[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / clang / lib / Sema / SemaDecl.cpp
bloba8bad12b670fc7527f71c2a3adf78f7d8a91192a
1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for declarations.
11 //===----------------------------------------------------------------------===//
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/CommentDiagnostic.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/NonTrivialTypeVisitor.h"
27 #include "clang/AST/Randstruct.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/HLSLRuntime.h"
31 #include "clang/Basic/PartialDiagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
35 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
36 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
37 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
38 #include "clang/Sema/CXXFieldCollector.h"
39 #include "clang/Sema/DeclSpec.h"
40 #include "clang/Sema/DelayedDiagnostic.h"
41 #include "clang/Sema/Initialization.h"
42 #include "clang/Sema/Lookup.h"
43 #include "clang/Sema/ParsedTemplate.h"
44 #include "clang/Sema/Scope.h"
45 #include "clang/Sema/ScopeInfo.h"
46 #include "clang/Sema/SemaInternal.h"
47 #include "clang/Sema/Template.h"
48 #include "llvm/ADT/SmallString.h"
49 #include "llvm/ADT/StringExtras.h"
50 #include "llvm/TargetParser/Triple.h"
51 #include <algorithm>
52 #include <cstring>
53 #include <functional>
54 #include <optional>
55 #include <unordered_map>
57 using namespace clang;
58 using namespace sema;
60 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
61 if (OwnedType) {
62 Decl *Group[2] = { OwnedType, Ptr };
63 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
66 return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
69 namespace {
71 class TypeNameValidatorCCC final : public CorrectionCandidateCallback {
72 public:
73 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
74 bool AllowTemplates = false,
75 bool AllowNonTemplates = true)
76 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
77 AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
78 WantExpressionKeywords = false;
79 WantCXXNamedCasts = false;
80 WantRemainingKeywords = false;
83 bool ValidateCandidate(const TypoCorrection &candidate) override {
84 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
85 if (!AllowInvalidDecl && ND->isInvalidDecl())
86 return false;
88 if (getAsTypeTemplateDecl(ND))
89 return AllowTemplates;
91 bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
92 if (!IsType)
93 return false;
95 if (AllowNonTemplates)
96 return true;
98 // An injected-class-name of a class template (specialization) is valid
99 // as a template or as a non-template.
100 if (AllowTemplates) {
101 auto *RD = dyn_cast<CXXRecordDecl>(ND);
102 if (!RD || !RD->isInjectedClassName())
103 return false;
104 RD = cast<CXXRecordDecl>(RD->getDeclContext());
105 return RD->getDescribedClassTemplate() ||
106 isa<ClassTemplateSpecializationDecl>(RD);
109 return false;
112 return !WantClassName && candidate.isKeyword();
115 std::unique_ptr<CorrectionCandidateCallback> clone() override {
116 return std::make_unique<TypeNameValidatorCCC>(*this);
119 private:
120 bool AllowInvalidDecl;
121 bool WantClassName;
122 bool AllowTemplates;
123 bool AllowNonTemplates;
126 } // end anonymous namespace
128 /// Determine whether the token kind starts a simple-type-specifier.
129 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
130 switch (Kind) {
131 // FIXME: Take into account the current language when deciding whether a
132 // token kind is a valid type specifier
133 case tok::kw_short:
134 case tok::kw_long:
135 case tok::kw___int64:
136 case tok::kw___int128:
137 case tok::kw_signed:
138 case tok::kw_unsigned:
139 case tok::kw_void:
140 case tok::kw_char:
141 case tok::kw_int:
142 case tok::kw_half:
143 case tok::kw_float:
144 case tok::kw_double:
145 case tok::kw___bf16:
146 case tok::kw__Float16:
147 case tok::kw___float128:
148 case tok::kw___ibm128:
149 case tok::kw_wchar_t:
150 case tok::kw_bool:
151 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
152 #include "clang/Basic/TransformTypeTraits.def"
153 case tok::kw___auto_type:
154 return true;
156 case tok::annot_typename:
157 case tok::kw_char16_t:
158 case tok::kw_char32_t:
159 case tok::kw_typeof:
160 case tok::annot_decltype:
161 case tok::kw_decltype:
162 return getLangOpts().CPlusPlus;
164 case tok::kw_char8_t:
165 return getLangOpts().Char8;
167 default:
168 break;
171 return false;
174 namespace {
175 enum class UnqualifiedTypeNameLookupResult {
176 NotFound,
177 FoundNonType,
178 FoundType
180 } // end anonymous namespace
182 /// Tries to perform unqualified lookup of the type decls in bases for
183 /// dependent class.
184 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
185 /// type decl, \a FoundType if only type decls are found.
186 static UnqualifiedTypeNameLookupResult
187 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
188 SourceLocation NameLoc,
189 const CXXRecordDecl *RD) {
190 if (!RD->hasDefinition())
191 return UnqualifiedTypeNameLookupResult::NotFound;
192 // Look for type decls in base classes.
193 UnqualifiedTypeNameLookupResult FoundTypeDecl =
194 UnqualifiedTypeNameLookupResult::NotFound;
195 for (const auto &Base : RD->bases()) {
196 const CXXRecordDecl *BaseRD = nullptr;
197 if (auto *BaseTT = Base.getType()->getAs<TagType>())
198 BaseRD = BaseTT->getAsCXXRecordDecl();
199 else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
200 // Look for type decls in dependent base classes that have known primary
201 // templates.
202 if (!TST || !TST->isDependentType())
203 continue;
204 auto *TD = TST->getTemplateName().getAsTemplateDecl();
205 if (!TD)
206 continue;
207 if (auto *BasePrimaryTemplate =
208 dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
209 if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
210 BaseRD = BasePrimaryTemplate;
211 else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
212 if (const ClassTemplatePartialSpecializationDecl *PS =
213 CTD->findPartialSpecialization(Base.getType()))
214 if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
215 BaseRD = PS;
219 if (BaseRD) {
220 for (NamedDecl *ND : BaseRD->lookup(&II)) {
221 if (!isa<TypeDecl>(ND))
222 return UnqualifiedTypeNameLookupResult::FoundNonType;
223 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
225 if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
226 switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
227 case UnqualifiedTypeNameLookupResult::FoundNonType:
228 return UnqualifiedTypeNameLookupResult::FoundNonType;
229 case UnqualifiedTypeNameLookupResult::FoundType:
230 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
231 break;
232 case UnqualifiedTypeNameLookupResult::NotFound:
233 break;
239 return FoundTypeDecl;
242 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
243 const IdentifierInfo &II,
244 SourceLocation NameLoc) {
245 // Lookup in the parent class template context, if any.
246 const CXXRecordDecl *RD = nullptr;
247 UnqualifiedTypeNameLookupResult FoundTypeDecl =
248 UnqualifiedTypeNameLookupResult::NotFound;
249 for (DeclContext *DC = S.CurContext;
250 DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
251 DC = DC->getParent()) {
252 // Look for type decls in dependent base classes that have known primary
253 // templates.
254 RD = dyn_cast<CXXRecordDecl>(DC);
255 if (RD && RD->getDescribedClassTemplate())
256 FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
258 if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
259 return nullptr;
261 // We found some types in dependent base classes. Recover as if the user
262 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the
263 // lookup during template instantiation.
264 S.Diag(NameLoc, diag::ext_found_in_dependent_base) << &II;
266 ASTContext &Context = S.Context;
267 auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
268 cast<Type>(Context.getRecordType(RD)));
269 QualType T =
270 Context.getDependentNameType(ElaboratedTypeKeyword::Typename, NNS, &II);
272 CXXScopeSpec SS;
273 SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
275 TypeLocBuilder Builder;
276 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
277 DepTL.setNameLoc(NameLoc);
278 DepTL.setElaboratedKeywordLoc(SourceLocation());
279 DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
280 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
283 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
284 static ParsedType buildNamedType(Sema &S, const CXXScopeSpec *SS, QualType T,
285 SourceLocation NameLoc,
286 bool WantNontrivialTypeSourceInfo = true) {
287 switch (T->getTypeClass()) {
288 case Type::DeducedTemplateSpecialization:
289 case Type::Enum:
290 case Type::InjectedClassName:
291 case Type::Record:
292 case Type::Typedef:
293 case Type::UnresolvedUsing:
294 case Type::Using:
295 break;
296 // These can never be qualified so an ElaboratedType node
297 // would carry no additional meaning.
298 case Type::ObjCInterface:
299 case Type::ObjCTypeParam:
300 case Type::TemplateTypeParm:
301 return ParsedType::make(T);
302 default:
303 llvm_unreachable("Unexpected Type Class");
306 if (!SS || SS->isEmpty())
307 return ParsedType::make(S.Context.getElaboratedType(
308 ElaboratedTypeKeyword::None, nullptr, T, nullptr));
310 QualType ElTy = S.getElaboratedType(ElaboratedTypeKeyword::None, *SS, T);
311 if (!WantNontrivialTypeSourceInfo)
312 return ParsedType::make(ElTy);
314 TypeLocBuilder Builder;
315 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
316 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(ElTy);
317 ElabTL.setElaboratedKeywordLoc(SourceLocation());
318 ElabTL.setQualifierLoc(SS->getWithLocInContext(S.Context));
319 return S.CreateParsedType(ElTy, Builder.getTypeSourceInfo(S.Context, ElTy));
322 /// If the identifier refers to a type name within this scope,
323 /// return the declaration of that type.
325 /// This routine performs ordinary name lookup of the identifier II
326 /// within the given scope, with optional C++ scope specifier SS, to
327 /// determine whether the name refers to a type. If so, returns an
328 /// opaque pointer (actually a QualType) corresponding to that
329 /// type. Otherwise, returns NULL.
330 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
331 Scope *S, CXXScopeSpec *SS, bool isClassName,
332 bool HasTrailingDot, ParsedType ObjectTypePtr,
333 bool IsCtorOrDtorName,
334 bool WantNontrivialTypeSourceInfo,
335 bool IsClassTemplateDeductionContext,
336 ImplicitTypenameContext AllowImplicitTypename,
337 IdentifierInfo **CorrectedII) {
338 // FIXME: Consider allowing this outside C++1z mode as an extension.
339 bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
340 getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
341 !isClassName && !HasTrailingDot;
343 // Determine where we will perform name lookup.
344 DeclContext *LookupCtx = nullptr;
345 if (ObjectTypePtr) {
346 QualType ObjectType = ObjectTypePtr.get();
347 if (ObjectType->isRecordType())
348 LookupCtx = computeDeclContext(ObjectType);
349 } else if (SS && SS->isNotEmpty()) {
350 LookupCtx = computeDeclContext(*SS, false);
352 if (!LookupCtx) {
353 if (isDependentScopeSpecifier(*SS)) {
354 // C++ [temp.res]p3:
355 // A qualified-id that refers to a type and in which the
356 // nested-name-specifier depends on a template-parameter (14.6.2)
357 // shall be prefixed by the keyword typename to indicate that the
358 // qualified-id denotes a type, forming an
359 // elaborated-type-specifier (7.1.5.3).
361 // We therefore do not perform any name lookup if the result would
362 // refer to a member of an unknown specialization.
363 // In C++2a, in several contexts a 'typename' is not required. Also
364 // allow this as an extension.
365 if (AllowImplicitTypename == ImplicitTypenameContext::No &&
366 !isClassName && !IsCtorOrDtorName)
367 return nullptr;
368 bool IsImplicitTypename = !isClassName && !IsCtorOrDtorName;
369 if (IsImplicitTypename) {
370 SourceLocation QualifiedLoc = SS->getRange().getBegin();
371 if (getLangOpts().CPlusPlus20)
372 Diag(QualifiedLoc, diag::warn_cxx17_compat_implicit_typename);
373 else
374 Diag(QualifiedLoc, diag::ext_implicit_typename)
375 << SS->getScopeRep() << II.getName()
376 << FixItHint::CreateInsertion(QualifiedLoc, "typename ");
379 // We know from the grammar that this name refers to a type,
380 // so build a dependent node to describe the type.
381 if (WantNontrivialTypeSourceInfo)
382 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc,
383 (ImplicitTypenameContext)IsImplicitTypename)
384 .get();
386 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
387 QualType T = CheckTypenameType(
388 IsImplicitTypename ? ElaboratedTypeKeyword::Typename
389 : ElaboratedTypeKeyword::None,
390 SourceLocation(), QualifierLoc, II, NameLoc);
391 return ParsedType::make(T);
394 return nullptr;
397 if (!LookupCtx->isDependentContext() &&
398 RequireCompleteDeclContext(*SS, LookupCtx))
399 return nullptr;
402 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
403 // lookup for class-names.
404 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
405 LookupOrdinaryName;
406 LookupResult Result(*this, &II, NameLoc, Kind);
407 if (LookupCtx) {
408 // Perform "qualified" name lookup into the declaration context we
409 // computed, which is either the type of the base of a member access
410 // expression or the declaration context associated with a prior
411 // nested-name-specifier.
412 LookupQualifiedName(Result, LookupCtx);
414 if (ObjectTypePtr && Result.empty()) {
415 // C++ [basic.lookup.classref]p3:
416 // If the unqualified-id is ~type-name, the type-name is looked up
417 // in the context of the entire postfix-expression. If the type T of
418 // the object expression is of a class type C, the type-name is also
419 // looked up in the scope of class C. At least one of the lookups shall
420 // find a name that refers to (possibly cv-qualified) T.
421 LookupName(Result, S);
423 } else {
424 // Perform unqualified name lookup.
425 LookupName(Result, S);
427 // For unqualified lookup in a class template in MSVC mode, look into
428 // dependent base classes where the primary class template is known.
429 if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
430 if (ParsedType TypeInBase =
431 recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
432 return TypeInBase;
436 NamedDecl *IIDecl = nullptr;
437 UsingShadowDecl *FoundUsingShadow = nullptr;
438 switch (Result.getResultKind()) {
439 case LookupResult::NotFound:
440 case LookupResult::NotFoundInCurrentInstantiation:
441 if (CorrectedII) {
442 TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName,
443 AllowDeducedTemplate);
444 TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind,
445 S, SS, CCC, CTK_ErrorRecovery);
446 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
447 TemplateTy Template;
448 bool MemberOfUnknownSpecialization;
449 UnqualifiedId TemplateName;
450 TemplateName.setIdentifier(NewII, NameLoc);
451 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
452 CXXScopeSpec NewSS, *NewSSPtr = SS;
453 if (SS && NNS) {
454 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
455 NewSSPtr = &NewSS;
457 if (Correction && (NNS || NewII != &II) &&
458 // Ignore a correction to a template type as the to-be-corrected
459 // identifier is not a template (typo correction for template names
460 // is handled elsewhere).
461 !(getLangOpts().CPlusPlus && NewSSPtr &&
462 isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
463 Template, MemberOfUnknownSpecialization))) {
464 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
465 isClassName, HasTrailingDot, ObjectTypePtr,
466 IsCtorOrDtorName,
467 WantNontrivialTypeSourceInfo,
468 IsClassTemplateDeductionContext);
469 if (Ty) {
470 diagnoseTypo(Correction,
471 PDiag(diag::err_unknown_type_or_class_name_suggest)
472 << Result.getLookupName() << isClassName);
473 if (SS && NNS)
474 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
475 *CorrectedII = NewII;
476 return Ty;
480 // If typo correction failed or was not performed, fall through
481 [[fallthrough]];
482 case LookupResult::FoundOverloaded:
483 case LookupResult::FoundUnresolvedValue:
484 Result.suppressDiagnostics();
485 return nullptr;
487 case LookupResult::Ambiguous:
488 // Recover from type-hiding ambiguities by hiding the type. We'll
489 // do the lookup again when looking for an object, and we can
490 // diagnose the error then. If we don't do this, then the error
491 // about hiding the type will be immediately followed by an error
492 // that only makes sense if the identifier was treated like a type.
493 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
494 Result.suppressDiagnostics();
495 return nullptr;
498 // Look to see if we have a type anywhere in the list of results.
499 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
500 Res != ResEnd; ++Res) {
501 NamedDecl *RealRes = (*Res)->getUnderlyingDecl();
502 if (isa<TypeDecl, ObjCInterfaceDecl, UnresolvedUsingIfExistsDecl>(
503 RealRes) ||
504 (AllowDeducedTemplate && getAsTypeTemplateDecl(RealRes))) {
505 if (!IIDecl ||
506 // Make the selection of the recovery decl deterministic.
507 RealRes->getLocation() < IIDecl->getLocation()) {
508 IIDecl = RealRes;
509 FoundUsingShadow = dyn_cast<UsingShadowDecl>(*Res);
514 if (!IIDecl) {
515 // None of the entities we found is a type, so there is no way
516 // to even assume that the result is a type. In this case, don't
517 // complain about the ambiguity. The parser will either try to
518 // perform this lookup again (e.g., as an object name), which
519 // will produce the ambiguity, or will complain that it expected
520 // a type name.
521 Result.suppressDiagnostics();
522 return nullptr;
525 // We found a type within the ambiguous lookup; diagnose the
526 // ambiguity and then return that type. This might be the right
527 // answer, or it might not be, but it suppresses any attempt to
528 // perform the name lookup again.
529 break;
531 case LookupResult::Found:
532 IIDecl = Result.getFoundDecl();
533 FoundUsingShadow = dyn_cast<UsingShadowDecl>(*Result.begin());
534 break;
537 assert(IIDecl && "Didn't find decl");
539 QualType T;
540 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
541 // C++ [class.qual]p2: A lookup that would find the injected-class-name
542 // instead names the constructors of the class, except when naming a class.
543 // This is ill-formed when we're not actually forming a ctor or dtor name.
544 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
545 auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
546 if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
547 FoundRD->isInjectedClassName() &&
548 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
549 Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
550 << &II << /*Type*/1;
552 DiagnoseUseOfDecl(IIDecl, NameLoc);
554 T = Context.getTypeDeclType(TD);
555 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
556 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
557 (void)DiagnoseUseOfDecl(IDecl, NameLoc);
558 if (!HasTrailingDot)
559 T = Context.getObjCInterfaceType(IDecl);
560 FoundUsingShadow = nullptr; // FIXME: Target must be a TypeDecl.
561 } else if (auto *UD = dyn_cast<UnresolvedUsingIfExistsDecl>(IIDecl)) {
562 (void)DiagnoseUseOfDecl(UD, NameLoc);
563 // Recover with 'int'
564 return ParsedType::make(Context.IntTy);
565 } else if (AllowDeducedTemplate) {
566 if (auto *TD = getAsTypeTemplateDecl(IIDecl)) {
567 assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD);
568 TemplateName Template =
569 FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD);
570 T = Context.getDeducedTemplateSpecializationType(Template, QualType(),
571 false);
572 // Don't wrap in a further UsingType.
573 FoundUsingShadow = nullptr;
577 if (T.isNull()) {
578 // If it's not plausibly a type, suppress diagnostics.
579 Result.suppressDiagnostics();
580 return nullptr;
583 if (FoundUsingShadow)
584 T = Context.getUsingType(FoundUsingShadow, T);
586 return buildNamedType(*this, SS, T, NameLoc, WantNontrivialTypeSourceInfo);
589 // Builds a fake NNS for the given decl context.
590 static NestedNameSpecifier *
591 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
592 for (;; DC = DC->getLookupParent()) {
593 DC = DC->getPrimaryContext();
594 auto *ND = dyn_cast<NamespaceDecl>(DC);
595 if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
596 return NestedNameSpecifier::Create(Context, nullptr, ND);
597 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
598 return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
599 RD->getTypeForDecl());
600 else if (isa<TranslationUnitDecl>(DC))
601 return NestedNameSpecifier::GlobalSpecifier(Context);
603 llvm_unreachable("something isn't in TU scope?");
606 /// Find the parent class with dependent bases of the innermost enclosing method
607 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end
608 /// up allowing unqualified dependent type names at class-level, which MSVC
609 /// correctly rejects.
610 static const CXXRecordDecl *
611 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
612 for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
613 DC = DC->getPrimaryContext();
614 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
615 if (MD->getParent()->hasAnyDependentBases())
616 return MD->getParent();
618 return nullptr;
621 ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
622 SourceLocation NameLoc,
623 bool IsTemplateTypeArg) {
624 assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode");
626 NestedNameSpecifier *NNS = nullptr;
627 if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
628 // If we weren't able to parse a default template argument, delay lookup
629 // until instantiation time by making a non-dependent DependentTypeName. We
630 // pretend we saw a NestedNameSpecifier referring to the current scope, and
631 // lookup is retried.
632 // FIXME: This hurts our diagnostic quality, since we get errors like "no
633 // type named 'Foo' in 'current_namespace'" when the user didn't write any
634 // name specifiers.
635 NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
636 Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
637 } else if (const CXXRecordDecl *RD =
638 findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
639 // Build a DependentNameType that will perform lookup into RD at
640 // instantiation time.
641 NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
642 RD->getTypeForDecl());
644 // Diagnose that this identifier was undeclared, and retry the lookup during
645 // template instantiation.
646 Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
647 << RD;
648 } else {
649 // This is not a situation that we should recover from.
650 return ParsedType();
653 QualType T =
654 Context.getDependentNameType(ElaboratedTypeKeyword::None, NNS, &II);
656 // Build type location information. We synthesized the qualifier, so we have
657 // to build a fake NestedNameSpecifierLoc.
658 NestedNameSpecifierLocBuilder NNSLocBuilder;
659 NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
660 NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
662 TypeLocBuilder Builder;
663 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
664 DepTL.setNameLoc(NameLoc);
665 DepTL.setElaboratedKeywordLoc(SourceLocation());
666 DepTL.setQualifierLoc(QualifierLoc);
667 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
670 /// isTagName() - This method is called *for error recovery purposes only*
671 /// to determine if the specified name is a valid tag name ("struct foo"). If
672 /// so, this returns the TST for the tag corresponding to it (TST_enum,
673 /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
674 /// cases in C where the user forgot to specify the tag.
675 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
676 // Do a tag name lookup in this scope.
677 LookupResult R(*this, &II, SourceLocation(), LookupTagName);
678 LookupName(R, S, false);
679 R.suppressDiagnostics();
680 if (R.getResultKind() == LookupResult::Found)
681 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
682 switch (TD->getTagKind()) {
683 case TTK_Struct: return DeclSpec::TST_struct;
684 case TTK_Interface: return DeclSpec::TST_interface;
685 case TTK_Union: return DeclSpec::TST_union;
686 case TTK_Class: return DeclSpec::TST_class;
687 case TTK_Enum: return DeclSpec::TST_enum;
691 return DeclSpec::TST_unspecified;
694 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
695 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
696 /// then downgrade the missing typename error to a warning.
697 /// This is needed for MSVC compatibility; Example:
698 /// @code
699 /// template<class T> class A {
700 /// public:
701 /// typedef int TYPE;
702 /// };
703 /// template<class T> class B : public A<T> {
704 /// public:
705 /// A<T>::TYPE a; // no typename required because A<T> is a base class.
706 /// };
707 /// @endcode
708 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
709 if (CurContext->isRecord()) {
710 if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
711 return true;
713 const Type *Ty = SS->getScopeRep()->getAsType();
715 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
716 for (const auto &Base : RD->bases())
717 if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
718 return true;
719 return S->isFunctionPrototypeScope();
721 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
724 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
725 SourceLocation IILoc,
726 Scope *S,
727 CXXScopeSpec *SS,
728 ParsedType &SuggestedType,
729 bool IsTemplateName) {
730 // Don't report typename errors for editor placeholders.
731 if (II->isEditorPlaceholder())
732 return;
733 // We don't have anything to suggest (yet).
734 SuggestedType = nullptr;
736 // There may have been a typo in the name of the type. Look up typo
737 // results, in case we have something that we can suggest.
738 TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
739 /*AllowTemplates=*/IsTemplateName,
740 /*AllowNonTemplates=*/!IsTemplateName);
741 if (TypoCorrection Corrected =
742 CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
743 CCC, CTK_ErrorRecovery)) {
744 // FIXME: Support error recovery for the template-name case.
745 bool CanRecover = !IsTemplateName;
746 if (Corrected.isKeyword()) {
747 // We corrected to a keyword.
748 diagnoseTypo(Corrected,
749 PDiag(IsTemplateName ? diag::err_no_template_suggest
750 : diag::err_unknown_typename_suggest)
751 << II);
752 II = Corrected.getCorrectionAsIdentifierInfo();
753 } else {
754 // We found a similarly-named type or interface; suggest that.
755 if (!SS || !SS->isSet()) {
756 diagnoseTypo(Corrected,
757 PDiag(IsTemplateName ? diag::err_no_template_suggest
758 : diag::err_unknown_typename_suggest)
759 << II, CanRecover);
760 } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
761 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
762 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
763 II->getName().equals(CorrectedStr);
764 diagnoseTypo(Corrected,
765 PDiag(IsTemplateName
766 ? diag::err_no_member_template_suggest
767 : diag::err_unknown_nested_typename_suggest)
768 << II << DC << DroppedSpecifier << SS->getRange(),
769 CanRecover);
770 } else {
771 llvm_unreachable("could not have corrected a typo here");
774 if (!CanRecover)
775 return;
777 CXXScopeSpec tmpSS;
778 if (Corrected.getCorrectionSpecifier())
779 tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
780 SourceRange(IILoc));
781 // FIXME: Support class template argument deduction here.
782 SuggestedType =
783 getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
784 tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
785 /*IsCtorOrDtorName=*/false,
786 /*WantNontrivialTypeSourceInfo=*/true);
788 return;
791 if (getLangOpts().CPlusPlus && !IsTemplateName) {
792 // See if II is a class template that the user forgot to pass arguments to.
793 UnqualifiedId Name;
794 Name.setIdentifier(II, IILoc);
795 CXXScopeSpec EmptySS;
796 TemplateTy TemplateResult;
797 bool MemberOfUnknownSpecialization;
798 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
799 Name, nullptr, true, TemplateResult,
800 MemberOfUnknownSpecialization) == TNK_Type_template) {
801 diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
802 return;
806 // FIXME: Should we move the logic that tries to recover from a missing tag
807 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
809 if (!SS || (!SS->isSet() && !SS->isInvalid()))
810 Diag(IILoc, IsTemplateName ? diag::err_no_template
811 : diag::err_unknown_typename)
812 << II;
813 else if (DeclContext *DC = computeDeclContext(*SS, false))
814 Diag(IILoc, IsTemplateName ? diag::err_no_member_template
815 : diag::err_typename_nested_not_found)
816 << II << DC << SS->getRange();
817 else if (SS->isValid() && SS->getScopeRep()->containsErrors()) {
818 SuggestedType =
819 ActOnTypenameType(S, SourceLocation(), *SS, *II, IILoc).get();
820 } else if (isDependentScopeSpecifier(*SS)) {
821 unsigned DiagID = diag::err_typename_missing;
822 if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
823 DiagID = diag::ext_typename_missing;
825 Diag(SS->getRange().getBegin(), DiagID)
826 << SS->getScopeRep() << II->getName()
827 << SourceRange(SS->getRange().getBegin(), IILoc)
828 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
829 SuggestedType = ActOnTypenameType(S, SourceLocation(),
830 *SS, *II, IILoc).get();
831 } else {
832 assert(SS && SS->isInvalid() &&
833 "Invalid scope specifier has already been diagnosed");
837 /// Determine whether the given result set contains either a type name
838 /// or
839 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
840 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
841 NextToken.is(tok::less);
843 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
844 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
845 return true;
847 if (CheckTemplate && isa<TemplateDecl>(*I))
848 return true;
851 return false;
854 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
855 Scope *S, CXXScopeSpec &SS,
856 IdentifierInfo *&Name,
857 SourceLocation NameLoc) {
858 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
859 SemaRef.LookupParsedName(R, S, &SS);
860 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
861 StringRef FixItTagName;
862 switch (Tag->getTagKind()) {
863 case TTK_Class:
864 FixItTagName = "class ";
865 break;
867 case TTK_Enum:
868 FixItTagName = "enum ";
869 break;
871 case TTK_Struct:
872 FixItTagName = "struct ";
873 break;
875 case TTK_Interface:
876 FixItTagName = "__interface ";
877 break;
879 case TTK_Union:
880 FixItTagName = "union ";
881 break;
884 StringRef TagName = FixItTagName.drop_back();
885 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
886 << Name << TagName << SemaRef.getLangOpts().CPlusPlus
887 << FixItHint::CreateInsertion(NameLoc, FixItTagName);
889 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
890 I != IEnd; ++I)
891 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
892 << Name << TagName;
894 // Replace lookup results with just the tag decl.
895 Result.clear(Sema::LookupTagName);
896 SemaRef.LookupParsedName(Result, S, &SS);
897 return true;
900 return false;
903 Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS,
904 IdentifierInfo *&Name,
905 SourceLocation NameLoc,
906 const Token &NextToken,
907 CorrectionCandidateCallback *CCC) {
908 DeclarationNameInfo NameInfo(Name, NameLoc);
909 ObjCMethodDecl *CurMethod = getCurMethodDecl();
911 assert(NextToken.isNot(tok::coloncolon) &&
912 "parse nested name specifiers before calling ClassifyName");
913 if (getLangOpts().CPlusPlus && SS.isSet() &&
914 isCurrentClassName(*Name, S, &SS)) {
915 // Per [class.qual]p2, this names the constructors of SS, not the
916 // injected-class-name. We don't have a classification for that.
917 // There's not much point caching this result, since the parser
918 // will reject it later.
919 return NameClassification::Unknown();
922 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
923 LookupParsedName(Result, S, &SS, !CurMethod);
925 if (SS.isInvalid())
926 return NameClassification::Error();
928 // For unqualified lookup in a class template in MSVC mode, look into
929 // dependent base classes where the primary class template is known.
930 if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
931 if (ParsedType TypeInBase =
932 recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
933 return TypeInBase;
936 // Perform lookup for Objective-C instance variables (including automatically
937 // synthesized instance variables), if we're in an Objective-C method.
938 // FIXME: This lookup really, really needs to be folded in to the normal
939 // unqualified lookup mechanism.
940 if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
941 DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name);
942 if (Ivar.isInvalid())
943 return NameClassification::Error();
944 if (Ivar.isUsable())
945 return NameClassification::NonType(cast<NamedDecl>(Ivar.get()));
947 // We defer builtin creation until after ivar lookup inside ObjC methods.
948 if (Result.empty())
949 LookupBuiltin(Result);
952 bool SecondTry = false;
953 bool IsFilteredTemplateName = false;
955 Corrected:
956 switch (Result.getResultKind()) {
957 case LookupResult::NotFound:
958 // If an unqualified-id is followed by a '(', then we have a function
959 // call.
960 if (SS.isEmpty() && NextToken.is(tok::l_paren)) {
961 // In C++, this is an ADL-only call.
962 // FIXME: Reference?
963 if (getLangOpts().CPlusPlus)
964 return NameClassification::UndeclaredNonType();
966 // C90 6.3.2.2:
967 // If the expression that precedes the parenthesized argument list in a
968 // function call consists solely of an identifier, and if no
969 // declaration is visible for this identifier, the identifier is
970 // implicitly declared exactly as if, in the innermost block containing
971 // the function call, the declaration
973 // extern int identifier ();
975 // appeared.
977 // We also allow this in C99 as an extension. However, this is not
978 // allowed in all language modes as functions without prototypes may not
979 // be supported.
980 if (getLangOpts().implicitFunctionsAllowed()) {
981 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S))
982 return NameClassification::NonType(D);
986 if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) {
987 // In C++20 onwards, this could be an ADL-only call to a function
988 // template, and we're required to assume that this is a template name.
990 // FIXME: Find a way to still do typo correction in this case.
991 TemplateName Template =
992 Context.getAssumedTemplateName(NameInfo.getName());
993 return NameClassification::UndeclaredTemplate(Template);
996 // In C, we first see whether there is a tag type by the same name, in
997 // which case it's likely that the user just forgot to write "enum",
998 // "struct", or "union".
999 if (!getLangOpts().CPlusPlus && !SecondTry &&
1000 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1001 break;
1004 // Perform typo correction to determine if there is another name that is
1005 // close to this name.
1006 if (!SecondTry && CCC) {
1007 SecondTry = true;
1008 if (TypoCorrection Corrected =
1009 CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S,
1010 &SS, *CCC, CTK_ErrorRecovery)) {
1011 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
1012 unsigned QualifiedDiag = diag::err_no_member_suggest;
1014 NamedDecl *FirstDecl = Corrected.getFoundDecl();
1015 NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
1016 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1017 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
1018 UnqualifiedDiag = diag::err_no_template_suggest;
1019 QualifiedDiag = diag::err_no_member_template_suggest;
1020 } else if (UnderlyingFirstDecl &&
1021 (isa<TypeDecl>(UnderlyingFirstDecl) ||
1022 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
1023 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
1024 UnqualifiedDiag = diag::err_unknown_typename_suggest;
1025 QualifiedDiag = diag::err_unknown_nested_typename_suggest;
1028 if (SS.isEmpty()) {
1029 diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
1030 } else {// FIXME: is this even reachable? Test it.
1031 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1032 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
1033 Name->getName().equals(CorrectedStr);
1034 diagnoseTypo(Corrected, PDiag(QualifiedDiag)
1035 << Name << computeDeclContext(SS, false)
1036 << DroppedSpecifier << SS.getRange());
1039 // Update the name, so that the caller has the new name.
1040 Name = Corrected.getCorrectionAsIdentifierInfo();
1042 // Typo correction corrected to a keyword.
1043 if (Corrected.isKeyword())
1044 return Name;
1046 // Also update the LookupResult...
1047 // FIXME: This should probably go away at some point
1048 Result.clear();
1049 Result.setLookupName(Corrected.getCorrection());
1050 if (FirstDecl)
1051 Result.addDecl(FirstDecl);
1053 // If we found an Objective-C instance variable, let
1054 // LookupInObjCMethod build the appropriate expression to
1055 // reference the ivar.
1056 // FIXME: This is a gross hack.
1057 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
1058 DeclResult R =
1059 LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier());
1060 if (R.isInvalid())
1061 return NameClassification::Error();
1062 if (R.isUsable())
1063 return NameClassification::NonType(Ivar);
1066 goto Corrected;
1070 // We failed to correct; just fall through and let the parser deal with it.
1071 Result.suppressDiagnostics();
1072 return NameClassification::Unknown();
1074 case LookupResult::NotFoundInCurrentInstantiation: {
1075 // We performed name lookup into the current instantiation, and there were
1076 // dependent bases, so we treat this result the same way as any other
1077 // dependent nested-name-specifier.
1079 // C++ [temp.res]p2:
1080 // A name used in a template declaration or definition and that is
1081 // dependent on a template-parameter is assumed not to name a type
1082 // unless the applicable name lookup finds a type name or the name is
1083 // qualified by the keyword typename.
1085 // FIXME: If the next token is '<', we might want to ask the parser to
1086 // perform some heroics to see if we actually have a
1087 // template-argument-list, which would indicate a missing 'template'
1088 // keyword here.
1089 return NameClassification::DependentNonType();
1092 case LookupResult::Found:
1093 case LookupResult::FoundOverloaded:
1094 case LookupResult::FoundUnresolvedValue:
1095 break;
1097 case LookupResult::Ambiguous:
1098 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1099 hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
1100 /*AllowDependent=*/false)) {
1101 // C++ [temp.local]p3:
1102 // A lookup that finds an injected-class-name (10.2) can result in an
1103 // ambiguity in certain cases (for example, if it is found in more than
1104 // one base class). If all of the injected-class-names that are found
1105 // refer to specializations of the same class template, and if the name
1106 // is followed by a template-argument-list, the reference refers to the
1107 // class template itself and not a specialization thereof, and is not
1108 // ambiguous.
1110 // This filtering can make an ambiguous result into an unambiguous one,
1111 // so try again after filtering out template names.
1112 FilterAcceptableTemplateNames(Result);
1113 if (!Result.isAmbiguous()) {
1114 IsFilteredTemplateName = true;
1115 break;
1119 // Diagnose the ambiguity and return an error.
1120 return NameClassification::Error();
1123 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1124 (IsFilteredTemplateName ||
1125 hasAnyAcceptableTemplateNames(
1126 Result, /*AllowFunctionTemplates=*/true,
1127 /*AllowDependent=*/false,
1128 /*AllowNonTemplateFunctions*/ SS.isEmpty() &&
1129 getLangOpts().CPlusPlus20))) {
1130 // C++ [temp.names]p3:
1131 // After name lookup (3.4) finds that a name is a template-name or that
1132 // an operator-function-id or a literal- operator-id refers to a set of
1133 // overloaded functions any member of which is a function template if
1134 // this is followed by a <, the < is always taken as the delimiter of a
1135 // template-argument-list and never as the less-than operator.
1136 // C++2a [temp.names]p2:
1137 // A name is also considered to refer to a template if it is an
1138 // unqualified-id followed by a < and name lookup finds either one
1139 // or more functions or finds nothing.
1140 if (!IsFilteredTemplateName)
1141 FilterAcceptableTemplateNames(Result);
1143 bool IsFunctionTemplate;
1144 bool IsVarTemplate;
1145 TemplateName Template;
1146 if (Result.end() - Result.begin() > 1) {
1147 IsFunctionTemplate = true;
1148 Template = Context.getOverloadedTemplateName(Result.begin(),
1149 Result.end());
1150 } else if (!Result.empty()) {
1151 auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl(
1152 *Result.begin(), /*AllowFunctionTemplates=*/true,
1153 /*AllowDependent=*/false));
1154 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1155 IsVarTemplate = isa<VarTemplateDecl>(TD);
1157 UsingShadowDecl *FoundUsingShadow =
1158 dyn_cast<UsingShadowDecl>(*Result.begin());
1159 assert(!FoundUsingShadow ||
1160 TD == cast<TemplateDecl>(FoundUsingShadow->getTargetDecl()));
1161 Template =
1162 FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD);
1163 if (SS.isNotEmpty())
1164 Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
1165 /*TemplateKeyword=*/false,
1166 Template);
1167 } else {
1168 // All results were non-template functions. This is a function template
1169 // name.
1170 IsFunctionTemplate = true;
1171 Template = Context.getAssumedTemplateName(NameInfo.getName());
1174 if (IsFunctionTemplate) {
1175 // Function templates always go through overload resolution, at which
1176 // point we'll perform the various checks (e.g., accessibility) we need
1177 // to based on which function we selected.
1178 Result.suppressDiagnostics();
1180 return NameClassification::FunctionTemplate(Template);
1183 return IsVarTemplate ? NameClassification::VarTemplate(Template)
1184 : NameClassification::TypeTemplate(Template);
1187 auto BuildTypeFor = [&](TypeDecl *Type, NamedDecl *Found) {
1188 QualType T = Context.getTypeDeclType(Type);
1189 if (const auto *USD = dyn_cast<UsingShadowDecl>(Found))
1190 T = Context.getUsingType(USD, T);
1191 return buildNamedType(*this, &SS, T, NameLoc);
1194 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1195 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1196 DiagnoseUseOfDecl(Type, NameLoc);
1197 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1198 return BuildTypeFor(Type, *Result.begin());
1201 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1202 if (!Class) {
1203 // FIXME: It's unfortunate that we don't have a Type node for handling this.
1204 if (ObjCCompatibleAliasDecl *Alias =
1205 dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1206 Class = Alias->getClassInterface();
1209 if (Class) {
1210 DiagnoseUseOfDecl(Class, NameLoc);
1212 if (NextToken.is(tok::period)) {
1213 // Interface. <something> is parsed as a property reference expression.
1214 // Just return "unknown" as a fall-through for now.
1215 Result.suppressDiagnostics();
1216 return NameClassification::Unknown();
1219 QualType T = Context.getObjCInterfaceType(Class);
1220 return ParsedType::make(T);
1223 if (isa<ConceptDecl>(FirstDecl))
1224 return NameClassification::Concept(
1225 TemplateName(cast<TemplateDecl>(FirstDecl)));
1227 if (auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(FirstDecl)) {
1228 (void)DiagnoseUseOfDecl(EmptyD, NameLoc);
1229 return NameClassification::Error();
1232 // We can have a type template here if we're classifying a template argument.
1233 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1234 !isa<VarTemplateDecl>(FirstDecl))
1235 return NameClassification::TypeTemplate(
1236 TemplateName(cast<TemplateDecl>(FirstDecl)));
1238 // Check for a tag type hidden by a non-type decl in a few cases where it
1239 // seems likely a type is wanted instead of the non-type that was found.
1240 bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1241 if ((NextToken.is(tok::identifier) ||
1242 (NextIsOp &&
1243 FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1244 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1245 TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1246 DiagnoseUseOfDecl(Type, NameLoc);
1247 return BuildTypeFor(Type, *Result.begin());
1250 // If we already know which single declaration is referenced, just annotate
1251 // that declaration directly. Defer resolving even non-overloaded class
1252 // member accesses, as we need to defer certain access checks until we know
1253 // the context.
1254 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1255 if (Result.isSingleResult() && !ADL &&
1256 (!FirstDecl->isCXXClassMember() || isa<EnumConstantDecl>(FirstDecl)))
1257 return NameClassification::NonType(Result.getRepresentativeDecl());
1259 // Otherwise, this is an overload set that we will need to resolve later.
1260 Result.suppressDiagnostics();
1261 return NameClassification::OverloadSet(UnresolvedLookupExpr::Create(
1262 Context, Result.getNamingClass(), SS.getWithLocInContext(Context),
1263 Result.getLookupNameInfo(), ADL, Result.isOverloadedResult(),
1264 Result.begin(), Result.end()));
1267 ExprResult
1268 Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
1269 SourceLocation NameLoc) {
1270 assert(getLangOpts().CPlusPlus && "ADL-only call in C?");
1271 CXXScopeSpec SS;
1272 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
1273 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
1276 ExprResult
1277 Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
1278 IdentifierInfo *Name,
1279 SourceLocation NameLoc,
1280 bool IsAddressOfOperand) {
1281 DeclarationNameInfo NameInfo(Name, NameLoc);
1282 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1283 NameInfo, IsAddressOfOperand,
1284 /*TemplateArgs=*/nullptr);
1287 ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
1288 NamedDecl *Found,
1289 SourceLocation NameLoc,
1290 const Token &NextToken) {
1291 if (getCurMethodDecl() && SS.isEmpty())
1292 if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl()))
1293 return BuildIvarRefExpr(S, NameLoc, Ivar);
1295 // Reconstruct the lookup result.
1296 LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName);
1297 Result.addDecl(Found);
1298 Result.resolveKind();
1300 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1301 return BuildDeclarationNameExpr(SS, Result, ADL, /*AcceptInvalidDecl=*/true);
1304 ExprResult Sema::ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *E) {
1305 // For an implicit class member access, transform the result into a member
1306 // access expression if necessary.
1307 auto *ULE = cast<UnresolvedLookupExpr>(E);
1308 if ((*ULE->decls_begin())->isCXXClassMember()) {
1309 CXXScopeSpec SS;
1310 SS.Adopt(ULE->getQualifierLoc());
1312 // Reconstruct the lookup result.
1313 LookupResult Result(*this, ULE->getName(), ULE->getNameLoc(),
1314 LookupOrdinaryName);
1315 Result.setNamingClass(ULE->getNamingClass());
1316 for (auto I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I)
1317 Result.addDecl(*I, I.getAccess());
1318 Result.resolveKind();
1319 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1320 nullptr, S);
1323 // Otherwise, this is already in the form we needed, and no further checks
1324 // are necessary.
1325 return ULE;
1328 Sema::TemplateNameKindForDiagnostics
1329 Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1330 auto *TD = Name.getAsTemplateDecl();
1331 if (!TD)
1332 return TemplateNameKindForDiagnostics::DependentTemplate;
1333 if (isa<ClassTemplateDecl>(TD))
1334 return TemplateNameKindForDiagnostics::ClassTemplate;
1335 if (isa<FunctionTemplateDecl>(TD))
1336 return TemplateNameKindForDiagnostics::FunctionTemplate;
1337 if (isa<VarTemplateDecl>(TD))
1338 return TemplateNameKindForDiagnostics::VarTemplate;
1339 if (isa<TypeAliasTemplateDecl>(TD))
1340 return TemplateNameKindForDiagnostics::AliasTemplate;
1341 if (isa<TemplateTemplateParmDecl>(TD))
1342 return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1343 if (isa<ConceptDecl>(TD))
1344 return TemplateNameKindForDiagnostics::Concept;
1345 return TemplateNameKindForDiagnostics::DependentTemplate;
1348 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1349 assert(DC->getLexicalParent() == CurContext &&
1350 "The next DeclContext should be lexically contained in the current one.");
1351 CurContext = DC;
1352 S->setEntity(DC);
1355 void Sema::PopDeclContext() {
1356 assert(CurContext && "DeclContext imbalance!");
1358 CurContext = CurContext->getLexicalParent();
1359 assert(CurContext && "Popped translation unit!");
1362 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1363 Decl *D) {
1364 // Unlike PushDeclContext, the context to which we return is not necessarily
1365 // the containing DC of TD, because the new context will be some pre-existing
1366 // TagDecl definition instead of a fresh one.
1367 auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1368 CurContext = cast<TagDecl>(D)->getDefinition();
1369 assert(CurContext && "skipping definition of undefined tag");
1370 // Start lookups from the parent of the current context; we don't want to look
1371 // into the pre-existing complete definition.
1372 S->setEntity(CurContext->getLookupParent());
1373 return Result;
1376 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1377 CurContext = static_cast<decltype(CurContext)>(Context);
1380 /// EnterDeclaratorContext - Used when we must lookup names in the context
1381 /// of a declarator's nested name specifier.
1383 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1384 // C++0x [basic.lookup.unqual]p13:
1385 // A name used in the definition of a static data member of class
1386 // X (after the qualified-id of the static member) is looked up as
1387 // if the name was used in a member function of X.
1388 // C++0x [basic.lookup.unqual]p14:
1389 // If a variable member of a namespace is defined outside of the
1390 // scope of its namespace then any name used in the definition of
1391 // the variable member (after the declarator-id) is looked up as
1392 // if the definition of the variable member occurred in its
1393 // namespace.
1394 // Both of these imply that we should push a scope whose context
1395 // is the semantic context of the declaration. We can't use
1396 // PushDeclContext here because that context is not necessarily
1397 // lexically contained in the current context. Fortunately,
1398 // the containing scope should have the appropriate information.
1400 assert(!S->getEntity() && "scope already has entity");
1402 #ifndef NDEBUG
1403 Scope *Ancestor = S->getParent();
1404 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1405 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1406 #endif
1408 CurContext = DC;
1409 S->setEntity(DC);
1411 if (S->getParent()->isTemplateParamScope()) {
1412 // Also set the corresponding entities for all immediately-enclosing
1413 // template parameter scopes.
1414 EnterTemplatedContext(S->getParent(), DC);
1418 void Sema::ExitDeclaratorContext(Scope *S) {
1419 assert(S->getEntity() == CurContext && "Context imbalance!");
1421 // Switch back to the lexical context. The safety of this is
1422 // enforced by an assert in EnterDeclaratorContext.
1423 Scope *Ancestor = S->getParent();
1424 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1425 CurContext = Ancestor->getEntity();
1427 // We don't need to do anything with the scope, which is going to
1428 // disappear.
1431 void Sema::EnterTemplatedContext(Scope *S, DeclContext *DC) {
1432 assert(S->isTemplateParamScope() &&
1433 "expected to be initializing a template parameter scope");
1435 // C++20 [temp.local]p7:
1436 // In the definition of a member of a class template that appears outside
1437 // of the class template definition, the name of a member of the class
1438 // template hides the name of a template-parameter of any enclosing class
1439 // templates (but not a template-parameter of the member if the member is a
1440 // class or function template).
1441 // C++20 [temp.local]p9:
1442 // In the definition of a class template or in the definition of a member
1443 // of such a template that appears outside of the template definition, for
1444 // each non-dependent base class (13.8.2.1), if the name of the base class
1445 // or the name of a member of the base class is the same as the name of a
1446 // template-parameter, the base class name or member name hides the
1447 // template-parameter name (6.4.10).
1449 // This means that a template parameter scope should be searched immediately
1450 // after searching the DeclContext for which it is a template parameter
1451 // scope. For example, for
1452 // template<typename T> template<typename U> template<typename V>
1453 // void N::A<T>::B<U>::f(...)
1454 // we search V then B<U> (and base classes) then U then A<T> (and base
1455 // classes) then T then N then ::.
1456 unsigned ScopeDepth = getTemplateDepth(S);
1457 for (; S && S->isTemplateParamScope(); S = S->getParent(), --ScopeDepth) {
1458 DeclContext *SearchDCAfterScope = DC;
1459 for (; DC; DC = DC->getLookupParent()) {
1460 if (const TemplateParameterList *TPL =
1461 cast<Decl>(DC)->getDescribedTemplateParams()) {
1462 unsigned DCDepth = TPL->getDepth() + 1;
1463 if (DCDepth > ScopeDepth)
1464 continue;
1465 if (ScopeDepth == DCDepth)
1466 SearchDCAfterScope = DC = DC->getLookupParent();
1467 break;
1470 S->setLookupEntity(SearchDCAfterScope);
1474 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1475 // We assume that the caller has already called
1476 // ActOnReenterTemplateScope so getTemplatedDecl() works.
1477 FunctionDecl *FD = D->getAsFunction();
1478 if (!FD)
1479 return;
1481 // Same implementation as PushDeclContext, but enters the context
1482 // from the lexical parent, rather than the top-level class.
1483 assert(CurContext == FD->getLexicalParent() &&
1484 "The next DeclContext should be lexically contained in the current one.");
1485 CurContext = FD;
1486 S->setEntity(CurContext);
1488 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1489 ParmVarDecl *Param = FD->getParamDecl(P);
1490 // If the parameter has an identifier, then add it to the scope
1491 if (Param->getIdentifier()) {
1492 S->AddDecl(Param);
1493 IdResolver.AddDecl(Param);
1498 void Sema::ActOnExitFunctionContext() {
1499 // Same implementation as PopDeclContext, but returns to the lexical parent,
1500 // rather than the top-level class.
1501 assert(CurContext && "DeclContext imbalance!");
1502 CurContext = CurContext->getLexicalParent();
1503 assert(CurContext && "Popped translation unit!");
1506 /// Determine whether overloading is allowed for a new function
1507 /// declaration considering prior declarations of the same name.
1509 /// This routine determines whether overloading is possible, not
1510 /// whether a new declaration actually overloads a previous one.
1511 /// It will return true in C++ (where overloads are alway permitted)
1512 /// or, as a C extension, when either the new declaration or a
1513 /// previous one is declared with the 'overloadable' attribute.
1514 static bool AllowOverloadingOfFunction(const LookupResult &Previous,
1515 ASTContext &Context,
1516 const FunctionDecl *New) {
1517 if (Context.getLangOpts().CPlusPlus || New->hasAttr<OverloadableAttr>())
1518 return true;
1520 // Multiversion function declarations are not overloads in the
1521 // usual sense of that term, but lookup will report that an
1522 // overload set was found if more than one multiversion function
1523 // declaration is present for the same name. It is therefore
1524 // inadequate to assume that some prior declaration(s) had
1525 // the overloadable attribute; checking is required. Since one
1526 // declaration is permitted to omit the attribute, it is necessary
1527 // to check at least two; hence the 'any_of' check below. Note that
1528 // the overloadable attribute is implicitly added to declarations
1529 // that were required to have it but did not.
1530 if (Previous.getResultKind() == LookupResult::FoundOverloaded) {
1531 return llvm::any_of(Previous, [](const NamedDecl *ND) {
1532 return ND->hasAttr<OverloadableAttr>();
1534 } else if (Previous.getResultKind() == LookupResult::Found)
1535 return Previous.getFoundDecl()->hasAttr<OverloadableAttr>();
1537 return false;
1540 /// Add this decl to the scope shadowed decl chains.
1541 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1542 // Move up the scope chain until we find the nearest enclosing
1543 // non-transparent context. The declaration will be introduced into this
1544 // scope.
1545 while (S->getEntity() && S->getEntity()->isTransparentContext())
1546 S = S->getParent();
1548 // Add scoped declarations into their context, so that they can be
1549 // found later. Declarations without a context won't be inserted
1550 // into any context.
1551 if (AddToContext)
1552 CurContext->addDecl(D);
1554 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1555 // are function-local declarations.
1556 if (getLangOpts().CPlusPlus && D->isOutOfLine() && !S->getFnParent())
1557 return;
1559 // Template instantiations should also not be pushed into scope.
1560 if (isa<FunctionDecl>(D) &&
1561 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1562 return;
1564 // If this replaces anything in the current scope,
1565 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1566 IEnd = IdResolver.end();
1567 for (; I != IEnd; ++I) {
1568 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1569 S->RemoveDecl(*I);
1570 IdResolver.RemoveDecl(*I);
1572 // Should only need to replace one decl.
1573 break;
1577 S->AddDecl(D);
1579 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1580 // Implicitly-generated labels may end up getting generated in an order that
1581 // isn't strictly lexical, which breaks name lookup. Be careful to insert
1582 // the label at the appropriate place in the identifier chain.
1583 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1584 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1585 if (IDC == CurContext) {
1586 if (!S->isDeclScope(*I))
1587 continue;
1588 } else if (IDC->Encloses(CurContext))
1589 break;
1592 IdResolver.InsertDeclAfter(I, D);
1593 } else {
1594 IdResolver.AddDecl(D);
1596 warnOnReservedIdentifier(D);
1599 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1600 bool AllowInlineNamespace) const {
1601 return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1604 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1605 DeclContext *TargetDC = DC->getPrimaryContext();
1606 do {
1607 if (DeclContext *ScopeDC = S->getEntity())
1608 if (ScopeDC->getPrimaryContext() == TargetDC)
1609 return S;
1610 } while ((S = S->getParent()));
1612 return nullptr;
1615 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1616 DeclContext*,
1617 ASTContext&);
1619 /// Filters out lookup results that don't fall within the given scope
1620 /// as determined by isDeclInScope.
1621 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1622 bool ConsiderLinkage,
1623 bool AllowInlineNamespace) {
1624 LookupResult::Filter F = R.makeFilter();
1625 while (F.hasNext()) {
1626 NamedDecl *D = F.next();
1628 if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1629 continue;
1631 if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1632 continue;
1634 F.erase();
1637 F.done();
1640 /// We've determined that \p New is a redeclaration of \p Old. Check that they
1641 /// have compatible owning modules.
1642 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1643 // [module.interface]p7:
1644 // A declaration is attached to a module as follows:
1645 // - If the declaration is a non-dependent friend declaration that nominates a
1646 // function with a declarator-id that is a qualified-id or template-id or that
1647 // nominates a class other than with an elaborated-type-specifier with neither
1648 // a nested-name-specifier nor a simple-template-id, it is attached to the
1649 // module to which the friend is attached ([basic.link]).
1650 if (New->getFriendObjectKind() &&
1651 Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1652 New->setLocalOwningModule(Old->getOwningModule());
1653 makeMergedDefinitionVisible(New);
1654 return false;
1657 Module *NewM = New->getOwningModule();
1658 Module *OldM = Old->getOwningModule();
1660 if (NewM && NewM->isPrivateModule())
1661 NewM = NewM->Parent;
1662 if (OldM && OldM->isPrivateModule())
1663 OldM = OldM->Parent;
1665 if (NewM == OldM)
1666 return false;
1668 if (NewM && OldM) {
1669 // A module implementation unit has visibility of the decls in its
1670 // implicitly imported interface.
1671 if (NewM->isModuleImplementation() && OldM == ThePrimaryInterface)
1672 return false;
1674 // Partitions are part of the module, but a partition could import another
1675 // module, so verify that the PMIs agree.
1676 if ((NewM->isModulePartition() || OldM->isModulePartition()) &&
1677 NewM->getPrimaryModuleInterfaceName() ==
1678 OldM->getPrimaryModuleInterfaceName())
1679 return false;
1682 bool NewIsModuleInterface = NewM && NewM->isModulePurview();
1683 bool OldIsModuleInterface = OldM && OldM->isModulePurview();
1684 if (NewIsModuleInterface || OldIsModuleInterface) {
1685 // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1686 // if a declaration of D [...] appears in the purview of a module, all
1687 // other such declarations shall appear in the purview of the same module
1688 Diag(New->getLocation(), diag::err_mismatched_owning_module)
1689 << New
1690 << NewIsModuleInterface
1691 << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1692 << OldIsModuleInterface
1693 << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1694 Diag(Old->getLocation(), diag::note_previous_declaration);
1695 New->setInvalidDecl();
1696 return true;
1699 return false;
1702 // [module.interface]p6:
1703 // A redeclaration of an entity X is implicitly exported if X was introduced by
1704 // an exported declaration; otherwise it shall not be exported.
1705 bool Sema::CheckRedeclarationExported(NamedDecl *New, NamedDecl *Old) {
1706 // [module.interface]p1:
1707 // An export-declaration shall inhabit a namespace scope.
1709 // So it is meaningless to talk about redeclaration which is not at namespace
1710 // scope.
1711 if (!New->getLexicalDeclContext()
1712 ->getNonTransparentContext()
1713 ->isFileContext() ||
1714 !Old->getLexicalDeclContext()
1715 ->getNonTransparentContext()
1716 ->isFileContext())
1717 return false;
1719 bool IsNewExported = New->isInExportDeclContext();
1720 bool IsOldExported = Old->isInExportDeclContext();
1722 // It should be irrevelant if both of them are not exported.
1723 if (!IsNewExported && !IsOldExported)
1724 return false;
1726 if (IsOldExported)
1727 return false;
1729 assert(IsNewExported);
1731 auto Lk = Old->getFormalLinkage();
1732 int S = 0;
1733 if (Lk == Linkage::InternalLinkage)
1734 S = 1;
1735 else if (Lk == Linkage::ModuleLinkage)
1736 S = 2;
1737 Diag(New->getLocation(), diag::err_redeclaration_non_exported) << New << S;
1738 Diag(Old->getLocation(), diag::note_previous_declaration);
1739 return true;
1742 // A wrapper function for checking the semantic restrictions of
1743 // a redeclaration within a module.
1744 bool Sema::CheckRedeclarationInModule(NamedDecl *New, NamedDecl *Old) {
1745 if (CheckRedeclarationModuleOwnership(New, Old))
1746 return true;
1748 if (CheckRedeclarationExported(New, Old))
1749 return true;
1751 return false;
1754 // Check the redefinition in C++20 Modules.
1756 // [basic.def.odr]p14:
1757 // For any definable item D with definitions in multiple translation units,
1758 // - if D is a non-inline non-templated function or variable, or
1759 // - if the definitions in different translation units do not satisfy the
1760 // following requirements,
1761 // the program is ill-formed; a diagnostic is required only if the definable
1762 // item is attached to a named module and a prior definition is reachable at
1763 // the point where a later definition occurs.
1764 // - Each such definition shall not be attached to a named module
1765 // ([module.unit]).
1766 // - Each such definition shall consist of the same sequence of tokens, ...
1767 // ...
1769 // Return true if the redefinition is not allowed. Return false otherwise.
1770 bool Sema::IsRedefinitionInModule(const NamedDecl *New,
1771 const NamedDecl *Old) const {
1772 assert(getASTContext().isSameEntity(New, Old) &&
1773 "New and Old are not the same definition, we should diagnostic it "
1774 "immediately instead of checking it.");
1775 assert(const_cast<Sema *>(this)->isReachable(New) &&
1776 const_cast<Sema *>(this)->isReachable(Old) &&
1777 "We shouldn't see unreachable definitions here.");
1779 Module *NewM = New->getOwningModule();
1780 Module *OldM = Old->getOwningModule();
1782 // We only checks for named modules here. The header like modules is skipped.
1783 // FIXME: This is not right if we import the header like modules in the module
1784 // purview.
1786 // For example, assuming "header.h" provides definition for `D`.
1787 // ```C++
1788 // //--- M.cppm
1789 // export module M;
1790 // import "header.h"; // or #include "header.h" but import it by clang modules
1791 // actually.
1793 // //--- Use.cpp
1794 // import M;
1795 // import "header.h"; // or uses clang modules.
1796 // ```
1798 // In this case, `D` has multiple definitions in multiple TU (M.cppm and
1799 // Use.cpp) and `D` is attached to a named module `M`. The compiler should
1800 // reject it. But the current implementation couldn't detect the case since we
1801 // don't record the information about the importee modules.
1803 // But this might not be painful in practice. Since the design of C++20 Named
1804 // Modules suggests us to use headers in global module fragment instead of
1805 // module purview.
1806 if (NewM && NewM->isHeaderLikeModule())
1807 NewM = nullptr;
1808 if (OldM && OldM->isHeaderLikeModule())
1809 OldM = nullptr;
1811 if (!NewM && !OldM)
1812 return true;
1814 // [basic.def.odr]p14.3
1815 // Each such definition shall not be attached to a named module
1816 // ([module.unit]).
1817 if ((NewM && NewM->isModulePurview()) || (OldM && OldM->isModulePurview()))
1818 return true;
1820 // Then New and Old lives in the same TU if their share one same module unit.
1821 if (NewM)
1822 NewM = NewM->getTopLevelModule();
1823 if (OldM)
1824 OldM = OldM->getTopLevelModule();
1825 return OldM == NewM;
1828 static bool isUsingDeclNotAtClassScope(NamedDecl *D) {
1829 if (D->getDeclContext()->isFileContext())
1830 return false;
1832 return isa<UsingShadowDecl>(D) ||
1833 isa<UnresolvedUsingTypenameDecl>(D) ||
1834 isa<UnresolvedUsingValueDecl>(D);
1837 /// Removes using shadow declarations not at class scope from the lookup
1838 /// results.
1839 static void RemoveUsingDecls(LookupResult &R) {
1840 LookupResult::Filter F = R.makeFilter();
1841 while (F.hasNext())
1842 if (isUsingDeclNotAtClassScope(F.next()))
1843 F.erase();
1845 F.done();
1848 /// Check for this common pattern:
1849 /// @code
1850 /// class S {
1851 /// S(const S&); // DO NOT IMPLEMENT
1852 /// void operator=(const S&); // DO NOT IMPLEMENT
1853 /// };
1854 /// @endcode
1855 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1856 // FIXME: Should check for private access too but access is set after we get
1857 // the decl here.
1858 if (D->doesThisDeclarationHaveABody())
1859 return false;
1861 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1862 return CD->isCopyConstructor();
1863 return D->isCopyAssignmentOperator();
1866 // We need this to handle
1868 // typedef struct {
1869 // void *foo() { return 0; }
1870 // } A;
1872 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1873 // for example. If 'A', foo will have external linkage. If we have '*A',
1874 // foo will have no linkage. Since we can't know until we get to the end
1875 // of the typedef, this function finds out if D might have non-external linkage.
1876 // Callers should verify at the end of the TU if it D has external linkage or
1877 // not.
1878 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1879 const DeclContext *DC = D->getDeclContext();
1880 while (!DC->isTranslationUnit()) {
1881 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1882 if (!RD->hasNameForLinkage())
1883 return true;
1885 DC = DC->getParent();
1888 return !D->isExternallyVisible();
1891 // FIXME: This needs to be refactored; some other isInMainFile users want
1892 // these semantics.
1893 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1894 if (S.TUKind != TU_Complete || S.getLangOpts().IsHeaderFile)
1895 return false;
1896 return S.SourceMgr.isInMainFile(Loc);
1899 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1900 assert(D);
1902 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1903 return false;
1905 // Ignore all entities declared within templates, and out-of-line definitions
1906 // of members of class templates.
1907 if (D->getDeclContext()->isDependentContext() ||
1908 D->getLexicalDeclContext()->isDependentContext())
1909 return false;
1911 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1912 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1913 return false;
1914 // A non-out-of-line declaration of a member specialization was implicitly
1915 // instantiated; it's the out-of-line declaration that we're interested in.
1916 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1917 FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1918 return false;
1920 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1921 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1922 return false;
1923 } else {
1924 // 'static inline' functions are defined in headers; don't warn.
1925 if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1926 return false;
1929 if (FD->doesThisDeclarationHaveABody() &&
1930 Context.DeclMustBeEmitted(FD))
1931 return false;
1932 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1933 // Constants and utility variables are defined in headers with internal
1934 // linkage; don't warn. (Unlike functions, there isn't a convenient marker
1935 // like "inline".)
1936 if (!isMainFileLoc(*this, VD->getLocation()))
1937 return false;
1939 if (Context.DeclMustBeEmitted(VD))
1940 return false;
1942 if (VD->isStaticDataMember() &&
1943 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1944 return false;
1945 if (VD->isStaticDataMember() &&
1946 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1947 VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1948 return false;
1950 if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1951 return false;
1952 } else {
1953 return false;
1956 // Only warn for unused decls internal to the translation unit.
1957 // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1958 // for inline functions defined in the main source file, for instance.
1959 return mightHaveNonExternalLinkage(D);
1962 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1963 if (!D)
1964 return;
1966 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1967 const FunctionDecl *First = FD->getFirstDecl();
1968 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1969 return; // First should already be in the vector.
1972 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1973 const VarDecl *First = VD->getFirstDecl();
1974 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1975 return; // First should already be in the vector.
1978 if (ShouldWarnIfUnusedFileScopedDecl(D))
1979 UnusedFileScopedDecls.push_back(D);
1982 static bool ShouldDiagnoseUnusedDecl(const LangOptions &LangOpts,
1983 const NamedDecl *D) {
1984 if (D->isInvalidDecl())
1985 return false;
1987 if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1988 // For a decomposition declaration, warn if none of the bindings are
1989 // referenced, instead of if the variable itself is referenced (which
1990 // it is, by the bindings' expressions).
1991 bool IsAllPlaceholders = true;
1992 for (auto *BD : DD->bindings()) {
1993 if (BD->isReferenced())
1994 return false;
1995 IsAllPlaceholders = IsAllPlaceholders && BD->isPlaceholderVar(LangOpts);
1997 if (IsAllPlaceholders)
1998 return false;
1999 } else if (!D->getDeclName()) {
2000 return false;
2001 } else if (D->isReferenced() || D->isUsed()) {
2002 return false;
2005 if (D->isPlaceholderVar(LangOpts))
2006 return false;
2008 if (D->hasAttr<UnusedAttr>() || D->hasAttr<ObjCPreciseLifetimeAttr>() ||
2009 D->hasAttr<CleanupAttr>())
2010 return false;
2012 if (isa<LabelDecl>(D))
2013 return true;
2015 // Except for labels, we only care about unused decls that are local to
2016 // functions.
2017 bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
2018 if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
2019 // For dependent types, the diagnostic is deferred.
2020 WithinFunction =
2021 WithinFunction || (R->isLocalClass() && !R->isDependentType());
2022 if (!WithinFunction)
2023 return false;
2025 if (isa<TypedefNameDecl>(D))
2026 return true;
2028 // White-list anything that isn't a local variable.
2029 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
2030 return false;
2032 // Types of valid local variables should be complete, so this should succeed.
2033 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2035 const Expr *Init = VD->getInit();
2036 if (const auto *Cleanups = dyn_cast_or_null<ExprWithCleanups>(Init))
2037 Init = Cleanups->getSubExpr();
2039 const auto *Ty = VD->getType().getTypePtr();
2041 // Only look at the outermost level of typedef.
2042 if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
2043 // Allow anything marked with __attribute__((unused)).
2044 if (TT->getDecl()->hasAttr<UnusedAttr>())
2045 return false;
2048 // Warn for reference variables whose initializtion performs lifetime
2049 // extension.
2050 if (const auto *MTE = dyn_cast_or_null<MaterializeTemporaryExpr>(Init)) {
2051 if (MTE->getExtendingDecl()) {
2052 Ty = VD->getType().getNonReferenceType().getTypePtr();
2053 Init = MTE->getSubExpr()->IgnoreImplicitAsWritten();
2057 // If we failed to complete the type for some reason, or if the type is
2058 // dependent, don't diagnose the variable.
2059 if (Ty->isIncompleteType() || Ty->isDependentType())
2060 return false;
2062 // Look at the element type to ensure that the warning behaviour is
2063 // consistent for both scalars and arrays.
2064 Ty = Ty->getBaseElementTypeUnsafe();
2066 if (const TagType *TT = Ty->getAs<TagType>()) {
2067 const TagDecl *Tag = TT->getDecl();
2068 if (Tag->hasAttr<UnusedAttr>())
2069 return false;
2071 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
2072 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
2073 return false;
2075 if (Init) {
2076 const CXXConstructExpr *Construct =
2077 dyn_cast<CXXConstructExpr>(Init);
2078 if (Construct && !Construct->isElidable()) {
2079 CXXConstructorDecl *CD = Construct->getConstructor();
2080 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
2081 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
2082 return false;
2085 // Suppress the warning if we don't know how this is constructed, and
2086 // it could possibly be non-trivial constructor.
2087 if (Init->isTypeDependent()) {
2088 for (const CXXConstructorDecl *Ctor : RD->ctors())
2089 if (!Ctor->isTrivial())
2090 return false;
2093 // Suppress the warning if the constructor is unresolved because
2094 // its arguments are dependent.
2095 if (isa<CXXUnresolvedConstructExpr>(Init))
2096 return false;
2101 // TODO: __attribute__((unused)) templates?
2104 return true;
2107 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
2108 FixItHint &Hint) {
2109 if (isa<LabelDecl>(D)) {
2110 SourceLocation AfterColon = Lexer::findLocationAfterToken(
2111 D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
2112 /*SkipTrailingWhitespaceAndNewline=*/false);
2113 if (AfterColon.isInvalid())
2114 return;
2115 Hint = FixItHint::CreateRemoval(
2116 CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
2120 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
2121 DiagnoseUnusedNestedTypedefs(
2122 D, [this](SourceLocation Loc, PartialDiagnostic PD) { Diag(Loc, PD); });
2125 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D,
2126 DiagReceiverTy DiagReceiver) {
2127 if (D->getTypeForDecl()->isDependentType())
2128 return;
2130 for (auto *TmpD : D->decls()) {
2131 if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
2132 DiagnoseUnusedDecl(T, DiagReceiver);
2133 else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
2134 DiagnoseUnusedNestedTypedefs(R, DiagReceiver);
2138 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
2139 DiagnoseUnusedDecl(
2140 D, [this](SourceLocation Loc, PartialDiagnostic PD) { Diag(Loc, PD); });
2143 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
2144 /// unless they are marked attr(unused).
2145 void Sema::DiagnoseUnusedDecl(const NamedDecl *D, DiagReceiverTy DiagReceiver) {
2146 if (!ShouldDiagnoseUnusedDecl(getLangOpts(), D))
2147 return;
2149 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2150 // typedefs can be referenced later on, so the diagnostics are emitted
2151 // at end-of-translation-unit.
2152 UnusedLocalTypedefNameCandidates.insert(TD);
2153 return;
2156 FixItHint Hint;
2157 GenerateFixForUnusedDecl(D, Context, Hint);
2159 unsigned DiagID;
2160 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
2161 DiagID = diag::warn_unused_exception_param;
2162 else if (isa<LabelDecl>(D))
2163 DiagID = diag::warn_unused_label;
2164 else
2165 DiagID = diag::warn_unused_variable;
2167 SourceLocation DiagLoc = D->getLocation();
2168 DiagReceiver(DiagLoc, PDiag(DiagID) << D << Hint << SourceRange(DiagLoc));
2171 void Sema::DiagnoseUnusedButSetDecl(const VarDecl *VD,
2172 DiagReceiverTy DiagReceiver) {
2173 // If it's not referenced, it can't be set. If it has the Cleanup attribute,
2174 // it's not really unused.
2175 if (!VD->isReferenced() || !VD->getDeclName() || VD->hasAttr<CleanupAttr>())
2176 return;
2178 // In C++, `_` variables behave as if they were maybe_unused
2179 if (VD->hasAttr<UnusedAttr>() || VD->isPlaceholderVar(getLangOpts()))
2180 return;
2182 const auto *Ty = VD->getType().getTypePtr()->getBaseElementTypeUnsafe();
2184 if (Ty->isReferenceType() || Ty->isDependentType())
2185 return;
2187 if (const TagType *TT = Ty->getAs<TagType>()) {
2188 const TagDecl *Tag = TT->getDecl();
2189 if (Tag->hasAttr<UnusedAttr>())
2190 return;
2191 // In C++, don't warn for record types that don't have WarnUnusedAttr, to
2192 // mimic gcc's behavior.
2193 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
2194 if (!RD->hasAttr<WarnUnusedAttr>())
2195 return;
2199 // Don't warn about __block Objective-C pointer variables, as they might
2200 // be assigned in the block but not used elsewhere for the purpose of lifetime
2201 // extension.
2202 if (VD->hasAttr<BlocksAttr>() && Ty->isObjCObjectPointerType())
2203 return;
2205 // Don't warn about Objective-C pointer variables with precise lifetime
2206 // semantics; they can be used to ensure ARC releases the object at a known
2207 // time, which may mean assignment but no other references.
2208 if (VD->hasAttr<ObjCPreciseLifetimeAttr>() && Ty->isObjCObjectPointerType())
2209 return;
2211 auto iter = RefsMinusAssignments.find(VD);
2212 if (iter == RefsMinusAssignments.end())
2213 return;
2215 assert(iter->getSecond() >= 0 &&
2216 "Found a negative number of references to a VarDecl");
2217 if (iter->getSecond() != 0)
2218 return;
2219 unsigned DiagID = isa<ParmVarDecl>(VD) ? diag::warn_unused_but_set_parameter
2220 : diag::warn_unused_but_set_variable;
2221 DiagReceiver(VD->getLocation(), PDiag(DiagID) << VD);
2224 static void CheckPoppedLabel(LabelDecl *L, Sema &S,
2225 Sema::DiagReceiverTy DiagReceiver) {
2226 // Verify that we have no forward references left. If so, there was a goto
2227 // or address of a label taken, but no definition of it. Label fwd
2228 // definitions are indicated with a null substmt which is also not a resolved
2229 // MS inline assembly label name.
2230 bool Diagnose = false;
2231 if (L->isMSAsmLabel())
2232 Diagnose = !L->isResolvedMSAsmLabel();
2233 else
2234 Diagnose = L->getStmt() == nullptr;
2235 if (Diagnose)
2236 DiagReceiver(L->getLocation(), S.PDiag(diag::err_undeclared_label_use)
2237 << L);
2240 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
2241 S->applyNRVO();
2243 if (S->decl_empty()) return;
2244 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
2245 "Scope shouldn't contain decls!");
2247 /// We visit the decls in non-deterministic order, but we want diagnostics
2248 /// emitted in deterministic order. Collect any diagnostic that may be emitted
2249 /// and sort the diagnostics before emitting them, after we visited all decls.
