyway for consistency with the case where
292 // we already annotated the template-id.
293 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
294 TemplateName)) {
295 TPA.Commit();
296 break;
299 if (TemplateName.getKind() != UnqualifiedIdKind::IK_OperatorFunctionId &&
300 TemplateName.getKind() != UnqualifiedIdKind::IK_LiteralOperatorId) {
301 Diag(TemplateName.getSourceRange().getBegin(),
302 diag::err_id_after_template_in_nested_name_spec)
303 << TemplateName.getSourceRange();
304 TPA.Commit();
305 break;
307 } else {
308 TPA.Revert();
309 break;
312 // If the next token is not '<', we have a qualified-id that refers
313 // to a template name, such as T::template apply, but is not a
314 // template-id.
315 if (Tok.isNot(tok::less)) {
316 TPA.Revert();
317 break;
320 // Commit to parsing the template-id.
321 TPA.Commit();
322 TemplateTy Template;
323 TemplateNameKind TNK = Actions.ActOnTemplateName(
324 getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
325 EnteringContext, Template, /*AllowInjectedClassName*/ true);
326 if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
327 TemplateName, false))
328 return true;
330 continue;
333 if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
334 // We have
336 // template-id '::'
338 // So we need to check whether the template-id is a simple-template-id of
339 // the right kind (it should name a type or be dependent), and then
340 // convert it into a type within the nested-name-specifier.
341 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
342 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
343 *MayBePseudoDestructor = true;
344 return false;
347 if (LastII)
348 *LastII = TemplateId->Name;
350 // Consume the template-id token.
351 ConsumeAnnotationToken();
353 assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
354 SourceLocation CCLoc = ConsumeToken();
356 HasScopeSpecifier = true;
358 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
359 TemplateId->NumArgs);
361 if (TemplateId->isInvalid() ||
362 Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
364 TemplateId->TemplateKWLoc,
365 TemplateId->Template,
366 TemplateId->TemplateNameLoc,
367 TemplateId->LAngleLoc,
368 TemplateArgsPtr,
369 TemplateId->RAngleLoc,
370 CCLoc,
371 EnteringContext)) {
372 SourceLocation StartLoc
373 = SS.getBeginLoc().isValid()? SS.getBeginLoc()
374 : TemplateId->TemplateNameLoc;
375 SS.SetInvalid(SourceRange(StartLoc, CCLoc));
378 continue;
381 // The rest of the nested-name-specifier possibilities start with
382 // tok::identifier.
383 if (Tok.isNot(tok::identifier))
384 break;
386 IdentifierInfo &II = *Tok.getIdentifierInfo();
388 // nested-name-specifier:
389 // type-name '::'
390 // namespace-name '::'
391 // nested-name-specifier identifier '::'
392 Token Next = NextToken();
393 Sema::NestedNameSpecInfo IdInfo(&II, Tok.getLocation(), Next.getLocation(),
394 ObjectType);
396 // If we get foo:bar, this is almost certainly a typo for foo::bar. Recover
397 // and emit a fixit hint for it.
398 if (Next.is(tok::colon) && !ColonIsSacred) {
399 if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, IdInfo,
400 EnteringContext) &&
401 // If the token after the colon isn't an identifier, it's still an
402 // error, but they probably meant something else strange so don't
403 // recover like this.
404 PP.LookAhead(1).is(tok::identifier)) {
405 Diag(Next, diag::err_unexpected_colon_in_nested_name_spec)
406 << FixItHint::CreateReplacement(Next.getLocation(), "::");
407 // Recover as if the user wrote '::'.
408 Next.setKind(tok::coloncolon);
412 if (Next.is(tok::coloncolon) && GetLookAheadToken(2).is(tok::l_brace)) {
413 // It is invalid to have :: {, consume the scope qualifier and pretend
414 // like we never saw it.
415 Token Identifier = Tok; // Stash away the identifier.
416 ConsumeToken(); // Eat the identifier, current token is now '::'.
417 Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected)
418 << tok::identifier;
419 UnconsumeToken(Identifier); // Stick the identifier back.
420 Next = NextToken(); // Point Next at the '{' token.
423 if (Next.is(tok::coloncolon)) {
424 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
425 *MayBePseudoDestructor = true;
426 return false;
429 if (ColonIsSacred) {
430 const Token &Next2 = GetLookAheadToken(2);
431 if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) ||
432 Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) {
433 Diag(Next2, diag::err_unexpected_token_in_nested_name_spec)
434 << Next2.getName()
435 << FixItHint::CreateReplacement(Next.getLocation(), ":");
436 Token ColonColon;
437 PP.Lex(ColonColon);
438 ColonColon.setKind(tok::colon);
439 PP.EnterToken(ColonColon, /*IsReinject*/ true);
440 break;
444 if (LastII)
445 *LastII = &II;
447 // We have an identifier followed by a '::'. Lookup this name
448 // as the name in a nested-name-specifier.
449 Token Identifier = Tok;
450 SourceLocation IdLoc = ConsumeToken();
451 assert(Tok.isOneOf(tok::coloncolon, tok::colon) &&
452 "NextToken() not working properly!");
453 Token ColonColon = Tok;
454 SourceLocation CCLoc = ConsumeToken();
456 bool IsCorrectedToColon = false;
457 bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr;
458 if (Actions.ActOnCXXNestedNameSpecifier(
459 getCurScope(), IdInfo, EnteringContext, SS, CorrectionFlagPtr,
460 OnlyNamespace)) {
461 // Identifier is not recognized as a nested name, but we can have
462 // mistyped '::' instead of ':'.
463 if (CorrectionFlagPtr && IsCorrectedToColon) {
464 ColonColon.setKind(tok::colon);
465 PP.EnterToken(Tok, /*IsReinject*/ true);
466 PP.EnterToken(ColonColon, /*IsReinject*/ true);
467 Tok = Identifier;
468 break;
470 SS.SetInvalid(SourceRange(IdLoc, CCLoc));
472 HasScopeSpecifier = true;
473 continue;
476 CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
478 // nested-name-specifier:
479 // type-name '<'
480 if (Next.is(tok::less)) {
482 TemplateTy Template;
483 UnqualifiedId TemplateName;
484 TemplateName.setIdentifier(&II, Tok.getLocation());
485 bool MemberOfUnknownSpecialization;
486 if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
487 /*hasTemplateKeyword=*/false,
488 TemplateName,
489 ObjectType,
490 EnteringContext,
491 Template,
492 MemberOfUnknownSpecialization)) {
493 // If lookup didn't find anything, we treat the name as a template-name
494 // anyway. C++20 requires this, and in prior language modes it improves
495 // error recovery. But before we commit to this, check that we actually
496 // have something that looks like a template-argument-list next.
497 if (!IsTypename && TNK == TNK_Undeclared_template &&
498 isTemplateArgumentList(1) == TPResult::False)
499 break;
501 // We have found a template name, so annotate this token
502 // with a template-id annotation. We do not permit the
503 // template-id to be translated into a type annotation,
504 // because some clients (e.g., the parsing of class template
505 // specializations) still want to see the original template-id
506 // token, and it might not be a type at all (e.g. a concept name in a
507 // type-constraint).
508 ConsumeToken();
509 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
510 TemplateName, false))
511 return true;
512 continue;
515 if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
516 (IsTypename || isTemplateArgumentList(1) == TPResult::True)) {
517 // If we had errors before, ObjectType can be dependent even without any
518 // templates. Do not report missing template keyword in that case.
519 if (!ObjectHadErrors) {
520 // We have something like t::getAs<T>, where getAs is a
521 // member of an unknown specialization. However, this will only
522 // parse correctly as a template, so suggest the keyword 'template'
523 // before 'getAs' and treat this as a dependent template name.
524 unsigned DiagID = diag::err_missing_dependent_template_keyword;
525 if (getLangOpts().MicrosoftExt)
526 DiagID = diag::warn_missing_dependent_template_keyword;
528 Diag(Tok.getLocation(), DiagID)
529 << II.getName()
530 << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
533 SourceLocation TemplateNameLoc = ConsumeToken();
535 TemplateNameKind TNK = Actions.ActOnTemplateName(
536 getCurScope(), SS, TemplateNameLoc, TemplateName, ObjectType,
537 EnteringContext, Template, /*AllowInjectedClassName*/ true);
538 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
539 TemplateName, false))
540 return true;
542 continue;
546 // We don't have any tokens that form the beginning of a
547 // nested-name-specifier, so we're done.
548 break;
551 // Even if we didn't see any pieces of a nested-name-specifier, we
552 // still check whether there is a tilde in this position, which
553 // indicates a potential pseudo-destructor.
554 if (CheckForDestructor && !HasScopeSpecifier && Tok.is(tok::tilde))
555 *MayBePseudoDestructor = true;
557 return false;
560 ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS,
561 bool isAddressOfOperand,
562 Token &Replacement) {
563 ExprResult E;
565 // We may have already annotated this id-expression.
566 switch (Tok.getKind()) {
567 case tok::annot_non_type: {
568 NamedDecl *ND = getNonTypeAnnotation(Tok);
569 SourceLocation Loc = ConsumeAnnotationToken();
570 E = Actions.ActOnNameClassifiedAsNonType(getCurScope(), SS, ND, Loc, Tok);
571 break;
574 case tok::annot_non_type_dependent: {
575 IdentifierInfo *II = getIdentifierAnnotation(Tok);
576 SourceLocation Loc = ConsumeAnnotationToken();
578 // This is only the direct operand of an & operator if it is not
579 // followed by a postfix-expression suffix.
580 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
581 isAddressOfOperand = false;
583 E = Actions.ActOnNameClassifiedAsDependentNonType(SS, II, Loc,
584 isAddressOfOperand);
585 break;
588 case tok::annot_non_type_undeclared: {
589 assert(SS.isEmpty() &&
590 "undeclared non-type annotation should be unqualified");
591 IdentifierInfo *II = getIdentifierAnnotation(Tok);
592 SourceLocation Loc = ConsumeAnnotationToken();
593 E = Actions.ActOnNameClassifiedAsUndeclaredNonType(II, Loc);
594 break;
597 default:
598 SourceLocation TemplateKWLoc;
599 UnqualifiedId Name;
600 if (ParseUnqualifiedId(SS, /*ObjectType=*/nullptr,
601 /*ObjectHadErrors=*/false,
602 /*EnteringContext=*/false,
603 /*AllowDestructorName=*/false,
604 /*AllowConstructorName=*/false,
605 /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name))
606 return ExprError();
608 // This is only the direct operand of an & operator if it is not
609 // followed by a postfix-expression suffix.
610 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
611 isAddressOfOperand = false;
613 E = Actions.ActOnIdExpression(
614 getCurScope(), SS, TemplateKWLoc, Name, Tok.is(tok::l_paren),
615 isAddressOfOperand, /*CCC=*/nullptr, /*IsInlineAsmIdentifier=*/false,
616 &Replacement);
617 break;
620 if (!E.isInvalid() && !E.isUnset() && Tok.is(tok::less))
621 checkPotentialAngleBracket(E);
622 return E;
625 /// ParseCXXIdExpression - Handle id-expression.
627 /// id-expression:
628 /// unqualified-id
629 /// qualified-id
631 /// qualified-id:
632 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
633 /// '::' identifier
634 /// '::' operator-function-id
635 /// '::' template-id
637 /// NOTE: The standard specifies that, for qualified-id, the parser does not
638 /// expect:
640 /// '::' conversion-function-id
641 /// '::' '~' class-name
643 /// This may cause a slight inconsistency on diagnostics:
645 /// class C {};
646 /// namespace A {}
647 /// void f() {
648 /// :: A :: ~ C(); // Some Sema error about using destructor with a
649 /// // namespace.
650 /// :: ~ C(); // Some Parser error like 'unexpected ~'.
651 /// }
653 /// We simplify the parser a bit and make it work like:
655 /// qualified-id:
656 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
657 /// '::' unqualified-id
659 /// That way Sema can handle and report similar errors for namespaces and the
660 /// global scope.
662 /// The isAddressOfOperand parameter indicates that this id-expression is a
663 /// direct operand of the address-of operator. This is, besides member contexts,
664 /// the only place where a qualified-id naming a non-static class member may
665 /// appear.
667 ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
668 // qualified-id:
669 // '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
670 // '::' unqualified-id
672 CXXScopeSpec SS;
673 ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
674 /*ObjectHasErrors=*/false,
675 /*EnteringContext=*/false);
677 Token Replacement;
678 ExprResult Result =
679 tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
680 if (Result.isUnset()) {
681 // If the ExprResult is valid but null, then typo correction suggested a
682 // keyword replacement that needs to be reparsed.
683 UnconsumeToken(Replacement);
684 Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
686 assert(!Result.isUnset() && "Typo correction suggested a keyword replacement "
687 "for a previous keyword suggestion");
688 return Result;
691 /// ParseLambdaExpression - Parse a C++11 lambda expression.
693 /// lambda-expression:
694 /// lambda-introducer lambda-declarator compound-statement
695 /// lambda-introducer '<' template-parameter-list '>'
696 /// requires-clause[opt] lambda-declarator compound-statement
698 /// lambda-introducer:
699 /// '[' lambda-capture[opt] ']'
701 /// lambda-capture:
702 /// capture-default
703 /// capture-list
704 /// capture-default ',' capture-list
706 /// capture-default:
707 /// '&'
708 /// '='
710 /// capture-list:
711 /// capture
712 /// capture-list ',' capture
714 /// capture:
715 /// simple-capture
716 /// init-capture [C++1y]
718 /// simple-capture:
719 /// identifier
720 /// '&' identifier
721 /// 'this'
723 /// init-capture: [C++1y]
724 /// identifier initializer
725 /// '&' identifier initializer
727 /// lambda-declarator:
728 /// lambda-specifiers [C++23]
729 /// '(' parameter-declaration-clause ')' lambda-specifiers
730 /// requires-clause[opt]
732 /// lambda-specifiers:
733 /// decl-specifier-seq[opt] noexcept-specifier[opt]
734 /// attribute-specifier-seq[opt] trailing-return-type[opt]
736 ExprResult Parser::ParseLambdaExpression() {
737 // Parse lambda-introducer.
738 LambdaIntroducer Intro;
739 if (ParseLambdaIntroducer(Intro)) {
740 SkipUntil(tok::r_square, StopAtSemi);
741 SkipUntil(tok::l_brace, StopAtSemi);
742 SkipUntil(tok::r_brace, StopAtSemi);
743 return ExprError();
746 return ParseLambdaExpressionAfterIntroducer(Intro);
749 /// Use lookahead and potentially tentative parsing to determine if we are
750 /// looking at a C++11 lambda expression, and parse it if we are.
752 /// If we are not looking at a lambda expression, returns ExprError().
753 ExprResult Parser::TryParseLambdaExpression() {
754 assert(getLangOpts().CPlusPlus11
755 && Tok.is(tok::l_square)
756 && "Not at the start of a possible lambda expression.");
758 const Token Next = NextToken();
759 if (Next.is(tok::eof)) // Nothing else to lookup here...
760 return ExprEmpty();
762 const Token After = GetLookAheadToken(2);
763 // If lookahead indicates this is a lambda...
764 if (Next.is(tok::r_square) || // []
765 Next.is(tok::equal) || // [=
766 (Next.is(tok::amp) && // [&] or [&,
767 After.isOneOf(tok::r_square, tok::comma)) ||
768 (Next.is(tok::identifier) && // [identifier]
769 After.is(tok::r_square)) ||
770 Next.is(tok::ellipsis)) { // [...
771 return ParseLambdaExpression();
774 // If lookahead indicates an ObjC message send...
775 // [identifier identifier
776 if (Next.is(tok::identifier) && After.is(tok::identifier))
777 return ExprEmpty();
779 // Here, we're stuck: lambda introducers and Objective-C message sends are
780 // unambiguous, but it requires arbitrary lookhead. [a,b,c,d,e,f,g] is a
781 // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send. Instead of
782 // writing two routines to parse a lambda introducer, just try to parse
783 // a lambda introducer first, and fall back if that fails.
784 LambdaIntroducer Intro;
786 TentativeParsingAction TPA(*this);
787 LambdaIntroducerTentativeParse Tentative;
788 if (ParseLambdaIntroducer(Intro, &Tentative)) {
789 TPA.Commit();
790 return ExprError();
793 switch (Tentative) {
794 case LambdaIntroducerTentativeParse::Success:
795 TPA.Commit();
796 break;
798 case LambdaIntroducerTentativeParse::Incomplete:
799 // Didn't fully parse the lambda-introducer, try again with a
800 // non-tentative parse.
801 TPA.Revert();
802 Intro = LambdaIntroducer();
803 if (ParseLambdaIntroducer(Intro))
804 return ExprError();
805 break;
807 case LambdaIntroducerTentativeParse::MessageSend:
808 case LambdaIntroducerTentativeParse::Invalid:
809 // Not a lambda-introducer, might be a message send.
810 TPA.Revert();
811 return ExprEmpty();
815 return ParseLambdaExpressionAfterIntroducer(Intro);
818 /// Parse a lambda introducer.
819 /// \param Intro A LambdaIntroducer filled in with information about the
820 /// contents of the lambda-introducer.