2250 struct LocAndDiag {
2251 SourceLocation Loc;
2252 std::optional<SourceLocation> PreviousDeclLoc;
2253 PartialDiagnostic PD;
2255 SmallVector<LocAndDiag, 16> DeclDiags;
2256 auto addDiag = [&DeclDiags](SourceLocation Loc, PartialDiagnostic PD) {
2257 DeclDiags.push_back(LocAndDiag{Loc, std::nullopt, std::move(PD)});
2259 auto addDiagWithPrev = [&DeclDiags](SourceLocation Loc,
2260 SourceLocation PreviousDeclLoc,
2261 PartialDiagnostic PD) {
2262 DeclDiags.push_back(LocAndDiag{Loc, PreviousDeclLoc, std::move(PD)});
2265 for (auto *TmpD : S->decls()) {
2266 assert(TmpD && "This decl didn't get pushed??");
2268 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
2269 NamedDecl *D = cast<NamedDecl>(TmpD);
2271 // Diagnose unused variables in this scope.
2272 if (!S->hasUnrecoverableErrorOccurred()) {
2273 DiagnoseUnusedDecl(D, addDiag);
2274 if (const auto *RD = dyn_cast<RecordDecl>(D))
2275 DiagnoseUnusedNestedTypedefs(RD, addDiag);
2276 if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2277 DiagnoseUnusedButSetDecl(VD, addDiag);
2278 RefsMinusAssignments.erase(VD);
2282 if (!D->getDeclName()) continue;
2284 // If this was a forward reference to a label, verify it was defined.
2285 if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
2286 CheckPoppedLabel(LD, *this, addDiag);
2288 // Remove this name from our lexical scope, and warn on it if we haven't
2289 // already.
2290 IdResolver.RemoveDecl(D);
2291 auto ShadowI = ShadowingDecls.find(D);
2292 if (ShadowI != ShadowingDecls.end()) {
2293 if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
2294 addDiagWithPrev(D->getLocation(), FD->getLocation(),
2295 PDiag(diag::warn_ctor_parm_shadows_field)
2296 << D << FD << FD->getParent());
2298 ShadowingDecls.erase(ShadowI);
2302 llvm::sort(DeclDiags,
2303 [](const LocAndDiag &LHS, const LocAndDiag &RHS) -> bool {
2304 // The particular order for diagnostics is not important, as long
2305 // as the order is deterministic. Using the raw location is going
2306 // to generally be in source order unless there are macro
2307 // expansions involved.
2308 return LHS.Loc.getRawEncoding() < RHS.Loc.getRawEncoding();
2310 for (const LocAndDiag &D : DeclDiags) {
2311 Diag(D.Loc, D.PD);
2312 if (D.PreviousDeclLoc)
2313 Diag(*D.PreviousDeclLoc, diag::note_previous_declaration);
2317 /// Look for an Objective-C class in the translation unit.
2319 /// \param Id The name of the Objective-C class we're looking for. If
2320 /// typo-correction fixes this name, the Id will be updated
2321 /// to the fixed name.
2323 /// \param IdLoc The location of the name in the translation unit.
2325 /// \param DoTypoCorrection If true, this routine will attempt typo correction
2326 /// if there is no class with the given name.
2328 /// \returns The declaration of the named Objective-C class, or NULL if the
2329 /// class could not be found.
2330 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
2331 SourceLocation IdLoc,
2332 bool DoTypoCorrection) {
2333 // The third "scope" argument is 0 since we aren't enabling lazy built-in
2334 // creation from this context.
2335 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
2337 if (!IDecl && DoTypoCorrection) {
2338 // Perform typo correction at the given location, but only if we
2339 // find an Objective-C class name.
2340 DeclFilterCCC<ObjCInterfaceDecl> CCC{};
2341 if (TypoCorrection C =
2342 CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
2343 TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
2344 diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
2345 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
2346 Id = IDecl->getIdentifier();
2349 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
2350 // This routine must always return a class definition, if any.
2351 if (Def && Def->getDefinition())
2352 Def = Def->getDefinition();
2353 return Def;
2356 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
2357 /// from S, where a non-field would be declared. This routine copes
2358 /// with the difference between C and C++ scoping rules in structs and
2359 /// unions. For example, the following code is well-formed in C but
2360 /// ill-formed in C++:
2361 /// @code
2362 /// struct S6 {
2363 /// enum { BAR } e;
2364 /// };
2366 /// void test_S6() {
2367 /// struct S6 a;
2368 /// a.e = BAR;
2369 /// }
2370 /// @endcode
2371 /// For the declaration of BAR, this routine will return a different
2372 /// scope. The scope S will be the scope of the unnamed enumeration
2373 /// within S6. In C++, this routine will return the scope associated
2374 /// with S6, because the enumeration's scope is a transparent
2375 /// context but structures can contain non-field names. In C, this
2376 /// routine will return the translation unit scope, since the
2377 /// enumeration's scope is a transparent context and structures cannot
2378 /// contain non-field names.
2379 Scope *Sema::getNonFieldDeclScope(Scope *S) {
2380 while (((S->getFlags() & Scope::DeclScope) == 0) ||
2381 (S->getEntity() && S->getEntity()->isTransparentContext()) ||
2382 (S->isClassScope() && !getLangOpts().CPlusPlus))
2383 S = S->getParent();
2384 return S;
2387 static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID,
2388 ASTContext::GetBuiltinTypeError Error) {
2389 switch (Error) {
2390 case ASTContext::GE_None:
2391 return "";
2392 case ASTContext::GE_Missing_type:
2393 return BuiltinInfo.getHeaderName(ID);
2394 case ASTContext::GE_Missing_stdio:
2395 return "stdio.h";
2396 case ASTContext::GE_Missing_setjmp:
2397 return "setjmp.h";
2398 case ASTContext::GE_Missing_ucontext:
2399 return "ucontext.h";
2401 llvm_unreachable("unhandled error kind");
2404 FunctionDecl *Sema::CreateBuiltin(IdentifierInfo *II, QualType Type,
2405 unsigned ID, SourceLocation Loc) {
2406 DeclContext *Parent = Context.getTranslationUnitDecl();
2408 if (getLangOpts().CPlusPlus) {
2409 LinkageSpecDecl *CLinkageDecl = LinkageSpecDecl::Create(
2410 Context, Parent, Loc, Loc, LinkageSpecLanguageIDs::C, false);
2411 CLinkageDecl->setImplicit();
2412 Parent->addDecl(CLinkageDecl);
2413 Parent = CLinkageDecl;
2416 FunctionDecl *New = FunctionDecl::Create(Context, Parent, Loc, Loc, II, Type,
2417 /*TInfo=*/nullptr, SC_Extern,
2418 getCurFPFeatures().isFPConstrained(),
2419 false, Type->isFunctionProtoType());
2420 New->setImplicit();
2421 New->addAttr(BuiltinAttr::CreateImplicit(Context, ID));
2423 // Create Decl objects for each parameter, adding them to the
2424 // FunctionDecl.
2425 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Type)) {
2426 SmallVector<ParmVarDecl *, 16> Params;
2427 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2428 ParmVarDecl *parm = ParmVarDecl::Create(
2429 Context, New, SourceLocation(), SourceLocation(), nullptr,
2430 FT->getParamType(i), /*TInfo=*/nullptr, SC_None, nullptr);
2431 parm->setScopeInfo(0, i);
2432 Params.push_back(parm);
2434 New->setParams(Params);
2437 AddKnownFunctionAttributes(New);
2438 return New;
2441 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
2442 /// file scope. lazily create a decl for it. ForRedeclaration is true
2443 /// if we're creating this built-in in anticipation of redeclaring the
2444 /// built-in.
2445 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
2446 Scope *S, bool ForRedeclaration,
2447 SourceLocation Loc) {
2448 LookupNecessaryTypesForBuiltin(S, ID);
2450 ASTContext::GetBuiltinTypeError Error;
2451 QualType R = Context.GetBuiltinType(ID, Error);
2452 if (Error) {
2453 if (!ForRedeclaration)
2454 return nullptr;
2456 // If we have a builtin without an associated type we should not emit a
2457 // warning when we were not able to find a type for it.
2458 if (Error == ASTContext::GE_Missing_type ||
2459 Context.BuiltinInfo.allowTypeMismatch(ID))
2460 return nullptr;
2462 // If we could not find a type for setjmp it is because the jmp_buf type was
2463 // not defined prior to the setjmp declaration.
2464 if (Error == ASTContext::GE_Missing_setjmp) {
2465 Diag(Loc, diag::warn_implicit_decl_no_jmp_buf)
2466 << Context.BuiltinInfo.getName(ID);
2467 return nullptr;
2470 // Generally, we emit a warning that the declaration requires the
2471 // appropriate header.
2472 Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
2473 << getHeaderName(Context.BuiltinInfo, ID, Error)
2474 << Context.BuiltinInfo.getName(ID);
2475 return nullptr;
2478 if (!ForRedeclaration &&
2479 (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
2480 Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
2481 Diag(Loc, LangOpts.C99 ? diag::ext_implicit_lib_function_decl_c99
2482 : diag::ext_implicit_lib_function_decl)
2483 << Context.BuiltinInfo.getName(ID) << R;
2484 if (const char *Header = Context.BuiltinInfo.getHeaderName(ID))
2485 Diag(Loc, diag::note_include_header_or_declare)
2486 << Header << Context.BuiltinInfo.getName(ID);
2489 if (R.isNull())
2490 return nullptr;
2492 FunctionDecl *New = CreateBuiltin(II, R, ID, Loc);
2493 RegisterLocallyScopedExternCDecl(New, S);
2495 // TUScope is the translation-unit scope to insert this function into.
2496 // FIXME: This is hideous. We need to teach PushOnScopeChains to
2497 // relate Scopes to DeclContexts, and probably eliminate CurContext
2498 // entirely, but we're not there yet.
2499 DeclContext *SavedContext = CurContext;
2500 CurContext = New->getDeclContext();
2501 PushOnScopeChains(New, TUScope);
2502 CurContext = SavedContext;
2503 return New;
2506 /// Typedef declarations don't have linkage, but they still denote the same
2507 /// entity if their types are the same.
2508 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2509 /// isSameEntity.
2510 static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2511 TypedefNameDecl *Decl,
2512 LookupResult &Previous) {
2513 // This is only interesting when modules are enabled.
2514 if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2515 return;
2517 // Empty sets are uninteresting.
2518 if (Previous.empty())
2519 return;
2521 LookupResult::Filter Filter = Previous.makeFilter();
2522 while (Filter.hasNext()) {
2523 NamedDecl *Old = Filter.next();
2525 // Non-hidden declarations are never ignored.
2526 if (S.isVisible(Old))
2527 continue;
2529 // Declarations of the same entity are not ignored, even if they have
2530 // different linkages.
2531 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2532 if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2533 Decl->getUnderlyingType()))
2534 continue;
2536 // If both declarations give a tag declaration a typedef name for linkage
2537 // purposes, then they declare the same entity.
2538 if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2539 Decl->getAnonDeclWithTypedefName())
2540 continue;
2543 Filter.erase();
2546 Filter.done();
2549 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2550 QualType OldType;
2551 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2552 OldType = OldTypedef->getUnderlyingType();
2553 else
2554 OldType = Context.getTypeDeclType(Old);
2555 QualType NewType = New->getUnderlyingType();
2557 if (NewType->isVariablyModifiedType()) {
2558 // Must not redefine a typedef with a variably-modified type.
2559 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2560 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2561 << Kind << NewType;
2562 if (Old->getLocation().isValid())
2563 notePreviousDefinition(Old, New->getLocation());
2564 New->setInvalidDecl();
2565 return true;
2568 if (OldType != NewType &&
2569 !OldType->isDependentType() &&
2570 !NewType->isDependentType() &&
2571 !Context.hasSameType(OldType, NewType)) {
2572 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2573 Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2574 << Kind << NewType << OldType;
2575 if (Old->getLocation().isValid())
2576 notePreviousDefinition(Old, New->getLocation());
2577 New->setInvalidDecl();
2578 return true;
2580 return false;
2583 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2584 /// same name and scope as a previous declaration 'Old'. Figure out
2585 /// how to resolve this situation, merging decls or emitting
2586 /// diagnostics as appropriate. If there was an error, set New to be invalid.
2588 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2589 LookupResult &OldDecls) {
2590 // If the new decl is known invalid already, don't bother doing any
2591 // merging checks.
2592 if (New->isInvalidDecl()) return;
2594 // Allow multiple definitions for ObjC built-in typedefs.
2595 // FIXME: Verify the underlying types are equivalent!
2596 if (getLangOpts().ObjC) {
2597 const IdentifierInfo *TypeID = New->getIdentifier();
2598 switch (TypeID->getLength()) {
2599 default: break;
2600 case 2:
2602 if (!TypeID->isStr("id"))
2603 break;
2604 QualType T = New->getUnderlyingType();
2605 if (!T->isPointerType())
2606 break;
2607 if (!T->isVoidPointerType()) {
2608 QualType PT = T->castAs<PointerType>()->getPointeeType();
2609 if (!PT->isStructureType())
2610 break;
2612 Context.setObjCIdRedefinitionType(T);
2613 // Install the built-in type for 'id', ignoring the current definition.
2614 New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2615 return;
2617 case 5:
2618 if (!TypeID->isStr("Class"))
2619 break;
2620 Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2621 // Install the built-in type for 'Class', ignoring the current definition.
2622 New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2623 return;
2624 case 3:
2625 if (!TypeID->isStr("SEL"))
2626 break;
2627 Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2628 // Install the built-in type for 'SEL', ignoring the current definition.
2629 New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2630 return;
2632 // Fall through - the typedef name was not a builtin type.
2635 // Verify the old decl was also a type.
2636 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2637 if (!Old) {
2638 Diag(New->getLocation(), diag::err_redefinition_different_kind)
2639 << New->getDeclName();
2641 NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2642 if (OldD->getLocation().isValid())
2643 notePreviousDefinition(OldD, New->getLocation());
2645 return New->setInvalidDecl();
2648 // If the old declaration is invalid, just give up here.
2649 if (Old->isInvalidDecl())
2650 return New->setInvalidDecl();
2652 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2653 auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2654 auto *NewTag = New->getAnonDeclWithTypedefName();
2655 NamedDecl *Hidden = nullptr;
2656 if (OldTag && NewTag &&
2657 OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2658 !hasVisibleDefinition(OldTag, &Hidden)) {
2659 // There is a definition of this tag, but it is not visible. Use it
2660 // instead of our tag.
2661 New->setTypeForDecl(OldTD->getTypeForDecl());
2662 if (OldTD->isModed())
2663 New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2664 OldTD->getUnderlyingType());
2665 else
2666 New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2668 // Make the old tag definition visible.
2669 makeMergedDefinitionVisible(Hidden);
2671 // If this was an unscoped enumeration, yank all of its enumerators
2672 // out of the scope.
2673 if (isa<EnumDecl>(NewTag)) {
2674 Scope *EnumScope = getNonFieldDeclScope(S);
2675 for (auto *D : NewTag->decls()) {
2676 auto *ED = cast<EnumConstantDecl>(D);
2677 assert(EnumScope->isDeclScope(ED));
2678 EnumScope->RemoveDecl(ED);
2679 IdResolver.RemoveDecl(ED);
2680 ED->getLexicalDeclContext()->removeDecl(ED);
2686 // If the typedef types are not identical, reject them in all languages and
2687 // with any extensions enabled.
2688 if (isIncompatibleTypedef(Old, New))
2689 return;
2691 // The types match. Link up the redeclaration chain and merge attributes if
2692 // the old declaration was a typedef.
2693 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2694 New->setPreviousDecl(Typedef);
2695 mergeDeclAttributes(New, Old);
2698 if (getLangOpts().MicrosoftExt)
2699 return;
2701 if (getLangOpts().CPlusPlus) {
2702 // C++ [dcl.typedef]p2:
2703 // In a given non-class scope, a typedef specifier can be used to
2704 // redefine the name of any type declared in that scope to refer
2705 // to the type to which it already refers.
2706 if (!isa<CXXRecordDecl>(CurContext))
2707 return;
2709 // C++0x [dcl.typedef]p4:
2710 // In a given class scope, a typedef specifier can be used to redefine
2711 // any class-name declared in that scope that is not also a typedef-name
2712 // to refer to the type to which it already refers.
2714 // This wording came in via DR424, which was a correction to the
2715 // wording in DR56, which accidentally banned code like:
2717 // struct S {
2718 // typedef struct A { } A;
2719 // };
2721 // in the C++03 standard. We implement the C++0x semantics, which
2722 // allow the above but disallow
2724 // struct S {
2725 // typedef int I;
2726 // typedef int I;
2727 // };
2729 // since that was the intent of DR56.
2730 if (!isa<TypedefNameDecl>(Old))
2731 return;
2733 Diag(New->getLocation(), diag::err_redefinition)
2734 << New->getDeclName();
2735 notePreviousDefinition(Old, New->getLocation());
2736 return New->setInvalidDecl();
2739 // Modules always permit redefinition of typedefs, as does C11.
2740 if (getLangOpts().Modules || getLangOpts().C11)
2741 return;
2743 // If we have a redefinition of a typedef in C, emit a warning. This warning
2744 // is normally mapped to an error, but can be controlled with
2745 // -Wtypedef-redefinition. If either the original or the redefinition is
2746 // in a system header, don't emit this for compatibility with GCC.
2747 if (getDiagnostics().getSuppressSystemWarnings() &&
2748 // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2749 (Old->isImplicit() ||
2750 Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2751 Context.getSourceManager().isInSystemHeader(New->getLocation())))
2752 return;
2754 Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2755 << New->getDeclName();
2756 notePreviousDefinition(Old, New->getLocation());
2759 /// DeclhasAttr - returns true if decl Declaration already has the target
2760 /// attribute.
2761 static bool DeclHasAttr(const Decl *D, const Attr *A) {
2762 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2763 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2764 for (const auto *i : D->attrs())
2765 if (i->getKind() == A->getKind()) {
2766 if (Ann) {
2767 if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2768 return true;
2769 continue;
2771 // FIXME: Don't hardcode this check
2772 if (OA && isa<OwnershipAttr>(i))
2773 return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2774 return true;
2777 return false;
2780 static bool isAttributeTargetADefinition(Decl *D) {
2781 if (VarDecl *VD = dyn_cast<VarDecl>(D))
2782 return VD->isThisDeclarationADefinition();
2783 if (TagDecl *TD = dyn_cast<TagDecl>(D))
2784 return TD->isCompleteDefinition() || TD->isBeingDefined();
2785 return true;
2788 /// Merge alignment attributes from \p Old to \p New, taking into account the
2789 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2791 /// \return \c true if any attributes were added to \p New.
2792 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2793 // Look for alignas attributes on Old, and pick out whichever attribute
2794 // specifies the strictest alignment requirement.
2795 AlignedAttr *OldAlignasAttr = nullptr;
2796 AlignedAttr *OldStrictestAlignAttr = nullptr;
2797 unsigned OldAlign = 0;
2798 for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2799 // FIXME: We have no way of representing inherited dependent alignments
2800 // in a case like:
2801 // template<int A, int B> struct alignas(A) X;
2802 // template<int A, int B> struct alignas(B) X {};
2803 // For now, we just ignore any alignas attributes which are not on the
2804 // definition in such a case.
2805 if (I->isAlignmentDependent())
2806 return false;
2808 if (I->isAlignas())
2809 OldAlignasAttr = I;
2811 unsigned Align = I->getAlignment(S.Context);
2812 if (Align > OldAlign) {
2813 OldAlign = Align;
2814 OldStrictestAlignAttr = I;
2818 // Look for alignas attributes on New.
2819 AlignedAttr *NewAlignasAttr = nullptr;
2820 unsigned NewAlign = 0;
2821 for (auto *I : New->specific_attrs<AlignedAttr>()) {
2822 if (I->isAlignmentDependent())
2823 return false;
2825 if (I->isAlignas())
2826 NewAlignasAttr = I;
2828 unsigned Align = I->getAlignment(S.Context);
2829 if (Align > NewAlign)
2830 NewAlign = Align;
2833 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2834 // Both declarations have 'alignas' attributes. We require them to match.
2835 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2836 // fall short. (If two declarations both have alignas, they must both match
2837 // every definition, and so must match each other if there is a definition.)
2839 // If either declaration only contains 'alignas(0)' specifiers, then it
2840 // specifies the natural alignment for the type.
2841 if (OldAlign == 0 || NewAlign == 0) {
2842 QualType Ty;
2843 if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2844 Ty = VD->getType();
2845 else
2846 Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2848 if (OldAlign == 0)
2849 OldAlign = S.Context.getTypeAlign(Ty);
2850 if (NewAlign == 0)
2851 NewAlign = S.Context.getTypeAlign(Ty);
2854 if (OldAlign != NewAlign) {
2855 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2856 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2857 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2858 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2862 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2863 // C++11 [dcl.align]p6:
2864 // if any declaration of an entity has an alignment-specifier,
2865 // every defining declaration of that entity shall specify an
2866 // equivalent alignment.
2867 // C11 6.7.5/7:
2868 // If the definition of an object does not have an alignment
2869 // specifier, any other declaration of that object shall also
2870 // have no alignment specifier.
2871 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2872 << OldAlignasAttr;
2873 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2874 << OldAlignasAttr;
2877 bool AnyAdded = false;
2879 // Ensure we have an attribute representing the strictest alignment.
2880 if (OldAlign > NewAlign) {
2881 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2882 Clone->setInherited(true);
2883 New->addAttr(Clone);
2884 AnyAdded = true;
2887 // Ensure we have an alignas attribute if the old declaration had one.
2888 if (OldAlignasAttr && !NewAlignasAttr &&
2889 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2890 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2891 Clone->setInherited(true);
2892 New->addAttr(Clone);
2893 AnyAdded = true;
2896 return AnyAdded;
2899 #define WANT_DECL_MERGE_LOGIC
2900 #include "clang/Sema/AttrParsedAttrImpl.inc"
2901 #undef WANT_DECL_MERGE_LOGIC
2903 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2904 const InheritableAttr *Attr,
2905 Sema::AvailabilityMergeKind AMK) {
2906 // Diagnose any mutual exclusions between the attribute that we want to add
2907 // and attributes that already exist on the declaration.
2908 if (!DiagnoseMutualExclusions(S, D, Attr))
2909 return false;
2911 // This function copies an attribute Attr from a previous declaration to the
2912 // new declaration D if the new declaration doesn't itself have that attribute
2913 // yet or if that attribute allows duplicates.
2914 // If you're adding a new attribute that requires logic different from
2915 // "use explicit attribute on decl if present, else use attribute from
2916 // previous decl", for example if the attribute needs to be consistent
2917 // between redeclarations, you need to call a custom merge function here.
2918 InheritableAttr *NewAttr = nullptr;
2919 if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2920 NewAttr = S.mergeAvailabilityAttr(
2921 D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(),
2922 AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(),
2923 AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK,
2924 AA->getPriority());
2925 else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2926 NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility());
2927 else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2928 NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility());
2929 else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2930 NewAttr = S.mergeDLLImportAttr(D, *ImportA);
2931 else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2932 NewAttr = S.mergeDLLExportAttr(D, *ExportA);
2933 else if (const auto *EA = dyn_cast<ErrorAttr>(Attr))
2934 NewAttr = S.mergeErrorAttr(D, *EA, EA->getUserDiagnostic());
2935 else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2936 NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(),
2937 FA->getFirstArg());
2938 else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2939 NewAttr = S.mergeSectionAttr(D, *SA, SA->getName());
2940 else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2941 NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName());
2942 else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2943 NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(),
2944 IA->getInheritanceModel());
2945 else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2946 NewAttr = S.mergeAlwaysInlineAttr(D, *AA,
2947 &S.Context.Idents.get(AA->getSpelling()));
2948 else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2949 (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2950 isa<CUDAGlobalAttr>(Attr))) {
2951 // CUDA target attributes are part of function signature for
2952 // overloading purposes and must not be merged.
2953 return false;
2954 } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2955 NewAttr = S.mergeMinSizeAttr(D, *MA);
2956 else if (const auto *SNA = dyn_cast<SwiftNameAttr>(Attr))
2957 NewAttr = S.mergeSwiftNameAttr(D, *SNA, SNA->getName());
2958 else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2959 NewAttr = S.mergeOptimizeNoneAttr(D, *OA);
2960 else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2961 NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2962 else if (isa<AlignedAttr>(Attr))
2963 // AlignedAttrs are handled separately, because we need to handle all
2964 // such attributes on a declaration at the same time.
2965 NewAttr = nullptr;
2966 else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2967 (AMK == Sema::AMK_Override ||
2968 AMK == Sema::AMK_ProtocolImplementation ||
2969 AMK == Sema::AMK_OptionalProtocolImplementation))
2970 NewAttr = nullptr;
2971 else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2972 NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl());
2973 else if (const auto *IMA = dyn_cast<WebAssemblyImportModuleAttr>(Attr))
2974 NewAttr = S.mergeImportModuleAttr(D, *IMA);
2975 else if (const auto *INA = dyn_cast<WebAssemblyImportNameAttr>(Attr))
2976 NewAttr = S.mergeImportNameAttr(D, *INA);
2977 else if (const auto *TCBA = dyn_cast<EnforceTCBAttr>(Attr))
2978 NewAttr = S.mergeEnforceTCBAttr(D, *TCBA);
2979 else if (const auto *TCBLA = dyn_cast<EnforceTCBLeafAttr>(Attr))
2980 NewAttr = S.mergeEnforceTCBLeafAttr(D, *TCBLA);
2981 else if (const auto *BTFA = dyn_cast<BTFDeclTagAttr>(Attr))
2982 NewAttr = S.mergeBTFDeclTagAttr(D, *BTFA);
2983 else if (const auto *NT = dyn_cast<HLSLNumThreadsAttr>(Attr))
2984 NewAttr =
2985 S.mergeHLSLNumThreadsAttr(D, *NT, NT->getX(), NT->getY(), NT->getZ());
2986 else if (const auto *SA = dyn_cast<HLSLShaderAttr>(Attr))
2987 NewAttr = S.mergeHLSLShaderAttr(D, *SA, SA->getType());
2988 else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2989 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2991 if (NewAttr) {
2992 NewAttr->setInherited(true);
2993 D->addAttr(NewAttr);
2994 if (isa<MSInheritanceAttr>(NewAttr))
2995 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2996 return true;
2999 return false;
3002 static const NamedDecl *getDefinition(const Decl *D) {
3003 if (const TagDecl *TD = dyn_cast<TagDecl>(D))
3004 return TD->getDefinition();
3005 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
3006 const VarDecl *Def = VD->getDefinition();
3007 if (Def)
3008 return Def;
3009 return VD->getActingDefinition();
3011 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3012 const FunctionDecl *Def = nullptr;
3013 if (FD->isDefined(Def, true))
3014 return Def;
3016 return nullptr;
3019 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
3020 for (const auto *Attribute : D->attrs())
3021 if (Attribute->getKind() == Kind)
3022 return true;
3023 return false;
3026 /// checkNewAttributesAfterDef - If we already have a definition, check that
3027 /// there are no new attributes in this declaration.
3028 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
3029 if (!New->hasAttrs())
3030 return;
3032 const NamedDecl *Def = getDefinition(Old);
3033 if (!Def || Def == New)
3034 return;
3036 AttrVec &NewAttributes = New->getAttrs();
3037 for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
3038 const Attr *NewAttribute = NewAttributes[I];
3040 if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
3041 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
3042 Sema::SkipBodyInfo SkipBody;
3043 S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
3045 // If we're skipping this definition, drop the "alias" attribute.
3046 if (SkipBody.ShouldSkip) {
3047 NewAttributes.erase(NewAttributes.begin() + I);
3048 --E;
3049 continue;
3051 } else {
3052 VarDecl *VD = cast<VarDecl>(New);
3053 unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
3054 VarDecl::TentativeDefinition
3055 ? diag::err_alias_after_tentative
3056 : diag::err_redefinition;
3057 S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
3058 if (Diag == diag::err_redefinition)
3059 S.notePreviousDefinition(Def, VD->getLocation());
3060 else
3061 S.Diag(Def->getLocation(), diag::note_previous_definition);
3062 VD->setInvalidDecl();
3064 ++I;
3065 continue;
3068 if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
3069 // Tentative definitions are only interesting for the alias check above.
3070 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
3071 ++I;
3072 continue;
3076 if (hasAttribute(Def, NewAttribute->getKind())) {
3077 ++I;
3078 continue; // regular attr merging will take care of validating this.
3081 if (isa<C11NoReturnAttr>(NewAttribute)) {
3082 // C's _Noreturn is allowed to be added to a function after it is defined.
3083 ++I;
3084 continue;
3085 } else if (isa<UuidAttr>(NewAttribute)) {
3086 // msvc will allow a subsequent definition to add an uuid to a class
3087 ++I;
3088 continue;
3089 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
3090 if (AA->isAlignas()) {
3091 // C++11 [dcl.align]p6:
3092 // if any declaration of an entity has an alignment-specifier,
3093 // every defining declaration of that entity shall specify an
3094 // equivalent alignment.
3095 // C11 6.7.5/7:
3096 // If the definition of an object does not have an alignment
3097 // specifier, any other declaration of that object shall also
3098 // have no alignment specifier.
3099 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
3100 << AA;
3101 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
3102 << AA;
3103 NewAttributes.erase(NewAttributes.begin() + I);
3104 --E;
3105 continue;
3107 } else if (isa<LoaderUninitializedAttr>(NewAttribute)) {
3108 // If there is a C definition followed by a redeclaration with this
3109 // attribute then there are two different definitions. In C++, prefer the
3110 // standard diagnostics.
3111 if (!S.getLangOpts().CPlusPlus) {
3112 S.Diag(NewAttribute->getLocation(),
3113 diag::err_loader_uninitialized_redeclaration);
3114 S.Diag(Def->getLocation(), diag::note_previous_definition);
3115 NewAttributes.erase(NewAttributes.begin() + I);
3116 --E;
3117 continue;
3119 } else if (isa<SelectAnyAttr>(NewAttribute) &&
3120 cast<VarDecl>(New)->isInline() &&
3121 !cast<VarDecl>(New)->isInlineSpecified()) {
3122 // Don't warn about applying selectany to implicitly inline variables.
3123 // Older compilers and language modes would require the use of selectany
3124 // to make such variables inline, and it would have no effect if we
3125 // honored it.
3126 ++I;
3127 continue;
3128 } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) {
3129 // We allow to add OMP[Begin]DeclareVariantAttr to be added to
3130 // declarations after definitions.
3131 ++I;
3132 continue;
3135 S.Diag(NewAttribute->getLocation(),
3136 diag::warn_attribute_precede_definition);
3137 S.Diag(Def->getLocation(), diag::note_previous_definition);
3138 NewAttributes.erase(NewAttributes.begin() + I);
3139 --E;
3143 static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl,
3144 const ConstInitAttr *CIAttr,
3145 bool AttrBeforeInit) {
3146 SourceLocation InsertLoc = InitDecl->getInnerLocStart();
3148 // Figure out a good way to write this specifier on the old declaration.
3149 // FIXME: We should just use the spelling of CIAttr, but we don't preserve
3150 // enough of the attribute list spelling information to extract that without
3151 // heroics.
3152 std::string SuitableSpelling;
3153 if (S.getLangOpts().CPlusPlus20)
3154 SuitableSpelling = std::string(
3155 S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit}));
3156 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
3157 SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
3158 InsertLoc, {tok::l_square, tok::l_square,
3159 S.PP.getIdentifierInfo("clang"), tok::coloncolon,
3160 S.PP.getIdentifierInfo("require_constant_initialization"),
3161 tok::r_square, tok::r_square}));
3162 if (SuitableSpelling.empty())
3163 SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
3164 InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren,
3165 S.PP.getIdentifierInfo("require_constant_initialization"),
3166 tok::r_paren, tok::r_paren}));
3167 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20)
3168 SuitableSpelling = "constinit";
3169 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
3170 SuitableSpelling = "[[clang::require_constant_initialization]]";
3171 if (SuitableSpelling.empty())
3172 SuitableSpelling = "__attribute__((require_constant_initialization))";
3173 SuitableSpelling += " ";
3175 if (AttrBeforeInit) {
3176 // extern constinit int a;
3177 // int a = 0; // error (missing 'constinit'), accepted as extension
3178 assert(CIAttr->isConstinit() && "should not diagnose this for attribute");
3179 S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing)
3180 << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
3181 S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here);
3182 } else {
3183 // int a = 0;
3184 // constinit extern int a; // error (missing 'constinit')
3185 S.Diag(CIAttr->getLocation(),
3186 CIAttr->isConstinit() ? diag::err_constinit_added_too_late
3187 : diag::warn_require_const_init_added_too_late)
3188 << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation()));
3189 S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here)
3190 << CIAttr->isConstinit()
3191 << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
3195 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
3196 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
3197 AvailabilityMergeKind AMK) {
3198 if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
3199 UsedAttr *NewAttr = OldAttr->clone(Context);
3200 NewAttr->setInherited(true);
3201 New->addAttr(NewAttr);
3203 if (RetainAttr *OldAttr = Old->getMostRecentDecl()->getAttr<RetainAttr>()) {
3204 RetainAttr *NewAttr = OldAttr->clone(Context);
3205 NewAttr->setInherited(true);
3206 New->addAttr(NewAttr);
3209 if (!Old->hasAttrs() && !New->hasAttrs())
3210 return;
3212 // [dcl.constinit]p1:
3213 // If the [constinit] specifier is applied to any declaration of a
3214 // variable, it shall be applied to the initializing declaration.
3215 const auto *OldConstInit = Old->getAttr<ConstInitAttr>();
3216 const auto *NewConstInit = New->getAttr<ConstInitAttr>();
3217 if (bool(OldConstInit) != bool(NewConstInit)) {
3218 const auto *OldVD = cast<VarDecl>(Old);
3219 auto *NewVD = cast<VarDecl>(New);
3221 // Find the initializing declaration. Note that we might not have linked
3222 // the new declaration into the redeclaration chain yet.
3223 const VarDecl *InitDecl = OldVD->getInitializingDeclaration();
3224 if (!InitDecl &&
3225 (NewVD->hasInit() || NewVD->isThisDeclarationADefinition()))
3226 InitDecl = NewVD;
3228 if (InitDecl == NewVD) {
3229 // This is the initializing declaration. If it would inherit 'constinit',
3230 // that's ill-formed. (Note that we do not apply this to the attribute
3231 // form).
3232 if (OldConstInit && OldConstInit->isConstinit())
3233 diagnoseMissingConstinit(*this, NewVD, OldConstInit,
3234 /*AttrBeforeInit=*/true);
3235 } else if (NewConstInit) {
3236 // This is the first time we've been told that this declaration should
3237 // have a constant initializer. If we already saw the initializing
3238 // declaration, this is too late.
3239 if (InitDecl && InitDecl != NewVD) {
3240 diagnoseMissingConstinit(*this, InitDecl, NewConstInit,
3241 /*AttrBeforeInit=*/false);
3242 NewVD->dropAttr<ConstInitAttr>();
3247 // Attributes declared post-definition are currently ignored.
3248 checkNewAttributesAfterDef(*this, New, Old);
3250 if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
3251 if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
3252 if (!OldA->isEquivalent(NewA)) {
3253 // This redeclaration changes __asm__ label.
3254 Diag(New->getLocation(), diag::err_different_asm_label);
3255 Diag(OldA->getLocation(), diag::note_previous_declaration);
3257 } else if (Old->isUsed()) {
3258 // This redeclaration adds an __asm__ label to a declaration that has
3259 // already been ODR-used.
3260 Diag(New->getLocation(), diag::err_late_asm_label_name)
3261 << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
3265 // Re-declaration cannot add abi_tag's.
3266 if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
3267 if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
3268 for (const auto &NewTag : NewAbiTagAttr->tags()) {
3269 if (!llvm::is_contained(OldAbiTagAttr->tags(), NewTag)) {
3270 Diag(NewAbiTagAttr->getLocation(),
3271 diag::err_new_abi_tag_on_redeclaration)
3272 << NewTag;
3273 Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
3276 } else {
3277 Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
3278 Diag(Old->getLocation(), diag::note_previous_declaration);
3282 // This redeclaration adds a section attribute.
3283 if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
3284 if (auto *VD = dyn_cast<VarDecl>(New)) {
3285 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
3286 Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
3287 Diag(Old->getLocation(), diag::note_previous_declaration);
3292 // Redeclaration adds code-seg attribute.
3293 const auto *NewCSA = New->getAttr<CodeSegAttr>();
3294 if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
3295 !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
3296 Diag(New->getLocation(), diag::warn_mismatched_section)
3297 << 0 /*codeseg*/;
3298 Diag(Old->getLocation(), diag::note_previous_declaration);
3301 if (!Old->hasAttrs())
3302 return;
3304 bool foundAny = New->hasAttrs();
3306 // Ensure that any moving of objects within the allocated map is done before
3307 // we process them.
3308 if (!foundAny) New->setAttrs(AttrVec());
3310 for (auto *I : Old->specific_attrs<InheritableAttr>()) {
3311 // Ignore deprecated/unavailable/availability attributes if requested.
3312 AvailabilityMergeKind LocalAMK = AMK_None;
3313 if (isa<DeprecatedAttr>(I) ||
3314 isa<UnavailableAttr>(I) ||
3315 isa<AvailabilityAttr>(I)) {
3316 switch (AMK) {
3317 case AMK_None:
3318 continue;
3320 case AMK_Redeclaration:
3321 case AMK_Override:
3322 case AMK_ProtocolImplementation:
3323 case AMK_OptionalProtocolImplementation:
3324 LocalAMK = AMK;
3325 break;
3329 // Already handled.
3330 if (isa<UsedAttr>(I) || isa<RetainAttr>(I))
3331 continue;
3333 if (mergeDeclAttribute(*this, New, I, LocalAMK))
3334 foundAny = true;
3337 if (mergeAlignedAttrs(*this, New, Old))
3338 foundAny = true;
3340 if (!foundAny) New->dropAttrs();
3343 /// mergeParamDeclAttributes - Copy attributes from the old parameter
3344 /// to the new one.
3345 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
3346 const ParmVarDecl *oldDecl,
3347 Sema &S) {
3348 // C++11 [dcl.attr.depend]p2:
3349 // The first declaration of a function shall specify the
3350 // carries_dependency attribute for its declarator-id if any declaration
3351 // of the function specifies the carries_dependency attribute.
3352 const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
3353 if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
3354 S.Diag(CDA->getLocation(),
3355 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
3356 // Find the first declaration of the parameter.
3357 // FIXME: Should we build redeclaration chains for function parameters?
3358 const FunctionDecl *FirstFD =
3359 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
3360 const ParmVarDecl *FirstVD =
3361 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
3362 S.Diag(FirstVD->getLocation(),
3363 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
3366 if (!oldDecl->hasAttrs())
3367 return;
3369 bool foundAny = newDecl->hasAttrs();
3371 // Ensure that any moving of objects within the allocated map is
3372 // done before we process them.
3373 if (!foundAny) newDecl->setAttrs(AttrVec());
3375 for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
3376 if (!DeclHasAttr(newDecl, I)) {
3377 InheritableAttr *newAttr =
3378 cast<InheritableParamAttr>(I->clone(S.Context));
3379 newAttr->setInherited(true);
3380 newDecl->addAttr(newAttr);
3381 foundAny = true;
3385 if (!foundAny) newDecl->dropAttrs();
3388 static bool EquivalentArrayTypes(QualType Old, QualType New,
3389 const ASTContext &Ctx) {
3391 auto NoSizeInfo = [&Ctx](QualType Ty) {
3392 if (Ty->isIncompleteArrayType() || Ty->isPointerType())
3393 return true;
3394 if (const auto *VAT = Ctx.getAsVariableArrayType(Ty))
3395 return VAT->getSizeModifier() == ArraySizeModifier::Star;
3396 return false;
3399 // `type[]` is equivalent to `type *` and `type[*]`.
3400 if (NoSizeInfo(Old) && NoSizeInfo(New))
3401 return true;
3403 // Don't try to compare VLA sizes, unless one of them has the star modifier.
3404 if (Old->isVariableArrayType() && New->isVariableArrayType()) {
3405 const auto *OldVAT = Ctx.getAsVariableArrayType(Old);
3406 const auto *NewVAT = Ctx.getAsVariableArrayType(New);
3407 if ((OldVAT->getSizeModifier() == ArraySizeModifier::Star) ^
3408 (NewVAT->getSizeModifier() == ArraySizeModifier::Star))
3409 return false;
3410 return true;
3413 // Only compare size, ignore Size modifiers and CVR.
3414 if (Old->isConstantArrayType() && New->isConstantArrayType()) {
3415 return Ctx.getAsConstantArrayType(Old)->getSize() ==
3416 Ctx.getAsConstantArrayType(New)->getSize();
3419 // Don't try to compare dependent sized array
3420 if (Old->isDependentSizedArrayType() && New->isDependentSizedArrayType()) {
3421 return true;
3424 return Old == New;
3427 static void mergeParamDeclTypes(ParmVarDecl *NewParam,
3428 const ParmVarDecl *OldParam,
3429 Sema &S) {
3430 if (auto Oldnullability = OldParam->getType()->getNullability()) {
3431 if (auto Newnullability = NewParam->getType()->getNullability()) {
3432 if (*Oldnullability != *Newnullability) {
3433 S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
3434 << DiagNullabilityKind(
3435 *Newnullability,
3436 ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3437 != 0))
3438 << DiagNullabilityKind(
3439 *Oldnullability,
3440 ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3441 != 0));
3442 S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
3444 } else {
3445 QualType NewT = NewParam->getType();
3446 NewT = S.Context.getAttributedType(
3447 AttributedType::getNullabilityAttrKind(*Oldnullability),
3448 NewT, NewT);
3449 NewParam->setType(NewT);
3452 const auto *OldParamDT = dyn_cast<DecayedType>(OldParam->getType());
3453 const auto *NewParamDT = dyn_cast<DecayedType>(NewParam->getType());
3454 if (OldParamDT && NewParamDT &&
3455 OldParamDT->getPointeeType() == NewParamDT->getPointeeType()) {
3456 QualType OldParamOT = OldParamDT->getOriginalType();
3457 QualType NewParamOT = NewParamDT->getOriginalType();
3458 if (!EquivalentArrayTypes(OldParamOT, NewParamOT, S.getASTContext())) {
3459 S.Diag(NewParam->getLocation(), diag::warn_inconsistent_array_form)
3460 << NewParam << NewParamOT;
3461 S.Diag(OldParam->getLocation(), diag::note_previous_declaration_as)
3462 << OldParamOT;
3467 namespace {
3469 /// Used in MergeFunctionDecl to keep track of function parameters in
3470 /// C.
3471 struct GNUCompatibleParamWarning {
3472 ParmVarDecl *OldParm;
3473 ParmVarDecl *NewParm;
3474 QualType PromotedType;
3477 } // end anonymous namespace
3479 // Determine whether the previous declaration was a definition, implicit
3480 // declaration, or a declaration.
3481 template <typename T>
3482 static std::pair<diag::kind, SourceLocation>
3483 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
3484 diag::kind PrevDiag;
3485 SourceLocation OldLocation = Old->getLocation();
3486 if (Old->isThisDeclarationADefinition())
3487 PrevDiag = diag::note_previous_definition;
3488 else if (Old->isImplicit()) {
3489 PrevDiag = diag::note_previous_implicit_declaration;
3490 if (const auto *FD = dyn_cast<FunctionDecl>(Old)) {
3491 if (FD->getBuiltinID())
3492 PrevDiag = diag::note_previous_builtin_declaration;
3494 if (OldLocation.isInvalid())
3495 OldLocation = New->getLocation();
3496 } else
3497 PrevDiag = diag::note_previous_declaration;
3498 return std::make_pair(PrevDiag, OldLocation);
3501 /// canRedefineFunction - checks if a function can be redefined. Currently,
3502 /// only extern inline functions can be redefined, and even then only in
3503 /// GNU89 mode.
3504 static bool canRedefineFunction(const FunctionDecl *FD,
3505 const LangOptions& LangOpts) {
3506 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
3507 !LangOpts.CPlusPlus &&
3508 FD->isInlineSpecified() &&
3509 FD->getStorageClass() == SC_Extern);
3512 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
3513 const AttributedType *AT = T->getAs<AttributedType>();
3514 while (AT && !AT->isCallingConv())
3515 AT = AT->getModifiedType()->getAs<AttributedType>();
3516 return AT;
3519 template <typename T>
3520 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
3521 const DeclContext *DC = Old->getDeclContext();
3522 if (DC->isRecord())
3523 return false;
3525 LanguageLinkage OldLinkage = Old->getLanguageLinkage();
3526 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
3527 return true;
3528 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
3529 return true;
3530 return false;
3533 template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
3534 static bool isExternC(VarTemplateDecl *) { return false; }
3535 static bool isExternC(FunctionTemplateDecl *) { return false; }
3537 /// Check whether a redeclaration of an entity introduced by a
3538 /// using-declaration is valid, given that we know it's not an overload
3539 /// (nor a hidden tag declaration).
3540 template<typename ExpectedDecl>
3541 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
3542 ExpectedDecl *New) {
3543 // C++11 [basic.scope.declarative]p4:
3544 // Given a set of declarations in a single declarative region, each of
3545 // which specifies the same unqualified name,
3546 // -- they shall all refer to the same entity, or all refer to functions
3547 // and function templates; or
3548 // -- exactly one declaration shall declare a class name or enumeration
3549 // name that is not a typedef name and the other declarations shall all
3550 // refer to the same variable or enumerator, or all refer to functions
3551 // and function templates; in this case the class name or enumeration
3552 // name is hidden (3.3.10).
3554 // C++11 [namespace.udecl]p14:
3555 // If a function declaration in namespace scope or block scope has the
3556 // same name and the same parameter-type-list as a function introduced
3557 // by a using-declaration, and the declarations do not declare the same
3558 // function, the program is ill-formed.
3560 auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
3561 if (Old &&
3562 !Old->getDeclContext()->getRedeclContext()->Equals(
3563 New->getDeclContext()->getRedeclContext()) &&
3564 !(isExternC(Old) && isExternC(New)))
3565 Old = nullptr;
3567 if (!Old) {
3568 S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
3569 S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
3570 S.Diag(OldS->getIntroducer()->getLocation(), diag::note_using_decl) << 0;
3571 return true;
3573 return false;
3576 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
3577 const FunctionDecl *B) {
3578 assert(A->getNumParams() == B->getNumParams());
3580 auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
3581 const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
3582 const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
3583 if (AttrA == AttrB)
3584 return true;
3585 return AttrA && AttrB && AttrA->getType() == AttrB->getType() &&
3586 AttrA->isDynamic() == AttrB->isDynamic();
3589 return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
3592 /// If necessary, adjust the semantic declaration context for a qualified
3593 /// declaration to name the correct inline namespace within the qualifier.
3594 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
3595 DeclaratorDecl *OldD) {
3596 // The only case where we need to update the DeclContext is when
3597 // redeclaration lookup for a qualified name finds a declaration
3598 // in an inline namespace within the context named by the qualifier:
3600 // inline namespace N { int f(); }
3601 // int ::f(); // Sema DC needs adjusting from :: to N::.
3603 // For unqualified declarations, the semantic context *can* change
3604 // along the redeclaration chain (for local extern declarations,
3605 // extern "C" declarations, and friend declarations in particular).
3606 if (!NewD->getQualifier())
3607 return;
3609 // NewD is probably already in the right context.
3610 auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
3611 auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
3612 if (NamedDC->Equals(SemaDC))
3613 return;
3615 assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||
3616 NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&
3617 "unexpected context for redeclaration");
3619 auto *LexDC = NewD->getLexicalDeclContext();
3620 auto FixSemaDC = [=](NamedDecl *D) {
3621 if (!D)
3622 return;
3623 D->setDeclContext(SemaDC);
3624 D->setLexicalDeclContext(LexDC);
3627 FixSemaDC(NewD);
3628 if (auto *FD = dyn_cast<FunctionDecl>(NewD))
3629 FixSemaDC(FD->getDescribedFunctionTemplate());
3630 else if (auto *VD = dyn_cast<VarDecl>(NewD))
3631 FixSemaDC(VD->getDescribedVarTemplate());
3634 /// MergeFunctionDecl - We just parsed a function 'New' from
3635 /// declarator D which has the same name and scope as a previous
3636 /// declaration 'Old'. Figure out how to resolve this situation,
3637 /// merging decls or emitting diagnostics as appropriate.
3639 /// In C++, New and Old must be declarations that are not
3640 /// overloaded. Use IsOverload to determine whether New and Old are
3641 /// overloaded, and to select the Old declaration that New should be
3642 /// merged with.
3644 /// Returns true if there was an error, false otherwise.
3645 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD, Scope *S,
3646 bool MergeTypeWithOld, bool NewDeclIsDefn) {
3647 // Verify the old decl was also a function.
3648 FunctionDecl *Old = OldD->getAsFunction();
3649 if (!Old) {
3650 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
3651 if (New->getFriendObjectKind()) {
3652 Diag(New->getLocation(), diag::err_using_decl_friend);
3653 Diag(Shadow->getTargetDecl()->getLocation(),
3654 diag::note_using_decl_target);
3655 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl)
3656 << 0;
3657 return true;
3660 // Check whether the two declarations might declare the same function or
3661 // function template.
3662 if (FunctionTemplateDecl *NewTemplate =
3663 New->getDescribedFunctionTemplate()) {
3664 if (checkUsingShadowRedecl<FunctionTemplateDecl>(*this, Shadow,
3665 NewTemplate))
3666 return true;
3667 OldD = Old = cast<FunctionTemplateDecl>(Shadow->getTargetDecl())
3668 ->getAsFunction();
3669 } else {
3670 if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3671 return true;
3672 OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3674 } else {
3675 Diag(New->getLocation(), diag::err_redefinition_different_kind)
3676 << New->getDeclName();
3677 notePreviousDefinition(OldD, New->getLocation());
3678 return true;
3682 // If the old declaration was found in an inline namespace and the new
3683 // declaration was qualified, update the DeclContext to match.
3684 adjustDeclContextForDeclaratorDecl(New, Old);
3686 // If the old declaration is invalid, just give up here.
3687 if (Old->isInvalidDecl())
3688 return true;
3690 // Disallow redeclaration of some builtins.
3691 if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3692 Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3693 Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3694 << Old << Old->getType();
3695 return true;
3698 diag::kind PrevDiag;
3699 SourceLocation OldLocation;
3700 std::tie(PrevDiag, OldLocation) =
3701 getNoteDiagForInvalidRedeclaration(Old, New);
3703 // Don't complain about this if we're in GNU89 mode and the old function
3704 // is an extern inline function.
3705 // Don't complain about specializations. They are not supposed to have
3706 // storage classes.
3707 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3708 New->getStorageClass() == SC_Static &&
3709 Old->hasExternalFormalLinkage() &&
3710 !New->getTemplateSpecializationInfo() &&
3711 !canRedefineFunction(Old, getLangOpts())) {
3712 if (getLangOpts().MicrosoftExt) {
3713 Diag(New->getLocation(), diag::ext_static_non_static) << New;
3714 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3715 } else {
3716 Diag(New->getLocation(), diag::err_static_non_static) << New;
3717 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3718 return true;
3722 if (const auto *ILA = New->getAttr<InternalLinkageAttr>())
3723 if (!Old->hasAttr<InternalLinkageAttr>()) {
3724 Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl)
3725 << ILA;
3726 Diag(Old->getLocation(), diag::note_previous_declaration);
3727 New->dropAttr<InternalLinkageAttr>();
3730 if (auto *EA = New->getAttr<ErrorAttr>()) {
3731 if (!Old->hasAttr<ErrorAttr>()) {
3732 Diag(EA->getLocation(), diag::err_attribute_missing_on_first_decl) << EA;
3733 Diag(Old->getLocation(), diag::note_previous_declaration);
3734 New->dropAttr<ErrorAttr>();
3738 if (CheckRedeclarationInModule(New, Old))
3739 return true;
3741 if (!getLangOpts().CPlusPlus) {
3742 bool OldOvl = Old->hasAttr<OverloadableAttr>();
3743 if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3744 Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3745 << New << OldOvl;
3747 // Try our best to find a decl that actually has the overloadable
3748 // attribute for the note. In most cases (e.g. programs with only one
3749 // broken declaration/definition), this won't matter.
3751 // FIXME: We could do this if we juggled some extra state in
3752 // OverloadableAttr, rather than just removing it.
3753 const Decl *DiagOld = Old;
3754 if (OldOvl) {
3755 auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3756 const auto *A = D->getAttr<OverloadableAttr>();
3757 return A && !A->isImplicit();
3759 // If we've implicitly added *all* of the overloadable attrs to this
3760 // chain, emitting a "previous redecl" note is pointless.
3761 DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3764 if (DiagOld)
3765 Diag(DiagOld->getLocation(),
3766 diag::note_attribute_overloadable_prev_overload)
3767 << OldOvl;
3769 if (OldOvl)
3770 New->addAttr(OverloadableAttr::CreateImplicit(Context));
3771 else
3772 New->dropAttr<OverloadableAttr>();
3776 // It is not permitted to redeclare an SME function with different SME
3777 // attributes.
3778 if (IsInvalidSMECallConversion(Old->getType(), New->getType(),
3779 AArch64SMECallConversionKind::MatchExactly)) {
3780 Diag(New->getLocation(), diag::err_sme_attr_mismatch)
3781 << New->getType() << Old->getType();
3782 Diag(OldLocation, diag::note_previous_declaration);
3783 return true;
3786 // If a function is first declared with a calling convention, but is later
3787 // declared or defined without one, all following decls assume the calling
3788 // convention of the first.
3790 // It's OK if a function is first declared without a calling convention,
3791 // but is later declared or defined with the default calling convention.
3793 // To test if either decl has an explicit calling convention, we look for
3794 // AttributedType sugar nodes on the type as written. If they are missing or
3795 // were canonicalized away, we assume the calling convention was implicit.
3797 // Note also that we DO NOT return at this point, because we still have
3798 // other tests to run.
3799 QualType OldQType = Context.getCanonicalType(Old->getType());
3800 QualType NewQType = Context.getCanonicalType(New->getType());
3801 const FunctionType *OldType = cast<FunctionType>(OldQType);
3802 const FunctionType *NewType = cast<FunctionType>(NewQType);
3803 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3804 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3805 bool RequiresAdjustment = false;
3807 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3808 FunctionDecl *First = Old->getFirstDecl();
3809 const FunctionType *FT =
3810 First->getType().getCanonicalType()->castAs<FunctionType>();
3811 FunctionType::ExtInfo FI = FT->getExtInfo();
3812 bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3813 if (!NewCCExplicit) {
3814 // Inherit the CC from the previous declaration if it was specified
3815 // there but not here.
3816 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3817 RequiresAdjustment = true;
3818 } else if (Old->getBuiltinID()) {
3819 // Builtin attribute isn't propagated to the new one yet at this point,
3820 // so we check if the old one is a builtin.
3822 // Calling Conventions on a Builtin aren't really useful and setting a
3823 // default calling convention and cdecl'ing some builtin redeclarations is
3824 // common, so warn and ignore the calling convention on the redeclaration.
3825 Diag(New->getLocation(), diag::warn_cconv_unsupported)
3826 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3827 << (int)CallingConventionIgnoredReason::BuiltinFunction;
3828 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3829 RequiresAdjustment = true;
3830 } else {
3831 // Calling conventions aren't compatible, so complain.
3832 bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3833 Diag(New->getLocation(), diag::err_cconv_change)
3834 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3835 << !FirstCCExplicit
3836 << (!FirstCCExplicit ? "" :
3837 FunctionType::getNameForCallConv(FI.getCC()));
3839 // Put the note on the first decl, since it is the one that matters.
3840 Diag(First->getLocation(), diag::note_previous_declaration);
3841 return true;
3845 // FIXME: diagnose the other way around?
3846 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3847 NewTypeInfo = NewTypeInfo.withNoReturn(true);
3848 RequiresAdjustment = true;
3851 // Merge regparm attribute.
3852 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3853 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3854 if (NewTypeInfo.getHasRegParm()) {
3855 Diag(New->getLocation(), diag::err_regparm_mismatch)
3856 << NewType->getRegParmType()
3857 << OldType->getRegParmType();
3858 Diag(OldLocation, diag::note_previous_declaration);
3859 return true;
3862 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3863 RequiresAdjustment = true;
3866 // Merge ns_returns_retained attribute.
3867 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3868 if (NewTypeInfo.getProducesResult()) {
3869 Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3870 << "'ns_returns_retained'";
3871 Diag(OldLocation, diag::note_previous_declaration);
3872 return true;
3875 NewTypeInfo = NewTypeInfo.withProducesResult(true);
3876 RequiresAdjustment = true;
3879 if (OldTypeInfo.getNoCallerSavedRegs() !=
3880 NewTypeInfo.getNoCallerSavedRegs()) {
3881 if (NewTypeInfo.getNoCallerSavedRegs()) {
3882 AnyX86NoCallerSavedRegistersAttr *Attr =
3883 New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3884 Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3885 Diag(OldLocation, diag::note_previous_declaration);
3886 return true;
3889 NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3890 RequiresAdjustment = true;
3893 if (RequiresAdjustment) {
3894 const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3895 AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3896 New->setType(QualType(AdjustedType, 0));
3897 NewQType = Context.getCanonicalType(New->getType());
3900 // If this redeclaration makes the function inline, we may need to add it to
3901 // UndefinedButUsed.
3902 if (!Old->isInlined() && New->isInlined() &&
3903 !New->hasAttr<GNUInlineAttr>() &&
3904 !getLangOpts().GNUInline &&
3905 Old->isUsed(false) &&
3906 !Old->isDefined() && !New->isThisDeclarationADefinition())
3907 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3908 SourceLocation()));
3910 // If this redeclaration makes it newly gnu_inline, we don't want to warn
3911 // about it.
3912 if (New->hasAttr<GNUInlineAttr>() &&
3913 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3914 UndefinedButUsed.erase(Old->getCanonicalDecl());
3917 // If pass_object_size params don't match up perfectly, this isn't a valid
3918 // redeclaration.
3919 if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3920 !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3921 Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3922 << New->getDeclName();
3923 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3924 return true;
3927 if (getLangOpts().CPlusPlus) {
3928 OldQType = Context.getCanonicalType(Old->getType());
3929 NewQType = Context.getCanonicalType(New->getType());
3931 // Go back to the type source info to compare the declared return types,
3932 // per C++1y [dcl.type.auto]p13:
3933 // Redeclarations or specializations of a function or function template
3934 // with a declared return type that uses a placeholder type shall also
3935 // use that placeholder, not a deduced type.
3936 QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3937 QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3938 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3939 canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3940 OldDeclaredReturnType)) {
3941 QualType ResQT;
3942 if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3943 OldDeclaredReturnType->isObjCObjectPointerType())
3944 // FIXME: This does the wrong thing for a deduced return type.
3945 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3946 if (ResQT.isNull()) {
3947 if (New->isCXXClassMember() && New->isOutOfLine())
3948 Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3949 << New << New->getReturnTypeSourceRange();
3950 else
3951 Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3952 << New->getReturnTypeSourceRange();
3953 Diag(OldLocation, PrevDiag) << Old << Old->getType()
3954 << Old->getReturnTypeSourceRange();
3955 return true;
3957 else
3958 NewQType = ResQT;
3961 QualType OldReturnType = OldType->getReturnType();
3962 QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3963 if (OldReturnType != NewReturnType) {
3964 // If this function has a deduced return type and has already been
3965 // defined, copy the deduced value from the old declaration.
3966 AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3967 if (OldAT && OldAT->isDeduced()) {
3968 QualType DT = OldAT->getDeducedType();
3969 if (DT.isNull()) {
3970 New->setType(SubstAutoTypeDependent(New->getType()));
3971 NewQType = Context.getCanonicalType(SubstAutoTypeDependent(NewQType));
3972 } else {
3973 New->setType(SubstAutoType(New->getType(), DT));
3974 NewQType = Context.getCanonicalType(SubstAutoType(NewQType, DT));
3979 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3980 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3981 if (OldMethod && NewMethod) {
3982 // Preserve triviality.
3983 NewMethod->setTrivial(OldMethod->isTrivial());
3985 // MSVC allows explicit template specialization at class scope:
3986 // 2 CXXMethodDecls referring to the same function will be injected.
3987 // We don't want a redeclaration error.
3988 bool IsClassScopeExplicitSpecialization =
3989 OldMethod->isFunctionTemplateSpecialization() &&
3990 NewMethod->isFunctionTemplateSpecialization();
3991 bool isFriend = NewMethod->getFriendObjectKind();
3993 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3994 !IsClassScopeExplicitSpecialization) {
3995 // -- Member function declarations with the same name and the
3996 // same parameter types cannot be overloaded if any of them
3997 // is a static member function declaration.
3998 if (OldMethod->isStatic() != NewMethod->isStatic()) {
3999 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
4000 Diag(OldLocation, PrevDiag) << Old << Old->getType();
4001 return true;
4004 // C++ [class.mem]p1:
4005 // [...] A member shall not be declared twice in the
4006 // member-specification, except that a nested class or member
4007 // class template can be declared and then later defined.
4008 if (!inTemplateInstantiation()) {
4009 unsigned NewDiag;
4010 if (isa<CXXConstructorDecl>(OldMethod))
4011 NewDiag = diag::err_constructor_redeclared;
4012 else if (isa<CXXDestructorDecl>(NewMethod))
4013 NewDiag = diag::err_destructor_redeclared;
4014 else if (isa<CXXConversionDecl>(NewMethod))
4015 NewDiag = diag::err_conv_function_redeclared;
4016 else
4017 NewDiag = diag::err_member_redeclared;
4019 Diag(New->getLocation(), NewDiag);
4020 } else {
4021 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
4022 << New << New->getType();
4024 Diag(OldLocation, PrevDiag) << Old << Old->getType();
4025 return true;
4027 // Complain if this is an explicit declaration of a special
4028 // member that was initially declared implicitly.
4030 // As an exception, it's okay to befriend such methods in order
4031 // to permit the implicit constructor/destructor/operator calls.
4032 } else if (OldMethod->isImplicit()) {
4033 if (isFriend) {
4034 NewMethod->setImplicit();
4035 } else {
4036 Diag(NewMethod->getLocation(),
4037 diag::err_definition_of_implicitly_declared_member)
4038 << New << getSpecialMember(OldMethod);
4039 return true;
4041 } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
4042 Diag(NewMethod->getLocation(),
4043 diag::err_definition_of_explicitly_defaulted_member)
4044 << getSpecialMember(OldMethod);
4045 return true;
4049 // C++1z [over.load]p2
4050 // Certain function declarations cannot be overloaded:
4051 // -- Function declarations that differ only in the return type,
4052 // the exception specification, or both cannot be overloaded.
4054 // Check the exception specifications match. This may recompute the type of
4055 // both Old and New if it resolved exception specifications, so grab the
4056 // types again after this. Because this updates the type, we do this before
4057 // any of the other checks below, which may update the "de facto" NewQType
4058 // but do not necessarily update the type of New.
4059 if (CheckEquivalentExceptionSpec(Old, New))
4060 return true;
4062 // C++11 [dcl.attr.noreturn]p1:
4063 // The first declaration of a function shall specify the noreturn
4064 // attribute if any declaration of that function specifies the noreturn
4065 // attribute.
4066 if (const auto *NRA = New->getAttr<CXX11NoReturnAttr>())
4067 if (!Old->hasAttr<CXX11NoReturnAttr>()) {
4068 Diag(NRA->getLocation(), diag::err_attribute_missing_on_first_decl)
4069 << NRA;
4070 Diag(Old->getLocation(), diag::note_previous_declaration);
4073 // C++11 [dcl.attr.depend]p2:
4074 // The first declaration of a function shall specify the
4075 // carries_dependency attribute for its declarator-id if any declaration
4076 // of the function specifies the carries_dependency attribute.
4077 const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
4078 if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
4079 Diag(CDA->getLocation(),
4080 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
4081 Diag(Old->getFirstDecl()->getLocation(),
4082 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
4085 // (C++98 8.3.5p3):
4086 // All declarations for a function shall agree exactly in both the
4087 // return type and the parameter-type-list.
4088 // We also want to respect all the extended bits except noreturn.
4090 // noreturn should now match unless the old type info didn't have it.
4091 QualType OldQTypeForComparison = OldQType;
4092 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
4093 auto *OldType = OldQType->castAs<FunctionProtoType>();
4094 const FunctionType *OldTypeForComparison
4095 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
4096 OldQTypeForComparison = QualType(OldTypeForComparison, 0);
4097 assert(OldQTypeForComparison.isCanonical());
4100 if (haveIncompatibleLanguageLinkages(Old, New)) {
4101 // As a special case, retain the language linkage from previous
4102 // declarations of a friend function as an extension.
4104 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
4105 // and is useful because there's otherwise no way to specify language
4106 // linkage within class scope.
4108 // Check cautiously as the friend object kind isn't yet complete.
4109 if (New->getFriendObjectKind() != Decl::FOK_None) {
4110 Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
4111 Diag(OldLocation, PrevDiag);
4112 } else {
4113 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4114 Diag(OldLocation, PrevDiag);
4115 return true;
4119 // If the function types are compatible, merge the declarations. Ignore the
4120 // exception specifier because it was already checked above in
4121 // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics
4122 // about incompatible types under -fms-compatibility.
4123 if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison,
4124 NewQType))
4125 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
4127 // If the types are imprecise (due to dependent constructs in friends or
4128 // local extern declarations), it's OK if they differ. We'll check again
4129 // during instantiation.
4130 if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
4131 return false;
4133 // Fall through for conflicting redeclarations and redefinitions.
4136 // C: Function types need to be compatible, not identical. This handles
4137 // duplicate function decls like "void f(int); void f(enum X);" properly.
4138 if (!getLangOpts().CPlusPlus) {
4139 // C99 6.7.5.3p15: ...If one type has a parameter type list and the other
4140 // type is specified by a function definition that contains a (possibly
4141 // empty) identifier list, both shall agree in the number of parameters
4142 // and the type of each parameter shall be compatible with the type that
4143 // results from the application of default argument promotions to the
4144 // type of the corresponding identifier. ...
4145 // This cannot be handled by ASTContext::typesAreCompatible() because that
4146 // doesn't know whether the function type is for a definition or not when
4147 // eventually calling ASTContext::mergeFunctionTypes(). The only situation
4148 // we need to cover here is that the number of arguments agree as the
4149 // default argument promotion rules were already checked by
4150 // ASTContext::typesAreCompatible().
4151 if (Old->hasPrototype() && !New->hasWrittenPrototype() && NewDeclIsDefn &&
4152 Old->getNumParams() != New->getNumParams() && !Old->isImplicit()) {
4153 if (Old->hasInheritedPrototype())
4154 Old = Old->getCanonicalDecl();
4155 Diag(New->getLocation(), diag::err_conflicting_types) << New;
4156 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
4157 return true;
4160 // If we are merging two functions where only one of them has a prototype,
4161 // we may have enough information to decide to issue a diagnostic that the
4162 // function without a protoype will change behavior in C23. This handles
4163 // cases like:
4164 // void i(); void i(int j);
4165 // void i(int j); void i();
4166 // void i(); void i(int j) {}
4167 // See ActOnFinishFunctionBody() for other cases of the behavior change
4168 // diagnostic. See GetFullTypeForDeclarator() for handling of a function
4169 // type without a prototype.
4170 if (New->hasWrittenPrototype() != Old->hasWrittenPrototype() &&
4171 !New->isImplicit() && !Old->isImplicit()) {
4172 const FunctionDecl *WithProto, *WithoutProto;
4173 if (New->hasWrittenPrototype()) {
4174 WithProto = New;
4175 WithoutProto = Old;
4176 } else {
4177 WithProto = Old;
4178 WithoutProto = New;
4181 if (WithProto->getNumParams() != 0) {
4182 if (WithoutProto->getBuiltinID() == 0 && !WithoutProto->isImplicit()) {
4183 // The one without the prototype will be changing behavior in C23, so
4184 // warn about that one so long as it's a user-visible declaration.
4185 bool IsWithoutProtoADef = false, IsWithProtoADef = false;
4186 if (WithoutProto == New)
4187 IsWithoutProtoADef = NewDeclIsDefn;
4188 else
4189 IsWithProtoADef = NewDeclIsDefn;
4190 Diag(WithoutProto->getLocation(),
4191 diag::warn_non_prototype_changes_behavior)
4192 << IsWithoutProtoADef << (WithoutProto->getNumParams() ? 0 : 1)
4193 << (WithoutProto == Old) << IsWithProtoADef;
4195 // The reason the one without the prototype will be changing behavior
4196 // is because of the one with the prototype, so note that so long as
4197 // it's a user-visible declaration. There is one exception to this:
4198 // when the new declaration is a definition without a prototype, the
4199 // old declaration with a prototype is not the cause of the issue,
4200 // and that does not need to be noted because the one with a
4201 // prototype will not change behavior in C23.
4202 if (WithProto->getBuiltinID() == 0 && !WithProto->isImplicit() &&
4203 !IsWithoutProtoADef)
4204 Diag(WithProto->getLocation(), diag::note_conflicting_prototype);
4209 if (Context.typesAreCompatible(OldQType, NewQType)) {
4210 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
4211 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
4212 const FunctionProtoType *OldProto = nullptr;
4213 if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
4214 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
4215 // The old declaration provided a function prototype, but the
4216 // new declaration does not. Merge in the prototype.
4217 assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
4218 NewQType = Context.getFunctionType(NewFuncType->getReturnType(),
4219 OldProto->getParamTypes(),
4220 OldProto->getExtProtoInfo());
4221 New->setType(NewQType);
4222 New->setHasInheritedPrototype();
4224 // Synthesize parameters with the same types.
4225 SmallVector<ParmVarDecl *, 16> Params;
4226 for (const auto &ParamType : OldProto->param_types()) {
4227 ParmVarDecl *Param = ParmVarDecl::Create(
4228 Context, New, SourceLocation(), SourceLocation(), nullptr,
4229 ParamType, /*TInfo=*/nullptr, SC_None, nullptr);
4230 Param->setScopeInfo(0, Params.size());
4231 Param->setImplicit();
4232 Params.push_back(Param);
4235 New->setParams(Params);
4238 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
4242 // Check if the function types are compatible when pointer size address
4243 // spaces are ignored.
4244 if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType))
4245 return false;
4247 // GNU C permits a K&R definition to follow a prototype declaration
4248 // if the declared types of the parameters in the K&R definition
4249 // match the types in the prototype declaration, even when the
4250 // promoted types of the parameters from the K&R definition differ
4251 // from the types in the prototype. GCC then keeps the types from
4252 // the prototype.
4254 // If a variadic prototype is followed by a non-variadic K&R definition,
4255 // the K&R definition becomes variadic. This is sort of an edge case, but
4256 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
4257 // C99 6.9.1p8.
4258 if (!getLangOpts().CPlusPlus &&
4259 Old->hasPrototype() && !New->hasPrototype() &&
4260 New->getType()->getAs<FunctionProtoType>() &&
4261 Old->getNumParams() == New->getNumParams()) {
4262 SmallVector<QualType, 16> ArgTypes;
4263 SmallVector<GNUCompatibleParamWarning, 16> Warnings;
4264 const FunctionProtoType *OldProto
4265 = Old->getType()->getAs<FunctionProtoType>();
4266 const FunctionProtoType *NewProto
4267 = New->getType()->getAs<FunctionProtoType>();
4269 // Determine whether this is the GNU C extension.
4270 QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
4271 NewProto->getReturnType());
4272 bool LooseCompatible = !MergedReturn.isNull();
4273 for (unsigned Idx = 0, End = Old->getNumParams();
4274 LooseCompatible && Idx != End; ++Idx) {
4275 ParmVarDecl *OldParm = Old->getParamDecl(Idx);
4276 ParmVarDecl *NewParm = New->getParamDecl(Idx);
4277 if (Context.typesAreCompatible(OldParm->getType(),
4278 NewProto->getParamType(Idx))) {
4279 ArgTypes.push_back(NewParm->getType());
4280 } else if (Context.typesAreCompatible(OldParm->getType(),
4281 NewParm->getType(),
4282 /*CompareUnqualified=*/true)) {
4283 GNUCompatibleParamWarning Warn = { OldParm, NewParm,
4284 NewProto->getParamType(Idx) };
4285 Warnings.push_back(Warn);
4286 ArgTypes.push_back(NewParm->getType());
4287 } else
4288 LooseCompatible = false;
4291 if (LooseCompatible) {
4292 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
4293 Diag(Warnings[Warn].NewParm->getLocation(),
4294 diag::ext_param_promoted_not_compatible_with_prototype)
4295 << Warnings[Warn].PromotedType
4296 << Warnings[Warn].OldParm->getType();
4297 if (Warnings[Warn].OldParm->getLocation().isValid())
4298 Diag(Warnings[Warn].OldParm->getLocation(),
4299 diag::note_previous_declaration);
4302 if (MergeTypeWithOld)
4303 New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
4304 OldProto->getExtProtoInfo()));
4305 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
4308 // Fall through to diagnose conflicting types.
4311 // A function that has already been declared has been redeclared or
4312 // defined with a different type; show an appropriate diagnostic.
4314 // If the previous declaration was an implicitly-generated builtin
4315 // declaration, then at the very least we should use a specialized note.
4316 unsigned BuiltinID;
4317 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
4318 // If it's actually a library-defined builtin function like 'malloc'
4319 // or 'printf', just warn about the incompatible redeclaration.
4320 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4321 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
4322 Diag(OldLocation, diag::note_previous_builtin_declaration)
4323 << Old << Old->getType();
4324 return false;
4327 PrevDiag = diag::note_previous_builtin_declaration;
4330 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
4331 Diag(OldLocation, PrevDiag) << Old << Old->getType();
4332 return true;
4335 /// Completes the merge of two function declarations that are
4336 /// known to be compatible.
4338 /// This routine handles the merging of attributes and other
4339 /// properties of function declarations from the old declaration to
4340 /// the new declaration, once we know that New is in fact a
4341 /// redeclaration of Old.
4343 /// \returns false
4344 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
4345 Scope *S, bool MergeTypeWithOld) {
4346 // Merge the attributes
4347 mergeDeclAttributes(New, Old);
4349 // Merge "pure" flag.
4350 if (Old->isPure())
4351 New->setPure();
4353 // Merge "used" flag.
4354 if (Old->getMostRecentDecl()->isUsed(false))
4355 New->setIsUsed();
4357 // Merge attributes from the parameters. These can mismatch with K&R
4358 // declarations.
4359 if (New->getNumParams() == Old->getNumParams())
4360 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
4361 ParmVarDecl *NewParam = New->getParamDecl(i);
4362 ParmVarDecl *OldParam = Old->getParamDecl(i);
4363 mergeParamDeclAttributes(NewParam, OldParam, *this);
4364 mergeParamDeclTypes(NewParam, OldParam, *this);
4367 if (getLangOpts().CPlusPlus)
4368 return MergeCXXFunctionDecl(New, Old, S);
4370 // Merge the function types so the we get the composite types for the return
4371 // and argument types. Per C11 6.2.7/4, only update the type if the old decl
4372 // was visible.
4373 QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
4374 if (!Merged.isNull() && MergeTypeWithOld)
4375 New->setType(Merged);
4377 return false;
4380 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
4381 ObjCMethodDecl *oldMethod) {
4382 // Merge the attributes, including deprecated/unavailable
4383 AvailabilityMergeKind MergeKind =
4384 isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
4385 ? (oldMethod->isOptional() ? AMK_OptionalProtocolImplementation
4386 : AMK_ProtocolImplementation)
4387 : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
4388 : AMK_Override;
4390 mergeDeclAttributes(newMethod, oldMethod, MergeKind);
4392 // Merge attributes from the parameters.
4393 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
4394 oe = oldMethod->param_end();
4395 for (ObjCMethodDecl::param_iterator
4396 ni = newMethod->param_begin(), ne = newMethod->param_end();
4397 ni != ne && oi != oe; ++ni, ++oi)
4398 mergeParamDeclAttributes(*ni, *oi, *this);
4400 CheckObjCMethodOverride(newMethod, oldMethod);
4403 static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
4404 assert(!S.Context.hasSameType(New->getType(), Old->getType()));
4406 S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
4407 ? diag::err_redefinition_different_type
4408 : diag::err_redeclaration_different_type)
4409 << New->getDeclName() << New->getType() << Old->getType();
4411 diag::kind PrevDiag;
4412 SourceLocation OldLocation;
4413 std::tie(PrevDiag, OldLocation)
4414 = getNoteDiagForInvalidRedeclaration(Old, New);
4415 S.Diag(OldLocation, PrevDiag) << Old << Old->getType();
4416 New->setInvalidDecl();
4419 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
4420 /// scope as a previous declaration 'Old'. Figure out how to merge their types,
4421 /// emitting diagnostics as appropriate.
4423 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
4424 /// to here in AddInitializerToDecl. We can't check them before the initializer
4425 /// is attached.
4426 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
4427 bool MergeTypeWithOld) {
4428 if (New->isInvalidDecl() || Old->isInvalidDecl() || New->getType()->containsErrors() || Old->getType()->containsErrors())
4429 return;
4431 QualType MergedT;
4432 if (getLangOpts().CPlusPlus) {
4433 if (New->getType()->isUndeducedType()) {
4434 // We don't know what the new type is until the initializer is attached.
4435 return;
4436 } else if (Context.hasSameType(New->getType(), Old->getType())) {
4437 // These could still be something that needs exception specs checked.
4438 return MergeVarDeclExceptionSpecs(New, Old);
4440 // C++ [basic.link]p10:
4441 // [...] the types specified by all declarations referring to a given
4442 // object or function shall be identical, except that declarations for an
4443 // array object can specify array types that differ by the presence or
4444 // absence of a major array bound (8.3.4).
4445 else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
4446 const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
4447 const ArrayType *NewArray = Context.getAsArrayType(New->getType());
4449 // We are merging a variable declaration New into Old. If it has an array
4450 // bound, and that bound differs from Old's bound, we should diagnose the
4451 // mismatch.
4452 if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
4453 for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
4454 PrevVD = PrevVD->getPreviousDecl()) {
4455 QualType PrevVDTy = PrevVD->getType();
4456 if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
4457 continue;
4459 if (!Context.hasSameType(New->getType(), PrevVDTy))
4460 return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
4464 if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
4465 if (Context.hasSameType(OldArray->getElementType(),
4466 NewArray->getElementType()))
4467 MergedT = New->getType();
4469 // FIXME: Check visibility. New is hidden but has a complete type. If New
4470 // has no array bound, it should not inherit one from Old, if Old is not
4471 // visible.
4472 else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
4473 if (Context.hasSameType(OldArray->getElementType(),
4474 NewArray->getElementType()))
4475 MergedT = Old->getType();
4478 else if (New->getType()->isObjCObjectPointerType() &&
4479 Old->getType()->isObjCObjectPointerType()) {
4480 MergedT = Context.mergeObjCGCQualifiers(New->getType(),
4481 Old->getType());
4483 } else {
4484 // C 6.2.7p2:
4485 // All declarations that refer to the same object or function shall have
4486 // compatible type.
4487 MergedT = Context.mergeTypes(New->getType(), Old->getType());
4489 if (MergedT.isNull()) {
4490 // It's OK if we couldn't merge types if either type is dependent, for a
4491 // block-scope variable. In other cases (static data members of class
4492 // templates, variable templates, ...), we require the types to be
4493 // equivalent.
4494 // FIXME: The C++ standard doesn't say anything about this.
4495 if ((New->getType()->isDependentType() ||
4496 Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
4497 // If the old type was dependent, we can't merge with it, so the new type
4498 // becomes dependent for now. We'll reproduce the original type when we
4499 // instantiate the TypeSourceInfo for the variable.
4500 if (!New->getType()->isDependentType() && MergeTypeWithOld)
4501 New->setType(Context.DependentTy);
4502 return;
4504 return diagnoseVarDeclTypeMismatch(*this, New, Old);
4507 // Don't actually update the type on the new declaration if the old
4508 // declaration was an extern declaration in a different scope.
4509 if (MergeTypeWithOld)
4510 New->setType(MergedT);
4513 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
4514 LookupResult &Previous) {
4515 // C11 6.2.7p4:
4516 // For an identifier with internal or external linkage declared
4517 // in a scope in which a prior declaration of that identifier is
4518 // visible, if the prior declaration specifies internal or
4519 // external linkage, the type of the identifier at the later
4520 // declaration becomes the composite type.
4522 // If the variable isn't visible, we do not merge with its type.
4523 if (Previous.isShadowed())
4524 return false;
4526 if (S.getLangOpts().CPlusPlus) {
4527 // C++11 [dcl.array]p3:
4528 // If there is a preceding declaration of the entity in the same
4529 // scope in which the bound was specified, an omitted array bound
4530 // is taken to be the same as in that earlier declaration.
4531 return NewVD->isPreviousDeclInSameBlockScope() ||
4532 (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
4533 !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
4534 } else {
4535 // If the old declaration was function-local, don't merge with its
4536 // type unless we're in the same function.
4537 return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
4538 OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
4542 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
4543 /// and scope as a previous declaration 'Old'. Figure out how to resolve this
4544 /// situation, merging decls or emitting diagnostics as appropriate.
4546 /// Tentative definition rules (C99 6.9.2p2) are checked by
4547 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
4548 /// definitions here, since the initializer hasn't been attached.
4550 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
4551 // If the new decl is already invalid, don't do any other checking.
4552 if (New->isInvalidDecl())
4553 return;
4555 if (!shouldLinkPossiblyHiddenDecl(Previous, New))
4556 return;
4558 VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
4560 // Verify the old decl was also a variable or variable template.
4561 VarDecl *Old = nullptr;
4562 VarTemplateDecl *OldTemplate = nullptr;
4563 if (Previous.isSingleResult()) {
4564 if (NewTemplate) {
4565 OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
4566 Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
4568 if (auto *Shadow =
4569 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4570 if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
4571 return New->setInvalidDecl();
4572 } else {
4573 Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
4575 if (auto *Shadow =
4576 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4577 if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
4578 return New->setInvalidDecl();
4581 if (!Old) {
4582 Diag(New->getLocation(), diag::err_redefinition_different_kind)
4583 << New->getDeclName();
4584 notePreviousDefinition(Previous.getRepresentativeDecl(),
4585 New->getLocation());
4586 return New->setInvalidDecl();
4589 // If the old declaration was found in an inline namespace and the new
4590 // declaration was qualified, update the DeclContext to match.
4591 adjustDeclContextForDeclaratorDecl(New, Old);
4593 // Ensure the template parameters are compatible.
4594 if (NewTemplate &&
4595 !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
4596 OldTemplate->getTemplateParameters(),
4597 /*Complain=*/true, TPL_TemplateMatch))
4598 return New->setInvalidDecl();
4600 // C++ [class.mem]p1:
4601 // A member shall not be declared twice in the member-specification [...]
4603 // Here, we need only consider static data members.
4604 if (Old->isStaticDataMember() && !New->isOutOfLine()) {
4605 Diag(New->getLocation(), diag::err_duplicate_member)
4606 << New->getIdentifier();
4607 Diag(Old->getLocation(), diag::note_previous_declaration);
4608 New->setInvalidDecl();
4611 mergeDeclAttributes(New, Old);
4612 // Warn if an already-declared variable is made a weak_import in a subsequent
4613 // declaration
4614 if (New->hasAttr<WeakImportAttr>() &&
4615 Old->getStorageClass() == SC_None &&
4616 !Old->hasAttr<WeakImportAttr>()) {
4617 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
4618 Diag(Old->getLocation(), diag::note_previous_declaration);
4619 // Remove weak_import attribute on new declaration.
4620 New->dropAttr<WeakImportAttr>();
4623 if (const auto *ILA = New->getAttr<InternalLinkageAttr>())
4624 if (!Old->hasAttr<InternalLinkageAttr>()) {
4625 Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl)
4626 << ILA;
4627 Diag(Old->getLocation(), diag::note_previous_declaration);
4628 New->dropAttr<InternalLinkageAttr>();
4631 // Merge the types.
4632 VarDecl *MostRecent = Old->getMostRecentDecl();
4633 if (MostRecent != Old) {
4634 MergeVarDeclTypes(New, MostRecent,
4635 mergeTypeWithPrevious(*this, New, MostRecent, Previous));
4636 if (New->isInvalidDecl())
4637 return;
4640 MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
4641 if (New->isInvalidDecl())
4642 return;
4644 diag::kind PrevDiag;
4645 SourceLocation OldLocation;
4646 std::tie(PrevDiag, OldLocation) =
4647 getNoteDiagForInvalidRedeclaration(Old, New);
4649 // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
4650 if (New->getStorageClass() == SC_Static &&
4651 !New->isStaticDataMember() &&
4652 Old->hasExternalFormalLinkage()) {
4653 if (getLangOpts().MicrosoftExt) {
4654 Diag(New->getLocation(), diag::ext_static_non_static)
4655 << New->getDeclName();
4656 Diag(OldLocation, PrevDiag);
4657 } else {
4658 Diag(New->getLocation(), diag::err_static_non_static)
4659 << New->getDeclName();
4660 Diag(OldLocation, PrevDiag);
4661 return New->setInvalidDecl();
4664 // C99 6.2.2p4:
4665 // For an identifier declared with the storage-class specifier
4666 // extern in a scope in which a prior declaration of that
4667 // identifier is visible,23) if the prior declaration specifies
4668 // internal or external linkage, the linkage of the identifier at
4669 // the later declaration is the same as the linkage specified at
4670 // the prior declaration. If no prior declaration is visible, or
4671 // if the prior declaration specifies no linkage, then the
4672 // identifier has external linkage.
4673 if (New->hasExternalStorage() && Old->hasLinkage())
4674 /* Okay */;
4675 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
4676 !New->isStaticDataMember() &&
4677 Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
4678 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
4679 Diag(OldLocation, PrevDiag);
4680 return New->setInvalidDecl();
4683 // Check if extern is followed by non-extern and vice-versa.
4684 if (New->hasExternalStorage() &&
4685 !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
4686 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
4687 Diag(OldLocation, PrevDiag);
4688 return New->setInvalidDecl();
4690 if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
4691 !New->hasExternalStorage()) {
4692 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
4693 Diag(OldLocation, PrevDiag);
4694 return New->setInvalidDecl();
4697 if (CheckRedeclarationInModule(New, Old))
4698 return;
4700 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
4702 // FIXME: The test for external storage here seems wrong? We still
4703 // need to check for mismatches.
4704 if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
4705 // Don't complain about out-of-line definitions of static members.
4706 !(Old->getLexicalDeclContext()->isRecord() &&
4707 !New->getLexicalDeclContext()->isRecord())) {
4708 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
4709 Diag(OldLocation, PrevDiag);
4710 return New->setInvalidDecl();
4713 if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
4714 if (VarDecl *Def = Old->getDefinition()) {
4715 // C++1z [dcl.fcn.spec]p4:
4716 // If the definition of a variable appears in a translation unit before
4717 // its first declaration as inline, the program is ill-formed.
4718 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
4719 Diag(Def->getLocation(), diag::note_previous_definition);
4723 // If this redeclaration makes the variable inline, we may need to add it to
4724 // UndefinedButUsed.
4725 if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
4726 !Old->getDefinition() && !New->isThisDeclarationADefinition())
4727 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
4728 SourceLocation()));
4730 if (New->getTLSKind() != Old->getTLSKind()) {
4731 if (!Old->getTLSKind()) {
4732 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
4733 Diag(OldLocation, PrevDiag);
4734 } else if (!New->getTLSKind()) {
4735 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
4736 Diag(OldLocation, PrevDiag);
4737 } else {
4738 // Do not allow redeclaration to change the variable between requiring
4739 // static and dynamic initialization.
4740 // FIXME: GCC allows this, but uses the TLS keyword on the first
4741 // declaration to determine the kind. Do we need to be compatible here?
4742 Diag(New->getLocation(), diag::err_thread_thread_different_kind)
4743 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
4744 Diag(OldLocation, PrevDiag);
4748 // C++ doesn't have tentative definitions, so go right ahead and check here.
4749 if (getLangOpts().CPlusPlus) {
4750 if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
4751 Old->getCanonicalDecl()->isConstexpr()) {
4752 // This definition won't be a definition any more once it's been merged.
4753 Diag(New->getLocation(),
4754 diag::warn_deprecated_redundant_constexpr_static_def);
4755 } else if (New->isThisDeclarationADefinition() == VarDecl::Definition) {
4756 VarDecl *Def = Old->getDefinition();
4757 if (Def && checkVarDeclRedefinition(Def, New))
4758 return;
4762 if (haveIncompatibleLanguageLinkages(Old, New)) {
4763 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4764 Diag(OldLocation, PrevDiag);
4765 New->setInvalidDecl();
4766 return;
4769 // Merge "used" flag.
4770 if (Old->getMostRecentDecl()->isUsed(false))
4771 New->setIsUsed();
4773 // Keep a chain of previous declarations.
4774 New->setPreviousDecl(Old);
4775 if (NewTemplate)
4776 NewTemplate->setPreviousDecl(OldTemplate);
4778 // Inherit access appropriately.
4779 New->setAccess(Old->getAccess());
4780 if (NewTemplate)
4781 NewTemplate->setAccess(New->getAccess());
4783 if (Old->isInline())
4784 New->setImplicitlyInline();
4787 void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4788 SourceManager &SrcMgr = getSourceManager();
4789 auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4790 auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4791 auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4792 auto FOld = SrcMgr.getFileEntryRefForID(FOldDecLoc.first);
4793 auto &HSI = PP.getHeaderSearchInfo();
4794 StringRef HdrFilename =
4795 SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4797 auto noteFromModuleOrInclude = [&](Module *Mod,
4798 SourceLocation IncLoc) -> bool {
4799 // Redefinition errors with modules are common with non modular mapped
4800 // headers, example: a non-modular header H in module A that also gets
4801 // included directly in a TU. Pointing twice to the same header/definition
4802 // is confusing, try to get better diagnostics when modules is on.
4803 if (IncLoc.isValid()) {
4804 if (Mod) {
4805 Diag(IncLoc, diag::note_redefinition_modules_same_file)
4806 << HdrFilename.str() << Mod->getFullModuleName();
4807 if (!Mod->DefinitionLoc.isInvalid())
4808 Diag(Mod->DefinitionLoc, diag::note_defined_here)
4809 << Mod->getFullModuleName();
4810 } else {
4811 Diag(IncLoc, diag::note_redefinition_include_same_file)
4812 << HdrFilename.str();
4814 return true;
4817 return false;
4820 // Is it the same file and same offset? Provide more information on why
4821 // this leads to a redefinition error.
4822 if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4823 SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4824 SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4825 bool EmittedDiag =
4826 noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4827 EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4829 // If the header has no guards, emit a note suggesting one.
4830 if (FOld && !HSI.isFileMultipleIncludeGuarded(*FOld))
4831 Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4833 if (EmittedDiag)
4834 return;
4837 // Redefinition coming from different files or couldn't do better above.
4838 if (Old->getLocation().isValid())
4839 Diag(Old->getLocation(), diag::note_previous_definition);
4842 /// We've just determined that \p Old and \p New both appear to be definitions
4843 /// of the same variable. Either diagnose or fix the problem.
4844 bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4845 if (!hasVisibleDefinition(Old) &&
4846 (New->getFormalLinkage() == InternalLinkage ||
4847 New->isInline() ||
4848 isa<VarTemplateSpecializationDecl>(New) ||
4849 New->getDescribedVarTemplate() ||
4850 New->getNumTemplateParameterLists() ||
4851 New->getDeclContext()->isDependentContext())) {
4852 // The previous definition is hidden, and multiple definitions are
4853 // permitted (in separate TUs). Demote this to a declaration.
4854 New->demoteThisDefinitionToDeclaration();
4856 // Make the canonical definition visible.
4857 if (auto *OldTD = Old->getDescribedVarTemplate())
4858 makeMergedDefinitionVisible(OldTD);
4859 makeMergedDefinitionVisible(Old);
4860 return false;
4861 } else {
4862 Diag(New->getLocation(), diag::err_redefinition) << New;
4863 notePreviousDefinition(Old, New->getLocation());
4864 New->setInvalidDecl();
4865 return true;
4869 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4870 /// no declarator (e.g. "struct foo;") is parsed.
4871 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
4872 DeclSpec &DS,
4873 const ParsedAttributesView &DeclAttrs,
4874 RecordDecl *&AnonRecord) {
4875 return ParsedFreeStandingDeclSpec(
4876 S, AS, DS, DeclAttrs, MultiTemplateParamsArg(), false, AnonRecord);
4879 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4880 // disambiguate entities defined in different scopes.
4881 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
4882 // compatibility.
4883 // We will pick our mangling number depending on which version of MSVC is being
4884 // targeted.
4885 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4886 return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4887 ? S->getMSCurManglingNumber()
4888 : S->getMSLastManglingNumber();
4891 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4892 if (!Context.getLangOpts().CPlusPlus)
4893 return;
4895 if (isa<CXXRecordDecl>(Tag->getParent())) {
4896 // If this tag is the direct child of a class, number it if
4897 // it is anonymous.
4898 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4899 return;
4900 MangleNumberingContext &MCtx =
4901 Context.getManglingNumberContext(Tag->getParent());
4902 Context.setManglingNumber(
4903 Tag, MCtx.getManglingNumber(
4904 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4905 return;
4908 // If this tag isn't a direct child of a class, number it if it is local.
4909 MangleNumberingContext *MCtx;
4910 Decl *ManglingContextDecl;
4911 std::tie(MCtx, ManglingContextDecl) =
4912 getCurrentMangleNumberContext(Tag->getDeclContext());
4913 if (MCtx) {
4914 Context.setManglingNumber(
4915 Tag, MCtx->getManglingNumber(
4916 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4920 namespace {
4921 struct NonCLikeKind {
4922 enum {
4923 None,
4924 BaseClass,
4925 DefaultMemberInit,
4926 Lambda,
4927 Friend,
4928 OtherMember,
4929 Invalid,
4930 } Kind = None;
4931 SourceRange Range;
4933 explicit operator bool() { return Kind != None; }
4937 /// Determine whether a class is C-like, according to the rules of C++
4938 /// [dcl.typedef] for anonymous classes with typedef names for linkage.
4939 static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) {
4940 if (RD->isInvalidDecl())
4941 return {NonCLikeKind::Invalid, {}};
4943 // C++ [dcl.typedef]p9: [P1766R1]
4944 // An unnamed class with a typedef name for linkage purposes shall not
4946 // -- have any base classes
4947 if (RD->getNumBases())
4948 return {NonCLikeKind::BaseClass,
4949 SourceRange(RD->bases_begin()->getBeginLoc(),
4950 RD->bases_end()[-1].getEndLoc())};
4951 bool Invalid = false;
4952 for (Decl *D : RD->decls()) {
4953 // Don't complain about things we already diagnosed.
4954 if (D->isInvalidDecl()) {
4955 Invalid = true;
4956 continue;
4959 // -- have any [...] default member initializers
4960 if (auto *FD = dyn_cast<FieldDecl>(D)) {
4961 if (FD->hasInClassInitializer()) {
4962 auto *Init = FD->getInClassInitializer();
4963 return {NonCLikeKind::DefaultMemberInit,
4964 Init ? Init->getSourceRange() : D->getSourceRange()};
4966 continue;
4969 // FIXME: We don't allow friend declarations. This violates the wording of
4970 // P1766, but not the intent.
4971 if (isa<FriendDecl>(D))
4972 return {NonCLikeKind::Friend, D->getSourceRange()};
4974 // -- declare any members other than non-static data members, member
4975 // enumerations, or member classes,
4976 if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) ||
4977 isa<EnumDecl>(D))
4978 continue;
4979 auto *MemberRD = dyn_cast<CXXRecordDecl>(D);
4980 if (!MemberRD) {
4981 if (D->isImplicit())
4982 continue;
4983 return {NonCLikeKind::OtherMember, D->getSourceRange()};
4986 // -- contain a lambda-expression,
4987 if (MemberRD->isLambda())
4988 return {NonCLikeKind::Lambda, MemberRD->getSourceRange()};
4990 // and all member classes shall also satisfy these requirements
4991 // (recursively).
4992 if (MemberRD->isThisDeclarationADefinition()) {
4993 if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD))
4994 return Kind;
4998 return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}};
5001 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
5002 TypedefNameDecl *NewTD) {
5003 if (TagFromDeclSpec->isInvalidDecl())
5004 return;
5006 // Do nothing if the tag already has a name for linkage purposes.
5007 if (TagFromDeclSpec->hasNameForLinkage())
5008 return;
5010 // A well-formed anonymous tag must always be a TUK_Definition.
5011 assert(TagFromDeclSpec->isThisDeclarationADefinition());
5013 // The type must match the tag exactly; no qualifiers allowed.
5014 if (!Context.hasSameType(NewTD->getUnderlyingType(),
5015 Context.getTagDeclType(TagFromDeclSpec))) {
5016 if (getLangOpts().CPlusPlus)
5017 Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
5018 return;
5021 // C++ [dcl.typedef]p9: [P1766R1, applied as DR]
5022 // An unnamed class with a typedef name for linkage purposes shall [be
5023 // C-like].
5025 // FIXME: Also diagnose if we've already computed the linkage. That ideally
5026 // shouldn't happen, but there are constructs that the language rule doesn't
5027 // disallow for which we can't reasonably avoid computing linkage early.
5028 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec);
5029 NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD)
5030 : NonCLikeKind();
5031 bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed();
5032 if (NonCLike || ChangesLinkage) {
5033 if (NonCLike.Kind == NonCLikeKind::Invalid)
5034 return;
5036 unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef;
5037 if (ChangesLinkage) {
5038 // If the linkage changes, we can't accept this as an extension.
5039 if (NonCLike.Kind == NonCLikeKind::None)
5040 DiagID = diag::err_typedef_changes_linkage;
5041 else
5042 DiagID = diag::err_non_c_like_anon_struct_in_typedef;
5045 SourceLocation FixitLoc =
5046 getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart());
5047 llvm::SmallString<40> TextToInsert;
5048 TextToInsert += ' ';
5049 TextToInsert += NewTD->getIdentifier()->getName();
5051 Diag(FixitLoc, DiagID)
5052 << isa<TypeAliasDecl>(NewTD)
5053 << FixItHint::CreateInsertion(FixitLoc, TextToInsert);
5054 if (NonCLike.Kind != NonCLikeKind::None) {
5055 Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct)
5056 << NonCLike.Kind - 1 << NonCLike.Range;
5058 Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here)
5059 << NewTD << isa<TypeAliasDecl>(NewTD);
5061 if (ChangesLinkage)
5062 return;
5065 // Otherwise, set this as the anon-decl typedef for the tag.
5066 TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
5069 static unsigned GetDiagnosticTypeSpecifierID(const DeclSpec &DS) {
5070 DeclSpec::TST T = DS.getTypeSpecType();
5071 switch (T) {
5072 case DeclSpec::TST_class:
5073 return 0;
5074 case DeclSpec::TST_struct:
5075 return 1;
5076 case DeclSpec::TST_interface:
5077 return 2;
5078 case DeclSpec::TST_union:
5079 return 3;
5080 case DeclSpec::TST_enum:
5081 if (const auto *ED = dyn_cast<EnumDecl>(DS.getRepAsDecl())) {
5082 if (ED->isScopedUsingClassTag())
5083 return 5;
5084 if (ED->isScoped())
5085 return 6;
5087 return 4;
5088 default:
5089 llvm_unreachable("unexpected type specifier");
5092 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
5093 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
5094 /// parameters to cope with template friend declarations.
5095 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
5096 DeclSpec &DS,
5097 const ParsedAttributesView &DeclAttrs,
5098 MultiTemplateParamsArg TemplateParams,
5099 bool IsExplicitInstantiation,
5100 RecordDecl *&AnonRecord) {
5101 Decl *TagD = nullptr;
5102 TagDecl *Tag = nullptr;
5103 if (DS.getTypeSpecType() == DeclSpec::TST_class ||
5104 DS.getTypeSpecType() == DeclSpec::TST_struct ||
5105 DS.getTypeSpecType() == DeclSpec::TST_interface ||
5106 DS.getTypeSpecType() == DeclSpec::TST_union ||
5107 DS.getTypeSpecType() == DeclSpec::TST_enum) {
5108 TagD = DS.getRepAsDecl();
5110 if (!TagD) // We probably had an error
5111 return nullptr;
5113 // Note that the above type specs guarantee that the
5114 // type rep is a Decl, whereas in many of the others
5115 // it's a Type.
5116 if (isa<TagDecl>(TagD))
5117 Tag = cast<TagDecl>(TagD);
5118 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
5119 Tag = CTD->getTemplatedDecl();
5122 if (Tag) {
5123 handleTagNumbering(Tag, S);
5124 Tag->setFreeStanding();
5125 if (Tag->isInvalidDecl())
5126 return Tag;
5129 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
5130 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
5131 // or incomplete types shall not be restrict-qualified."
5132 if (TypeQuals & DeclSpec::TQ_restrict)
5133 Diag(DS.getRestrictSpecLoc(),
5134 diag::err_typecheck_invalid_restrict_not_pointer_noarg)
5135 << DS.getSourceRange();
5138 if (DS.isInlineSpecified())
5139 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
5140 << getLangOpts().CPlusPlus17;
5142 if (DS.hasConstexprSpecifier()) {
5143 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
5144 // and definitions of functions and variables.
5145 // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
5146 // the declaration of a function or function template
5147 if (Tag)
5148 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
5149 << GetDiagnosticTypeSpecifierID(DS)
5150 << static_cast<int>(DS.getConstexprSpecifier());
5151 else
5152 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind)
5153 << static_cast<int>(DS.getConstexprSpecifier());
5154 // Don't emit warnings after this error.
5155 return TagD;
5158 DiagnoseFunctionSpecifiers(DS);
5160 if (DS.isFriendSpecified()) {
5161 // If we're dealing with a decl but not a TagDecl, assume that
5162 // whatever routines created it handled the friendship aspect.
5163 if (TagD && !Tag)
5164 return nullptr;
5165 return ActOnFriendTypeDecl(S, DS, TemplateParams);
5168 const CXXScopeSpec &SS = DS.getTypeSpecScope();
5169 bool IsExplicitSpecialization =
5170 !TemplateParams.empty() && TemplateParams.back()->size() == 0;
5171 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
5172 !IsExplicitInstantiation && !IsExplicitSpecialization &&
5173 !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
5174 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
5175 // nested-name-specifier unless it is an explicit instantiation
5176 // or an explicit specialization.
5178 // FIXME: We allow class template partial specializations here too, per the
5179 // obvious intent of DR1819.
5181 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
5182 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
5183 << GetDiagnosticTypeSpecifierID(DS) << SS.getRange();
5184 return nullptr;
5187 // Track whether this decl-specifier declares anything.
5188 bool DeclaresAnything = true;
5190 // Handle anonymous struct definitions.
5191 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
5192 if (!Record->getDeclName() && Record->isCompleteDefinition() &&
5193 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
5194 if (getLangOpts().CPlusPlus ||
5195 Record->getDeclContext()->isRecord()) {
5196 // If CurContext is a DeclContext that can contain statements,
5197 // RecursiveASTVisitor won't visit the decls that
5198 // BuildAnonymousStructOrUnion() will put into CurContext.
5199 // Also store them here so that they can be part of the
5200 // DeclStmt that gets created in this case.
5201 // FIXME: Also return the IndirectFieldDecls created by
5202 // BuildAnonymousStructOr union, for the same reason?
5203 if (CurContext->isFunctionOrMethod())
5204 AnonRecord = Record;
5205 return BuildAnonymousStructOrUnion(S, DS, AS, Record,
5206 Context.getPrintingPolicy());
5209 DeclaresAnything = false;
5213 // C11 6.7.2.1p2:
5214 // A struct-declaration that does not declare an anonymous structure or
5215 // anonymous union shall contain a struct-declarator-list.
5217 // This rule also existed in C89 and C99; the grammar for struct-declaration
5218 // did not permit a struct-declaration without a struct-declarator-list.
5219 if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
5220 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
5221 // Check for Microsoft C extension: anonymous struct/union member.
5222 // Handle 2 kinds of anonymous struct/union:
5223 // struct STRUCT;
5224 // union UNION;
5225 // and
5226 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
5227 // UNION_TYPE; <- where UNION_TYPE is a typedef union.
5228 if ((Tag && Tag->getDeclName()) ||
5229 DS.getTypeSpecType() == DeclSpec::TST_typename) {
5230 RecordDecl *Record = nullptr;
5231 if (Tag)
5232 Record = dyn_cast<RecordDecl>(Tag);
5233 else if (const RecordType *RT =
5234 DS.getRepAsType().get()->getAsStructureType())
5235 Record = RT->getDecl();
5236 else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
5237 Record = UT->getDecl();
5239 if (Record && getLangOpts().MicrosoftExt) {
5240 Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
5241 << Record->isUnion() << DS.getSourceRange();
5242 return BuildMicrosoftCAnonymousStruct(S, DS, Record);
5245 DeclaresAnything = false;
5249 // Skip all the checks below if we have a type error.
5250 if (DS.getTypeSpecType() == DeclSpec::TST_error ||
5251 (TagD && TagD->isInvalidDecl()))
5252 return TagD;
5254 if (getLangOpts().CPlusPlus &&
5255 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
5256 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
5257 if (Enum->enumerator_begin() == Enum->enumerator_end() &&
5258 !Enum->getIdentifier() && !Enum->isInvalidDecl())
5259 DeclaresAnything = false;
5261 if (!DS.isMissingDeclaratorOk()) {
5262 // Customize diagnostic for a typedef missing a name.
5263 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
5264 Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
5265 << DS.getSourceRange();
5266 else
5267 DeclaresAnything = false;
5270 if (DS.isModulePrivateSpecified() &&
5271 Tag && Tag->getDeclContext()->isFunctionOrMethod())
5272 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
5273 << Tag->getTagKind()
5274 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
5276 ActOnDocumentableDecl(TagD);
5278 // C 6.7/2:
5279 // A declaration [...] shall declare at least a declarator [...], a tag,
5280 // or the members of an enumeration.
5281 // C++ [dcl.dcl]p3:
5282 // [If there are no declarators], and except for the declaration of an
5283 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
5284 // names into the program, or shall redeclare a name introduced by a
5285 // previous declaration.
5286 if (!DeclaresAnything) {
5287 // In C, we allow this as a (popular) extension / bug. Don't bother
5288 // producing further diagnostics for redundant qualifiers after this.
5289 Diag(DS.getBeginLoc(), (IsExplicitInstantiation || !TemplateParams.empty())
5290 ? diag::err_no_declarators
5291 : diag::ext_no_declarators)
5292 << DS.getSourceRange();
5293 return TagD;
5296 // C++ [dcl.stc]p1:
5297 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the
5298 // init-declarator-list of the declaration shall not be empty.
5299 // C++ [dcl.fct.spec]p1:
5300 // If a cv-qualifier appears in a decl-specifier-seq, the
5301 // init-declarator-list of the declaration shall not be empty.
5303 // Spurious qualifiers here appear to be valid in C.
5304 unsigned DiagID = diag::warn_standalone_specifier;
5305 if (getLangOpts().CPlusPlus)
5306 DiagID = diag::ext_standalone_specifier;
5308 // Note that a linkage-specification sets a storage class, but
5309 // 'extern "C" struct foo;' is actually valid and not theoretically
5310 // useless.
5311 if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
5312 if (SCS == DeclSpec::SCS_mutable)
5313 // Since mutable is not a viable storage class specifier in C, there is
5314 // no reason to treat it as an extension. Instead, diagnose as an error.
5315 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
5316 else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
5317 Diag(DS.getStorageClassSpecLoc(), DiagID)
5318 << DeclSpec::getSpecifierName(SCS);
5321 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
5322 Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
5323 << DeclSpec::getSpecifierName(TSCS);
5324 if (DS.getTypeQualifiers()) {
5325 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5326 Diag(DS.getConstSpecLoc(), DiagID) << "const";
5327 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5328 Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
5329 // Restrict is covered above.
5330 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5331 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
5332 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
5333 Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
5336 // Warn about ignored type attributes, for example:
5337 // __attribute__((aligned)) struct A;
5338 // Attributes should be placed after tag to apply to type declaration.
5339 if (!DS.getAttributes().empty() || !DeclAttrs.empty()) {
5340 DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
5341 if (TypeSpecType == DeclSpec::TST_class ||
5342 TypeSpecType == DeclSpec::TST_struct ||
5343 TypeSpecType == DeclSpec::TST_interface ||
5344 TypeSpecType == DeclSpec::TST_union ||
5345 TypeSpecType == DeclSpec::TST_enum) {
5346 for (const ParsedAttr &AL : DS.getAttributes())
5347 Diag(AL.getLoc(), AL.isRegularKeywordAttribute()
5348 ? diag::err_declspec_keyword_has_no_effect
5349 : diag::warn_declspec_attribute_ignored)
5350 << AL << GetDiagnosticTypeSpecifierID(DS);
5351 for (const ParsedAttr &AL : DeclAttrs)
5352 Diag(AL.getLoc(), AL.isRegularKeywordAttribute()
5353 ? diag::err_declspec_keyword_has_no_effect
5354 : diag::warn_declspec_attribute_ignored)
5355 << AL << GetDiagnosticTypeSpecifierID(DS);
5359 return TagD;
5362 /// We are trying to inject an anonymous member into the given scope;
5363 /// check if there's an existing declaration that can't be overloaded.
5365 /// \return true if this is a forbidden redeclaration
5366 static bool CheckAnonMemberRedeclaration(Sema &SemaRef, Scope *S,
5367 DeclContext *Owner,
5368 DeclarationName Name,
5369 SourceLocation NameLoc, bool IsUnion,
5370 StorageClass SC) {
5371 LookupResult R(SemaRef, Name, NameLoc,
5372 Owner->isRecord() ? Sema::LookupMemberName
5373 : Sema::LookupOrdinaryName,
5374 Sema::ForVisibleRedeclaration);
5375 if (!SemaRef.LookupName(R, S)) return false;
5377 // Pick a representative declaration.
5378 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
5379 assert(PrevDecl && "Expected a non-null Decl");
5381 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
5382 return false;
5384 if (SC == StorageClass::SC_None &&
5385 PrevDecl->isPlaceholderVar(SemaRef.getLangOpts()) &&
5386 (Owner->isFunctionOrMethod() || Owner->isRecord())) {
5387 if (!Owner->isRecord())
5388 SemaRef.DiagPlaceholderVariableDefinition(NameLoc);
5389 return false;
5392 SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
5393 << IsUnion << Name;
5394 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5396 return true;
5399 void Sema::ActOnDefinedDeclarationSpecifier(Decl *D) {
5400 if (auto *RD = dyn_cast_if_present<RecordDecl>(D))
5401 DiagPlaceholderFieldDeclDefinitions(RD);
5404 /// Emit diagnostic warnings for placeholder members.
5405 /// We can only do that after the class is fully constructed,
5406 /// as anonymous union/structs can insert placeholders
5407 /// in their parent scope (which might be a Record).
5408 void Sema::DiagPlaceholderFieldDeclDefinitions(RecordDecl *Record) {
5409 if (!getLangOpts().CPlusPlus)
5410 return;
5412 // This function can be parsed before we have validated the
5413 // structure as an anonymous struct
5414 if (Record->isAnonymousStructOrUnion())
5415 return;
5417 const NamedDecl *First = 0;
5418 for (const Decl *D : Record->decls()) {
5419 const NamedDecl *ND = dyn_cast<NamedDecl>(D);
5420 if (!ND || !ND->isPlaceholderVar(getLangOpts()))
5421 continue;
5422 if (!First)
5423 First = ND;
5424 else
5425 DiagPlaceholderVariableDefinition(ND->getLocation());
5429 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
5430 /// anonymous struct or union AnonRecord into the owning context Owner
5431 /// and scope S. This routine will be invoked just after we realize
5432 /// that an unnamed union or struct is actually an anonymous union or
5433 /// struct, e.g.,
5435 /// @code
5436 /// union {
5437 /// int i;
5438 /// float f;
5439 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
5440 /// // f into the surrounding scope.x
5441 /// @endcode
5443 /// This routine is recursive, injecting the names of nested anonymous
5444 /// structs/unions into the owning context and scope as well.
5445 static bool
5446 InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
5447 RecordDecl *AnonRecord, AccessSpecifier AS,
5448 StorageClass SC,
5449 SmallVectorImpl<NamedDecl *> &Chaining) {
5450 bool Invalid = false;
5452 // Look every FieldDecl and IndirectFieldDecl with a name.
5453 for (auto *D : AnonRecord->decls()) {
5454 if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
5455 cast<NamedDecl>(D)->getDeclName()) {
5456 ValueDecl *VD = cast<ValueDecl>(D);
5457 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
5458 VD->getLocation(), AnonRecord->isUnion(),
5459 SC)) {
5460 // C++ [class.union]p2:
5461 // The names of the members of an anonymous union shall be
5462 // distinct from the names of any other entity in the
5463 // scope in which the anonymous union is declared.
5464 Invalid = true;
5465 } else {
5466 // C++ [class.union]p2:
5467 // For the purpose of name lookup, after the anonymous union
5468 // definition, the members of the anonymous union are
5469 // considered to have been defined in the scope in which the
5470 // anonymous union is declared.
5471 unsigned OldChainingSize = Chaining.size();
5472 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
5473 Chaining.append(IF->chain_begin(), IF->chain_end());
5474 else
5475 Chaining.push_back(VD);
5477 assert(Chaining.size() >= 2);
5478 NamedDecl **NamedChain =
5479 new (SemaRef.Context)NamedDecl*[Chaining.size()];
5480 for (unsigned i = 0; i < Chaining.size(); i++)
5481 NamedChain[i] = Chaining[i];
5483 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
5484 SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
5485 VD->getType(), {NamedChain, Chaining.size()});
5487 for (const auto *Attr : VD->attrs())
5488 IndirectField->addAttr(Attr->clone(SemaRef.Context));
5490 IndirectField->setAccess(AS);
5491 IndirectField->setImplicit();
5492 SemaRef.PushOnScopeChains(IndirectField, S);
5494 // That includes picking up the appropriate access specifier.
5495 if (AS != AS_none) IndirectField->setAccess(AS);
5497 Chaining.resize(OldChainingSize);
5502 return Invalid;
5505 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
5506 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
5507 /// illegal input values are mapped to SC_None.
5508 static StorageClass
5509 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
5510 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
5511 assert(StorageClassSpec != DeclSpec::SCS_typedef &&
5512 "Parser allowed 'typedef' as storage class VarDecl.");
5513 switch (StorageClassSpec) {
5514 case DeclSpec::SCS_unspecified: return SC_None;
5515 case DeclSpec::SCS_extern:
5516 if (DS.isExternInLinkageSpec())
5517 return SC_None;
5518 return SC_Extern;
5519 case DeclSpec::SCS_static: return SC_Static;
5520 case DeclSpec::SCS_auto: return SC_Auto;
5521 case DeclSpec::SCS_register: return SC_Register;
5522 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5523 // Illegal SCSs map to None: error reporting is up to the caller.
5524 case DeclSpec::SCS_mutable: // Fall through.
5525 case DeclSpec::SCS_typedef: return SC_None;
5527 llvm_unreachable("unknown storage class specifier");
5530 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
5531 assert(Record->hasInClassInitializer());
5533 for (const auto *I : Record->decls()) {
5534 const auto *FD = dyn_cast<FieldDecl>(I);
5535 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
5536 FD = IFD->getAnonField();
5537 if (FD && FD->hasInClassInitializer())
5538 return FD->getLocation();
5541 llvm_unreachable("couldn't find in-class initializer");
5544 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
5545 SourceLocation DefaultInitLoc) {
5546 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
5547 return;
5549 S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
5550 S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
5553 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
5554 CXXRecordDecl *AnonUnion) {
5555 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
5556 return;
5558 checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
5561 /// BuildAnonymousStructOrUnion - Handle the declaration of an
5562 /// anonymous structure or union. Anonymous unions are a C++ feature
5563 /// (C++ [class.union]) and a C11 feature; anonymous structures
5564 /// are a C11 feature and GNU C++ extension.
5565 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
5566 AccessSpecifier AS,
5567 RecordDecl *Record,
5568 const PrintingPolicy &Policy) {
5569 DeclContext *Owner = Record->getDeclContext();
5571 // Diagnose whether this anonymous struct/union is an extension.
5572 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
5573 Diag(Record->getLocation(), diag::ext_anonymous_union);
5574 else if (!Record->isUnion() && getLangOpts().CPlusPlus)
5575 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
5576 else if (!Record->isUnion() && !getLangOpts().C11)
5577 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
5579 // C and C++ require different kinds of checks for anonymous
5580 // structs/unions.
5581 bool Invalid = false;
5582 if (getLangOpts().CPlusPlus) {
5583 const char *PrevSpec = nullptr;
5584 if (Record->isUnion()) {
5585 // C++ [class.union]p6:
5586 // C++17 [class.union.anon]p2:
5587 // Anonymous unions declared in a named namespace or in the
5588 // global namespace shall be declared static.
5589 unsigned DiagID;
5590 DeclContext *OwnerScope = Owner->getRedeclContext();
5591 if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
5592 (OwnerScope->isTranslationUnit() ||
5593 (OwnerScope->isNamespace() &&
5594 !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
5595 Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
5596 << FixItHint::CreateInsertion(Record->getLocation(), "static ");
5598 // Recover by adding 'static'.
5599 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
5600 PrevSpec, DiagID, Policy);
5602 // C++ [class.union]p6:
5603 // A storage class is not allowed in a declaration of an
5604 // anonymous union in a class scope.
5605 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
5606 isa<RecordDecl>(Owner)) {
5607 Diag(DS.getStorageClassSpecLoc(),
5608 diag::err_anonymous_union_with_storage_spec)
5609 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5611 // Recover by removing the storage specifier.
5612 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
5613 SourceLocation(),
5614 PrevSpec, DiagID, Context.getPrintingPolicy());
5618 // Ignore const/volatile/restrict qualifiers.
5619 if (DS.getTypeQualifiers()) {
5620 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5621 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
5622 << Record->isUnion() << "const"
5623 << FixItHint::CreateRemoval(DS.getConstSpecLoc());
5624 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5625 Diag(DS.getVolatileSpecLoc(),
5626 diag::ext_anonymous_struct_union_qualified)
5627 << Record->isUnion() << "volatile"
5628 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
5629 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
5630 Diag(DS.getRestrictSpecLoc(),
5631 diag::ext_anonymous_struct_union_qualified)
5632 << Record->isUnion() << "restrict"
5633 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
5634 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5635 Diag(DS.getAtomicSpecLoc(),
5636 diag::ext_anonymous_struct_union_qualified)
5637 << Record->isUnion() << "_Atomic"
5638 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
5639 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
5640 Diag(DS.getUnalignedSpecLoc(),
5641 diag::ext_anonymous_struct_union_qualified)
5642 << Record->isUnion() << "__unaligned"
5643 << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
5645 DS.ClearTypeQualifiers();
5648 // C++ [class.union]p2:
5649 // The member-specification of an anonymous union shall only
5650 // define non-static data members. [Note: nested types and
5651 // functions cannot be declared within an anonymous union. ]
5652 for (auto *Mem : Record->decls()) {
5653 // Ignore invalid declarations; we already diagnosed them.
5654 if (Mem->isInvalidDecl())
5655 continue;
5657 if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
5658 // C++ [class.union]p3:
5659 // An anonymous union shall not have private or protected
5660 // members (clause 11).
5661 assert(FD->getAccess() != AS_none);
5662 if (FD->getAccess() != AS_public) {
5663 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
5664 << Record->isUnion() << (FD->getAccess() == AS_protected);
5665 Invalid = true;
5668 // C++ [class.union]p1
5669 // An object of a class with a non-trivial constructor, a non-trivial
5670 // copy constructor, a non-trivial destructor, or a non-trivial copy
5671 // assignment operator cannot be a member of a union, nor can an
5672 // array of such objects.
5673 if (CheckNontrivialField(FD))
5674 Invalid = true;
5675 } else if (Mem->isImplicit()) {
5676 // Any implicit members are fine.
5677 } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
5678 // This is a type that showed up in an
5679 // elaborated-type-specifier inside the anonymous struct or
5680 // union, but which actually declares a type outside of the
5681 // anonymous struct or union. It's okay.
5682 } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
5683 if (!MemRecord->isAnonymousStructOrUnion() &&
5684 MemRecord->getDeclName()) {
5685 // Visual C++ allows type definition in anonymous struct or union.
5686 if (getLangOpts().MicrosoftExt)
5687 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
5688 << Record->isUnion();
5689 else {
5690 // This is a nested type declaration.
5691 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
5692 << Record->isUnion();
5693 Invalid = true;
5695 } else {
5696 // This is an anonymous type definition within another anonymous type.
5697 // This is a popular extension, provided by Plan9, MSVC and GCC, but
5698 // not part of standard C++.
5699 Diag(MemRecord->getLocation(),
5700 diag::ext_anonymous_record_with_anonymous_type)
5701 << Record->isUnion();
5703 } else if (isa<AccessSpecDecl>(Mem)) {
5704 // Any access specifier is fine.
5705 } else if (isa<StaticAssertDecl>(Mem)) {
5706 // In C++1z, static_assert declarations are also fine.
5707 } else {
5708 // We have something that isn't a non-static data
5709 // member. Complain about it.
5710 unsigned DK = diag::err_anonymous_record_bad_member;
5711 if (isa<TypeDecl>(Mem))
5712 DK = diag::err_anonymous_record_with_type;
5713 else if (isa<FunctionDecl>(Mem))
5714 DK = diag::err_anonymous_record_with_function;
5715 else if (isa<VarDecl>(Mem))
5716 DK = diag::err_anonymous_record_with_static;
5718 // Visual C++ allows type definition in anonymous struct or union.
5719 if (getLangOpts().MicrosoftExt &&
5720 DK == diag::err_anonymous_record_with_type)
5721 Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
5722 << Record->isUnion();
5723 else {
5724 Diag(Mem->getLocation(), DK) << Record->isUnion();
5725 Invalid = true;
5730 // C++11 [class.union]p8 (DR1460):
5731 // At most one variant member of a union may have a
5732 // brace-or-equal-initializer.
5733 if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
5734 Owner->isRecord())
5735 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
5736 cast<CXXRecordDecl>(Record));
5739 if (!Record->isUnion() && !Owner->isRecord()) {
5740 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
5741 << getLangOpts().CPlusPlus;
5742 Invalid = true;
5745 // C++ [dcl.dcl]p3:
5746 // [If there are no declarators], and except for the declaration of an
5747 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
5748 // names into the program
5749 // C++ [class.mem]p2:
5750 // each such member-declaration shall either declare at least one member
5751 // name of the class or declare at least one unnamed bit-field
5753 // For C this is an error even for a named struct, and is diagnosed elsewhere.
5754 if (getLangOpts().CPlusPlus && Record->field_empty())
5755 Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
5757 // Mock up a declarator.
5758 Declarator Dc(DS, ParsedAttributesView::none(), DeclaratorContext::Member);
5759 StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
5760 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5761 assert(TInfo && "couldn't build declarator info for anonymous struct/union");
5763 // Create a declaration for this anonymous struct/union.
5764 NamedDecl *Anon = nullptr;
5765 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
5766 Anon = FieldDecl::Create(
5767 Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
5768 /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
5769 /*BitWidth=*/nullptr, /*Mutable=*/false,
5770 /*InitStyle=*/ICIS_NoInit);
5771 Anon->setAccess(AS);
5772 ProcessDeclAttributes(S, Anon, Dc);
5774 if (getLangOpts().CPlusPlus)
5775 FieldCollector->Add(cast<FieldDecl>(Anon));
5776 } else {
5777 DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
5778 if (SCSpec == DeclSpec::SCS_mutable) {
5779 // mutable can only appear on non-static class members, so it's always
5780 // an error here
5781 Diag(Record->getLocation(), diag::err_mutable_nonmember);
5782 Invalid = true;
5783 SC = SC_None;
5786 Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
5787 Record->getLocation(), /*IdentifierInfo=*/nullptr,
5788 Context.getTypeDeclType(Record), TInfo, SC);
5789 ProcessDeclAttributes(S, Anon, Dc);
5791 // Default-initialize the implicit variable. This initialization will be
5792 // trivial in almost all cases, except if a union member has an in-class
5793 // initializer:
5794 // union { int n = 0; };
5795 ActOnUninitializedDecl(Anon);
5797 Anon->setImplicit();
5799 // Mark this as an anonymous struct/union type.
5800 Record->setAnonymousStructOrUnion(true);
5802 // Add the anonymous struct/union object to the current
5803 // context. We'll be referencing this object when we refer to one of
5804 // its members.
5805 Owner->addDecl(Anon);
5807 // Inject the members of the anonymous struct/union into the owning
5808 // context and into the identifier resolver chain for name lookup
5809 // purposes.
5810 SmallVector<NamedDecl*, 2> Chain;
5811 Chain.push_back(Anon);
5813 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, SC,
5814 Chain))
5815 Invalid = true;
5817 if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
5818 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5819 MangleNumberingContext *MCtx;
5820 Decl *ManglingContextDecl;
5821 std::tie(MCtx, ManglingContextDecl) =
5822 getCurrentMangleNumberContext(NewVD->getDeclContext());
5823 if (MCtx) {
5824 Context.setManglingNumber(
5825 NewVD, MCtx->getManglingNumber(
5826 NewVD, getMSManglingNumber(getLangOpts(), S)));
5827 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
5832 if (Invalid)
5833 Anon->setInvalidDecl();
5835 return Anon;
5838 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
5839 /// Microsoft C anonymous structure.
5840 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
5841 /// Example:
5843 /// struct A { int a; };
5844 /// struct B { struct A; int b; };
5846 /// void foo() {
5847 /// B var;
5848 /// var.a = 3;
5849 /// }
5851 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
5852 RecordDecl *Record) {
5853 assert(Record && "expected a record!");
5855 // Mock up a declarator.
5856 Declarator Dc(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName);
5857 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5858 assert(TInfo && "couldn't build declarator info for anonymous struct");
5860 auto *ParentDecl = cast<RecordDecl>(CurContext);
5861 QualType RecTy = Context.getTypeDeclType(Record);
5863 // Create a declaration for this anonymous struct.
5864 NamedDecl *Anon =
5865 FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
5866 /*IdentifierInfo=*/nullptr, RecTy, TInfo,
5867 /*BitWidth=*/nullptr, /*Mutable=*/false,
5868 /*InitStyle=*/ICIS_NoInit);
5869 Anon->setImplicit();
5871 // Add the anonymous struct object to the current context.
5872 CurContext->addDecl(Anon);
5874 // Inject the members of the anonymous struct into the current
5875 // context and into the identifier resolver chain for name lookup
5876 // purposes.
5877 SmallVector<NamedDecl*, 2> Chain;
5878 Chain.push_back(Anon);
5880 RecordDecl *RecordDef = Record->getDefinition();
5881 if (RequireCompleteSizedType(Anon->getLocation(), RecTy,
5882 diag::err_field_incomplete_or_sizeless) ||
5883 InjectAnonymousStructOrUnionMembers(
5884 *this, S, CurContext, RecordDef, AS_none,
5885 StorageClassSpecToVarDeclStorageClass(DS), Chain)) {
5886 Anon->setInvalidDecl();
5887 ParentDecl->setInvalidDecl();
5890 return Anon;
5893 /// GetNameForDeclarator - Determine the full declaration name for the
5894 /// given Declarator.
5895 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
5896 return GetNameFromUnqualifiedId(D.getName());
5899 /// Retrieves the declaration name from a parsed unqualified-id.
5900 DeclarationNameInfo
5901 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
5902 DeclarationNameInfo NameInfo;
5903 NameInfo.setLoc(Name.StartLocation);
5905 switch (Name.getKind()) {
5907 case UnqualifiedIdKind::IK_ImplicitSelfParam:
5908 case UnqualifiedIdKind::IK_Identifier:
5909 NameInfo.setName(Name.Identifier);
5910 return NameInfo;
5912 case UnqualifiedIdKind::IK_DeductionGuideName: {
5913 // C++ [temp.deduct.guide]p3:
5914 // The simple-template-id shall name a class template specialization.
5915 // The template-name shall be the same identifier as the template-name
5916 // of the simple-template-id.
5917 // These together intend to imply that the template-name shall name a
5918 // class template.
5919 // FIXME: template<typename T> struct X {};
5920 // template<typename T> using Y = X<T>;
5921 // Y(int) -> Y<int>;
5922 // satisfies these rules but does not name a class template.
5923 TemplateName TN = Name.TemplateName.get().get();
5924 auto *Template = TN.getAsTemplateDecl();
5925 if (!Template || !isa<ClassTemplateDecl>(Template)) {
5926 Diag(Name.StartLocation,
5927 diag::err_deduction_guide_name_not_class_template)
5928 << (int)getTemplateNameKindForDiagnostics(TN) << TN;
5929 if (Template)
5930 Diag(Template->getLocation(), diag::note_template_decl_here);
5931 return DeclarationNameInfo();
5934 NameInfo.setName(
5935 Context.DeclarationNames.getCXXDeductionGuideName(Template));
5936 return NameInfo;
5939 case UnqualifiedIdKind::IK_OperatorFunctionId:
5940 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
5941 Name.OperatorFunctionId.Operator));
5942 NameInfo.setCXXOperatorNameRange(SourceRange(
5943 Name.OperatorFunctionId.SymbolLocations[0], Name.EndLocation));
5944 return NameInfo;
5946 case UnqualifiedIdKind::IK_LiteralOperatorId:
5947 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
5948 Name.Identifier));
5949 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
5950 return NameInfo;
5952 case UnqualifiedIdKind::IK_ConversionFunctionId: {
5953 TypeSourceInfo *TInfo;
5954 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
5955 if (Ty.isNull())
5956 return DeclarationNameInfo();
5957 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
5958 Context.getCanonicalType(Ty)));
5959 NameInfo.setNamedTypeInfo(TInfo);
5960 return NameInfo;
5963 case UnqualifiedIdKind::IK_ConstructorName: {
5964 TypeSourceInfo *TInfo;
5965 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5966 if (Ty.isNull())
5967 return DeclarationNameInfo();
5968 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5969 Context.getCanonicalType(Ty)));
5970 NameInfo.setNamedTypeInfo(TInfo);
5971 return NameInfo;
5974 case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5975 // In well-formed code, we can only have a constructor
5976 // template-id that refers to the current context, so go there
5977 // to find the actual type being constructed.
5978 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5979 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5980 return DeclarationNameInfo();
5982 // Determine the type of the class being constructed.
5983 QualType CurClassType = Context.getTypeDeclType(CurClass);
5985 // FIXME: Check two things: that the template-id names the same type as
5986 // CurClassType, and that the template-id does not occur when the name
5987 // was qualified.
5989 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5990 Context.getCanonicalType(CurClassType)));
5991 // FIXME: should we retrieve TypeSourceInfo?
5992 NameInfo.setNamedTypeInfo(nullptr);
5993 return NameInfo;
5996 case UnqualifiedIdKind::IK_DestructorName: {
5997 TypeSourceInfo *TInfo;
5998 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5999 if (Ty.isNull())
6000 return DeclarationNameInfo();
6001 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
6002 Context.getCanonicalType(Ty)));
6003 NameInfo.setNamedTypeInfo(TInfo);
6004 return NameInfo;
6007 case UnqualifiedIdKind::IK_TemplateId: {
6008 TemplateName TName = Name.TemplateId->Template.get();
6009 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
6010 return Context.getNameForTemplate(TName, TNameLoc);
6013 } // switch (Name.getKind())
6015 llvm_unreachable("Unknown name kind");
6018 static QualType getCoreType(QualType Ty) {
6019 do {
6020 if (Ty->isPointerType() || Ty->isReferenceType())
6021 Ty = Ty->getPointeeType();
6022 else if (Ty->isArrayType())
6023 Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
6024 else
6025 return Ty.withoutLocalFastQualifiers();
6026 } while (true);
6029 /// hasSimilarParameters - Determine whether the C++ functions Declaration
6030 /// and Definition have "nearly" matching parameters. This heuristic is
6031 /// used to improve diagnostics in the case where an out-of-line function
6032 /// definition doesn't match any declaration within the class or namespace.
6033 /// Also sets Params to the list of indices to the parameters that differ
6034 /// between the declaration and the definition. If hasSimilarParameters
6035 /// returns true and Params is empty, then all of the parameters match.
6036 static bool hasSimilarParameters(ASTContext &Context,
6037 FunctionDecl *Declaration,
6038 FunctionDecl *Definition,
6039 SmallVectorImpl<unsigned> &Params) {
6040 Params.clear();
6041 if (Declaration->param_size() != Definition->param_size())
6042 return false;
6043 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
6044 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
6045 QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
6047 // The parameter types are identical
6048 if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy))
6049 continue;
6051 QualType DeclParamBaseTy = getCoreType(DeclParamTy);
6052 QualType DefParamBaseTy = getCoreType(DefParamTy);
6053 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
6054 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
6056 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
6057 (DeclTyName && DeclTyName == DefTyName))
6058 Params.push_back(Idx);
6059 else // The two parameters aren't even close
6060 return false;
6063 return true;
6066 /// RebuildDeclaratorInCurrentInstantiation - Checks whether the given
6067 /// declarator needs to be rebuilt in the current instantiation.
6068 /// Any bits of declarator which appear before the name are valid for
6069 /// consideration here. That's specifically the type in the decl spec
6070 /// and the base type in any member-pointer chunks.
6071 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
6072 DeclarationName Name) {
6073 // The types we specifically need to rebuild are:
6074 // - typenames, typeofs, and decltypes
6075 // - types which will become injected class names
6076 // Of course, we also need to rebuild any type referencing such a
6077 // type. It's safest to just say "dependent", but we call out a
6078 // few cases here.
6080 DeclSpec &DS = D.getMutableDeclSpec();
6081 switch (DS.getTypeSpecType()) {
6082 case DeclSpec::TST_typename:
6083 case DeclSpec::TST_typeofType:
6084 case DeclSpec::TST_typeof_unqualType:
6085 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait:
6086 #include "clang/Basic/TransformTypeTraits.def"
6087 case DeclSpec::TST_atomic: {
6088 // Grab the type from the parser.
6089 TypeSourceInfo *TSI = nullptr;
6090 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
6091 if (T.isNull() || !T->isInstantiationDependentType()) break;
6093 // Make sure there's a type source info. This isn't really much
6094 // of a waste; most dependent types should have type source info
6095 // attached already.
6096 if (!TSI)
6097 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
6099 // Rebuild the type in the current instantiation.
6100 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
6101 if (!TSI) return true;
6103 // Store the new type back in the decl spec.
6104 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
6105 DS.UpdateTypeRep(LocType);
6106 break;
6109 case DeclSpec::TST_decltype:
6110 case DeclSpec::TST_typeof_unqualExpr:
6111 case DeclSpec::TST_typeofExpr: {
6112 Expr *E = DS.getRepAsExpr();
6113 ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
6114 if (Result.isInvalid()) return true;
6115 DS.UpdateExprRep(Result.get());
6116 break;
6119 default:
6120 // Nothing to do for these decl specs.
6121 break;
6124 // It doesn't matter what order we do this in.
6125 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
6126 DeclaratorChunk &Chunk = D.getTypeObject(I);
6128 // The only type information in the declarator which can come
6129 // before the declaration name is the base type of a member
6130 // pointer.
6131 if (Chunk.Kind != DeclaratorChunk::MemberPointer)
6132 continue;
6134 // Rebuild the scope specifier in-place.
6135 CXXScopeSpec &SS = Chunk.Mem.Scope();
6136 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
6137 return true;
6140 return false;
6143 /// Returns true if the declaration is declared in a system header or from a
6144 /// system macro.
6145 static bool isFromSystemHeader(SourceManager &SM, const Decl *D) {
6146 return SM.isInSystemHeader(D->getLocation()) ||
6147 SM.isInSystemMacro(D->getLocation());
6150 void Sema::warnOnReservedIdentifier(const NamedDecl *D) {
6151 // Avoid warning twice on the same identifier, and don't warn on redeclaration
6152 // of system decl.
6153 if (D->getPreviousDecl() || D->isImplicit())
6154 return;
6155 ReservedIdentifierStatus Status = D->isReserved(getLangOpts());
6156 if (Status != ReservedIdentifierStatus::NotReserved &&
6157 !isFromSystemHeader(Context.getSourceManager(), D)) {
6158 Diag(D->getLocation(), diag::warn_reserved_extern_symbol)
6159 << D << static_cast<int>(Status);
6163 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
6164 D.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration);
6166 // Check if we are in an `omp begin/end declare variant` scope. Handle this
6167 // declaration only if the `bind_to_declaration` extension is set.
6168 SmallVector<FunctionDecl *, 4> Bases;
6169 if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope())
6170 if (getOMPTraitInfoForSurroundingScope()->isExtensionActive(llvm::omp::TraitProperty::
6171 implementation_extension_bind_to_declaration))
6172 ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
6173 S, D, MultiTemplateParamsArg(), Bases);
6175 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
6177 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
6178 Dcl && Dcl->getDeclContext()->isFileContext())
6179 Dcl->setTopLevelDeclInObjCContainer();
6181 if (!Bases.empty())
6182 ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases);
6184 return Dcl;
6187 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
6188 /// If T is the name of a class, then each of the following shall have a
6189 /// name different from T:
6190 /// - every static data member of class T;
6191 /// - every member function of class T
6192 /// - every member of class T that is itself a type;
6193 /// \returns true if the declaration name violates these rules.
6194 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
6195 DeclarationNameInfo NameInfo) {
6196 DeclarationName Name = NameInfo.getName();
6198 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
6199 while (Record && Record->isAnonymousStructOrUnion())
6200 Record = dyn_cast<CXXRecordDecl>(Record->getParent());
6201 if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
6202 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
6203 return true;
6206 return false;
6209 /// Diagnose a declaration whose declarator-id has the given
6210 /// nested-name-specifier.
6212 /// \param SS The nested-name-specifier of the declarator-id.
6214 /// \param DC The declaration context to which the nested-name-specifier
6215 /// resolves.
6217 /// \param Name The name of the entity being declared.
6219 /// \param Loc The location of the name of the entity being declared.
6221 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
6222 /// we're declaring an explicit / partial specialization / instantiation.
6224 /// \returns true if we cannot safely recover from this error, false otherwise.
6225 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
6226 DeclarationName Name,
6227 SourceLocation Loc, bool IsTemplateId) {
6228 DeclContext *Cur = CurContext;
6229 while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
6230 Cur = Cur->getParent();
6232 // If the user provided a superfluous scope specifier that refers back to the
6233 // class in which the entity is already declared, diagnose and ignore it.
6235 // class X {
6236 // void X::f();
6237 // };
6239 // Note, it was once ill-formed to give redundant qualification in all
6240 // contexts, but that rule was removed by DR482.
6241 if (Cur->Equals(DC)) {
6242 if (Cur->isRecord()) {
6243 Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
6244 : diag::err_member_extra_qualification)
6245 << Name << FixItHint::CreateRemoval(SS.getRange());
6246 SS.clear();
6247 } else {
6248 Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
6250 return false;
6253 // Check whether the qualifying scope encloses the scope of the original
6254 // declaration. For a template-id, we perform the checks in
6255 // CheckTemplateSpecializationScope.
6256 if (!Cur->Encloses(DC) && !IsTemplateId) {
6257 if (Cur->isRecord())
6258 Diag(Loc, diag::err_member_qualification)
6259 << Name << SS.getRange();
6260 else if (isa<TranslationUnitDecl>(DC))
6261 Diag(Loc, diag::err_invalid_declarator_global_scope)
6262 << Name << SS.getRange();
6263 else if (isa<FunctionDecl>(Cur))
6264 Diag(Loc, diag::err_invalid_declarator_in_function)
6265 << Name << SS.getRange();
6266 else if (isa<BlockDecl>(Cur))
6267 Diag(Loc, diag::err_invalid_declarator_in_block)
6268 << Name << SS.getRange();
6269 else if (isa<ExportDecl>(Cur)) {
6270 if (!isa<NamespaceDecl>(DC))
6271 Diag(Loc, diag::err_export_non_namespace_scope_name)
6272 << Name << SS.getRange();
6273 else
6274 // The cases that DC is not NamespaceDecl should be handled in
6275 // CheckRedeclarationExported.
6276 return false;
6277 } else
6278 Diag(Loc, diag::err_invalid_declarator_scope)
6279 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
6281 return true;
6284 if (Cur->isRecord()) {
6285 // Cannot qualify members within a class.
6286 Diag(Loc, diag::err_member_qualification)
6287 << Name << SS.getRange();
6288 SS.clear();
6290 // C++ constructors and destructors with incorrect scopes can break
6291 // our AST invariants by having the wrong underlying types. If
6292 // that's the case, then drop this declaration entirely.
6293 if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
6294 Name.getNameKind() == DeclarationName::CXXDestructorName) &&
6295 !Context.hasSameType(Name.getCXXNameType(),
6296 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
6297 return true;
6299 return false;
6302 // C++11 [dcl.meaning]p1:
6303 // [...] "The nested-name-specifier of the qualified declarator-id shall
6304 // not begin with a decltype-specifer"
6305 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
6306 while (SpecLoc.getPrefix())
6307 SpecLoc = SpecLoc.getPrefix();
6308 if (isa_and_nonnull<DecltypeType>(
6309 SpecLoc.getNestedNameSpecifier()->getAsType()))
6310 Diag(Loc, diag::err_decltype_in_declarator)
6311 << SpecLoc.getTypeLoc().getSourceRange();
6313 return false;
6316 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
6317 MultiTemplateParamsArg TemplateParamLists) {
6318 // TODO: consider using NameInfo for diagnostic.
6319 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6320 DeclarationName Name = NameInfo.getName();
6322 // All of these full declarators require an identifier. If it doesn't have
6323 // one, the ParsedFreeStandingDeclSpec action should be used.
6324 if (D.isDecompositionDeclarator()) {
6325 return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
6326 } else if (!Name) {
6327 if (!D.isInvalidType()) // Reject this if we think it is valid.
6328 Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
6329 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
6330 return nullptr;
6331 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
6332 return nullptr;
6334 // The scope passed in may not be a decl scope. Zip up the scope tree until
6335 // we find one that is.
6336 while ((S->getFlags() & Scope::DeclScope) == 0 ||
6337 (S->getFlags() & Scope::TemplateParamScope) != 0)
6338 S = S->getParent();
6340 DeclContext *DC = CurContext;
6341 if (D.getCXXScopeSpec().isInvalid())
6342 D.setInvalidType();
6343 else if (D.getCXXScopeSpec().isSet()) {
6344 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
6345 UPPC_DeclarationQualifier))
6346 return nullptr;
6348 bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
6349 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
6350 if (!DC || isa<EnumDecl>(DC)) {
6351 // If we could not compute the declaration context, it's because the
6352 // declaration context is dependent but does not refer to a class,
6353 // class template, or class template partial specialization. Complain
6354 // and return early, to avoid the coming semantic disaster.
6355 Diag(D.getIdentifierLoc(),
6356 diag::err_template_qualified_declarator_no_match)
6357 << D.getCXXScopeSpec().getScopeRep()
6358 << D.getCXXScopeSpec().getRange();
6359 return nullptr;
6361 bool IsDependentContext = DC->isDependentContext();
6363 if (!IsDependentContext &&
6364 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
6365 return nullptr;
6367 // If a class is incomplete, do not parse entities inside it.
6368 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
6369 Diag(D.getIdentifierLoc(),
6370 diag::err_member_def_undefined_record)
6371 << Name << DC << D.getCXXScopeSpec().getRange();
6372 return nullptr;
6374 if (!D.getDeclSpec().isFriendSpecified()) {
6375 if (diagnoseQualifiedDeclaration(
6376 D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
6377 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
6378 if (DC->isRecord())
6379 return nullptr;
6381 D.setInvalidType();
6385 // Check whether we need to rebuild the type of the given
6386 // declaration in the current instantiation.
6387 if (EnteringContext && IsDependentContext &&
6388 TemplateParamLists.size() != 0) {
6389 ContextRAII SavedContext(*this, DC);
6390 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
6391 D.setInvalidType();
6395 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6396 QualType R = TInfo->getType();
6398 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6399 UPPC_DeclarationType))
6400 D.setInvalidType();
6402 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6403 forRedeclarationInCurContext());
6405 // See if this is a redefinition of a variable in the same scope.
6406 if (!D.getCXXScopeSpec().isSet()) {
6407 bool IsLinkageLookup = false;
6408 bool CreateBuiltins = false;
6410 // If the declaration we're planning to build will be a function
6411 // or object with linkage, then look for another declaration with
6412 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
6414 // If the declaration we're planning to build will be declared with
6415 // external linkage in the translation unit, create any builtin with
6416 // the same name.
6417 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
6418 /* Do nothing*/;
6419 else if (CurContext->isFunctionOrMethod() &&
6420 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
6421 R->isFunctionType())) {
6422 IsLinkageLookup = true;
6423 CreateBuiltins =
6424 CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
6425 } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
6426 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
6427 CreateBuiltins = true;
6429 if (IsLinkageLookup) {
6430 Previous.clear(LookupRedeclarationWithLinkage);
6431 Previous.setRedeclarationKind(ForExternalRedeclaration);
6434 LookupName(Previous, S, CreateBuiltins);
6435 } else { // Something like "int foo::x;"
6436 LookupQualifiedName(Previous, DC);
6438 // C++ [dcl.meaning]p1:
6439 // When the declarator-id is qualified, the declaration shall refer to a
6440 // previously declared member of the class or namespace to which the
6441 // qualifier refers (or, in the case of a namespace, of an element of the
6442 // inline namespace set of that namespace (7.3.1)) or to a specialization
6443 // thereof; [...]
6445 // Note that we already checked the context above, and that we do not have
6446 // enough information to make sure that Previous contains the declaration
6447 // we want to match. For example, given:
6449 // class X {
6450 // void f();
6451 // void f(float);
6452 // };
6454 // void X::f(int) { } // ill-formed
6456 // In this case, Previous will point to the overload set
6457 // containing the two f's declared in X, but neither of them
6458 // matches.
6460 RemoveUsingDecls(Previous);
6463 if (Previous.isSingleResult() &&
6464 Previous.getFoundDecl()->isTemplateParameter()) {
6465 // Maybe we will complain about the shadowed template parameter.
6466 if (!D.isInvalidType())
6467 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
6468 Previous.getFoundDecl());
6470 // Just pretend that we didn't see the previous declaration.
6471 Previous.clear();
6474 if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
6475 // Forget that the previous declaration is the injected-class-name.
6476 Previous.clear();
6478 // In C++, the previous declaration we find might be a tag type
6479 // (class or enum). In this case, the new declaration will hide the
6480 // tag type. Note that this applies to functions, function templates, and
6481 // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
6482 if (Previous.isSingleTagDecl() &&
6483 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6484 (TemplateParamLists.size() == 0 || R->isFunctionType()))
6485 Previous.clear();
6487 // Check that there are no default arguments other than in the parameters
6488 // of a function declaration (C++ only).
6489 if (getLangOpts().CPlusPlus)
6490 CheckExtraCXXDefaultArguments(D);
6492 NamedDecl *New;
6494 bool AddToScope = true;
6495 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6496 if (TemplateParamLists.size()) {
6497 Diag(D.getIdentifierLoc(), diag::err_template_typedef);
6498 return nullptr;
6501 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
6502 } else if (R->isFunctionType()) {
6503 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
6504 TemplateParamLists,
6505 AddToScope);
6506 } else {
6507 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
6508 AddToScope);
6511 if (!New)
6512 return nullptr;
6514 // If this has an identifier and is not a function template specialization,
6515 // add it to the scope stack.