821 /// \param Tentative If non-null, we are disambiguating between a
822 /// lambda-introducer and some other construct. In this mode, we do not
823 /// produce any diagnostics or take any other irreversible action unless
824 /// we're sure that this is a lambda-expression.
825 /// \return \c true if parsing (or disambiguation) failed with a diagnostic and
826 /// the caller should bail out / recover.
827 bool Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
828 LambdaIntroducerTentativeParse *Tentative) {
829 if (Tentative)
830 *Tentative = LambdaIntroducerTentativeParse::Success;
832 assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
833 BalancedDelimiterTracker T(*this, tok::l_square);
834 T.consumeOpen();
836 Intro.Range.setBegin(T.getOpenLocation());
838 bool First = true;
840 // Produce a diagnostic if we're not tentatively parsing; otherwise track
841 // that our parse has failed.
842 auto Invalid = [&](llvm::function_ref<void()> Action) {
843 if (Tentative) {
844 *Tentative = LambdaIntroducerTentativeParse::Invalid;
845 return false;
847 Action();
848 return true;
851 // Perform some irreversible action if this is a non-tentative parse;
852 // otherwise note that our actions were incomplete.
853 auto NonTentativeAction = [&](llvm::function_ref<void()> Action) {
854 if (Tentative)
855 *Tentative = LambdaIntroducerTentativeParse::Incomplete;
856 else
857 Action();
860 // Parse capture-default.
861 if (Tok.is(tok::amp) &&
862 (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
863 Intro.Default = LCD_ByRef;
864 Intro.DefaultLoc = ConsumeToken();
865 First = false;
866 if (!Tok.getIdentifierInfo()) {
867 // This can only be a lambda; no need for tentative parsing any more.
868 // '[[and]]' can still be an attribute, though.
869 Tentative = nullptr;
871 } else if (Tok.is(tok::equal)) {
872 Intro.Default = LCD_ByCopy;
873 Intro.DefaultLoc = ConsumeToken();
874 First = false;
875 Tentative = nullptr;
878 while (Tok.isNot(tok::r_square)) {
879 if (!First) {
880 if (Tok.isNot(tok::comma)) {
881 // Provide a completion for a lambda introducer here. Except
882 // in Objective-C, where this is Almost Surely meant to be a message
883 // send. In that case, fail here and let the ObjC message
884 // expression parser perform the completion.
885 if (Tok.is(tok::code_completion) &&
886 !(getLangOpts().ObjC && Tentative)) {
887 cutOffParsing();
888 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
889 /*AfterAmpersand=*/false);
890 break;
893 return Invalid([&] {
894 Diag(Tok.getLocation(), diag::err_expected_comma_or_rsquare);
897 ConsumeToken();
900 if (Tok.is(tok::code_completion)) {
901 cutOffParsing();
902 // If we're in Objective-C++ and we have a bare '[', then this is more
903 // likely to be a message receiver.
904 if (getLangOpts().ObjC && Tentative && First)
905 Actions.CodeCompleteObjCMessageReceiver(getCurScope());
906 else
907 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
908 /*AfterAmpersand=*/false);
909 break;
912 First = false;
914 // Parse capture.
915 LambdaCaptureKind Kind = LCK_ByCopy;
916 LambdaCaptureInitKind InitKind = LambdaCaptureInitKind::NoInit;
917 SourceLocation Loc;
918 IdentifierInfo *Id = nullptr;
919 SourceLocation EllipsisLocs[4];
920 ExprResult Init;
921 SourceLocation LocStart = Tok.getLocation();
923 if (Tok.is(tok::star)) {
924 Loc = ConsumeToken();
925 if (Tok.is(tok::kw_this)) {
926 ConsumeToken();
927 Kind = LCK_StarThis;
928 } else {
929 return Invalid([&] {
930 Diag(Tok.getLocation(), diag::err_expected_star_this_capture);
933 } else if (Tok.is(tok::kw_this)) {
934 Kind = LCK_This;
935 Loc = ConsumeToken();
936 } else if (Tok.isOneOf(tok::amp, tok::equal) &&
937 NextToken().isOneOf(tok::comma, tok::r_square) &&
938 Intro.Default == LCD_None) {
939 // We have a lone "&" or "=" which is either a misplaced capture-default
940 // or the start of a capture (in the "&" case) with the rest of the
941 // capture missing. Both are an error but a misplaced capture-default
942 // is more likely if we don't already have a capture default.
943 return Invalid(
944 [&] { Diag(Tok.getLocation(), diag::err_capture_default_first); });
945 } else {
946 TryConsumeToken(tok::ellipsis, EllipsisLocs[0]);
948 if (Tok.is(tok::amp)) {
949 Kind = LCK_ByRef;
950 ConsumeToken();
952 if (Tok.is(tok::code_completion)) {
953 cutOffParsing();
954 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
955 /*AfterAmpersand=*/true);
956 break;
960 TryConsumeToken(tok::ellipsis, EllipsisLocs[1]);
962 if (Tok.is(tok::identifier)) {
963 Id = Tok.getIdentifierInfo();
964 Loc = ConsumeToken();
965 } else if (Tok.is(tok::kw_this)) {
966 return Invalid([&] {
967 // FIXME: Suggest a fixit here.
968 Diag(Tok.getLocation(), diag::err_this_captured_by_reference);
970 } else {
971 return Invalid([&] {
972 Diag(Tok.getLocation(), diag::err_expected_capture);
976 TryConsumeToken(tok::ellipsis, EllipsisLocs[2]);
978 if (Tok.is(tok::l_paren)) {
979 BalancedDelimiterTracker Parens(*this, tok::l_paren);
980 Parens.consumeOpen();
982 InitKind = LambdaCaptureInitKind::DirectInit;
984 ExprVector Exprs;
985 if (Tentative) {
986 Parens.skipToEnd();
987 *Tentative = LambdaIntroducerTentativeParse::Incomplete;
988 } else if (ParseExpressionList(Exprs)) {
989 Parens.skipToEnd();
990 Init = ExprError();
991 } else {
992 Parens.consumeClose();
993 Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(),
994 Parens.getCloseLocation(),
995 Exprs);
997 } else if (Tok.isOneOf(tok::l_brace, tok::equal)) {
998 // Each lambda init-capture forms its own full expression, which clears
999 // Actions.MaybeODRUseExprs. So create an expression evaluation context
1000 // to save the necessary state, and restore it later.
1001 EnterExpressionEvaluationContext EC(
1002 Actions, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
1004 if (TryConsumeToken(tok::equal))
1005 InitKind = LambdaCaptureInitKind::CopyInit;
1006 else
1007 InitKind = LambdaCaptureInitKind::ListInit;
1009 if (!Tentative) {
1010 Init = ParseInitializer();
1011 } else if (Tok.is(tok::l_brace)) {
1012 BalancedDelimiterTracker Braces(*this, tok::l_brace);
1013 Braces.consumeOpen();
1014 Braces.skipToEnd();
1015 *Tentative = LambdaIntroducerTentativeParse::Incomplete;
1016 } else {
1017 // We're disambiguating this:
1019 // [..., x = expr
1021 // We need to find the end of the following expression in order to
1022 // determine whether this is an Obj-C message send's receiver, a
1023 // C99 designator, or a lambda init-capture.
1025 // Parse the expression to find where it ends, and annotate it back
1026 // onto the tokens. We would have parsed this expression the same way
1027 // in either case: both the RHS of an init-capture and the RHS of an
1028 // assignment expression are parsed as an initializer-clause, and in
1029 // neither case can anything be added to the scope between the '[' and
1030 // here.
1032 // FIXME: This is horrible. Adding a mechanism to skip an expression
1033 // would be much cleaner.
1034 // FIXME: If there is a ',' before the next ']' or ':', we can skip to
1035 // that instead. (And if we see a ':' with no matching '?', we can
1036 // classify this as an Obj-C message send.)
1037 SourceLocation StartLoc = Tok.getLocation();
1038 InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
1039 Init = ParseInitializer();
1040 if (!Init.isInvalid())
1041 Init = Actions.CorrectDelayedTyposInExpr(Init.get());
1043 if (Tok.getLocation() != StartLoc) {
1044 // Back out the lexing of the token after the initializer.
1045 PP.RevertCachedTokens(1);
1047 // Replace the consumed tokens with an appropriate annotation.
1048 Tok.setLocation(StartLoc);
1049 Tok.setKind(tok::annot_primary_expr);
1050 setExprAnnotation(Tok, Init);
1051 Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation());
1052 PP.AnnotateCachedTokens(Tok);
1054 // Consume the annotated initializer.
1055 ConsumeAnnotationToken();
1060 TryConsumeToken(tok::ellipsis, EllipsisLocs[3]);
1063 // Check if this is a message send before we act on a possible init-capture.
1064 if (Tentative && Tok.is(tok::identifier) &&
1065 NextToken().isOneOf(tok::colon, tok::r_square)) {
1066 // This can only be a message send. We're done with disambiguation.
1067 *Tentative = LambdaIntroducerTentativeParse::MessageSend;
1068 return false;
1071 // Ensure that any ellipsis was in the right place.
1072 SourceLocation EllipsisLoc;
1073 if (llvm::any_of(EllipsisLocs,
1074 [](SourceLocation Loc) { return Loc.isValid(); })) {
1075 // The '...' should appear before the identifier in an init-capture, and
1076 // after the identifier otherwise.
1077 bool InitCapture = InitKind != LambdaCaptureInitKind::NoInit;
1078 SourceLocation *ExpectedEllipsisLoc =
1079 !InitCapture ? &EllipsisLocs[2] :
1080 Kind == LCK_ByRef ? &EllipsisLocs[1] :
1081 &EllipsisLocs[0];
1082 EllipsisLoc = *ExpectedEllipsisLoc;
1084 unsigned DiagID = 0;
1085 if (EllipsisLoc.isInvalid()) {
1086 DiagID = diag::err_lambda_capture_misplaced_ellipsis;
1087 for (SourceLocation Loc : EllipsisLocs) {
1088 if (Loc.isValid())
1089 EllipsisLoc = Loc;
1091 } else {
1092 unsigned NumEllipses = std::accumulate(
1093 std::begin(EllipsisLocs), std::end(EllipsisLocs), 0,
1094 [](int N, SourceLocation Loc) { return N + Loc.isValid(); });
1095 if (NumEllipses > 1)
1096 DiagID = diag::err_lambda_capture_multiple_ellipses;
1098 if (DiagID) {
1099 NonTentativeAction([&] {
1100 // Point the diagnostic at the first misplaced ellipsis.
1101 SourceLocation DiagLoc;
1102 for (SourceLocation &Loc : EllipsisLocs) {
1103 if (&Loc != ExpectedEllipsisLoc && Loc.isValid()) {
1104 DiagLoc = Loc;
1105 break;
1108 assert(DiagLoc.isValid() && "no location for diagnostic");
1110 // Issue the diagnostic and produce fixits showing where the ellipsis
1111 // should have been written.
1112 auto &&D = Diag(DiagLoc, DiagID);
1113 if (DiagID == diag::err_lambda_capture_misplaced_ellipsis) {
1114 SourceLocation ExpectedLoc =
1115 InitCapture ? Loc
1116 : Lexer::getLocForEndOfToken(
1117 Loc, 0, PP.getSourceManager(), getLangOpts());
1118 D << InitCapture << FixItHint::CreateInsertion(ExpectedLoc, "...");
1120 for (SourceLocation &Loc : EllipsisLocs) {
1121 if (&Loc != ExpectedEllipsisLoc && Loc.isValid())
1122 D << FixItHint::CreateRemoval(Loc);
1128 // Process the init-capture initializers now rather than delaying until we
1129 // form the lambda-expression so that they can be handled in the context
1130 // enclosing the lambda-expression, rather than in the context of the
1131 // lambda-expression itself.
1132 ParsedType InitCaptureType;
1133 if (Init.isUsable())
1134 Init = Actions.CorrectDelayedTyposInExpr(Init.get());
1135 if (Init.isUsable()) {
1136 NonTentativeAction([&] {
1137 // Get the pointer and store it in an lvalue, so we can use it as an
1138 // out argument.
1139 Expr *InitExpr = Init.get();
1140 // This performs any lvalue-to-rvalue conversions if necessary, which
1141 // can affect what gets captured in the containing decl-context.
1142 InitCaptureType = Actions.actOnLambdaInitCaptureInitialization(
1143 Loc, Kind == LCK_ByRef, EllipsisLoc, Id, InitKind, InitExpr);
1144 Init = InitExpr;
1148 SourceLocation LocEnd = PrevTokLocation;
1150 Intro.addCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init,
1151 InitCaptureType, SourceRange(LocStart, LocEnd));
1154 T.consumeClose();
1155 Intro.Range.setEnd(T.getCloseLocation());
1156 return false;
1159 static void tryConsumeLambdaSpecifierToken(Parser &P,
1160 SourceLocation &MutableLoc,
1161 SourceLocation &StaticLoc,
1162 SourceLocation &ConstexprLoc,
1163 SourceLocation &ConstevalLoc,
1164 SourceLocation &DeclEndLoc) {
1165 assert(MutableLoc.isInvalid());
1166 assert(StaticLoc.isInvalid());
1167 assert(ConstexprLoc.isInvalid());
1168 assert(ConstevalLoc.isInvalid());
1169 // Consume constexpr-opt mutable-opt in any sequence, and set the DeclEndLoc
1170 // to the final of those locations. Emit an error if we have multiple
1171 // copies of those keywords and recover.
1173 auto ConsumeLocation = [&P, &DeclEndLoc](SourceLocation &SpecifierLoc,
1174 int DiagIndex) {
1175 if (SpecifierLoc.isValid()) {
1176 P.Diag(P.getCurToken().getLocation(),
1177 diag::err_lambda_decl_specifier_repeated)
1178 << DiagIndex
1179 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1181 SpecifierLoc = P.ConsumeToken();
1182 DeclEndLoc = SpecifierLoc;
1185 while (true) {
1186 switch (P.getCurToken().getKind()) {
1187 case tok::kw_mutable:
1188 ConsumeLocation(MutableLoc, 0);
1189 break;
1190 case tok::kw_static:
1191 ConsumeLocation(StaticLoc, 1);
1192 break;
1193 case tok::kw_constexpr:
1194 ConsumeLocation(ConstexprLoc, 2);
1195 break;
1196 case tok::kw_consteval:
1197 ConsumeLocation(ConstevalLoc, 3);
1198 break;
1199 default:
1200 return;
1205 static void addStaticToLambdaDeclSpecifier(Parser &P, SourceLocation StaticLoc,
1206 DeclSpec &DS) {
1207 if (StaticLoc.isValid()) {
1208 P.Diag(StaticLoc, !P.getLangOpts().CPlusPlus23
1209 ? diag::err_static_lambda
1210 : diag::warn_cxx20_compat_static_lambda);
1211 const char *PrevSpec = nullptr;
1212 unsigned DiagID = 0;
1213 DS.SetStorageClassSpec(P.getActions(), DeclSpec::SCS_static, StaticLoc,
1214 PrevSpec, DiagID,
1215 P.getActions().getASTContext().getPrintingPolicy());
1216 assert(PrevSpec == nullptr && DiagID == 0 &&
1217 "Static cannot have been set previously!");
1221 static void
1222 addConstexprToLambdaDeclSpecifier(Parser &P, SourceLocation ConstexprLoc,
1223 DeclSpec &DS) {
1224 if (ConstexprLoc.isValid()) {
1225 P.Diag(ConstexprLoc, !P.getLangOpts().CPlusPlus17
1226 ? diag::ext_constexpr_on_lambda_cxx17
1227 : diag::warn_cxx14_compat_constexpr_on_lambda);
1228 const char *PrevSpec = nullptr;
1229 unsigned DiagID = 0;
1230 DS.SetConstexprSpec(ConstexprSpecKind::Constexpr, ConstexprLoc, PrevSpec,
1231 DiagID);
1232 assert(PrevSpec == nullptr && DiagID == 0 &&
1233 "Constexpr cannot have been set previously!");
1237 static void addConstevalToLambdaDeclSpecifier(Parser &P,
1238 SourceLocation ConstevalLoc,
1239 DeclSpec &DS) {
1240 if (ConstevalLoc.isValid()) {
1241 P.Diag(ConstevalLoc, diag::warn_cxx20_compat_consteval);
1242 const char *PrevSpec = nullptr;
1243 unsigned DiagID = 0;
1244 DS.SetConstexprSpec(ConstexprSpecKind::Consteval, ConstevalLoc, PrevSpec,
1245 DiagID);
1246 if (DiagID != 0)
1247 P.Diag(ConstevalLoc, DiagID) << PrevSpec;
1251 static void DiagnoseStaticSpecifierRestrictions(Parser &P,
1252 SourceLocation StaticLoc,
1253 SourceLocation MutableLoc,
1254 const LambdaIntroducer &Intro) {
1255 if (StaticLoc.isInvalid())
1256 return;
1258 // [expr.prim.lambda.general] p4
1259 // The lambda-specifier-seq shall not contain both mutable and static.
1260 // If the lambda-specifier-seq contains static, there shall be no
1261 // lambda-capture.
1262 if (MutableLoc.isValid())
1263 P.Diag(StaticLoc, diag::err_static_mutable_lambda);
1264 if (Intro.hasLambdaCapture()) {
1265 P.Diag(StaticLoc, diag::err_static_lambda_captures);
1269 /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
1270 /// expression.