6516 if (New->getDeclName() && AddToScope)
6517 PushOnScopeChains(New, S);
6519 if (isInOpenMPDeclareTargetContext())
6520 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
6522 return New;
6525 /// Helper method to turn variable array types into constant array
6526 /// types in certain situations which would otherwise be errors (for
6527 /// GCC compatibility).
6528 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
6529 ASTContext &Context,
6530 bool &SizeIsNegative,
6531 llvm::APSInt &Oversized) {
6532 // This method tries to turn a variable array into a constant
6533 // array even when the size isn't an ICE. This is necessary
6534 // for compatibility with code that depends on gcc's buggy
6535 // constant expression folding, like struct {char x[(int)(char*)2];}
6536 SizeIsNegative = false;
6537 Oversized = 0;
6539 if (T->isDependentType())
6540 return QualType();
6542 QualifierCollector Qs;
6543 const Type *Ty = Qs.strip(T);
6545 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
6546 QualType Pointee = PTy->getPointeeType();
6547 QualType FixedType =
6548 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
6549 Oversized);
6550 if (FixedType.isNull()) return FixedType;
6551 FixedType = Context.getPointerType(FixedType);
6552 return Qs.apply(Context, FixedType);
6554 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
6555 QualType Inner = PTy->getInnerType();
6556 QualType FixedType =
6557 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
6558 Oversized);
6559 if (FixedType.isNull()) return FixedType;
6560 FixedType = Context.getParenType(FixedType);
6561 return Qs.apply(Context, FixedType);
6564 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
6565 if (!VLATy)
6566 return QualType();
6568 QualType ElemTy = VLATy->getElementType();
6569 if (ElemTy->isVariablyModifiedType()) {
6570 ElemTy = TryToFixInvalidVariablyModifiedType(ElemTy, Context,
6571 SizeIsNegative, Oversized);
6572 if (ElemTy.isNull())
6573 return QualType();
6576 Expr::EvalResult Result;
6577 if (!VLATy->getSizeExpr() ||
6578 !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
6579 return QualType();
6581 llvm::APSInt Res = Result.Val.getInt();
6583 // Check whether the array size is negative.
6584 if (Res.isSigned() && Res.isNegative()) {
6585 SizeIsNegative = true;
6586 return QualType();
6589 // Check whether the array is too large to be addressed.
6590 unsigned ActiveSizeBits =
6591 (!ElemTy->isDependentType() && !ElemTy->isVariablyModifiedType() &&
6592 !ElemTy->isIncompleteType() && !ElemTy->isUndeducedType())
6593 ? ConstantArrayType::getNumAddressingBits(Context, ElemTy, Res)
6594 : Res.getActiveBits();
6595 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
6596 Oversized = Res;
6597 return QualType();
6600 QualType FoldedArrayType = Context.getConstantArrayType(
6601 ElemTy, Res, VLATy->getSizeExpr(), ArraySizeModifier::Normal, 0);
6602 return Qs.apply(Context, FoldedArrayType);
6605 static void
6606 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
6607 SrcTL = SrcTL.getUnqualifiedLoc();
6608 DstTL = DstTL.getUnqualifiedLoc();
6609 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
6610 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
6611 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
6612 DstPTL.getPointeeLoc());
6613 DstPTL.setStarLoc(SrcPTL.getStarLoc());
6614 return;
6616 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
6617 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
6618 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
6619 DstPTL.getInnerLoc());
6620 DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
6621 DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
6622 return;
6624 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
6625 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
6626 TypeLoc SrcElemTL = SrcATL.getElementLoc();
6627 TypeLoc DstElemTL = DstATL.getElementLoc();
6628 if (VariableArrayTypeLoc SrcElemATL =
6629 SrcElemTL.getAs<VariableArrayTypeLoc>()) {
6630 ConstantArrayTypeLoc DstElemATL = DstElemTL.castAs<ConstantArrayTypeLoc>();
6631 FixInvalidVariablyModifiedTypeLoc(SrcElemATL, DstElemATL);
6632 } else {
6633 DstElemTL.initializeFullCopy(SrcElemTL);
6635 DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
6636 DstATL.setSizeExpr(SrcATL.getSizeExpr());
6637 DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
6640 /// Helper method to turn variable array types into constant array
6641 /// types in certain situations which would otherwise be errors (for
6642 /// GCC compatibility).
6643 static TypeSourceInfo*
6644 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
6645 ASTContext &Context,
6646 bool &SizeIsNegative,
6647 llvm::APSInt &Oversized) {
6648 QualType FixedTy
6649 = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
6650 SizeIsNegative, Oversized);
6651 if (FixedTy.isNull())
6652 return nullptr;
6653 TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
6654 FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
6655 FixedTInfo->getTypeLoc());
6656 return FixedTInfo;
6659 /// Attempt to fold a variable-sized type to a constant-sized type, returning
6660 /// true if we were successful.
6661 bool Sema::tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo,
6662 QualType &T, SourceLocation Loc,
6663 unsigned FailedFoldDiagID) {
6664 bool SizeIsNegative;
6665 llvm::APSInt Oversized;
6666 TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
6667 TInfo, Context, SizeIsNegative, Oversized);
6668 if (FixedTInfo) {
6669 Diag(Loc, diag::ext_vla_folded_to_constant);
6670 TInfo = FixedTInfo;
6671 T = FixedTInfo->getType();
6672 return true;
6675 if (SizeIsNegative)
6676 Diag(Loc, diag::err_typecheck_negative_array_size);
6677 else if (Oversized.getBoolValue())
6678 Diag(Loc, diag::err_array_too_large) << toString(Oversized, 10);
6679 else if (FailedFoldDiagID)
6680 Diag(Loc, FailedFoldDiagID);
6681 return false;
6684 /// Register the given locally-scoped extern "C" declaration so
6685 /// that it can be found later for redeclarations. We include any extern "C"
6686 /// declaration that is not visible in the translation unit here, not just
6687 /// function-scope declarations.
6688 void
6689 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
6690 if (!getLangOpts().CPlusPlus &&
6691 ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
6692 // Don't need to track declarations in the TU in C.
6693 return;
6695 // Note that we have a locally-scoped external with this name.
6696 Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
6699 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
6700 // FIXME: We can have multiple results via __attribute__((overloadable)).
6701 auto Result = Context.getExternCContextDecl()->lookup(Name);
6702 return Result.empty() ? nullptr : *Result.begin();
6705 /// Diagnose function specifiers on a declaration of an identifier that
6706 /// does not identify a function.
6707 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
6708 // FIXME: We should probably indicate the identifier in question to avoid
6709 // confusion for constructs like "virtual int a(), b;"
6710 if (DS.isVirtualSpecified())
6711 Diag(DS.getVirtualSpecLoc(),
6712 diag::err_virtual_non_function);
6714 if (DS.hasExplicitSpecifier())
6715 Diag(DS.getExplicitSpecLoc(),
6716 diag::err_explicit_non_function);
6718 if (DS.isNoreturnSpecified())
6719 Diag(DS.getNoreturnSpecLoc(),
6720 diag::err_noreturn_non_function);
6723 NamedDecl*
6724 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
6725 TypeSourceInfo *TInfo, LookupResult &Previous) {
6726 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
6727 if (D.getCXXScopeSpec().isSet()) {
6728 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
6729 << D.getCXXScopeSpec().getRange();
6730 D.setInvalidType();
6731 // Pretend we didn't see the scope specifier.
6732 DC = CurContext;
6733 Previous.clear();
6736 DiagnoseFunctionSpecifiers(D.getDeclSpec());
6738 if (D.getDeclSpec().isInlineSpecified())
6739 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6740 << getLangOpts().CPlusPlus17;
6741 if (D.getDeclSpec().hasConstexprSpecifier())
6742 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6743 << 1 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
6745 if (D.getName().getKind() != UnqualifiedIdKind::IK_Identifier) {
6746 if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
6747 Diag(D.getName().StartLocation,
6748 diag::err_deduction_guide_invalid_specifier)
6749 << "typedef";
6750 else
6751 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
6752 << D.getName().getSourceRange();
6753 return nullptr;
6756 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
6757 if (!NewTD) return nullptr;
6759 // Handle attributes prior to checking for duplicates in MergeVarDecl
6760 ProcessDeclAttributes(S, NewTD, D);
6762 CheckTypedefForVariablyModifiedType(S, NewTD);
6764 bool Redeclaration = D.isRedeclaration();
6765 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
6766 D.setRedeclaration(Redeclaration);
6767 return ND;
6770 void
6771 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
6772 // C99 6.7.7p2: If a typedef name specifies a variably modified type
6773 // then it shall have block scope.
6774 // Note that variably modified types must be fixed before merging the decl so
6775 // that redeclarations will match.
6776 TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
6777 QualType T = TInfo->getType();
6778 if (T->isVariablyModifiedType()) {
6779 setFunctionHasBranchProtectedScope();
6781 if (S->getFnParent() == nullptr) {
6782 bool SizeIsNegative;
6783 llvm::APSInt Oversized;
6784 TypeSourceInfo *FixedTInfo =
6785 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6786 SizeIsNegative,
6787 Oversized);
6788 if (FixedTInfo) {
6789 Diag(NewTD->getLocation(), diag::ext_vla_folded_to_constant);
6790 NewTD->setTypeSourceInfo(FixedTInfo);
6791 } else {
6792 if (SizeIsNegative)
6793 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
6794 else if (T->isVariableArrayType())
6795 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
6796 else if (Oversized.getBoolValue())
6797 Diag(NewTD->getLocation(), diag::err_array_too_large)
6798 << toString(Oversized, 10);
6799 else
6800 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
6801 NewTD->setInvalidDecl();
6807 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
6808 /// declares a typedef-name, either using the 'typedef' type specifier or via
6809 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
6810 NamedDecl*
6811 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
6812 LookupResult &Previous, bool &Redeclaration) {
6814 // Find the shadowed declaration before filtering for scope.
6815 NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
6817 // Merge the decl with the existing one if appropriate. If the decl is
6818 // in an outer scope, it isn't the same thing.
6819 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
6820 /*AllowInlineNamespace*/false);
6821 filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
6822 if (!Previous.empty()) {
6823 Redeclaration = true;
6824 MergeTypedefNameDecl(S, NewTD, Previous);
6825 } else {
6826 inferGslPointerAttribute(NewTD);
6829 if (ShadowedDecl && !Redeclaration)
6830 CheckShadow(NewTD, ShadowedDecl, Previous);
6832 // If this is the C FILE type, notify the AST context.
6833 if (IdentifierInfo *II = NewTD->getIdentifier())
6834 if (!NewTD->isInvalidDecl() &&
6835 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6836 switch (II->getInterestingIdentifierID()) {
6837 case tok::InterestingIdentifierKind::FILE:
6838 Context.setFILEDecl(NewTD);
6839 break;
6840 case tok::InterestingIdentifierKind::jmp_buf:
6841 Context.setjmp_bufDecl(NewTD);
6842 break;
6843 case tok::InterestingIdentifierKind::sigjmp_buf:
6844 Context.setsigjmp_bufDecl(NewTD);
6845 break;
6846 case tok::InterestingIdentifierKind::ucontext_t:
6847 Context.setucontext_tDecl(NewTD);
6848 break;
6849 case tok::InterestingIdentifierKind::float_t:
6850 case tok::InterestingIdentifierKind::double_t:
6851 NewTD->addAttr(AvailableOnlyInDefaultEvalMethodAttr::Create(Context));
6852 break;
6853 default:
6854 break;
6858 return NewTD;
6861 /// Determines whether the given declaration is an out-of-scope
6862 /// previous declaration.
6864 /// This routine should be invoked when name lookup has found a
6865 /// previous declaration (PrevDecl) that is not in the scope where a
6866 /// new declaration by the same name is being introduced. If the new
6867 /// declaration occurs in a local scope, previous declarations with
6868 /// linkage may still be considered previous declarations (C99
6869 /// 6.2.2p4-5, C++ [basic.link]p6).
6871 /// \param PrevDecl the previous declaration found by name
6872 /// lookup
6874 /// \param DC the context in which the new declaration is being
6875 /// declared.
6877 /// \returns true if PrevDecl is an out-of-scope previous declaration
6878 /// for a new delcaration with the same name.
6879 static bool
6880 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
6881 ASTContext &Context) {
6882 if (!PrevDecl)
6883 return false;
6885 if (!PrevDecl->hasLinkage())
6886 return false;
6888 if (Context.getLangOpts().CPlusPlus) {
6889 // C++ [basic.link]p6:
6890 // If there is a visible declaration of an entity with linkage
6891 // having the same name and type, ignoring entities declared
6892 // outside the innermost enclosing namespace scope, the block
6893 // scope declaration declares that same entity and receives the
6894 // linkage of the previous declaration.
6895 DeclContext *OuterContext = DC->getRedeclContext();
6896 if (!OuterContext->isFunctionOrMethod())
6897 // This rule only applies to block-scope declarations.
6898 return false;
6900 DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
6901 if (PrevOuterContext->isRecord())
6902 // We found a member function: ignore it.
6903 return false;
6905 // Find the innermost enclosing namespace for the new and
6906 // previous declarations.
6907 OuterContext = OuterContext->getEnclosingNamespaceContext();
6908 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
6910 // The previous declaration is in a different namespace, so it
6911 // isn't the same function.
6912 if (!OuterContext->Equals(PrevOuterContext))
6913 return false;
6916 return true;
6919 static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
6920 CXXScopeSpec &SS = D.getCXXScopeSpec();
6921 if (!SS.isSet()) return;
6922 DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
6925 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
6926 QualType type = decl->getType();
6927 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
6928 if (lifetime == Qualifiers::OCL_Autoreleasing) {
6929 // Various kinds of declaration aren't allowed to be __autoreleasing.
6930 unsigned kind = -1U;
6931 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6932 if (var->hasAttr<BlocksAttr>())
6933 kind = 0; // __block
6934 else if (!var->hasLocalStorage())
6935 kind = 1; // global
6936 } else if (isa<ObjCIvarDecl>(decl)) {
6937 kind = 3; // ivar
6938 } else if (isa<FieldDecl>(decl)) {
6939 kind = 2; // field
6942 if (kind != -1U) {
6943 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
6944 << kind;
6946 } else if (lifetime == Qualifiers::OCL_None) {
6947 // Try to infer lifetime.
6948 if (!type->isObjCLifetimeType())
6949 return false;
6951 lifetime = type->getObjCARCImplicitLifetime();
6952 type = Context.getLifetimeQualifiedType(type, lifetime);
6953 decl->setType(type);
6956 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6957 // Thread-local variables cannot have lifetime.
6958 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
6959 var->getTLSKind()) {
6960 Diag(var->getLocation(), diag::err_arc_thread_ownership)
6961 << var->getType();
6962 return true;
6966 return false;
6969 void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) {
6970 if (Decl->getType().hasAddressSpace())
6971 return;
6972 if (Decl->getType()->isDependentType())
6973 return;
6974 if (VarDecl *Var = dyn_cast<VarDecl>(Decl)) {
6975 QualType Type = Var->getType();
6976 if (Type->isSamplerT() || Type->isVoidType())
6977 return;
6978 LangAS ImplAS = LangAS::opencl_private;
6979 // OpenCL C v3.0 s6.7.8 - For OpenCL C 2.0 or with the
6980 // __opencl_c_program_scope_global_variables feature, the address space
6981 // for a variable at program scope or a static or extern variable inside
6982 // a function are inferred to be __global.
6983 if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()) &&
6984 Var->hasGlobalStorage())
6985 ImplAS = LangAS::opencl_global;
6986 // If the original type from a decayed type is an array type and that array
6987 // type has no address space yet, deduce it now.
6988 if (auto DT = dyn_cast<DecayedType>(Type)) {
6989 auto OrigTy = DT->getOriginalType();
6990 if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) {
6991 // Add the address space to the original array type and then propagate
6992 // that to the element type through `getAsArrayType`.
6993 OrigTy = Context.getAddrSpaceQualType(OrigTy, ImplAS);
6994 OrigTy = QualType(Context.getAsArrayType(OrigTy), 0);
6995 // Re-generate the decayed type.
6996 Type = Context.getDecayedType(OrigTy);
6999 Type = Context.getAddrSpaceQualType(Type, ImplAS);
7000 // Apply any qualifiers (including address space) from the array type to
7001 // the element type. This implements C99 6.7.3p8: "If the specification of
7002 // an array type includes any type qualifiers, the element type is so
7003 // qualified, not the array type."
7004 if (Type->isArrayType())
7005 Type = QualType(Context.getAsArrayType(Type), 0);
7006 Decl->setType(Type);
7010 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
7011 // Ensure that an auto decl is deduced otherwise the checks below might cache
7012 // the wrong linkage.
7013 assert(S.ParsingInitForAutoVars.count(&ND) == 0);
7015 // 'weak' only applies to declarations with external linkage.
7016 if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
7017 if (!ND.isExternallyVisible()) {
7018 S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
7019 ND.dropAttr<WeakAttr>();
7022 if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
7023 if (ND.isExternallyVisible()) {
7024 S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
7025 ND.dropAttr<WeakRefAttr>();
7026 ND.dropAttr<AliasAttr>();
7030 if (auto *VD = dyn_cast<VarDecl>(&ND)) {
7031 if (VD->hasInit()) {
7032 if (const auto *Attr = VD->getAttr<AliasAttr>()) {
7033 assert(VD->isThisDeclarationADefinition() &&
7034 !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
7035 S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
7036 VD->dropAttr<AliasAttr>();
7041 // 'selectany' only applies to externally visible variable declarations.
7042 // It does not apply to functions.
7043 if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
7044 if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
7045 S.Diag(Attr->getLocation(),
7046 diag::err_attribute_selectany_non_extern_data);
7047 ND.dropAttr<SelectAnyAttr>();
7051 if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
7052 auto *VD = dyn_cast<VarDecl>(&ND);
7053 bool IsAnonymousNS = false;
7054 bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
7055 if (VD) {
7056 const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext());
7057 while (NS && !IsAnonymousNS) {
7058 IsAnonymousNS = NS->isAnonymousNamespace();
7059 NS = dyn_cast<NamespaceDecl>(NS->getParent());
7062 // dll attributes require external linkage. Static locals may have external
7063 // linkage but still cannot be explicitly imported or exported.
7064 // In Microsoft mode, a variable defined in anonymous namespace must have
7065 // external linkage in order to be exported.
7066 bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft;
7067 if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) ||
7068 (!AnonNSInMicrosoftMode &&
7069 (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) {
7070 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
7071 << &ND << Attr;
7072 ND.setInvalidDecl();
7076 // Check the attributes on the function type, if any.
7077 if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
7078 // Don't declare this variable in the second operand of the for-statement;
7079 // GCC miscompiles that by ending its lifetime before evaluating the
7080 // third operand. See gcc.gnu.org/PR86769.
7081 AttributedTypeLoc ATL;
7082 for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
7083 (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
7084 TL = ATL.getModifiedLoc()) {
7085 // The [[lifetimebound]] attribute can be applied to the implicit object
7086 // parameter of a non-static member function (other than a ctor or dtor)
7087 // by applying it to the function type.
7088 if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
7089 const auto *MD = dyn_cast<CXXMethodDecl>(FD);
7090 if (!MD || MD->isStatic()) {
7091 S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
7092 << !MD << A->getRange();
7093 } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
7094 S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
7095 << isa<CXXDestructorDecl>(MD) << A->getRange();
7102 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
7103 NamedDecl *NewDecl,
7104 bool IsSpecialization,
7105 bool IsDefinition) {
7106 if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
7107 return;
7109 bool IsTemplate = false;
7110 if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
7111 OldDecl = OldTD->getTemplatedDecl();
7112 IsTemplate = true;
7113 if (!IsSpecialization)
7114 IsDefinition = false;
7116 if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
7117 NewDecl = NewTD->getTemplatedDecl();
7118 IsTemplate = true;
7121 if (!OldDecl || !NewDecl)
7122 return;
7124 const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
7125 const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
7126 const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
7127 const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
7129 // dllimport and dllexport are inheritable attributes so we have to exclude
7130 // inherited attribute instances.
7131 bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
7132 (NewExportAttr && !NewExportAttr->isInherited());
7134 // A redeclaration is not allowed to add a dllimport or dllexport attribute,
7135 // the only exception being explicit specializations.
7136 // Implicitly generated declarations are also excluded for now because there
7137 // is no other way to switch these to use dllimport or dllexport.
7138 bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
7140 if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
7141 // Allow with a warning for free functions and global variables.
7142 bool JustWarn = false;
7143 if (!OldDecl->isCXXClassMember()) {
7144 auto *VD = dyn_cast<VarDecl>(OldDecl);
7145 if (VD && !VD->getDescribedVarTemplate())
7146 JustWarn = true;
7147 auto *FD = dyn_cast<FunctionDecl>(OldDecl);
7148 if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
7149 JustWarn = true;
7152 // We cannot change a declaration that's been used because IR has already
7153 // been emitted. Dllimported functions will still work though (modulo
7154 // address equality) as they can use the thunk.
7155 if (OldDecl->isUsed())
7156 if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
7157 JustWarn = false;
7159 unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
7160 : diag::err_attribute_dll_redeclaration;
7161 S.Diag(NewDecl->getLocation(), DiagID)
7162 << NewDecl
7163 << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
7164 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
7165 if (!JustWarn) {
7166 NewDecl->setInvalidDecl();
7167 return;
7171 // A redeclaration is not allowed to drop a dllimport attribute, the only
7172 // exceptions being inline function definitions (except for function
7173 // templates), local extern declarations, qualified friend declarations or
7174 // special MSVC extension: in the last case, the declaration is treated as if
7175 // it were marked dllexport.
7176 bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
7177 bool IsMicrosoftABI = S.Context.getTargetInfo().shouldDLLImportComdatSymbols();
7178 if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
7179 // Ignore static data because out-of-line definitions are diagnosed
7180 // separately.
7181 IsStaticDataMember = VD->isStaticDataMember();
7182 IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
7183 VarDecl::DeclarationOnly;
7184 } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
7185 IsInline = FD->isInlined();
7186 IsQualifiedFriend = FD->getQualifier() &&
7187 FD->getFriendObjectKind() == Decl::FOK_Declared;
7190 if (OldImportAttr && !HasNewAttr &&
7191 (!IsInline || (IsMicrosoftABI && IsTemplate)) && !IsStaticDataMember &&
7192 !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
7193 if (IsMicrosoftABI && IsDefinition) {
7194 if (IsSpecialization) {
7195 S.Diag(
7196 NewDecl->getLocation(),
7197 diag::err_attribute_dllimport_function_specialization_definition);
7198 S.Diag(OldImportAttr->getLocation(), diag::note_attribute);
7199 NewDecl->dropAttr<DLLImportAttr>();
7200 } else {
7201 S.Diag(NewDecl->getLocation(),
7202 diag::warn_redeclaration_without_import_attribute)
7203 << NewDecl;
7204 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
7205 NewDecl->dropAttr<DLLImportAttr>();
7206 NewDecl->addAttr(DLLExportAttr::CreateImplicit(
7207 S.Context, NewImportAttr->getRange()));
7209 } else if (IsMicrosoftABI && IsSpecialization) {
7210 assert(!IsDefinition);
7211 // MSVC allows this. Keep the inherited attribute.
7212 } else {
7213 S.Diag(NewDecl->getLocation(),
7214 diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7215 << NewDecl << OldImportAttr;
7216 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
7217 S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
7218 OldDecl->dropAttr<DLLImportAttr>();
7219 NewDecl->dropAttr<DLLImportAttr>();
7221 } else if (IsInline && OldImportAttr && !IsMicrosoftABI) {
7222 // In MinGW, seeing a function declared inline drops the dllimport
7223 // attribute.
7224 OldDecl->dropAttr<DLLImportAttr>();
7225 NewDecl->dropAttr<DLLImportAttr>();
7226 S.Diag(NewDecl->getLocation(),
7227 diag::warn_dllimport_dropped_from_inline_function)
7228 << NewDecl << OldImportAttr;
7231 // A specialization of a class template member function is processed here
7232 // since it's a redeclaration. If the parent class is dllexport, the
7233 // specialization inherits that attribute. This doesn't happen automatically
7234 // since the parent class isn't instantiated until later.
7235 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
7236 if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
7237 !NewImportAttr && !NewExportAttr) {
7238 if (const DLLExportAttr *ParentExportAttr =
7239 MD->getParent()->getAttr<DLLExportAttr>()) {
7240 DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
7241 NewAttr->setInherited(true);
7242 NewDecl->addAttr(NewAttr);
7248 /// Given that we are within the definition of the given function,
7249 /// will that definition behave like C99's 'inline', where the
7250 /// definition is discarded except for optimization purposes?
7251 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
7252 // Try to avoid calling GetGVALinkageForFunction.
7254 // All cases of this require the 'inline' keyword.
7255 if (!FD->isInlined()) return false;
7257 // This is only possible in C++ with the gnu_inline attribute.
7258 if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
7259 return false;
7261 // Okay, go ahead and call the relatively-more-expensive function.
7262 return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
7265 /// Determine whether a variable is extern "C" prior to attaching
7266 /// an initializer. We can't just call isExternC() here, because that
7267 /// will also compute and cache whether the declaration is externally
7268 /// visible, which might change when we attach the initializer.
7270 /// This can only be used if the declaration is known to not be a
7271 /// redeclaration of an internal linkage declaration.
7273 /// For instance:
7275 /// auto x = []{};
7277 /// Attaching the initializer here makes this declaration not externally
7278 /// visible, because its type has internal linkage.
7280 /// FIXME: This is a hack.
7281 template<typename T>
7282 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
7283 if (S.getLangOpts().CPlusPlus) {
7284 // In C++, the overloadable attribute negates the effects of extern "C".
7285 if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
7286 return false;
7288 // So do CUDA's host/device attributes.
7289 if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
7290 D->template hasAttr<CUDAHostAttr>()))
7291 return false;
7293 return D->isExternC();
7296 static bool shouldConsiderLinkage(const VarDecl *VD) {
7297 const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
7298 if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) ||
7299 isa<OMPDeclareMapperDecl>(DC))
7300 return VD->hasExternalStorage();
7301 if (DC->isFileContext())
7302 return true;
7303 if (DC->isRecord())
7304 return false;
7305 if (DC->getDeclKind() == Decl::HLSLBuffer)
7306 return false;
7308 if (isa<RequiresExprBodyDecl>(DC))
7309 return false;
7310 llvm_unreachable("Unexpected context");
7313 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
7314 const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
7315 if (DC->isFileContext() || DC->isFunctionOrMethod() ||
7316 isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC))
7317 return true;
7318 if (DC->isRecord())
7319 return false;
7320 llvm_unreachable("Unexpected context");
7323 static bool hasParsedAttr(Scope *S, const Declarator &PD,
7324 ParsedAttr::Kind Kind) {
7325 // Check decl attributes on the DeclSpec.
7326 if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
7327 return true;
7329 // Walk the declarator structure, checking decl attributes that were in a type
7330 // position to the decl itself.
7331 for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
7332 if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
7333 return true;
7336 // Finally, check attributes on the decl itself.
7337 return PD.getAttributes().hasAttribute(Kind) ||
7338 PD.getDeclarationAttributes().hasAttribute(Kind);
7341 /// Adjust the \c DeclContext for a function or variable that might be a
7342 /// function-local external declaration.
7343 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
7344 if (!DC->isFunctionOrMethod())
7345 return false;
7347 // If this is a local extern function or variable declared within a function
7348 // template, don't add it into the enclosing namespace scope until it is
7349 // instantiated; it might have a dependent type right now.
7350 if (DC->isDependentContext())
7351 return true;
7353 // C++11 [basic.link]p7:
7354 // When a block scope declaration of an entity with linkage is not found to
7355 // refer to some other declaration, then that entity is a member of the
7356 // innermost enclosing namespace.
7358 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
7359 // semantically-enclosing namespace, not a lexically-enclosing one.
7360 while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
7361 DC = DC->getParent();
7362 return true;
7365 /// Returns true if given declaration has external C language linkage.
7366 static bool isDeclExternC(const Decl *D) {
7367 if (const auto *FD = dyn_cast<FunctionDecl>(D))
7368 return FD->isExternC();
7369 if (const auto *VD = dyn_cast<VarDecl>(D))
7370 return VD->isExternC();
7372 llvm_unreachable("Unknown type of decl!");
7375 /// Returns true if there hasn't been any invalid type diagnosed.
7376 static bool diagnoseOpenCLTypes(Sema &Se, VarDecl *NewVD) {
7377 DeclContext *DC = NewVD->getDeclContext();
7378 QualType R = NewVD->getType();
7380 // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
7381 // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
7382 // argument.
7383 if (R->isImageType() || R->isPipeType()) {
7384 Se.Diag(NewVD->getLocation(),
7385 diag::err_opencl_type_can_only_be_used_as_function_parameter)
7386 << R;
7387 NewVD->setInvalidDecl();
7388 return false;
7391 // OpenCL v1.2 s6.9.r:
7392 // The event type cannot be used to declare a program scope variable.
7393 // OpenCL v2.0 s6.9.q:
7394 // The clk_event_t and reserve_id_t types cannot be declared in program
7395 // scope.
7396 if (NewVD->hasGlobalStorage() && !NewVD->isStaticLocal()) {
7397 if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
7398 Se.Diag(NewVD->getLocation(),
7399 diag::err_invalid_type_for_program_scope_var)
7400 << R;
7401 NewVD->setInvalidDecl();
7402 return false;
7406 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
7407 if (!Se.getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
7408 Se.getLangOpts())) {
7409 QualType NR = R.getCanonicalType();
7410 while (NR->isPointerType() || NR->isMemberFunctionPointerType() ||
7411 NR->isReferenceType()) {
7412 if (NR->isFunctionPointerType() || NR->isMemberFunctionPointerType() ||
7413 NR->isFunctionReferenceType()) {
7414 Se.Diag(NewVD->getLocation(), diag::err_opencl_function_pointer)
7415 << NR->isReferenceType();
7416 NewVD->setInvalidDecl();
7417 return false;
7419 NR = NR->getPointeeType();
7423 if (!Se.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
7424 Se.getLangOpts())) {
7425 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
7426 // half array type (unless the cl_khr_fp16 extension is enabled).
7427 if (Se.Context.getBaseElementType(R)->isHalfType()) {
7428 Se.Diag(NewVD->getLocation(), diag::err_opencl_half_declaration) << R;
7429 NewVD->setInvalidDecl();
7430 return false;
7434 // OpenCL v1.2 s6.9.r:
7435 // The event type cannot be used with the __local, __constant and __global
7436 // address space qualifiers.
7437 if (R->isEventT()) {
7438 if (R.getAddressSpace() != LangAS::opencl_private) {
7439 Se.Diag(NewVD->getBeginLoc(), diag::err_event_t_addr_space_qual);
7440 NewVD->setInvalidDecl();
7441 return false;
7445 if (R->isSamplerT()) {
7446 // OpenCL v1.2 s6.9.b p4:
7447 // The sampler type cannot be used with the __local and __global address
7448 // space qualifiers.
7449 if (R.getAddressSpace() == LangAS::opencl_local ||
7450 R.getAddressSpace() == LangAS::opencl_global) {
7451 Se.Diag(NewVD->getLocation(), diag::err_wrong_sampler_addressspace);
7452 NewVD->setInvalidDecl();
7455 // OpenCL v1.2 s6.12.14.1:
7456 // A global sampler must be declared with either the constant address
7457 // space qualifier or with the const qualifier.
7458 if (DC->isTranslationUnit() &&
7459 !(R.getAddressSpace() == LangAS::opencl_constant ||
7460 R.isConstQualified())) {
7461 Se.Diag(NewVD->getLocation(), diag::err_opencl_nonconst_global_sampler);
7462 NewVD->setInvalidDecl();
7464 if (NewVD->isInvalidDecl())
7465 return false;
7468 return true;
7471 template <typename AttrTy>
7472 static void copyAttrFromTypedefToDecl(Sema &S, Decl *D, const TypedefType *TT) {
7473 const TypedefNameDecl *TND = TT->getDecl();
7474 if (const auto *Attribute = TND->getAttr<AttrTy>()) {
7475 AttrTy *Clone = Attribute->clone(S.Context);
7476 Clone->setInherited(true);
7477 D->addAttr(Clone);
7481 // This function emits warning and a corresponding note based on the
7482 // ReadOnlyPlacementAttr attribute. The warning checks that all global variable
7483 // declarations of an annotated type must be const qualified.
7484 void emitReadOnlyPlacementAttrWarning(Sema &S, const VarDecl *VD) {
7485 QualType VarType = VD->getType().getCanonicalType();
7487 // Ignore local declarations (for now) and those with const qualification.
7488 // TODO: Local variables should not be allowed if their type declaration has
7489 // ReadOnlyPlacementAttr attribute. To be handled in follow-up patch.
7490 if (!VD || VD->hasLocalStorage() || VD->getType().isConstQualified())
7491 return;
7493 if (VarType->isArrayType()) {
7494 // Retrieve element type for array declarations.
7495 VarType = S.getASTContext().getBaseElementType(VarType);
7498 const RecordDecl *RD = VarType->getAsRecordDecl();
7500 // Check if the record declaration is present and if it has any attributes.
7501 if (RD == nullptr)
7502 return;
7504 if (const auto *ConstDecl = RD->getAttr<ReadOnlyPlacementAttr>()) {
7505 S.Diag(VD->getLocation(), diag::warn_var_decl_not_read_only) << RD;
7506 S.Diag(ConstDecl->getLocation(), diag::note_enforce_read_only_placement);
7507 return;
7511 NamedDecl *Sema::ActOnVariableDeclarator(
7512 Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
7513 LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
7514 bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
7515 QualType R = TInfo->getType();
7516 DeclarationName Name = GetNameForDeclarator(D).getName();
7518 IdentifierInfo *II = Name.getAsIdentifierInfo();
7519 bool IsPlaceholderVariable = false;
7521 if (D.isDecompositionDeclarator()) {
7522 // Take the name of the first declarator as our name for diagnostic
7523 // purposes.
7524 auto &Decomp = D.getDecompositionDeclarator();
7525 if (!Decomp.bindings().empty()) {
7526 II = Decomp.bindings()[0].Name;
7527 Name = II;
7529 } else if (!II) {
7530 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
7531 return nullptr;
7535 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
7536 StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
7538 if (LangOpts.CPlusPlus && (DC->isClosure() || DC->isFunctionOrMethod()) &&
7539 SC != SC_Static && SC != SC_Extern && II && II->isPlaceholder()) {
7540 IsPlaceholderVariable = true;
7541 if (!Previous.empty()) {
7542 NamedDecl *PrevDecl = *Previous.begin();
7543 bool SameDC = PrevDecl->getDeclContext()->getRedeclContext()->Equals(
7544 DC->getRedeclContext());
7545 if (SameDC && isDeclInScope(PrevDecl, CurContext, S, false))
7546 DiagPlaceholderVariableDefinition(D.getIdentifierLoc());
7550 // dllimport globals without explicit storage class are treated as extern. We
7551 // have to change the storage class this early to get the right DeclContext.
7552 if (SC == SC_None && !DC->isRecord() &&
7553 hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
7554 !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
7555 SC = SC_Extern;
7557 DeclContext *OriginalDC = DC;
7558 bool IsLocalExternDecl = SC == SC_Extern &&
7559 adjustContextForLocalExternDecl(DC);
7561 if (SCSpec == DeclSpec::SCS_mutable) {
7562 // mutable can only appear on non-static class members, so it's always
7563 // an error here
7564 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
7565 D.setInvalidType();
7566 SC = SC_None;
7569 if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
7570 !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
7571 D.getDeclSpec().getStorageClassSpecLoc())) {
7572 // In C++11, the 'register' storage class specifier is deprecated.
7573 // Suppress the warning in system macros, it's used in macros in some
7574 // popular C system headers, such as in glibc's htonl() macro.
7575 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7576 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
7577 : diag::warn_deprecated_register)
7578 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7581 DiagnoseFunctionSpecifiers(D.getDeclSpec());
7583 if (!DC->isRecord() && S->getFnParent() == nullptr) {
7584 // C99 6.9p2: The storage-class specifiers auto and register shall not
7585 // appear in the declaration specifiers in an external declaration.
7586 // Global Register+Asm is a GNU extension we support.
7587 if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
7588 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
7589 D.setInvalidType();
7593 // If this variable has a VLA type and an initializer, try to
7594 // fold to a constant-sized type. This is otherwise invalid.
7595 if (D.hasInitializer() && R->isVariableArrayType())
7596 tryToFixVariablyModifiedVarType(TInfo, R, D.getIdentifierLoc(),
7597 /*DiagID=*/0);
7599 bool IsMemberSpecialization = false;
7600 bool IsVariableTemplateSpecialization = false;
7601 bool IsPartialSpecialization = false;
7602 bool IsVariableTemplate = false;
7603 VarDecl *NewVD = nullptr;
7604 VarTemplateDecl *NewTemplate = nullptr;
7605 TemplateParameterList *TemplateParams = nullptr;
7606 if (!getLangOpts().CPlusPlus) {
7607 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
7608 II, R, TInfo, SC);
7610 if (R->getContainedDeducedType())
7611 ParsingInitForAutoVars.insert(NewVD);
7613 if (D.isInvalidType())
7614 NewVD->setInvalidDecl();
7616 if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() &&
7617 NewVD->hasLocalStorage())
7618 checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(),
7619 NTCUC_AutoVar, NTCUK_Destruct);
7620 } else {
7621 bool Invalid = false;
7623 if (DC->isRecord() && !CurContext->isRecord()) {
7624 // This is an out-of-line definition of a static data member.
7625 switch (SC) {
7626 case SC_None:
7627 break;
7628 case SC_Static:
7629 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7630 diag::err_static_out_of_line)
7631 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7632 break;
7633 case SC_Auto:
7634 case SC_Register:
7635 case SC_Extern:
7636 // [dcl.stc] p2: The auto or register specifiers shall be applied only
7637 // to names of variables declared in a block or to function parameters.
7638 // [dcl.stc] p6: The extern specifier cannot be used in the declaration
7639 // of class members
7641 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7642 diag::err_storage_class_for_static_member)
7643 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7644 break;
7645 case SC_PrivateExtern:
7646 llvm_unreachable("C storage class in c++!");
7650 if (SC == SC_Static && CurContext->isRecord()) {
7651 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
7652 // Walk up the enclosing DeclContexts to check for any that are
7653 // incompatible with static data members.
7654 const DeclContext *FunctionOrMethod = nullptr;
7655 const CXXRecordDecl *AnonStruct = nullptr;
7656 for (DeclContext *Ctxt = DC; Ctxt; Ctxt = Ctxt->getParent()) {
7657 if (Ctxt->isFunctionOrMethod()) {
7658 FunctionOrMethod = Ctxt;
7659 break;
7661 const CXXRecordDecl *ParentDecl = dyn_cast<CXXRecordDecl>(Ctxt);
7662 if (ParentDecl && !ParentDecl->getDeclName()) {
7663 AnonStruct = ParentDecl;
7664 break;
7667 if (FunctionOrMethod) {
7668 // C++ [class.static.data]p5: A local class shall not have static data
7669 // members.
7670 Diag(D.getIdentifierLoc(),
7671 diag::err_static_data_member_not_allowed_in_local_class)
7672 << Name << RD->getDeclName() << RD->getTagKind();
7673 } else if (AnonStruct) {
7674 // C++ [class.static.data]p4: Unnamed classes and classes contained
7675 // directly or indirectly within unnamed classes shall not contain
7676 // static data members.
7677 Diag(D.getIdentifierLoc(),
7678 diag::err_static_data_member_not_allowed_in_anon_struct)
7679 << Name << AnonStruct->getTagKind();
7680 Invalid = true;
7681 } else if (RD->isUnion()) {
7682 // C++98 [class.union]p1: If a union contains a static data member,
7683 // the program is ill-formed. C++11 drops this restriction.
7684 Diag(D.getIdentifierLoc(),
7685 getLangOpts().CPlusPlus11
7686 ? diag::warn_cxx98_compat_static_data_member_in_union
7687 : diag::ext_static_data_member_in_union) << Name;
7692 // Match up the template parameter lists with the scope specifier, then
7693 // determine whether we have a template or a template specialization.
7694 bool InvalidScope = false;
7695 TemplateParams = MatchTemplateParametersToScopeSpecifier(
7696 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
7697 D.getCXXScopeSpec(),
7698 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
7699 ? D.getName().TemplateId
7700 : nullptr,
7701 TemplateParamLists,
7702 /*never a friend*/ false, IsMemberSpecialization, InvalidScope);
7703 Invalid |= InvalidScope;
7705 if (TemplateParams) {
7706 if (!TemplateParams->size() &&
7707 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
7708 // There is an extraneous 'template<>' for this variable. Complain
7709 // about it, but allow the declaration of the variable.
7710 Diag(TemplateParams->getTemplateLoc(),
7711 diag::err_template_variable_noparams)
7712 << II
7713 << SourceRange(TemplateParams->getTemplateLoc(),
7714 TemplateParams->getRAngleLoc());
7715 TemplateParams = nullptr;
7716 } else {
7717 // Check that we can declare a template here.
7718 if (CheckTemplateDeclScope(S, TemplateParams))
7719 return nullptr;
7721 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
7722 // This is an explicit specialization or a partial specialization.
7723 IsVariableTemplateSpecialization = true;
7724 IsPartialSpecialization = TemplateParams->size() > 0;
7725 } else { // if (TemplateParams->size() > 0)
7726 // This is a template declaration.
7727 IsVariableTemplate = true;
7729 // Only C++1y supports variable templates (N3651).
7730 Diag(D.getIdentifierLoc(),
7731 getLangOpts().CPlusPlus14
7732 ? diag::warn_cxx11_compat_variable_template
7733 : diag::ext_variable_template);
7736 } else {
7737 // Check that we can declare a member specialization here.
7738 if (!TemplateParamLists.empty() && IsMemberSpecialization &&
7739 CheckTemplateDeclScope(S, TemplateParamLists.back()))
7740 return nullptr;
7741 assert((Invalid ||
7742 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&
7743 "should have a 'template<>' for this decl");
7746 if (IsVariableTemplateSpecialization) {
7747 SourceLocation TemplateKWLoc =
7748 TemplateParamLists.size() > 0
7749 ? TemplateParamLists[0]->getTemplateLoc()
7750 : SourceLocation();
7751 DeclResult Res = ActOnVarTemplateSpecialization(
7752 S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
7753 IsPartialSpecialization);
7754 if (Res.isInvalid())
7755 return nullptr;
7756 NewVD = cast<VarDecl>(Res.get());
7757 AddToScope = false;
7758 } else if (D.isDecompositionDeclarator()) {
7759 NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
7760 D.getIdentifierLoc(), R, TInfo, SC,
7761 Bindings);
7762 } else
7763 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
7764 D.getIdentifierLoc(), II, R, TInfo, SC);
7766 // If this is supposed to be a variable template, create it as such.
7767 if (IsVariableTemplate) {
7768 NewTemplate =
7769 VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
7770 TemplateParams, NewVD);
7771 NewVD->setDescribedVarTemplate(NewTemplate);
7774 // If this decl has an auto type in need of deduction, make a note of the
7775 // Decl so we can diagnose uses of it in its own initializer.
7776 if (R->getContainedDeducedType())
7777 ParsingInitForAutoVars.insert(NewVD);
7779 if (D.isInvalidType() || Invalid) {
7780 NewVD->setInvalidDecl();
7781 if (NewTemplate)
7782 NewTemplate->setInvalidDecl();
7785 SetNestedNameSpecifier(*this, NewVD, D);
7787 // If we have any template parameter lists that don't directly belong to
7788 // the variable (matching the scope specifier), store them.
7789 // An explicit variable template specialization does not own any template
7790 // parameter lists.
7791 bool IsExplicitSpecialization =
7792 IsVariableTemplateSpecialization && !IsPartialSpecialization;
7793 unsigned VDTemplateParamLists =
7794 (TemplateParams && !IsExplicitSpecialization) ? 1 : 0;
7795 if (TemplateParamLists.size() > VDTemplateParamLists)
7796 NewVD->setTemplateParameterListsInfo(
7797 Context, TemplateParamLists.drop_back(VDTemplateParamLists));
7800 if (D.getDeclSpec().isInlineSpecified()) {
7801 if (!getLangOpts().CPlusPlus) {
7802 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
7803 << 0;
7804 } else if (CurContext->isFunctionOrMethod()) {
7805 // 'inline' is not allowed on block scope variable declaration.
7806 Diag(D.getDeclSpec().getInlineSpecLoc(),
7807 diag::err_inline_declaration_block_scope) << Name
7808 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7809 } else {
7810 Diag(D.getDeclSpec().getInlineSpecLoc(),
7811 getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
7812 : diag::ext_inline_variable);
7813 NewVD->setInlineSpecified();
7817 // Set the lexical context. If the declarator has a C++ scope specifier, the
7818 // lexical context will be different from the semantic context.
7819 NewVD->setLexicalDeclContext(CurContext);
7820 if (NewTemplate)
7821 NewTemplate->setLexicalDeclContext(CurContext);
7823 if (IsLocalExternDecl) {
7824 if (D.isDecompositionDeclarator())
7825 for (auto *B : Bindings)
7826 B->setLocalExternDecl();
7827 else
7828 NewVD->setLocalExternDecl();
7831 bool EmitTLSUnsupportedError = false;
7832 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
7833 // C++11 [dcl.stc]p4:
7834 // When thread_local is applied to a variable of block scope the
7835 // storage-class-specifier static is implied if it does not appear
7836 // explicitly.
7837 // Core issue: 'static' is not implied if the variable is declared
7838 // 'extern'.
7839 if (NewVD->hasLocalStorage() &&
7840 (SCSpec != DeclSpec::SCS_unspecified ||
7841 TSCS != DeclSpec::TSCS_thread_local ||
7842 !DC->isFunctionOrMethod()))
7843 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7844 diag::err_thread_non_global)
7845 << DeclSpec::getSpecifierName(TSCS);
7846 else if (!Context.getTargetInfo().isTLSSupported()) {
7847 if (getLangOpts().CUDA || getLangOpts().OpenMPIsTargetDevice ||
7848 getLangOpts().SYCLIsDevice) {
7849 // Postpone error emission until we've collected attributes required to
7850 // figure out whether it's a host or device variable and whether the
7851 // error should be ignored.
7852 EmitTLSUnsupportedError = true;
7853 // We still need to mark the variable as TLS so it shows up in AST with
7854 // proper storage class for other tools to use even if we're not going
7855 // to emit any code for it.
7856 NewVD->setTSCSpec(TSCS);
7857 } else
7858 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7859 diag::err_thread_unsupported);
7860 } else
7861 NewVD->setTSCSpec(TSCS);
7864 switch (D.getDeclSpec().getConstexprSpecifier()) {
7865 case ConstexprSpecKind::Unspecified:
7866 break;
7868 case ConstexprSpecKind::Consteval:
7869 Diag(D.getDeclSpec().getConstexprSpecLoc(),
7870 diag::err_constexpr_wrong_decl_kind)
7871 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
7872 [[fallthrough]];
7874 case ConstexprSpecKind::Constexpr:
7875 NewVD->setConstexpr(true);
7876 // C++1z [dcl.spec.constexpr]p1:
7877 // A static data member declared with the constexpr specifier is
7878 // implicitly an inline variable.
7879 if (NewVD->isStaticDataMember() &&
7880 (getLangOpts().CPlusPlus17 ||
7881 Context.getTargetInfo().getCXXABI().isMicrosoft()))
7882 NewVD->setImplicitlyInline();
7883 break;
7885 case ConstexprSpecKind::Constinit:
7886 if (!NewVD->hasGlobalStorage())
7887 Diag(D.getDeclSpec().getConstexprSpecLoc(),
7888 diag::err_constinit_local_variable);
7889 else
7890 NewVD->addAttr(
7891 ConstInitAttr::Create(Context, D.getDeclSpec().getConstexprSpecLoc(),
7892 ConstInitAttr::Keyword_constinit));
7893 break;
7896 // C99 6.7.4p3
7897 // An inline definition of a function with external linkage shall
7898 // not contain a definition of a modifiable object with static or
7899 // thread storage duration...
7900 // We only apply this when the function is required to be defined
7901 // elsewhere, i.e. when the function is not 'extern inline'. Note
7902 // that a local variable with thread storage duration still has to
7903 // be marked 'static'. Also note that it's possible to get these
7904 // semantics in C++ using __attribute__((gnu_inline)).
7905 if (SC == SC_Static && S->getFnParent() != nullptr &&
7906 !NewVD->getType().isConstQualified()) {
7907 FunctionDecl *CurFD = getCurFunctionDecl();
7908 if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
7909 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7910 diag::warn_static_local_in_extern_inline);
7911 MaybeSuggestAddingStaticToDecl(CurFD);
7915 if (D.getDeclSpec().isModulePrivateSpecified()) {
7916 if (IsVariableTemplateSpecialization)
7917 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7918 << (IsPartialSpecialization ? 1 : 0)
7919 << FixItHint::CreateRemoval(
7920 D.getDeclSpec().getModulePrivateSpecLoc());
7921 else if (IsMemberSpecialization)
7922 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7923 << 2
7924 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7925 else if (NewVD->hasLocalStorage())
7926 Diag(NewVD->getLocation(), diag::err_module_private_local)
7927 << 0 << NewVD
7928 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7929 << FixItHint::CreateRemoval(
7930 D.getDeclSpec().getModulePrivateSpecLoc());
7931 else {
7932 NewVD->setModulePrivate();
7933 if (NewTemplate)
7934 NewTemplate->setModulePrivate();
7935 for (auto *B : Bindings)
7936 B->setModulePrivate();
7940 if (getLangOpts().OpenCL) {
7941 deduceOpenCLAddressSpace(NewVD);
7943 DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
7944 if (TSC != TSCS_unspecified) {
7945 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7946 diag::err_opencl_unknown_type_specifier)
7947 << getLangOpts().getOpenCLVersionString()
7948 << DeclSpec::getSpecifierName(TSC) << 1;
7949 NewVD->setInvalidDecl();
7953 // WebAssembly tables are always in address space 1 (wasm_var). Don't apply
7954 // address space if the table has local storage (semantic checks elsewhere
7955 // will produce an error anyway).
7956 if (const auto *ATy = dyn_cast<ArrayType>(NewVD->getType())) {
7957 if (ATy && ATy->getElementType().isWebAssemblyReferenceType() &&
7958 !NewVD->hasLocalStorage()) {
7959 QualType Type = Context.getAddrSpaceQualType(
7960 NewVD->getType(), Context.getLangASForBuiltinAddressSpace(1));
7961 NewVD->setType(Type);
7965 // Handle attributes prior to checking for duplicates in MergeVarDecl
7966 ProcessDeclAttributes(S, NewVD, D);
7968 // FIXME: This is probably the wrong location to be doing this and we should
7969 // probably be doing this for more attributes (especially for function
7970 // pointer attributes such as format, warn_unused_result, etc.). Ideally
7971 // the code to copy attributes would be generated by TableGen.
7972 if (R->isFunctionPointerType())
7973 if (const auto *TT = R->getAs<TypedefType>())
7974 copyAttrFromTypedefToDecl<AllocSizeAttr>(*this, NewVD, TT);
7976 if (getLangOpts().CUDA || getLangOpts().OpenMPIsTargetDevice ||
7977 getLangOpts().SYCLIsDevice) {
7978 if (EmitTLSUnsupportedError &&
7979 ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
7980 (getLangOpts().OpenMPIsTargetDevice &&
7981 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD))))
7982 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7983 diag::err_thread_unsupported);
7985 if (EmitTLSUnsupportedError &&
7986 (LangOpts.SYCLIsDevice ||
7987 (LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice)))
7988 targetDiag(D.getIdentifierLoc(), diag::err_thread_unsupported);
7989 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
7990 // storage [duration]."
7991 if (SC == SC_None && S->getFnParent() != nullptr &&
7992 (NewVD->hasAttr<CUDASharedAttr>() ||
7993 NewVD->hasAttr<CUDAConstantAttr>())) {
7994 NewVD->setStorageClass(SC_Static);
7998 // Ensure that dllimport globals without explicit storage class are treated as
7999 // extern. The storage class is set above using parsed attributes. Now we can
8000 // check the VarDecl itself.
8001 assert(!NewVD->hasAttr<DLLImportAttr>() ||
8002 NewVD->getAttr<DLLImportAttr>()->isInherited() ||
8003 NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
8005 // In auto-retain/release, infer strong retension for variables of
8006 // retainable type.
8007 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
8008 NewVD->setInvalidDecl();
8010 // Handle GNU asm-label extension (encoded as an attribute).
8011 if (Expr *E = (Expr*)D.getAsmLabel()) {
8012 // The parser guarantees this is a string.
8013 StringLiteral *SE = cast<StringLiteral>(E);
8014 StringRef Label = SE->getString();
8015 if (S->getFnParent() != nullptr) {
8016 switch (SC) {
8017 case SC_None:
8018 case SC_Auto:
8019 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
8020 break;
8021 case SC_Register:
8022 // Local Named register
8023 if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
8024 DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
8025 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
8026 break;
8027 case SC_Static:
8028 case SC_Extern:
8029 case SC_PrivateExtern:
8030 break;
8032 } else if (SC == SC_Register) {
8033 // Global Named register
8034 if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
8035 const auto &TI = Context.getTargetInfo();
8036 bool HasSizeMismatch;
8038 if (!TI.isValidGCCRegisterName(Label))
8039 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
8040 else if (!TI.validateGlobalRegisterVariable(Label,
8041 Context.getTypeSize(R),
8042 HasSizeMismatch))
8043 Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
8044 else if (HasSizeMismatch)
8045 Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
8048 if (!R->isIntegralType(Context) && !R->isPointerType()) {
8049 Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
8050 NewVD->setInvalidDecl(true);
8054 NewVD->addAttr(AsmLabelAttr::Create(Context, Label,
8055 /*IsLiteralLabel=*/true,
8056 SE->getStrTokenLoc(0)));
8057 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
8058 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
8059 ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
8060 if (I != ExtnameUndeclaredIdentifiers.end()) {
8061 if (isDeclExternC(NewVD)) {
8062 NewVD->addAttr(I->second);
8063 ExtnameUndeclaredIdentifiers.erase(I);
8064 } else
8065 Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
8066 << /*Variable*/1 << NewVD;
8070 // Find the shadowed declaration before filtering for scope.
8071 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
8072 ? getShadowedDeclaration(NewVD, Previous)
8073 : nullptr;
8075 // Don't consider existing declarations that are in a different
8076 // scope and are out-of-semantic-context declarations (if the new
8077 // declaration has linkage).
8078 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
8079 D.getCXXScopeSpec().isNotEmpty() ||
8080 IsMemberSpecialization ||
8081 IsVariableTemplateSpecialization);
8083 // Check whether the previous declaration is in the same block scope. This
8084 // affects whether we merge types with it, per C++11 [dcl.array]p3.
8085 if (getLangOpts().CPlusPlus &&
8086 NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
8087 NewVD->setPreviousDeclInSameBlockScope(
8088 Previous.isSingleResult() && !Previous.isShadowed() &&
8089 isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
8091 if (!getLangOpts().CPlusPlus) {
8092 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
8093 } else {
8094 // If this is an explicit specialization of a static data member, check it.
8095 if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
8096 CheckMemberSpecialization(NewVD, Previous))
8097 NewVD->setInvalidDecl();
8099 // Merge the decl with the existing one if appropriate.
8100 if (!Previous.empty()) {
8101 if (Previous.isSingleResult() &&
8102 isa<FieldDecl>(Previous.getFoundDecl()) &&
8103 D.getCXXScopeSpec().isSet()) {
8104 // The user tried to define a non-static data member
8105 // out-of-line (C++ [dcl.meaning]p1).
8106 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
8107 << D.getCXXScopeSpec().getRange();
8108 Previous.clear();
8109 NewVD->setInvalidDecl();
8111 } else if (D.getCXXScopeSpec().isSet()) {
8112 // No previous declaration in the qualifying scope.
8113 Diag(D.getIdentifierLoc(), diag::err_no_member)
8114 << Name << computeDeclContext(D.getCXXScopeSpec(), true)
8115 << D.getCXXScopeSpec().getRange();
8116 NewVD->setInvalidDecl();
8119 if (!IsVariableTemplateSpecialization && !IsPlaceholderVariable)
8120 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
8122 // CheckVariableDeclaration will set NewVD as invalid if something is in
8123 // error like WebAssembly tables being declared as arrays with a non-zero
8124 // size, but then parsing continues and emits further errors on that line.
8125 // To avoid that we check here if it happened and return nullptr.
8126 if (NewVD->getType()->isWebAssemblyTableType() && NewVD->isInvalidDecl())
8127 return nullptr;
8129 if (NewTemplate) {
8130 VarTemplateDecl *PrevVarTemplate =
8131 NewVD->getPreviousDecl()
8132 ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
8133 : nullptr;
8135 // Check the template parameter list of this declaration, possibly
8136 // merging in the template parameter list from the previous variable
8137 // template declaration.
8138 if (CheckTemplateParameterList(
8139 TemplateParams,
8140 PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
8141 : nullptr,
8142 (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
8143 DC->isDependentContext())
8144 ? TPC_ClassTemplateMember
8145 : TPC_VarTemplate))
8146 NewVD->setInvalidDecl();
8148 // If we are providing an explicit specialization of a static variable
8149 // template, make a note of that.
8150 if (PrevVarTemplate &&
8151 PrevVarTemplate->getInstantiatedFromMemberTemplate())
8152 PrevVarTemplate->setMemberSpecialization();
8156 // Diagnose shadowed variables iff this isn't a redeclaration.
8157 if (!IsPlaceholderVariable && ShadowedDecl && !D.isRedeclaration())
8158 CheckShadow(NewVD, ShadowedDecl, Previous);
8160 ProcessPragmaWeak(S, NewVD);
8162 // If this is the first declaration of an extern C variable, update
8163 // the map of such variables.
8164 if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
8165 isIncompleteDeclExternC(*this, NewVD))
8166 RegisterLocallyScopedExternCDecl(NewVD, S);
8168 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
8169 MangleNumberingContext *MCtx;
8170 Decl *ManglingContextDecl;
8171 std::tie(MCtx, ManglingContextDecl) =
8172 getCurrentMangleNumberContext(NewVD->getDeclContext());
8173 if (MCtx) {
8174 Context.setManglingNumber(
8175 NewVD, MCtx->getManglingNumber(
8176 NewVD, getMSManglingNumber(getLangOpts(), S)));
8177 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
8181 // Special handling of variable named 'main'.
8182 if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
8183 NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8184 !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
8186 // C++ [basic.start.main]p3
8187 // A program that declares a variable main at global scope is ill-formed.
8188 if (getLangOpts().CPlusPlus)
8189 Diag(D.getBeginLoc(), diag::err_main_global_variable);
8191 // In C, and external-linkage variable named main results in undefined
8192 // behavior.
8193 else if (NewVD->hasExternalFormalLinkage())
8194 Diag(D.getBeginLoc(), diag::warn_main_redefined);
8197 if (D.isRedeclaration() && !Previous.empty()) {
8198 NamedDecl *Prev = Previous.getRepresentativeDecl();
8199 checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
8200 D.isFunctionDefinition());
8203 if (NewTemplate) {
8204 if (NewVD->isInvalidDecl())
8205 NewTemplate->setInvalidDecl();
8206 ActOnDocumentableDecl(NewTemplate);
8207 return NewTemplate;
8210 if (IsMemberSpecialization && !NewVD->isInvalidDecl())
8211 CompleteMemberSpecialization(NewVD, Previous);
8213 emitReadOnlyPlacementAttrWarning(*this, NewVD);
8215 return NewVD;
8218 /// Enum describing the %select options in diag::warn_decl_shadow.
8219 enum ShadowedDeclKind {
8220 SDK_Local,
8221 SDK_Global,
8222 SDK_StaticMember,
8223 SDK_Field,
8224 SDK_Typedef,
8225 SDK_Using,
8226 SDK_StructuredBinding
8229 /// Determine what kind of declaration we're shadowing.
8230 static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
8231 const DeclContext *OldDC) {
8232 if (isa<TypeAliasDecl>(ShadowedDecl))
8233 return SDK_Using;
8234 else if (isa<TypedefDecl>(ShadowedDecl))
8235 return SDK_Typedef;
8236 else if (isa<BindingDecl>(ShadowedDecl))
8237 return SDK_StructuredBinding;
8238 else if (isa<RecordDecl>(OldDC))
8239 return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
8241 return OldDC->isFileContext() ? SDK_Global : SDK_Local;
8244 /// Return the location of the capture if the given lambda captures the given
8245 /// variable \p VD, or an invalid source location otherwise.
8246 static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
8247 const VarDecl *VD) {
8248 for (const Capture &Capture : LSI->Captures) {
8249 if (Capture.isVariableCapture() && Capture.getVariable() == VD)
8250 return Capture.getLocation();
8252 return SourceLocation();
8255 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
8256 const LookupResult &R) {
8257 // Only diagnose if we're shadowing an unambiguous field or variable.
8258 if (R.getResultKind() != LookupResult::Found)
8259 return false;
8261 // Return false if warning is ignored.
8262 return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
8265 /// Return the declaration shadowed by the given variable \p D, or null
8266 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
8267 NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
8268 const LookupResult &R) {
8269 if (!shouldWarnIfShadowedDecl(Diags, R))
8270 return nullptr;
8272 // Don't diagnose declarations at file scope.
8273 if (D->hasGlobalStorage() && !D->isStaticLocal())
8274 return nullptr;
8276 NamedDecl *ShadowedDecl = R.getFoundDecl();
8277 return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl
8278 : nullptr;
8281 /// Return the declaration shadowed by the given typedef \p D, or null
8282 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
8283 NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
8284 const LookupResult &R) {
8285 // Don't warn if typedef declaration is part of a class
8286 if (D->getDeclContext()->isRecord())
8287 return nullptr;
8289 if (!shouldWarnIfShadowedDecl(Diags, R))
8290 return nullptr;
8292 NamedDecl *ShadowedDecl = R.getFoundDecl();
8293 return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
8296 /// Return the declaration shadowed by the given variable \p D, or null
8297 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
8298 NamedDecl *Sema::getShadowedDeclaration(const BindingDecl *D,
8299 const LookupResult &R) {
8300 if (!shouldWarnIfShadowedDecl(Diags, R))
8301 return nullptr;
8303 NamedDecl *ShadowedDecl = R.getFoundDecl();
8304 return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl
8305 : nullptr;
8308 /// Diagnose variable or built-in function shadowing. Implements
8309 /// -Wshadow.
8311 /// This method is called whenever a VarDecl is added to a "useful"
8312 /// scope.
8314 /// \param ShadowedDecl the declaration that is shadowed by the given variable
8315 /// \param R the lookup of the name
8317 void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
8318 const LookupResult &R) {
8319 DeclContext *NewDC = D->getDeclContext();
8321 if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
8322 // Fields are not shadowed by variables in C++ static methods.
8323 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
8324 if (MD->isStatic())
8325 return;
8327 // Fields shadowed by constructor parameters are a special case. Usually
8328 // the constructor initializes the field with the parameter.
8329 if (isa<CXXConstructorDecl>(NewDC))
8330 if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
8331 // Remember that this was shadowed so we can either warn about its
8332 // modification or its existence depending on warning settings.
8333 ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
8334 return;
8338 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
8339 if (shadowedVar->isExternC()) {
8340 // For shadowing external vars, make sure that we point to the global
8341 // declaration, not a locally scoped extern declaration.
8342 for (auto *I : shadowedVar->redecls())
8343 if (I->isFileVarDecl()) {
8344 ShadowedDecl = I;
8345 break;
8349 DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
8351 unsigned WarningDiag = diag::warn_decl_shadow;
8352 SourceLocation CaptureLoc;
8353 if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
8354 isa<CXXMethodDecl>(NewDC)) {
8355 if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
8356 if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
8357 if (RD->getLambdaCaptureDefault() == LCD_None) {
8358 // Try to avoid warnings for lambdas with an explicit capture list.
8359 const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
8360 // Warn only when the lambda captures the shadowed decl explicitly.
8361 CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
8362 if (CaptureLoc.isInvalid())
8363 WarningDiag = diag::warn_decl_shadow_uncaptured_local;
8364 } else {
8365 // Remember that this was shadowed so we can avoid the warning if the
8366 // shadowed decl isn't captured and the warning settings allow it.
8367 cast<LambdaScopeInfo>(getCurFunction())
8368 ->ShadowingDecls.push_back(
8369 {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
8370 return;
8374 if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
8375 // A variable can't shadow a local variable in an enclosing scope, if
8376 // they are separated by a non-capturing declaration context.
8377 for (DeclContext *ParentDC = NewDC;
8378 ParentDC && !ParentDC->Equals(OldDC);
8379 ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
8380 // Only block literals, captured statements, and lambda expressions
8381 // can capture; other scopes don't.
8382 if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
8383 !isLambdaCallOperator(ParentDC)) {
8384 return;
8391 // Never warn about shadowing a placeholder variable.
8392 if (ShadowedDecl->isPlaceholderVar(getLangOpts()))
8393 return;
8395 // Only warn about certain kinds of shadowing for class members.
8396 if (NewDC && NewDC->isRecord()) {
8397 // In particular, don't warn about shadowing non-class members.
8398 if (!OldDC->isRecord())
8399 return;
8401 // TODO: should we warn about static data members shadowing
8402 // static data members from base classes?
8404 // TODO: don't diagnose for inaccessible shadowed members.
8405 // This is hard to do perfectly because we might friend the
8406 // shadowing context, but that's just a false negative.
8410 DeclarationName Name = R.getLookupName();
8412 // Emit warning and note.
8413 ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
8414 Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
8415 if (!CaptureLoc.isInvalid())
8416 Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
8417 << Name << /*explicitly*/ 1;
8418 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
8421 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
8422 /// when these variables are captured by the lambda.
8423 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
8424 for (const auto &Shadow : LSI->ShadowingDecls) {
8425 const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
8426 // Try to avoid the warning when the shadowed decl isn't captured.
8427 SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
8428 const DeclContext *OldDC = ShadowedDecl->getDeclContext();
8429 Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
8430 ? diag::warn_decl_shadow_uncaptured_local
8431 : diag::warn_decl_shadow)
8432 << Shadow.VD->getDeclName()
8433 << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
8434 if (!CaptureLoc.isInvalid())
8435 Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
8436 << Shadow.VD->getDeclName() << /*explicitly*/ 0;
8437 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
8441 /// Check -Wshadow without the advantage of a previous lookup.
8442 void Sema::CheckShadow(Scope *S, VarDecl *D) {
8443 if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
8444 return;
8446 LookupResult R(*this, D->getDeclName(), D->getLocation(),
8447 Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
8448 LookupName(R, S);
8449 if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
8450 CheckShadow(D, ShadowedDecl, R);
8453 /// Check if 'E', which is an expression that is about to be modified, refers
8454 /// to a constructor parameter that shadows a field.
8455 void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
8456 // Quickly ignore expressions that can't be shadowing ctor parameters.
8457 if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
8458 return;
8459 E = E->IgnoreParenImpCasts();
8460 auto *DRE = dyn_cast<DeclRefExpr>(E);
8461 if (!DRE)
8462 return;
8463 const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
8464 auto I = ShadowingDecls.find(D);
8465 if (I == ShadowingDecls.end())
8466 return;
8467 const NamedDecl *ShadowedDecl = I->second;
8468 const DeclContext *OldDC = ShadowedDecl->getDeclContext();
8469 Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
8470 Diag(D->getLocation(), diag::note_var_declared_here) << D;
8471 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
8473 // Avoid issuing multiple warnings about the same decl.
8474 ShadowingDecls.erase(I);
8477 /// Check for conflict between this global or extern "C" declaration and
8478 /// previous global or extern "C" declarations. This is only used in C++.
8479 template<typename T>
8480 static bool checkGlobalOrExternCConflict(
8481 Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
8482 assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
8483 NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
8485 if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
8486 // The common case: this global doesn't conflict with any extern "C"
8487 // declaration.
8488 return false;
8491 if (Prev) {
8492 if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
8493 // Both the old and new declarations have C language linkage. This is a
8494 // redeclaration.
8495 Previous.clear();
8496 Previous.addDecl(Prev);
8497 return true;
8500 // This is a global, non-extern "C" declaration, and there is a previous
8501 // non-global extern "C" declaration. Diagnose if this is a variable
8502 // declaration.
8503 if (!isa<VarDecl>(ND))
8504 return false;
8505 } else {
8506 // The declaration is extern "C". Check for any declaration in the
8507 // translation unit which might conflict.
8508 if (IsGlobal) {
8509 // We have already performed the lookup into the translation unit.
8510 IsGlobal = false;
8511 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8512 I != E; ++I) {
8513 if (isa<VarDecl>(*I)) {
8514 Prev = *I;
8515 break;
8518 } else {
8519 DeclContext::lookup_result R =
8520 S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
8521 for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
8522 I != E; ++I) {
8523 if (isa<VarDecl>(*I)) {
8524 Prev = *I;
8525 break;
8527 // FIXME: If we have any other entity with this name in global scope,
8528 // the declaration is ill-formed, but that is a defect: it breaks the
8529 // 'stat' hack, for instance. Only variables can have mangled name
8530 // clashes with extern "C" declarations, so only they deserve a
8531 // diagnostic.
8535 if (!Prev)
8536 return false;
8539 // Use the first declaration's location to ensure we point at something which
8540 // is lexically inside an extern "C" linkage-spec.
8541 assert(Prev && "should have found a previous declaration to diagnose");
8542 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
8543 Prev = FD->getFirstDecl();
8544 else
8545 Prev = cast<VarDecl>(Prev)->getFirstDecl();
8547 S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
8548 << IsGlobal << ND;
8549 S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
8550 << IsGlobal;
8551 return false;
8554 /// Apply special rules for handling extern "C" declarations. Returns \c true
8555 /// if we have found that this is a redeclaration of some prior entity.
8557 /// Per C++ [dcl.link]p6:
8558 /// Two declarations [for a function or variable] with C language linkage
8559 /// with the same name that appear in different scopes refer to the same
8560 /// [entity]. An entity with C language linkage shall not be declared with
8561 /// the same name as an entity in global scope.
8562 template<typename T>
8563 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
8564 LookupResult &Previous) {
8565 if (!S.getLangOpts().CPlusPlus) {
8566 // In C, when declaring a global variable, look for a corresponding 'extern'
8567 // variable declared in function scope. We don't need this in C++, because
8568 // we find local extern decls in the surrounding file-scope DeclContext.
8569 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
8570 if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
8571 Previous.clear();
8572 Previous.addDecl(Prev);
8573 return true;
8576 return false;
8579 // A declaration in the translation unit can conflict with an extern "C"
8580 // declaration.
8581 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
8582 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
8584 // An extern "C" declaration can conflict with a declaration in the
8585 // translation unit or can be a redeclaration of an extern "C" declaration
8586 // in another scope.
8587 if (isIncompleteDeclExternC(S,ND))
8588 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
8590 // Neither global nor extern "C": nothing to do.
8591 return false;
8594 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
8595 // If the decl is already known invalid, don't check it.
8596 if (NewVD->isInvalidDecl())
8597 return;
8599 QualType T = NewVD->getType();
8601 // Defer checking an 'auto' type until its initializer is attached.
8602 if (T->isUndeducedType())
8603 return;
8605 if (NewVD->hasAttrs())
8606 CheckAlignasUnderalignment(NewVD);
8608 if (T->isObjCObjectType()) {
8609 Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
8610 << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
8611 T = Context.getObjCObjectPointerType(T);
8612 NewVD->setType(T);
8615 // Emit an error if an address space was applied to decl with local storage.
8616 // This includes arrays of objects with address space qualifiers, but not
8617 // automatic variables that point to other address spaces.
8618 // ISO/IEC TR 18037 S5.1.2
8619 if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
8620 T.getAddressSpace() != LangAS::Default) {
8621 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
8622 NewVD->setInvalidDecl();
8623 return;
8626 // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
8627 // scope.
8628 if (getLangOpts().OpenCLVersion == 120 &&
8629 !getOpenCLOptions().isAvailableOption("cl_clang_storage_class_specifiers",
8630 getLangOpts()) &&
8631 NewVD->isStaticLocal()) {
8632 Diag(NewVD->getLocation(), diag::err_static_function_scope);
8633 NewVD->setInvalidDecl();
8634 return;
8637 if (getLangOpts().OpenCL) {
8638 if (!diagnoseOpenCLTypes(*this, NewVD))
8639 return;
8641 // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
8642 if (NewVD->hasAttr<BlocksAttr>()) {
8643 Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
8644 return;
8647 if (T->isBlockPointerType()) {
8648 // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
8649 // can't use 'extern' storage class.
8650 if (!T.isConstQualified()) {
8651 Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
8652 << 0 /*const*/;
8653 NewVD->setInvalidDecl();
8654 return;
8656 if (NewVD->hasExternalStorage()) {
8657 Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
8658 NewVD->setInvalidDecl();
8659 return;
8663 // FIXME: Adding local AS in C++ for OpenCL might make sense.
8664 if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
8665 NewVD->hasExternalStorage()) {
8666 if (!T->isSamplerT() && !T->isDependentType() &&
8667 !(T.getAddressSpace() == LangAS::opencl_constant ||
8668 (T.getAddressSpace() == LangAS::opencl_global &&
8669 getOpenCLOptions().areProgramScopeVariablesSupported(
8670 getLangOpts())))) {
8671 int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
8672 if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()))
8673 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
8674 << Scope << "global or constant";
8675 else
8676 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
8677 << Scope << "constant";
8678 NewVD->setInvalidDecl();
8679 return;
8681 } else {
8682 if (T.getAddressSpace() == LangAS::opencl_global) {
8683 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8684 << 1 /*is any function*/ << "global";
8685 NewVD->setInvalidDecl();
8686 return;
8688 if (T.getAddressSpace() == LangAS::opencl_constant ||
8689 T.getAddressSpace() == LangAS::opencl_local) {
8690 FunctionDecl *FD = getCurFunctionDecl();
8691 // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
8692 // in functions.
8693 if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
8694 if (T.getAddressSpace() == LangAS::opencl_constant)
8695 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8696 << 0 /*non-kernel only*/ << "constant";
8697 else
8698 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8699 << 0 /*non-kernel only*/ << "local";
8700 NewVD->setInvalidDecl();
8701 return;
8703 // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
8704 // in the outermost scope of a kernel function.
8705 if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
8706 if (!getCurScope()->isFunctionScope()) {
8707 if (T.getAddressSpace() == LangAS::opencl_constant)
8708 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
8709 << "constant";
8710 else
8711 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
8712 << "local";
8713 NewVD->setInvalidDecl();
8714 return;
8717 } else if (T.getAddressSpace() != LangAS::opencl_private &&
8718 // If we are parsing a template we didn't deduce an addr
8719 // space yet.
8720 T.getAddressSpace() != LangAS::Default) {
8721 // Do not allow other address spaces on automatic variable.
8722 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
8723 NewVD->setInvalidDecl();
8724 return;
8729 if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
8730 && !NewVD->hasAttr<BlocksAttr>()) {
8731 if (getLangOpts().getGC() != LangOptions::NonGC)
8732 Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
8733 else {
8734 assert(!getLangOpts().ObjCAutoRefCount);
8735 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
8739 // WebAssembly tables must be static with a zero length and can't be
8740 // declared within functions.
8741 if (T->isWebAssemblyTableType()) {
8742 if (getCurScope()->getParent()) { // Parent is null at top-level
8743 Diag(NewVD->getLocation(), diag::err_wasm_table_in_function);
8744 NewVD->setInvalidDecl();
8745 return;
8747 if (NewVD->getStorageClass() != SC_Static) {
8748 Diag(NewVD->getLocation(), diag::err_wasm_table_must_be_static);
8749 NewVD->setInvalidDecl();
8750 return;
8752 const auto *ATy = dyn_cast<ConstantArrayType>(T.getTypePtr());
8753 if (!ATy || ATy->getSize().getSExtValue() != 0) {
8754 Diag(NewVD->getLocation(),
8755 diag::err_typecheck_wasm_table_must_have_zero_length);
8756 NewVD->setInvalidDecl();
8757 return;
8761 bool isVM = T->isVariablyModifiedType();
8762 if (isVM || NewVD->hasAttr<CleanupAttr>() ||
8763 NewVD->hasAttr<BlocksAttr>())
8764 setFunctionHasBranchProtectedScope();
8766 if ((isVM && NewVD->hasLinkage()) ||
8767 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
8768 bool SizeIsNegative;
8769 llvm::APSInt Oversized;
8770 TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
8771 NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
8772 QualType FixedT;
8773 if (FixedTInfo && T == NewVD->getTypeSourceInfo()->getType())
8774 FixedT = FixedTInfo->getType();
8775 else if (FixedTInfo) {
8776 // Type and type-as-written are canonically different. We need to fix up
8777 // both types separately.
8778 FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
8779 Oversized);
8781 if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
8782 const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
8783 // FIXME: This won't give the correct result for
8784 // int a[10][n];
8785 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
8787 if (NewVD->isFileVarDecl())
8788 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
8789 << SizeRange;
8790 else if (NewVD->isStaticLocal())
8791 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
8792 << SizeRange;
8793 else
8794 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
8795 << SizeRange;
8796 NewVD->setInvalidDecl();
8797 return;
8800 if (!FixedTInfo) {
8801 if (NewVD->isFileVarDecl())
8802 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
8803 else
8804 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
8805 NewVD->setInvalidDecl();
8806 return;
8809 Diag(NewVD->getLocation(), diag::ext_vla_folded_to_constant);
8810 NewVD->setType(FixedT);
8811 NewVD->setTypeSourceInfo(FixedTInfo);
8814 if (T->isVoidType()) {
8815 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
8816 // of objects and functions.
8817 if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
8818 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
8819 << T;
8820 NewVD->setInvalidDecl();
8821 return;
8825 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
8826 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
8827 NewVD->setInvalidDecl();
8828 return;
8831 if (!NewVD->hasLocalStorage() && T->isSizelessType() &&
8832 !T.isWebAssemblyReferenceType()) {
8833 Diag(NewVD->getLocation(), diag::err_sizeless_nonlocal) << T;
8834 NewVD->setInvalidDecl();
8835 return;
8838 if (isVM && NewVD->hasAttr<BlocksAttr>()) {
8839 Diag(NewVD->getLocation(), diag::err_block_on_vm);
8840 NewVD->setInvalidDecl();
8841 return;
8844 if (NewVD->isConstexpr() && !T->isDependentType() &&
8845 RequireLiteralType(NewVD->getLocation(), T,
8846 diag::err_constexpr_var_non_literal)) {
8847 NewVD->setInvalidDecl();
8848 return;
8851 // PPC MMA non-pointer types are not allowed as non-local variable types.
8852 if (Context.getTargetInfo().getTriple().isPPC64() &&
8853 !NewVD->isLocalVarDecl() &&
8854 CheckPPCMMAType(T, NewVD->getLocation())) {
8855 NewVD->setInvalidDecl();
8856 return;
8859 // Check that SVE types are only used in functions with SVE available.
8860 if (T->isSVESizelessBuiltinType() && isa<FunctionDecl>(CurContext)) {
8861 const FunctionDecl *FD = cast<FunctionDecl>(CurContext);
8862 llvm::StringMap<bool> CallerFeatureMap;
8863 Context.getFunctionFeatureMap(CallerFeatureMap, FD);
8864 if (!Builtin::evaluateRequiredTargetFeatures(
8865 "sve", CallerFeatureMap)) {
8866 Diag(NewVD->getLocation(), diag::err_sve_vector_in_non_sve_target) << T;
8867 NewVD->setInvalidDecl();
8868 return;
8872 if (T->isRVVType())
8873 checkRVVTypeSupport(T, NewVD->getLocation(), cast<Decl>(CurContext));
8876 /// Perform semantic checking on a newly-created variable
8877 /// declaration.
8879 /// This routine performs all of the type-checking required for a
8880 /// variable declaration once it has been built. It is used both to
8881 /// check variables after they have been parsed and their declarators
8882 /// have been translated into a declaration, and to check variables
8883 /// that have been instantiated from a template.
8885 /// Sets NewVD->isInvalidDecl() if an error was encountered.
8887 /// Returns true if the variable declaration is a redeclaration.
8888 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
8889 CheckVariableDeclarationType(NewVD);
8891 // If the decl is already known invalid, don't check it.
8892 if (NewVD->isInvalidDecl())
8893 return false;
8895 // If we did not find anything by this name, look for a non-visible
8896 // extern "C" declaration with the same name.
8897 if (Previous.empty() &&
8898 checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
8899 Previous.setShadowed();
8901 if (!Previous.empty()) {
8902 MergeVarDecl(NewVD, Previous);
8903 return true;
8905 return false;
8908 /// AddOverriddenMethods - See if a method overrides any in the base classes,
8909 /// and if so, check that it's a valid override and remember it.
8910 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
8911 llvm::SmallPtrSet<const CXXMethodDecl*, 4> Overridden;
8913 // Look for methods in base classes that this method might override.
8914 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
8915 /*DetectVirtual=*/false);
8916 auto VisitBase = [&] (const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
8917 CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
8918 DeclarationName Name = MD->getDeclName();
8920 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8921 // We really want to find the base class destructor here.
8922 QualType T = Context.getTypeDeclType(BaseRecord);
8923 CanQualType CT = Context.getCanonicalType(T);
8924 Name = Context.DeclarationNames.getCXXDestructorName(CT);
8927 for (NamedDecl *BaseND : BaseRecord->lookup(Name)) {
8928 CXXMethodDecl *BaseMD =
8929 dyn_cast<CXXMethodDecl>(BaseND->getCanonicalDecl());
8930 if (!BaseMD || !BaseMD->isVirtual() ||
8931 IsOverride(MD, BaseMD, /*UseMemberUsingDeclRules=*/false,
8932 /*ConsiderCudaAttrs=*/true))
8933 continue;
8934 if (!CheckExplicitObjectOverride(MD, BaseMD))
8935 continue;
8936 if (Overridden.insert(BaseMD).second) {
8937 MD->addOverriddenMethod(BaseMD);
8938 CheckOverridingFunctionReturnType(MD, BaseMD);
8939 CheckOverridingFunctionAttributes(MD, BaseMD);
8940 CheckOverridingFunctionExceptionSpec(MD, BaseMD);
8941 CheckIfOverriddenFunctionIsMarkedFinal(MD, BaseMD);
8944 // A method can only override one function from each base class. We
8945 // don't track indirectly overridden methods from bases of bases.
8946 return true;
8949 return false;
8952 DC->lookupInBases(VisitBase, Paths);
8953 return !Overridden.empty();
8956 namespace {
8957 // Struct for holding all of the extra arguments needed by
8958 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
8959 struct ActOnFDArgs {
8960 Scope *S;
8961 Declarator &D;
8962 MultiTemplateParamsArg TemplateParamLists;
8963 bool AddToScope;
8965 } // end anonymous namespace
8967 namespace {
8969 // Callback to only accept typo corrections that have a non-zero edit distance.
8970 // Also only accept corrections that have the same parent decl.
8971 class DifferentNameValidatorCCC final : public CorrectionCandidateCallback {
8972 public:
8973 DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
8974 CXXRecordDecl *Parent)
8975 : Context(Context), OriginalFD(TypoFD),
8976 ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
8978 bool ValidateCandidate(const TypoCorrection &candidate) override {
8979 if (candidate.getEditDistance() == 0)
8980 return false;
8982 SmallVector<unsigned, 1> MismatchedParams;
8983 for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
8984 CDeclEnd = candidate.end();
8985 CDecl != CDeclEnd; ++CDecl) {
8986 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
8988 if (FD && !FD->hasBody() &&
8989 hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
8990 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
8991 CXXRecordDecl *Parent = MD->getParent();
8992 if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
8993 return true;
8994 } else if (!ExpectedParent) {
8995 return true;
9000 return false;
9003 std::unique_ptr<CorrectionCandidateCallback> clone() override {
9004 return std::make_unique<DifferentNameValidatorCCC>(*this);
9007 private:
9008 ASTContext &Context;
9009 FunctionDecl *OriginalFD;
9010 CXXRecordDecl *ExpectedParent;
9013 } // end anonymous namespace
9015 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
9016 TypoCorrectedFunctionDefinitions.insert(F);
9019 /// Generate diagnostics for an invalid function redeclaration.
9021 /// This routine handles generating the diagnostic messages for an invalid
9022 /// function redeclaration, including finding possible similar declarations
9023 /// or performing typo correction if there are no previous declarations with
9024 /// the same name.
9026 /// Returns a NamedDecl iff typo correction was performed and substituting in
9027 /// the new declaration name does not cause new errors.
9028 static NamedDecl *DiagnoseInvalidRedeclaration(
9029 Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
9030 ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
9031 DeclarationName Name = NewFD->getDeclName();
9032 DeclContext *NewDC = NewFD->getDeclContext();
9033 SmallVector<unsigned, 1> MismatchedParams;
9034 SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
9035 TypoCorrection Correction;
9036 bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
9037 unsigned DiagMsg =
9038 IsLocalFriend ? diag::err_no_matching_local_friend :
9039 NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match :
9040 diag::err_member_decl_does_not_match;
9041 LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
9042 IsLocalFriend ? Sema::LookupLocalFriendName
9043 : Sema::LookupOrdinaryName,
9044 Sema::ForVisibleRedeclaration);
9046 NewFD->setInvalidDecl();
9047 if (IsLocalFriend)
9048 SemaRef.LookupName(Prev, S);
9049 else
9050 SemaRef.LookupQualifiedName(Prev, NewDC);
9051 assert(!Prev.isAmbiguous() &&
9052 "Cannot have an ambiguity in previous-declaration lookup");
9053 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
9054 DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD,
9055 MD ? MD->getParent() : nullptr);
9056 if (!Prev.empty()) {
9057 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
9058 Func != FuncEnd; ++Func) {
9059 FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
9060 if (FD &&
9061 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
9062 // Add 1 to the index so that 0 can mean the mismatch didn't
9063 // involve a parameter
9064 unsigned ParamNum =
9065 MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
9066 NearMatches.push_back(std::make_pair(FD, ParamNum));
9069 // If the qualified name lookup yielded nothing, try typo correction
9070 } else if ((Correction = SemaRef.CorrectTypo(
9071 Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
9072 &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery,
9073 IsLocalFriend ? nullptr : NewDC))) {
9074 // Set up everything for the call to ActOnFunctionDeclarator
9075 ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
9076 ExtraArgs.D.getIdentifierLoc());
9077 Previous.clear();
9078 Previous.setLookupName(Correction.getCorrection());
9079 for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
9080 CDeclEnd = Correction.end();
9081 CDecl != CDeclEnd; ++CDecl) {
9082 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
9083 if (FD && !FD->hasBody() &&
9084 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
9085 Previous.addDecl(FD);
9088 bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
9090 NamedDecl *Result;
9091 // Retry building the function declaration with the new previous
9092 // declarations, and with errors suppressed.
9094 // Trap errors.
9095 Sema::SFINAETrap Trap(SemaRef);
9097 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
9098 // pieces need to verify the typo-corrected C++ declaration and hopefully
9099 // eliminate the need for the parameter pack ExtraArgs.
9100 Result = SemaRef.ActOnFunctionDeclarator(
9101 ExtraArgs.S, ExtraArgs.D,
9102 Correction.getCorrectionDecl()->getDeclContext(),
9103 NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
9104 ExtraArgs.AddToScope);
9106 if (Trap.hasErrorOccurred())
9107 Result = nullptr;
9110 if (Result) {
9111 // Determine which correction we picked.
9112 Decl *Canonical = Result->getCanonicalDecl();
9113 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9114 I != E; ++I)
9115 if ((*I)->getCanonicalDecl() == Canonical)
9116 Correction.setCorrectionDecl(*I);
9118 // Let Sema know about the correction.
9119 SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
9120 SemaRef.diagnoseTypo(
9121 Correction,
9122 SemaRef.PDiag(IsLocalFriend
9123 ? diag::err_no_matching_local_friend_suggest
9124 : diag::err_member_decl_does_not_match_suggest)
9125 << Name << NewDC << IsDefinition);
9126 return Result;
9129 // Pretend the typo correction never occurred
9130 ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
9131 ExtraArgs.D.getIdentifierLoc());
9132 ExtraArgs.D.setRedeclaration(wasRedeclaration);
9133 Previous.clear();
9134 Previous.setLookupName(Name);
9137 SemaRef.Diag(NewFD->getLocation(), DiagMsg)
9138 << Name << NewDC << IsDefinition << NewFD->getLocation();
9140 bool NewFDisConst = false;
9141 if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
9142 NewFDisConst = NewMD->isConst();
9144 for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
9145 NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
9146 NearMatch != NearMatchEnd; ++NearMatch) {
9147 FunctionDecl *FD = NearMatch->first;
9148 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
9149 bool FDisConst = MD && MD->isConst();
9150 bool IsMember = MD || !IsLocalFriend;
9152 // FIXME: These notes are poorly worded for the local friend case.
9153 if (unsigned Idx = NearMatch->second) {
9154 ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
9155 SourceLocation Loc = FDParam->getTypeSpecStartLoc();
9156 if (Loc.isInvalid()) Loc = FD->getLocation();
9157 SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
9158 : diag::note_local_decl_close_param_match)
9159 << Idx << FDParam->getType()
9160 << NewFD->getParamDecl(Idx - 1)->getType();
9161 } else if (FDisConst != NewFDisConst) {
9162 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
9163 << NewFDisConst << FD->getSourceRange().getEnd()
9164 << (NewFDisConst
9165 ? FixItHint::CreateRemoval(ExtraArgs.D.getFunctionTypeInfo()
9166 .getConstQualifierLoc())
9167 : FixItHint::CreateInsertion(ExtraArgs.D.getFunctionTypeInfo()
9168 .getRParenLoc()
9169 .getLocWithOffset(1),
9170 " const"));
9171 } else
9172 SemaRef.Diag(FD->getLocation(),
9173 IsMember ? diag::note_member_def_close_match
9174 : diag::note_local_decl_close_match);
9176 return nullptr;
9179 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
9180 switch (D.getDeclSpec().getStorageClassSpec()) {
9181 default: llvm_unreachable("Unknown storage class!");
9182 case DeclSpec::SCS_auto:
9183 case DeclSpec::SCS_register:
9184 case DeclSpec::SCS_mutable:
9185 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
9186 diag::err_typecheck_sclass_func);
9187 D.getMutableDeclSpec().ClearStorageClassSpecs();
9188 D.setInvalidType();
9189 break;
9190 case DeclSpec::SCS_unspecified: break;
9191 case DeclSpec::SCS_extern:
9192 if (D.getDeclSpec().isExternInLinkageSpec())
9193 return SC_None;
9194 return SC_Extern;
9195 case DeclSpec::SCS_static: {
9196 if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
9197 // C99 6.7.1p5:
9198 // The declaration of an identifier for a function that has
9199 // block scope shall have no explicit storage-class specifier
9200 // other than extern
9201 // See also (C++ [dcl.stc]p4).
9202 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
9203 diag::err_static_block_func);
9204 break;
9205 } else
9206 return SC_Static;
9208 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
9211 // No explicit storage class has already been returned
9212 return SC_None;
9215 static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
9216 DeclContext *DC, QualType &R,
9217 TypeSourceInfo *TInfo,
9218 StorageClass SC,
9219 bool &IsVirtualOkay) {
9220 DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
9221 DeclarationName Name = NameInfo.getName();
9223 FunctionDecl *NewFD = nullptr;
9224 bool isInline = D.getDeclSpec().isInlineSpecified();
9226 if (!SemaRef.getLangOpts().CPlusPlus) {
9227 // Determine whether the function was written with a prototype. This is
9228 // true when:
9229 // - there is a prototype in the declarator, or
9230 // - the type R of the function is some kind of typedef or other non-
9231 // attributed reference to a type name (which eventually refers to a
9232 // function type). Note, we can't always look at the adjusted type to
9233 // check this case because attributes may cause a non-function
9234 // declarator to still have a function type. e.g.,
9235 // typedef void func(int a);
9236 // __attribute__((noreturn)) func other_func; // This has a prototype
9237 bool HasPrototype =
9238 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
9239 (D.getDeclSpec().isTypeRep() &&
9240 SemaRef.GetTypeFromParser(D.getDeclSpec().getRepAsType(), nullptr)
9241 ->isFunctionProtoType()) ||
9242 (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
9243 assert(
9244 (HasPrototype || !SemaRef.getLangOpts().requiresStrictPrototypes()) &&
9245 "Strict prototypes are required");
9247 NewFD = FunctionDecl::Create(
9248 SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC,
9249 SemaRef.getCurFPFeatures().isFPConstrained(), isInline, HasPrototype,
9250 ConstexprSpecKind::Unspecified,
9251 /*TrailingRequiresClause=*/nullptr);
9252 if (D.isInvalidType())
9253 NewFD->setInvalidDecl();
9255 return NewFD;
9258 ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier();
9260 ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
9261 if (ConstexprKind == ConstexprSpecKind::Constinit) {
9262 SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(),
9263 diag::err_constexpr_wrong_decl_kind)
9264 << static_cast<int>(ConstexprKind);
9265 ConstexprKind = ConstexprSpecKind::Unspecified;
9266 D.getMutableDeclSpec().ClearConstexprSpec();
9268 Expr *TrailingRequiresClause = D.getTrailingRequiresClause();
9270 SemaRef.CheckExplicitObjectMemberFunction(DC, D, Name, R);
9272 if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
9273 // This is a C++ constructor declaration.
9274 assert(DC->isRecord() &&
9275 "Constructors can only be declared in a member context");
9277 R = SemaRef.CheckConstructorDeclarator(D, R, SC);
9278 return CXXConstructorDecl::Create(
9279 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
9280 TInfo, ExplicitSpecifier, SemaRef.getCurFPFeatures().isFPConstrained(),
9281 isInline, /*isImplicitlyDeclared=*/false, ConstexprKind,
9282 InheritedConstructor(), TrailingRequiresClause);
9284 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
9285 // This is a C++ destructor declaration.
9286 if (DC->isRecord()) {
9287 R = SemaRef.CheckDestructorDeclarator(D, R, SC);
9288 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
9289 CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
9290 SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo,
9291 SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9292 /*isImplicitlyDeclared=*/false, ConstexprKind,
9293 TrailingRequiresClause);
9294 // User defined destructors start as not selected if the class definition is still
9295 // not done.
9296 if (Record->isBeingDefined())
9297 NewDD->setIneligibleOrNotSelected(true);
9299 // If the destructor needs an implicit exception specification, set it
9300 // now. FIXME: It'd be nice to be able to create the right type to start
9301 // with, but the type needs to reference the destructor declaration.
9302 if (SemaRef.getLangOpts().CPlusPlus11)
9303 SemaRef.AdjustDestructorExceptionSpec(NewDD);
9305 IsVirtualOkay = true;
9306 return NewDD;
9308 } else {
9309 SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
9310 D.setInvalidType();
9312 // Create a FunctionDecl to satisfy the function definition parsing
9313 // code path.
9314 return FunctionDecl::Create(
9315 SemaRef.Context, DC, D.getBeginLoc(), D.getIdentifierLoc(), Name, R,
9316 TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9317 /*hasPrototype=*/true, ConstexprKind, TrailingRequiresClause);
9320 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
9321 if (!DC->isRecord()) {
9322 SemaRef.Diag(D.getIdentifierLoc(),
9323 diag::err_conv_function_not_member);
9324 return nullptr;
9327 SemaRef.CheckConversionDeclarator(D, R, SC);
9328 if (D.isInvalidType())
9329 return nullptr;
9331 IsVirtualOkay = true;
9332 return CXXConversionDecl::Create(
9333 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
9334 TInfo, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9335 ExplicitSpecifier, ConstexprKind, SourceLocation(),
9336 TrailingRequiresClause);
9338 } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
9339 if (TrailingRequiresClause)
9340 SemaRef.Diag(TrailingRequiresClause->getBeginLoc(),
9341 diag::err_trailing_requires_clause_on_deduction_guide)
9342 << TrailingRequiresClause->getSourceRange();
9343 if (SemaRef.CheckDeductionGuideDeclarator(D, R, SC))
9344 return nullptr;
9345 return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
9346 ExplicitSpecifier, NameInfo, R, TInfo,
9347 D.getEndLoc());
9348 } else if (DC->isRecord()) {
9349 // If the name of the function is the same as the name of the record,
9350 // then this must be an invalid constructor that has a return type.
9351 // (The parser checks for a return type and makes the declarator a
9352 // constructor if it has no return type).
9353 if (Name.getAsIdentifierInfo() &&
9354 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
9355 SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
9356 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
9357 << SourceRange(D.getIdentifierLoc());
9358 return nullptr;
9361 // This is a C++ method declaration.
9362 CXXMethodDecl *Ret = CXXMethodDecl::Create(
9363 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
9364 TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9365 ConstexprKind, SourceLocation(), TrailingRequiresClause);
9366 IsVirtualOkay = !Ret->isStatic();
9367 return Ret;
9368 } else {
9369 bool isFriend =
9370 SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
9371 if (!isFriend && SemaRef.CurContext->isRecord())
9372 return nullptr;
9374 // Determine whether the function was written with a
9375 // prototype. This true when:
9376 // - we're in C++ (where every function has a prototype),
9377 return FunctionDecl::Create(
9378 SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC,
9379 SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9380 true /*HasPrototype*/, ConstexprKind, TrailingRequiresClause);
9384 enum OpenCLParamType {
9385 ValidKernelParam,
9386 PtrPtrKernelParam,
9387 PtrKernelParam,
9388 InvalidAddrSpacePtrKernelParam,
9389 InvalidKernelParam,
9390 RecordKernelParam
9393 static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
9394 // Size dependent types are just typedefs to normal integer types
9395 // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
9396 // integers other than by their names.
9397 StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
9399 // Remove typedefs one by one until we reach a typedef
9400 // for a size dependent type.
9401 QualType DesugaredTy = Ty;
9402 do {
9403 ArrayRef<StringRef> Names(SizeTypeNames);
9404 auto Match = llvm::find(Names, DesugaredTy.getUnqualifiedType().getAsString());
9405 if (Names.end() != Match)
9406 return true;
9408 Ty = DesugaredTy;
9409 DesugaredTy = Ty.getSingleStepDesugaredType(C);
9410 } while (DesugaredTy != Ty);
9412 return false;
9415 static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
9416 if (PT->isDependentType())
9417 return InvalidKernelParam;
9419 if (PT->isPointerType() || PT->isReferenceType()) {
9420 QualType PointeeType = PT->getPointeeType();
9421 if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
9422 PointeeType.getAddressSpace() == LangAS::opencl_private ||
9423 PointeeType.getAddressSpace() == LangAS::Default)
9424 return InvalidAddrSpacePtrKernelParam;
9426 if (PointeeType->isPointerType()) {
9427 // This is a pointer to pointer parameter.
9428 // Recursively check inner type.
9429 OpenCLParamType ParamKind = getOpenCLKernelParameterType(S, PointeeType);
9430 if (ParamKind == InvalidAddrSpacePtrKernelParam ||
9431 ParamKind == InvalidKernelParam)
9432 return ParamKind;
9434 // OpenCL v3.0 s6.11.a:
9435 // A restriction to pass pointers to pointers only applies to OpenCL C
9436 // v1.2 or below.
9437 if (S.getLangOpts().getOpenCLCompatibleVersion() > 120)
9438 return ValidKernelParam;
9440 return PtrPtrKernelParam;
9443 // C++ for OpenCL v1.0 s2.4:
9444 // Moreover the types used in parameters of the kernel functions must be:
9445 // Standard layout types for pointer parameters. The same applies to
9446 // reference if an implementation supports them in kernel parameters.
9447 if (S.getLangOpts().OpenCLCPlusPlus &&
9448 !S.getOpenCLOptions().isAvailableOption(
9449 "__cl_clang_non_portable_kernel_param_types", S.getLangOpts())) {
9450 auto CXXRec = PointeeType.getCanonicalType()->getAsCXXRecordDecl();
9451 bool IsStandardLayoutType = true;
9452 if (CXXRec) {
9453 // If template type is not ODR-used its definition is only available
9454 // in the template definition not its instantiation.
9455 // FIXME: This logic doesn't work for types that depend on template
9456 // parameter (PR58590).
9457 if (!CXXRec->hasDefinition())
9458 CXXRec = CXXRec->getTemplateInstantiationPattern();
9459 if (!CXXRec || !CXXRec->hasDefinition() || !CXXRec->isStandardLayout())
9460 IsStandardLayoutType = false;
9462 if (!PointeeType->isAtomicType() && !PointeeType->isVoidType() &&
9463 !IsStandardLayoutType)
9464 return InvalidKernelParam;
9467 // OpenCL v1.2 s6.9.p:
9468 // A restriction to pass pointers only applies to OpenCL C v1.2 or below.
9469 if (S.getLangOpts().getOpenCLCompatibleVersion() > 120)
9470 return ValidKernelParam;
9472 return PtrKernelParam;
9475 // OpenCL v1.2 s6.9.k:
9476 // Arguments to kernel functions in a program cannot be declared with the
9477 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
9478 // uintptr_t or a struct and/or union that contain fields declared to be one
9479 // of these built-in scalar types.
9480 if (isOpenCLSizeDependentType(S.getASTContext(), PT))
9481 return InvalidKernelParam;
9483 if (PT->isImageType())
9484 return PtrKernelParam;
9486 if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
9487 return InvalidKernelParam;
9489 // OpenCL extension spec v1.2 s9.5:
9490 // This extension adds support for half scalar and vector types as built-in
9491 // types that can be used for arithmetic operations, conversions etc.
9492 if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16", S.getLangOpts()) &&
9493 PT->isHalfType())
9494 return InvalidKernelParam;
9496 // Look into an array argument to check if it has a forbidden type.
9497 if (PT->isArrayType()) {
9498 const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
9499 // Call ourself to check an underlying type of an array. Since the
9500 // getPointeeOrArrayElementType returns an innermost type which is not an
9501 // array, this recursive call only happens once.
9502 return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
9505 // C++ for OpenCL v1.0 s2.4:
9506 // Moreover the types used in parameters of the kernel functions must be:
9507 // Trivial and standard-layout types C++17 [basic.types] (plain old data
9508 // types) for parameters passed by value;
9509 if (S.getLangOpts().OpenCLCPlusPlus &&
9510 !S.getOpenCLOptions().isAvailableOption(
9511 "__cl_clang_non_portable_kernel_param_types", S.getLangOpts()) &&
9512 !PT->isOpenCLSpecificType() && !PT.isPODType(S.Context))
9513 return InvalidKernelParam;
9515 if (PT->isRecordType())
9516 return RecordKernelParam;
9518 return ValidKernelParam;
9521 static void checkIsValidOpenCLKernelParameter(
9522 Sema &S,
9523 Declarator &D,
9524 ParmVarDecl *Param,
9525 llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
9526 QualType PT = Param->getType();
9528 // Cache the valid types we encounter to avoid rechecking structs that are
9529 // used again
9530 if (ValidTypes.count(PT.getTypePtr()))
9531 return;
9533 switch (getOpenCLKernelParameterType(S, PT)) {
9534 case PtrPtrKernelParam:
9535 // OpenCL v3.0 s6.11.a:
9536 // A kernel function argument cannot be declared as a pointer to a pointer
9537 // type. [...] This restriction only applies to OpenCL C 1.2 or below.
9538 S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
9539 D.setInvalidType();
9540 return;
9542 case InvalidAddrSpacePtrKernelParam:
9543 // OpenCL v1.0 s6.5:
9544 // __kernel function arguments declared to be a pointer of a type can point
9545 // to one of the following address spaces only : __global, __local or
9546 // __constant.
9547 S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
9548 D.setInvalidType();
9549 return;
9551 // OpenCL v1.2 s6.9.k:
9552 // Arguments to kernel functions in a program cannot be declared with the
9553 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
9554 // uintptr_t or a struct and/or union that contain fields declared to be
9555 // one of these built-in scalar types.
9557 case InvalidKernelParam:
9558 // OpenCL v1.2 s6.8 n:
9559 // A kernel function argument cannot be declared
9560 // of event_t type.
9561 // Do not diagnose half type since it is diagnosed as invalid argument
9562 // type for any function elsewhere.
9563 if (!PT->isHalfType()) {
9564 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
9566 // Explain what typedefs are involved.
9567 const TypedefType *Typedef = nullptr;
9568 while ((Typedef = PT->getAs<TypedefType>())) {
9569 SourceLocation Loc = Typedef->getDecl()->getLocation();
9570 // SourceLocation may be invalid for a built-in type.
9571 if (Loc.isValid())
9572 S.Diag(Loc, diag::note_entity_declared_at) << PT;
9573 PT = Typedef->desugar();
9577 D.setInvalidType();
9578 return;
9580 case PtrKernelParam:
9581 case ValidKernelParam:
9582 ValidTypes.insert(PT.getTypePtr());
9583 return;
9585 case RecordKernelParam:
9586 break;
9589 // Track nested structs we will inspect
9590 SmallVector<const Decl *, 4> VisitStack;
9592 // Track where we are in the nested structs. Items will migrate from
9593 // VisitStack to HistoryStack as we do the DFS for bad field.
9594 SmallVector<const FieldDecl *, 4> HistoryStack;
9595 HistoryStack.push_back(nullptr);
9597 // At this point we already handled everything except of a RecordType or
9598 // an ArrayType of a RecordType.
9599 assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.");
9600 const RecordType *RecTy =
9601 PT->getPointeeOrArrayElementType()->getAs<RecordType>();
9602 const RecordDecl *OrigRecDecl = RecTy->getDecl();
9604 VisitStack.push_back(RecTy->getDecl());
9605 assert(VisitStack.back() && "First decl null?");
9607 do {
9608 const Decl *Next = VisitStack.pop_back_val();
9609 if (!Next) {
9610 assert(!HistoryStack.empty());
9611 // Found a marker, we have gone up a level
9612 if (const FieldDecl *Hist = HistoryStack.pop_back_val())
9613 ValidTypes.insert(Hist->getType().getTypePtr());
9615 continue;
9618 // Adds everything except the original parameter declaration (which is not a
9619 // field itself) to the history stack.
9620 const RecordDecl *RD;
9621 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
9622 HistoryStack.push_back(Field);
9624 QualType FieldTy = Field->getType();
9625 // Other field types (known to be valid or invalid) are handled while we
9626 // walk around RecordDecl::fields().
9627 assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
9628 "Unexpected type.");
9629 const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
9631 RD = FieldRecTy->castAs<RecordType>()->getDecl();
9632 } else {
9633 RD = cast<RecordDecl>(Next);
9636 // Add a null marker so we know when we've gone back up a level
9637 VisitStack.push_back(nullptr);
9639 for (const auto *FD : RD->fields()) {
9640 QualType QT = FD->getType();
9642 if (ValidTypes.count(QT.getTypePtr()))
9643 continue;
9645 OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
9646 if (ParamType == ValidKernelParam)
9647 continue;
9649 if (ParamType == RecordKernelParam) {
9650 VisitStack.push_back(FD);
9651 continue;
9654 // OpenCL v1.2 s6.9.p:
9655 // Arguments to kernel functions that are declared to be a struct or union
9656 // do not allow OpenCL objects to be passed as elements of the struct or
9657 // union. This restriction was lifted in OpenCL v2.0 with the introduction
9658 // of SVM.
9659 if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
9660 ParamType == InvalidAddrSpacePtrKernelParam) {
9661 S.Diag(Param->getLocation(),
9662 diag::err_record_with_pointers_kernel_param)
9663 << PT->isUnionType()
9664 << PT;
9665 } else {
9666 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
9669 S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
9670 << OrigRecDecl->getDeclName();
9672 // We have an error, now let's go back up through history and show where
9673 // the offending field came from
9674 for (ArrayRef<const FieldDecl *>::const_iterator
9675 I = HistoryStack.begin() + 1,
9676 E = HistoryStack.end();
9677 I != E; ++I) {
9678 const FieldDecl *OuterField = *I;
9679 S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
9680 << OuterField->getType();
9683 S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
9684 << QT->isPointerType()
9685 << QT;
9686 D.setInvalidType();
9687 return;
9689 } while (!VisitStack.empty());
9692 /// Find the DeclContext in which a tag is implicitly declared if we see an
9693 /// elaborated type specifier in the specified context, and lookup finds
9694 /// nothing.
9695 static DeclContext *getTagInjectionContext(DeclContext *DC) {
9696 while (!DC->isFileContext() && !DC->isFunctionOrMethod())
9697 DC = DC->getParent();
9698 return DC;
9701 /// Find the Scope in which a tag is implicitly declared if we see an
9702 /// elaborated type specifier in the specified context, and lookup finds
9703 /// nothing.
9704 static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
9705 while (S->isClassScope() ||
9706 (LangOpts.CPlusPlus &&
9707 S->isFunctionPrototypeScope()) ||
9708 ((S->getFlags() & Scope::DeclScope) == 0) ||
9709 (S->getEntity() && S->getEntity()->isTransparentContext()))
9710 S = S->getParent();
9711 return S;
9714 /// Determine whether a declaration matches a known function in namespace std.
9715 static bool isStdBuiltin(ASTContext &Ctx, FunctionDecl *FD,
9716 unsigned BuiltinID) {
9717 switch (BuiltinID) {
9718 case Builtin::BI__GetExceptionInfo:
9719 // No type checking whatsoever.
9720 return Ctx.getTargetInfo().getCXXABI().isMicrosoft();
9722 case Builtin::BIaddressof:
9723 case Builtin::BI__addressof:
9724 case Builtin::BIforward:
9725 case Builtin::BIforward_like:
9726 case Builtin::BImove:
9727 case Builtin::BImove_if_noexcept:
9728 case Builtin::BIas_const: {
9729 // Ensure that we don't treat the algorithm
9730 // OutputIt std::move(InputIt, InputIt, OutputIt)
9731 // as the builtin std::move.
9732 const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
9733 return FPT->getNumParams() == 1 && !FPT->isVariadic();
9736 default:
9737 return false;
9741 NamedDecl*
9742 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
9743 TypeSourceInfo *TInfo, LookupResult &Previous,
9744 MultiTemplateParamsArg TemplateParamListsRef,
9745 bool &AddToScope) {
9746 QualType R = TInfo->getType();
9748 assert(R->isFunctionType());
9749 if (R.getCanonicalType()->castAs<FunctionType>()->getCmseNSCallAttr())
9750 Diag(D.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call);
9752 SmallVector<TemplateParameterList *, 4> TemplateParamLists;
9753 llvm::append_range(TemplateParamLists, TemplateParamListsRef);
9754 if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) {
9755 if (!TemplateParamLists.empty() &&
9756 Invented->getDepth() == TemplateParamLists.back()->getDepth())
9757 TemplateParamLists.back() = Invented;
9758 else
9759 TemplateParamLists.push_back(Invented);
9762 // TODO: consider using NameInfo for diagnostic.
9763 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9764 DeclarationName Name = NameInfo.getName();
9765 StorageClass SC = getFunctionStorageClass(*this, D);
9767 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
9768 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
9769 diag::err_invalid_thread)
9770 << DeclSpec::getSpecifierName(TSCS);
9772 if (D.isFirstDeclarationOfMember())
9773 adjustMemberFunctionCC(
9774 R, !(D.isStaticMember() || D.isExplicitObjectMemberFunction()),
9775 D.isCtorOrDtor(), D.getIdentifierLoc());
9777 bool isFriend = false;
9778 FunctionTemplateDecl *FunctionTemplate = nullptr;
9779 bool isMemberSpecialization = false;
9780 bool isFunctionTemplateSpecialization = false;
9782 bool HasExplicitTemplateArgs = false;
9783 TemplateArgumentListInfo TemplateArgs;
9785 bool isVirtualOkay = false;
9787 DeclContext *OriginalDC = DC;
9788 bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
9790 FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
9791 isVirtualOkay);
9792 if (!NewFD) return nullptr;
9794 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
9795 NewFD->setTopLevelDeclInObjCContainer();
9797 // Set the lexical context. If this is a function-scope declaration, or has a
9798 // C++ scope specifier, or is the object of a friend declaration, the lexical
9799 // context will be different from the semantic context.
9800 NewFD->setLexicalDeclContext(CurContext);
9802 if (IsLocalExternDecl)
9803 NewFD->setLocalExternDecl();
9805 if (getLangOpts().CPlusPlus) {
9806 // The rules for implicit inlines changed in C++20 for methods and friends
9807 // with an in-class definition (when such a definition is not attached to
9808 // the global module). User-specified 'inline' overrides this (set when
9809 // the function decl is created above).
9810 // FIXME: We need a better way to separate C++ standard and clang modules.
9811 bool ImplicitInlineCXX20 = !getLangOpts().CPlusPlusModules ||
9812 !NewFD->getOwningModule() ||
9813 NewFD->getOwningModule()->isGlobalModule() ||
9814 NewFD->getOwningModule()->isHeaderLikeModule();
9815 bool isInline = D.getDeclSpec().isInlineSpecified();
9816 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
9817 bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier();
9818 isFriend = D.getDeclSpec().isFriendSpecified();
9819 if (isFriend && !isInline && D.isFunctionDefinition()) {
9820 // Pre-C++20 [class.friend]p5
9821 // A function can be defined in a friend declaration of a
9822 // class . . . . Such a function is implicitly inline.
9823 // Post C++20 [class.friend]p7
9824 // Such a function is implicitly an inline function if it is attached
9825 // to the global module.
9826 NewFD->setImplicitlyInline(ImplicitInlineCXX20);
9829 // If this is a method defined in an __interface, and is not a constructor
9830 // or an overloaded operator, then set the pure flag (isVirtual will already
9831 // return true).
9832 if (const CXXRecordDecl *Parent =
9833 dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
9834 if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
9835 NewFD->setPure(true);
9837 // C++ [class.union]p2
9838 // A union can have member functions, but not virtual functions.
9839 if (isVirtual && Parent->isUnion()) {
9840 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
9841 NewFD->setInvalidDecl();
9843 if ((Parent->isClass() || Parent->isStruct()) &&
9844 Parent->hasAttr<SYCLSpecialClassAttr>() &&
9845 NewFD->getKind() == Decl::Kind::CXXMethod && NewFD->getIdentifier() &&
9846 NewFD->getName() == "__init" && D.isFunctionDefinition()) {
9847 if (auto *Def = Parent->getDefinition())
9848 Def->setInitMethod(true);
9852 SetNestedNameSpecifier(*this, NewFD, D);
9853 isMemberSpecialization = false;
9854 isFunctionTemplateSpecialization = false;
9855 if (D.isInvalidType())
9856 NewFD->setInvalidDecl();
9858 // Match up the template parameter lists with the scope specifier, then
9859 // determine whether we have a template or a template specialization.
9860 bool Invalid = false;
9861 TemplateParameterList *TemplateParams =
9862 MatchTemplateParametersToScopeSpecifier(
9863 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
9864 D.getCXXScopeSpec(),
9865 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
9866 ? D.getName().TemplateId
9867 : nullptr,
9868 TemplateParamLists, isFriend, isMemberSpecialization,
9869 Invalid);
9870 if (TemplateParams) {
9871 // Check that we can declare a template here.
9872 if (CheckTemplateDeclScope(S, TemplateParams))
9873 NewFD->setInvalidDecl();
9875 if (TemplateParams->size() > 0) {
9876 // This is a function template
9878 // A destructor cannot be a template.
9879 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
9880 Diag(NewFD->getLocation(), diag::err_destructor_template);
9881 NewFD->setInvalidDecl();
9884 // If we're adding a template to a dependent context, we may need to
9885 // rebuilding some of the types used within the template parameter list,
9886 // now that we know what the current instantiation is.
9887 if (DC->isDependentContext()) {
9888 ContextRAII SavedContext(*this, DC);
9889 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
9890 Invalid = true;
9893 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
9894 NewFD->getLocation(),
9895 Name, TemplateParams,
9896 NewFD);
9897 FunctionTemplate->setLexicalDeclContext(CurContext);
9898 NewFD->setDescribedFunctionTemplate(FunctionTemplate);
9900 // For source fidelity, store the other template param lists.
9901 if (TemplateParamLists.size() > 1) {
9902 NewFD->setTemplateParameterListsInfo(Context,
9903 ArrayRef<TemplateParameterList *>(TemplateParamLists)
9904 .drop_back(1));
9906 } else {
9907 // This is a function template specialization.
9908 isFunctionTemplateSpecialization = true;
9909 // For source fidelity, store all the template param lists.
9910 if (TemplateParamLists.size() > 0)
9911 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9913 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
9914 if (isFriend) {
9915 // We want to remove the "template<>", found here.
9916 SourceRange RemoveRange = TemplateParams->getSourceRange();
9918 // If we remove the template<> and the name is not a
9919 // template-id, we're actually silently creating a problem:
9920 // the friend declaration will refer to an untemplated decl,
9921 // and clearly the user wants a template specialization. So
9922 // we need to insert '<>' after the name.
9923 SourceLocation InsertLoc;
9924 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
9925 InsertLoc = D.getName().getSourceRange().getEnd();
9926 InsertLoc = getLocForEndOfToken(InsertLoc);
9929 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
9930 << Name << RemoveRange
9931 << FixItHint::CreateRemoval(RemoveRange)
9932 << FixItHint::CreateInsertion(InsertLoc, "<>");
9933 Invalid = true;
9936 } else {
9937 // Check that we can declare a template here.
9938 if (!TemplateParamLists.empty() && isMemberSpecialization &&
9939 CheckTemplateDeclScope(S, TemplateParamLists.back()))
9940 NewFD->setInvalidDecl();
9942 // All template param lists were matched against the scope specifier:
9943 // this is NOT (an explicit specialization of) a template.
9944 if (TemplateParamLists.size() > 0)
9945 // For source fidelity, store all the template param lists.
9946 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9949 if (Invalid) {
9950 NewFD->setInvalidDecl();
9951 if (FunctionTemplate)
9952 FunctionTemplate->setInvalidDecl();
9955 // C++ [dcl.fct.spec]p5:
9956 // The virtual specifier shall only be used in declarations of
9957 // nonstatic class member functions that appear within a
9958 // member-specification of a class declaration; see 10.3.
9960 if (isVirtual && !NewFD->isInvalidDecl()) {
9961 if (!isVirtualOkay) {
9962 Diag(D.getDeclSpec().getVirtualSpecLoc(),
9963 diag::err_virtual_non_function);
9964 } else if (!CurContext->isRecord()) {
9965 // 'virtual' was specified outside of the class.
9966 Diag(D.getDeclSpec().getVirtualSpecLoc(),
9967 diag::err_virtual_out_of_class)
9968 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
9969 } else if (NewFD->getDescribedFunctionTemplate()) {
9970 // C++ [temp.mem]p3:
9971 // A member function template shall not be virtual.
9972 Diag(D.getDeclSpec().getVirtualSpecLoc(),
9973 diag::err_virtual_member_function_template)
9974 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
9975 } else {
9976 // Okay: Add virtual to the method.
9977 NewFD->setVirtualAsWritten(true);
9980 if (getLangOpts().CPlusPlus14 &&
9981 NewFD->getReturnType()->isUndeducedType())
9982 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
9985 if (getLangOpts().CPlusPlus14 &&
9986 (NewFD->isDependentContext() ||
9987 (isFriend && CurContext->isDependentContext())) &&
9988 NewFD->getReturnType()->isUndeducedType()) {
9989 // If the function template is referenced directly (for instance, as a
9990 // member of the current instantiation), pretend it has a dependent type.
9991 // This is not really justified by the standard, but is the only sane
9992 // thing to do.
9993 // FIXME: For a friend function, we have not marked the function as being
9994 // a friend yet, so 'isDependentContext' on the FD doesn't work.
9995 const FunctionProtoType *FPT =
9996 NewFD->getType()->castAs<FunctionProtoType>();
9997 QualType Result = SubstAutoTypeDependent(FPT->getReturnType());
9998 NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
9999 FPT->getExtProtoInfo()));
10002 // C++ [dcl.fct.spec]p3:
10003 // The inline specifier shall not appear on a block scope function
10004 // declaration.
10005 if (isInline && !NewFD->isInvalidDecl()) {
10006 if (CurContext->isFunctionOrMethod()) {
10007 // 'inline' is not allowed on block scope function declaration.
10008 Diag(D.getDeclSpec().getInlineSpecLoc(),
10009 diag::err_inline_declaration_block_scope) << Name
10010 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
10014 // C++ [dcl.fct.spec]p6:
10015 // The explicit specifier shall be used only in the declaration of a
10016 // constructor or conversion function within its class definition;
10017 // see 12.3.1 and 12.3.2.
10018 if (hasExplicit && !NewFD->isInvalidDecl() &&
10019 !isa<CXXDeductionGuideDecl>(NewFD)) {
10020 if (!CurContext->isRecord()) {
10021 // 'explicit' was specified outside of the class.
10022 Diag(D.getDeclSpec().getExplicitSpecLoc(),
10023 diag::err_explicit_out_of_class)
10024 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
10025 } else if (!isa<CXXConstructorDecl>(NewFD) &&
10026 !isa<CXXConversionDecl>(NewFD)) {
10027 // 'explicit' was specified on a function that wasn't a constructor
10028 // or conversion function.
10029 Diag(D.getDeclSpec().getExplicitSpecLoc(),
10030 diag::err_explicit_non_ctor_or_conv_function)
10031 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
10035 ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
10036 if (ConstexprKind != ConstexprSpecKind::Unspecified) {
10037 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
10038 // are implicitly inline.
10039 NewFD->setImplicitlyInline();
10041 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
10042 // be either constructors or to return a literal type. Therefore,
10043 // destructors cannot be declared constexpr.
10044 if (isa<CXXDestructorDecl>(NewFD) &&
10045 (!getLangOpts().CPlusPlus20 ||
10046 ConstexprKind == ConstexprSpecKind::Consteval)) {
10047 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor)
10048 << static_cast<int>(ConstexprKind);
10049 NewFD->setConstexprKind(getLangOpts().CPlusPlus20
10050 ? ConstexprSpecKind::Unspecified
10051 : ConstexprSpecKind::Constexpr);
10053 // C++20 [dcl.constexpr]p2: An allocation function, or a
10054 // deallocation function shall not be declared with the consteval
10055 // specifier.
10056 if (ConstexprKind == ConstexprSpecKind::Consteval &&
10057 (NewFD->getOverloadedOperator() == OO_New ||
10058 NewFD->getOverloadedOperator() == OO_Array_New ||
10059 NewFD->getOverloadedOperator() == OO_Delete ||
10060 NewFD->getOverloadedOperator() == OO_Array_Delete)) {
10061 Diag(D.getDeclSpec().getConstexprSpecLoc(),
10062 diag::err_invalid_consteval_decl_kind)
10063 << NewFD;
10064 NewFD->setConstexprKind(ConstexprSpecKind::Constexpr);
10068 // If __module_private__ was specified, mark the function accordingly.
10069 if (D.getDeclSpec().isModulePrivateSpecified()) {
10070 if (isFunctionTemplateSpecialization) {
10071 SourceLocation ModulePrivateLoc
10072 = D.getDeclSpec().getModulePrivateSpecLoc();
10073 Diag(ModulePrivateLoc, diag::err_module_private_specialization)
10074 << 0
10075 << FixItHint::CreateRemoval(ModulePrivateLoc);
10076 } else {
10077 NewFD->setModulePrivate();
10078 if (FunctionTemplate)
10079 FunctionTemplate->setModulePrivate();
10083 if (isFriend) {
10084 if (FunctionTemplate) {
10085 FunctionTemplate->setObjectOfFriendDecl();
10086 FunctionTemplate->setAccess(AS_public);
10088 NewFD->setObjectOfFriendDecl();
10089 NewFD->setAccess(AS_public);
10092 // If a function is defined as defaulted or deleted, mark it as such now.
10093 // We'll do the relevant checks on defaulted / deleted functions later.
10094 switch (D.getFunctionDefinitionKind()) {
10095 case FunctionDefinitionKind::Declaration:
10096 case FunctionDefinitionKind::Definition:
10097 break;
10099 case FunctionDefinitionKind::Defaulted:
10100 NewFD->setDefaulted();
10101 break;
10103 case FunctionDefinitionKind::Deleted:
10104 NewFD->setDeletedAsWritten();
10105 break;
10108 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
10109 D.isFunctionDefinition() && !isInline) {
10110 // Pre C++20 [class.mfct]p2:
10111 // A member function may be defined (8.4) in its class definition, in
10112 // which case it is an inline member function (7.1.2)
10113 // Post C++20 [class.mfct]p1:
10114 // If a member function is attached to the global module and is defined
10115 // in its class definition, it is inline.
10116 NewFD->setImplicitlyInline(ImplicitInlineCXX20);
10119 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
10120 !CurContext->isRecord()) {
10121 // C++ [class.static]p1:
10122 // A data or function member of a class may be declared static
10123 // in a class definition, in which case it is a static member of
10124 // the class.
10126 // Complain about the 'static' specifier if it's on an out-of-line
10127 // member function definition.
10129 // MSVC permits the use of a 'static' storage specifier on an out-of-line
10130 // member function template declaration and class member template
10131 // declaration (MSVC versions before 2015), warn about this.
10132 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
10133 ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
10134 cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) ||
10135 (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate()))
10136 ? diag::ext_static_out_of_line : diag::err_static_out_of_line)
10137 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
10140 // C++11 [except.spec]p15:
10141 // A deallocation function with no exception-specification is treated
10142 // as if it were specified with noexcept(true).
10143 const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
10144 if ((Name.getCXXOverloadedOperator() == OO_Delete ||
10145 Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
10146 getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
10147 NewFD->setType(Context.getFunctionType(
10148 FPT->getReturnType(), FPT->getParamTypes(),
10149 FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
10151 // C++20 [dcl.inline]/7
10152 // If an inline function or variable that is attached to a named module
10153 // is declared in a definition domain, it shall be defined in that
10154 // domain.
10155 // So, if the current declaration does not have a definition, we must
10156 // check at the end of the TU (or when the PMF starts) to see that we
10157 // have a definition at that point.
10158 if (isInline && !D.isFunctionDefinition() && getLangOpts().CPlusPlus20 &&
10159 NewFD->hasOwningModule() &&
10160 NewFD->getOwningModule()->isModulePurview()) {
10161 PendingInlineFuncDecls.insert(NewFD);
10165 // Filter out previous declarations that don't match the scope.
10166 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
10167 D.getCXXScopeSpec().isNotEmpty() ||
10168 isMemberSpecialization ||
10169 isFunctionTemplateSpecialization);
10171 // Handle GNU asm-label extension (encoded as an attribute).
10172 if (Expr *E = (Expr*) D.getAsmLabel()) {
10173 // The parser guarantees this is a string.
10174 StringLiteral *SE = cast<StringLiteral>(E);
10175 NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(),
10176 /*IsLiteralLabel=*/true,
10177 SE->getStrTokenLoc(0)));
10178 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
10179 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
10180 ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
10181 if (I != ExtnameUndeclaredIdentifiers.end()) {
10182 if (isDeclExternC(NewFD)) {
10183 NewFD->addAttr(I->second);
10184 ExtnameUndeclaredIdentifiers.erase(I);
10185 } else
10186 Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
10187 << /*Variable*/0 << NewFD;
10191 // Copy the parameter declarations from the declarator D to the function
10192 // declaration NewFD, if they are available. First scavenge them into Params.
10193 SmallVector<ParmVarDecl*, 16> Params;
10194 unsigned FTIIdx;
10195 if (D.isFunctionDeclarator(FTIIdx)) {
10196 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
10198 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
10199 // function that takes no arguments, not a function that takes a
10200 // single void argument.
10201 // We let through "const void" here because Sema::GetTypeForDeclarator
10202 // already checks for that case.
10203 if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
10204 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
10205 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
10206 assert(Param->getDeclContext() != NewFD && "Was set before ?");
10207 Param->setDeclContext(NewFD);
10208 Params.push_back(Param);
10210 if (Param->isInvalidDecl())
10211 NewFD->setInvalidDecl();
10215 if (!getLangOpts().CPlusPlus) {
10216 // In C, find all the tag declarations from the prototype and move them
10217 // into the function DeclContext. Remove them from the surrounding tag
10218 // injection context of the function, which is typically but not always
10219 // the TU.
10220 DeclContext *PrototypeTagContext =
10221 getTagInjectionContext(NewFD->getLexicalDeclContext());
10222 for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
10223 auto *TD = dyn_cast<TagDecl>(NonParmDecl);
10225 // We don't want to reparent enumerators. Look at their parent enum
10226 // instead.
10227 if (!TD) {
10228 if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
10229 TD = cast<EnumDecl>(ECD->getDeclContext());
10231 if (!TD)
10232 continue;
10233 DeclContext *TagDC = TD->getLexicalDeclContext();
10234 if (!TagDC->containsDecl(TD))
10235 continue;
10236 TagDC->removeDecl(TD);
10237 TD->setDeclContext(NewFD);
10238 NewFD->addDecl(TD);
10240 // Preserve the lexical DeclContext if it is not the surrounding tag
10241 // injection context of the FD. In this example, the semantic context of
10242 // E will be f and the lexical context will be S, while both the
10243 // semantic and lexical contexts of S will be f:
10244 // void f(struct S { enum E { a } f; } s);
10245 if (TagDC != PrototypeTagContext)
10246 TD->setLexicalDeclContext(TagDC);
10249 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
10250 // When we're declaring a function with a typedef, typeof, etc as in the
10251 // following example, we'll need to synthesize (unnamed)
10252 // parameters for use in the declaration.
10254 // @code
10255 // typedef void fn(int);
10256 // fn f;
10257 // @endcode
10259 // Synthesize a parameter for each argument type.
10260 for (const auto &AI : FT->param_types()) {
10261 ParmVarDecl *Param =
10262 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
10263 Param->setScopeInfo(0, Params.size());
10264 Params.push_back(Param);
10266 } else {
10267 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
10268 "Should not need args for typedef of non-prototype fn");
10271 // Finally, we know we have the right number of parameters, install them.
10272 NewFD->setParams(Params);
10274 if (D.getDeclSpec().isNoreturnSpecified())
10275 NewFD->addAttr(
10276 C11NoReturnAttr::Create(Context, D.getDeclSpec().getNoreturnSpecLoc()));
10278 // Functions returning a variably modified type violate C99 6.7.5.2p2
10279 // because all functions have linkage.
10280 if (!NewFD->isInvalidDecl() &&
10281 NewFD->getReturnType()->isVariablyModifiedType()) {
10282 Diag(NewFD->getLocation(), diag::err_vm_func_decl);
10283 NewFD->setInvalidDecl();
10286 // Apply an implicit SectionAttr if '#pragma clang section text' is active
10287 if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
10288 !NewFD->hasAttr<SectionAttr>())
10289 NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(
10290 Context, PragmaClangTextSection.SectionName,
10291 PragmaClangTextSection.PragmaLocation));
10293 // Apply an implicit SectionAttr if #pragma code_seg is active.
10294 if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
10295 !NewFD->hasAttr<SectionAttr>()) {
10296 NewFD->addAttr(SectionAttr::CreateImplicit(
10297 Context, CodeSegStack.CurrentValue->getString(),
10298 CodeSegStack.CurrentPragmaLocation, SectionAttr::Declspec_allocate));
10299 if (UnifySection(CodeSegStack.CurrentValue->getString(),
10300 ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
10301 ASTContext::PSF_Read,
10302 NewFD))
10303 NewFD->dropAttr<SectionAttr>();
10306 // Apply an implicit StrictGuardStackCheckAttr if #pragma strict_gs_check is
10307 // active.
10308 if (StrictGuardStackCheckStack.CurrentValue && D.isFunctionDefinition() &&
10309 !NewFD->hasAttr<StrictGuardStackCheckAttr>())
10310 NewFD->addAttr(StrictGuardStackCheckAttr::CreateImplicit(
10311 Context, PragmaClangTextSection.PragmaLocation));
10313 // Apply an implicit CodeSegAttr from class declspec or
10314 // apply an implicit SectionAttr from #pragma code_seg if active.
10315 if (!NewFD->hasAttr<CodeSegAttr>()) {
10316 if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
10317 D.isFunctionDefinition())) {
10318 NewFD->addAttr(SAttr);
10322 // Handle attributes.
10323 ProcessDeclAttributes(S, NewFD, D);
10324 const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>();
10325 if (NewTVA && !NewTVA->isDefaultVersion() &&
10326 !Context.getTargetInfo().hasFeature("fmv")) {
10327 // Don't add to scope fmv functions declarations if fmv disabled
10328 AddToScope = false;
10329 return NewFD;
10332 if (getLangOpts().OpenCL || getLangOpts().HLSL) {
10333 // Neither OpenCL nor HLSL allow an address space qualifyer on a return
10334 // type.
10336 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
10337 // type declaration will generate a compilation error.
10338 LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
10339 if (AddressSpace != LangAS::Default) {
10340 Diag(NewFD->getLocation(), diag::err_return_value_with_address_space);
10341 NewFD->setInvalidDecl();
10345 if (!getLangOpts().CPlusPlus) {
10346 // Perform semantic checking on the function declaration.
10347 if (!NewFD->isInvalidDecl() && NewFD->isMain())
10348 CheckMain(NewFD, D.getDeclSpec());
10350 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
10351 CheckMSVCRTEntryPoint(NewFD);
10353 if (!NewFD->isInvalidDecl())
10354 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
10355 isMemberSpecialization,
10356 D.isFunctionDefinition()));
10357 else if (!Previous.empty())
10358 // Recover gracefully from an invalid redeclaration.
10359 D.setRedeclaration(true);
10360 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
10361 Previous.getResultKind() != LookupResult::FoundOverloaded) &&
10362 "previous declaration set still overloaded");
10364 // Diagnose no-prototype function declarations with calling conventions that
10365 // don't support variadic calls. Only do this in C and do it after merging
10366 // possibly prototyped redeclarations.
10367 const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
10368 if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
10369 CallingConv CC = FT->getExtInfo().getCC();
10370 if (!supportsVariadicCall(CC)) {
10371 // Windows system headers sometimes accidentally use stdcall without
10372 // (void) parameters, so we relax this to a warning.
10373 int DiagID =
10374 CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
10375 Diag(NewFD->getLocation(), DiagID)
10376 << FunctionType::getNameForCallConv(CC);
10380 if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() ||
10381 NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion())
10382 checkNonTrivialCUnion(NewFD->getReturnType(),
10383 NewFD->getReturnTypeSourceRange().getBegin(),
10384 NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy);
10385 } else {
10386 // C++11 [replacement.functions]p3:
10387 // The program's definitions shall not be specified as inline.
10389 // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
10391 // Suppress the diagnostic if the function is __attribute__((used)), since
10392 // that forces an external definition to be emitted.
10393 if (D.getDeclSpec().isInlineSpecified() &&
10394 NewFD->isReplaceableGlobalAllocationFunction() &&
10395 !NewFD->hasAttr<UsedAttr>())
10396 Diag(D.getDeclSpec().getInlineSpecLoc(),
10397 diag::ext_operator_new_delete_declared_inline)
10398 << NewFD->getDeclName();
10400 // If the declarator is a template-id, translate the parser's template
10401 // argument list into our AST format.
10402 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
10403 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
10404 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
10405 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
10406 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
10407 TemplateId->NumArgs);
10408 translateTemplateArguments(TemplateArgsPtr,
10409 TemplateArgs);
10411 HasExplicitTemplateArgs = true;
10413 if (NewFD->isInvalidDecl()) {
10414 HasExplicitTemplateArgs = false;
10415 } else if (FunctionTemplate) {
10416 // Function template with explicit template arguments.
10417 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
10418 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
10420 HasExplicitTemplateArgs = false;
10421 } else if (isFriend) {
10422 // "friend void foo<>(int);" is an implicit specialization decl.
10423 isFunctionTemplateSpecialization = true;
10424 } else {
10425 assert(isFunctionTemplateSpecialization &&
10426 "should have a 'template<>' for this decl");
10428 } else if (isFriend && isFunctionTemplateSpecialization) {
10429 // This combination is only possible in a recovery case; the user
10430 // wrote something like:
10431 // template <> friend void foo(int);
10432 // which we're recovering from as if the user had written:
10433 // friend void foo<>(int);
10434 // Go ahead and fake up a template id.
10435 HasExplicitTemplateArgs = true;
10436 TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
10437 TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
10440 // We do not add HD attributes to specializations here because
10441 // they may have different constexpr-ness compared to their
10442 // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
10443 // may end up with different effective targets. Instead, a
10444 // specialization inherits its target attributes from its template
10445 // in the CheckFunctionTemplateSpecialization() call below.
10446 if (getLangOpts().CUDA && !isFunctionTemplateSpecialization)
10447 maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
10449 // Handle explict specializations of function templates
10450 // and friend function declarations with an explicit
10451 // template argument list.
10452 if (isFunctionTemplateSpecialization) {
10453 bool isDependentSpecialization = false;
10454 if (isFriend) {
10455 // For friend function specializations, this is a dependent
10456 // specialization if its semantic context is dependent, its
10457 // type is dependent, or if its template-id is dependent.
10458 isDependentSpecialization =
10459 DC->isDependentContext() || NewFD->getType()->isDependentType() ||
10460 (HasExplicitTemplateArgs &&
10461 TemplateSpecializationType::
10462 anyInstantiationDependentTemplateArguments(
10463 TemplateArgs.arguments()));
10464 assert((!isDependentSpecialization ||
10465 (HasExplicitTemplateArgs == isDependentSpecialization)) &&
10466 "dependent friend function specialization without template "
10467 "args");
10468 } else {
10469 // For class-scope explicit specializations of function templates,
10470 // if the lexical context is dependent, then the specialization
10471 // is dependent.
10472 isDependentSpecialization =
10473 CurContext->isRecord() && CurContext->isDependentContext();
10476 TemplateArgumentListInfo *ExplicitTemplateArgs =
10477 HasExplicitTemplateArgs ? &TemplateArgs : nullptr;
10478 if (isDependentSpecialization) {
10479 // If it's a dependent specialization, it may not be possible
10480 // to determine the primary template (for explicit specializations)
10481 // or befriended declaration (for friends) until the enclosing
10482 // template is instantiated. In such cases, we store the declarations
10483 // found by name lookup and defer resolution until instantiation.
10484 if (CheckDependentFunctionTemplateSpecialization(
10485 NewFD, ExplicitTemplateArgs, Previous))
10486 NewFD->setInvalidDecl();
10487 } else if (!NewFD->isInvalidDecl()) {
10488 if (CheckFunctionTemplateSpecialization(NewFD, ExplicitTemplateArgs,
10489 Previous))
10490 NewFD->setInvalidDecl();
10493 // C++ [dcl.stc]p1:
10494 // A storage-class-specifier shall not be specified in an explicit
10495 // specialization (14.7.3)
10496 // FIXME: We should be checking this for dependent specializations.
10497 FunctionTemplateSpecializationInfo *Info =
10498 NewFD->getTemplateSpecializationInfo();
10499 if (Info && SC != SC_None) {
10500 if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
10501 Diag(NewFD->getLocation(),
10502 diag::err_explicit_specialization_inconsistent_storage_class)
10503 << SC
10504 << FixItHint::CreateRemoval(
10505 D.getDeclSpec().getStorageClassSpecLoc());
10507 else
10508 Diag(NewFD->getLocation(),
10509 diag::ext_explicit_specialization_storage_class)
10510 << FixItHint::CreateRemoval(
10511 D.getDeclSpec().getStorageClassSpecLoc());
10513 } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
10514 if (CheckMemberSpecialization(NewFD, Previous))
10515 NewFD->setInvalidDecl();
10518 // Perform semantic checking on the function declaration.
10519 if (!NewFD->isInvalidDecl() && NewFD->isMain())
10520 CheckMain(NewFD, D.getDeclSpec());
10522 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
10523 CheckMSVCRTEntryPoint(NewFD);
10525 if (!NewFD->isInvalidDecl())
10526 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
10527 isMemberSpecialization,
10528 D.isFunctionDefinition()));
10529 else if (!Previous.empty())
10530 // Recover gracefully from an invalid redeclaration.
10531 D.setRedeclaration(true);
10533 assert((NewFD->isInvalidDecl() || NewFD->isMultiVersion() ||
10534 !D.isRedeclaration() ||
10535 Previous.getResultKind() != LookupResult::FoundOverloaded) &&
10536 "previous declaration set still overloaded");
10538 NamedDecl *PrincipalDecl = (FunctionTemplate
10539 ? cast<NamedDecl>(FunctionTemplate)
10540 : NewFD);
10542 if (isFriend && NewFD->getPreviousDecl()) {
10543 AccessSpecifier Access = AS_public;
10544 if (!NewFD->isInvalidDecl())
10545 Access = NewFD->getPreviousDecl()->getAccess();
10547 NewFD->setAccess(Access);
10548 if (FunctionTemplate) FunctionTemplate->setAccess(Access);
10551 if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
10552 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
10553 PrincipalDecl->setNonMemberOperator();
10555 // If we have a function template, check the template parameter
10556 // list. This will check and merge default template arguments.
10557 if (FunctionTemplate) {
10558 FunctionTemplateDecl *PrevTemplate =
10559 FunctionTemplate->getPreviousDecl();
10560 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
10561 PrevTemplate ? PrevTemplate->getTemplateParameters()
10562 : nullptr,
10563 D.getDeclSpec().isFriendSpecified()
10564 ? (D.isFunctionDefinition()
10565 ? TPC_FriendFunctionTemplateDefinition
10566 : TPC_FriendFunctionTemplate)
10567 : (D.getCXXScopeSpec().isSet() &&
10568 DC && DC->isRecord() &&
10569 DC->isDependentContext())
10570 ? TPC_ClassTemplateMember
10571 : TPC_FunctionTemplate);
10574 if (NewFD->isInvalidDecl()) {
10575 // Ignore all the rest of this.
10576 } else if (!D.isRedeclaration()) {
10577 struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
10578 AddToScope };
10579 // Fake up an access specifier if it's supposed to be a class member.
10580 if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
10581 NewFD->setAccess(AS_public);
10583 // Qualified decls generally require a previous declaration.
10584 if (D.getCXXScopeSpec().isSet()) {
10585 // ...with the major exception of templated-scope or
10586 // dependent-scope friend declarations.
10588 // TODO: we currently also suppress this check in dependent
10589 // contexts because (1) the parameter depth will be off when
10590 // matching friend templates and (2) we might actually be
10591 // selecting a friend based on a dependent factor. But there
10592 // are situations where these conditions don't apply and we
10593 // can actually do this check immediately.
10595 // Unless the scope is dependent, it's always an error if qualified
10596 // redeclaration lookup found nothing at all. Diagnose that now;
10597 // nothing will diagnose that error later.
10598 if (isFriend &&
10599 (D.getCXXScopeSpec().getScopeRep()->isDependent() ||
10600 (!Previous.empty() && CurContext->isDependentContext()))) {
10601 // ignore these
10602 } else if (NewFD->isCPUDispatchMultiVersion() ||
10603 NewFD->isCPUSpecificMultiVersion()) {
10604 // ignore this, we allow the redeclaration behavior here to create new
10605 // versions of the function.
10606 } else {
10607 // The user tried to provide an out-of-line definition for a
10608 // function that is a member of a class or namespace, but there
10609 // was no such member function declared (C++ [class.mfct]p2,
10610 // C++ [namespace.memdef]p2). For example:
10612 // class X {
10613 // void f() const;
10614 // };
10616 // void X::f() { } // ill-formed
10618 // Complain about this problem, and attempt to suggest close
10619 // matches (e.g., those that differ only in cv-qualifiers and
10620 // whether the parameter types are references).
10622 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
10623 *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
10624 AddToScope = ExtraArgs.AddToScope;
10625 return Result;
10629 // Unqualified local friend declarations are required to resolve
10630 // to something.
10631 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
10632 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
10633 *this, Previous, NewFD, ExtraArgs, true, S)) {
10634 AddToScope = ExtraArgs.AddToScope;
10635 return Result;
10638 } else if (!D.isFunctionDefinition() &&
10639 isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
10640 !isFriend && !isFunctionTemplateSpecialization &&
10641 !isMemberSpecialization) {
10642 // An out-of-line member function declaration must also be a
10643 // definition (C++ [class.mfct]p2).
10644 // Note that this is not the case for explicit specializations of
10645 // function templates or member functions of class templates, per
10646 // C++ [temp.expl.spec]p2. We also allow these declarations as an
10647 // extension for compatibility with old SWIG code which likes to
10648 // generate them.
10649 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
10650 << D.getCXXScopeSpec().getRange();
10654 if (getLangOpts().HLSL && D.isFunctionDefinition()) {
10655 // Any top level function could potentially be specified as an entry.
10656 if (!NewFD->isInvalidDecl() && S->getDepth() == 0 && Name.isIdentifier())
10657 ActOnHLSLTopLevelFunction(NewFD);
10659 if (NewFD->hasAttr<HLSLShaderAttr>())
10660 CheckHLSLEntryPoint(NewFD);
10663 // If this is the first declaration of a library builtin function, add
10664 // attributes as appropriate.
10665 if (!D.isRedeclaration()) {
10666 if (IdentifierInfo *II = Previous.getLookupName().getAsIdentifierInfo()) {
10667 if (unsigned BuiltinID = II->getBuiltinID()) {
10668 bool InStdNamespace = Context.BuiltinInfo.isInStdNamespace(BuiltinID);
10669 if (!InStdNamespace &&
10670 NewFD->getDeclContext()->getRedeclContext()->isFileContext()) {
10671 if (NewFD->getLanguageLinkage() == CLanguageLinkage) {
10672 // Validate the type matches unless this builtin is specified as
10673 // matching regardless of its declared type.
10674 if (Context.BuiltinInfo.allowTypeMismatch(BuiltinID)) {
10675 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
10676 } else {
10677 ASTContext::GetBuiltinTypeError Error;
10678 LookupNecessaryTypesForBuiltin(S, BuiltinID);
10679 QualType BuiltinType = Context.GetBuiltinType(BuiltinID, Error);
10681 if (!Error && !BuiltinType.isNull() &&
10682 Context.hasSameFunctionTypeIgnoringExceptionSpec(
10683 NewFD->getType(), BuiltinType))
10684 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
10687 } else if (InStdNamespace && NewFD->isInStdNamespace() &&
10688 isStdBuiltin(Context, NewFD, BuiltinID)) {
10689 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
10695 ProcessPragmaWeak(S, NewFD);
10696 checkAttributesAfterMerging(*this, *NewFD);
10698 AddKnownFunctionAttributes(NewFD);
10700 if (NewFD->hasAttr<OverloadableAttr>() &&
10701 !NewFD->getType()->getAs<FunctionProtoType>()) {
10702 Diag(NewFD->getLocation(),
10703 diag::err_attribute_overloadable_no_prototype)
10704 << NewFD;
10705 NewFD->dropAttr<OverloadableAttr>();
10708 // If there's a #pragma GCC visibility in scope, and this isn't a class
10709 // member, set the visibility of this function.
10710 if (!DC->isRecord() && NewFD->isExternallyVisible())
10711 AddPushedVisibilityAttribute(NewFD);
10713 // If there's a #pragma clang arc_cf_code_audited in scope, consider
10714 // marking the function.
10715 AddCFAuditedAttribute(NewFD);
10717 // If this is a function definition, check if we have to apply any
10718 // attributes (i.e. optnone and no_builtin) due to a pragma.
10719 if (D.isFunctionDefinition()) {
10720 AddRangeBasedOptnone(NewFD);
10721 AddImplicitMSFunctionNoBuiltinAttr(NewFD);
10722 AddSectionMSAllocText(NewFD);
10723 ModifyFnAttributesMSPragmaOptimize(NewFD);
10726 // If this is the first declaration of an extern C variable, update
10727 // the map of such variables.
10728 if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
10729 isIncompleteDeclExternC(*this, NewFD))
10730 RegisterLocallyScopedExternCDecl(NewFD, S);
10732 // Set this FunctionDecl's range up to the right paren.