1271 ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
1272 LambdaIntroducer &Intro) {
1273 SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
1274 Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
1276 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
1277 "lambda expression parsing");
1279 // Parse lambda-declarator[opt].
1280 DeclSpec DS(AttrFactory);
1281 Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::LambdaExpr);
1282 TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
1284 ParseScope LambdaScope(this, Scope::LambdaScope | Scope::DeclScope |
1285 Scope::FunctionDeclarationScope |
1286 Scope::FunctionPrototypeScope);
1288 Actions.PushLambdaScope();
1289 Actions.ActOnLambdaExpressionAfterIntroducer(Intro, getCurScope());
1291 ParsedAttributes Attributes(AttrFactory);
1292 if (getLangOpts().CUDA) {
1293 // In CUDA code, GNU attributes are allowed to appear immediately after the
1294 // "[...]", even if there is no "(...)" before the lambda body.
1296 // Note that we support __noinline__ as a keyword in this mode and thus
1297 // it has to be separately handled.
1298 while (true) {
1299 if (Tok.is(tok::kw___noinline__)) {
1300 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1301 SourceLocation AttrNameLoc = ConsumeToken();
1302 Attributes.addNew(AttrName, AttrNameLoc, /*ScopeName=*/nullptr,
1303 AttrNameLoc, /*ArgsUnion=*/nullptr,
1304 /*numArgs=*/0, tok::kw___noinline__);
1305 } else if (Tok.is(tok::kw___attribute))
1306 ParseGNUAttributes(Attributes, /*LatePArsedAttrList=*/nullptr, &D);
1307 else
1308 break;
1311 D.takeAttributes(Attributes);
1314 // Helper to emit a warning if we see a CUDA host/device/global attribute
1315 // after '(...)'. nvcc doesn't accept this.
1316 auto WarnIfHasCUDATargetAttr = [&] {
1317 if (getLangOpts().CUDA)
1318 for (const ParsedAttr &A : Attributes)
1319 if (A.getKind() == ParsedAttr::AT_CUDADevice ||
1320 A.getKind() == ParsedAttr::AT_CUDAHost ||
1321 A.getKind() == ParsedAttr::AT_CUDAGlobal)
1322 Diag(A.getLoc(), diag::warn_cuda_attr_lambda_position)
1323 << A.getAttrName()->getName();
1326 MultiParseScope TemplateParamScope(*this);
1327 if (Tok.is(tok::less)) {
1328 Diag(Tok, getLangOpts().CPlusPlus20
1329 ? diag::warn_cxx17_compat_lambda_template_parameter_list
1330 : diag::ext_lambda_template_parameter_list);
1332 SmallVector<NamedDecl*, 4> TemplateParams;
1333 SourceLocation LAngleLoc, RAngleLoc;
1334 if (ParseTemplateParameters(TemplateParamScope,
1335 CurTemplateDepthTracker.getDepth(),
1336 TemplateParams, LAngleLoc, RAngleLoc)) {
1337 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1338 return ExprError();
1341 if (TemplateParams.empty()) {
1342 Diag(RAngleLoc,
1343 diag::err_lambda_template_parameter_list_empty);
1344 } else {
1345 ExprResult RequiresClause;
1346 if (TryConsumeToken(tok::kw_requires)) {
1347 RequiresClause =
1348 Actions.ActOnRequiresClause(ParseConstraintLogicalOrExpression(
1349 /*IsTrailingRequiresClause=*/false));
1350 if (RequiresClause.isInvalid())
1351 SkipUntil({tok::l_brace, tok::l_paren}, StopAtSemi | StopBeforeMatch);
1354 Actions.ActOnLambdaExplicitTemplateParameterList(
1355 Intro, LAngleLoc, TemplateParams, RAngleLoc, RequiresClause);
1356 ++CurTemplateDepthTracker;
1360 // Implement WG21 P2173, which allows attributes immediately before the
1361 // lambda declarator and applies them to the corresponding function operator
1362 // or operator template declaration. We accept this as a conforming extension
1363 // in all language modes that support lambdas.
1364 if (isCXX11AttributeSpecifier()) {
1365 Diag(Tok, getLangOpts().CPlusPlus23
1366 ? diag::warn_cxx20_compat_decl_attrs_on_lambda
1367 : diag::ext_decl_attrs_on_lambda)
1368 << Tok.getIdentifierInfo() << Tok.isRegularKeywordAttribute();
1369 MaybeParseCXX11Attributes(D);
1372 TypeResult TrailingReturnType;
1373 SourceLocation TrailingReturnTypeLoc;
1374 SourceLocation LParenLoc, RParenLoc;
1375 SourceLocation DeclEndLoc;
1376 bool HasParentheses = false;
1377 bool HasSpecifiers = false;
1378 SourceLocation MutableLoc;
1380 auto ParseConstexprAndMutableSpecifiers = [&] {
1381 // GNU-style attributes must be parsed before the mutable specifier to
1382 // be compatible with GCC. MSVC-style attributes must be parsed before
1383 // the mutable specifier to be compatible with MSVC.
1384 MaybeParseAttributes(PAKM_GNU | PAKM_Declspec, Attributes);
1385 // Parse mutable-opt and/or constexpr-opt or consteval-opt, and update
1386 // the DeclEndLoc.
1387 SourceLocation ConstexprLoc;
1388 SourceLocation ConstevalLoc;
1389 SourceLocation StaticLoc;
1391 tryConsumeLambdaSpecifierToken(*this, MutableLoc, StaticLoc, ConstexprLoc,
1392 ConstevalLoc, DeclEndLoc);
1394 DiagnoseStaticSpecifierRestrictions(*this, StaticLoc, MutableLoc, Intro);
1396 addStaticToLambdaDeclSpecifier(*this, StaticLoc, DS);
1397 addConstexprToLambdaDeclSpecifier(*this, ConstexprLoc, DS);
1398 addConstevalToLambdaDeclSpecifier(*this, ConstevalLoc, DS);
1401 auto ParseLambdaSpecifiers =
1402 [&](MutableArrayRef<DeclaratorChunk::ParamInfo> ParamInfo,
1403 SourceLocation EllipsisLoc) {
1404 // Parse exception-specification[opt].
1405 ExceptionSpecificationType ESpecType = EST_None;
1406 SourceRange ESpecRange;
1407 SmallVector<ParsedType, 2> DynamicExceptions;
1408 SmallVector<SourceRange, 2> DynamicExceptionRanges;
1409 ExprResult NoexceptExpr;
1410 CachedTokens *ExceptionSpecTokens;
1412 ESpecType = tryParseExceptionSpecification(
1413 /*Delayed=*/false, ESpecRange, DynamicExceptions,
1414 DynamicExceptionRanges, NoexceptExpr, ExceptionSpecTokens);
1416 if (ESpecType != EST_None)
1417 DeclEndLoc = ESpecRange.getEnd();
1419 // Parse attribute-specifier[opt].
1420 if (MaybeParseCXX11Attributes(Attributes))
1421 DeclEndLoc = Attributes.Range.getEnd();
1423 // Parse OpenCL addr space attribute.
1424 if (Tok.isOneOf(tok::kw___private, tok::kw___global, tok::kw___local,
1425 tok::kw___constant, tok::kw___generic)) {
1426 ParseOpenCLQualifiers(DS.getAttributes());
1427 ConsumeToken();
1430 SourceLocation FunLocalRangeEnd = DeclEndLoc;
1432 // Parse trailing-return-type[opt].
1433 if (Tok.is(tok::arrow)) {
1434 FunLocalRangeEnd = Tok.getLocation();
1435 SourceRange Range;
1436 TrailingReturnType = ParseTrailingReturnType(
1437 Range, /*MayBeFollowedByDirectInit*/ false);
1438 TrailingReturnTypeLoc = Range.getBegin();
1439 if (Range.getEnd().isValid())
1440 DeclEndLoc = Range.getEnd();
1443 SourceLocation NoLoc;
1444 D.AddTypeInfo(
1445 DeclaratorChunk::getFunction(
1446 /*HasProto=*/true,
1447 /*IsAmbiguous=*/false, LParenLoc, ParamInfo.data(),
1448 ParamInfo.size(), EllipsisLoc, RParenLoc,
1449 /*RefQualifierIsLvalueRef=*/true,
1450 /*RefQualifierLoc=*/NoLoc, MutableLoc, ESpecType, ESpecRange,
1451 DynamicExceptions.data(), DynamicExceptionRanges.data(),
1452 DynamicExceptions.size(),
1453 NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
1454 /*ExceptionSpecTokens*/ nullptr,
1455 /*DeclsInPrototype=*/std::nullopt, LParenLoc, FunLocalRangeEnd,
1456 D, TrailingReturnType, TrailingReturnTypeLoc, &DS),
1457 std::move(Attributes), DeclEndLoc);
1459 Actions.ActOnLambdaClosureQualifiers(Intro, MutableLoc);
1461 if (HasParentheses && Tok.is(tok::kw_requires))
1462 ParseTrailingRequiresClause(D);
1465 ParseScope Prototype(this, Scope::FunctionPrototypeScope |
1466 Scope::FunctionDeclarationScope |
1467 Scope::DeclScope);
1469 // Parse parameter-declaration-clause.
1470 SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1471 SourceLocation EllipsisLoc;
1473 if (Tok.is(tok::l_paren)) {
1474 BalancedDelimiterTracker T(*this, tok::l_paren);
1475 T.consumeOpen();
1476 LParenLoc = T.getOpenLocation();
1478 if (Tok.isNot(tok::r_paren)) {
1479 Actions.RecordParsingTemplateParameterDepth(
1480 CurTemplateDepthTracker.getOriginalDepth());
1482 ParseParameterDeclarationClause(D, Attributes, ParamInfo, EllipsisLoc);
1483 // For a generic lambda, each 'auto' within the parameter declaration
1484 // clause creates a template type parameter, so increment the depth.
1485 // If we've parsed any explicit template parameters, then the depth will
1486 // have already been incremented. So we make sure that at most a single
1487 // depth level is added.
1488 if (Actions.getCurGenericLambda())
1489 CurTemplateDepthTracker.setAddedDepth(1);
1492 T.consumeClose();
1493 DeclEndLoc = RParenLoc = T.getCloseLocation();
1494 HasParentheses = true;
1497 HasSpecifiers =
1498 Tok.isOneOf(tok::kw_mutable, tok::arrow, tok::kw___attribute,
1499 tok::kw_constexpr, tok::kw_consteval, tok::kw_static,
1500 tok::kw___private, tok::kw___global, tok::kw___local,
1501 tok::kw___constant, tok::kw___generic, tok::kw_groupshared,
1502 tok::kw_requires, tok::kw_noexcept) ||
1503 Tok.isRegularKeywordAttribute() ||
1504 (Tok.is(tok::l_square) && NextToken().is(tok::l_square));
1506 if (HasSpecifiers && !HasParentheses && !getLangOpts().CPlusPlus23) {
1507 // It's common to forget that one needs '()' before 'mutable', an
1508 // attribute specifier, the result type, or the requires clause. Deal with
1509 // this.
1510 Diag(Tok, diag::ext_lambda_missing_parens)
1511 << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
1514 if (HasParentheses || HasSpecifiers)
1515 ParseConstexprAndMutableSpecifiers();
1517 Actions.ActOnLambdaClosureParameters(getCurScope(), ParamInfo);
1519 if (!HasParentheses)
1520 Actions.ActOnLambdaClosureQualifiers(Intro, MutableLoc);
1522 if (HasSpecifiers || HasParentheses)
1523 ParseLambdaSpecifiers(ParamInfo, EllipsisLoc);
1525 WarnIfHasCUDATargetAttr();
1527 Prototype.Exit();
1529 // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
1530 // it.
1531 unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope |
1532 Scope::CompoundStmtScope;
1533 ParseScope BodyScope(this, ScopeFlags);
1535 Actions.ActOnStartOfLambdaDefinition(Intro, D, DS);
1537 // Parse compound-statement.
1538 if (!Tok.is(tok::l_brace)) {
1539 Diag(Tok, diag::err_expected_lambda_body);
1540 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1541 return ExprError();
1544 StmtResult Stmt(ParseCompoundStatementBody());
1545 BodyScope.Exit();
1546 TemplateParamScope.Exit();
1547 LambdaScope.Exit();
1549 if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid() &&
1550 !D.isInvalidType())
1551 return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope());
1553 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1554 return ExprError();
1557 /// ParseCXXCasts - This handles the various ways to cast expressions to another
1558 /// type.
1560 /// postfix-expression: [C++ 5.2p1]
1561 /// 'dynamic_cast' '<' type-name '>' '(' expression ')'
1562 /// 'static_cast' '<' type-name '>' '(' expression ')'
1563 /// 'reinterpret_cast' '<' type-name '>' '(' expression ')'
1564 /// 'const_cast' '<' type-name '>' '(' expression ')'
1566 /// C++ for OpenCL s2.3.1 adds:
1567 /// 'addrspace_cast' '<' type-name '>' '(' expression ')'
1568 ExprResult Parser::ParseCXXCasts() {
1569 tok::TokenKind Kind = Tok.getKind();
1570 const char *CastName = nullptr; // For error messages
1572 switch (Kind) {
1573 default: llvm_unreachable("Unknown C++ cast!");
1574 case tok::kw_addrspace_cast: CastName = "addrspace_cast"; break;
1575 case tok::kw_const_cast: CastName = "const_cast"; break;
1576 case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break;
1577 case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
1578 case tok::kw_static_cast: CastName = "static_cast"; break;
1581 SourceLocation OpLoc = ConsumeToken();
1582 SourceLocation LAngleBracketLoc = Tok.getLocation();
1584 // Check for "<::" which is parsed as "[:". If found, fix token stream,
1585 // diagnose error, suggest fix, and recover parsing.
1586 if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
1587 Token Next = NextToken();
1588 if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
1589 FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
1592 if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
1593 return ExprError();
1595 // Parse the common declaration-specifiers piece.
1596 DeclSpec DS(AttrFactory);
1597 ParseSpecifierQualifierList(DS, /*AccessSpecifier=*/AS_none,
1598 DeclSpecContext::DSC_type_specifier);
1600 // Parse the abstract-declarator, if present.
1601 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1602 DeclaratorContext::TypeName);
1603 ParseDeclarator(DeclaratorInfo);
1605 SourceLocation RAngleBracketLoc = Tok.getLocation();
1607 if (ExpectAndConsume(tok::greater))
1608 return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less);
1610 BalancedDelimiterTracker T(*this, tok::l_paren);
1612 if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
1613 return ExprError();
1615 ExprResult Result = ParseExpression();
1617 // Match the ')'.
1618 T.consumeClose();
1620 if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
1621 Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
1622 LAngleBracketLoc, DeclaratorInfo,
1623 RAngleBracketLoc,
1624 T.getOpenLocation(), Result.get(),
1625 T.getCloseLocation());
1627 return Result;
1630 /// ParseCXXTypeid - This handles the C++ typeid expression.
1632 /// postfix-expression: [C++ 5.2p1]
1633 /// 'typeid' '(' expression ')'
1634 /// 'typeid' '(' type-id ')'
1636 ExprResult Parser::ParseCXXTypeid() {
1637 assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
1639 SourceLocation OpLoc = ConsumeToken();
1640 SourceLocation LParenLoc, RParenLoc;
1641 BalancedDelimiterTracker T(*this, tok::l_paren);
1643 // typeid expressions are always parenthesized.
1644 if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
1645 return ExprError();
1646 LParenLoc = T.getOpenLocation();
1648 ExprResult Result;
1650 // C++0x [expr.typeid]p3:
1651 // When typeid is applied to an expression other than an lvalue of a
1652 // polymorphic class type [...] The expression is an unevaluated
1653 // operand (Clause 5).
1655 // Note that we can't tell whether the expression is an lvalue of a
1656 // polymorphic class type until after we've parsed the expression; we
1657 // speculatively assume the subexpression is unevaluated, and fix it up
1658 // later.
1660 // We enter the unevaluated context before trying to determine whether we
1661 // have a type-id, because the tentative parse logic will try to resolve
1662 // names, and must treat them as unevaluated.
1663 EnterExpressionEvaluationContext Unevaluated(
1664 Actions, Sema::ExpressionEvaluationContext::Unevaluated,
1665 Sema::ReuseLambdaContextDecl);
1667 if (isTypeIdInParens()) {
1668 TypeResult Ty = ParseTypeName();
1670 // Match the ')'.
1671 T.consumeClose();
1672 RParenLoc = T.getCloseLocation();
1673 if (Ty.isInvalid() || RParenLoc.isInvalid())
1674 return ExprError();
1676 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
1677 Ty.get().getAsOpaquePtr(), RParenLoc);
1678 } else {
1679 Result = ParseExpression();
1681 // Match the ')'.
1682 if (Result.isInvalid())
1683 SkipUntil(tok::r_paren, StopAtSemi);
1684 else {
1685 T.consumeClose();
1686 RParenLoc = T.getCloseLocation();
1687 if (RParenLoc.isInvalid())
1688 return ExprError();
1690 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
1691 Result.get(), RParenLoc);
1695 return Result;
1698 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1700 /// '__uuidof' '(' expression ')'
1701 /// '__uuidof' '(' type-id ')'
1703 ExprResult Parser::ParseCXXUuidof() {
1704 assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
1706 SourceLocation OpLoc = ConsumeToken();
1707 BalancedDelimiterTracker T(*this, tok::l_paren);
1709 // __uuidof expressions are always parenthesized.