10733 NewFD->setRangeEnd(D.getSourceRange().getEnd());
10735 if (D.isRedeclaration() && !Previous.empty()) {
10736 NamedDecl *Prev = Previous.getRepresentativeDecl();
10737 checkDLLAttributeRedeclaration(*this, Prev, NewFD,
10738 isMemberSpecialization ||
10739 isFunctionTemplateSpecialization,
10740 D.isFunctionDefinition());
10743 if (getLangOpts().CUDA) {
10744 IdentifierInfo *II = NewFD->getIdentifier();
10745 if (II && II->isStr(getCudaConfigureFuncName()) &&
10746 !NewFD->isInvalidDecl() &&
10747 NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
10748 if (!R->castAs<FunctionType>()->getReturnType()->isScalarType())
10749 Diag(NewFD->getLocation(), diag::err_config_scalar_return)
10750 << getCudaConfigureFuncName();
10751 Context.setcudaConfigureCallDecl(NewFD);
10754 // Variadic functions, other than a *declaration* of printf, are not allowed
10755 // in device-side CUDA code, unless someone passed
10756 // -fcuda-allow-variadic-functions.
10757 if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
10758 (NewFD->hasAttr<CUDADeviceAttr>() ||
10759 NewFD->hasAttr<CUDAGlobalAttr>()) &&
10760 !(II && II->isStr("printf") && NewFD->isExternC() &&
10761 !D.isFunctionDefinition())) {
10762 Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
10766 MarkUnusedFileScopedDecl(NewFD);
10770 if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) {
10771 // OpenCL v1.2 s6.8 static is invalid for kernel functions.
10772 if (SC == SC_Static) {
10773 Diag(D.getIdentifierLoc(), diag::err_static_kernel);
10774 D.setInvalidType();
10777 // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
10778 if (!NewFD->getReturnType()->isVoidType()) {
10779 SourceRange RTRange = NewFD->getReturnTypeSourceRange();
10780 Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
10781 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
10782 : FixItHint());
10783 D.setInvalidType();
10786 llvm::SmallPtrSet<const Type *, 16> ValidTypes;
10787 for (auto *Param : NewFD->parameters())
10788 checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
10790 if (getLangOpts().OpenCLCPlusPlus) {
10791 if (DC->isRecord()) {
10792 Diag(D.getIdentifierLoc(), diag::err_method_kernel);
10793 D.setInvalidType();
10795 if (FunctionTemplate) {
10796 Diag(D.getIdentifierLoc(), diag::err_template_kernel);
10797 D.setInvalidType();
10802 if (getLangOpts().CPlusPlus) {
10803 // Precalculate whether this is a friend function template with a constraint
10804 // that depends on an enclosing template, per [temp.friend]p9.
10805 if (isFriend && FunctionTemplate &&
10806 FriendConstraintsDependOnEnclosingTemplate(NewFD))
10807 NewFD->setFriendConstraintRefersToEnclosingTemplate(true);
10809 if (FunctionTemplate) {
10810 if (NewFD->isInvalidDecl())
10811 FunctionTemplate->setInvalidDecl();
10812 return FunctionTemplate;
10815 if (isMemberSpecialization && !NewFD->isInvalidDecl())
10816 CompleteMemberSpecialization(NewFD, Previous);
10819 for (const ParmVarDecl *Param : NewFD->parameters()) {
10820 QualType PT = Param->getType();
10822 // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
10823 // types.
10824 if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
10825 if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
10826 QualType ElemTy = PipeTy->getElementType();
10827 if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
10828 Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
10829 D.setInvalidType();
10833 // WebAssembly tables can't be used as function parameters.
10834 if (Context.getTargetInfo().getTriple().isWasm()) {
10835 if (PT->getUnqualifiedDesugaredType()->isWebAssemblyTableType()) {
10836 Diag(Param->getTypeSpecStartLoc(),
10837 diag::err_wasm_table_as_function_parameter);
10838 D.setInvalidType();
10843 // Diagnose availability attributes. Availability cannot be used on functions
10844 // that are run during load/unload.
10845 if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
10846 if (NewFD->hasAttr<ConstructorAttr>()) {
10847 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
10848 << 1;
10849 NewFD->dropAttr<AvailabilityAttr>();
10851 if (NewFD->hasAttr<DestructorAttr>()) {
10852 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
10853 << 2;
10854 NewFD->dropAttr<AvailabilityAttr>();
10858 // Diagnose no_builtin attribute on function declaration that are not a
10859 // definition.
10860 // FIXME: We should really be doing this in
10861 // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to
10862 // the FunctionDecl and at this point of the code
10863 // FunctionDecl::isThisDeclarationADefinition() which always returns `false`
10864 // because Sema::ActOnStartOfFunctionDef has not been called yet.
10865 if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>())
10866 switch (D.getFunctionDefinitionKind()) {
10867 case FunctionDefinitionKind::Defaulted:
10868 case FunctionDefinitionKind::Deleted:
10869 Diag(NBA->getLocation(),
10870 diag::err_attribute_no_builtin_on_defaulted_deleted_function)
10871 << NBA->getSpelling();
10872 break;
10873 case FunctionDefinitionKind::Declaration:
10874 Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition)
10875 << NBA->getSpelling();
10876 break;
10877 case FunctionDefinitionKind::Definition:
10878 break;
10881 return NewFD;
10884 /// Return a CodeSegAttr from a containing class. The Microsoft docs say
10885 /// when __declspec(code_seg) "is applied to a class, all member functions of
10886 /// the class and nested classes -- this includes compiler-generated special
10887 /// member functions -- are put in the specified segment."
10888 /// The actual behavior is a little more complicated. The Microsoft compiler
10889 /// won't check outer classes if there is an active value from #pragma code_seg.
10890 /// The CodeSeg is always applied from the direct parent but only from outer
10891 /// classes when the #pragma code_seg stack is empty. See:
10892 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
10893 /// available since MS has removed the page.
10894 static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
10895 const auto *Method = dyn_cast<CXXMethodDecl>(FD);
10896 if (!Method)
10897 return nullptr;
10898 const CXXRecordDecl *Parent = Method->getParent();
10899 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
10900 Attr *NewAttr = SAttr->clone(S.getASTContext());
10901 NewAttr->setImplicit(true);
10902 return NewAttr;
10905 // The Microsoft compiler won't check outer classes for the CodeSeg
10906 // when the #pragma code_seg stack is active.
10907 if (S.CodeSegStack.CurrentValue)
10908 return nullptr;
10910 while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
10911 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
10912 Attr *NewAttr = SAttr->clone(S.getASTContext());
10913 NewAttr->setImplicit(true);
10914 return NewAttr;
10917 return nullptr;
10920 /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
10921 /// containing class. Otherwise it will return implicit SectionAttr if the
10922 /// function is a definition and there is an active value on CodeSegStack
10923 /// (from the current #pragma code-seg value).
10925 /// \param FD Function being declared.
10926 /// \param IsDefinition Whether it is a definition or just a declaration.
10927 /// \returns A CodeSegAttr or SectionAttr to apply to the function or
10928 /// nullptr if no attribute should be added.
10929 Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
10930 bool IsDefinition) {
10931 if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
10932 return A;
10933 if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
10934 CodeSegStack.CurrentValue)
10935 return SectionAttr::CreateImplicit(
10936 getASTContext(), CodeSegStack.CurrentValue->getString(),
10937 CodeSegStack.CurrentPragmaLocation, SectionAttr::Declspec_allocate);
10938 return nullptr;
10941 /// Determines if we can perform a correct type check for \p D as a
10942 /// redeclaration of \p PrevDecl. If not, we can generally still perform a
10943 /// best-effort check.
10945 /// \param NewD The new declaration.
10946 /// \param OldD The old declaration.
10947 /// \param NewT The portion of the type of the new declaration to check.
10948 /// \param OldT The portion of the type of the old declaration to check.
10949 bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
10950 QualType NewT, QualType OldT) {
10951 if (!NewD->getLexicalDeclContext()->isDependentContext())
10952 return true;
10954 // For dependently-typed local extern declarations and friends, we can't
10955 // perform a correct type check in general until instantiation:
10957 // int f();
10958 // template<typename T> void g() { T f(); }
10960 // (valid if g() is only instantiated with T = int).
10961 if (NewT->isDependentType() &&
10962 (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
10963 return false;
10965 // Similarly, if the previous declaration was a dependent local extern
10966 // declaration, we don't really know its type yet.
10967 if (OldT->isDependentType() && OldD->isLocalExternDecl())
10968 return false;
10970 return true;
10973 /// Checks if the new declaration declared in dependent context must be
10974 /// put in the same redeclaration chain as the specified declaration.
10976 /// \param D Declaration that is checked.
10977 /// \param PrevDecl Previous declaration found with proper lookup method for the
10978 /// same declaration name.
10979 /// \returns True if D must be added to the redeclaration chain which PrevDecl
10980 /// belongs to.
10982 bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
10983 if (!D->getLexicalDeclContext()->isDependentContext())
10984 return true;
10986 // Don't chain dependent friend function definitions until instantiation, to
10987 // permit cases like
10989 // void func();
10990 // template<typename T> class C1 { friend void func() {} };
10991 // template<typename T> class C2 { friend void func() {} };
10993 // ... which is valid if only one of C1 and C2 is ever instantiated.
10995 // FIXME: This need only apply to function definitions. For now, we proxy
10996 // this by checking for a file-scope function. We do not want this to apply
10997 // to friend declarations nominating member functions, because that gets in
10998 // the way of access checks.
10999 if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
11000 return false;
11002 auto *VD = dyn_cast<ValueDecl>(D);
11003 auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
11004 return !VD || !PrevVD ||
11005 canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
11006 PrevVD->getType());
11009 /// Check the target or target_version attribute of the function for
11010 /// MultiVersion validity.
11012 /// Returns true if there was an error, false otherwise.
11013 static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
11014 const auto *TA = FD->getAttr<TargetAttr>();
11015 const auto *TVA = FD->getAttr<TargetVersionAttr>();
11016 assert(
11017 (TA || TVA) &&
11018 "MultiVersion candidate requires a target or target_version attribute");
11019 const TargetInfo &TargetInfo = S.Context.getTargetInfo();
11020 enum ErrType { Feature = 0, Architecture = 1 };
11022 if (TA) {
11023 ParsedTargetAttr ParseInfo =
11024 S.getASTContext().getTargetInfo().parseTargetAttr(TA->getFeaturesStr());
11025 if (!ParseInfo.CPU.empty() && !TargetInfo.validateCpuIs(ParseInfo.CPU)) {
11026 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
11027 << Architecture << ParseInfo.CPU;
11028 return true;
11030 for (const auto &Feat : ParseInfo.Features) {
11031 auto BareFeat = StringRef{Feat}.substr(1);
11032 if (Feat[0] == '-') {
11033 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
11034 << Feature << ("no-" + BareFeat).str();
11035 return true;
11038 if (!TargetInfo.validateCpuSupports(BareFeat) ||
11039 !TargetInfo.isValidFeatureName(BareFeat)) {
11040 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
11041 << Feature << BareFeat;
11042 return true;
11047 if (TVA) {
11048 llvm::SmallVector<StringRef, 8> Feats;
11049 TVA->getFeatures(Feats);
11050 for (const auto &Feat : Feats) {
11051 if (!TargetInfo.validateCpuSupports(Feat)) {
11052 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
11053 << Feature << Feat;
11054 return true;
11058 return false;
11061 // Provide a white-list of attributes that are allowed to be combined with
11062 // multiversion functions.
11063 static bool AttrCompatibleWithMultiVersion(attr::Kind Kind,
11064 MultiVersionKind MVKind) {
11065 // Note: this list/diagnosis must match the list in
11066 // checkMultiversionAttributesAllSame.
11067 switch (Kind) {
11068 default:
11069 return false;
11070 case attr::Used:
11071 return MVKind == MultiVersionKind::Target;
11072 case attr::NonNull:
11073 case attr::NoThrow:
11074 return true;
11078 static bool checkNonMultiVersionCompatAttributes(Sema &S,
11079 const FunctionDecl *FD,
11080 const FunctionDecl *CausedFD,
11081 MultiVersionKind MVKind) {
11082 const auto Diagnose = [FD, CausedFD, MVKind](Sema &S, const Attr *A) {
11083 S.Diag(FD->getLocation(), diag::err_multiversion_disallowed_other_attr)
11084 << static_cast<unsigned>(MVKind) << A;
11085 if (CausedFD)
11086 S.Diag(CausedFD->getLocation(), diag::note_multiversioning_caused_here);
11087 return true;
11090 for (const Attr *A : FD->attrs()) {
11091 switch (A->getKind()) {
11092 case attr::CPUDispatch:
11093 case attr::CPUSpecific:
11094 if (MVKind != MultiVersionKind::CPUDispatch &&
11095 MVKind != MultiVersionKind::CPUSpecific)
11096 return Diagnose(S, A);
11097 break;
11098 case attr::Target:
11099 if (MVKind != MultiVersionKind::Target)
11100 return Diagnose(S, A);
11101 break;
11102 case attr::TargetVersion:
11103 if (MVKind != MultiVersionKind::TargetVersion)
11104 return Diagnose(S, A);
11105 break;
11106 case attr::TargetClones:
11107 if (MVKind != MultiVersionKind::TargetClones)
11108 return Diagnose(S, A);
11109 break;
11110 default:
11111 if (!AttrCompatibleWithMultiVersion(A->getKind(), MVKind))
11112 return Diagnose(S, A);
11113 break;
11116 return false;
11119 bool Sema::areMultiversionVariantFunctionsCompatible(
11120 const FunctionDecl *OldFD, const FunctionDecl *NewFD,
11121 const PartialDiagnostic &NoProtoDiagID,
11122 const PartialDiagnosticAt &NoteCausedDiagIDAt,
11123 const PartialDiagnosticAt &NoSupportDiagIDAt,
11124 const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
11125 bool ConstexprSupported, bool CLinkageMayDiffer) {
11126 enum DoesntSupport {
11127 FuncTemplates = 0,
11128 VirtFuncs = 1,
11129 DeducedReturn = 2,
11130 Constructors = 3,
11131 Destructors = 4,
11132 DeletedFuncs = 5,
11133 DefaultedFuncs = 6,
11134 ConstexprFuncs = 7,
11135 ConstevalFuncs = 8,
11136 Lambda = 9,
11138 enum Different {
11139 CallingConv = 0,
11140 ReturnType = 1,
11141 ConstexprSpec = 2,
11142 InlineSpec = 3,
11143 Linkage = 4,
11144 LanguageLinkage = 5,
11147 if (NoProtoDiagID.getDiagID() != 0 && OldFD &&
11148 !OldFD->getType()->getAs<FunctionProtoType>()) {
11149 Diag(OldFD->getLocation(), NoProtoDiagID);
11150 Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second);
11151 return true;
11154 if (NoProtoDiagID.getDiagID() != 0 &&
11155 !NewFD->getType()->getAs<FunctionProtoType>())
11156 return Diag(NewFD->getLocation(), NoProtoDiagID);
11158 if (!TemplatesSupported &&
11159 NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
11160 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11161 << FuncTemplates;
11163 if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
11164 if (NewCXXFD->isVirtual())
11165 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11166 << VirtFuncs;
11168 if (isa<CXXConstructorDecl>(NewCXXFD))
11169 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11170 << Constructors;
11172 if (isa<CXXDestructorDecl>(NewCXXFD))
11173 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11174 << Destructors;
11177 if (NewFD->isDeleted())
11178 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11179 << DeletedFuncs;
11181 if (NewFD->isDefaulted())
11182 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11183 << DefaultedFuncs;
11185 if (!ConstexprSupported && NewFD->isConstexpr())
11186 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11187 << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs);
11189 QualType NewQType = Context.getCanonicalType(NewFD->getType());
11190 const auto *NewType = cast<FunctionType>(NewQType);
11191 QualType NewReturnType = NewType->getReturnType();
11193 if (NewReturnType->isUndeducedType())
11194 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11195 << DeducedReturn;
11197 // Ensure the return type is identical.
11198 if (OldFD) {
11199 QualType OldQType = Context.getCanonicalType(OldFD->getType());
11200 const auto *OldType = cast<FunctionType>(OldQType);
11201 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
11202 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
11204 if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
11205 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv;
11207 QualType OldReturnType = OldType->getReturnType();
11209 if (OldReturnType != NewReturnType)
11210 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType;
11212 if (OldFD->getConstexprKind() != NewFD->getConstexprKind())
11213 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec;
11215 if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
11216 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec;
11218 if (OldFD->getFormalLinkage() != NewFD->getFormalLinkage())
11219 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage;
11221 if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC())
11222 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << LanguageLinkage;
11224 if (CheckEquivalentExceptionSpec(
11225 OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
11226 NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
11227 return true;
11229 return false;
11232 static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
11233 const FunctionDecl *NewFD,
11234 bool CausesMV,
11235 MultiVersionKind MVKind) {
11236 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
11237 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
11238 if (OldFD)
11239 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
11240 return true;
11243 bool IsCPUSpecificCPUDispatchMVKind =
11244 MVKind == MultiVersionKind::CPUDispatch ||
11245 MVKind == MultiVersionKind::CPUSpecific;
11247 if (CausesMV && OldFD &&
11248 checkNonMultiVersionCompatAttributes(S, OldFD, NewFD, MVKind))
11249 return true;
11251 if (checkNonMultiVersionCompatAttributes(S, NewFD, nullptr, MVKind))
11252 return true;
11254 // Only allow transition to MultiVersion if it hasn't been used.
11255 if (OldFD && CausesMV && OldFD->isUsed(false))
11256 return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
11258 return S.areMultiversionVariantFunctionsCompatible(
11259 OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto),
11260 PartialDiagnosticAt(NewFD->getLocation(),
11261 S.PDiag(diag::note_multiversioning_caused_here)),
11262 PartialDiagnosticAt(NewFD->getLocation(),
11263 S.PDiag(diag::err_multiversion_doesnt_support)
11264 << static_cast<unsigned>(MVKind)),
11265 PartialDiagnosticAt(NewFD->getLocation(),
11266 S.PDiag(diag::err_multiversion_diff)),
11267 /*TemplatesSupported=*/false,
11268 /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVKind,
11269 /*CLinkageMayDiffer=*/false);
11272 /// Check the validity of a multiversion function declaration that is the
11273 /// first of its kind. Also sets the multiversion'ness' of the function itself.
11275 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11277 /// Returns true if there was an error, false otherwise.
11278 static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD) {
11279 MultiVersionKind MVKind = FD->getMultiVersionKind();
11280 assert(MVKind != MultiVersionKind::None &&
11281 "Function lacks multiversion attribute");
11282 const auto *TA = FD->getAttr<TargetAttr>();
11283 const auto *TVA = FD->getAttr<TargetVersionAttr>();
11284 // Target and target_version only causes MV if it is default, otherwise this
11285 // is a normal function.
11286 if ((TA && !TA->isDefaultVersion()) || (TVA && !TVA->isDefaultVersion()))
11287 return false;
11289 if ((TA || TVA) && CheckMultiVersionValue(S, FD)) {
11290 FD->setInvalidDecl();
11291 return true;
11294 if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVKind)) {
11295 FD->setInvalidDecl();
11296 return true;
11299 FD->setIsMultiVersion();
11300 return false;
11303 static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
11304 for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
11305 if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
11306 return true;
11309 return false;
11312 static bool CheckTargetCausesMultiVersioning(Sema &S, FunctionDecl *OldFD,
11313 FunctionDecl *NewFD,
11314 bool &Redeclaration,
11315 NamedDecl *&OldDecl,
11316 LookupResult &Previous) {
11317 const auto *NewTA = NewFD->getAttr<TargetAttr>();
11318 const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>();
11319 const auto *OldTA = OldFD->getAttr<TargetAttr>();
11320 const auto *OldTVA = OldFD->getAttr<TargetVersionAttr>();
11321 // If the old decl is NOT MultiVersioned yet, and we don't cause that
11322 // to change, this is a simple redeclaration.
11323 if ((NewTA && !NewTA->isDefaultVersion() &&
11324 (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr())) ||
11325 (NewTVA && !NewTVA->isDefaultVersion() &&
11326 (!OldTVA || OldTVA->getName() == NewTVA->getName())))
11327 return false;
11329 // Otherwise, this decl causes MultiVersioning.
11330 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
11331 NewTVA ? MultiVersionKind::TargetVersion
11332 : MultiVersionKind::Target)) {
11333 NewFD->setInvalidDecl();
11334 return true;
11337 if (CheckMultiVersionValue(S, NewFD)) {
11338 NewFD->setInvalidDecl();
11339 return true;
11342 // If this is 'default', permit the forward declaration.
11343 if (!OldFD->isMultiVersion() &&
11344 ((NewTA && NewTA->isDefaultVersion() && !OldTA) ||
11345 (NewTVA && NewTVA->isDefaultVersion() && !OldTVA))) {
11346 Redeclaration = true;
11347 OldDecl = OldFD;
11348 OldFD->setIsMultiVersion();
11349 NewFD->setIsMultiVersion();
11350 return false;
11353 if (CheckMultiVersionValue(S, OldFD)) {
11354 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
11355 NewFD->setInvalidDecl();
11356 return true;
11359 if (NewTA) {
11360 ParsedTargetAttr OldParsed =
11361 S.getASTContext().getTargetInfo().parseTargetAttr(
11362 OldTA->getFeaturesStr());
11363 llvm::sort(OldParsed.Features);
11364 ParsedTargetAttr NewParsed =
11365 S.getASTContext().getTargetInfo().parseTargetAttr(
11366 NewTA->getFeaturesStr());
11367 // Sort order doesn't matter, it just needs to be consistent.
11368 llvm::sort(NewParsed.Features);
11369 if (OldParsed == NewParsed) {
11370 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
11371 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
11372 NewFD->setInvalidDecl();
11373 return true;
11377 if (NewTVA) {
11378 llvm::SmallVector<StringRef, 8> Feats;
11379 OldTVA->getFeatures(Feats);
11380 llvm::sort(Feats);
11381 llvm::SmallVector<StringRef, 8> NewFeats;
11382 NewTVA->getFeatures(NewFeats);
11383 llvm::sort(NewFeats);
11385 if (Feats == NewFeats) {
11386 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
11387 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
11388 NewFD->setInvalidDecl();
11389 return true;
11393 for (const auto *FD : OldFD->redecls()) {
11394 const auto *CurTA = FD->getAttr<TargetAttr>();
11395 const auto *CurTVA = FD->getAttr<TargetVersionAttr>();
11396 // We allow forward declarations before ANY multiversioning attributes, but
11397 // nothing after the fact.
11398 if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
11399 ((NewTA && (!CurTA || CurTA->isInherited())) ||
11400 (NewTVA && (!CurTVA || CurTVA->isInherited())))) {
11401 S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
11402 << (NewTA ? 0 : 2);
11403 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
11404 NewFD->setInvalidDecl();
11405 return true;
11409 OldFD->setIsMultiVersion();
11410 NewFD->setIsMultiVersion();
11411 Redeclaration = false;
11412 OldDecl = nullptr;
11413 Previous.clear();
11414 return false;
11417 static bool MultiVersionTypesCompatible(MultiVersionKind Old,
11418 MultiVersionKind New) {
11419 if (Old == New || Old == MultiVersionKind::None ||
11420 New == MultiVersionKind::None)
11421 return true;
11423 return (Old == MultiVersionKind::CPUDispatch &&
11424 New == MultiVersionKind::CPUSpecific) ||
11425 (Old == MultiVersionKind::CPUSpecific &&
11426 New == MultiVersionKind::CPUDispatch);
11429 /// Check the validity of a new function declaration being added to an existing
11430 /// multiversioned declaration collection.
11431 static bool CheckMultiVersionAdditionalDecl(
11432 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
11433 MultiVersionKind NewMVKind, const CPUDispatchAttr *NewCPUDisp,
11434 const CPUSpecificAttr *NewCPUSpec, const TargetClonesAttr *NewClones,
11435 bool &Redeclaration, NamedDecl *&OldDecl, LookupResult &Previous) {
11436 const auto *NewTA = NewFD->getAttr<TargetAttr>();
11437 const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>();
11438 MultiVersionKind OldMVKind = OldFD->getMultiVersionKind();
11439 // Disallow mixing of multiversioning types.
11440 if (!MultiVersionTypesCompatible(OldMVKind, NewMVKind)) {
11441 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
11442 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
11443 NewFD->setInvalidDecl();
11444 return true;
11447 ParsedTargetAttr NewParsed;
11448 if (NewTA) {
11449 NewParsed = S.getASTContext().getTargetInfo().parseTargetAttr(
11450 NewTA->getFeaturesStr());
11451 llvm::sort(NewParsed.Features);
11453 llvm::SmallVector<StringRef, 8> NewFeats;
11454 if (NewTVA) {
11455 NewTVA->getFeatures(NewFeats);
11456 llvm::sort(NewFeats);
11459 bool UseMemberUsingDeclRules =
11460 S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
11462 bool MayNeedOverloadableChecks =
11463 AllowOverloadingOfFunction(Previous, S.Context, NewFD);
11465 // Next, check ALL non-invalid non-overloads to see if this is a redeclaration
11466 // of a previous member of the MultiVersion set.
11467 for (NamedDecl *ND : Previous) {
11468 FunctionDecl *CurFD = ND->getAsFunction();
11469 if (!CurFD || CurFD->isInvalidDecl())
11470 continue;
11471 if (MayNeedOverloadableChecks &&
11472 S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
11473 continue;
11475 if (NewMVKind == MultiVersionKind::None &&
11476 OldMVKind == MultiVersionKind::TargetVersion) {
11477 NewFD->addAttr(TargetVersionAttr::CreateImplicit(
11478 S.Context, "default", NewFD->getSourceRange()));
11479 NewFD->setIsMultiVersion();
11480 NewMVKind = MultiVersionKind::TargetVersion;
11481 if (!NewTVA) {
11482 NewTVA = NewFD->getAttr<TargetVersionAttr>();
11483 NewTVA->getFeatures(NewFeats);
11484 llvm::sort(NewFeats);
11488 switch (NewMVKind) {
11489 case MultiVersionKind::None:
11490 assert(OldMVKind == MultiVersionKind::TargetClones &&
11491 "Only target_clones can be omitted in subsequent declarations");
11492 break;
11493 case MultiVersionKind::Target: {
11494 const auto *CurTA = CurFD->getAttr<TargetAttr>();
11495 if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
11496 NewFD->setIsMultiVersion();
11497 Redeclaration = true;
11498 OldDecl = ND;
11499 return false;
11502 ParsedTargetAttr CurParsed =
11503 S.getASTContext().getTargetInfo().parseTargetAttr(
11504 CurTA->getFeaturesStr());
11505 llvm::sort(CurParsed.Features);
11506 if (CurParsed == NewParsed) {
11507 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
11508 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11509 NewFD->setInvalidDecl();
11510 return true;
11512 break;
11514 case MultiVersionKind::TargetVersion: {
11515 const auto *CurTVA = CurFD->getAttr<TargetVersionAttr>();
11516 if (CurTVA->getName() == NewTVA->getName()) {
11517 NewFD->setIsMultiVersion();
11518 Redeclaration = true;
11519 OldDecl = ND;
11520 return false;
11522 llvm::SmallVector<StringRef, 8> CurFeats;
11523 if (CurTVA) {
11524 CurTVA->getFeatures(CurFeats);
11525 llvm::sort(CurFeats);
11527 if (CurFeats == NewFeats) {
11528 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
11529 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11530 NewFD->setInvalidDecl();
11531 return true;
11533 break;
11535 case MultiVersionKind::TargetClones: {
11536 const auto *CurClones = CurFD->getAttr<TargetClonesAttr>();
11537 Redeclaration = true;
11538 OldDecl = CurFD;
11539 NewFD->setIsMultiVersion();
11541 if (CurClones && NewClones &&
11542 (CurClones->featuresStrs_size() != NewClones->featuresStrs_size() ||
11543 !std::equal(CurClones->featuresStrs_begin(),
11544 CurClones->featuresStrs_end(),
11545 NewClones->featuresStrs_begin()))) {
11546 S.Diag(NewFD->getLocation(), diag::err_target_clone_doesnt_match);
11547 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11548 NewFD->setInvalidDecl();
11549 return true;
11552 return false;
11554 case MultiVersionKind::CPUSpecific:
11555 case MultiVersionKind::CPUDispatch: {
11556 const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
11557 const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
11558 // Handle CPUDispatch/CPUSpecific versions.
11559 // Only 1 CPUDispatch function is allowed, this will make it go through
11560 // the redeclaration errors.
11561 if (NewMVKind == MultiVersionKind::CPUDispatch &&
11562 CurFD->hasAttr<CPUDispatchAttr>()) {
11563 if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
11564 std::equal(
11565 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
11566 NewCPUDisp->cpus_begin(),
11567 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
11568 return Cur->getName() == New->getName();
11569 })) {
11570 NewFD->setIsMultiVersion();
11571 Redeclaration = true;
11572 OldDecl = ND;
11573 return false;
11576 // If the declarations don't match, this is an error condition.
11577 S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
11578 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11579 NewFD->setInvalidDecl();
11580 return true;
11582 if (NewMVKind == MultiVersionKind::CPUSpecific && CurCPUSpec) {
11583 if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
11584 std::equal(
11585 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
11586 NewCPUSpec->cpus_begin(),
11587 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
11588 return Cur->getName() == New->getName();
11589 })) {
11590 NewFD->setIsMultiVersion();
11591 Redeclaration = true;
11592 OldDecl = ND;
11593 return false;
11596 // Only 1 version of CPUSpecific is allowed for each CPU.
11597 for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
11598 for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
11599 if (CurII == NewII) {
11600 S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
11601 << NewII;
11602 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11603 NewFD->setInvalidDecl();
11604 return true;
11609 break;
11614 // Else, this is simply a non-redecl case. Checking the 'value' is only
11615 // necessary in the Target case, since The CPUSpecific/Dispatch cases are
11616 // handled in the attribute adding step.
11617 if ((NewMVKind == MultiVersionKind::TargetVersion ||
11618 NewMVKind == MultiVersionKind::Target) &&
11619 CheckMultiVersionValue(S, NewFD)) {
11620 NewFD->setInvalidDecl();
11621 return true;
11624 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD,
11625 !OldFD->isMultiVersion(), NewMVKind)) {
11626 NewFD->setInvalidDecl();
11627 return true;
11630 // Permit forward declarations in the case where these two are compatible.
11631 if (!OldFD->isMultiVersion()) {
11632 OldFD->setIsMultiVersion();
11633 NewFD->setIsMultiVersion();
11634 Redeclaration = true;
11635 OldDecl = OldFD;
11636 return false;
11639 NewFD->setIsMultiVersion();
11640 Redeclaration = false;
11641 OldDecl = nullptr;
11642 Previous.clear();
11643 return false;
11646 /// Check the validity of a mulitversion function declaration.
11647 /// Also sets the multiversion'ness' of the function itself.
11649 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11651 /// Returns true if there was an error, false otherwise.
11652 static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
11653 bool &Redeclaration, NamedDecl *&OldDecl,
11654 LookupResult &Previous) {
11655 const auto *NewTA = NewFD->getAttr<TargetAttr>();
11656 const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>();
11657 const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
11658 const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
11659 const auto *NewClones = NewFD->getAttr<TargetClonesAttr>();
11660 MultiVersionKind MVKind = NewFD->getMultiVersionKind();
11662 // Main isn't allowed to become a multiversion function, however it IS
11663 // permitted to have 'main' be marked with the 'target' optimization hint,
11664 // for 'target_version' only default is allowed.
11665 if (NewFD->isMain()) {
11666 if (MVKind != MultiVersionKind::None &&
11667 !(MVKind == MultiVersionKind::Target && !NewTA->isDefaultVersion()) &&
11668 !(MVKind == MultiVersionKind::TargetVersion &&
11669 NewTVA->isDefaultVersion())) {
11670 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
11671 NewFD->setInvalidDecl();
11672 return true;
11674 return false;
11677 // Target attribute on AArch64 is not used for multiversioning
11678 if (NewTA && S.getASTContext().getTargetInfo().getTriple().isAArch64())
11679 return false;
11681 if (!OldDecl || !OldDecl->getAsFunction() ||
11682 OldDecl->getDeclContext()->getRedeclContext() !=
11683 NewFD->getDeclContext()->getRedeclContext()) {
11684 // If there's no previous declaration, AND this isn't attempting to cause
11685 // multiversioning, this isn't an error condition.
11686 if (MVKind == MultiVersionKind::None)
11687 return false;
11688 return CheckMultiVersionFirstFunction(S, NewFD);
11691 FunctionDecl *OldFD = OldDecl->getAsFunction();
11693 if (!OldFD->isMultiVersion() && MVKind == MultiVersionKind::None) {
11694 if (NewTVA || !OldFD->getAttr<TargetVersionAttr>())
11695 return false;
11696 if (!NewFD->getType()->getAs<FunctionProtoType>()) {
11697 // Multiversion declaration doesn't have prototype.
11698 S.Diag(NewFD->getLocation(), diag::err_multiversion_noproto);
11699 NewFD->setInvalidDecl();
11700 } else {
11701 // No "target_version" attribute is equivalent to "default" attribute.
11702 NewFD->addAttr(TargetVersionAttr::CreateImplicit(
11703 S.Context, "default", NewFD->getSourceRange()));
11704 NewFD->setIsMultiVersion();
11705 OldFD->setIsMultiVersion();
11706 OldDecl = OldFD;
11707 Redeclaration = true;
11709 return true;
11712 // Multiversioned redeclarations aren't allowed to omit the attribute, except
11713 // for target_clones and target_version.
11714 if (OldFD->isMultiVersion() && MVKind == MultiVersionKind::None &&
11715 OldFD->getMultiVersionKind() != MultiVersionKind::TargetClones &&
11716 OldFD->getMultiVersionKind() != MultiVersionKind::TargetVersion) {
11717 S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
11718 << (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
11719 NewFD->setInvalidDecl();
11720 return true;
11723 if (!OldFD->isMultiVersion()) {
11724 switch (MVKind) {
11725 case MultiVersionKind::Target:
11726 case MultiVersionKind::TargetVersion:
11727 return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, Redeclaration,
11728 OldDecl, Previous);
11729 case MultiVersionKind::TargetClones:
11730 if (OldFD->isUsed(false)) {
11731 NewFD->setInvalidDecl();
11732 return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
11734 OldFD->setIsMultiVersion();
11735 break;
11737 case MultiVersionKind::CPUDispatch:
11738 case MultiVersionKind::CPUSpecific:
11739 case MultiVersionKind::None:
11740 break;
11744 // At this point, we have a multiversion function decl (in OldFD) AND an
11745 // appropriate attribute in the current function decl. Resolve that these are
11746 // still compatible with previous declarations.
11747 return CheckMultiVersionAdditionalDecl(S, OldFD, NewFD, MVKind, NewCPUDisp,
11748 NewCPUSpec, NewClones, Redeclaration,
11749 OldDecl, Previous);
11752 /// Perform semantic checking of a new function declaration.
11754 /// Performs semantic analysis of the new function declaration
11755 /// NewFD. This routine performs all semantic checking that does not
11756 /// require the actual declarator involved in the declaration, and is
11757 /// used both for the declaration of functions as they are parsed
11758 /// (called via ActOnDeclarator) and for the declaration of functions
11759 /// that have been instantiated via C++ template instantiation (called
11760 /// via InstantiateDecl).
11762 /// \param IsMemberSpecialization whether this new function declaration is
11763 /// a member specialization (that replaces any definition provided by the
11764 /// previous declaration).
11766 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11768 /// \returns true if the function declaration is a redeclaration.
11769 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
11770 LookupResult &Previous,
11771 bool IsMemberSpecialization,
11772 bool DeclIsDefn) {
11773 assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
11774 "Variably modified return types are not handled here");
11776 // Determine whether the type of this function should be merged with
11777 // a previous visible declaration. This never happens for functions in C++,
11778 // and always happens in C if the previous declaration was visible.
11779 bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
11780 !Previous.isShadowed();
11782 bool Redeclaration = false;
11783 NamedDecl *OldDecl = nullptr;
11784 bool MayNeedOverloadableChecks = false;
11786 // Merge or overload the declaration with an existing declaration of
11787 // the same name, if appropriate.
11788 if (!Previous.empty()) {
11789 // Determine whether NewFD is an overload of PrevDecl or
11790 // a declaration that requires merging. If it's an overload,
11791 // there's no more work to do here; we'll just add the new
11792 // function to the scope.
11793 if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
11794 NamedDecl *Candidate = Previous.getRepresentativeDecl();
11795 if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
11796 Redeclaration = true;
11797 OldDecl = Candidate;
11799 } else {
11800 MayNeedOverloadableChecks = true;
11801 switch (CheckOverload(S, NewFD, Previous, OldDecl,
11802 /*NewIsUsingDecl*/ false)) {
11803 case Ovl_Match:
11804 Redeclaration = true;
11805 break;
11807 case Ovl_NonFunction:
11808 Redeclaration = true;
11809 break;
11811 case Ovl_Overload:
11812 Redeclaration = false;
11813 break;
11818 // Check for a previous extern "C" declaration with this name.
11819 if (!Redeclaration &&
11820 checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
11821 if (!Previous.empty()) {
11822 // This is an extern "C" declaration with the same name as a previous
11823 // declaration, and thus redeclares that entity...
11824 Redeclaration = true;
11825 OldDecl = Previous.getFoundDecl();
11826 MergeTypeWithPrevious = false;
11828 // ... except in the presence of __attribute__((overloadable)).
11829 if (OldDecl->hasAttr<OverloadableAttr>() ||
11830 NewFD->hasAttr<OverloadableAttr>()) {
11831 if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
11832 MayNeedOverloadableChecks = true;
11833 Redeclaration = false;
11834 OldDecl = nullptr;
11840 if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl, Previous))
11841 return Redeclaration;
11843 // PPC MMA non-pointer types are not allowed as function return types.
11844 if (Context.getTargetInfo().getTriple().isPPC64() &&
11845 CheckPPCMMAType(NewFD->getReturnType(), NewFD->getLocation())) {
11846 NewFD->setInvalidDecl();
11849 // C++11 [dcl.constexpr]p8:
11850 // A constexpr specifier for a non-static member function that is not
11851 // a constructor declares that member function to be const.
11853 // This needs to be delayed until we know whether this is an out-of-line
11854 // definition of a static member function.
11856 // This rule is not present in C++1y, so we produce a backwards
11857 // compatibility warning whenever it happens in C++11.
11858 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
11859 if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
11860 !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
11861 !isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) {
11862 CXXMethodDecl *OldMD = nullptr;
11863 if (OldDecl)
11864 OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
11865 if (!OldMD || !OldMD->isStatic()) {
11866 const FunctionProtoType *FPT =
11867 MD->getType()->castAs<FunctionProtoType>();
11868 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
11869 EPI.TypeQuals.addConst();
11870 MD->setType(Context.getFunctionType(FPT->getReturnType(),
11871 FPT->getParamTypes(), EPI));
11873 // Warn that we did this, if we're not performing template instantiation.
11874 // In that case, we'll have warned already when the template was defined.
11875 if (!inTemplateInstantiation()) {
11876 SourceLocation AddConstLoc;
11877 if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
11878 .IgnoreParens().getAs<FunctionTypeLoc>())
11879 AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
11881 Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
11882 << FixItHint::CreateInsertion(AddConstLoc, " const");
11887 if (Redeclaration) {
11888 // NewFD and OldDecl represent declarations that need to be
11889 // merged.
11890 if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious,
11891 DeclIsDefn)) {
11892 NewFD->setInvalidDecl();
11893 return Redeclaration;
11896 Previous.clear();
11897 Previous.addDecl(OldDecl);
11899 if (FunctionTemplateDecl *OldTemplateDecl =
11900 dyn_cast<FunctionTemplateDecl>(OldDecl)) {
11901 auto *OldFD = OldTemplateDecl->getTemplatedDecl();
11902 FunctionTemplateDecl *NewTemplateDecl
11903 = NewFD->getDescribedFunctionTemplate();
11904 assert(NewTemplateDecl && "Template/non-template mismatch");
11906 // The call to MergeFunctionDecl above may have created some state in
11907 // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
11908 // can add it as a redeclaration.
11909 NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
11911 NewFD->setPreviousDeclaration(OldFD);
11912 if (NewFD->isCXXClassMember()) {
11913 NewFD->setAccess(OldTemplateDecl->getAccess());
11914 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
11917 // If this is an explicit specialization of a member that is a function
11918 // template, mark it as a member specialization.
11919 if (IsMemberSpecialization &&
11920 NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
11921 NewTemplateDecl->setMemberSpecialization();
11922 assert(OldTemplateDecl->isMemberSpecialization());
11923 // Explicit specializations of a member template do not inherit deleted
11924 // status from the parent member template that they are specializing.
11925 if (OldFD->isDeleted()) {
11926 // FIXME: This assert will not hold in the presence of modules.
11927 assert(OldFD->getCanonicalDecl() == OldFD);
11928 // FIXME: We need an update record for this AST mutation.
11929 OldFD->setDeletedAsWritten(false);
11933 } else {
11934 if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
11935 auto *OldFD = cast<FunctionDecl>(OldDecl);
11936 // This needs to happen first so that 'inline' propagates.
11937 NewFD->setPreviousDeclaration(OldFD);
11938 if (NewFD->isCXXClassMember())
11939 NewFD->setAccess(OldFD->getAccess());
11942 } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
11943 !NewFD->getAttr<OverloadableAttr>()) {
11944 assert((Previous.empty() ||
11945 llvm::any_of(Previous,
11946 [](const NamedDecl *ND) {
11947 return ND->hasAttr<OverloadableAttr>();
11948 })) &&
11949 "Non-redecls shouldn't happen without overloadable present");
11951 auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
11952 const auto *FD = dyn_cast<FunctionDecl>(ND);
11953 return FD && !FD->hasAttr<OverloadableAttr>();
11956 if (OtherUnmarkedIter != Previous.end()) {
11957 Diag(NewFD->getLocation(),
11958 diag::err_attribute_overloadable_multiple_unmarked_overloads);
11959 Diag((*OtherUnmarkedIter)->getLocation(),
11960 diag::note_attribute_overloadable_prev_overload)
11961 << false;
11963 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
11967 if (LangOpts.OpenMP)
11968 ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(NewFD);
11970 // Semantic checking for this function declaration (in isolation).
11972 if (getLangOpts().CPlusPlus) {
11973 // C++-specific checks.
11974 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
11975 CheckConstructor(Constructor);
11976 } else if (CXXDestructorDecl *Destructor =
11977 dyn_cast<CXXDestructorDecl>(NewFD)) {
11978 // We check here for invalid destructor names.
11979 // If we have a friend destructor declaration that is dependent, we can't
11980 // diagnose right away because cases like this are still valid:
11981 // template <class T> struct A { friend T::X::~Y(); };
11982 // struct B { struct Y { ~Y(); }; using X = Y; };
11983 // template struct A<B>;
11984 if (NewFD->getFriendObjectKind() == Decl::FriendObjectKind::FOK_None ||
11985 !Destructor->getFunctionObjectParameterType()->isDependentType()) {
11986 CXXRecordDecl *Record = Destructor->getParent();
11987 QualType ClassType = Context.getTypeDeclType(Record);
11989 DeclarationName Name = Context.DeclarationNames.getCXXDestructorName(
11990 Context.getCanonicalType(ClassType));
11991 if (NewFD->getDeclName() != Name) {
11992 Diag(NewFD->getLocation(), diag::err_destructor_name);
11993 NewFD->setInvalidDecl();
11994 return Redeclaration;
11997 } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
11998 if (auto *TD = Guide->getDescribedFunctionTemplate())
11999 CheckDeductionGuideTemplate(TD);
12001 // A deduction guide is not on the list of entities that can be
12002 // explicitly specialized.
12003 if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
12004 Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
12005 << /*explicit specialization*/ 1;
12008 // Find any virtual functions that this function overrides.
12009 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
12010 if (!Method->isFunctionTemplateSpecialization() &&
12011 !Method->getDescribedFunctionTemplate() &&
12012 Method->isCanonicalDecl()) {
12013 AddOverriddenMethods(Method->getParent(), Method);
12015 if (Method->isVirtual() && NewFD->getTrailingRequiresClause())
12016 // C++2a [class.virtual]p6
12017 // A virtual method shall not have a requires-clause.
12018 Diag(NewFD->getTrailingRequiresClause()->getBeginLoc(),
12019 diag::err_constrained_virtual_method);
12021 if (Method->isStatic())
12022 checkThisInStaticMemberFunctionType(Method);
12025 // C++20: dcl.decl.general p4:
12026 // The optional requires-clause ([temp.pre]) in an init-declarator or
12027 // member-declarator shall be present only if the declarator declares a
12028 // templated function ([dcl.fct]).
12029 if (Expr *TRC = NewFD->getTrailingRequiresClause()) {
12030 // [temp.pre]/8:
12031 // An entity is templated if it is
12032 // - a template,
12033 // - an entity defined ([basic.def]) or created ([class.temporary]) in a
12034 // templated entity,
12035 // - a member of a templated entity,
12036 // - an enumerator for an enumeration that is a templated entity, or
12037 // - the closure type of a lambda-expression ([expr.prim.lambda.closure])
12038 // appearing in the declaration of a templated entity. [Note 6: A local
12039 // class, a local or block variable, or a friend function defined in a
12040 // templated entity is a templated entity. — end note]
12042 // A templated function is a function template or a function that is
12043 // templated. A templated class is a class template or a class that is
12044 // templated. A templated variable is a variable template or a variable
12045 // that is templated.
12047 if (!NewFD->getDescribedFunctionTemplate() && // -a template
12048 // defined... in a templated entity
12049 !(DeclIsDefn && NewFD->isTemplated()) &&
12050 // a member of a templated entity
12051 !(isa<CXXMethodDecl>(NewFD) && NewFD->isTemplated()) &&
12052 // Don't complain about instantiations, they've already had these
12053 // rules + others enforced.
12054 !NewFD->isTemplateInstantiation()) {
12055 Diag(TRC->getBeginLoc(), diag::err_constrained_non_templated_function);
12059 if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
12060 ActOnConversionDeclarator(Conversion);
12062 // Extra checking for C++ overloaded operators (C++ [over.oper]).
12063 if (NewFD->isOverloadedOperator() &&
12064 CheckOverloadedOperatorDeclaration(NewFD)) {
12065 NewFD->setInvalidDecl();
12066 return Redeclaration;
12069 // Extra checking for C++0x literal operators (C++0x [over.literal]).
12070 if (NewFD->getLiteralIdentifier() &&
12071 CheckLiteralOperatorDeclaration(NewFD)) {
12072 NewFD->setInvalidDecl();
12073 return Redeclaration;
12076 // In C++, check default arguments now that we have merged decls. Unless
12077 // the lexical context is the class, because in this case this is done
12078 // during delayed parsing anyway.
12079 if (!CurContext->isRecord())
12080 CheckCXXDefaultArguments(NewFD);
12082 // If this function is declared as being extern "C", then check to see if
12083 // the function returns a UDT (class, struct, or union type) that is not C
12084 // compatible, and if it does, warn the user.
12085 // But, issue any diagnostic on the first declaration only.
12086 if (Previous.empty() && NewFD->isExternC()) {
12087 QualType R = NewFD->getReturnType();
12088 if (R->isIncompleteType() && !R->isVoidType())
12089 Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
12090 << NewFD << R;
12091 else if (!R.isPODType(Context) && !R->isVoidType() &&
12092 !R->isObjCObjectPointerType())
12093 Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
12096 // C++1z [dcl.fct]p6:
12097 // [...] whether the function has a non-throwing exception-specification
12098 // [is] part of the function type
12100 // This results in an ABI break between C++14 and C++17 for functions whose
12101 // declared type includes an exception-specification in a parameter or
12102 // return type. (Exception specifications on the function itself are OK in
12103 // most cases, and exception specifications are not permitted in most other
12104 // contexts where they could make it into a mangling.)
12105 if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
12106 auto HasNoexcept = [&](QualType T) -> bool {
12107 // Strip off declarator chunks that could be between us and a function
12108 // type. We don't need to look far, exception specifications are very
12109 // restricted prior to C++17.
12110 if (auto *RT = T->getAs<ReferenceType>())
12111 T = RT->getPointeeType();
12112 else if (T->isAnyPointerType())
12113 T = T->getPointeeType();
12114 else if (auto *MPT = T->getAs<MemberPointerType>())
12115 T = MPT->getPointeeType();
12116 if (auto *FPT = T->getAs<FunctionProtoType>())
12117 if (FPT->isNothrow())
12118 return true;
12119 return false;
12122 auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
12123 bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
12124 for (QualType T : FPT->param_types())
12125 AnyNoexcept |= HasNoexcept(T);
12126 if (AnyNoexcept)
12127 Diag(NewFD->getLocation(),
12128 diag::warn_cxx17_compat_exception_spec_in_signature)
12129 << NewFD;
12132 if (!Redeclaration && LangOpts.CUDA)
12133 checkCUDATargetOverload(NewFD, Previous);
12136 // Check if the function definition uses any AArch64 SME features without
12137 // having the '+sme' feature enabled.
12138 if (DeclIsDefn) {
12139 bool UsesSM = NewFD->hasAttr<ArmLocallyStreamingAttr>();
12140 bool UsesZA = NewFD->hasAttr<ArmNewZAAttr>();
12141 if (const auto *FPT = NewFD->getType()->getAs<FunctionProtoType>()) {
12142 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
12143 UsesSM |=
12144 EPI.AArch64SMEAttributes & FunctionType::SME_PStateSMEnabledMask;
12145 UsesZA |= EPI.AArch64SMEAttributes & FunctionType::SME_PStateZASharedMask;
12148 if (UsesSM || UsesZA) {
12149 llvm::StringMap<bool> FeatureMap;
12150 Context.getFunctionFeatureMap(FeatureMap, NewFD);
12151 if (!FeatureMap.contains("sme")) {
12152 if (UsesSM)
12153 Diag(NewFD->getLocation(),
12154 diag::err_sme_definition_using_sm_in_non_sme_target);
12155 else
12156 Diag(NewFD->getLocation(),
12157 diag::err_sme_definition_using_za_in_non_sme_target);
12162 return Redeclaration;
12165 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
12166 // C++11 [basic.start.main]p3:
12167 // A program that [...] declares main to be inline, static or
12168 // constexpr is ill-formed.
12169 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall
12170 // appear in a declaration of main.
12171 // static main is not an error under C99, but we should warn about it.
12172 // We accept _Noreturn main as an extension.
12173 if (FD->getStorageClass() == SC_Static)
12174 Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
12175 ? diag::err_static_main : diag::warn_static_main)
12176 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
12177 if (FD->isInlineSpecified())
12178 Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
12179 << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
12180 if (DS.isNoreturnSpecified()) {
12181 SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
12182 SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
12183 Diag(NoreturnLoc, diag::ext_noreturn_main);
12184 Diag(NoreturnLoc, diag::note_main_remove_noreturn)
12185 << FixItHint::CreateRemoval(NoreturnRange);
12187 if (FD->isConstexpr()) {
12188 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
12189 << FD->isConsteval()
12190 << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
12191 FD->setConstexprKind(ConstexprSpecKind::Unspecified);
12194 if (getLangOpts().OpenCL) {
12195 Diag(FD->getLocation(), diag::err_opencl_no_main)
12196 << FD->hasAttr<OpenCLKernelAttr>();
12197 FD->setInvalidDecl();
12198 return;
12201 // Functions named main in hlsl are default entries, but don't have specific
12202 // signatures they are required to conform to.
12203 if (getLangOpts().HLSL)
12204 return;
12206 QualType T = FD->getType();
12207 assert(T->isFunctionType() && "function decl is not of function type");
12208 const FunctionType* FT = T->castAs<FunctionType>();
12210 // Set default calling convention for main()
12211 if (FT->getCallConv() != CC_C) {
12212 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
12213 FD->setType(QualType(FT, 0));
12214 T = Context.getCanonicalType(FD->getType());
12217 if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
12218 // In C with GNU extensions we allow main() to have non-integer return
12219 // type, but we should warn about the extension, and we disable the
12220 // implicit-return-zero rule.
12222 // GCC in C mode accepts qualified 'int'.
12223 if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
12224 FD->setHasImplicitReturnZero(true);
12225 else {
12226 Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
12227 SourceRange RTRange = FD->getReturnTypeSourceRange();
12228 if (RTRange.isValid())
12229 Diag(RTRange.getBegin(), diag::note_main_change_return_type)
12230 << FixItHint::CreateReplacement(RTRange, "int");
12232 } else {
12233 // In C and C++, main magically returns 0 if you fall off the end;
12234 // set the flag which tells us that.
12235 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
12237 // All the standards say that main() should return 'int'.
12238 if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
12239 FD->setHasImplicitReturnZero(true);
12240 else {
12241 // Otherwise, this is just a flat-out error.
12242 SourceRange RTRange = FD->getReturnTypeSourceRange();
12243 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
12244 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
12245 : FixItHint());
12246 FD->setInvalidDecl(true);
12250 // Treat protoless main() as nullary.
12251 if (isa<FunctionNoProtoType>(FT)) return;
12253 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
12254 unsigned nparams = FTP->getNumParams();
12255 assert(FD->getNumParams() == nparams);
12257 bool HasExtraParameters = (nparams > 3);
12259 if (FTP->isVariadic()) {
12260 Diag(FD->getLocation(), diag::ext_variadic_main);
12261 // FIXME: if we had information about the location of the ellipsis, we
12262 // could add a FixIt hint to remove it as a parameter.
12265 // Darwin passes an undocumented fourth argument of type char**. If
12266 // other platforms start sprouting these, the logic below will start
12267 // getting shifty.
12268 if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
12269 HasExtraParameters = false;
12271 if (HasExtraParameters) {
12272 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
12273 FD->setInvalidDecl(true);
12274 nparams = 3;
12277 // FIXME: a lot of the following diagnostics would be improved
12278 // if we had some location information about types.
12280 QualType CharPP =
12281 Context.getPointerType(Context.getPointerType(Context.CharTy));
12282 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
12284 for (unsigned i = 0; i < nparams; ++i) {
12285 QualType AT = FTP->getParamType(i);
12287 bool mismatch = true;
12289 if (Context.hasSameUnqualifiedType(AT, Expected[i]))
12290 mismatch = false;
12291 else if (Expected[i] == CharPP) {
12292 // As an extension, the following forms are okay:
12293 // char const **
12294 // char const * const *
12295 // char * const *
12297 QualifierCollector qs;
12298 const PointerType* PT;
12299 if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
12300 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
12301 Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
12302 Context.CharTy)) {
12303 qs.removeConst();
12304 mismatch = !qs.empty();
12308 if (mismatch) {
12309 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
12310 // TODO: suggest replacing given type with expected type
12311 FD->setInvalidDecl(true);
12315 if (nparams == 1 && !FD->isInvalidDecl()) {
12316 Diag(FD->getLocation(), diag::warn_main_one_arg);
12319 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
12320 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
12321 FD->setInvalidDecl();
12325 static bool isDefaultStdCall(FunctionDecl *FD, Sema &S) {
12327 // Default calling convention for main and wmain is __cdecl
12328 if (FD->getName() == "main" || FD->getName() == "wmain")
12329 return false;
12331 // Default calling convention for MinGW is __cdecl
12332 const llvm::Triple &T = S.Context.getTargetInfo().getTriple();
12333 if (T.isWindowsGNUEnvironment())
12334 return false;
12336 // Default calling convention for WinMain, wWinMain and DllMain
12337 // is __stdcall on 32 bit Windows
12338 if (T.isOSWindows() && T.getArch() == llvm::Triple::x86)
12339 return true;
12341 return false;
12344 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
12345 QualType T = FD->getType();
12346 assert(T->isFunctionType() && "function decl is not of function type");
12347 const FunctionType *FT = T->castAs<FunctionType>();
12349 // Set an implicit return of 'zero' if the function can return some integral,
12350 // enumeration, pointer or nullptr type.
12351 if (FT->getReturnType()->isIntegralOrEnumerationType() ||
12352 FT->getReturnType()->isAnyPointerType() ||
12353 FT->getReturnType()->isNullPtrType())
12354 // DllMain is exempt because a return value of zero means it failed.
12355 if (FD->getName() != "DllMain")
12356 FD->setHasImplicitReturnZero(true);
12358 // Explicity specified calling conventions are applied to MSVC entry points
12359 if (!hasExplicitCallingConv(T)) {
12360 if (isDefaultStdCall(FD, *this)) {
12361 if (FT->getCallConv() != CC_X86StdCall) {
12362 FT = Context.adjustFunctionType(
12363 FT, FT->getExtInfo().withCallingConv(CC_X86StdCall));
12364 FD->setType(QualType(FT, 0));
12366 } else if (FT->getCallConv() != CC_C) {
12367 FT = Context.adjustFunctionType(FT,
12368 FT->getExtInfo().withCallingConv(CC_C));
12369 FD->setType(QualType(FT, 0));
12373 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
12374 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
12375 FD->setInvalidDecl();
12379 void Sema::ActOnHLSLTopLevelFunction(FunctionDecl *FD) {
12380 auto &TargetInfo = getASTContext().getTargetInfo();
12382 if (FD->getName() != TargetInfo.getTargetOpts().HLSLEntry)
12383 return;
12385 StringRef Env = TargetInfo.getTriple().getEnvironmentName();
12386 HLSLShaderAttr::ShaderType ShaderType;
12387 if (HLSLShaderAttr::ConvertStrToShaderType(Env, ShaderType)) {
12388 if (const auto *Shader = FD->getAttr<HLSLShaderAttr>()) {
12389 // The entry point is already annotated - check that it matches the
12390 // triple.
12391 if (Shader->getType() != ShaderType) {
12392 Diag(Shader->getLocation(), diag::err_hlsl_entry_shader_attr_mismatch)
12393 << Shader;
12394 FD->setInvalidDecl();
12396 } else {
12397 // Implicitly add the shader attribute if the entry function isn't
12398 // explicitly annotated.
12399 FD->addAttr(HLSLShaderAttr::CreateImplicit(Context, ShaderType,
12400 FD->getBeginLoc()));
12402 } else {
12403 switch (TargetInfo.getTriple().getEnvironment()) {
12404 case llvm::Triple::UnknownEnvironment:
12405 case llvm::Triple::Library:
12406 break;
12407 default:
12408 llvm_unreachable("Unhandled environment in triple");
12413 void Sema::CheckHLSLEntryPoint(FunctionDecl *FD) {
12414 const auto *ShaderAttr = FD->getAttr<HLSLShaderAttr>();
12415 assert(ShaderAttr && "Entry point has no shader attribute");
12416 HLSLShaderAttr::ShaderType ST = ShaderAttr->getType();
12418 switch (ST) {
12419 case HLSLShaderAttr::Pixel:
12420 case HLSLShaderAttr::Vertex:
12421 case HLSLShaderAttr::Geometry:
12422 case HLSLShaderAttr::Hull:
12423 case HLSLShaderAttr::Domain:
12424 case HLSLShaderAttr::RayGeneration:
12425 case HLSLShaderAttr::Intersection:
12426 case HLSLShaderAttr::AnyHit:
12427 case HLSLShaderAttr::ClosestHit:
12428 case HLSLShaderAttr::Miss:
12429 case HLSLShaderAttr::Callable:
12430 if (const auto *NT = FD->getAttr<HLSLNumThreadsAttr>()) {
12431 DiagnoseHLSLAttrStageMismatch(NT, ST,
12432 {HLSLShaderAttr::Compute,
12433 HLSLShaderAttr::Amplification,
12434 HLSLShaderAttr::Mesh});
12435 FD->setInvalidDecl();
12437 break;
12439 case HLSLShaderAttr::Compute:
12440 case HLSLShaderAttr::Amplification:
12441 case HLSLShaderAttr::Mesh:
12442 if (!FD->hasAttr<HLSLNumThreadsAttr>()) {
12443 Diag(FD->getLocation(), diag::err_hlsl_missing_numthreads)
12444 << HLSLShaderAttr::ConvertShaderTypeToStr(ST);
12445 FD->setInvalidDecl();
12447 break;
12450 for (ParmVarDecl *Param : FD->parameters()) {
12451 if (const auto *AnnotationAttr = Param->getAttr<HLSLAnnotationAttr>()) {
12452 CheckHLSLSemanticAnnotation(FD, Param, AnnotationAttr);
12453 } else {
12454 // FIXME: Handle struct parameters where annotations are on struct fields.
12455 // See: https://github.com/llvm/llvm-project/issues/57875
12456 Diag(FD->getLocation(), diag::err_hlsl_missing_semantic_annotation);
12457 Diag(Param->getLocation(), diag::note_previous_decl) << Param;
12458 FD->setInvalidDecl();
12461 // FIXME: Verify return type semantic annotation.
12464 void Sema::CheckHLSLSemanticAnnotation(
12465 FunctionDecl *EntryPoint, const Decl *Param,
12466 const HLSLAnnotationAttr *AnnotationAttr) {
12467 auto *ShaderAttr = EntryPoint->getAttr<HLSLShaderAttr>();
12468 assert(ShaderAttr && "Entry point has no shader attribute");
12469 HLSLShaderAttr::ShaderType ST = ShaderAttr->getType();
12471 switch (AnnotationAttr->getKind()) {
12472 case attr::HLSLSV_DispatchThreadID:
12473 case attr::HLSLSV_GroupIndex:
12474 if (ST == HLSLShaderAttr::Compute)
12475 return;
12476 DiagnoseHLSLAttrStageMismatch(AnnotationAttr, ST,
12477 {HLSLShaderAttr::Compute});
12478 break;
12479 default:
12480 llvm_unreachable("Unknown HLSLAnnotationAttr");
12484 void Sema::DiagnoseHLSLAttrStageMismatch(
12485 const Attr *A, HLSLShaderAttr::ShaderType Stage,
12486 std::initializer_list<HLSLShaderAttr::ShaderType> AllowedStages) {
12487 SmallVector<StringRef, 8> StageStrings;
12488 llvm::transform(AllowedStages, std::back_inserter(StageStrings),
12489 [](HLSLShaderAttr::ShaderType ST) {
12490 return StringRef(
12491 HLSLShaderAttr::ConvertShaderTypeToStr(ST));
12493 Diag(A->getLoc(), diag::err_hlsl_attr_unsupported_in_stage)
12494 << A << HLSLShaderAttr::ConvertShaderTypeToStr(Stage)
12495 << (AllowedStages.size() != 1) << join(StageStrings, ", ");
12498 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
12499 // FIXME: Need strict checking. In C89, we need to check for
12500 // any assignment, increment, decrement, function-calls, or
12501 // commas outside of a sizeof. In C99, it's the same list,
12502 // except that the aforementioned are allowed in unevaluated
12503 // expressions. Everything else falls under the
12504 // "may accept other forms of constant expressions" exception.
12506 // Regular C++ code will not end up here (exceptions: language extensions,
12507 // OpenCL C++ etc), so the constant expression rules there don't matter.
12508 if (Init->isValueDependent()) {
12509 assert(Init->containsErrors() &&
12510 "Dependent code should only occur in error-recovery path.");
12511 return true;
12513 const Expr *Culprit;
12514 if (Init->isConstantInitializer(Context, false, &Culprit))
12515 return false;
12516 Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
12517 << Culprit->getSourceRange();
12518 return true;
12521 namespace {
12522 // Visits an initialization expression to see if OrigDecl is evaluated in
12523 // its own initialization and throws a warning if it does.
12524 class SelfReferenceChecker
12525 : public EvaluatedExprVisitor<SelfReferenceChecker> {
12526 Sema &S;
12527 Decl *OrigDecl;
12528 bool isRecordType;
12529 bool isPODType;
12530 bool isReferenceType;
12532 bool isInitList;
12533 llvm::SmallVector<unsigned, 4> InitFieldIndex;
12535 public:
12536 typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
12538 SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
12539 S(S), OrigDecl(OrigDecl) {
12540 isPODType = false;
12541 isRecordType = false;
12542 isReferenceType = false;
12543 isInitList = false;
12544 if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
12545 isPODType = VD->getType().isPODType(S.Context);
12546 isRecordType = VD->getType()->isRecordType();
12547 isReferenceType = VD->getType()->isReferenceType();
12551 // For most expressions, just call the visitor. For initializer lists,
12552 // track the index of the field being initialized since fields are
12553 // initialized in order allowing use of previously initialized fields.
12554 void CheckExpr(Expr *E) {
12555 InitListExpr *InitList = dyn_cast<InitListExpr>(E);
12556 if (!InitList) {
12557 Visit(E);
12558 return;
12561 // Track and increment the index here.
12562 isInitList = true;
12563 InitFieldIndex.push_back(0);
12564 for (auto *Child : InitList->children()) {
12565 CheckExpr(cast<Expr>(Child));
12566 ++InitFieldIndex.back();
12568 InitFieldIndex.pop_back();
12571 // Returns true if MemberExpr is checked and no further checking is needed.
12572 // Returns false if additional checking is required.
12573 bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
12574 llvm::SmallVector<FieldDecl*, 4> Fields;
12575 Expr *Base = E;
12576 bool ReferenceField = false;
12578 // Get the field members used.
12579 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
12580 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
12581 if (!FD)
12582 return false;
12583 Fields.push_back(FD);
12584 if (FD->getType()->isReferenceType())
12585 ReferenceField = true;
12586 Base = ME->getBase()->IgnoreParenImpCasts();
12589 // Keep checking only if the base Decl is the same.
12590 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
12591 if (!DRE || DRE->getDecl() != OrigDecl)
12592 return false;
12594 // A reference field can be bound to an unininitialized field.
12595 if (CheckReference && !ReferenceField)
12596 return true;
12598 // Convert FieldDecls to their index number.
12599 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
12600 for (const FieldDecl *I : llvm::reverse(Fields))
12601 UsedFieldIndex.push_back(I->getFieldIndex());
12603 // See if a warning is needed by checking the first difference in index
12604 // numbers. If field being used has index less than the field being
12605 // initialized, then the use is safe.
12606 for (auto UsedIter = UsedFieldIndex.begin(),
12607 UsedEnd = UsedFieldIndex.end(),
12608 OrigIter = InitFieldIndex.begin(),
12609 OrigEnd = InitFieldIndex.end();
12610 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
12611 if (*UsedIter < *OrigIter)
12612 return true;
12613 if (*UsedIter > *OrigIter)
12614 break;
12617 // TODO: Add a different warning which will print the field names.
12618 HandleDeclRefExpr(DRE);
12619 return true;
12622 // For most expressions, the cast is directly above the DeclRefExpr.
12623 // For conditional operators, the cast can be outside the conditional
12624 // operator if both expressions are DeclRefExpr's.
12625 void HandleValue(Expr *E) {
12626 E = E->IgnoreParens();
12627 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
12628 HandleDeclRefExpr(DRE);
12629 return;
12632 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
12633 Visit(CO->getCond());
12634 HandleValue(CO->getTrueExpr());
12635 HandleValue(CO->getFalseExpr());
12636 return;
12639 if (BinaryConditionalOperator *BCO =
12640 dyn_cast<BinaryConditionalOperator>(E)) {
12641 Visit(BCO->getCond());
12642 HandleValue(BCO->getFalseExpr());
12643 return;
12646 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
12647 HandleValue(OVE->getSourceExpr());
12648 return;
12651 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
12652 if (BO->getOpcode() == BO_Comma) {
12653 Visit(BO->getLHS());
12654 HandleValue(BO->getRHS());
12655 return;
12659 if (isa<MemberExpr>(E)) {
12660 if (isInitList) {
12661 if (CheckInitListMemberExpr(cast<MemberExpr>(E),
12662 false /*CheckReference*/))
12663 return;
12666 Expr *Base = E->IgnoreParenImpCasts();
12667 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
12668 // Check for static member variables and don't warn on them.
12669 if (!isa<FieldDecl>(ME->getMemberDecl()))
12670 return;
12671 Base = ME->getBase()->IgnoreParenImpCasts();
12673 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
12674 HandleDeclRefExpr(DRE);
12675 return;
12678 Visit(E);
12681 // Reference types not handled in HandleValue are handled here since all
12682 // uses of references are bad, not just r-value uses.
12683 void VisitDeclRefExpr(DeclRefExpr *E) {
12684 if (isReferenceType)
12685 HandleDeclRefExpr(E);
12688 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
12689 if (E->getCastKind() == CK_LValueToRValue) {
12690 HandleValue(E->getSubExpr());
12691 return;
12694 Inherited::VisitImplicitCastExpr(E);
12697 void VisitMemberExpr(MemberExpr *E) {
12698 if (isInitList) {
12699 if (CheckInitListMemberExpr(E, true /*CheckReference*/))
12700 return;
12703 // Don't warn on arrays since they can be treated as pointers.
12704 if (E->getType()->canDecayToPointerType()) return;
12706 // Warn when a non-static method call is followed by non-static member
12707 // field accesses, which is followed by a DeclRefExpr.
12708 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
12709 bool Warn = (MD && !MD->isStatic());
12710 Expr *Base = E->getBase()->IgnoreParenImpCasts();
12711 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
12712 if (!isa<FieldDecl>(ME->getMemberDecl()))
12713 Warn = false;
12714 Base = ME->getBase()->IgnoreParenImpCasts();
12717 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
12718 if (Warn)
12719 HandleDeclRefExpr(DRE);
12720 return;
12723 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
12724 // Visit that expression.
12725 Visit(Base);
12728 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
12729 Expr *Callee = E->getCallee();
12731 if (isa<UnresolvedLookupExpr>(Callee))
12732 return Inherited::VisitCXXOperatorCallExpr(E);
12734 Visit(Callee);
12735 for (auto Arg: E->arguments())
12736 HandleValue(Arg->IgnoreParenImpCasts());
12739 void VisitUnaryOperator(UnaryOperator *E) {
12740 // For POD record types, addresses of its own members are well-defined.
12741 if (E->getOpcode() == UO_AddrOf && isRecordType &&
12742 isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
12743 if (!isPODType)
12744 HandleValue(E->getSubExpr());
12745 return;
12748 if (E->isIncrementDecrementOp()) {
12749 HandleValue(E->getSubExpr());
12750 return;
12753 Inherited::VisitUnaryOperator(E);
12756 void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
12758 void VisitCXXConstructExpr(CXXConstructExpr *E) {
12759 if (E->getConstructor()->isCopyConstructor()) {
12760 Expr *ArgExpr = E->getArg(0);
12761 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
12762 if (ILE->getNumInits() == 1)
12763 ArgExpr = ILE->getInit(0);
12764 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
12765 if (ICE->getCastKind() == CK_NoOp)
12766 ArgExpr = ICE->getSubExpr();
12767 HandleValue(ArgExpr);
12768 return;
12770 Inherited::VisitCXXConstructExpr(E);
12773 void VisitCallExpr(CallExpr *E) {
12774 // Treat std::move as a use.
12775 if (E->isCallToStdMove()) {
12776 HandleValue(E->getArg(0));
12777 return;
12780 Inherited::VisitCallExpr(E);
12783 void VisitBinaryOperator(BinaryOperator *E) {
12784 if (E->isCompoundAssignmentOp()) {
12785 HandleValue(E->getLHS());
12786 Visit(E->getRHS());
12787 return;
12790 Inherited::VisitBinaryOperator(E);
12793 // A custom visitor for BinaryConditionalOperator is needed because the
12794 // regular visitor would check the condition and true expression separately
12795 // but both point to the same place giving duplicate diagnostics.
12796 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
12797 Visit(E->getCond());
12798 Visit(E->getFalseExpr());
12801 void HandleDeclRefExpr(DeclRefExpr *DRE) {
12802 Decl* ReferenceDecl = DRE->getDecl();
12803 if (OrigDecl != ReferenceDecl) return;
12804 unsigned diag;
12805 if (isReferenceType) {
12806 diag = diag::warn_uninit_self_reference_in_reference_init;
12807 } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
12808 diag = diag::warn_static_self_reference_in_init;
12809 } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
12810 isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
12811 DRE->getDecl()->getType()->isRecordType()) {
12812 diag = diag::warn_uninit_self_reference_in_init;
12813 } else {
12814 // Local variables will be handled by the CFG analysis.
12815 return;
12818 S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
12819 S.PDiag(diag)
12820 << DRE->getDecl() << OrigDecl->getLocation()
12821 << DRE->getSourceRange());
12825 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
12826 static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
12827 bool DirectInit) {
12828 // Parameters arguments are occassionially constructed with itself,
12829 // for instance, in recursive functions. Skip them.
12830 if (isa<ParmVarDecl>(OrigDecl))
12831 return;
12833 E = E->IgnoreParens();
12835 // Skip checking T a = a where T is not a record or reference type.
12836 // Doing so is a way to silence uninitialized warnings.
12837 if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
12838 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
12839 if (ICE->getCastKind() == CK_LValueToRValue)
12840 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
12841 if (DRE->getDecl() == OrigDecl)
12842 return;
12844 SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
12846 } // end anonymous namespace
12848 namespace {
12849 // Simple wrapper to add the name of a variable or (if no variable is
12850 // available) a DeclarationName into a diagnostic.
12851 struct VarDeclOrName {
12852 VarDecl *VDecl;
12853 DeclarationName Name;
12855 friend const Sema::SemaDiagnosticBuilder &
12856 operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
12857 return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
12860 } // end anonymous namespace
12862 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
12863 DeclarationName Name, QualType Type,
12864 TypeSourceInfo *TSI,
12865 SourceRange Range, bool DirectInit,
12866 Expr *Init) {
12867 bool IsInitCapture = !VDecl;
12868 assert((!VDecl || !VDecl->isInitCapture()) &&
12869 "init captures are expected to be deduced prior to initialization");
12871 VarDeclOrName VN{VDecl, Name};
12873 DeducedType *Deduced = Type->getContainedDeducedType();
12874 assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type");
12876 // Diagnose auto array declarations in C23, unless it's a supported extension.
12877 if (getLangOpts().C23 && Type->isArrayType() &&
12878 !isa_and_present<StringLiteral, InitListExpr>(Init)) {
12879 Diag(Range.getBegin(), diag::err_auto_not_allowed)
12880 << (int)Deduced->getContainedAutoType()->getKeyword()
12881 << /*in array decl*/ 23 << Range;
12882 return QualType();
12885 // C++11 [dcl.spec.auto]p3
12886 if (!Init) {
12887 assert(VDecl && "no init for init capture deduction?");
12889 // Except for class argument deduction, and then for an initializing
12890 // declaration only, i.e. no static at class scope or extern.
12891 if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
12892 VDecl->hasExternalStorage() ||
12893 VDecl->isStaticDataMember()) {
12894 Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
12895 << VDecl->getDeclName() << Type;
12896 return QualType();
12900 ArrayRef<Expr*> DeduceInits;
12901 if (Init)
12902 DeduceInits = Init;
12904 auto *PL = dyn_cast_if_present<ParenListExpr>(Init);
12905 if (DirectInit && PL)
12906 DeduceInits = PL->exprs();
12908 if (isa<DeducedTemplateSpecializationType>(Deduced)) {
12909 assert(VDecl && "non-auto type for init capture deduction?");
12910 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
12911 InitializationKind Kind = InitializationKind::CreateForInit(
12912 VDecl->getLocation(), DirectInit, Init);
12913 // FIXME: Initialization should not be taking a mutable list of inits.
12914 SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
12915 return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
12916 InitsCopy, PL);
12919 if (DirectInit) {
12920 if (auto *IL = dyn_cast<InitListExpr>(Init))
12921 DeduceInits = IL->inits();
12924 // Deduction only works if we have exactly one source expression.
12925 if (DeduceInits.empty()) {
12926 // It isn't possible to write this directly, but it is possible to
12927 // end up in this situation with "auto x(some_pack...);"
12928 Diag(Init->getBeginLoc(), IsInitCapture
12929 ? diag::err_init_capture_no_expression
12930 : diag::err_auto_var_init_no_expression)
12931 << VN << Type << Range;
12932 return QualType();
12935 if (DeduceInits.size() > 1) {
12936 Diag(DeduceInits[1]->getBeginLoc(),
12937 IsInitCapture ? diag::err_init_capture_multiple_expressions
12938 : diag::err_auto_var_init_multiple_expressions)
12939 << VN << Type << Range;
12940 return QualType();
12943 Expr *DeduceInit = DeduceInits[0];
12944 if (DirectInit && isa<InitListExpr>(DeduceInit)) {
12945 Diag(Init->getBeginLoc(), IsInitCapture
12946 ? diag::err_init_capture_paren_braces
12947 : diag::err_auto_var_init_paren_braces)
12948 << isa<InitListExpr>(Init) << VN << Type << Range;
12949 return QualType();
12952 // Expressions default to 'id' when we're in a debugger.
12953 bool DefaultedAnyToId = false;
12954 if (getLangOpts().DebuggerCastResultToId &&
12955 Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
12956 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
12957 if (Result.isInvalid()) {
12958 return QualType();
12960 Init = Result.get();
12961 DefaultedAnyToId = true;
12964 // C++ [dcl.decomp]p1:
12965 // If the assignment-expression [...] has array type A and no ref-qualifier
12966 // is present, e has type cv A
12967 if (VDecl && isa<DecompositionDecl>(VDecl) &&
12968 Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
12969 DeduceInit->getType()->isConstantArrayType())
12970 return Context.getQualifiedType(DeduceInit->getType(),
12971 Type.getQualifiers());
12973 QualType DeducedType;
12974 TemplateDeductionInfo Info(DeduceInit->getExprLoc());
12975 TemplateDeductionResult Result =
12976 DeduceAutoType(TSI->getTypeLoc(), DeduceInit, DeducedType, Info);
12977 if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed) {
12978 if (!IsInitCapture)
12979 DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
12980 else if (isa<InitListExpr>(Init))
12981 Diag(Range.getBegin(),
12982 diag::err_init_capture_deduction_failure_from_init_list)
12983 << VN
12984 << (DeduceInit->getType().isNull() ? TSI->getType()
12985 : DeduceInit->getType())
12986 << DeduceInit->getSourceRange();
12987 else
12988 Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
12989 << VN << TSI->getType()
12990 << (DeduceInit->getType().isNull() ? TSI->getType()
12991 : DeduceInit->getType())
12992 << DeduceInit->getSourceRange();
12995 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
12996 // 'id' instead of a specific object type prevents most of our usual
12997 // checks.
12998 // We only want to warn outside of template instantiations, though:
12999 // inside a template, the 'id' could have come from a parameter.
13000 if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
13001 !DeducedType.isNull() && DeducedType->isObjCIdType()) {
13002 SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
13003 Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
13006 return DeducedType;
13009 bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
13010 Expr *Init) {
13011 assert(!Init || !Init->containsErrors());
13012 QualType DeducedType = deduceVarTypeFromInitializer(
13013 VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
13014 VDecl->getSourceRange(), DirectInit, Init);
13015 if (DeducedType.isNull()) {
13016 VDecl->setInvalidDecl();
13017 return true;
13020 VDecl->setType(DeducedType);
13021 assert(VDecl->isLinkageValid());
13023 // In ARC, infer lifetime.
13024 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
13025 VDecl->setInvalidDecl();
13027 if (getLangOpts().OpenCL)
13028 deduceOpenCLAddressSpace(VDecl);
13030 // If this is a redeclaration, check that the type we just deduced matches
13031 // the previously declared type.
13032 if (VarDecl *Old = VDecl->getPreviousDecl()) {
13033 // We never need to merge the type, because we cannot form an incomplete
13034 // array of auto, nor deduce such a type.
13035 MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
13038 // Check the deduced type is valid for a variable declaration.
13039 CheckVariableDeclarationType(VDecl);
13040 return VDecl->isInvalidDecl();
13043 void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init,
13044 SourceLocation Loc) {
13045 if (auto *EWC = dyn_cast<ExprWithCleanups>(Init))
13046 Init = EWC->getSubExpr();
13048 if (auto *CE = dyn_cast<ConstantExpr>(Init))
13049 Init = CE->getSubExpr();
13051 QualType InitType = Init->getType();
13052 assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13053 InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&
13054 "shouldn't be called if type doesn't have a non-trivial C struct");
13055 if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
13056 for (auto *I : ILE->inits()) {
13057 if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() &&
13058 !I->getType().hasNonTrivialToPrimitiveCopyCUnion())
13059 continue;
13060 SourceLocation SL = I->getExprLoc();
13061 checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc);
13063 return;
13066 if (isa<ImplicitValueInitExpr>(Init)) {
13067 if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
13068 checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject,
13069 NTCUK_Init);
13070 } else {
13071 // Assume all other explicit initializers involving copying some existing
13072 // object.
13073 // TODO: ignore any explicit initializers where we can guarantee
13074 // copy-elision.
13075 if (InitType.hasNonTrivialToPrimitiveCopyCUnion())
13076 checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy);
13080 namespace {
13082 bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) {
13083 // Ignore unavailable fields. A field can be marked as unavailable explicitly
13084 // in the source code or implicitly by the compiler if it is in a union
13085 // defined in a system header and has non-trivial ObjC ownership
13086 // qualifications. We don't want those fields to participate in determining
13087 // whether the containing union is non-trivial.
13088 return FD->hasAttr<UnavailableAttr>();
13091 struct DiagNonTrivalCUnionDefaultInitializeVisitor
13092 : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
13093 void> {
13094 using Super =
13095 DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
13096 void>;
13098 DiagNonTrivalCUnionDefaultInitializeVisitor(
13099 QualType OrigTy, SourceLocation OrigLoc,
13100 Sema::NonTrivialCUnionContext UseContext, Sema &S)
13101 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
13103 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT,
13104 const FieldDecl *FD, bool InNonTrivialUnion) {
13105 if (const auto *AT = S.Context.getAsArrayType(QT))
13106 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
13107 InNonTrivialUnion);
13108 return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion);
13111 void visitARCStrong(QualType QT, const FieldDecl *FD,
13112 bool InNonTrivialUnion) {
13113 if (InNonTrivialUnion)
13114 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13115 << 1 << 0 << QT << FD->getName();
13118 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13119 if (InNonTrivialUnion)
13120 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13121 << 1 << 0 << QT << FD->getName();
13124 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13125 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
13126 if (RD->isUnion()) {
13127 if (OrigLoc.isValid()) {
13128 bool IsUnion = false;
13129 if (auto *OrigRD = OrigTy->getAsRecordDecl())
13130 IsUnion = OrigRD->isUnion();
13131 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
13132 << 0 << OrigTy << IsUnion << UseContext;
13133 // Reset OrigLoc so that this diagnostic is emitted only once.
13134 OrigLoc = SourceLocation();
13136 InNonTrivialUnion = true;
13139 if (InNonTrivialUnion)
13140 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
13141 << 0 << 0 << QT.getUnqualifiedType() << "";
13143 for (const FieldDecl *FD : RD->fields())
13144 if (!shouldIgnoreForRecordTriviality(FD))
13145 asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
13148 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
13150 // The non-trivial C union type or the struct/union type that contains a
13151 // non-trivial C union.
13152 QualType OrigTy;
13153 SourceLocation OrigLoc;
13154 Sema::NonTrivialCUnionContext UseContext;
13155 Sema &S;
13158 struct DiagNonTrivalCUnionDestructedTypeVisitor
13159 : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> {
13160 using Super =
13161 DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>;
13163 DiagNonTrivalCUnionDestructedTypeVisitor(
13164 QualType OrigTy, SourceLocation OrigLoc,
13165 Sema::NonTrivialCUnionContext UseContext, Sema &S)
13166 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
13168 void visitWithKind(QualType::DestructionKind DK, QualType QT,
13169 const FieldDecl *FD, bool InNonTrivialUnion) {
13170 if (const auto *AT = S.Context.getAsArrayType(QT))
13171 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
13172 InNonTrivialUnion);
13173 return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion);
13176 void visitARCStrong(QualType QT, const FieldDecl *FD,
13177 bool InNonTrivialUnion) {
13178 if (InNonTrivialUnion)
13179 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13180 << 1 << 1 << QT << FD->getName();
13183 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13184 if (InNonTrivialUnion)
13185 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13186 << 1 << 1 << QT << FD->getName();
13189 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13190 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
13191 if (RD->isUnion()) {
13192 if (OrigLoc.isValid()) {
13193 bool IsUnion = false;
13194 if (auto *OrigRD = OrigTy->getAsRecordDecl())
13195 IsUnion = OrigRD->isUnion();
13196 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
13197 << 1 << OrigTy << IsUnion << UseContext;
13198 // Reset OrigLoc so that this diagnostic is emitted only once.
13199 OrigLoc = SourceLocation();
13201 InNonTrivialUnion = true;
13204 if (InNonTrivialUnion)
13205 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
13206 << 0 << 1 << QT.getUnqualifiedType() << "";
13208 for (const FieldDecl *FD : RD->fields())
13209 if (!shouldIgnoreForRecordTriviality(FD))
13210 asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
13213 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
13214 void visitCXXDestructor(QualType QT, const FieldDecl *FD,
13215 bool InNonTrivialUnion) {}
13217 // The non-trivial C union type or the struct/union type that contains a
13218 // non-trivial C union.
13219 QualType OrigTy;
13220 SourceLocation OrigLoc;
13221 Sema::NonTrivialCUnionContext UseContext;
13222 Sema &S;
13225 struct DiagNonTrivalCUnionCopyVisitor
13226 : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> {
13227 using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>;
13229 DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc,
13230 Sema::NonTrivialCUnionContext UseContext,
13231 Sema &S)
13232 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
13234 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT,
13235 const FieldDecl *FD, bool InNonTrivialUnion) {
13236 if (const auto *AT = S.Context.getAsArrayType(QT))
13237 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
13238 InNonTrivialUnion);
13239 return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion);
13242 void visitARCStrong(QualType QT, const FieldDecl *FD,
13243 bool InNonTrivialUnion) {
13244 if (InNonTrivialUnion)
13245 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13246 << 1 << 2 << QT << FD->getName();
13249 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13250 if (InNonTrivialUnion)
13251 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13252 << 1 << 2 << QT << FD->getName();
13255 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13256 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
13257 if (RD->isUnion()) {
13258 if (OrigLoc.isValid()) {
13259 bool IsUnion = false;
13260 if (auto *OrigRD = OrigTy->getAsRecordDecl())
13261 IsUnion = OrigRD->isUnion();
13262 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
13263 << 2 << OrigTy << IsUnion << UseContext;
13264 // Reset OrigLoc so that this diagnostic is emitted only once.
13265 OrigLoc = SourceLocation();
13267 InNonTrivialUnion = true;
13270 if (InNonTrivialUnion)
13271 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
13272 << 0 << 2 << QT.getUnqualifiedType() << "";
13274 for (const FieldDecl *FD : RD->fields())
13275 if (!shouldIgnoreForRecordTriviality(FD))
13276 asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
13279 void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT,
13280 const FieldDecl *FD, bool InNonTrivialUnion) {}
13281 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
13282 void visitVolatileTrivial(QualType QT, const FieldDecl *FD,
13283 bool InNonTrivialUnion) {}
13285 // The non-trivial C union type or the struct/union type that contains a
13286 // non-trivial C union.
13287 QualType OrigTy;
13288 SourceLocation OrigLoc;
13289 Sema::NonTrivialCUnionContext UseContext;
13290 Sema &S;
13293 } // namespace
13295 void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
13296 NonTrivialCUnionContext UseContext,
13297 unsigned NonTrivialKind) {
13298 assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13299 QT.hasNonTrivialToPrimitiveDestructCUnion() ||
13300 QT.hasNonTrivialToPrimitiveCopyCUnion()) &&
13301 "shouldn't be called if type doesn't have a non-trivial C union");
13303 if ((NonTrivialKind & NTCUK_Init) &&
13304 QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
13305 DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this)
13306 .visit(QT, nullptr, false);
13307 if ((NonTrivialKind & NTCUK_Destruct) &&
13308 QT.hasNonTrivialToPrimitiveDestructCUnion())
13309 DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this)
13310 .visit(QT, nullptr, false);
13311 if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion())
13312 DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this)
13313 .visit(QT, nullptr, false);
13316 /// AddInitializerToDecl - Adds the initializer Init to the
13317 /// declaration dcl. If DirectInit is true, this is C++ direct
13318 /// initialization rather than copy initialization.
13319 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
13320 // If there is no declaration, there was an error parsing it. Just ignore
13321 // the initializer.
13322 if (!RealDecl || RealDecl->isInvalidDecl()) {
13323 CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
13324 return;
13327 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
13328 // Pure-specifiers are handled in ActOnPureSpecifier.
13329 Diag(Method->getLocation(), diag::err_member_function_initialization)
13330 << Method->getDeclName() << Init->getSourceRange();
13331 Method->setInvalidDecl();
13332 return;
13335 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
13336 if (!VDecl) {
13337 assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
13338 Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
13339 RealDecl->setInvalidDecl();
13340 return;
13343 // WebAssembly tables can't be used to initialise a variable.
13344 if (Init && !Init->getType().isNull() &&
13345 Init->getType()->isWebAssemblyTableType()) {
13346 Diag(Init->getExprLoc(), diag::err_wasm_table_art) << 0;
13347 VDecl->setInvalidDecl();
13348 return;
13351 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
13352 if (VDecl->getType()->isUndeducedType()) {
13353 // Attempt typo correction early so that the type of the init expression can
13354 // be deduced based on the chosen correction if the original init contains a
13355 // TypoExpr.
13356 ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
13357 if (!Res.isUsable()) {
13358 // There are unresolved typos in Init, just drop them.
13359 // FIXME: improve the recovery strategy to preserve the Init.
13360 RealDecl->setInvalidDecl();
13361 return;
13363 if (Res.get()->containsErrors()) {
13364 // Invalidate the decl as we don't know the type for recovery-expr yet.
13365 RealDecl->setInvalidDecl();
13366 VDecl->setInit(Res.get());
13367 return;
13369 Init = Res.get();
13371 if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
13372 return;
13375 // dllimport cannot be used on variable definitions.
13376 if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
13377 Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
13378 VDecl->setInvalidDecl();
13379 return;
13382 // C99 6.7.8p5. If the declaration of an identifier has block scope, and
13383 // the identifier has external or internal linkage, the declaration shall
13384 // have no initializer for the identifier.
13385 // C++14 [dcl.init]p5 is the same restriction for C++.
13386 if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
13387 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
13388 VDecl->setInvalidDecl();
13389 return;
13392 if (!VDecl->getType()->isDependentType()) {
13393 // A definition must end up with a complete type, which means it must be
13394 // complete with the restriction that an array type might be completed by
13395 // the initializer; note that later code assumes this restriction.
13396 QualType BaseDeclType = VDecl->getType();
13397 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
13398 BaseDeclType = Array->getElementType();
13399 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
13400 diag::err_typecheck_decl_incomplete_type)) {
13401 RealDecl->setInvalidDecl();
13402 return;
13405 // The variable can not have an abstract class type.
13406 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
13407 diag::err_abstract_type_in_decl,
13408 AbstractVariableType))
13409 VDecl->setInvalidDecl();
13412 // C++ [module.import/6] external definitions are not permitted in header
13413 // units.
13414 if (getLangOpts().CPlusPlusModules && currentModuleIsHeaderUnit() &&
13415 !VDecl->isInvalidDecl() && VDecl->isThisDeclarationADefinition() &&
13416 VDecl->getFormalLinkage() == Linkage::ExternalLinkage &&
13417 !VDecl->isInline() && !VDecl->isTemplated() &&
13418 !isa<VarTemplateSpecializationDecl>(VDecl)) {
13419 Diag(VDecl->getLocation(), diag::err_extern_def_in_header_unit);
13420 VDecl->setInvalidDecl();
13423 // If adding the initializer will turn this declaration into a definition,
13424 // and we already have a definition for this variable, diagnose or otherwise
13425 // handle the situation.
13426 if (VarDecl *Def = VDecl->getDefinition())
13427 if (Def != VDecl &&
13428 (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
13429 !VDecl->isThisDeclarationADemotedDefinition() &&
13430 checkVarDeclRedefinition(Def, VDecl))
13431 return;
13433 if (getLangOpts().CPlusPlus) {
13434 // C++ [class.static.data]p4
13435 // If a static data member is of const integral or const
13436 // enumeration type, its declaration in the class definition can
13437 // specify a constant-initializer which shall be an integral
13438 // constant expression (5.19). In that case, the member can appear
13439 // in integral constant expressions. The member shall still be
13440 // defined in a namespace scope if it is used in the program and the
13441 // namespace scope definition shall not contain an initializer.
13443 // We already performed a redefinition check above, but for static
13444 // data members we also need to check whether there was an in-class
13445 // declaration with an initializer.
13446 if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
13447 Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
13448 << VDecl->getDeclName();
13449 Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
13450 diag::note_previous_initializer)
13451 << 0;
13452 return;
13455 if (VDecl->hasLocalStorage())
13456 setFunctionHasBranchProtectedScope();
13458 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
13459 VDecl->setInvalidDecl();
13460 return;
13464 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
13465 // a kernel function cannot be initialized."
13466 if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
13467 Diag(VDecl->getLocation(), diag::err_local_cant_init);
13468 VDecl->setInvalidDecl();
13469 return;
13472 // The LoaderUninitialized attribute acts as a definition (of undef).
13473 if (VDecl->hasAttr<LoaderUninitializedAttr>()) {
13474 Diag(VDecl->getLocation(), diag::err_loader_uninitialized_cant_init);
13475 VDecl->setInvalidDecl();
13476 return;
13479 // Get the decls type and save a reference for later, since
13480 // CheckInitializerTypes may change it.
13481 QualType DclT = VDecl->getType(), SavT = DclT;
13483 // Expressions default to 'id' when we're in a debugger
13484 // and we are assigning it to a variable of Objective-C pointer type.
13485 if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
13486 Init->getType() == Context.UnknownAnyTy) {
13487 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
13488 if (Result.isInvalid()) {
13489 VDecl->setInvalidDecl();
13490 return;
13492 Init = Result.get();
13495 // Perform the initialization.
13496 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
13497 bool IsParenListInit = false;
13498 if (!VDecl->isInvalidDecl()) {
13499 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
13500 InitializationKind Kind = InitializationKind::CreateForInit(
13501 VDecl->getLocation(), DirectInit, Init);
13503 MultiExprArg Args = Init;
13504 if (CXXDirectInit)
13505 Args = MultiExprArg(CXXDirectInit->getExprs(),
13506 CXXDirectInit->getNumExprs());
13508 // Try to correct any TypoExprs in the initialization arguments.
13509 for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
13510 ExprResult Res = CorrectDelayedTyposInExpr(
13511 Args[Idx], VDecl, /*RecoverUncorrectedTypos=*/true,
13512 [this, Entity, Kind](Expr *E) {
13513 InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
13514 return Init.Failed() ? ExprError() : E;
13516 if (Res.isInvalid()) {
13517 VDecl->setInvalidDecl();
13518 } else if (Res.get() != Args[Idx]) {
13519 Args[Idx] = Res.get();
13522 if (VDecl->isInvalidDecl())
13523 return;
13525 InitializationSequence InitSeq(*this, Entity, Kind, Args,
13526 /*TopLevelOfInitList=*/false,
13527 /*TreatUnavailableAsInvalid=*/false);
13528 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
13529 if (Result.isInvalid()) {
13530 // If the provided initializer fails to initialize the var decl,
13531 // we attach a recovery expr for better recovery.
13532 auto RecoveryExpr =
13533 CreateRecoveryExpr(Init->getBeginLoc(), Init->getEndLoc(), Args);
13534 if (RecoveryExpr.get())
13535 VDecl->setInit(RecoveryExpr.get());
13536 return;
13539 Init = Result.getAs<Expr>();
13540 IsParenListInit = !InitSeq.steps().empty() &&
13541 InitSeq.step_begin()->Kind ==
13542 InitializationSequence::SK_ParenthesizedListInit;
13543 QualType VDeclType = VDecl->getType();
13544 if (Init && !Init->getType().isNull() &&
13545 !Init->getType()->isDependentType() && !VDeclType->isDependentType() &&
13546 Context.getAsIncompleteArrayType(VDeclType) &&
13547 Context.getAsIncompleteArrayType(Init->getType())) {
13548 // Bail out if it is not possible to deduce array size from the
13549 // initializer.
13550 Diag(VDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
13551 << VDeclType;
13552 VDecl->setInvalidDecl();
13553 return;
13557 // Check for self-references within variable initializers.
13558 // Variables declared within a function/method body (except for references)
13559 // are handled by a dataflow analysis.
13560 // This is undefined behavior in C++, but valid in C.
13561 if (getLangOpts().CPlusPlus)
13562 if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
13563 VDecl->getType()->isReferenceType())
13564 CheckSelfReference(*this, RealDecl, Init, DirectInit);
13566 // If the type changed, it means we had an incomplete type that was
13567 // completed by the initializer. For example:
13568 // int ary[] = { 1, 3, 5 };
13569 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
13570 if (!VDecl->isInvalidDecl() && (DclT != SavT))
13571 VDecl->setType(DclT);
13573 if (!VDecl->isInvalidDecl()) {
13574 checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
13576 if (VDecl->hasAttr<BlocksAttr>())
13577 checkRetainCycles(VDecl, Init);
13579 // It is safe to assign a weak reference into a strong variable.
13580 // Although this code can still have problems:
13581 // id x = self.weakProp;
13582 // id y = self.weakProp;
13583 // we do not warn to warn spuriously when 'x' and 'y' are on separate
13584 // paths through the function. This should be revisited if
13585 // -Wrepeated-use-of-weak is made flow-sensitive.
13586 if (FunctionScopeInfo *FSI = getCurFunction())
13587 if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
13588 VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
13589 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
13590 Init->getBeginLoc()))
13591 FSI->markSafeWeakUse(Init);
13594 // The initialization is usually a full-expression.
13596 // FIXME: If this is a braced initialization of an aggregate, it is not
13597 // an expression, and each individual field initializer is a separate
13598 // full-expression. For instance, in:
13600 // struct Temp { ~Temp(); };
13601 // struct S { S(Temp); };
13602 // struct T { S a, b; } t = { Temp(), Temp() }
13604 // we should destroy the first Temp before constructing the second.
13605 ExprResult Result =
13606 ActOnFinishFullExpr(Init, VDecl->getLocation(),
13607 /*DiscardedValue*/ false, VDecl->isConstexpr());
13608 if (Result.isInvalid()) {
13609 VDecl->setInvalidDecl();
13610 return;
13612 Init = Result.get();
13614 // Attach the initializer to the decl.
13615 VDecl->setInit(Init);
13617 if (VDecl->isLocalVarDecl()) {
13618 // Don't check the initializer if the declaration is malformed.
13619 if (VDecl->isInvalidDecl()) {
13620 // do nothing
13622 // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
13623 // This is true even in C++ for OpenCL.
13624 } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
13625 CheckForConstantInitializer(Init, DclT);
13627 // Otherwise, C++ does not restrict the initializer.
13628 } else if (getLangOpts().CPlusPlus) {
13629 // do nothing
13631 // C99 6.7.8p4: All the expressions in an initializer for an object that has
13632 // static storage duration shall be constant expressions or string literals.
13633 } else if (VDecl->getStorageClass() == SC_Static) {
13634 CheckForConstantInitializer(Init, DclT);
13636 // C89 is stricter than C99 for aggregate initializers.
13637 // C89 6.5.7p3: All the expressions [...] in an initializer list
13638 // for an object that has aggregate or union type shall be
13639 // constant expressions.
13640 } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
13641 isa<InitListExpr>(Init)) {
13642 const Expr *Culprit;
13643 if (!Init->isConstantInitializer(Context, false, &Culprit)) {
13644 Diag(Culprit->getExprLoc(),
13645 diag::ext_aggregate_init_not_constant)
13646 << Culprit->getSourceRange();
13650 if (auto *E = dyn_cast<ExprWithCleanups>(Init))
13651 if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens()))
13652 if (VDecl->hasLocalStorage())
13653 BE->getBlockDecl()->setCanAvoidCopyToHeap();
13654 } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
13655 VDecl->getLexicalDeclContext()->isRecord()) {
13656 // This is an in-class initialization for a static data member, e.g.,
13658 // struct S {
13659 // static const int value = 17;
13660 // };
13662 // C++ [class.mem]p4:
13663 // A member-declarator can contain a constant-initializer only
13664 // if it declares a static member (9.4) of const integral or
13665 // const enumeration type, see 9.4.2.
13667 // C++11 [class.static.data]p3:
13668 // If a non-volatile non-inline const static data member is of integral
13669 // or enumeration type, its declaration in the class definition can
13670 // specify a brace-or-equal-initializer in which every initializer-clause
13671 // that is an assignment-expression is a constant expression. A static
13672 // data member of literal type can be declared in the class definition
13673 // with the constexpr specifier; if so, its declaration shall specify a
13674 // brace-or-equal-initializer in which every initializer-clause that is
13675 // an assignment-expression is a constant expression.
13677 // Do nothing on dependent types.
13678 if (DclT->isDependentType()) {
13680 // Allow any 'static constexpr' members, whether or not they are of literal
13681 // type. We separately check that every constexpr variable is of literal
13682 // type.
13683 } else if (VDecl->isConstexpr()) {
13685 // Require constness.
13686 } else if (!DclT.isConstQualified()) {
13687 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
13688 << Init->getSourceRange();
13689 VDecl->setInvalidDecl();
13691 // We allow integer constant expressions in all cases.
13692 } else if (DclT->isIntegralOrEnumerationType()) {
13693 // Check whether the expression is a constant expression.
13694 SourceLocation Loc;
13695 if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
13696 // In C++11, a non-constexpr const static data member with an
13697 // in-class initializer cannot be volatile.
13698 Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
13699 else if (Init->isValueDependent())
13700 ; // Nothing to check.
13701 else if (Init->isIntegerConstantExpr(Context, &Loc))
13702 ; // Ok, it's an ICE!
13703 else if (Init->getType()->isScopedEnumeralType() &&
13704 Init->isCXX11ConstantExpr(Context))
13705 ; // Ok, it is a scoped-enum constant expression.
13706 else if (Init->isEvaluatable(Context)) {
13707 // If we can constant fold the initializer through heroics, accept it,
13708 // but report this as a use of an extension for -pedantic.
13709 Diag(Loc, diag::ext_in_class_initializer_non_constant)
13710 << Init->getSourceRange();
13711 } else {
13712 // Otherwise, this is some crazy unknown case. Report the issue at the
13713 // location provided by the isIntegerConstantExpr failed check.
13714 Diag(Loc, diag::err_in_class_initializer_non_constant)
13715 << Init->getSourceRange();
13716 VDecl->setInvalidDecl();
13719 // We allow foldable floating-point constants as an extension.
13720 } else if (DclT->isFloatingType()) { // also permits complex, which is ok
13721 // In C++98, this is a GNU extension. In C++11, it is not, but we support
13722 // it anyway and provide a fixit to add the 'constexpr'.
13723 if (getLangOpts().CPlusPlus11) {
13724 Diag(VDecl->getLocation(),
13725 diag::ext_in_class_initializer_float_type_cxx11)
13726 << DclT << Init->getSourceRange();
13727 Diag(VDecl->getBeginLoc(),
13728 diag::note_in_class_initializer_float_type_cxx11)
13729 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
13730 } else {
13731 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
13732 << DclT << Init->getSourceRange();
13734 if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
13735 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
13736 << Init->getSourceRange();
13737 VDecl->setInvalidDecl();
13741 // Suggest adding 'constexpr' in C++11 for literal types.
13742 } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
13743 Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
13744 << DclT << Init->getSourceRange()
13745 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
13746 VDecl->setConstexpr(true);
13748 } else {
13749 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
13750 << DclT << Init->getSourceRange();
13751 VDecl->setInvalidDecl();
13753 } else if (VDecl->isFileVarDecl()) {
13754 // In C, extern is typically used to avoid tentative definitions when
13755 // declaring variables in headers, but adding an intializer makes it a
13756 // definition. This is somewhat confusing, so GCC and Clang both warn on it.
13757 // In C++, extern is often used to give implictly static const variables
13758 // external linkage, so don't warn in that case. If selectany is present,
13759 // this might be header code intended for C and C++ inclusion, so apply the
13760 // C++ rules.
13761 if (VDecl->getStorageClass() == SC_Extern &&
13762 ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
13763 !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
13764 !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
13765 !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
13766 Diag(VDecl->getLocation(), diag::warn_extern_init);
13768 // In Microsoft C++ mode, a const variable defined in namespace scope has
13769 // external linkage by default if the variable is declared with
13770 // __declspec(dllexport).
13771 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
13772 getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() &&
13773 VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition())
13774 VDecl->setStorageClass(SC_Extern);
13776 // C99 6.7.8p4. All file scoped initializers need to be constant.
13777 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
13778 CheckForConstantInitializer(Init, DclT);
13781 QualType InitType = Init->getType();
13782 if (!InitType.isNull() &&
13783 (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13784 InitType.hasNonTrivialToPrimitiveCopyCUnion()))
13785 checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc());
13787 // We will represent direct-initialization similarly to copy-initialization:
13788 // int x(1); -as-> int x = 1;
13789 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
13791 // Clients that want to distinguish between the two forms, can check for
13792 // direct initializer using VarDecl::getInitStyle().
13793 // A major benefit is that clients that don't particularly care about which
13794 // exactly form was it (like the CodeGen) can handle both cases without
13795 // special case code.
13797 // C++ 8.5p11:
13798 // The form of initialization (using parentheses or '=') is generally
13799 // insignificant, but does matter when the entity being initialized has a
13800 // class type.
13801 if (CXXDirectInit) {
13802 assert(DirectInit && "Call-style initializer must be direct init.");
13803 VDecl->setInitStyle(IsParenListInit ? VarDecl::ParenListInit
13804 : VarDecl::CallInit);
13805 } else if (DirectInit) {
13806 // This must be list-initialization. No other way is direct-initialization.
13807 VDecl->setInitStyle(VarDecl::ListInit);
13810 if (LangOpts.OpenMP &&
13811 (LangOpts.OpenMPIsTargetDevice || !LangOpts.OMPTargetTriples.empty()) &&
13812 VDecl->isFileVarDecl())
13813 DeclsToCheckForDeferredDiags.insert(VDecl);
13814 CheckCompleteVariableDeclaration(VDecl);
13817 /// ActOnInitializerError - Given that there was an error parsing an
13818 /// initializer for the given declaration, try to at least re-establish
13819 /// invariants such as whether a variable's type is either dependent or
13820 /// complete.
13821 void Sema::ActOnInitializerError(Decl *D) {
13822 // Our main concern here is re-establishing invariants like "a
13823 // variable's type is either dependent or complete".
13824 if (!D || D->isInvalidDecl()) return;
13826 VarDecl *VD = dyn_cast<VarDecl>(D);
13827 if (!VD) return;
13829 // Bindings are not usable if we can't make sense of the initializer.
13830 if (auto *DD = dyn_cast<DecompositionDecl>(D))
13831 for (auto *BD : DD->bindings())
13832 BD->setInvalidDecl();
13834 // Auto types are meaningless if we can't make sense of the initializer.
13835 if (VD->getType()->isUndeducedType()) {
13836 D->setInvalidDecl();
13837 return;
13840 QualType Ty = VD->getType();
13841 if (Ty->isDependentType()) return;
13843 // Require a complete type.
13844 if (RequireCompleteType(VD->getLocation(),
13845 Context.getBaseElementType(Ty),
13846 diag::err_typecheck_decl_incomplete_type)) {
13847 VD->setInvalidDecl();
13848 return;
13851 // Require a non-abstract type.
13852 if (RequireNonAbstractType(VD->getLocation(), Ty,
13853 diag::err_abstract_type_in_decl,
13854 AbstractVariableType)) {
13855 VD->setInvalidDecl();
13856 return;
13859 // Don't bother complaining about constructors or destructors,
13860 // though.
13863 void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
13864 // If there is no declaration, there was an error parsing it. Just ignore it.
13865 if (!RealDecl)
13866 return;
13868 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
13869 QualType Type = Var->getType();
13871 // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
13872 if (isa<DecompositionDecl>(RealDecl)) {
13873 Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
13874 Var->setInvalidDecl();
13875 return;
13878 if (Type->isUndeducedType() &&
13879 DeduceVariableDeclarationType(Var, false, nullptr))
13880 return;
13882 // C++11 [class.static.data]p3: A static data member can be declared with
13883 // the constexpr specifier; if so, its declaration shall specify
13884 // a brace-or-equal-initializer.
13885 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
13886 // the definition of a variable [...] or the declaration of a static data
13887 // member.
13888 if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
13889 !Var->isThisDeclarationADemotedDefinition()) {
13890 if (Var->isStaticDataMember()) {
13891 // C++1z removes the relevant rule; the in-class declaration is always
13892 // a definition there.
13893 if (!getLangOpts().CPlusPlus17 &&
13894 !Context.getTargetInfo().getCXXABI().isMicrosoft()) {
13895 Diag(Var->getLocation(),
13896 diag::err_constexpr_static_mem_var_requires_init)
13897 << Var;
13898 Var->setInvalidDecl();
13899 return;
13901 } else {
13902 Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
13903 Var->setInvalidDecl();
13904 return;
13908 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
13909 // be initialized.
13910 if (!Var->isInvalidDecl() &&
13911 Var->getType().getAddressSpace() == LangAS::opencl_constant &&
13912 Var->getStorageClass() != SC_Extern && !Var->getInit()) {
13913 bool HasConstExprDefaultConstructor = false;
13914 if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
13915 for (auto *Ctor : RD->ctors()) {
13916 if (Ctor->isConstexpr() && Ctor->getNumParams() == 0 &&
13917 Ctor->getMethodQualifiers().getAddressSpace() ==
13918 LangAS::opencl_constant) {
13919 HasConstExprDefaultConstructor = true;
13923 if (!HasConstExprDefaultConstructor) {
13924 Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
13925 Var->setInvalidDecl();
13926 return;
13930 if (!Var->isInvalidDecl() && RealDecl->hasAttr<LoaderUninitializedAttr>()) {
13931 if (Var->getStorageClass() == SC_Extern) {
13932 Diag(Var->getLocation(), diag::err_loader_uninitialized_extern_decl)
13933 << Var;
13934 Var->setInvalidDecl();
13935 return;
13937 if (RequireCompleteType(Var->getLocation(), Var->getType(),
13938 diag::err_typecheck_decl_incomplete_type)) {
13939 Var->setInvalidDecl();
13940 return;
13942 if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
13943 if (!RD->hasTrivialDefaultConstructor()) {
13944 Diag(Var->getLocation(), diag::err_loader_uninitialized_trivial_ctor);
13945 Var->setInvalidDecl();
13946 return;
13949 // The declaration is unitialized, no need for further checks.
13950 return;
13953 VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition();
13954 if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly &&
13955 Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion())
13956 checkNonTrivialCUnion(Var->getType(), Var->getLocation(),
13957 NTCUC_DefaultInitializedObject, NTCUK_Init);
13960 switch (DefKind) {
13961 case VarDecl::Definition:
13962 if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
13963 break;
13965 // We have an out-of-line definition of a static data member
13966 // that has an in-class initializer, so we type-check this like
13967 // a declaration.
13969 [[fallthrough]];
13971 case VarDecl::DeclarationOnly:
13972 // It's only a declaration.
13974 // Block scope. C99 6.7p7: If an identifier for an object is
13975 // declared with no linkage (C99 6.2.2p6), the type for the
13976 // object shall be complete.
13977 if (!Type->isDependentType() && Var->isLocalVarDecl() &&
13978 !Var->hasLinkage() && !Var->isInvalidDecl() &&
13979 RequireCompleteType(Var->getLocation(), Type,
13980 diag::err_typecheck_decl_incomplete_type))
13981 Var->setInvalidDecl();
13983 // Make sure that the type is not abstract.
13984 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
13985 RequireNonAbstractType(Var->getLocation(), Type,
13986 diag::err_abstract_type_in_decl,
13987 AbstractVariableType))
13988 Var->setInvalidDecl();
13989 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
13990 Var->getStorageClass() == SC_PrivateExtern) {
13991 Diag(Var->getLocation(), diag::warn_private_extern);
13992 Diag(Var->getLocation(), diag::note_private_extern);
13995 if (Context.getTargetInfo().allowDebugInfoForExternalRef() &&
13996 !Var->isInvalidDecl())
13997 ExternalDeclarations.push_back(Var);
13999 return;
14001 case VarDecl::TentativeDefinition:
14002 // File scope. C99 6.9.2p2: A declaration of an identifier for an
14003 // object that has file scope without an initializer, and without a
14004 // storage-class specifier or with the storage-class specifier "static",
14005 // constitutes a tentative definition. Note: A tentative definition with
14006 // external linkage is valid (C99 6.2.2p5).
14007 if (!Var->isInvalidDecl()) {
14008 if (const IncompleteArrayType *ArrayT
14009 = Context.getAsIncompleteArrayType(Type)) {
14010 if (RequireCompleteSizedType(
14011 Var->getLocation(), ArrayT->getElementType(),
14012 diag::err_array_incomplete_or_sizeless_type))
14013 Var->setInvalidDecl();
14014 } else if (Var->getStorageClass() == SC_Static) {
14015 // C99 6.9.2p3: If the declaration of an identifier for an object is
14016 // a tentative definition and has internal linkage (C99 6.2.2p3), the
14017 // declared type shall not be an incomplete type.
14018 // NOTE: code such as the following
14019 // static struct s;
14020 // struct s { int a; };
14021 // is accepted by gcc. Hence here we issue a warning instead of
14022 // an error and we do not invalidate the static declaration.
14023 // NOTE: to avoid multiple warnings, only check the first declaration.
14024 if (Var->isFirstDecl())
14025 RequireCompleteType(Var->getLocation(), Type,
14026 diag::ext_typecheck_decl_incomplete_type);
14030 // Record the tentative definition; we're done.
14031 if (!Var->isInvalidDecl())
14032 TentativeDefinitions.push_back(Var);
14033 return;
14036 // Provide a specific diagnostic for uninitialized variable
14037 // definitions with incomplete array type.
14038 if (Type->isIncompleteArrayType()) {
14039 if (Var->isConstexpr())
14040 Diag(Var->getLocation(), diag::err_constexpr_var_requires_const_init)
14041 << Var;
14042 else
14043 Diag(Var->getLocation(),
14044 diag::err_typecheck_incomplete_array_needs_initializer);
14045 Var->setInvalidDecl();
14046 return;
14049 // Provide a specific diagnostic for uninitialized variable
14050 // definitions with reference type.
14051 if (Type->isReferenceType()) {
14052 Diag(Var->getLocation(), diag::err_reference_var_requires_init)
14053 << Var << SourceRange(Var->getLocation(), Var->getLocation());
14054 return;
14057 // Do not attempt to type-check the default initializer for a
14058 // variable with dependent type.
14059 if (Type->isDependentType())
14060 return;
14062 if (Var->isInvalidDecl())
14063 return;
14065 if (!Var->hasAttr<AliasAttr>()) {
14066 if (RequireCompleteType(Var->getLocation(),
14067 Context.getBaseElementType(Type),
14068 diag::err_typecheck_decl_incomplete_type)) {
14069 Var->setInvalidDecl();
14070 return;
14072 } else {
14073 return;
14076 // The variable can not have an abstract class type.
14077 if (RequireNonAbstractType(Var->getLocation(), Type,
14078 diag::err_abstract_type_in_decl,
14079 AbstractVariableType)) {
14080 Var->setInvalidDecl();
14081 return;
14084 // Check for jumps past the implicit initializer. C++0x
14085 // clarifies that this applies to a "variable with automatic
14086 // storage duration", not a "local variable".
14087 // C++11 [stmt.dcl]p3
14088 // A program that jumps from a point where a variable with automatic
14089 // storage duration is not in scope to a point where it is in scope is
14090 // ill-formed unless the variable has scalar type, class type with a
14091 // trivial default constructor and a trivial destructor, a cv-qualified
14092 // version of one of these types, or an array of one of the preceding
14093 // types and is declared without an initializer.
14094 if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
14095 if (const RecordType *Record
14096 = Context.getBaseElementType(Type)->getAs<RecordType>()) {
14097 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
14098 // Mark the function (if we're in one) for further checking even if the
14099 // looser rules of C++11 do not require such checks, so that we can
14100 // diagnose incompatibilities with C++98.
14101 if (!CXXRecord->isPOD())
14102 setFunctionHasBranchProtectedScope();
14105 // In OpenCL, we can't initialize objects in the __local address space,
14106 // even implicitly, so don't synthesize an implicit initializer.
14107 if (getLangOpts().OpenCL &&
14108 Var->getType().getAddressSpace() == LangAS::opencl_local)
14109 return;
14110 // C++03 [dcl.init]p9:
14111 // If no initializer is specified for an object, and the
14112 // object is of (possibly cv-qualified) non-POD class type (or
14113 // array thereof), the object shall be default-initialized; if
14114 // the object is of const-qualified type, the underlying class
14115 // type shall have a user-declared default
14116 // constructor. Otherwise, if no initializer is specified for
14117 // a non- static object, the object and its subobjects, if
14118 // any, have an indeterminate initial value); if the object
14119 // or any of its subobjects are of const-qualified type, the
14120 // program is ill-formed.
14121 // C++0x [dcl.init]p11:
14122 // If no initializer is specified for an object, the object is
14123 // default-initialized; [...].
14124 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
14125 InitializationKind Kind
14126 = InitializationKind::CreateDefault(Var->getLocation());
14128 InitializationSequence InitSeq(*this, Entity, Kind, std::nullopt);
14129 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, std::nullopt);
14131 if (Init.get()) {
14132 Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
14133 // This is important for template substitution.
14134 Var->setInitStyle(VarDecl::CallInit);
14135 } else if (Init.isInvalid()) {
14136 // If default-init fails, attach a recovery-expr initializer to track
14137 // that initialization was attempted and failed.
14138 auto RecoveryExpr =
14139 CreateRecoveryExpr(Var->getLocation(), Var->getLocation(), {});
14140 if (RecoveryExpr.get())
14141 Var->setInit(RecoveryExpr.get());
14144 CheckCompleteVariableDeclaration(Var);
14148 void Sema::ActOnCXXForRangeDecl(Decl *D) {
14149 // If there is no declaration, there was an error parsing it. Ignore it.
14150 if (!D)
14151 return;
14153 VarDecl *VD = dyn_cast<VarDecl>(D);
14154 if (!VD) {
14155 Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
14156 D->setInvalidDecl();
14157 return;
14160 VD->setCXXForRangeDecl(true);
14162 // for-range-declaration cannot be given a storage class specifier.
14163 int Error = -1;
14164 switch (VD->getStorageClass()) {
14165 case SC_None:
14166 break;
14167 case SC_Extern:
14168 Error = 0;
14169 break;
14170 case SC_Static:
14171 Error = 1;
14172 break;
14173 case SC_PrivateExtern:
14174 Error = 2;
14175 break;
14176 case SC_Auto:
14177 Error = 3;
14178 break;
14179 case SC_Register:
14180 Error = 4;
14181 break;
14184 // for-range-declaration cannot be given a storage class specifier con't.
14185 switch (VD->getTSCSpec()) {
14186 case TSCS_thread_local:
14187 Error = 6;
14188 break;
14189 case TSCS___thread:
14190 case TSCS__Thread_local:
14191 case TSCS_unspecified:
14192 break;
14195 if (Error != -1) {
14196 Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
14197 << VD << Error;
14198 D->setInvalidDecl();
14202 StmtResult Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
14203 IdentifierInfo *Ident,
14204 ParsedAttributes &Attrs) {
14205 // C++1y [stmt.iter]p1:
14206 // A range-based for statement of the form
14207 // for ( for-range-identifier : for-range-initializer ) statement
14208 // is equivalent to
14209 // for ( auto&& for-range-identifier : for-range-initializer ) statement
14210 DeclSpec DS(Attrs.getPool().getFactory());
14212 const char *PrevSpec;
14213 unsigned DiagID;
14214 DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
14215 getPrintingPolicy());
14217 Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::ForInit);
14218 D.SetIdentifier(Ident, IdentLoc);
14219 D.takeAttributes(Attrs);
14221 D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
14222 IdentLoc);
14223 Decl *Var = ActOnDeclarator(S, D);
14224 cast<VarDecl>(Var)->setCXXForRangeDecl(true);
14225 FinalizeDeclaration(Var);
14226 return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
14227 Attrs.Range.getEnd().isValid() ? Attrs.Range.getEnd()
14228 : IdentLoc);
14231 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
14232 if (var->isInvalidDecl()) return;
14234 MaybeAddCUDAConstantAttr(var);
14236 if (getLangOpts().OpenCL) {
14237 // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
14238 // initialiser
14239 if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
14240 !var->hasInit()) {
14241 Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
14242 << 1 /*Init*/;
14243 var->setInvalidDecl();
14244 return;
14248 // In Objective-C, don't allow jumps past the implicit initialization of a
14249 // local retaining variable.
14250 if (getLangOpts().ObjC &&
14251 var->hasLocalStorage()) {
14252 switch (var->getType().getObjCLifetime()) {
14253 case Qualifiers::OCL_None:
14254 case Qualifiers::OCL_ExplicitNone:
14255 case Qualifiers::OCL_Autoreleasing:
14256 break;
14258 case Qualifiers::OCL_Weak:
14259 case Qualifiers::OCL_Strong:
14260 setFunctionHasBranchProtectedScope();
14261 break;
14265 if (var->hasLocalStorage() &&
14266 var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
14267 setFunctionHasBranchProtectedScope();
14269 // Warn about externally-visible variables being defined without a
14270 // prior declaration. We only want to do this for global
14271 // declarations, but we also specifically need to avoid doing it for
14272 // class members because the linkage of an anonymous class can
14273 // change if it's later given a typedef name.
14274 if (var->isThisDeclarationADefinition() &&
14275 var->getDeclContext()->getRedeclContext()->isFileContext() &&
14276 var->isExternallyVisible() && var->hasLinkage() &&
14277 !var->isInline() && !var->getDescribedVarTemplate() &&
14278 var->getStorageClass() != SC_Register &&
14279 !isa<VarTemplatePartialSpecializationDecl>(var) &&
14280 !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
14281 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
14282 var->getLocation())) {
14283 // Find a previous declaration that's not a definition.
14284 VarDecl *prev = var->getPreviousDecl();
14285 while (prev && prev->isThisDeclarationADefinition())
14286 prev = prev->getPreviousDecl();
14288 if (!prev) {
14289 Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
14290 Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
14291 << /* variable */ 0;
14295 // Cache the result of checking for constant initialization.
14296 std::optional<bool> CacheHasConstInit;
14297 const Expr *CacheCulprit = nullptr;
14298 auto checkConstInit = [&]() mutable {
14299 if (!CacheHasConstInit)
14300 CacheHasConstInit = var->getInit()->isConstantInitializer(
14301 Context, var->getType()->isReferenceType(), &CacheCulprit);
14302 return *CacheHasConstInit;
14305 if (var->getTLSKind() == VarDecl::TLS_Static) {
14306 if (var->getType().isDestructedType()) {
14307 // GNU C++98 edits for __thread, [basic.start.term]p3:
14308 // The type of an object with thread storage duration shall not
14309 // have a non-trivial destructor.
14310 Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
14311 if (getLangOpts().CPlusPlus11)
14312 Diag(var->getLocation(), diag::note_use_thread_local);
14313 } else if (getLangOpts().CPlusPlus && var->hasInit()) {
14314 if (!checkConstInit()) {
14315 // GNU C++98 edits for __thread, [basic.start.init]p4:
14316 // An object of thread storage duration shall not require dynamic
14317 // initialization.
14318 // FIXME: Need strict checking here.
14319 Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
14320 << CacheCulprit->getSourceRange();
14321 if (getLangOpts().CPlusPlus11)
14322 Diag(var->getLocation(), diag::note_use_thread_local);
14328 if (!var->getType()->isStructureType() && var->hasInit() &&
14329 isa<InitListExpr>(var->getInit())) {
14330 const auto *ILE = cast<InitListExpr>(var->getInit());
14331 unsigned NumInits = ILE->getNumInits();
14332 if (NumInits > 2)
14333 for (unsigned I = 0; I < NumInits; ++I) {
14334 const auto *Init = ILE->getInit(I);
14335 if (!Init)
14336 break;
14337 const auto *SL = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
14338 if (!SL)
14339 break;
14341 unsigned NumConcat = SL->getNumConcatenated();
14342 // Diagnose missing comma in string array initialization.
14343 // Do not warn when all the elements in the initializer are concatenated
14344 // together. Do not warn for macros too.
14345 if (NumConcat == 2 && !SL->getBeginLoc().isMacroID()) {
14346 bool OnlyOneMissingComma = true;
14347 for (unsigned J = I + 1; J < NumInits; ++J) {
14348 const auto *Init = ILE->getInit(J);
14349 if (!Init)
14350 break;
14351 const auto *SLJ = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
14352 if (!SLJ || SLJ->getNumConcatenated() > 1) {
14353 OnlyOneMissingComma = false;
14354 break;
14358 if (OnlyOneMissingComma) {
14359 SmallVector<FixItHint, 1> Hints;
14360 for (unsigned i = 0; i < NumConcat - 1; ++i)
14361 Hints.push_back(FixItHint::CreateInsertion(
14362 PP.getLocForEndOfToken(SL->getStrTokenLoc(i)), ","));
14364 Diag(SL->getStrTokenLoc(1),
14365 diag::warn_concatenated_literal_array_init)
14366 << Hints;
14367 Diag(SL->getBeginLoc(),
14368 diag::note_concatenated_string_literal_silence);
14370 // In any case, stop now.
14371 break;
14377 QualType type = var->getType();
14379 if (var->hasAttr<BlocksAttr>())
14380 getCurFunction()->addByrefBlockVar(var);
14382 Expr *Init = var->getInit();
14383 bool GlobalStorage = var->hasGlobalStorage();
14384 bool IsGlobal = GlobalStorage && !var->isStaticLocal();
14385 QualType baseType = Context.getBaseElementType(type);
14386 bool HasConstInit = true;
14388 // Check whether the initializer is sufficiently constant.
14389 if (getLangOpts().CPlusPlus && !type->isDependentType() && Init &&
14390 !Init->isValueDependent() &&
14391 (GlobalStorage || var->isConstexpr() ||
14392 var->mightBeUsableInConstantExpressions(Context))) {
14393 // If this variable might have a constant initializer or might be usable in
14394 // constant expressions, check whether or not it actually is now. We can't
14395 // do this lazily, because the result might depend on things that change
14396 // later, such as which constexpr functions happen to be defined.
14397 SmallVector<PartialDiagnosticAt, 8> Notes;
14398 if (!getLangOpts().CPlusPlus11) {
14399 // Prior to C++11, in contexts where a constant initializer is required,
14400 // the set of valid constant initializers is described by syntactic rules
14401 // in [expr.const]p2-6.
14402 // FIXME: Stricter checking for these rules would be useful for constinit /
14403 // -Wglobal-constructors.
14404 HasConstInit = checkConstInit();
14406 // Compute and cache the constant value, and remember that we have a
14407 // constant initializer.
14408 if (HasConstInit) {
14409 (void)var->checkForConstantInitialization(Notes);
14410 Notes.clear();
14411 } else if (CacheCulprit) {
14412 Notes.emplace_back(CacheCulprit->getExprLoc(),
14413 PDiag(diag::note_invalid_subexpr_in_const_expr));
14414 Notes.back().second << CacheCulprit->getSourceRange();
14416 } else {
14417 // Evaluate the initializer to see if it's a constant initializer.
14418 HasConstInit = var->checkForConstantInitialization(Notes);
14421 if (HasConstInit) {
14422 // FIXME: Consider replacing the initializer with a ConstantExpr.
14423 } else if (var->isConstexpr()) {
14424 SourceLocation DiagLoc = var->getLocation();
14425 // If the note doesn't add any useful information other than a source
14426 // location, fold it into the primary diagnostic.
14427 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
14428 diag::note_invalid_subexpr_in_const_expr) {
14429 DiagLoc = Notes[0].first;
14430 Notes.clear();
14432 Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
14433 << var << Init->getSourceRange();
14434 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
14435 Diag(Notes[I].first, Notes[I].second);
14436 } else if (GlobalStorage && var->hasAttr<ConstInitAttr>()) {
14437 auto *Attr = var->getAttr<ConstInitAttr>();
14438 Diag(var->getLocation(), diag::err_require_constant_init_failed)
14439 << Init->getSourceRange();
14440 Diag(Attr->getLocation(), diag::note_declared_required_constant_init_here)
14441 << Attr->getRange() << Attr->isConstinit();
14442 for (auto &it : Notes)
14443 Diag(it.first, it.second);
14444 } else if (IsGlobal &&
14445 !getDiagnostics().isIgnored(diag::warn_global_constructor,
14446 var->getLocation())) {
14447 // Warn about globals which don't have a constant initializer. Don't
14448 // warn about globals with a non-trivial destructor because we already
14449 // warned about them.
14450 CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
14451 if (!(RD && !RD->hasTrivialDestructor())) {
14452 // checkConstInit() here permits trivial default initialization even in
14453 // C++11 onwards, where such an initializer is not a constant initializer
14454 // but nonetheless doesn't require a global constructor.
14455 if (!checkConstInit())
14456 Diag(var->getLocation(), diag::warn_global_constructor)
14457 << Init->getSourceRange();
14462 // Apply section attributes and pragmas to global variables.
14463 if (GlobalStorage && var->isThisDeclarationADefinition() &&
14464 !inTemplateInstantiation()) {
14465 PragmaStack<StringLiteral *> *Stack = nullptr;
14466 int SectionFlags = ASTContext::PSF_Read;
14467 bool MSVCEnv =
14468 Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment();
14469 std::optional<QualType::NonConstantStorageReason> Reason;
14470 if (HasConstInit &&
14471 !(Reason = var->getType().isNonConstantStorage(Context, true, false))) {
14472 Stack = &ConstSegStack;
14473 } else {
14474 SectionFlags |= ASTContext::PSF_Write;
14475 Stack = var->hasInit() && HasConstInit ? &DataSegStack : &BSSSegStack;
14477 if (const SectionAttr *SA = var->getAttr<SectionAttr>()) {
14478 if (SA->getSyntax() == AttributeCommonInfo::AS_Declspec)
14479 SectionFlags |= ASTContext::PSF_Implicit;
14480 UnifySection(SA->getName(), SectionFlags, var);
14481 } else if (Stack->CurrentValue) {
14482 if (Stack != &ConstSegStack && MSVCEnv &&
14483 ConstSegStack.CurrentValue != ConstSegStack.DefaultValue &&
14484 var->getType().isConstQualified()) {
14485 assert((!Reason || Reason != QualType::NonConstantStorageReason::
14486 NonConstNonReferenceType) &&
14487 "This case should've already been handled elsewhere");
14488 Diag(var->getLocation(), diag::warn_section_msvc_compat)
14489 << var << ConstSegStack.CurrentValue << (int)(!HasConstInit
14490 ? QualType::NonConstantStorageReason::NonTrivialCtor
14491 : *Reason);
14493 SectionFlags |= ASTContext::PSF_Implicit;
14494 auto SectionName = Stack->CurrentValue->getString();
14495 var->addAttr(SectionAttr::CreateImplicit(Context, SectionName,
14496 Stack->CurrentPragmaLocation,
14497 SectionAttr::Declspec_allocate));
14498 if (UnifySection(SectionName, SectionFlags, var))
14499 var->dropAttr<SectionAttr>();
14502 // Apply the init_seg attribute if this has an initializer. If the
14503 // initializer turns out to not be dynamic, we'll end up ignoring this
14504 // attribute.
14505 if (CurInitSeg && var->getInit())
14506 var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
14507 CurInitSegLoc));
14510 // All the following checks are C++ only.
14511 if (!getLangOpts().CPlusPlus) {
14512 // If this variable must be emitted, add it as an initializer for the
14513 // current module.
14514 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
14515 Context.addModuleInitializer(ModuleScopes.back().Module, var);
14516 return;
14519 // Require the destructor.
14520 if (!type->isDependentType())
14521 if (const RecordType *recordType = baseType->getAs<RecordType>())
14522 FinalizeVarWithDestructor(var, recordType);
14524 // If this variable must be emitted, add it as an initializer for the current
14525 // module.
14526 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
14527 Context.addModuleInitializer(ModuleScopes.back().Module, var);
14529 // Build the bindings if this is a structured binding declaration.
14530 if (auto *DD = dyn_cast<DecompositionDecl>(var))
14531 CheckCompleteDecompositionDeclaration(DD);
14534 /// Check if VD needs to be dllexport/dllimport due to being in a
14535 /// dllexport/import function.
14536 void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
14537 assert(VD->isStaticLocal());
14539 auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
14541 // Find outermost function when VD is in lambda function.
14542 while (FD && !getDLLAttr(FD) &&
14543 !FD->hasAttr<DLLExportStaticLocalAttr>() &&
14544 !FD->hasAttr<DLLImportStaticLocalAttr>()) {
14545 FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
14548 if (!FD)
14549 return;
14551 // Static locals inherit dll attributes from their function.
14552 if (Attr *A = getDLLAttr(FD)) {
14553 auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
14554 NewAttr->setInherited(true);
14555 VD->addAttr(NewAttr);
14556 } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
14557 auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A);
14558 NewAttr->setInherited(true);
14559 VD->addAttr(NewAttr);
14561 // Export this function to enforce exporting this static variable even
14562 // if it is not used in this compilation unit.
14563 if (!FD->hasAttr<DLLExportAttr>())
14564 FD->addAttr(NewAttr);
14566 } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
14567 auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A);
14568 NewAttr->setInherited(true);
14569 VD->addAttr(NewAttr);
14573 void Sema::CheckThreadLocalForLargeAlignment(VarDecl *VD) {
14574 assert(VD->getTLSKind());
14576 // Perform TLS alignment check here after attributes attached to the variable
14577 // which may affect the alignment have been processed. Only perform the check
14578 // if the target has a maximum TLS alignment (zero means no constraints).
14579 if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
14580 // Protect the check so that it's not performed on dependent types and
14581 // dependent alignments (we can't determine the alignment in that case).
14582 if (!VD->hasDependentAlignment()) {
14583 CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
14584 if (Context.getDeclAlign(VD) > MaxAlignChars) {
14585 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
14586 << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
14587 << (unsigned)MaxAlignChars.getQuantity();
14593 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
14594 /// any semantic actions necessary after any initializer has been attached.
14595 void Sema::FinalizeDeclaration(Decl *ThisDecl) {
14596 // Note that we are no longer parsing the initializer for this declaration.
14597 ParsingInitForAutoVars.erase(ThisDecl);
14599 VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
14600 if (!VD)
14601 return;
14603 // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
14604 if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
14605 !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
14606 if (PragmaClangBSSSection.Valid)
14607 VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(
14608 Context, PragmaClangBSSSection.SectionName,
14609 PragmaClangBSSSection.PragmaLocation));
14610 if (PragmaClangDataSection.Valid)
14611 VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(
14612 Context, PragmaClangDataSection.SectionName,
14613 PragmaClangDataSection.PragmaLocation));
14614 if (PragmaClangRodataSection.Valid)
14615 VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(
14616 Context, PragmaClangRodataSection.SectionName,
14617 PragmaClangRodataSection.PragmaLocation));
14618 if (PragmaClangRelroSection.Valid)
14619 VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit(
14620 Context, PragmaClangRelroSection.SectionName,
14621 PragmaClangRelroSection.PragmaLocation));
14624 if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
14625 for (auto *BD : DD->bindings()) {
14626 FinalizeDeclaration(BD);
14630 checkAttributesAfterMerging(*this, *VD);
14632 if (VD->isStaticLocal())
14633 CheckStaticLocalForDllExport(VD);
14635 if (VD->getTLSKind())
14636 CheckThreadLocalForLargeAlignment(VD);
14638 // Perform check for initializers of device-side global variables.
14639 // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
14640 // 7.5). We must also apply the same checks to all __shared__
14641 // variables whether they are local or not. CUDA also allows
14642 // constant initializers for __constant__ and __device__ variables.
14643 if (getLangOpts().CUDA)
14644 checkAllowedCUDAInitializer(VD);
14646 // Grab the dllimport or dllexport attribute off of the VarDecl.
14647 const InheritableAttr *DLLAttr = getDLLAttr(VD);
14649 // Imported static data members cannot be defined out-of-line.
14650 if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
14651 if (VD->isStaticDataMember() && VD->isOutOfLine() &&
14652 VD->isThisDeclarationADefinition()) {
14653 // We allow definitions of dllimport class template static data members
14654 // with a warning.
14655 CXXRecordDecl *Context =
14656 cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
14657 bool IsClassTemplateMember =
14658 isa<ClassTemplatePartialSpecializationDecl>(Context) ||
14659 Context->getDescribedClassTemplate();
14661 Diag(VD->getLocation(),
14662 IsClassTemplateMember
14663 ? diag::warn_attribute_dllimport_static_field_definition
14664 : diag::err_attribute_dllimport_static_field_definition);
14665 Diag(IA->getLocation(), diag::note_attribute);
14666 if (!IsClassTemplateMember)
14667 VD->setInvalidDecl();
14671 // dllimport/dllexport variables cannot be thread local, their TLS index
14672 // isn't exported with the variable.
14673 if (DLLAttr && VD->getTLSKind()) {
14674 auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
14675 if (F && getDLLAttr(F)) {
14676 assert(VD->isStaticLocal());
14677 // But if this is a static local in a dlimport/dllexport function, the
14678 // function will never be inlined, which means the var would never be
14679 // imported, so having it marked import/export is safe.
14680 } else {
14681 Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
14682 << DLLAttr;
14683 VD->setInvalidDecl();
14687 if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
14688 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
14689 Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition)
14690 << Attr;
14691 VD->dropAttr<UsedAttr>();
14694 if (RetainAttr *Attr = VD->getAttr<RetainAttr>()) {
14695 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
14696 Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition)
14697 << Attr;
14698 VD->dropAttr<RetainAttr>();
14702 const DeclContext *DC = VD->getDeclContext();
14703 // If there's a #pragma GCC visibility in scope, and this isn't a class
14704 // member, set the visibility of this variable.
14705 if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
14706 AddPushedVisibilityAttribute(VD);
14708 // FIXME: Warn on unused var template partial specializations.
14709 if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
14710 MarkUnusedFileScopedDecl(VD);
14712 // Now we have parsed the initializer and can update the table of magic
14713 // tag values.
14714 if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
14715 !VD->getType()->isIntegralOrEnumerationType())
14716 return;
14718 for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
14719 const Expr *MagicValueExpr = VD->getInit();
14720 if (!MagicValueExpr) {
14721 continue;
14723 std::optional<llvm::APSInt> MagicValueInt;
14724 if (!(MagicValueInt = MagicValueExpr->getIntegerConstantExpr(Context))) {
14725 Diag(I->getRange().getBegin(),
14726 diag::err_type_tag_for_datatype_not_ice)
14727 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
14728 continue;
14730 if (MagicValueInt->getActiveBits() > 64) {
14731 Diag(I->getRange().getBegin(),
14732 diag::err_type_tag_for_datatype_too_large)
14733 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
14734 continue;
14736 uint64_t MagicValue = MagicValueInt->getZExtValue();
14737 RegisterTypeTagForDatatype(I->getArgumentKind(),
14738 MagicValue,
14739 I->getMatchingCType(),
14740 I->getLayoutCompatible(),
14741 I->getMustBeNull());
14745 static bool hasDeducedAuto(DeclaratorDecl *DD) {
14746 auto *VD = dyn_cast<VarDecl>(DD);
14747 return VD && !VD->getType()->hasAutoForTrailingReturnType();
14750 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
14751 ArrayRef<Decl *> Group) {
14752 SmallVector<Decl*, 8> Decls;
14754 if (DS.isTypeSpecOwned())
14755 Decls.push_back(DS.getRepAsDecl());
14757 DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
14758 DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
14759 bool DiagnosedMultipleDecomps = false;
14760 DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
14761 bool DiagnosedNonDeducedAuto = false;
14763 for (unsigned i = 0, e = Group.size(); i != e; ++i) {
14764 if (Decl *D = Group[i]) {
14765 // Check if the Decl has been declared in '#pragma omp declare target'
14766 // directive and has static storage duration.
14767 if (auto *VD = dyn_cast<VarDecl>(D);
14768 LangOpts.OpenMP && VD && VD->hasAttr<OMPDeclareTargetDeclAttr>() &&
14769 VD->hasGlobalStorage())
14770 ActOnOpenMPDeclareTargetInitializer(D);
14771 // For declarators, there are some additional syntactic-ish checks we need
14772 // to perform.
14773 if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
14774 if (!FirstDeclaratorInGroup)
14775 FirstDeclaratorInGroup = DD;
14776 if (!FirstDecompDeclaratorInGroup)
14777 FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
14778 if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
14779 !hasDeducedAuto(DD))
14780 FirstNonDeducedAutoInGroup = DD;
14782 if (FirstDeclaratorInGroup != DD) {
14783 // A decomposition declaration cannot be combined with any other
14784 // declaration in the same group.
14785 if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
14786 Diag(FirstDecompDeclaratorInGroup->getLocation(),
14787 diag::err_decomp_decl_not_alone)
14788 << FirstDeclaratorInGroup->getSourceRange()
14789 << DD->getSourceRange();
14790 DiagnosedMultipleDecomps = true;
14793 // A declarator that uses 'auto' in any way other than to declare a
14794 // variable with a deduced type cannot be combined with any other
14795 // declarator in the same group.
14796 if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
14797 Diag(FirstNonDeducedAutoInGroup->getLocation(),
14798 diag::err_auto_non_deduced_not_alone)
14799 << FirstNonDeducedAutoInGroup->getType()
14800 ->hasAutoForTrailingReturnType()
14801 << FirstDeclaratorInGroup->getSourceRange()
14802 << DD->getSourceRange();
14803 DiagnosedNonDeducedAuto = true;
14808 Decls.push_back(D);
14812 if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
14813 if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
14814 handleTagNumbering(Tag, S);
14815 if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
14816 getLangOpts().CPlusPlus)
14817 Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
14821 return BuildDeclaratorGroup(Decls);
14824 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
14825 /// group, performing any necessary semantic checking.
14826 Sema::DeclGroupPtrTy
14827 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
14828 // C++14 [dcl.spec.auto]p7: (DR1347)
14829 // If the type that replaces the placeholder type is not the same in each
14830 // deduction, the program is ill-formed.
14831 if (Group.size() > 1) {
14832 QualType Deduced;
14833 VarDecl *DeducedDecl = nullptr;
14834 for (unsigned i = 0, e = Group.size(); i != e; ++i) {
14835 VarDecl *D = dyn_cast<VarDecl>(Group[i]);
14836 if (!D || D->isInvalidDecl())
14837 break;
14838 DeducedType *DT = D->getType()->getContainedDeducedType();
14839 if (!DT || DT->getDeducedType().isNull())
14840 continue;
14841 if (Deduced.isNull()) {
14842 Deduced = DT->getDeducedType();
14843 DeducedDecl = D;
14844 } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
14845 auto *AT = dyn_cast<AutoType>(DT);
14846 auto Dia = Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
14847 diag::err_auto_different_deductions)
14848 << (AT ? (unsigned)AT->getKeyword() : 3) << Deduced
14849 << DeducedDecl->getDeclName() << DT->getDeducedType()
14850 << D->getDeclName();
14851 if (DeducedDecl->hasInit())
14852 Dia << DeducedDecl->getInit()->getSourceRange();
14853 if (D->getInit())
14854 Dia << D->getInit()->getSourceRange();
14855 D->setInvalidDecl();
14856 break;
14861 ActOnDocumentableDecls(Group);
14863 return DeclGroupPtrTy::make(
14864 DeclGroupRef::Create(Context, Group.data(), Group.size()));
14867 void Sema::ActOnDocumentableDecl(Decl *D) {
14868 ActOnDocumentableDecls(D);
14871 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
14872 // Don't parse the comment if Doxygen diagnostics are ignored.
14873 if (Group.empty() || !Group[0])
14874 return;
14876 if (Diags.isIgnored(diag::warn_doc_param_not_found,
14877 Group[0]->getLocation()) &&
14878 Diags.isIgnored(diag::warn_unknown_comment_command_name,
14879 Group[0]->getLocation()))
14880 return;
14882 if (Group.size() >= 2) {
14883 // This is a decl group. Normally it will contain only declarations
14884 // produced from declarator list. But in case we have any definitions or
14885 // additional declaration references:
14886 // 'typedef struct S {} S;'
14887 // 'typedef struct S *S;'
14888 // 'struct S *pS;'
14889 // FinalizeDeclaratorGroup adds these as separate declarations.
14890 Decl *MaybeTagDecl = Group[0];
14891 if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
14892 Group = Group.slice(1);
14896 // FIMXE: We assume every Decl in the group is in the same file.
14897 // This is false when preprocessor constructs the group from decls in
14898 // different files (e. g. macros or #include).
14899 Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor());
14902 /// Common checks for a parameter-declaration that should apply to both function
14903 /// parameters and non-type template parameters.
14904 void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) {
14905 // Check that there are no default arguments inside the type of this
14906 // parameter.
14907 if (getLangOpts().CPlusPlus)
14908 CheckExtraCXXDefaultArguments(D);
14910 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
14911 if (D.getCXXScopeSpec().isSet()) {
14912 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
14913 << D.getCXXScopeSpec().getRange();
14916 // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a
14917 // simple identifier except [...irrelevant cases...].
14918 switch (D.getName().getKind()) {
14919 case UnqualifiedIdKind::IK_Identifier:
14920 break;
14922 case UnqualifiedIdKind::IK_OperatorFunctionId:
14923 case UnqualifiedIdKind::IK_ConversionFunctionId:
14924 case UnqualifiedIdKind::IK_LiteralOperatorId:
14925 case UnqualifiedIdKind::IK_ConstructorName:
14926 case UnqualifiedIdKind::IK_DestructorName:
14927 case UnqualifiedIdKind::IK_ImplicitSelfParam:
14928 case UnqualifiedIdKind::IK_DeductionGuideName:
14929 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
14930 << GetNameForDeclarator(D).getName();
14931 break;
14933 case UnqualifiedIdKind::IK_TemplateId:
14934 case UnqualifiedIdKind::IK_ConstructorTemplateId:
14935 // GetNameForDeclarator would not produce a useful name in this case.
14936 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id);
14937 break;
14941 static void CheckExplicitObjectParameter(Sema &S, ParmVarDecl *P,
14942 SourceLocation ExplicitThisLoc) {
14943 if (!ExplicitThisLoc.isValid())
14944 return;
14945 assert(S.getLangOpts().CPlusPlus &&
14946 "explicit parameter in non-cplusplus mode");
14947 if (!S.getLangOpts().CPlusPlus23)
14948 S.Diag(ExplicitThisLoc, diag::err_cxx20_deducing_this)
14949 << P->getSourceRange();
14951 // C++2b [dcl.fct/7] An explicit object parameter shall not be a function
14952 // parameter pack.
14953 if (P->isParameterPack()) {
14954 S.Diag(P->getBeginLoc(), diag::err_explicit_object_parameter_pack)
14955 << P->getSourceRange();
14956 return;
14958 P->setExplicitObjectParameterLoc(ExplicitThisLoc);
14959 if (LambdaScopeInfo *LSI = S.getCurLambda())
14960 LSI->ExplicitObjectParameter = P;
14963 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
14964 /// to introduce parameters into function prototype scope.
14965 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D,
14966 SourceLocation ExplicitThisLoc) {
14967 const DeclSpec &DS = D.getDeclSpec();
14969 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
14971 // C++03 [dcl.stc]p2 also permits 'auto'.
14972 StorageClass SC = SC_None;
14973 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
14974 SC = SC_Register;
14975 // In C++11, the 'register' storage class specifier is deprecated.
14976 // In C++17, it is not allowed, but we tolerate it as an extension.