1710 if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
1711 return ExprError();
1713 ExprResult Result;
1715 if (isTypeIdInParens()) {
1716 TypeResult Ty = ParseTypeName();
1718 // Match the ')'.
1719 T.consumeClose();
1721 if (Ty.isInvalid())
1722 return ExprError();
1724 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
1725 Ty.get().getAsOpaquePtr(),
1726 T.getCloseLocation());
1727 } else {
1728 EnterExpressionEvaluationContext Unevaluated(
1729 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
1730 Result = ParseExpression();
1732 // Match the ')'.
1733 if (Result.isInvalid())
1734 SkipUntil(tok::r_paren, StopAtSemi);
1735 else {
1736 T.consumeClose();
1738 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
1739 /*isType=*/false,
1740 Result.get(), T.getCloseLocation());
1744 return Result;
1747 /// Parse a C++ pseudo-destructor expression after the base,
1748 /// . or -> operator, and nested-name-specifier have already been
1749 /// parsed. We're handling this fragment of the grammar:
1751 /// postfix-expression: [C++2a expr.post]
1752 /// postfix-expression . template[opt] id-expression
1753 /// postfix-expression -> template[opt] id-expression
1755 /// id-expression:
1756 /// qualified-id
1757 /// unqualified-id
1759 /// qualified-id:
1760 /// nested-name-specifier template[opt] unqualified-id
1762 /// nested-name-specifier:
1763 /// type-name ::
1764 /// decltype-specifier :: FIXME: not implemented, but probably only
1765 /// allowed in C++ grammar by accident
1766 /// nested-name-specifier identifier ::
1767 /// nested-name-specifier template[opt] simple-template-id ::
1768 /// [...]
1770 /// unqualified-id:
1771 /// ~ type-name
1772 /// ~ decltype-specifier
1773 /// [...]
1775 /// ... where the all but the last component of the nested-name-specifier
1776 /// has already been parsed, and the base expression is not of a non-dependent
1777 /// class type.
1778 ExprResult
1779 Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc,
1780 tok::TokenKind OpKind,
1781 CXXScopeSpec &SS,
1782 ParsedType ObjectType) {
1783 // If the last component of the (optional) nested-name-specifier is
1784 // template[opt] simple-template-id, it has already been annotated.
1785 UnqualifiedId FirstTypeName;
1786 SourceLocation CCLoc;
1787 if (Tok.is(tok::identifier)) {
1788 FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1789 ConsumeToken();
1790 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1791 CCLoc = ConsumeToken();
1792 } else if (Tok.is(tok::annot_template_id)) {
1793 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1794 // FIXME: Carry on and build an AST representation for tooling.
1795 if (TemplateId->isInvalid())
1796 return ExprError();
1797 FirstTypeName.setTemplateId(TemplateId);
1798 ConsumeAnnotationToken();
1799 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1800 CCLoc = ConsumeToken();
1801 } else {
1802 assert(SS.isEmpty() && "missing last component of nested name specifier");
1803 FirstTypeName.setIdentifier(nullptr, SourceLocation());
1806 // Parse the tilde.
1807 assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
1808 SourceLocation TildeLoc = ConsumeToken();
1810 if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid()) {
1811 DeclSpec DS(AttrFactory);
1812 ParseDecltypeSpecifier(DS);
1813 if (DS.getTypeSpecType() == TST_error)
1814 return ExprError();
1815 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1816 TildeLoc, DS);
1819 if (!Tok.is(tok::identifier)) {
1820 Diag(Tok, diag::err_destructor_tilde_identifier);
1821 return ExprError();
1824 // Parse the second type.
1825 UnqualifiedId SecondTypeName;
1826 IdentifierInfo *Name = Tok.getIdentifierInfo();
1827 SourceLocation NameLoc = ConsumeToken();
1828 SecondTypeName.setIdentifier(Name, NameLoc);
1830 // If there is a '<', the second type name is a template-id. Parse
1831 // it as such.
1833 // FIXME: This is not a context in which a '<' is assumed to start a template
1834 // argument list. This affects examples such as
1835 // void f(auto *p) { p->~X<int>(); }
1836 // ... but there's no ambiguity, and nowhere to write 'template' in such an
1837 // example, so we accept it anyway.
1838 if (Tok.is(tok::less) &&
1839 ParseUnqualifiedIdTemplateId(
1840 SS, ObjectType, Base && Base->containsErrors(), SourceLocation(),
1841 Name, NameLoc, false, SecondTypeName,
1842 /*AssumeTemplateId=*/true))
1843 return ExprError();
1845 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1846 SS, FirstTypeName, CCLoc, TildeLoc,
1847 SecondTypeName);
1850 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1852 /// boolean-literal: [C++ 2.13.5]
1853 /// 'true'
1854 /// 'false'
1855 ExprResult Parser::ParseCXXBoolLiteral() {
1856 tok::TokenKind Kind = Tok.getKind();
1857 return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
1860 /// ParseThrowExpression - This handles the C++ throw expression.
1862 /// throw-expression: [C++ 15]
1863 /// 'throw' assignment-expression[opt]
1864 ExprResult Parser::ParseThrowExpression() {
1865 assert(Tok.is(tok::kw_throw) && "Not throw!");
1866 SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token.
1868 // If the current token isn't the start of an assignment-expression,
1869 // then the expression is not present. This handles things like:
1870 // "C ? throw : (void)42", which is crazy but legal.
1871 switch (Tok.getKind()) { // FIXME: move this predicate somewhere common.
1872 case tok::semi:
1873 case tok::r_paren:
1874 case tok::r_square:
1875 case tok::r_brace:
1876 case tok::colon:
1877 case tok::comma:
1878 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr);
1880 default:
1881 ExprResult Expr(ParseAssignmentExpression());
1882 if (Expr.isInvalid()) return Expr;
1883 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get());
1887 /// Parse the C++ Coroutines co_yield expression.
1889 /// co_yield-expression:
1890 /// 'co_yield' assignment-expression[opt]
1891 ExprResult Parser::ParseCoyieldExpression() {
1892 assert(Tok.is(tok::kw_co_yield) && "Not co_yield!");
1894 SourceLocation Loc = ConsumeToken();
1895 ExprResult Expr = Tok.is(tok::l_brace) ? ParseBraceInitializer()
1896 : ParseAssignmentExpression();
1897 if (!Expr.isInvalid())
1898 Expr = Actions.ActOnCoyieldExpr(getCurScope(), Loc, Expr.get());
1899 return Expr;
1902 /// ParseCXXThis - This handles the C++ 'this' pointer.
1904 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1905 /// a non-lvalue expression whose value is the address of the object for which
1906 /// the function is called.
1907 ExprResult Parser::ParseCXXThis() {
1908 assert(Tok.is(tok::kw_this) && "Not 'this'!");
1909 SourceLocation ThisLoc = ConsumeToken();
1910 return Actions.ActOnCXXThis(ThisLoc);
1913 /// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1914 /// Can be interpreted either as function-style casting ("int(x)")
1915 /// or class type construction ("ClassType(x,y,z)")
1916 /// or creation of a value-initialized type ("int()").
1917 /// See [C++ 5.2.3].
1919 /// postfix-expression: [C++ 5.2p1]
1920 /// simple-type-specifier '(' expression-list[opt] ')'
1921 /// [C++0x] simple-type-specifier braced-init-list
1922 /// typename-specifier '(' expression-list[opt] ')'
1923 /// [C++0x] typename-specifier braced-init-list
1925 /// In C++1z onwards, the type specifier can also be a template-name.
1926 ExprResult
1927 Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
1928 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1929 DeclaratorContext::FunctionalCast);
1930 ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
1932 assert((Tok.is(tok::l_paren) ||
1933 (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))
1934 && "Expected '(' or '{'!");
1936 if (Tok.is(tok::l_brace)) {
1937 PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
1938 ExprResult Init = ParseBraceInitializer();
1939 if (Init.isInvalid())
1940 return Init;
1941 Expr *InitList = Init.get();
1942 return Actions.ActOnCXXTypeConstructExpr(
1943 TypeRep, InitList->getBeginLoc(), MultiExprArg(&InitList, 1),
1944 InitList->getEndLoc(), /*ListInitialization=*/true);
1945 } else {
1946 BalancedDelimiterTracker T(*this, tok::l_paren);
1947 T.consumeOpen();
1949 PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
1951 ExprVector Exprs;
1953 auto RunSignatureHelp = [&]() {
1954 QualType PreferredType;
1955 if (TypeRep)
1956 PreferredType = Actions.ProduceConstructorSignatureHelp(
1957 TypeRep.get()->getCanonicalTypeInternal(), DS.getEndLoc(), Exprs,
1958 T.getOpenLocation(), /*Braced=*/false);
1959 CalledSignatureHelp = true;
1960 return PreferredType;
1963 if (Tok.isNot(tok::r_paren)) {
1964 if (ParseExpressionList(Exprs, [&] {
1965 PreferredType.enterFunctionArgument(Tok.getLocation(),
1966 RunSignatureHelp);
1967 })) {
1968 if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
1969 RunSignatureHelp();
1970 SkipUntil(tok::r_paren, StopAtSemi);
1971 return ExprError();
1975 // Match the ')'.
1976 T.consumeClose();
1978 // TypeRep could be null, if it references an invalid typedef.
1979 if (!TypeRep)
1980 return ExprError();
1982 return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
1983 Exprs, T.getCloseLocation(),
1984 /*ListInitialization=*/false);
1988 Parser::DeclGroupPtrTy
1989 Parser::ParseAliasDeclarationInInitStatement(DeclaratorContext Context,
1990 ParsedAttributes &Attrs) {
1991 assert(Tok.is(tok::kw_using) && "Expected using");
1992 assert((Context == DeclaratorContext::ForInit ||
1993 Context == DeclaratorContext::SelectionInit) &&
1994 "Unexpected Declarator Context");
1995 DeclGroupPtrTy DG;
1996 SourceLocation DeclStart = ConsumeToken(), DeclEnd;
1998 DG = ParseUsingDeclaration(Context, {}, DeclStart, DeclEnd, Attrs, AS_none);
1999 if (!DG)
2000 return DG;
2002 Diag(DeclStart, !getLangOpts().CPlusPlus23
2003 ? diag::ext_alias_in_init_statement
2004 : diag::warn_cxx20_alias_in_init_statement)
2005 << SourceRange(DeclStart, DeclEnd);
2007 return DG;
2010 /// ParseCXXCondition - if/switch/while condition expression.
2012 /// condition:
2013 /// expression
2014 /// type-specifier-seq declarator '=' assignment-expression
2015 /// [C++11] type-specifier-seq declarator '=' initializer-clause
2016 /// [C++11] type-specifier-seq declarator braced-init-list
2017 /// [Clang] type-specifier-seq ref-qualifier[opt] '[' identifier-list ']'
2018 /// brace-or-equal-initializer
2019 /// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
2020 /// '=' assignment-expression
2022 /// In C++1z, a condition may in some contexts be preceded by an
2023 /// optional init-statement. This function will parse that too.
2025 /// \param InitStmt If non-null, an init-statement is permitted, and if present
2026 /// will be parsed and stored here.
2028 /// \param Loc The location of the start of the statement that requires this
2029 /// condition, e.g., the "for" in a for loop.
2031 /// \param MissingOK Whether an empty condition is acceptable here. Otherwise
2032 /// it is considered an error to be recovered from.
2034 /// \param FRI If non-null, a for range declaration is permitted, and if
2035 /// present will be parsed and stored here, and a null result will be returned.
2037 /// \param EnterForConditionScope If true, enter a continue/break scope at the
2038 /// appropriate moment for a 'for' loop.
2040 /// \returns The parsed condition.
2041 Sema::ConditionResult
2042 Parser::ParseCXXCondition(StmtResult *InitStmt, SourceLocation Loc,
2043 Sema::ConditionKind CK, bool MissingOK,
2044 ForRangeInfo *FRI, bool EnterForConditionScope) {
2045 // Helper to ensure we always enter a continue/break scope if requested.
2046 struct ForConditionScopeRAII {
2047 Scope *S;
2048 void enter(bool IsConditionVariable) {
2049 if (S) {
2050 S->AddFlags(Scope::BreakScope | Scope::ContinueScope);
2051 S->setIsConditionVarScope(IsConditionVariable);
2054 ~ForConditionScopeRAII() {
2055 if (S)
2056 S->setIsConditionVarScope(false);
2058 } ForConditionScope{EnterForConditionScope ? getCurScope() : nullptr};
2060 ParenBraceBracketBalancer BalancerRAIIObj(*this);
2061 PreferredType.enterCondition(Actions, Tok.getLocation());
2063 if (Tok.is(tok::code_completion)) {
2064 cutOffParsing();
2065 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
2066 return Sema::ConditionError();
2069 ParsedAttributes attrs(AttrFactory);
2070 MaybeParseCXX11Attributes(attrs);
2072 const auto WarnOnInit = [this, &CK] {
2073 Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
2074 ? diag::warn_cxx14_compat_init_statement
2075 : diag::ext_init_statement)
2076 << (CK == Sema::ConditionKind::Switch);
2079 // Determine what kind of thing we have.
2080 switch (isCXXConditionDeclarationOrInitStatement(InitStmt, FRI)) {
2081 case ConditionOrInitStatement::Expression: {
2082 // If this is a for loop, we're entering its condition.
2083 ForConditionScope.enter(/*IsConditionVariable=*/false);
2085 ProhibitAttributes(attrs);
2087 // We can have an empty expression here.
2088 // if (; true);
2089 if (InitStmt && Tok.is(tok::semi)) {
2090 WarnOnInit();
2091 SourceLocation SemiLoc = Tok.getLocation();
2092 if (!Tok.hasLeadingEmptyMacro() && !SemiLoc.isMacroID()) {
2093 Diag(SemiLoc, diag::warn_empty_init_statement)
2094 << (CK == Sema::ConditionKind::Switch)
2095 << FixItHint::CreateRemoval(SemiLoc);
2097 ConsumeToken();
2098 *InitStmt = Actions.ActOnNullStmt(SemiLoc);
2099 return ParseCXXCondition(nullptr, Loc, CK, MissingOK);
2102 // Parse the expression.
2103 ExprResult Expr = ParseExpression(); // expression
2104 if (Expr.isInvalid())
2105 return Sema::ConditionError();
2107 if (InitStmt && Tok.is(tok::semi)) {
2108 WarnOnInit();
2109 *InitStmt = Actions.ActOnExprStmt(Expr.get());
2110 ConsumeToken();
2111 return ParseCXXCondition(nullptr, Loc, CK, MissingOK);
2114 return Actions.ActOnCondition(getCurScope(), Loc, Expr.get(), CK,
2115 MissingOK);
2118 case ConditionOrInitStatement::InitStmtDecl: {
2119 WarnOnInit();
2120 DeclGroupPtrTy DG;
2121 SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
2122 if (Tok.is(tok::kw_using))
2123 DG = ParseAliasDeclarationInInitStatement(
2124 DeclaratorContext::SelectionInit, attrs);
2125 else {
2126 ParsedAttributes DeclSpecAttrs(AttrFactory);
2127 DG = ParseSimpleDeclaration(DeclaratorContext::SelectionInit, DeclEnd,
2128 attrs, DeclSpecAttrs, /*RequireSemi=*/true);
2130 *InitStmt = Actions.ActOnDeclStmt(DG, DeclStart, DeclEnd);
2131 return ParseCXXCondition(nullptr, Loc, CK, MissingOK);
2134 case ConditionOrInitStatement::ForRangeDecl: {
2135 // This is 'for (init-stmt; for-range-decl : range-expr)'.
2136 // We're not actually in a for loop yet, so 'break' and 'continue' aren't
2137 // permitted here.
2138 assert(FRI && "should not parse a for range declaration here");
2139 SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
2140 ParsedAttributes DeclSpecAttrs(AttrFactory);
2141 DeclGroupPtrTy DG = ParseSimpleDeclaration(
2142 DeclaratorContext::ForInit, DeclEnd, attrs, DeclSpecAttrs, false, FRI);
2143 FRI->LoopVar = Actions.ActOnDeclStmt(DG, DeclStart, Tok.getLocation());
2144 return Sema::ConditionResult();
2147 case ConditionOrInitStatement::ConditionDecl:
2148 case ConditionOrInitStatement::Error:
2149 break;
2152 // If this is a for loop, we're entering its condition.
2153 ForConditionScope.enter(/*IsConditionVariable=*/true);
2155 // type-specifier-seq
2156 DeclSpec DS(AttrFactory);
2157 ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_condition);
2159 // declarator
2160 Declarator DeclaratorInfo(DS, attrs, DeclaratorContext::Condition);
2161 ParseDeclarator(DeclaratorInfo);
2163 // simple-asm-expr[opt]
2164 if (Tok.is(tok::kw_asm)) {
2165 SourceLocation Loc;
2166 ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc));
2167 if (AsmLabel.isInvalid()) {
2168 SkipUntil(tok::semi, StopAtSemi);
2169 return Sema::ConditionError();
2171 DeclaratorInfo.setAsmLabel(AsmLabel.get());
2172 DeclaratorInfo.SetRangeEnd(Loc);
2175 // If attributes are present, parse them.
2176 MaybeParseGNUAttributes(DeclaratorInfo);
2178 // Type-check the declaration itself.
2179 DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
2180 DeclaratorInfo);
2181 if (Dcl.isInvalid())
2182 return Sema::ConditionError();
2183 Decl *DeclOut = Dcl.get();
2185 // '=' assignment-expression
2186 // If a '==' or '+=' is found, suggest a fixit to '='.
2187 bool CopyInitialization = isTokenEqualOrEqualTypo();
2188 if (CopyInitialization)
2189 ConsumeToken();
2191 ExprResult InitExpr = ExprError();
2192 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2193 Diag(Tok.getLocation(),
2194 diag::warn_cxx98_compat_generalized_initializer_lists);
2195 InitExpr = ParseBraceInitializer();
2196 } else if (CopyInitialization) {
2197 PreferredType.enterVariableInit(Tok.getLocation(), DeclOut);
2198 InitExpr = ParseAssignmentExpression();
2199 } else if (Tok.is(tok::l_paren)) {
2200 // This was probably an attempt to initialize the variable.
2201 SourceLocation LParen = ConsumeParen(), RParen = LParen;
2202 if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch))
2203 RParen = ConsumeParen();
2204 Diag(DeclOut->getLocation(),
2205 diag::err_expected_init_in_condition_lparen)
2206 << SourceRange(LParen, RParen);
2207 } else {
2208 Diag(DeclOut->getLocation(), diag::err_expected_init_in_condition);
2211 if (!InitExpr.isInvalid())
2212 Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization);
2213 else
2214 Actions.ActOnInitializerError(DeclOut);
2216 Actions.FinalizeDeclaration(DeclOut);
2217 return Actions.ActOnConditionVariable(DeclOut, Loc, CK);
2220 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
2221 /// This should only be called when the current token is known to be part of
2222 /// simple-type-specifier.
2224 /// simple-type-specifier:
2225 /// '::'[opt] nested-name-specifier[opt] type-name
2226 /// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
2227 /// char
2228 /// wchar_t
2229 /// bool
2230 /// short
2231 /// int
2232 /// long
2233 /// signed
2234 /// unsigned
2235 /// float
2236 /// double
2237 /// void
2238 /// [GNU] typeof-specifier
2239 /// [C++0x] auto [TODO]
2241 /// type-name:
2242 /// class-name
2243 /// enum-name
2244 /// typedef-name
2246 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
2247 DS.SetRangeStart(Tok.getLocation());
2248 const char *PrevSpec;
2249 unsigned DiagID;
2250 SourceLocation Loc = Tok.getLocation();
2251 const clang::PrintingPolicy &Policy =
2252 Actions.getASTContext().getPrintingPolicy();
2254 switch (Tok.getKind()) {
2255 case tok::identifier: // foo::bar
2256 case tok::coloncolon: // ::foo::bar
2257 llvm_unreachable("Annotation token should already be formed!");
2258 default:
2259 llvm_unreachable("Not a simple-type-specifier token!");
2261 // type-name
2262 case tok::annot_typename: {
2263 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
2264 getTypeAnnotation(Tok), Policy);
2265 DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2266 ConsumeAnnotationToken();
2268 DS.Finish(Actions, Policy);
2269 return;
2272 case tok::kw__ExtInt:
2273 case tok::kw__BitInt: {
2274 DiagnoseBitIntUse(Tok);
2275 ExprResult ER = ParseExtIntegerArgument();
2276 if (ER.isInvalid())
2277 DS.SetTypeSpecError();
2278 else
2279 DS.SetBitIntType(Loc, ER.get(), PrevSpec, DiagID, Policy);
2281 // Do this here because we have already consumed the close paren.
2282 DS.SetRangeEnd(PrevTokLocation);
2283 DS.Finish(Actions, Policy);
2284 return;
2287 // builtin types
2288 case tok::kw_short:
2289 DS.SetTypeSpecWidth(TypeSpecifierWidth::Short, Loc, PrevSpec, DiagID,
2290 Policy);
2291 break;
2292 case tok::kw_long:
2293 DS.SetTypeSpecWidth(TypeSpecifierWidth::Long, Loc, PrevSpec, DiagID,
2294 Policy);
2295 break;
2296 case tok::kw___int64:
2297 DS.SetTypeSpecWidth(TypeSpecifierWidth::LongLong, Loc, PrevSpec, DiagID,
2298 Policy);
2299 break;
2300 case tok::kw_signed:
2301 DS.SetTypeSpecSign(TypeSpecifierSign::Signed, Loc, PrevSpec, DiagID);
2302 break;
2303 case tok::kw_unsigned:
2304 DS.SetTypeSpecSign(TypeSpecifierSign::Unsigned, Loc, PrevSpec, DiagID);
2305 break;
2306 case tok::kw_void:
2307 DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy);
2308 break;
2309 case tok::kw_auto:
2310 DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID, Policy);
2311 break;
2312 case tok::kw_char:
2313 DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy);
2314 break;
2315 case tok::kw_int:
2316 DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy);
2317 break;
2318 case tok::kw___int128:
2319 DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy);
2320 break;
2321 case tok::kw___bf16:
2322 DS.SetTypeSpecType(DeclSpec::TST_BFloat16, Loc, PrevSpec, DiagID, Policy);
2323 break;
2324 case tok::kw_half:
2325 DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy);
2326 break;
2327 case tok::kw_float:
2328 DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy);
2329 break;
2330 case tok::kw_double:
2331 DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy);
2332 break;
2333 case tok::kw__Float16:
2334 DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec, DiagID, Policy);
2335 break;
2336 case tok::kw___float128:
2337 DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec, DiagID, Policy);
2338 break;
2339 case tok::kw___ibm128:
2340 DS.SetTypeSpecType(DeclSpec::TST_ibm128, Loc, PrevSpec, DiagID, Policy);
2341 break;
2342 case tok::kw_wchar_t:
2343 DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy);
2344 break;
2345 case tok::kw_char8_t:
2346 DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec, DiagID, Policy);
2347 break;
2348 case tok::kw_char16_t:
2349 DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy);
2350 break;
2351 case tok::kw_char32_t:
2352 DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy);
2353 break;
2354 case tok::kw_bool:
2355 DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy);
2356 break;
2357 #define GENERIC_IMAGE_TYPE(ImgType, Id) \
2358 case tok::kw_##ImgType##_t: \
2359 DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, DiagID, \
2360 Policy); \
2361 break;
2362 #include "clang/Basic/OpenCLImageTypes.def"
2364 case tok::annot_decltype:
2365 case tok::kw_decltype:
2366 DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
2367 return DS.Finish(Actions, Policy);
2369 // GNU typeof support.
2370 case tok::kw_typeof:
2371 ParseTypeofSpecifier(DS);
2372 DS.Finish(Actions, Policy);
2373 return;
2375 ConsumeAnyToken();
2376 DS.SetRangeEnd(PrevTokLocation);
2377 DS.Finish(Actions, Policy);
2380 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
2381 /// [dcl.name]), which is a non-empty sequence of type-specifiers,
2382 /// e.g., "const short int". Note that the DeclSpec is *not* finished
2383 /// by parsing the type-specifier-seq, because these sequences are
2384 /// typically followed by some form of declarator. Returns true and
2385 /// emits diagnostics if this is not a type-specifier-seq, false
2386 /// otherwise.
2388 /// type-specifier-seq: [C++ 8.1]
2389 /// type-specifier type-specifier-seq[opt]
2391 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS, DeclaratorContext Context) {
2392 ParseSpecifierQualifierList(DS, AS_none,
2393 getDeclSpecContextFromDeclaratorContext(Context));
2394 DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
2395 return false;
2398 /// Finish parsing a C++ unqualified-id that is a template-id of
2399 /// some form.
2401 /// This routine is invoked when a '<' is encountered after an identifier or
2402 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
2403 /// whether the unqualified-id is actually a template-id. This routine will
2404 /// then parse the template arguments and form the appropriate template-id to
2405 /// return to the caller.
2407 /// \param SS the nested-name-specifier that precedes this template-id, if
2408 /// we're actually parsing a qualified-id.
2410 /// \param ObjectType if this unqualified-id occurs within a member access
2411 /// expression, the type of the base object whose member is being accessed.
2413 /// \param ObjectHadErrors this unqualified-id occurs within a member access
2414 /// expression, indicates whether the original subexpressions had any errors.
2416 /// \param Name for constructor and destructor names, this is the actual
2417 /// identifier that may be a template-name.
2419 /// \param NameLoc the location of the class-name in a constructor or
2420 /// destructor.
2422 /// \param EnteringContext whether we're entering the scope of the
2423 /// nested-name-specifier.
2425 /// \param Id as input, describes the template-name or operator-function-id
2426 /// that precedes the '<'. If template arguments were parsed successfully,
2427 /// will be updated with the template-id.
2429 /// \param AssumeTemplateId When true, this routine will assume that the name
2430 /// refers to a template without performing name lookup to verify.
2432 /// \returns true if a parse error occurred, false otherwise.
2433 bool Parser::ParseUnqualifiedIdTemplateId(
2434 CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
2435 SourceLocation TemplateKWLoc, IdentifierInfo *Name, SourceLocation NameLoc,
2436 bool EnteringContext, UnqualifiedId &Id, bool AssumeTemplateId) {
2437 assert(Tok.is(tok::less) && "Expected '<' to finish parsing a template-id");
2439 TemplateTy Template;
2440 TemplateNameKind TNK = TNK_Non_template;
2441 switch (Id.getKind()) {
2442 case UnqualifiedIdKind::IK_Identifier:
2443 case UnqualifiedIdKind::IK_OperatorFunctionId:
2444 case UnqualifiedIdKind::IK_LiteralOperatorId:
2445 if (AssumeTemplateId) {
2446 // We defer the injected-class-name checks until we've found whether
2447 // this template-id is used to form a nested-name-specifier or not.
2448 TNK = Actions.ActOnTemplateName(getCurScope(), SS, TemplateKWLoc, Id,
2449 ObjectType, EnteringContext, Template,
2450 /*AllowInjectedClassName*/ true);
2451 } else {
2452 bool MemberOfUnknownSpecialization;
2453 TNK = Actions.isTemplateName(getCurScope(), SS,
2454 TemplateKWLoc.isValid(), Id,
2455 ObjectType, EnteringContext, Template,
2456 MemberOfUnknownSpecialization);
2457 // If lookup found nothing but we're assuming that this is a template
2458 // name, double-check that makes sense syntactically before committing
2459 // to it.
2460 if (TNK == TNK_Undeclared_template &&
2461 isTemplateArgumentList(0) == TPResult::False)
2462 return false;
2464 if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
2465 ObjectType && isTemplateArgumentList(0) == TPResult::True) {
2466 // If we had errors before, ObjectType can be dependent even without any
2467 // templates, do not report missing template keyword in that case.
2468 if (!ObjectHadErrors) {
2469 // We have something like t->getAs<T>(), where getAs is a
2470 // member of an unknown specialization. However, this will only
2471 // parse correctly as a template, so suggest the keyword 'template'
2472 // before 'getAs' and treat this as a dependent template name.
2473 std::string Name;
2474 if (Id.getKind() == UnqualifiedIdKind::IK_Identifier)
2475 Name = std::string(Id.Identifier->getName());
2476 else {
2477 Name = "operator ";
2478 if (Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId)
2479 Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
2480 else
2481 Name += Id.Identifier->getName();
2483 Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
2484 << Name
2485 << FixItHint::CreateInsertion(Id.StartLocation, "template ");
2487 TNK = Actions.ActOnTemplateName(
2488 getCurScope(), SS, TemplateKWLoc, Id, ObjectType, EnteringContext,
2489 Template, /*AllowInjectedClassName*/ true);
2490 } else if (TNK == TNK_Non_template) {
2491 return false;
2494 break;
2496 case UnqualifiedIdKind::IK_ConstructorName: {
2497 UnqualifiedId TemplateName;
2498 bool MemberOfUnknownSpecialization;
2499 TemplateName.setIdentifier(Name, NameLoc);
2500 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2501 TemplateName, ObjectType,
2502 EnteringContext, Template,
2503 MemberOfUnknownSpecialization);
2504 if (TNK == TNK_Non_template)
2505 return false;
2506 break;
2509 case UnqualifiedIdKind::IK_DestructorName: {
2510 UnqualifiedId TemplateName;
2511 bool MemberOfUnknownSpecialization;
2512 TemplateName.setIdentifier(Name, NameLoc);
2513 if (ObjectType) {
2514 TNK = Actions.ActOnTemplateName(
2515 getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
2516 EnteringContext, Template, /*AllowInjectedClassName*/ true);
2517 } else {
2518 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2519 TemplateName, ObjectType,
2520 EnteringContext, Template,
2521 MemberOfUnknownSpecialization);
2523 if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
2524 Diag(NameLoc, diag::err_destructor_template_id)
2525 << Name << SS.getRange();
2526 // Carry on to parse the template arguments before bailing out.
2529 break;
2532 default:
2533 return false;
2536 // Parse the enclosed template argument list.
2537 SourceLocation LAngleLoc, RAngleLoc;
2538 TemplateArgList TemplateArgs;
2539 if (ParseTemplateIdAfterTemplateName(true, LAngleLoc, TemplateArgs, RAngleLoc,
2540 Template))
2541 return true;
2543 // If this is a non-template, we already issued a diagnostic.
2544 if (TNK == TNK_Non_template)
2545 return true;
2547 if (Id.getKind() == UnqualifiedIdKind::IK_Identifier ||
2548 Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
2549 Id.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) {
2550 // Form a parsed representation of the template-id to be stored in the
2551 // UnqualifiedId.
2553 // FIXME: Store name for literal operator too.
2554 IdentifierInfo *TemplateII =
2555 Id.getKind() == UnqualifiedIdKind::IK_Identifier ? Id.Identifier
2556 : nullptr;
2557 OverloadedOperatorKind OpKind =
2558 Id.getKind() == UnqualifiedIdKind::IK_Identifier
2559 ? OO_None
2560 : Id.OperatorFunctionId.Operator;
2562 TemplateIdAnnotation *TemplateId = TemplateIdAnnotation::Create(
2563 TemplateKWLoc, Id.StartLocation, TemplateII, OpKind, Template, TNK,
2564 LAngleLoc, RAngleLoc, TemplateArgs, /*ArgsInvalid*/false, TemplateIds);
2566 Id.setTemplateId(TemplateId);
2567 return false;
2570 // Bundle the template arguments together.
2571 ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
2573 // Constructor and destructor names.
2574 TypeResult Type = Actions.ActOnTemplateIdType(
2575 getCurScope(), SS, TemplateKWLoc, Template, Name, NameLoc, LAngleLoc,
2576 TemplateArgsPtr, RAngleLoc, /*IsCtorOrDtorName=*/true);
2577 if (Type.isInvalid())
2578 return true;
2580 if (Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
2581 Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
2582 else
2583 Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
2585 return false;
2588 /// Parse an operator-function-id or conversion-function-id as part
2589 /// of a C++ unqualified-id.
2591 /// This routine is responsible only for parsing the operator-function-id or
2592 /// conversion-function-id; it does not handle template arguments in any way.
2594 /// \code
2595 /// operator-function-id: [C++ 13.5]
2596 /// 'operator' operator
2598 /// operator: one of
2599 /// new delete new[] delete[]
2600 /// + - * / % ^ & | ~
2601 /// ! = < > += -= *= /= %=
2602 /// ^= &= |= << >> >>= <<= == !=
2603 /// <= >= && || ++ -- , ->* ->
2604 /// () [] <=>
2606 /// conversion-function-id: [C++ 12.3.2]
2607 /// operator conversion-type-id
2609 /// conversion-type-id:
2610 /// type-specifier-seq conversion-declarator[opt]
2612 /// conversion-declarator:
2613 /// ptr-operator conversion-declarator[opt]
2614 /// \endcode
2616 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2617 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2619 /// \param EnteringContext whether we are entering the scope of the
2620 /// nested-name-specifier.
2622 /// \param ObjectType if this unqualified-id occurs within a member access
2623 /// expression, the type of the base object whose member is being accessed.
2625 /// \param Result on a successful parse, contains the parsed unqualified-id.
2627 /// \returns true if parsing fails, false otherwise.
2628 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
2629 ParsedType ObjectType,
2630 UnqualifiedId &Result) {
2631 assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
2633 // Consume the 'operator' keyword.
2634 SourceLocation KeywordLoc = ConsumeToken();
2636 // Determine what kind of operator name we have.
2637 unsigned SymbolIdx = 0;
2638 SourceLocation SymbolLocations[3];
2639 OverloadedOperatorKind Op = OO_None;
2640 switch (Tok.getKind()) {
2641 case tok::kw_new:
2642 case tok::kw_delete: {
2643 bool isNew = Tok.getKind() == tok::kw_new;
2644 // Consume the 'new' or 'delete'.
2645 SymbolLocations[SymbolIdx++] = ConsumeToken();
2646 // Check for array new/delete.
2647 if (Tok.is(tok::l_square) &&
2648 (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) {
2649 // Consume the '[' and ']'.
2650 BalancedDelimiterTracker T(*this, tok::l_square);
2651 T.consumeOpen();
2652 T.consumeClose();
2653 if (T.getCloseLocation().isInvalid())
2654 return true;
2656 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2657 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2658 Op = isNew? OO_Array_New : OO_Array_Delete;
2659 } else {
2660 Op = isNew? OO_New : OO_Delete;
2662 break;
2665 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2666 case tok::Token: \
2667 SymbolLocations[SymbolIdx++] = ConsumeToken(); \
2668 Op = OO_##Name; \
2669 break;
2670 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
2671 #include "clang/Basic/OperatorKinds.def"
2673 case tok::l_paren: {
2674 // Consume the '(' and ')'.
2675 BalancedDelimiterTracker T(*this, tok::l_paren);
2676 T.consumeOpen();
2677 T.consumeClose();
2678 if (T.getCloseLocation().isInvalid())
2679 return true;
2681 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2682 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2683 Op = OO_Call;
2684 break;
2687 case tok::l_square: {
2688 // Consume the '[' and ']'.
2689 BalancedDelimiterTracker T(*this, tok::l_square);
2690 T.consumeOpen();
2691 T.consumeClose();
2692 if (T.getCloseLocation().isInvalid())
2693 return true;
2695 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2696 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2697 Op = OO_Subscript;
2698 break;
2701 case tok::code_completion: {
2702 // Don't try to parse any further.
2703 cutOffParsing();
2704 // Code completion for the operator name.
2705 Actions.CodeCompleteOperatorName(getCurScope());
2706 return true;
2709 default:
2710 break;
2713 if (Op != OO_None) {
2714 // We have parsed an operator-function-id.
2715 Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
2716 return false;
2719 // Parse a literal-operator-id.
2721 // literal-operator-id: C++11 [over.literal]
2722 // operator string-literal identifier
2723 // operator user-defined-string-literal
2725 if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
2726 Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
2728 SourceLocation DiagLoc;
2729 unsigned DiagId = 0;
2731 // We're past translation phase 6, so perform string literal concatenation
2732 // before checking for "".
2733 SmallVector<Token, 4> Toks;
2734 SmallVector<SourceLocation, 4> TokLocs;
2735 while (isTokenStringLiteral()) {
2736 if (!Tok.is(tok::string_literal) && !DiagId) {
2737 // C++11 [over.literal]p1:
2738 // The string-literal or user-defined-string-literal in a
2739 // literal-operator-id shall have no encoding-prefix [...].
2740 DiagLoc = Tok.getLocation();
2741 DiagId = diag::err_literal_operator_string_prefix;
2743 Toks.push_back(Tok);
2744 TokLocs.push_back(ConsumeStringToken());
2747 StringLiteralParser Literal(Toks, PP);
2748 if (Literal.hadError)
2749 return true;
2751 // Grab the literal operator's suffix, which will be either the next token
2752 // or a ud-suffix from the string literal.
2753 bool IsUDSuffix = !Literal.getUDSuffix().empty();
2754 IdentifierInfo *II = nullptr;
2755 SourceLocation SuffixLoc;
2756 if (IsUDSuffix) {
2757 II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
2758 SuffixLoc =
2759 Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
2760 Literal.getUDSuffixOffset(),
2761 PP.getSourceManager(), getLangOpts());
2762 } else if (Tok.is(tok::identifier)) {
2763 II = Tok.getIdentifierInfo();
2764 SuffixLoc = ConsumeToken();
2765 TokLocs.push_back(SuffixLoc);
2766 } else {
2767 Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
2768 return true;
2771 // The string literal must be empty.
2772 if (!Literal.GetString().empty() || Literal.Pascal) {
2773 // C++11 [over.literal]p1:
2774 // The string-literal or user-defined-string-literal in a
2775 // literal-operator-id shall [...] contain no characters
2776 // other than the implicit terminating '\0'.
2777 DiagLoc = TokLocs.front();
2778 DiagId = diag::err_literal_operator_string_not_empty;
2781 if (DiagId) {
2782 // This isn't a valid literal-operator-id, but we think we know
2783 // what the user meant. Tell them what they should have written.
2784 SmallString<32> Str;
2785 Str += "\"\"";
2786 Str += II->getName();
2787 Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
2788 SourceRange(TokLocs.front(), TokLocs.back()), Str);
2791 Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
2793 return Actions.checkLiteralOperatorId(SS, Result, IsUDSuffix);
2796 // Parse a conversion-function-id.
2798 // conversion-function-id: [C++ 12.3.2]
2799 // operator conversion-type-id
2801 // conversion-type-id:
2802 // type-specifier-seq conversion-declarator[opt]
2804 // conversion-declarator:
2805 // ptr-operator conversion-declarator[opt]
2807 // Parse the type-specifier-seq.
2808 DeclSpec DS(AttrFactory);
2809 if (ParseCXXTypeSpecifierSeq(
2810 DS, DeclaratorContext::ConversionId)) // FIXME: ObjectType?
2811 return true;
2813 // Parse the conversion-declarator, which is merely a sequence of
2814 // ptr-operators.
2815 Declarator D(DS, ParsedAttributesView::none(),
2816 DeclaratorContext::ConversionId);
2817 ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr);
2819 // Finish up the type.
2820 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
2821 if (Ty.isInvalid())
2822 return true;
2824 // Note that this is a conversion-function-id.
2825 Result.setConversionFunctionId(KeywordLoc, Ty.get(),
2826 D.getSourceRange().getEnd());
2827 return false;
2830 /// Parse a C++ unqualified-id (or a C identifier), which describes the
2831 /// name of an entity.
2833 /// \code
2834 /// unqualified-id: [C++ expr.prim.general]
2835 /// identifier
2836 /// operator-function-id
2837 /// conversion-function-id
2838 /// [C++0x] literal-operator-id [TODO]
2839 /// ~ class-name
2840 /// template-id
2842 /// \endcode
2844 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2845 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2847 /// \param ObjectType if this unqualified-id occurs within a member access
2848 /// expression, the type of the base object whose member is being accessed.
2850 /// \param ObjectHadErrors if this unqualified-id occurs within a member access
2851 /// expression, indicates whether the original subexpressions had any errors.
2852 /// When true, diagnostics for missing 'template' keyword will be supressed.
2854 /// \param EnteringContext whether we are entering the scope of the
2855 /// nested-name-specifier.
2857 /// \param AllowDestructorName whether we allow parsing of a destructor name.
2859 /// \param AllowConstructorName whether we allow parsing a constructor name.
2861 /// \param AllowDeductionGuide whether we allow parsing a deduction guide name.
2863 /// \param Result on a successful parse, contains the parsed unqualified-id.
2865 /// \returns true if parsing fails, false otherwise.
2866 bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, ParsedType ObjectType,
2867 bool ObjectHadErrors, bool EnteringContext,
2868 bool AllowDestructorName,
2869 bool AllowConstructorName,
2870 bool AllowDeductionGuide,
2871 SourceLocation *TemplateKWLoc,
2872 UnqualifiedId &Result) {
2873 if (TemplateKWLoc)
2874 *TemplateKWLoc = SourceLocation();
2876 // Handle 'A::template B'. This is for template-ids which have not
2877 // already been annotated by ParseOptionalCXXScopeSpecifier().
2878 bool TemplateSpecified = false;
2879 if (Tok.is(tok::kw_template)) {
2880 if (TemplateKWLoc && (ObjectType || SS.isSet())) {
2881 TemplateSpecified = true;
2882 *TemplateKWLoc = ConsumeToken();
2883 } else {
2884 SourceLocation TemplateLoc = ConsumeToken();
2885 Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
2886 << FixItHint::CreateRemoval(TemplateLoc);
2890 // unqualified-id:
2891 // identifier
2892 // template-id (when it hasn't already been annotated)
2893 if (Tok.is(tok::identifier)) {
2894 ParseIdentifier:
2895 // Consume the identifier.
2896 IdentifierInfo *Id = Tok.getIdentifierInfo();
2897 SourceLocation IdLoc = ConsumeToken();
2899 if (!getLangOpts().CPlusPlus) {
2900 // If we're not in C++, only identifiers matter. Record the
2901 // identifier and return.
2902 Result.setIdentifier(Id, IdLoc);
2903 return false;
2906 ParsedTemplateTy TemplateName;
2907 if (AllowConstructorName &&
2908 Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
2909 // We have parsed a constructor name.
2910 ParsedType Ty = Actions.getConstructorName(*Id, IdLoc, getCurScope(), SS,
2911 EnteringContext);
2912 if (!Ty)
2913 return true;
2914 Result.setConstructorName(Ty, IdLoc, IdLoc);
2915 } else if (getLangOpts().CPlusPlus17 && AllowDeductionGuide &&
2916 SS.isEmpty() &&
2917 Actions.isDeductionGuideName(getCurScope(), *Id, IdLoc, SS,
2918 &TemplateName)) {
2919 // We have parsed a template-name naming a deduction guide.
2920 Result.setDeductionGuideName(TemplateName, IdLoc);
2921 } else {
2922 // We have parsed an identifier.
2923 Result.setIdentifier(Id, IdLoc);
2926 // If the next token is a '<', we may have a template.
2927 TemplateTy Template;
2928 if (Tok.is(tok::less))
2929 return ParseUnqualifiedIdTemplateId(
2930 SS, ObjectType, ObjectHadErrors,
2931 TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), Id, IdLoc,
2932 EnteringContext, Result, TemplateSpecified);
2933 else if (TemplateSpecified &&
2934 Actions.ActOnTemplateName(
2935 getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
2936 EnteringContext, Template,
2937 /*AllowInjectedClassName*/ true) == TNK_Non_template)
2938 return true;
2940 return false;
2943 // unqualified-id:
2944 // template-id (already parsed and annotated)
2945 if (Tok.is(tok::annot_template_id)) {
2946 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2948 // FIXME: Consider passing invalid template-ids on to callers; they may
2949 // be able to recover better than we can.
2950 if (TemplateId->isInvalid()) {
2951 ConsumeAnnotationToken();
2952 return true;
2955 // If the template-name names the current class, then this is a constructor
2956 if (AllowConstructorName && TemplateId->Name &&
2957 Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2958 if (SS.isSet()) {
2959 // C++ [class.qual]p2 specifies that a qualified template-name
2960 // is taken as the constructor name where a constructor can be
2961 // declared. Thus, the template arguments are extraneous, so
2962 // complain about them and remove them entirely.
2963 Diag(TemplateId->TemplateNameLoc,
2964 diag::err_out_of_line_constructor_template_id)
2965 << TemplateId->Name
2966 << FixItHint::CreateRemoval(
2967 SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
2968 ParsedType Ty = Actions.getConstructorName(
2969 *TemplateId->Name, TemplateId->TemplateNameLoc, getCurScope(), SS,
2970 EnteringContext);
2971 if (!Ty)
2972 return true;
2973 Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
2974 TemplateId->RAngleLoc);
2975 ConsumeAnnotationToken();
2976 return false;
2979 Result.setConstructorTemplateId(TemplateId);
2980 ConsumeAnnotationToken();
2981 return false;
2984 // We have already parsed a template-id; consume the annotation token as
2985 // our unqualified-id.
2986 Result.setTemplateId(TemplateId);
2987 SourceLocation TemplateLoc = TemplateId->TemplateKWLoc;
2988 if (TemplateLoc.isValid()) {
2989 if (TemplateKWLoc && (ObjectType || SS.isSet()))
2990 *TemplateKWLoc = TemplateLoc;
2991 else
2992 Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
2993 << FixItHint::CreateRemoval(TemplateLoc);
2995 ConsumeAnnotationToken();
2996 return false;
2999 // unqualified-id:
3000 // operator-function-id
3001 // conversion-function-id
3002 if (Tok.is(tok::kw_operator)) {
3003 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
3004 return true;
3006 // If we have an operator-function-id or a literal-operator-id and the next
3007 // token is a '<', we may have a
3009 // template-id:
3010 // operator-function-id < template-argument-list[opt] >
3011 TemplateTy Template;
3012 if ((Result.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
3013 Result.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) &&
3014 Tok.is(tok::less))
3015 return ParseUnqualifiedIdTemplateId(
3016 SS, ObjectType, ObjectHadErrors,
3017 TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), nullptr,
3018 SourceLocation(), EnteringContext, Result, TemplateSpecified);
3019 else if (TemplateSpecified &&
3020 Actions.ActOnTemplateName(
3021 getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
3022 EnteringContext, Template,
3023 /*AllowInjectedClassName*/ true) == TNK_Non_template)
3024 return true;
3026 return false;
3029 if (getLangOpts().CPlusPlus &&
3030 (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
3031 // C++ [expr.unary.op]p10:
3032 // There is an ambiguity in the unary-expression ~X(), where X is a
3033 // class-name. The ambiguity is resolved in favor of treating ~ as a
3034 // unary complement rather than treating ~X as referring to a destructor.
3036 // Parse the '~'.
3037 SourceLocation TildeLoc = ConsumeToken();
3039 if (TemplateSpecified) {
3040 // C++ [temp.names]p3:
3041 // A name prefixed by the keyword template shall be a template-id [...]
3043 // A template-id cannot begin with a '~' token. This would never work
3044 // anyway: x.~A<int>() would specify that the destructor is a template,
3045 // not that 'A' is a template.
3047 // FIXME: Suggest replacing the attempted destructor name with a correct
3048 // destructor name and recover. (This is not trivial if this would become
3049 // a pseudo-destructor name).
3050 Diag(*TemplateKWLoc, diag::err_unexpected_template_in_destructor_name)
3051 << Tok.getLocation();
3052 return true;
3055 if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
3056 DeclSpec DS(AttrFactory);
3057 SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
3058 if (ParsedType Type =
3059 Actions.getDestructorTypeForDecltype(DS, ObjectType)) {
3060 Result.setDestructorName(TildeLoc, Type, EndLoc);
3061 return false;
3063 return true;
3066 // Parse the class-name.
3067 if (Tok.isNot(tok::identifier)) {
3068 Diag(Tok, diag::err_destructor_tilde_identifier);
3069 return true;
3072 // If the user wrote ~T::T, correct it to T::~T.
3073 DeclaratorScopeObj DeclScopeObj(*this, SS);
3074 if (NextToken().is(tok::coloncolon)) {
3075 // Don't let ParseOptionalCXXScopeSpecifier() "correct"
3076 // `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`,
3077 // it will confuse this recovery logic.
3078 ColonProtectionRAIIObject ColonRAII(*this, false);
3080 if (SS.isSet()) {
3081 AnnotateScopeToken(SS, /*NewAnnotation*/true);
3082 SS.clear();
3084 if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, ObjectHadErrors,
3085 EnteringContext))
3086 return true;
3087 if (SS.isNotEmpty())
3088 ObjectType = nullptr;
3089 if (Tok.isNot(tok::identifier) || NextToken().is(tok::coloncolon) ||
3090 !SS.isSet()) {
3091 Diag(TildeLoc, diag::err_destructor_tilde_scope);
3092 return true;
3095 // Recover as if the tilde had been written before the identifier.
3096 Diag(TildeLoc, diag::err_destructor_tilde_scope)
3097 << FixItHint::CreateRemoval(TildeLoc)
3098 << FixItHint::CreateInsertion(Tok.getLocation(), "~");
3100 // Temporarily enter the scope for the rest of this function.
3101 if (Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
3102 DeclScopeObj.EnterDeclaratorScope();
3105 // Parse the class-name (or template-name in a simple-template-id).
3106 IdentifierInfo *ClassName = Tok.getIdentifierInfo();
3107 SourceLocation ClassNameLoc = ConsumeToken();
3109 if (Tok.is(tok::less)) {
3110 Result.setDestructorName(TildeLoc, nullptr, ClassNameLoc);
3111 return ParseUnqualifiedIdTemplateId(
3112 SS, ObjectType, ObjectHadErrors,
3113 TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), ClassName,
3114 ClassNameLoc, EnteringContext, Result, TemplateSpecified);
3117 // Note that this is a destructor name.
3118 ParsedType Ty =
3119 Actions.getDestructorName(*ClassName, ClassNameLoc, getCurScope(), SS,
3120 ObjectType, EnteringContext);
3121 if (!Ty)
3122 return true;
3124 Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
3125 return false;
3128 switch (Tok.getKind()) {
3129 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
3130 #include "clang/Basic/TransformTypeTraits.def"
3131 if (!NextToken().is(tok::l_paren)) {
3132 Tok.setKind(tok::identifier);
3133 Diag(Tok, diag::ext_keyword_as_ident)
3134 << Tok.getIdentifierInfo()->getName() << 0;
3135 goto ParseIdentifier;
3137 [[fallthrough]];
3138 default:
3139 Diag(Tok, diag::err_expected_unqualified_id) << getLangOpts().CPlusPlus;
3140 return true;
3144 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
3145 /// memory in a typesafe manner and call constructors.
3147 /// This method is called to parse the new expression after the optional :: has
3148 /// been already parsed. If the :: was present, "UseGlobal" is true and "Start"
3149 /// is its location. Otherwise, "Start" is the location of the 'new' token.
3151 /// new-expression:
3152 /// '::'[opt] 'new' new-placement[opt] new-type-id
3153 /// new-initializer[opt]
3154 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3155 /// new-initializer[opt]
3157 /// new-placement:
3158 /// '(' expression-list ')'
3160 /// new-type-id:
3161 /// type-specifier-seq new-declarator[opt]
3162 /// [GNU] attributes type-specifier-seq new-declarator[opt]
3164 /// new-declarator:
3165 /// ptr-operator new-declarator[opt]
3166 /// direct-new-declarator
3168 /// new-initializer:
3169 /// '(' expression-list[opt] ')'
3170 /// [C++0x] braced-init-list
3172 ExprResult
3173 Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
3174 assert(Tok.is(tok::kw_new) && "expected 'new' token");
3175 ConsumeToken(); // Consume 'new'
3177 // A '(' now can be a new-placement or the '(' wrapping the type-id in the
3178 // second form of new-expression. It can't be a new-type-id.
3180 ExprVector PlacementArgs;
3181 SourceLocation PlacementLParen, PlacementRParen;
3183 SourceRange TypeIdParens;
3184 DeclSpec DS(AttrFactory);
3185 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3186 DeclaratorContext::CXXNew);
3187 if (Tok.is(tok::l_paren)) {
3188 // If it turns out to be a placement, we change the type location.
3189 BalancedDelimiterTracker T(*this, tok::l_paren);
3190 T.consumeOpen();
3191 PlacementLParen = T.getOpenLocation();
3192 if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
3193 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3194 return ExprError();
3197 T.consumeClose();
3198 PlacementRParen = T.getCloseLocation();
3199 if (PlacementRParen.isInvalid()) {
3200 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3201 return ExprError();
3204 if (PlacementArgs.empty()) {
3205 // Reset the placement locations. There was no placement.
3206 TypeIdParens = T.getRange();
3207 PlacementLParen = PlacementRParen = SourceLocation();
3208 } else {
3209 // We still need the type.
3210 if (Tok.is(tok::l_paren)) {
3211 BalancedDelimiterTracker T(*this, tok::l_paren);
3212 T.consumeOpen();
3213 MaybeParseGNUAttributes(DeclaratorInfo);
3214 ParseSpecifierQualifierList(DS);
3215 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3216 ParseDeclarator(DeclaratorInfo);
3217 T.consumeClose();
3218 TypeIdParens = T.getRange();
3219 } else {
3220 MaybeParseGNUAttributes(DeclaratorInfo);
3221 if (ParseCXXTypeSpecifierSeq(DS))
3222 DeclaratorInfo.setInvalidType(true);
3223 else {
3224 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3225 ParseDeclaratorInternal(DeclaratorInfo,
3226 &Parser::ParseDirectNewDeclarator);
3230 } else {
3231 // A new-type-id is a simplified type-id, where essentially the
3232 // direct-declarator is replaced by a direct-new-declarator.
3233 MaybeParseGNUAttributes(DeclaratorInfo);
3234 if (ParseCXXTypeSpecifierSeq(DS, DeclaratorContext::CXXNew))
3235 DeclaratorInfo.setInvalidType(true);
3236 else {
3237 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3238 ParseDeclaratorInternal(DeclaratorInfo,
3239 &Parser::ParseDirectNewDeclarator);
3242 if (DeclaratorInfo.isInvalidType()) {
3243 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3244 return ExprError();
3247 ExprResult Initializer;
3249 if (Tok.is(tok::l_paren)) {
3250 SourceLocation ConstructorLParen, ConstructorRParen;
3251 ExprVector ConstructorArgs;
3252 BalancedDelimiterTracker T(*this, tok::l_paren);
3253 T.consumeOpen();
3254 ConstructorLParen = T.getOpenLocation();
3255 if (Tok.isNot(tok::r_paren)) {
3256 auto RunSignatureHelp = [&]() {
3257 ParsedType TypeRep =
3258 Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
3259 QualType PreferredType;
3260 // ActOnTypeName might adjust DeclaratorInfo and return a null type even
3261 // the passing DeclaratorInfo is valid, e.g. running SignatureHelp on
3262 // `new decltype(invalid) (^)`.
3263 if (TypeRep)
3264 PreferredType = Actions.ProduceConstructorSignatureHelp(
3265 TypeRep.get()->getCanonicalTypeInternal(),
3266 DeclaratorInfo.getEndLoc(), ConstructorArgs, ConstructorLParen,
3267 /*Braced=*/false);
3268 CalledSignatureHelp = true;
3269 return PreferredType;
3271 if (ParseExpressionList(ConstructorArgs, [&] {
3272 PreferredType.enterFunctionArgument(Tok.getLocation(),
3273 RunSignatureHelp);
3274 })) {
3275 if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
3276 RunSignatureHelp();
3277 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3278 return ExprError();
3281 T.consumeClose();
3282 ConstructorRParen = T.getCloseLocation();
3283 if (ConstructorRParen.isInvalid()) {
3284 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3285 return ExprError();
3287 Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
3288 ConstructorRParen,
3289 ConstructorArgs);
3290 } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
3291 Diag(Tok.getLocation(),
3292 diag::warn_cxx98_compat_generalized_initializer_lists);
3293 Initializer = ParseBraceInitializer();
3295 if (Initializer.isInvalid())
3296 return Initializer;
3298 return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
3299 PlacementArgs, PlacementRParen,
3300 TypeIdParens, DeclaratorInfo, Initializer.get());
3303 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
3304 /// passed to ParseDeclaratorInternal.
3306 /// direct-new-declarator:
3307 /// '[' expression[opt] ']'
3308 /// direct-new-declarator '[' constant-expression ']'
3310 void Parser::ParseDirectNewDeclarator(Declarator &D) {
3311 // Parse the array dimensions.
3312 bool First = true;
3313 while (Tok.is(tok::l_square)) {
3314 // An array-size expression can't start with a lambda.
3315 if (CheckProhibitedCXX11Attribute())
3316 continue;
3318 BalancedDelimiterTracker T(*this, tok::l_square);
3319 T.consumeOpen();
3321 ExprResult Size =
3322 First ? (Tok.is(tok::r_square) ? ExprResult() : ParseExpression())
3323 : ParseConstantExpression();
3324 if (Size.isInvalid()) {
3325 // Recover
3326 SkipUntil(tok::r_square, StopAtSemi);
3327 return;
3329 First = false;
3331 T.consumeClose();
3333 // Attributes here appertain to the array type. C++11 [expr.new]p5.
3334 ParsedAttributes Attrs(AttrFactory);
3335 MaybeParseCXX11Attributes(Attrs);
3337 D.AddTypeInfo(DeclaratorChunk::getArray(0,
3338 /*isStatic=*/false, /*isStar=*/false,
3339 Size.get(), T.getOpenLocation(),
3340 T.getCloseLocation()),
3341 std::move(Attrs), T.getCloseLocation());
3343 if (T.getCloseLocation().isInvalid())
3344 return;
3348 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
3349 /// This ambiguity appears in the syntax of the C++ new operator.
3351 /// new-expression:
3352 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3353 /// new-initializer[opt]
3355 /// new-placement:
3356 /// '(' expression-list ')'
3358 bool Parser::ParseExpressionListOrTypeId(
3359 SmallVectorImpl<Expr*> &PlacementArgs,
3360 Declarator &D) {
3361 // The '(' was already consumed.
3362 if (isTypeIdInParens()) {
3363 ParseSpecifierQualifierList(D.getMutableDeclSpec());
3364 D.SetSourceRange(D.getDeclSpec().getSourceRange());
3365 ParseDeclarator(D);
3366 return D.isInvalidType();
3369 // It's not a type, it has to be an expression list.
3370 return ParseExpressionList(PlacementArgs);
3373 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
3374 /// to free memory allocated by new.
3376 /// This method is called to parse the 'delete' expression after the optional
3377 /// '::' has been already parsed. If the '::' was present, "UseGlobal" is true
3378 /// and "Start" is its location. Otherwise, "Start" is the location of the
3379 /// 'delete' token.
3381 /// delete-expression:
3382 /// '::'[opt] 'delete' cast-expression
3383 /// '::'[opt] 'delete' '[' ']' cast-expression
3384 ExprResult
3385 Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
3386 assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
3387 ConsumeToken(); // Consume 'delete'
3389 // Array delete?
3390 bool ArrayDelete = false;
3391 if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
3392 // C++11 [expr.delete]p1:
3393 // Whenever the delete keyword is followed by empty square brackets, it
3394 // shall be interpreted as [array delete].
3395 // [Footnote: A lambda expression with a lambda-introducer that consists
3396 // of empty square brackets can follow the delete keyword if
3397 // the lambda expression is enclosed in parentheses.]
3399 const Token Next = GetLookAheadToken(2);
3401 // Basic lookahead to check if we have a lambda expression.
3402 if (Next.isOneOf(tok::l_brace, tok::less) ||
3403 (Next.is(tok::l_paren) &&
3404 (GetLookAheadToken(3).is(tok::r_paren) ||
3405 (GetLookAheadToken(3).is(tok::identifier) &&
3406 GetLookAheadToken(4).is(tok::identifier))))) {
3407 TentativeParsingAction TPA(*this);
3408 SourceLocation LSquareLoc = Tok.getLocation();
3409 SourceLocation RSquareLoc = NextToken().getLocation();
3411 // SkipUntil can't skip pairs of </*...*/>; don't emit a FixIt in this
3412 // case.
3413 SkipUntil({tok::l_brace, tok::less}, StopBeforeMatch);
3414 SourceLocation RBraceLoc;
3415 bool EmitFixIt = false;
3416 if (Tok.is(tok::l_brace)) {
3417 ConsumeBrace();
3418 SkipUntil(tok::r_brace, StopBeforeMatch);
3419 RBraceLoc = Tok.getLocation();
3420 EmitFixIt = true;
3423 TPA.Revert();
3425 if (EmitFixIt)
3426 Diag(Start, diag::err_lambda_after_delete)
3427 << SourceRange(Start, RSquareLoc)
3428 << FixItHint::CreateInsertion(LSquareLoc, "(")
3429 << FixItHint::CreateInsertion(
3430 Lexer::getLocForEndOfToken(
3431 RBraceLoc, 0, Actions.getSourceManager(), getLangOpts()),
3432 ")");
3433 else
3434 Diag(Start, diag::err_lambda_after_delete)
3435 << SourceRange(Start, RSquareLoc);
3437 // Warn that the non-capturing lambda isn't surrounded by parentheses
3438 // to disambiguate it from 'delete[]'.
3439 ExprResult Lambda = ParseLambdaExpression();
3440 if (Lambda.isInvalid())
3441 return ExprError();
3443 // Evaluate any postfix expressions used on the lambda.
3444 Lambda = ParsePostfixExpressionSuffix(Lambda);
3445 if (Lambda.isInvalid())
3446 return ExprError();
3447 return Actions.ActOnCXXDelete(Start, UseGlobal, /*ArrayForm=*/false,
3448 Lambda.get());
3451 ArrayDelete = true;
3452 BalancedDelimiterTracker T(*this, tok::l_square);
3454 T.consumeOpen();
3455 T.consumeClose();
3456 if (T.getCloseLocation().isInvalid())
3457 return ExprError();
3460 ExprResult Operand(ParseCastExpression(AnyCastExpr));
3461 if (Operand.isInvalid())
3462 return Operand;
3464 return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get());
3467 /// ParseRequiresExpression - Parse a C++2a requires-expression.
3468 /// C++2a [expr.prim.req]p1
3469 /// A requires-expression provides a concise way to express requirements on
3470 /// template arguments. A requirement is one that can be checked by name
3471 /// lookup (6.4) or by checking properties of types and expressions.
3473 /// requires-expression:
3474 /// 'requires' requirement-parameter-list[opt] requirement-body
3476 /// requirement-parameter-list:
3477 /// '(' parameter-declaration-clause[opt] ')'
3479 /// requirement-body:
3480 /// '{' requirement-seq '}'
3482 /// requirement-seq:
3483 /// requirement
3484 /// requirement-seq requirement
3486 /// requirement:
3487 /// simple-requirement
3488 /// type-requirement
3489 /// compound-requirement
3490 /// nested-requirement
3491 ExprResult Parser::ParseRequiresExpression() {
3492 assert(Tok.is(tok::kw_requires) && "Expected 'requires' keyword");
3493 SourceLocation RequiresKWLoc = ConsumeToken(); // Consume 'requires'
3495 llvm::SmallVector<ParmVarDecl *, 2> LocalParameterDecls;
3496 BalancedDelimiterTracker Parens(*this, tok::l_paren);
3497 if (Tok.is(tok::l_paren)) {
3498 // requirement parameter list is present.
3499 ParseScope LocalParametersScope(this, Scope::FunctionPrototypeScope |
3500 Scope::DeclScope);
3501 Parens.consumeOpen();
3502 if (!Tok.is(tok::r_paren)) {
3503 ParsedAttributes FirstArgAttrs(getAttrFactory());
3504 SourceLocation EllipsisLoc;
3505 llvm::SmallVector<DeclaratorChunk::ParamInfo, 2> LocalParameters;
3506 ParseParameterDeclarationClause(DeclaratorContext::RequiresExpr,
3507 FirstArgAttrs, LocalParameters,
3508 EllipsisLoc);
3509 if (EllipsisLoc.isValid())
3510 Diag(EllipsisLoc, diag::err_requires_expr_parameter_list_ellipsis);
3511 for (auto &ParamInfo : LocalParameters)
3512 LocalParameterDecls.push_back(cast<ParmVarDecl>(ParamInfo.Param));
3514 Parens.consumeClose();
3517 BalancedDelimiterTracker Braces(*this, tok::l_brace);
3518 if (Braces.expectAndConsume())
3519 return ExprError();
3521 // Start of requirement list
3522 llvm::SmallVector<concepts::Requirement *, 2> Requirements;
3524 // C++2a [expr.prim.req]p2
3525 // Expressions appearing within a requirement-body are unevaluated operands.
3526 EnterExpressionEvaluationContext Ctx(
3527 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
3529 ParseScope BodyScope(this, Scope::DeclScope);
3530 // Create a separate diagnostic pool for RequiresExprBodyDecl.
3531 // Dependent diagnostics are attached to this Decl and non-depenedent
3532 // diagnostics are surfaced after this parse.
3533 ParsingDeclRAIIObject ParsingBodyDecl(*this, ParsingDeclRAIIObject::NoParent);
3534 RequiresExprBodyDecl *Body = Actions.ActOnStartRequiresExpr(
3535 RequiresKWLoc, LocalParameterDecls, getCurScope());
3537 if (Tok.is(tok::r_brace)) {
3538 // Grammar does not allow an empty body.
3539 // requirement-body:
3540 // { requirement-seq }
3541 // requirement-seq:
3542 // requirement
3543 // requirement-seq requirement
3544 Diag(Tok, diag::err_empty_requires_expr);
3545 // Continue anyway and produce a requires expr with no requirements.
3546 } else {
3547 while (!Tok.is(tok::r_brace)) {
3548 switch (Tok.getKind()) {
3549 case tok::l_brace: {
3550 // Compound requirement
3551 // C++ [expr.prim.req.compound]
3552 // compound-requirement:
3553 // '{' expression '}' 'noexcept'[opt]
3554 // return-type-requirement[opt] ';'
3555 // return-type-requirement:
3556 // trailing-return-type
3557 // '->' cv-qualifier-seq[opt] constrained-parameter
3558 // cv-qualifier-seq[opt] abstract-declarator[opt]
3559 BalancedDelimiterTracker ExprBraces(*this, tok::l_brace);
3560 ExprBraces.consumeOpen();
3561 ExprResult Expression =
3562 Actions.CorrectDelayedTyposInExpr(ParseExpression());
3563 if (!Expression.isUsable()) {
3564 ExprBraces.skipToEnd();
3565 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3566 break;
3568 if (ExprBraces.consumeClose())
3569 ExprBraces.skipToEnd();
3571 concepts::Requirement *Req = nullptr;
3572 SourceLocation NoexceptLoc;
3573 TryConsumeToken(tok::kw_noexcept, NoexceptLoc);
3574 if (Tok.is(tok::semi)) {
3575 Req = Actions.ActOnCompoundRequirement(Expression.get(), NoexceptLoc);
3576 if (Req)
3577 Requirements.push_back(Req);
3578 break;
3580 if (!TryConsumeToken(tok::arrow))
3581 // User probably forgot the arrow, remind them and try to continue.
3582 Diag(Tok, diag::err_requires_expr_missing_arrow)
3583 << FixItHint::CreateInsertion(Tok.getLocation(), "->");
3584 // Try to parse a 'type-constraint'
3585 if (TryAnnotateTypeConstraint()) {
3586 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3587 break;
3589 if (!isTypeConstraintAnnotation()) {
3590 Diag(Tok, diag::err_requires_expr_expected_type_constraint);
3591 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3592 break;
3594 CXXScopeSpec SS;
3595 if (Tok.is(tok::annot_cxxscope)) {
3596 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
3597 Tok.getAnnotationRange(),
3598 SS);
3599 ConsumeAnnotationToken();
3602 Req = Actions.ActOnCompoundRequirement(
3603 Expression.get(), NoexceptLoc, SS, takeTemplateIdAnnotation(Tok),
3604 TemplateParameterDepth);
3605 ConsumeAnnotationToken();
3606 if (Req)
3607 Requirements.push_back(Req);
3608 break;
3610 default: {
3611 bool PossibleRequiresExprInSimpleRequirement = false;
3612 if (Tok.is(tok::kw_requires)) {
3613 auto IsNestedRequirement = [&] {
3614 RevertingTentativeParsingAction TPA(*this);
3615 ConsumeToken(); // 'requires'
3616 if (Tok.is(tok::l_brace))
3617 // This is a requires expression
3618 // requires (T t) {
3619 // requires { t++; };
3620 // ... ^
3621 // }
3622 return false;
3623 if (Tok.is(tok::l_paren)) {
3624 // This might be the parameter list of a requires expression
3625 ConsumeParen();
3626 auto Res = TryParseParameterDeclarationClause();
3627 if (Res != TPResult::False) {
3628 // Skip to the closing parenthesis
3629 // FIXME: Don't traverse these tokens twice (here and in
3630 // TryParseParameterDeclarationClause).
3631 unsigned Depth = 1;
3632 while (Depth != 0) {
3633 if (Tok.is(tok::l_paren))
3634 Depth++;
3635 else if (Tok.is(tok::r_paren))
3636 Depth--;
3637 ConsumeAnyToken();
3639 // requires (T t) {
3640 // requires () ?
3641 // ... ^
3642 // - OR -
3643 // requires (int x) ?
3644 // ... ^
3645 // }
3646 if (Tok.is(tok::l_brace))
3647 // requires (...) {
3648 // ^ - a requires expression as a
3649 // simple-requirement.
3650 return false;
3653 return true;
3655 if (IsNestedRequirement()) {
3656 ConsumeToken();
3657 // Nested requirement
3658 // C++ [expr.prim.req.nested]
3659 // nested-requirement:
3660 // 'requires' constraint-expression ';'
3661 ExprResult ConstraintExpr =
3662 Actions.CorrectDelayedTyposInExpr(ParseConstraintExpression());
3663 if (ConstraintExpr.isInvalid() || !ConstraintExpr.isUsable()) {
3664 SkipUntil(tok::semi, tok::r_brace,
3665 SkipUntilFlags::StopBeforeMatch);
3666 break;
3668 if (auto *Req =
3669 Actions.ActOnNestedRequirement(ConstraintExpr.get()))
3670 Requirements.push_back(Req);
3671 else {
3672 SkipUntil(tok::semi, tok::r_brace,
3673 SkipUntilFlags::StopBeforeMatch);
3674 break;
3676 break;
3677 } else
3678 PossibleRequiresExprInSimpleRequirement = true;
3679 } else if (Tok.is(tok::kw_typename)) {
3680 // This might be 'typename T::value_type;' (a type requirement) or
3681 // 'typename T::value_type{};' (a simple requirement).
3682 TentativeParsingAction TPA(*this);
3684 // We need to consume the typename to allow 'requires { typename a; }'
3685 SourceLocation TypenameKWLoc = ConsumeToken();
3686 if (TryAnnotateOptionalCXXScopeToken()) {
3687 TPA.Commit();
3688 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3689 break;
3691 CXXScopeSpec SS;
3692 if (Tok.is(tok::annot_cxxscope)) {
3693 Actions.RestoreNestedNameSpecifierAnnotation(
3694 Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
3695 ConsumeAnnotationToken();
3698 if (Tok.isOneOf(tok::identifier, tok::annot_template_id) &&
3699 !NextToken().isOneOf(tok::l_brace, tok::l_paren)) {
3700 TPA.Commit();
3701 SourceLocation NameLoc = Tok.getLocation();
3702 IdentifierInfo *II = nullptr;
3703 TemplateIdAnnotation *TemplateId = nullptr;
3704 if (Tok.is(tok::identifier)) {
3705 II = Tok.getIdentifierInfo();
3706 ConsumeToken();
3707 } else {
3708 TemplateId = takeTemplateIdAnnotation(Tok);
3709 ConsumeAnnotationToken();
3710 if (TemplateId->isInvalid())
3711 break;
3714 if (auto *Req = Actions.ActOnTypeRequirement(TypenameKWLoc, SS,
3715 NameLoc, II,
3716 TemplateId)) {
3717 Requirements.push_back(Req);
3719 break;
3721 TPA.Revert();
3723 // Simple requirement
3724 // C++ [expr.prim.req.simple]
3725 // simple-requirement:
3726 // expression ';'
3727 SourceLocation StartLoc = Tok.getLocation();
3728 ExprResult Expression =
3729 Actions.CorrectDelayedTyposInExpr(ParseExpression());
3730 if (!Expression.isUsable()) {
3731 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3732 break;
3734 if (!Expression.isInvalid() && PossibleRequiresExprInSimpleRequirement)
3735 Diag(StartLoc, diag::err_requires_expr_in_simple_requirement)
3736 << FixItHint::CreateInsertion(StartLoc, "requires");
3737 if (auto *Req = Actions.ActOnSimpleRequirement(Expression.get()))
3738 Requirements.push_back(Req);
3739 else {
3740 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3741 break;
3743 // User may have tried to put some compound requirement stuff here
3744 if (Tok.is(tok::kw_noexcept)) {
3745 Diag(Tok, diag::err_requires_expr_simple_requirement_noexcept)
3746 << FixItHint::CreateInsertion(StartLoc, "{")
3747 << FixItHint::CreateInsertion(Tok.getLocation(), "}");
3748 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3749 break;
3751 break;
3754 if (ExpectAndConsumeSemi(diag::err_expected_semi_requirement)) {
3755 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3756 TryConsumeToken(tok::semi);
3757 break;
3760 if (Requirements.empty()) {
3761 // Don't emit an empty requires expr here to avoid confusing the user with
3762 // other diagnostics quoting an empty requires expression they never
3763 // wrote.
3764 Braces.consumeClose();
3765 Actions.ActOnFinishRequiresExpr();
3766 return ExprError();
3769 Braces.consumeClose();
3770 Actions.ActOnFinishRequiresExpr();
3771 ParsingBodyDecl.complete(Body);
3772 return Actions.ActOnRequiresExpr(
3773 RequiresKWLoc, Body, Parens.getOpenLocation(), LocalParameterDecls,
3774 Parens.getCloseLocation(), Requirements, Braces.getCloseLocation());
3777 static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
3778 switch (kind) {
3779 default: llvm_unreachable("Not a known type trait");
3780 #define TYPE_TRAIT_1(Spelling, Name, Key) \
3781 case tok::kw_ ## Spelling: return UTT_ ## Name;
3782 #define TYPE_TRAIT_2(Spelling, Name, Key) \
3783 case tok::kw_ ## Spelling: return BTT_ ## Name;
3784 #include "clang/Basic/TokenKinds.def"
3785 #define TYPE_TRAIT_N(Spelling, Name, Key) \
3786 case tok::kw_ ## Spelling: return TT_ ## Name;
3787 #include "clang/Basic/TokenKinds.def"
3791 static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
3792 switch (kind) {
3793 default:
3794 llvm_unreachable("Not a known array type trait");
3795 #define ARRAY_TYPE_TRAIT(Spelling, Name, Key) \
3796 case tok::kw_##Spelling: \
3797 return ATT_##Name;
3798 #include "clang/Basic/TokenKinds.def"
3802 static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
3803 switch (kind) {
3804 default:
3805 llvm_unreachable("Not a known unary expression trait.");
3806 #define EXPRESSION_TRAIT(Spelling, Name, Key) \
3807 case tok::kw_##Spelling: \
3808 return ET_##Name;
3809 #include "clang/Basic/TokenKinds.def"
3813 /// Parse the built-in type-trait pseudo-functions that allow
3814 /// implementation of the TR1/C++11 type traits templates.
3816 /// primary-expression:
3817 /// unary-type-trait '(' type-id ')'
3818 /// binary-type-trait '(' type-id ',' type-id ')'
3819 /// type-trait '(' type-id-seq ')'
3821 /// type-id-seq:
3822 /// type-id ...[opt] type-id-seq[opt]
3824 ExprResult Parser::ParseTypeTrait() {
3825 tok::TokenKind Kind = Tok.getKind();
3827 SourceLocation Loc = ConsumeToken();
3829 BalancedDelimiterTracker Parens(*this, tok::l_paren);
3830 if (Parens.expectAndConsume())
3831 return ExprError();
3833 SmallVector<ParsedType, 2> Args;
3834 do {
3835 // Parse the next type.
3836 TypeResult Ty = ParseTypeName();
3837 if (Ty.isInvalid()) {
3838 Parens.skipToEnd();
3839 return ExprError();
3842 // Parse the ellipsis, if present.
3843 if (Tok.is(tok::ellipsis)) {
3844 Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
3845 if (Ty.isInvalid()) {
3846 Parens.skipToEnd();
3847 return ExprError();
3851 // Add this type to the list of arguments.
3852 Args.push_back(Ty.get());
3853 } while (TryConsumeToken(tok::comma));
3855 if (Parens.consumeClose())
3856 return ExprError();
3858 SourceLocation EndLoc = Parens.getCloseLocation();
3860 return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc);
3863 /// ParseArrayTypeTrait - Parse the built-in array type-trait
3864 /// pseudo-functions.
3866 /// primary-expression:
3867 /// [Embarcadero] '__array_rank' '(' type-id ')'
3868 /// [Embarcadero] '__array_extent' '(' type-id ',' expression ')'
3870 ExprResult Parser::ParseArrayTypeTrait() {
3871 ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
3872 SourceLocation Loc = ConsumeToken();
3874 BalancedDelimiterTracker T(*this, tok::l_paren);
3875 if (T.expectAndConsume())
3876 return ExprError();
3878 TypeResult Ty = ParseTypeName();
3879 if (Ty.isInvalid()) {
3880 SkipUntil(tok::comma, StopAtSemi);
3881 SkipUntil(tok::r_paren, StopAtSemi);
3882 return ExprError();
3885 switch (ATT) {
3886 case ATT_ArrayRank: {
3887 T.consumeClose();
3888 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr,
3889 T.getCloseLocation());
3891 case ATT_ArrayExtent: {
3892 if (ExpectAndConsume(tok::comma)) {
3893 SkipUntil(tok::r_paren, StopAtSemi);
3894 return ExprError();
3897 ExprResult DimExpr = ParseExpression();
3898 T.consumeClose();
3900 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
3901 T.getCloseLocation());
3904 llvm_unreachable("Invalid ArrayTypeTrait!");
3907 /// ParseExpressionTrait - Parse built-in expression-trait
3908 /// pseudo-functions like __is_lvalue_expr( xxx ).
3910 /// primary-expression:
3911 /// [Embarcadero] expression-trait '(' expression ')'
3913 ExprResult Parser::ParseExpressionTrait() {
3914 ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
3915 SourceLocation Loc = ConsumeToken();
3917 BalancedDelimiterTracker T(*this, tok::l_paren);
3918 if (T.expectAndConsume())
3919 return ExprError();
3921 ExprResult Expr = ParseExpression();
3923 T.consumeClose();
3925 return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
3926 T.getCloseLocation());
3930 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
3931 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
3932 /// based on the context past the parens.
3933 ExprResult
3934 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
3935 ParsedType &CastTy,
3936 BalancedDelimiterTracker &Tracker,
3937 ColonProtectionRAIIObject &ColonProt) {
3938 assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
3939 assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
3940 assert(isTypeIdInParens() && "Not a type-id!");
3942 ExprResult Result(true);
3943 CastTy = nullptr;
3945 // We need to disambiguate a very ugly part of the C++ syntax:
3947 // (T())x; - type-id
3948 // (T())*x; - type-id
3949 // (T())/x; - expression
3950 // (T()); - expression
3952 // The bad news is that we cannot use the specialized tentative parser, since
3953 // it can only verify that the thing inside the parens can be parsed as
3954 // type-id, it is not useful for determining the context past the parens.
3956 // The good news is that the parser can disambiguate this part without
3957 // making any unnecessary Action calls.
3959 // It uses a scheme similar to parsing inline methods. The parenthesized
3960 // tokens are cached, the context that follows is determined (possibly by
3961 // parsing a cast-expression), and then we re-introduce the cached tokens
3962 // into the token stream and parse them appropriately.
3964 ParenParseOption ParseAs;
3965 CachedTokens Toks;
3967 // Store the tokens of the parentheses. We will parse them after we determine
3968 // the context that follows them.
3969 if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
3970 // We didn't find the ')' we expected.
3971 Tracker.consumeClose();
3972 return ExprError();
3975 if (Tok.is(tok::l_brace)) {
3976 ParseAs = CompoundLiteral;
3977 } else {
3978 bool NotCastExpr;
3979 if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
3980 NotCastExpr = true;
3981 } else {
3982 // Try parsing the cast-expression that may follow.
3983 // If it is not a cast-expression, NotCastExpr will be true and no token
3984 // will be consumed.
3985 ColonProt.restore();
3986 Result = ParseCastExpression(AnyCastExpr,
3987 false/*isAddressofOperand*/,
3988 NotCastExpr,
3989 // type-id has priority.
3990 IsTypeCast);
3993 // If we parsed a cast-expression, it's really a type-id, otherwise it's
3994 // an expression.
3995 ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
3998 // Create a fake EOF to mark end of Toks buffer.
3999 Token AttrEnd;
4000 AttrEnd.startToken();
4001 AttrEnd.setKind(tok::eof);
4002 AttrEnd.setLocation(Tok.getLocation());
4003 AttrEnd.setEofData(Toks.data());
4004 Toks.push_back(AttrEnd);
4006 // The current token should go after the cached tokens.
4007 Toks.push_back(Tok);
4008 // Re-enter the stored parenthesized tokens into the token stream, so we may
4009 // parse them now.
4010 PP.EnterTokenStream(Toks, /*DisableMacroExpansion*/ true,
4011 /*IsReinject*/ true);
4012 // Drop the current token and bring the first cached one. It's the same token
4013 // as when we entered this function.
4014 ConsumeAnyToken();
4016 if (ParseAs >= CompoundLiteral) {
4017 // Parse the type declarator.
4018 DeclSpec DS(AttrFactory);
4019 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
4020 DeclaratorContext::TypeName);
4022 ColonProtectionRAIIObject InnerColonProtection(*this);
4023 ParseSpecifierQualifierList(DS);
4024 ParseDeclarator(DeclaratorInfo);
4027 // Match the ')'.
4028 Tracker.consumeClose();
4029 ColonProt.restore();
4031 // Consume EOF marker for Toks buffer.
4032 assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
4033 ConsumeAnyToken();
4035 if (ParseAs == CompoundLiteral) {
4036 ExprType = CompoundLiteral;
4037 if (DeclaratorInfo.isInvalidType())
4038 return ExprError();
4040 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
4041 return ParseCompoundLiteralExpression(Ty.get(),
4042 Tracker.getOpenLocation(),
4043 Tracker.getCloseLocation());
4046 // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
4047 assert(ParseAs == CastExpr);
4049 if (DeclaratorInfo.isInvalidType())
4050 return ExprError();
4052 // Result is what ParseCastExpression returned earlier.
4053 if (!Result.isInvalid())
4054 Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
4055 DeclaratorInfo, CastTy,
4056 Tracker.getCloseLocation(), Result.get());
4057 return Result;
4060 // Not a compound literal, and not followed by a cast-expression.
4061 assert(ParseAs == SimpleExpr);
4063 ExprType = SimpleExpr;
4064 Result = ParseExpression();
4065 if (!Result.isInvalid() && Tok.is(tok::r_paren))
4066 Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
4067 Tok.getLocation(), Result.get());
4069 // Match the ')'.
4070 if (Result.isInvalid()) {
4071 while (Tok.isNot(tok::eof))
4072 ConsumeAnyToken();
4073 assert(Tok.getEofData() == AttrEnd.getEofData());
4074 ConsumeAnyToken();
4075 return ExprError();
4078 Tracker.consumeClose();
4079 // Consume EOF marker for Toks buffer.
4080 assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
4081 ConsumeAnyToken();
4082 return Result;
4085 /// Parse a __builtin_bit_cast(T, E).
4086 ExprResult Parser::ParseBuiltinBitCast() {
4087 SourceLocation KWLoc = ConsumeToken();
4089 BalancedDelimiterTracker T(*this, tok::l_paren);
4090 if (T.expectAndConsume(diag::err_expected_lparen_after, "__builtin_bit_cast"))
4091 return ExprError();
4093 // Parse the common declaration-specifiers piece.
4094 DeclSpec DS(AttrFactory);
4095 ParseSpecifierQualifierList(DS);
4097 // Parse the abstract-declarator, if present.
4098 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
4099 DeclaratorContext::TypeName);
4100 ParseDeclarator(DeclaratorInfo);
4102 if (ExpectAndConsume(tok::comma)) {
4103 Diag(Tok.getLocation(), diag::err_expected) << tok::comma;
4104 SkipUntil(tok::r_paren, StopAtSemi);
4105 return ExprError();
4108 ExprResult Operand = ParseExpression();
4110 if (T.consumeClose())
4111 return ExprError();
4113 if (Operand.isInvalid() || DeclaratorInfo.isInvalidType())
4114 return ExprError();
4116 return Actions.ActOnBuiltinBitCastExpr(KWLoc, DeclaratorInfo, Operand,
4117 T.getCloseLocation());