14977 if (getLangOpts().CPlusPlus11) {
14978 Diag(DS.getStorageClassSpecLoc(),
14979 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
14980 : diag::warn_deprecated_register)
14981 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
14983 } else if (getLangOpts().CPlusPlus &&
14984 DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
14985 SC = SC_Auto;
14986 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
14987 Diag(DS.getStorageClassSpecLoc(),
14988 diag::err_invalid_storage_class_in_func_decl);
14989 D.getMutableDeclSpec().ClearStorageClassSpecs();
14992 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
14993 Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
14994 << DeclSpec::getSpecifierName(TSCS);
14995 if (DS.isInlineSpecified())
14996 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
14997 << getLangOpts().CPlusPlus17;
14998 if (DS.hasConstexprSpecifier())
14999 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
15000 << 0 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
15002 DiagnoseFunctionSpecifiers(DS);
15004 CheckFunctionOrTemplateParamDeclarator(S, D);
15006 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
15007 QualType parmDeclType = TInfo->getType();
15009 // Check for redeclaration of parameters, e.g. int foo(int x, int x);
15010 IdentifierInfo *II = D.getIdentifier();
15011 if (II) {
15012 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
15013 ForVisibleRedeclaration);
15014 LookupName(R, S);
15015 if (!R.empty()) {
15016 NamedDecl *PrevDecl = *R.begin();
15017 if (R.isSingleResult() && PrevDecl->isTemplateParameter()) {
15018 // Maybe we will complain about the shadowed template parameter.
15019 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
15020 // Just pretend that we didn't see the previous declaration.
15021 PrevDecl = nullptr;
15023 if (PrevDecl && S->isDeclScope(PrevDecl)) {
15024 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
15025 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
15026 // Recover by removing the name
15027 II = nullptr;
15028 D.SetIdentifier(nullptr, D.getIdentifierLoc());
15029 D.setInvalidType(true);
15034 // Temporarily put parameter variables in the translation unit, not
15035 // the enclosing context. This prevents them from accidentally
15036 // looking like class members in C++.
15037 ParmVarDecl *New =
15038 CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
15039 D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
15041 if (D.isInvalidType())
15042 New->setInvalidDecl();
15044 CheckExplicitObjectParameter(*this, New, ExplicitThisLoc);
15046 assert(S->isFunctionPrototypeScope());
15047 assert(S->getFunctionPrototypeDepth() >= 1);
15048 New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
15049 S->getNextFunctionPrototypeIndex());
15051 // Add the parameter declaration into this scope.
15052 S->AddDecl(New);
15053 if (II)
15054 IdResolver.AddDecl(New);
15056 ProcessDeclAttributes(S, New, D);
15058 if (D.getDeclSpec().isModulePrivateSpecified())
15059 Diag(New->getLocation(), diag::err_module_private_local)
15060 << 1 << New << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
15061 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
15063 if (New->hasAttr<BlocksAttr>()) {
15064 Diag(New->getLocation(), diag::err_block_on_nonlocal);
15067 if (getLangOpts().OpenCL)
15068 deduceOpenCLAddressSpace(New);
15070 return New;
15073 /// Synthesizes a variable for a parameter arising from a
15074 /// typedef.
15075 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
15076 SourceLocation Loc,
15077 QualType T) {
15078 /* FIXME: setting StartLoc == Loc.
15079 Would it be worth to modify callers so as to provide proper source
15080 location for the unnamed parameters, embedding the parameter's type? */
15081 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
15082 T, Context.getTrivialTypeSourceInfo(T, Loc),
15083 SC_None, nullptr);
15084 Param->setImplicit();
15085 return Param;
15088 void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
15089 // Don't diagnose unused-parameter errors in template instantiations; we
15090 // will already have done so in the template itself.
15091 if (inTemplateInstantiation())
15092 return;
15094 for (const ParmVarDecl *Parameter : Parameters) {
15095 if (!Parameter->isReferenced() && Parameter->getDeclName() &&
15096 !Parameter->hasAttr<UnusedAttr>() &&
15097 !Parameter->getIdentifier()->isPlaceholder()) {
15098 Diag(Parameter->getLocation(), diag::warn_unused_parameter)
15099 << Parameter->getDeclName();
15104 void Sema::DiagnoseSizeOfParametersAndReturnValue(
15105 ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
15106 if (LangOpts.NumLargeByValueCopy == 0) // No check.
15107 return;
15109 // Warn if the return value is pass-by-value and larger than the specified
15110 // threshold.
15111 if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
15112 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
15113 if (Size > LangOpts.NumLargeByValueCopy)
15114 Diag(D->getLocation(), diag::warn_return_value_size) << D << Size;
15117 // Warn if any parameter is pass-by-value and larger than the specified
15118 // threshold.
15119 for (const ParmVarDecl *Parameter : Parameters) {
15120 QualType T = Parameter->getType();
15121 if (T->isDependentType() || !T.isPODType(Context))
15122 continue;
15123 unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
15124 if (Size > LangOpts.NumLargeByValueCopy)
15125 Diag(Parameter->getLocation(), diag::warn_parameter_size)
15126 << Parameter << Size;
15130 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
15131 SourceLocation NameLoc, IdentifierInfo *Name,
15132 QualType T, TypeSourceInfo *TSInfo,
15133 StorageClass SC) {
15134 // In ARC, infer a lifetime qualifier for appropriate parameter types.
15135 if (getLangOpts().ObjCAutoRefCount &&
15136 T.getObjCLifetime() == Qualifiers::OCL_None &&
15137 T->isObjCLifetimeType()) {
15139 Qualifiers::ObjCLifetime lifetime;
15141 // Special cases for arrays:
15142 // - if it's const, use __unsafe_unretained
15143 // - otherwise, it's an error
15144 if (T->isArrayType()) {
15145 if (!T.isConstQualified()) {
15146 if (DelayedDiagnostics.shouldDelayDiagnostics())
15147 DelayedDiagnostics.add(
15148 sema::DelayedDiagnostic::makeForbiddenType(
15149 NameLoc, diag::err_arc_array_param_no_ownership, T, false));
15150 else
15151 Diag(NameLoc, diag::err_arc_array_param_no_ownership)
15152 << TSInfo->getTypeLoc().getSourceRange();
15154 lifetime = Qualifiers::OCL_ExplicitNone;
15155 } else {
15156 lifetime = T->getObjCARCImplicitLifetime();
15158 T = Context.getLifetimeQualifiedType(T, lifetime);
15161 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
15162 Context.getAdjustedParameterType(T),
15163 TSInfo, SC, nullptr);
15165 // Make a note if we created a new pack in the scope of a lambda, so that
15166 // we know that references to that pack must also be expanded within the
15167 // lambda scope.
15168 if (New->isParameterPack())
15169 if (auto *LSI = getEnclosingLambda())
15170 LSI->LocalPacks.push_back(New);
15172 if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
15173 New->getType().hasNonTrivialToPrimitiveCopyCUnion())
15174 checkNonTrivialCUnion(New->getType(), New->getLocation(),
15175 NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy);
15177 // Parameter declarators cannot be interface types. All ObjC objects are
15178 // passed by reference.
15179 if (T->isObjCObjectType()) {
15180 SourceLocation TypeEndLoc =
15181 getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
15182 Diag(NameLoc,
15183 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
15184 << FixItHint::CreateInsertion(TypeEndLoc, "*");
15185 T = Context.getObjCObjectPointerType(T);
15186 New->setType(T);
15189 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
15190 // duration shall not be qualified by an address-space qualifier."
15191 // Since all parameters have automatic store duration, they can not have
15192 // an address space.
15193 if (T.getAddressSpace() != LangAS::Default &&
15194 // OpenCL allows function arguments declared to be an array of a type
15195 // to be qualified with an address space.
15196 !(getLangOpts().OpenCL &&
15197 (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private)) &&
15198 // WebAssembly allows reference types as parameters. Funcref in particular
15199 // lives in a different address space.
15200 !(T->isFunctionPointerType() &&
15201 T.getAddressSpace() == LangAS::wasm_funcref)) {
15202 Diag(NameLoc, diag::err_arg_with_address_space);
15203 New->setInvalidDecl();
15206 // PPC MMA non-pointer types are not allowed as function argument types.
15207 if (Context.getTargetInfo().getTriple().isPPC64() &&
15208 CheckPPCMMAType(New->getOriginalType(), New->getLocation())) {
15209 New->setInvalidDecl();
15212 return New;
15215 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
15216 SourceLocation LocAfterDecls) {
15217 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
15219 // C99 6.9.1p6 "If a declarator includes an identifier list, each declaration
15220 // in the declaration list shall have at least one declarator, those
15221 // declarators shall only declare identifiers from the identifier list, and
15222 // every identifier in the identifier list shall be declared.
15224 // C89 3.7.1p5 "If a declarator includes an identifier list, only the
15225 // identifiers it names shall be declared in the declaration list."
15227 // This is why we only diagnose in C99 and later. Note, the other conditions
15228 // listed are checked elsewhere.
15229 if (!FTI.hasPrototype) {
15230 for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
15231 --i;
15232 if (FTI.Params[i].Param == nullptr) {
15233 if (getLangOpts().C99) {
15234 SmallString<256> Code;
15235 llvm::raw_svector_ostream(Code)
15236 << " int " << FTI.Params[i].Ident->getName() << ";\n";
15237 Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
15238 << FTI.Params[i].Ident
15239 << FixItHint::CreateInsertion(LocAfterDecls, Code);
15242 // Implicitly declare the argument as type 'int' for lack of a better
15243 // type.
15244 AttributeFactory attrs;
15245 DeclSpec DS(attrs);
15246 const char* PrevSpec; // unused
15247 unsigned DiagID; // unused
15248 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
15249 DiagID, Context.getPrintingPolicy());
15250 // Use the identifier location for the type source range.
15251 DS.SetRangeStart(FTI.Params[i].IdentLoc);
15252 DS.SetRangeEnd(FTI.Params[i].IdentLoc);
15253 Declarator ParamD(DS, ParsedAttributesView::none(),
15254 DeclaratorContext::KNRTypeList);
15255 ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
15256 FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
15262 Decl *
15263 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
15264 MultiTemplateParamsArg TemplateParameterLists,
15265 SkipBodyInfo *SkipBody, FnBodyKind BodyKind) {
15266 assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
15267 assert(D.isFunctionDeclarator() && "Not a function declarator!");
15268 Scope *ParentScope = FnBodyScope->getParent();
15270 // Check if we are in an `omp begin/end declare variant` scope. If we are, and
15271 // we define a non-templated function definition, we will create a declaration
15272 // instead (=BaseFD), and emit the definition with a mangled name afterwards.
15273 // The base function declaration will have the equivalent of an `omp declare
15274 // variant` annotation which specifies the mangled definition as a
15275 // specialization function under the OpenMP context defined as part of the
15276 // `omp begin declare variant`.
15277 SmallVector<FunctionDecl *, 4> Bases;
15278 if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope())
15279 ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
15280 ParentScope, D, TemplateParameterLists, Bases);
15282 D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
15283 Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
15284 Decl *Dcl = ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody, BodyKind);
15286 if (!Bases.empty())
15287 ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases);
15289 return Dcl;
15292 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
15293 Consumer.HandleInlineFunctionDefinition(D);
15296 static bool FindPossiblePrototype(const FunctionDecl *FD,
15297 const FunctionDecl *&PossiblePrototype) {
15298 for (const FunctionDecl *Prev = FD->getPreviousDecl(); Prev;
15299 Prev = Prev->getPreviousDecl()) {
15300 // Ignore any declarations that occur in function or method
15301 // scope, because they aren't visible from the header.
15302 if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
15303 continue;
15305 PossiblePrototype = Prev;
15306 return Prev->getType()->isFunctionProtoType();
15308 return false;
15311 static bool
15312 ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
15313 const FunctionDecl *&PossiblePrototype) {
15314 // Don't warn about invalid declarations.
15315 if (FD->isInvalidDecl())
15316 return false;
15318 // Or declarations that aren't global.
15319 if (!FD->isGlobal())
15320 return false;
15322 // Don't warn about C++ member functions.
15323 if (isa<CXXMethodDecl>(FD))
15324 return false;
15326 // Don't warn about 'main'.
15327 if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext()))
15328 if (IdentifierInfo *II = FD->getIdentifier())
15329 if (II->isStr("main") || II->isStr("efi_main"))
15330 return false;
15332 // Don't warn about inline functions.
15333 if (FD->isInlined())
15334 return false;
15336 // Don't warn about function templates.
15337 if (FD->getDescribedFunctionTemplate())
15338 return false;
15340 // Don't warn about function template specializations.
15341 if (FD->isFunctionTemplateSpecialization())
15342 return false;
15344 // Don't warn for OpenCL kernels.
15345 if (FD->hasAttr<OpenCLKernelAttr>())
15346 return false;
15348 // Don't warn on explicitly deleted functions.
15349 if (FD->isDeleted())
15350 return false;
15352 // Don't warn on implicitly local functions (such as having local-typed
15353 // parameters).
15354 if (!FD->isExternallyVisible())
15355 return false;
15357 // If we were able to find a potential prototype, don't warn.
15358 if (FindPossiblePrototype(FD, PossiblePrototype))
15359 return false;
15361 return true;
15364 void
15365 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
15366 const FunctionDecl *EffectiveDefinition,
15367 SkipBodyInfo *SkipBody) {
15368 const FunctionDecl *Definition = EffectiveDefinition;
15369 if (!Definition &&
15370 !FD->isDefined(Definition, /*CheckForPendingFriendDefinition*/ true))
15371 return;
15373 if (Definition->getFriendObjectKind() != Decl::FOK_None) {
15374 if (FunctionDecl *OrigDef = Definition->getInstantiatedFromMemberFunction()) {
15375 if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
15376 // A merged copy of the same function, instantiated as a member of
15377 // the same class, is OK.
15378 if (declaresSameEntity(OrigFD, OrigDef) &&
15379 declaresSameEntity(cast<Decl>(Definition->getLexicalDeclContext()),
15380 cast<Decl>(FD->getLexicalDeclContext())))
15381 return;
15386 if (canRedefineFunction(Definition, getLangOpts()))
15387 return;
15389 // Don't emit an error when this is redefinition of a typo-corrected
15390 // definition.
15391 if (TypoCorrectedFunctionDefinitions.count(Definition))
15392 return;
15394 // If we don't have a visible definition of the function, and it's inline or
15395 // a template, skip the new definition.
15396 if (SkipBody && !hasVisibleDefinition(Definition) &&
15397 (Definition->getFormalLinkage() == InternalLinkage ||
15398 Definition->isInlined() ||
15399 Definition->getDescribedFunctionTemplate() ||
15400 Definition->getNumTemplateParameterLists())) {
15401 SkipBody->ShouldSkip = true;
15402 SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
15403 if (auto *TD = Definition->getDescribedFunctionTemplate())
15404 makeMergedDefinitionVisible(TD);
15405 makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
15406 return;
15409 if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
15410 Definition->getStorageClass() == SC_Extern)
15411 Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
15412 << FD << getLangOpts().CPlusPlus;
15413 else
15414 Diag(FD->getLocation(), diag::err_redefinition) << FD;
15416 Diag(Definition->getLocation(), diag::note_previous_definition);
15417 FD->setInvalidDecl();
15420 LambdaScopeInfo *Sema::RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator) {
15421 CXXRecordDecl *LambdaClass = CallOperator->getParent();
15423 LambdaScopeInfo *LSI = PushLambdaScope();
15424 LSI->CallOperator = CallOperator;
15425 LSI->Lambda = LambdaClass;
15426 LSI->ReturnType = CallOperator->getReturnType();
15427 // This function in calls in situation where the context of the call operator
15428 // is not entered, so we set AfterParameterList to false, so that
15429 // `tryCaptureVariable` finds explicit captures in the appropriate context.
15430 LSI->AfterParameterList = false;
15431 const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
15433 if (LCD == LCD_None)
15434 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
15435 else if (LCD == LCD_ByCopy)
15436 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
15437 else if (LCD == LCD_ByRef)
15438 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
15439 DeclarationNameInfo DNI = CallOperator->getNameInfo();
15441 LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
15442 LSI->Mutable = !CallOperator->isConst();
15443 if (CallOperator->isExplicitObjectMemberFunction())
15444 LSI->ExplicitObjectParameter = CallOperator->getParamDecl(0);
15446 // Add the captures to the LSI so they can be noted as already
15447 // captured within tryCaptureVar.
15448 auto I = LambdaClass->field_begin();
15449 for (const auto &C : LambdaClass->captures()) {
15450 if (C.capturesVariable()) {
15451 ValueDecl *VD = C.getCapturedVar();
15452 if (VD->isInitCapture())
15453 CurrentInstantiationScope->InstantiatedLocal(VD, VD);
15454 const bool ByRef = C.getCaptureKind() == LCK_ByRef;
15455 LSI->addCapture(VD, /*IsBlock*/false, ByRef,
15456 /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
15457 /*EllipsisLoc*/C.isPackExpansion()
15458 ? C.getEllipsisLoc() : SourceLocation(),
15459 I->getType(), /*Invalid*/false);
15461 } else if (C.capturesThis()) {
15462 LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(),
15463 C.getCaptureKind() == LCK_StarThis);
15464 } else {
15465 LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(),
15466 I->getType());
15468 ++I;
15470 return LSI;
15473 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
15474 SkipBodyInfo *SkipBody,
15475 FnBodyKind BodyKind) {
15476 if (!D) {
15477 // Parsing the function declaration failed in some way. Push on a fake scope
15478 // anyway so we can try to parse the function body.
15479 PushFunctionScope();
15480 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
15481 return D;
15484 FunctionDecl *FD = nullptr;
15486 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
15487 FD = FunTmpl->getTemplatedDecl();
15488 else
15489 FD = cast<FunctionDecl>(D);
15491 // Do not push if it is a lambda because one is already pushed when building
15492 // the lambda in ActOnStartOfLambdaDefinition().
15493 if (!isLambdaCallOperator(FD))
15494 // [expr.const]/p14.1
15495 // An expression or conversion is in an immediate function context if it is
15496 // potentially evaluated and either: its innermost enclosing non-block scope
15497 // is a function parameter scope of an immediate function.
15498 PushExpressionEvaluationContext(
15499 FD->isConsteval() ? ExpressionEvaluationContext::ImmediateFunctionContext
15500 : ExprEvalContexts.back().Context);
15502 // Each ExpressionEvaluationContextRecord also keeps track of whether the
15503 // context is nested in an immediate function context, so smaller contexts
15504 // that appear inside immediate functions (like variable initializers) are
15505 // considered to be inside an immediate function context even though by
15506 // themselves they are not immediate function contexts. But when a new
15507 // function is entered, we need to reset this tracking, since the entered
15508 // function might be not an immediate function.
15509 ExprEvalContexts.back().InImmediateFunctionContext = FD->isConsteval();
15510 ExprEvalContexts.back().InImmediateEscalatingFunctionContext =
15511 getLangOpts().CPlusPlus20 && FD->isImmediateEscalating();
15513 // Check for defining attributes before the check for redefinition.
15514 if (const auto *Attr = FD->getAttr<AliasAttr>()) {
15515 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
15516 FD->dropAttr<AliasAttr>();
15517 FD->setInvalidDecl();
15519 if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
15520 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
15521 FD->dropAttr<IFuncAttr>();
15522 FD->setInvalidDecl();
15524 if (const auto *Attr = FD->getAttr<TargetVersionAttr>()) {
15525 if (!Context.getTargetInfo().hasFeature("fmv") &&
15526 !Attr->isDefaultVersion()) {
15527 // If function multi versioning disabled skip parsing function body
15528 // defined with non-default target_version attribute
15529 if (SkipBody)
15530 SkipBody->ShouldSkip = true;
15531 return nullptr;
15535 if (auto *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
15536 if (Ctor->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
15537 Ctor->isDefaultConstructor() &&
15538 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
15539 // If this is an MS ABI dllexport default constructor, instantiate any
15540 // default arguments.
15541 InstantiateDefaultCtorDefaultArgs(Ctor);
15545 // See if this is a redefinition. If 'will have body' (or similar) is already
15546 // set, then these checks were already performed when it was set.
15547 if (!FD->willHaveBody() && !FD->isLateTemplateParsed() &&
15548 !FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
15549 CheckForFunctionRedefinition(FD, nullptr, SkipBody);
15551 // If we're skipping the body, we're done. Don't enter the scope.
15552 if (SkipBody && SkipBody->ShouldSkip)
15553 return D;
15556 // Mark this function as "will have a body eventually". This lets users to
15557 // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
15558 // this function.
15559 FD->setWillHaveBody();
15561 // If we are instantiating a generic lambda call operator, push
15562 // a LambdaScopeInfo onto the function stack. But use the information
15563 // that's already been calculated (ActOnLambdaExpr) to prime the current
15564 // LambdaScopeInfo.
15565 // When the template operator is being specialized, the LambdaScopeInfo,
15566 // has to be properly restored so that tryCaptureVariable doesn't try
15567 // and capture any new variables. In addition when calculating potential
15568 // captures during transformation of nested lambdas, it is necessary to
15569 // have the LSI properly restored.
15570 if (isGenericLambdaCallOperatorSpecialization(FD)) {
15571 assert(inTemplateInstantiation() &&
15572 "There should be an active template instantiation on the stack "
15573 "when instantiating a generic lambda!");
15574 RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D));
15575 } else {
15576 // Enter a new function scope
15577 PushFunctionScope();
15580 // Builtin functions cannot be defined.
15581 if (unsigned BuiltinID = FD->getBuiltinID()) {
15582 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
15583 !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
15584 Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
15585 FD->setInvalidDecl();
15589 // The return type of a function definition must be complete (C99 6.9.1p3).
15590 // C++23 [dcl.fct.def.general]/p2
15591 // The type of [...] the return for a function definition
15592 // shall not be a (possibly cv-qualified) class type that is incomplete
15593 // or abstract within the function body unless the function is deleted.
15594 QualType ResultType = FD->getReturnType();
15595 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
15596 !FD->isInvalidDecl() && BodyKind != FnBodyKind::Delete &&
15597 (RequireCompleteType(FD->getLocation(), ResultType,
15598 diag::err_func_def_incomplete_result) ||
15599 RequireNonAbstractType(FD->getLocation(), FD->getReturnType(),
15600 diag::err_abstract_type_in_decl,
15601 AbstractReturnType)))
15602 FD->setInvalidDecl();
15604 if (FnBodyScope)
15605 PushDeclContext(FnBodyScope, FD);
15607 // Check the validity of our function parameters
15608 if (BodyKind != FnBodyKind::Delete)
15609 CheckParmsForFunctionDef(FD->parameters(),
15610 /*CheckParameterNames=*/true);
15612 // Add non-parameter declarations already in the function to the current
15613 // scope.
15614 if (FnBodyScope) {
15615 for (Decl *NPD : FD->decls()) {
15616 auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
15617 if (!NonParmDecl)
15618 continue;
15619 assert(!isa<ParmVarDecl>(NonParmDecl) &&
15620 "parameters should not be in newly created FD yet");
15622 // If the decl has a name, make it accessible in the current scope.
15623 if (NonParmDecl->getDeclName())
15624 PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
15626 // Similarly, dive into enums and fish their constants out, making them
15627 // accessible in this scope.
15628 if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
15629 for (auto *EI : ED->enumerators())
15630 PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
15635 // Introduce our parameters into the function scope
15636 for (auto *Param : FD->parameters()) {
15637 Param->setOwningFunction(FD);
15639 // If this has an identifier, add it to the scope stack.
15640 if (Param->getIdentifier() && FnBodyScope) {
15641 CheckShadow(FnBodyScope, Param);
15643 PushOnScopeChains(Param, FnBodyScope);
15647 // C++ [module.import/6] external definitions are not permitted in header
15648 // units. Deleted and Defaulted functions are implicitly inline (but the
15649 // inline state is not set at this point, so check the BodyKind explicitly).
15650 // FIXME: Consider an alternate location for the test where the inlined()
15651 // state is complete.
15652 if (getLangOpts().CPlusPlusModules && currentModuleIsHeaderUnit() &&
15653 !FD->isInvalidDecl() && !FD->isInlined() &&
15654 BodyKind != FnBodyKind::Delete && BodyKind != FnBodyKind::Default &&
15655 FD->getFormalLinkage() == Linkage::ExternalLinkage &&
15656 !FD->isTemplated() && !FD->isTemplateInstantiation()) {
15657 assert(FD->isThisDeclarationADefinition());
15658 Diag(FD->getLocation(), diag::err_extern_def_in_header_unit);
15659 FD->setInvalidDecl();
15662 // Ensure that the function's exception specification is instantiated.
15663 if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
15664 ResolveExceptionSpec(D->getLocation(), FPT);
15666 // dllimport cannot be applied to non-inline function definitions.
15667 if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
15668 !FD->isTemplateInstantiation()) {
15669 assert(!FD->hasAttr<DLLExportAttr>());
15670 Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
15671 FD->setInvalidDecl();
15672 return D;
15674 // We want to attach documentation to original Decl (which might be
15675 // a function template).
15676 ActOnDocumentableDecl(D);
15677 if (getCurLexicalContext()->isObjCContainer() &&
15678 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
15679 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
15680 Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
15682 return D;
15685 /// Given the set of return statements within a function body,
15686 /// compute the variables that are subject to the named return value
15687 /// optimization.
15689 /// Each of the variables that is subject to the named return value
15690 /// optimization will be marked as NRVO variables in the AST, and any
15691 /// return statement that has a marked NRVO variable as its NRVO candidate can
15692 /// use the named return value optimization.
15694 /// This function applies a very simplistic algorithm for NRVO: if every return
15695 /// statement in the scope of a variable has the same NRVO candidate, that
15696 /// candidate is an NRVO variable.
15697 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
15698 ReturnStmt **Returns = Scope->Returns.data();
15700 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
15701 if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
15702 if (!NRVOCandidate->isNRVOVariable())
15703 Returns[I]->setNRVOCandidate(nullptr);
15708 bool Sema::canDelayFunctionBody(const Declarator &D) {
15709 // We can't delay parsing the body of a constexpr function template (yet).
15710 if (D.getDeclSpec().hasConstexprSpecifier())
15711 return false;
15713 // We can't delay parsing the body of a function template with a deduced
15714 // return type (yet).
15715 if (D.getDeclSpec().hasAutoTypeSpec()) {
15716 // If the placeholder introduces a non-deduced trailing return type,
15717 // we can still delay parsing it.
15718 if (D.getNumTypeObjects()) {
15719 const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
15720 if (Outer.Kind == DeclaratorChunk::Function &&
15721 Outer.Fun.hasTrailingReturnType()) {
15722 QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
15723 return Ty.isNull() || !Ty->isUndeducedType();
15726 return false;
15729 return true;
15732 bool Sema::canSkipFunctionBody(Decl *D) {
15733 // We cannot skip the body of a function (or function template) which is
15734 // constexpr, since we may need to evaluate its body in order to parse the
15735 // rest of the file.
15736 // We cannot skip the body of a function with an undeduced return type,
15737 // because any callers of that function need to know the type.
15738 if (const FunctionDecl *FD = D->getAsFunction()) {
15739 if (FD->isConstexpr())
15740 return false;
15741 // We can't simply call Type::isUndeducedType here, because inside template
15742 // auto can be deduced to a dependent type, which is not considered
15743 // "undeduced".
15744 if (FD->getReturnType()->getContainedDeducedType())
15745 return false;
15747 return Consumer.shouldSkipFunctionBody(D);
15750 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
15751 if (!Decl)
15752 return nullptr;
15753 if (FunctionDecl *FD = Decl->getAsFunction())
15754 FD->setHasSkippedBody();
15755 else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
15756 MD->setHasSkippedBody();
15757 return Decl;
15760 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
15761 return ActOnFinishFunctionBody(D, BodyArg, false);
15764 /// RAII object that pops an ExpressionEvaluationContext when exiting a function
15765 /// body.
15766 class ExitFunctionBodyRAII {
15767 public:
15768 ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
15769 ~ExitFunctionBodyRAII() {
15770 if (!IsLambda)
15771 S.PopExpressionEvaluationContext();
15774 private:
15775 Sema &S;
15776 bool IsLambda = false;
15779 static void diagnoseImplicitlyRetainedSelf(Sema &S) {
15780 llvm::DenseMap<const BlockDecl *, bool> EscapeInfo;
15782 auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) {
15783 if (EscapeInfo.count(BD))
15784 return EscapeInfo[BD];
15786 bool R = false;
15787 const BlockDecl *CurBD = BD;
15789 do {
15790 R = !CurBD->doesNotEscape();
15791 if (R)
15792 break;
15793 CurBD = CurBD->getParent()->getInnermostBlockDecl();
15794 } while (CurBD);
15796 return EscapeInfo[BD] = R;
15799 // If the location where 'self' is implicitly retained is inside a escaping
15800 // block, emit a diagnostic.
15801 for (const std::pair<SourceLocation, const BlockDecl *> &P :
15802 S.ImplicitlyRetainedSelfLocs)
15803 if (IsOrNestedInEscapingBlock(P.second))
15804 S.Diag(P.first, diag::warn_implicitly_retains_self)
15805 << FixItHint::CreateInsertion(P.first, "self->");
15808 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
15809 bool IsInstantiation) {
15810 FunctionScopeInfo *FSI = getCurFunction();
15811 FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
15813 if (FSI->UsesFPIntrin && FD && !FD->hasAttr<StrictFPAttr>())
15814 FD->addAttr(StrictFPAttr::CreateImplicit(Context));
15816 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
15817 sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
15819 if (getLangOpts().Coroutines && FSI->isCoroutine())
15820 CheckCompletedCoroutineBody(FD, Body);
15823 // Do not call PopExpressionEvaluationContext() if it is a lambda because
15824 // one is already popped when finishing the lambda in BuildLambdaExpr().
15825 // This is meant to pop the context added in ActOnStartOfFunctionDef().
15826 ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
15827 if (FD) {
15828 FD->setBody(Body);
15829 FD->setWillHaveBody(false);
15830 CheckImmediateEscalatingFunctionDefinition(FD, FSI);
15832 if (getLangOpts().CPlusPlus14) {
15833 if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
15834 FD->getReturnType()->isUndeducedType()) {
15835 // For a function with a deduced result type to return void,
15836 // the result type as written must be 'auto' or 'decltype(auto)',
15837 // possibly cv-qualified or constrained, but not ref-qualified.
15838 if (!FD->getReturnType()->getAs<AutoType>()) {
15839 Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
15840 << FD->getReturnType();
15841 FD->setInvalidDecl();
15842 } else {
15843 // Falling off the end of the function is the same as 'return;'.
15844 Expr *Dummy = nullptr;
15845 if (DeduceFunctionTypeFromReturnExpr(
15846 FD, dcl->getLocation(), Dummy,
15847 FD->getReturnType()->getAs<AutoType>()))
15848 FD->setInvalidDecl();
15851 } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
15852 // In C++11, we don't use 'auto' deduction rules for lambda call
15853 // operators because we don't support return type deduction.
15854 auto *LSI = getCurLambda();
15855 if (LSI->HasImplicitReturnType) {
15856 deduceClosureReturnType(*LSI);
15858 // C++11 [expr.prim.lambda]p4:
15859 // [...] if there are no return statements in the compound-statement
15860 // [the deduced type is] the type void
15861 QualType RetType =
15862 LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
15864 // Update the return type to the deduced type.
15865 const auto *Proto = FD->getType()->castAs<FunctionProtoType>();
15866 FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
15867 Proto->getExtProtoInfo()));
15871 // If the function implicitly returns zero (like 'main') or is naked,
15872 // don't complain about missing return statements.
15873 if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
15874 WP.disableCheckFallThrough();
15876 // MSVC permits the use of pure specifier (=0) on function definition,
15877 // defined at class scope, warn about this non-standard construct.
15878 if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine())
15879 Diag(FD->getLocation(), diag::ext_pure_function_definition);
15881 if (!FD->isInvalidDecl()) {
15882 // Don't diagnose unused parameters of defaulted, deleted or naked
15883 // functions.
15884 if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody() &&
15885 !FD->hasAttr<NakedAttr>())
15886 DiagnoseUnusedParameters(FD->parameters());
15887 DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
15888 FD->getReturnType(), FD);
15890 // If this is a structor, we need a vtable.
15891 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
15892 MarkVTableUsed(FD->getLocation(), Constructor->getParent());
15893 else if (CXXDestructorDecl *Destructor =
15894 dyn_cast<CXXDestructorDecl>(FD))
15895 MarkVTableUsed(FD->getLocation(), Destructor->getParent());
15897 // Try to apply the named return value optimization. We have to check
15898 // if we can do this here because lambdas keep return statements around
15899 // to deduce an implicit return type.
15900 if (FD->getReturnType()->isRecordType() &&
15901 (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
15902 computeNRVO(Body, FSI);
15905 // GNU warning -Wmissing-prototypes:
15906 // Warn if a global function is defined without a previous
15907 // prototype declaration. This warning is issued even if the
15908 // definition itself provides a prototype. The aim is to detect
15909 // global functions that fail to be declared in header files.
15910 const FunctionDecl *PossiblePrototype = nullptr;
15911 if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) {
15912 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
15914 if (PossiblePrototype) {
15915 // We found a declaration that is not a prototype,
15916 // but that could be a zero-parameter prototype
15917 if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) {
15918 TypeLoc TL = TI->getTypeLoc();
15919 if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
15920 Diag(PossiblePrototype->getLocation(),
15921 diag::note_declaration_not_a_prototype)
15922 << (FD->getNumParams() != 0)
15923 << (FD->getNumParams() == 0 ? FixItHint::CreateInsertion(
15924 FTL.getRParenLoc(), "void")
15925 : FixItHint{});
15927 } else {
15928 // Returns true if the token beginning at this Loc is `const`.
15929 auto isLocAtConst = [&](SourceLocation Loc, const SourceManager &SM,
15930 const LangOptions &LangOpts) {
15931 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
15932 if (LocInfo.first.isInvalid())
15933 return false;
15935 bool Invalid = false;
15936 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
15937 if (Invalid)
15938 return false;
15940 if (LocInfo.second > Buffer.size())
15941 return false;
15943 const char *LexStart = Buffer.data() + LocInfo.second;
15944 StringRef StartTok(LexStart, Buffer.size() - LocInfo.second);
15946 return StartTok.consume_front("const") &&
15947 (StartTok.empty() || isWhitespace(StartTok[0]) ||
15948 StartTok.startswith("/*") || StartTok.startswith("//"));
15951 auto findBeginLoc = [&]() {
15952 // If the return type has `const` qualifier, we want to insert
15953 // `static` before `const` (and not before the typename).
15954 if ((FD->getReturnType()->isAnyPointerType() &&
15955 FD->getReturnType()->getPointeeType().isConstQualified()) ||
15956 FD->getReturnType().isConstQualified()) {
15957 // But only do this if we can determine where the `const` is.
15959 if (isLocAtConst(FD->getBeginLoc(), getSourceManager(),
15960 getLangOpts()))
15962 return FD->getBeginLoc();
15964 return FD->getTypeSpecStartLoc();
15966 Diag(FD->getTypeSpecStartLoc(),
15967 diag::note_static_for_internal_linkage)
15968 << /* function */ 1
15969 << (FD->getStorageClass() == SC_None
15970 ? FixItHint::CreateInsertion(findBeginLoc(), "static ")
15971 : FixItHint{});
15975 // We might not have found a prototype because we didn't wish to warn on
15976 // the lack of a missing prototype. Try again without the checks for
15977 // whether we want to warn on the missing prototype.
15978 if (!PossiblePrototype)
15979 (void)FindPossiblePrototype(FD, PossiblePrototype);
15981 // If the function being defined does not have a prototype, then we may
15982 // need to diagnose it as changing behavior in C23 because we now know
15983 // whether the function accepts arguments or not. This only handles the
15984 // case where the definition has no prototype but does have parameters
15985 // and either there is no previous potential prototype, or the previous
15986 // potential prototype also has no actual prototype. This handles cases
15987 // like:
15988 // void f(); void f(a) int a; {}
15989 // void g(a) int a; {}
15990 // See MergeFunctionDecl() for other cases of the behavior change
15991 // diagnostic. See GetFullTypeForDeclarator() for handling of a function
15992 // type without a prototype.
15993 if (!FD->hasWrittenPrototype() && FD->getNumParams() != 0 &&
15994 (!PossiblePrototype || (!PossiblePrototype->hasWrittenPrototype() &&
15995 !PossiblePrototype->isImplicit()))) {
15996 // The function definition has parameters, so this will change behavior
15997 // in C23. If there is a possible prototype, it comes before the
15998 // function definition.
15999 // FIXME: The declaration may have already been diagnosed as being
16000 // deprecated in GetFullTypeForDeclarator() if it had no arguments, but
16001 // there's no way to test for the "changes behavior" condition in
16002 // SemaType.cpp when forming the declaration's function type. So, we do
16003 // this awkward dance instead.
16005 // If we have a possible prototype and it declares a function with a
16006 // prototype, we don't want to diagnose it; if we have a possible
16007 // prototype and it has no prototype, it may have already been
16008 // diagnosed in SemaType.cpp as deprecated depending on whether
16009 // -Wstrict-prototypes is enabled. If we already warned about it being
16010 // deprecated, add a note that it also changes behavior. If we didn't
16011 // warn about it being deprecated (because the diagnostic is not
16012 // enabled), warn now that it is deprecated and changes behavior.
16014 // This K&R C function definition definitely changes behavior in C23,
16015 // so diagnose it.
16016 Diag(FD->getLocation(), diag::warn_non_prototype_changes_behavior)
16017 << /*definition*/ 1 << /* not supported in C23 */ 0;
16019 // If we have a possible prototype for the function which is a user-
16020 // visible declaration, we already tested that it has no prototype.
16021 // This will change behavior in C23. This gets a warning rather than a
16022 // note because it's the same behavior-changing problem as with the
16023 // definition.
16024 if (PossiblePrototype)
16025 Diag(PossiblePrototype->getLocation(),
16026 diag::warn_non_prototype_changes_behavior)
16027 << /*declaration*/ 0 << /* conflicting */ 1 << /*subsequent*/ 1
16028 << /*definition*/ 1;
16031 // Warn on CPUDispatch with an actual body.
16032 if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
16033 if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
16034 if (!CmpndBody->body_empty())
16035 Diag(CmpndBody->body_front()->getBeginLoc(),
16036 diag::warn_dispatch_body_ignored);
16038 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
16039 const CXXMethodDecl *KeyFunction;
16040 if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
16041 MD->isVirtual() &&
16042 (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
16043 MD == KeyFunction->getCanonicalDecl()) {
16044 // Update the key-function state if necessary for this ABI.
16045 if (FD->isInlined() &&
16046 !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
16047 Context.setNonKeyFunction(MD);
16049 // If the newly-chosen key function is already defined, then we
16050 // need to mark the vtable as used retroactively.
16051 KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
16052 const FunctionDecl *Definition;
16053 if (KeyFunction && KeyFunction->isDefined(Definition))
16054 MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
16055 } else {
16056 // We just defined they key function; mark the vtable as used.
16057 MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
16062 assert(
16063 (FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
16064 "Function parsing confused");
16065 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
16066 assert(MD == getCurMethodDecl() && "Method parsing confused");
16067 MD->setBody(Body);
16068 if (!MD->isInvalidDecl()) {
16069 DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
16070 MD->getReturnType(), MD);
16072 if (Body)
16073 computeNRVO(Body, FSI);
16075 if (FSI->ObjCShouldCallSuper) {
16076 Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
16077 << MD->getSelector().getAsString();
16078 FSI->ObjCShouldCallSuper = false;
16080 if (FSI->ObjCWarnForNoDesignatedInitChain) {
16081 const ObjCMethodDecl *InitMethod = nullptr;
16082 bool isDesignated =
16083 MD->isDesignatedInitializerForTheInterface(&InitMethod);
16084 assert(isDesignated && InitMethod);
16085 (void)isDesignated;
16087 auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
16088 auto IFace = MD->getClassInterface();
16089 if (!IFace)
16090 return false;
16091 auto SuperD = IFace->getSuperClass();
16092 if (!SuperD)
16093 return false;
16094 return SuperD->getIdentifier() ==
16095 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
16097 // Don't issue this warning for unavailable inits or direct subclasses
16098 // of NSObject.
16099 if (!MD->isUnavailable() && !superIsNSObject(MD)) {
16100 Diag(MD->getLocation(),
16101 diag::warn_objc_designated_init_missing_super_call);
16102 Diag(InitMethod->getLocation(),
16103 diag::note_objc_designated_init_marked_here);
16105 FSI->ObjCWarnForNoDesignatedInitChain = false;
16107 if (FSI->ObjCWarnForNoInitDelegation) {
16108 // Don't issue this warning for unavaialable inits.
16109 if (!MD->isUnavailable())
16110 Diag(MD->getLocation(),
16111 diag::warn_objc_secondary_init_missing_init_call);
16112 FSI->ObjCWarnForNoInitDelegation = false;
16115 diagnoseImplicitlyRetainedSelf(*this);
16116 } else {
16117 // Parsing the function declaration failed in some way. Pop the fake scope
16118 // we pushed on.
16119 PopFunctionScopeInfo(ActivePolicy, dcl);
16120 return nullptr;
16123 if (Body && FSI->HasPotentialAvailabilityViolations)
16124 DiagnoseUnguardedAvailabilityViolations(dcl);
16126 assert(!FSI->ObjCShouldCallSuper &&
16127 "This should only be set for ObjC methods, which should have been "
16128 "handled in the block above.");
16130 // Verify and clean out per-function state.
16131 if (Body && (!FD || !FD->isDefaulted())) {
16132 // C++ constructors that have function-try-blocks can't have return
16133 // statements in the handlers of that block. (C++ [except.handle]p14)
16134 // Verify this.
16135 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
16136 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
16138 // Verify that gotos and switch cases don't jump into scopes illegally.
16139 if (FSI->NeedsScopeChecking() && !PP.isCodeCompletionEnabled())
16140 DiagnoseInvalidJumps(Body);
16142 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
16143 if (!Destructor->getParent()->isDependentType())
16144 CheckDestructor(Destructor);
16146 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
16147 Destructor->getParent());
16150 // If any errors have occurred, clear out any temporaries that may have
16151 // been leftover. This ensures that these temporaries won't be picked up
16152 // for deletion in some later function.
16153 if (hasUncompilableErrorOccurred() ||
16154 hasAnyUnrecoverableErrorsInThisFunction() ||
16155 getDiagnostics().getSuppressAllDiagnostics()) {
16156 DiscardCleanupsInEvaluationContext();
16158 if (!hasUncompilableErrorOccurred() && !isa<FunctionTemplateDecl>(dcl)) {
16159 // Since the body is valid, issue any analysis-based warnings that are
16160 // enabled.
16161 ActivePolicy = &WP;
16164 if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
16165 !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose))
16166 FD->setInvalidDecl();
16168 if (FD && FD->hasAttr<NakedAttr>()) {
16169 for (const Stmt *S : Body->children()) {
16170 // Allow local register variables without initializer as they don't
16171 // require prologue.
16172 bool RegisterVariables = false;
16173 if (auto *DS = dyn_cast<DeclStmt>(S)) {
16174 for (const auto *Decl : DS->decls()) {
16175 if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
16176 RegisterVariables =
16177 Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
16178 if (!RegisterVariables)
16179 break;
16183 if (RegisterVariables)
16184 continue;
16185 if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
16186 Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
16187 Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
16188 FD->setInvalidDecl();
16189 break;
16194 assert(ExprCleanupObjects.size() ==
16195 ExprEvalContexts.back().NumCleanupObjects &&
16196 "Leftover temporaries in function");
16197 assert(!Cleanup.exprNeedsCleanups() &&
16198 "Unaccounted cleanups in function");
16199 assert(MaybeODRUseExprs.empty() &&
16200 "Leftover expressions for odr-use checking");
16202 } // Pops the ExitFunctionBodyRAII scope, which needs to happen before we pop
16203 // the declaration context below. Otherwise, we're unable to transform
16204 // 'this' expressions when transforming immediate context functions.
16206 if (!IsInstantiation)
16207 PopDeclContext();
16209 PopFunctionScopeInfo(ActivePolicy, dcl);
16210 // If any errors have occurred, clear out any temporaries that may have
16211 // been leftover. This ensures that these temporaries won't be picked up for
16212 // deletion in some later function.
16213 if (hasUncompilableErrorOccurred()) {
16214 DiscardCleanupsInEvaluationContext();
16217 if (FD && ((LangOpts.OpenMP && (LangOpts.OpenMPIsTargetDevice ||
16218 !LangOpts.OMPTargetTriples.empty())) ||
16219 LangOpts.CUDA || LangOpts.SYCLIsDevice)) {
16220 auto ES = getEmissionStatus(FD);
16221 if (ES == Sema::FunctionEmissionStatus::Emitted ||
16222 ES == Sema::FunctionEmissionStatus::Unknown)
16223 DeclsToCheckForDeferredDiags.insert(FD);
16226 if (FD && !FD->isDeleted())
16227 checkTypeSupport(FD->getType(), FD->getLocation(), FD);
16229 return dcl;
16232 /// When we finish delayed parsing of an attribute, we must attach it to the
16233 /// relevant Decl.
16234 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
16235 ParsedAttributes &Attrs) {
16236 // Always attach attributes to the underlying decl.
16237 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
16238 D = TD->getTemplatedDecl();
16239 ProcessDeclAttributeList(S, D, Attrs);
16241 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
16242 if (Method->isStatic())
16243 checkThisInStaticMemberFunctionAttributes(Method);
16246 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
16247 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
16248 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
16249 IdentifierInfo &II, Scope *S) {
16250 // It is not valid to implicitly define a function in C23.
16251 assert(LangOpts.implicitFunctionsAllowed() &&
16252 "Implicit function declarations aren't allowed in this language mode");
16254 // Find the scope in which the identifier is injected and the corresponding
16255 // DeclContext.
16256 // FIXME: C89 does not say what happens if there is no enclosing block scope.
16257 // In that case, we inject the declaration into the translation unit scope
16258 // instead.
16259 Scope *BlockScope = S;
16260 while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
16261 BlockScope = BlockScope->getParent();
16263 // Loop until we find a DeclContext that is either a function/method or the
16264 // translation unit, which are the only two valid places to implicitly define
16265 // a function. This avoids accidentally defining the function within a tag
16266 // declaration, for example.
16267 Scope *ContextScope = BlockScope;
16268 while (!ContextScope->getEntity() ||
16269 (!ContextScope->getEntity()->isFunctionOrMethod() &&
16270 !ContextScope->getEntity()->isTranslationUnit()))
16271 ContextScope = ContextScope->getParent();
16272 ContextRAII SavedContext(*this, ContextScope->getEntity());
16274 // Before we produce a declaration for an implicitly defined
16275 // function, see whether there was a locally-scoped declaration of
16276 // this name as a function or variable. If so, use that
16277 // (non-visible) declaration, and complain about it.
16278 NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
16279 if (ExternCPrev) {
16280 // We still need to inject the function into the enclosing block scope so
16281 // that later (non-call) uses can see it.
16282 PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
16284 // C89 footnote 38:
16285 // If in fact it is not defined as having type "function returning int",
16286 // the behavior is undefined.
16287 if (!isa<FunctionDecl>(ExternCPrev) ||
16288 !Context.typesAreCompatible(
16289 cast<FunctionDecl>(ExternCPrev)->getType(),
16290 Context.getFunctionNoProtoType(Context.IntTy))) {
16291 Diag(Loc, diag::ext_use_out_of_scope_declaration)
16292 << ExternCPrev << !getLangOpts().C99;
16293 Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
16294 return ExternCPrev;
16298 // Extension in C99 (defaults to error). Legal in C89, but warn about it.
16299 unsigned diag_id;
16300 if (II.getName().startswith("__builtin_"))
16301 diag_id = diag::warn_builtin_unknown;
16302 // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
16303 else if (getLangOpts().C99)
16304 diag_id = diag::ext_implicit_function_decl_c99;
16305 else
16306 diag_id = diag::warn_implicit_function_decl;
16308 TypoCorrection Corrected;
16309 // Because typo correction is expensive, only do it if the implicit
16310 // function declaration is going to be treated as an error.
16312 // Perform the correction before issuing the main diagnostic, as some
16313 // consumers use typo-correction callbacks to enhance the main diagnostic.
16314 if (S && !ExternCPrev &&
16315 (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error)) {
16316 DeclFilterCCC<FunctionDecl> CCC{};
16317 Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName,
16318 S, nullptr, CCC, CTK_NonError);
16321 Diag(Loc, diag_id) << &II;
16322 if (Corrected) {
16323 // If the correction is going to suggest an implicitly defined function,
16324 // skip the correction as not being a particularly good idea.
16325 bool Diagnose = true;
16326 if (const auto *D = Corrected.getCorrectionDecl())
16327 Diagnose = !D->isImplicit();
16328 if (Diagnose)
16329 diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
16330 /*ErrorRecovery*/ false);
16333 // If we found a prior declaration of this function, don't bother building
16334 // another one. We've already pushed that one into scope, so there's nothing
16335 // more to do.
16336 if (ExternCPrev)
16337 return ExternCPrev;
16339 // Set a Declarator for the implicit definition: int foo();
16340 const char *Dummy;
16341 AttributeFactory attrFactory;
16342 DeclSpec DS(attrFactory);
16343 unsigned DiagID;
16344 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
16345 Context.getPrintingPolicy());
16346 (void)Error; // Silence warning.
16347 assert(!Error && "Error setting up implicit decl!");
16348 SourceLocation NoLoc;
16349 Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::Block);
16350 D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
16351 /*IsAmbiguous=*/false,
16352 /*LParenLoc=*/NoLoc,
16353 /*Params=*/nullptr,
16354 /*NumParams=*/0,
16355 /*EllipsisLoc=*/NoLoc,
16356 /*RParenLoc=*/NoLoc,
16357 /*RefQualifierIsLvalueRef=*/true,
16358 /*RefQualifierLoc=*/NoLoc,
16359 /*MutableLoc=*/NoLoc, EST_None,
16360 /*ESpecRange=*/SourceRange(),
16361 /*Exceptions=*/nullptr,
16362 /*ExceptionRanges=*/nullptr,
16363 /*NumExceptions=*/0,
16364 /*NoexceptExpr=*/nullptr,
16365 /*ExceptionSpecTokens=*/nullptr,
16366 /*DeclsInPrototype=*/std::nullopt,
16367 Loc, Loc, D),
16368 std::move(DS.getAttributes()), SourceLocation());
16369 D.SetIdentifier(&II, Loc);
16371 // Insert this function into the enclosing block scope.
16372 FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
16373 FD->setImplicit();
16375 AddKnownFunctionAttributes(FD);
16377 return FD;
16380 /// If this function is a C++ replaceable global allocation function
16381 /// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]),
16382 /// adds any function attributes that we know a priori based on the standard.
16384 /// We need to check for duplicate attributes both here and where user-written
16385 /// attributes are applied to declarations.
16386 void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
16387 FunctionDecl *FD) {
16388 if (FD->isInvalidDecl())
16389 return;
16391 if (FD->getDeclName().getCXXOverloadedOperator() != OO_New &&
16392 FD->getDeclName().getCXXOverloadedOperator() != OO_Array_New)
16393 return;
16395 std::optional<unsigned> AlignmentParam;
16396 bool IsNothrow = false;
16397 if (!FD->isReplaceableGlobalAllocationFunction(&AlignmentParam, &IsNothrow))
16398 return;
16400 // C++2a [basic.stc.dynamic.allocation]p4:
16401 // An allocation function that has a non-throwing exception specification
16402 // indicates failure by returning a null pointer value. Any other allocation
16403 // function never returns a null pointer value and indicates failure only by
16404 // throwing an exception [...]
16406 // However, -fcheck-new invalidates this possible assumption, so don't add
16407 // NonNull when that is enabled.
16408 if (!IsNothrow && !FD->hasAttr<ReturnsNonNullAttr>() &&
16409 !getLangOpts().CheckNew)
16410 FD->addAttr(ReturnsNonNullAttr::CreateImplicit(Context, FD->getLocation()));
16412 // C++2a [basic.stc.dynamic.allocation]p2:
16413 // An allocation function attempts to allocate the requested amount of
16414 // storage. [...] If the request succeeds, the value returned by a
16415 // replaceable allocation function is a [...] pointer value p0 different
16416 // from any previously returned value p1 [...]
16418 // However, this particular information is being added in codegen,
16419 // because there is an opt-out switch for it (-fno-assume-sane-operator-new)
16421 // C++2a [basic.stc.dynamic.allocation]p2:
16422 // An allocation function attempts to allocate the requested amount of
16423 // storage. If it is successful, it returns the address of the start of a
16424 // block of storage whose length in bytes is at least as large as the
16425 // requested size.
16426 if (!FD->hasAttr<AllocSizeAttr>()) {
16427 FD->addAttr(AllocSizeAttr::CreateImplicit(
16428 Context, /*ElemSizeParam=*/ParamIdx(1, FD),
16429 /*NumElemsParam=*/ParamIdx(), FD->getLocation()));
16432 // C++2a [basic.stc.dynamic.allocation]p3:
16433 // For an allocation function [...], the pointer returned on a successful
16434 // call shall represent the address of storage that is aligned as follows:
16435 // (3.1) If the allocation function takes an argument of type
16436 // std​::​align_­val_­t, the storage will have the alignment
16437 // specified by the value of this argument.
16438 if (AlignmentParam && !FD->hasAttr<AllocAlignAttr>()) {
16439 FD->addAttr(AllocAlignAttr::CreateImplicit(
16440 Context, ParamIdx(*AlignmentParam, FD), FD->getLocation()));
16443 // FIXME:
16444 // C++2a [basic.stc.dynamic.allocation]p3:
16445 // For an allocation function [...], the pointer returned on a successful
16446 // call shall represent the address of storage that is aligned as follows:
16447 // (3.2) Otherwise, if the allocation function is named operator new[],
16448 // the storage is aligned for any object that does not have
16449 // new-extended alignment ([basic.align]) and is no larger than the
16450 // requested size.
16451 // (3.3) Otherwise, the storage is aligned for any object that does not
16452 // have new-extended alignment and is of the requested size.
16455 /// Adds any function attributes that we know a priori based on
16456 /// the declaration of this function.
16458 /// These attributes can apply both to implicitly-declared builtins
16459 /// (like __builtin___printf_chk) or to library-declared functions
16460 /// like NSLog or printf.
16462 /// We need to check for duplicate attributes both here and where user-written
16463 /// attributes are applied to declarations.
16464 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
16465 if (FD->isInvalidDecl())
16466 return;
16468 // If this is a built-in function, map its builtin attributes to
16469 // actual attributes.
16470 if (unsigned BuiltinID = FD->getBuiltinID()) {
16471 // Handle printf-formatting attributes.
16472 unsigned FormatIdx;
16473 bool HasVAListArg;
16474 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
16475 if (!FD->hasAttr<FormatAttr>()) {
16476 const char *fmt = "printf";
16477 unsigned int NumParams = FD->getNumParams();
16478 if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
16479 FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
16480 fmt = "NSString";
16481 FD->addAttr(FormatAttr::CreateImplicit(Context,
16482 &Context.Idents.get(fmt),
16483 FormatIdx+1,
16484 HasVAListArg ? 0 : FormatIdx+2,
16485 FD->getLocation()));
16488 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
16489 HasVAListArg)) {
16490 if (!FD->hasAttr<FormatAttr>())
16491 FD->addAttr(FormatAttr::CreateImplicit(Context,
16492 &Context.Idents.get("scanf"),
16493 FormatIdx+1,
16494 HasVAListArg ? 0 : FormatIdx+2,
16495 FD->getLocation()));
16498 // Handle automatically recognized callbacks.
16499 SmallVector<int, 4> Encoding;
16500 if (!FD->hasAttr<CallbackAttr>() &&
16501 Context.BuiltinInfo.performsCallback(BuiltinID, Encoding))
16502 FD->addAttr(CallbackAttr::CreateImplicit(
16503 Context, Encoding.data(), Encoding.size(), FD->getLocation()));
16505 // Mark const if we don't care about errno and/or floating point exceptions
16506 // that are the only thing preventing the function from being const. This
16507 // allows IRgen to use LLVM intrinsics for such functions.
16508 bool NoExceptions =
16509 getLangOpts().getDefaultExceptionMode() == LangOptions::FPE_Ignore;
16510 bool ConstWithoutErrnoAndExceptions =
16511 Context.BuiltinInfo.isConstWithoutErrnoAndExceptions(BuiltinID);
16512 bool ConstWithoutExceptions =
16513 Context.BuiltinInfo.isConstWithoutExceptions(BuiltinID);
16514 if (!FD->hasAttr<ConstAttr>() &&
16515 (ConstWithoutErrnoAndExceptions || ConstWithoutExceptions) &&
16516 (!ConstWithoutErrnoAndExceptions ||
16517 (!getLangOpts().MathErrno && NoExceptions)) &&
16518 (!ConstWithoutExceptions || NoExceptions))
16519 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
16521 // We make "fma" on GNU or Windows const because we know it does not set
16522 // errno in those environments even though it could set errno based on the
16523 // C standard.
16524 const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
16525 if ((Trip.isGNUEnvironment() || Trip.isOSMSVCRT()) &&
16526 !FD->hasAttr<ConstAttr>()) {
16527 switch (BuiltinID) {
16528 case Builtin::BI__builtin_fma:
16529 case Builtin::BI__builtin_fmaf:
16530 case Builtin::BI__builtin_fmal:
16531 case Builtin::BIfma:
16532 case Builtin::BIfmaf:
16533 case Builtin::BIfmal:
16534 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
16535 break;
16536 default:
16537 break;
16541 if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
16542 !FD->hasAttr<ReturnsTwiceAttr>())
16543 FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
16544 FD->getLocation()));
16545 if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
16546 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
16547 if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
16548 FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
16549 if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
16550 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
16551 if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
16552 !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
16553 // Add the appropriate attribute, depending on the CUDA compilation mode
16554 // and which target the builtin belongs to. For example, during host
16555 // compilation, aux builtins are __device__, while the rest are __host__.
16556 if (getLangOpts().CUDAIsDevice !=
16557 Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
16558 FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
16559 else
16560 FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
16563 // Add known guaranteed alignment for allocation functions.
16564 switch (BuiltinID) {
16565 case Builtin::BImemalign:
16566 case Builtin::BIaligned_alloc:
16567 if (!FD->hasAttr<AllocAlignAttr>())
16568 FD->addAttr(AllocAlignAttr::CreateImplicit(Context, ParamIdx(1, FD),
16569 FD->getLocation()));
16570 break;
16571 default:
16572 break;
16575 // Add allocsize attribute for allocation functions.
16576 switch (BuiltinID) {
16577 case Builtin::BIcalloc:
16578 FD->addAttr(AllocSizeAttr::CreateImplicit(
16579 Context, ParamIdx(1, FD), ParamIdx(2, FD), FD->getLocation()));
16580 break;
16581 case Builtin::BImemalign:
16582 case Builtin::BIaligned_alloc:
16583 case Builtin::BIrealloc:
16584 FD->addAttr(AllocSizeAttr::CreateImplicit(Context, ParamIdx(2, FD),
16585 ParamIdx(), FD->getLocation()));
16586 break;
16587 case Builtin::BImalloc:
16588 FD->addAttr(AllocSizeAttr::CreateImplicit(Context, ParamIdx(1, FD),
16589 ParamIdx(), FD->getLocation()));
16590 break;
16591 default:
16592 break;
16595 // Add lifetime attribute to std::move, std::fowrard et al.
16596 switch (BuiltinID) {
16597 case Builtin::BIaddressof:
16598 case Builtin::BI__addressof:
16599 case Builtin::BI__builtin_addressof:
16600 case Builtin::BIas_const:
16601 case Builtin::BIforward:
16602 case Builtin::BIforward_like:
16603 case Builtin::BImove:
16604 case Builtin::BImove_if_noexcept:
16605 if (ParmVarDecl *P = FD->getParamDecl(0u);
16606 !P->hasAttr<LifetimeBoundAttr>())
16607 P->addAttr(
16608 LifetimeBoundAttr::CreateImplicit(Context, FD->getLocation()));
16609 break;
16610 default:
16611 break;
16615 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD);
16617 // If C++ exceptions are enabled but we are told extern "C" functions cannot
16618 // throw, add an implicit nothrow attribute to any extern "C" function we come
16619 // across.
16620 if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
16621 FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
16622 const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
16623 if (!FPT || FPT->getExceptionSpecType() == EST_None)
16624 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
16627 IdentifierInfo *Name = FD->getIdentifier();
16628 if (!Name)
16629 return;
16630 if ((!getLangOpts().CPlusPlus && FD->getDeclContext()->isTranslationUnit()) ||
16631 (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
16632 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
16633 LinkageSpecLanguageIDs::C)) {
16634 // Okay: this could be a libc/libm/Objective-C function we know
16635 // about.
16636 } else
16637 return;
16639 if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
16640 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
16641 // target-specific builtins, perhaps?
16642 if (!FD->hasAttr<FormatAttr>())
16643 FD->addAttr(FormatAttr::CreateImplicit(Context,
16644 &Context.Idents.get("printf"), 2,
16645 Name->isStr("vasprintf") ? 0 : 3,
16646 FD->getLocation()));
16649 if (Name->isStr("__CFStringMakeConstantString")) {
16650 // We already have a __builtin___CFStringMakeConstantString,
16651 // but builds that use -fno-constant-cfstrings don't go through that.
16652 if (!FD->hasAttr<FormatArgAttr>())
16653 FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
16654 FD->getLocation()));
16658 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
16659 TypeSourceInfo *TInfo) {
16660 assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
16661 assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
16663 if (!TInfo) {
16664 assert(D.isInvalidType() && "no declarator info for valid type");
16665 TInfo = Context.getTrivialTypeSourceInfo(T);
16668 // Scope manipulation handled by caller.
16669 TypedefDecl *NewTD =
16670 TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
16671 D.getIdentifierLoc(), D.getIdentifier(), TInfo);
16673 // Bail out immediately if we have an invalid declaration.
16674 if (D.isInvalidType()) {
16675 NewTD->setInvalidDecl();
16676 return NewTD;
16679 if (D.getDeclSpec().isModulePrivateSpecified()) {
16680 if (CurContext->isFunctionOrMethod())
16681 Diag(NewTD->getLocation(), diag::err_module_private_local)
16682 << 2 << NewTD
16683 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
16684 << FixItHint::CreateRemoval(
16685 D.getDeclSpec().getModulePrivateSpecLoc());
16686 else
16687 NewTD->setModulePrivate();
16690 // C++ [dcl.typedef]p8:
16691 // If the typedef declaration defines an unnamed class (or
16692 // enum), the first typedef-name declared by the declaration
16693 // to be that class type (or enum type) is used to denote the
16694 // class type (or enum type) for linkage purposes only.
16695 // We need to check whether the type was declared in the declaration.
16696 switch (D.getDeclSpec().getTypeSpecType()) {
16697 case TST_enum:
16698 case TST_struct:
16699 case TST_interface:
16700 case TST_union:
16701 case TST_class: {
16702 TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
16703 setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
16704 break;
16707 default:
16708 break;
16711 return NewTD;
16714 /// Check that this is a valid underlying type for an enum declaration.
16715 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
16716 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
16717 QualType T = TI->getType();
16719 if (T->isDependentType())
16720 return false;
16722 // This doesn't use 'isIntegralType' despite the error message mentioning
16723 // integral type because isIntegralType would also allow enum types in C.
16724 if (const BuiltinType *BT = T->getAs<BuiltinType>())
16725 if (BT->isInteger())
16726 return false;
16728 return Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
16729 << T << T->isBitIntType();
16732 /// Check whether this is a valid redeclaration of a previous enumeration.
16733 /// \return true if the redeclaration was invalid.
16734 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
16735 QualType EnumUnderlyingTy, bool IsFixed,
16736 const EnumDecl *Prev) {
16737 if (IsScoped != Prev->isScoped()) {
16738 Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
16739 << Prev->isScoped();
16740 Diag(Prev->getLocation(), diag::note_previous_declaration);
16741 return true;
16744 if (IsFixed && Prev->isFixed()) {
16745 if (!EnumUnderlyingTy->isDependentType() &&
16746 !Prev->getIntegerType()->isDependentType() &&
16747 !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
16748 Prev->getIntegerType())) {
16749 // TODO: Highlight the underlying type of the redeclaration.
16750 Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
16751 << EnumUnderlyingTy << Prev->getIntegerType();
16752 Diag(Prev->getLocation(), diag::note_previous_declaration)
16753 << Prev->getIntegerTypeRange();
16754 return true;
16756 } else if (IsFixed != Prev->isFixed()) {
16757 Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
16758 << Prev->isFixed();
16759 Diag(Prev->getLocation(), diag::note_previous_declaration);
16760 return true;
16763 return false;
16766 /// Get diagnostic %select index for tag kind for
16767 /// redeclaration diagnostic message.
16768 /// WARNING: Indexes apply to particular diagnostics only!
16770 /// \returns diagnostic %select index.
16771 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
16772 switch (Tag) {
16773 case TTK_Struct: return 0;
16774 case TTK_Interface: return 1;
16775 case TTK_Class: return 2;
16776 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
16780 /// Determine if tag kind is a class-key compatible with
16781 /// class for redeclaration (class, struct, or __interface).
16783 /// \returns true iff the tag kind is compatible.
16784 static bool isClassCompatTagKind(TagTypeKind Tag)
16786 return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
16789 Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
16790 TagTypeKind TTK) {
16791 if (isa<TypedefDecl>(PrevDecl))
16792 return NTK_Typedef;
16793 else if (isa<TypeAliasDecl>(PrevDecl))
16794 return NTK_TypeAlias;
16795 else if (isa<ClassTemplateDecl>(PrevDecl))
16796 return NTK_Template;
16797 else if (isa<TypeAliasTemplateDecl>(PrevDecl))
16798 return NTK_TypeAliasTemplate;
16799 else if (isa<TemplateTemplateParmDecl>(PrevDecl))
16800 return NTK_TemplateTemplateArgument;
16801 switch (TTK) {
16802 case TTK_Struct:
16803 case TTK_Interface:
16804 case TTK_Class:
16805 return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
16806 case TTK_Union:
16807 return NTK_NonUnion;
16808 case TTK_Enum:
16809 return NTK_NonEnum;
16811 llvm_unreachable("invalid TTK");
16814 /// Determine whether a tag with a given kind is acceptable
16815 /// as a redeclaration of the given tag declaration.
16817 /// \returns true if the new tag kind is acceptable, false otherwise.
16818 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
16819 TagTypeKind NewTag, bool isDefinition,
16820 SourceLocation NewTagLoc,
16821 const IdentifierInfo *Name) {
16822 // C++ [dcl.type.elab]p3:
16823 // The class-key or enum keyword present in the
16824 // elaborated-type-specifier shall agree in kind with the
16825 // declaration to which the name in the elaborated-type-specifier
16826 // refers. This rule also applies to the form of
16827 // elaborated-type-specifier that declares a class-name or
16828 // friend class since it can be construed as referring to the
16829 // definition of the class. Thus, in any
16830 // elaborated-type-specifier, the enum keyword shall be used to
16831 // refer to an enumeration (7.2), the union class-key shall be
16832 // used to refer to a union (clause 9), and either the class or
16833 // struct class-key shall be used to refer to a class (clause 9)
16834 // declared using the class or struct class-key.
16835 TagTypeKind OldTag = Previous->getTagKind();
16836 if (OldTag != NewTag &&
16837 !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
16838 return false;
16840 // Tags are compatible, but we might still want to warn on mismatched tags.
16841 // Non-class tags can't be mismatched at this point.
16842 if (!isClassCompatTagKind(NewTag))
16843 return true;
16845 // Declarations for which -Wmismatched-tags is disabled are entirely ignored
16846 // by our warning analysis. We don't want to warn about mismatches with (eg)
16847 // declarations in system headers that are designed to be specialized, but if
16848 // a user asks us to warn, we should warn if their code contains mismatched
16849 // declarations.
16850 auto IsIgnoredLoc = [&](SourceLocation Loc) {
16851 return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
16852 Loc);
16854 if (IsIgnoredLoc(NewTagLoc))
16855 return true;
16857 auto IsIgnored = [&](const TagDecl *Tag) {
16858 return IsIgnoredLoc(Tag->getLocation());
16860 while (IsIgnored(Previous)) {
16861 Previous = Previous->getPreviousDecl();
16862 if (!Previous)
16863 return true;
16864 OldTag = Previous->getTagKind();
16867 bool isTemplate = false;
16868 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
16869 isTemplate = Record->getDescribedClassTemplate();
16871 if (inTemplateInstantiation()) {
16872 if (OldTag != NewTag) {
16873 // In a template instantiation, do not offer fix-its for tag mismatches
16874 // since they usually mess up the template instead of fixing the problem.
16875 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
16876 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
16877 << getRedeclDiagFromTagKind(OldTag);
16878 // FIXME: Note previous location?
16880 return true;
16883 if (isDefinition) {
16884 // On definitions, check all previous tags and issue a fix-it for each
16885 // one that doesn't match the current tag.
16886 if (Previous->getDefinition()) {
16887 // Don't suggest fix-its for redefinitions.
16888 return true;
16891 bool previousMismatch = false;
16892 for (const TagDecl *I : Previous->redecls()) {
16893 if (I->getTagKind() != NewTag) {
16894 // Ignore previous declarations for which the warning was disabled.
16895 if (IsIgnored(I))
16896 continue;
16898 if (!previousMismatch) {
16899 previousMismatch = true;
16900 Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
16901 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
16902 << getRedeclDiagFromTagKind(I->getTagKind());
16904 Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
16905 << getRedeclDiagFromTagKind(NewTag)
16906 << FixItHint::CreateReplacement(I->getInnerLocStart(),
16907 TypeWithKeyword::getTagTypeKindName(NewTag));
16910 return true;
16913 // Identify the prevailing tag kind: this is the kind of the definition (if
16914 // there is a non-ignored definition), or otherwise the kind of the prior
16915 // (non-ignored) declaration.
16916 const TagDecl *PrevDef = Previous->getDefinition();
16917 if (PrevDef && IsIgnored(PrevDef))
16918 PrevDef = nullptr;
16919 const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
16920 if (Redecl->getTagKind() != NewTag) {
16921 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
16922 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
16923 << getRedeclDiagFromTagKind(OldTag);
16924 Diag(Redecl->getLocation(), diag::note_previous_use);
16926 // If there is a previous definition, suggest a fix-it.
16927 if (PrevDef) {
16928 Diag(NewTagLoc, diag::note_struct_class_suggestion)
16929 << getRedeclDiagFromTagKind(Redecl->getTagKind())
16930 << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
16931 TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
16935 return true;
16938 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
16939 /// from an outer enclosing namespace or file scope inside a friend declaration.
16940 /// This should provide the commented out code in the following snippet:
16941 /// namespace N {
16942 /// struct X;
16943 /// namespace M {
16944 /// struct Y { friend struct /*N::*/ X; };
16945 /// }
16946 /// }
16947 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
16948 SourceLocation NameLoc) {
16949 // While the decl is in a namespace, do repeated lookup of that name and see
16950 // if we get the same namespace back. If we do not, continue until
16951 // translation unit scope, at which point we have a fully qualified NNS.
16952 SmallVector<IdentifierInfo *, 4> Namespaces;
16953 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
16954 for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
16955 // This tag should be declared in a namespace, which can only be enclosed by
16956 // other namespaces. Bail if there's an anonymous namespace in the chain.
16957 NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
16958 if (!Namespace || Namespace->isAnonymousNamespace())
16959 return FixItHint();
16960 IdentifierInfo *II = Namespace->getIdentifier();
16961 Namespaces.push_back(II);
16962 NamedDecl *Lookup = SemaRef.LookupSingleName(
16963 S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
16964 if (Lookup == Namespace)
16965 break;
16968 // Once we have all the namespaces, reverse them to go outermost first, and
16969 // build an NNS.
16970 SmallString<64> Insertion;
16971 llvm::raw_svector_ostream OS(Insertion);
16972 if (DC->isTranslationUnit())
16973 OS << "::";
16974 std::reverse(Namespaces.begin(), Namespaces.end());
16975 for (auto *II : Namespaces)
16976 OS << II->getName() << "::";
16977 return FixItHint::CreateInsertion(NameLoc, Insertion);
16980 /// Determine whether a tag originally declared in context \p OldDC can
16981 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup
16982 /// found a declaration in \p OldDC as a previous decl, perhaps through a
16983 /// using-declaration).
16984 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
16985 DeclContext *NewDC) {
16986 OldDC = OldDC->getRedeclContext();
16987 NewDC = NewDC->getRedeclContext();
16989 if (OldDC->Equals(NewDC))
16990 return true;
16992 // In MSVC mode, we allow a redeclaration if the contexts are related (either
16993 // encloses the other).
16994 if (S.getLangOpts().MSVCCompat &&
16995 (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
16996 return true;
16998 return false;
17001 /// This is invoked when we see 'struct foo' or 'struct {'. In the
17002 /// former case, Name will be non-null. In the later case, Name will be null.
17003 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
17004 /// reference/declaration/definition of a tag.
17006 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
17007 /// trailing-type-specifier) other than one in an alias-declaration.
17009 /// \param SkipBody If non-null, will be set to indicate if the caller should
17010 /// skip the definition of this tag and treat it as if it were a declaration.
17011 DeclResult
17012 Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
17013 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
17014 const ParsedAttributesView &Attrs, AccessSpecifier AS,
17015 SourceLocation ModulePrivateLoc,
17016 MultiTemplateParamsArg TemplateParameterLists, bool &OwnedDecl,
17017 bool &IsDependent, SourceLocation ScopedEnumKWLoc,
17018 bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
17019 bool IsTypeSpecifier, bool IsTemplateParamOrArg,
17020 OffsetOfKind OOK, SkipBodyInfo *SkipBody) {
17021 // If this is not a definition, it must have a name.
17022 IdentifierInfo *OrigName = Name;
17023 assert((Name != nullptr || TUK == TUK_Definition) &&
17024 "Nameless record must be a definition!");
17025 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
17027 OwnedDecl = false;
17028 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
17029 bool ScopedEnum = ScopedEnumKWLoc.isValid();
17031 // FIXME: Check member specializations more carefully.
17032 bool isMemberSpecialization = false;
17033 bool Invalid = false;
17035 // We only need to do this matching if we have template parameters
17036 // or a scope specifier, which also conveniently avoids this work
17037 // for non-C++ cases.
17038 if (TemplateParameterLists.size() > 0 ||
17039 (SS.isNotEmpty() && TUK != TUK_Reference)) {
17040 if (TemplateParameterList *TemplateParams =
17041 MatchTemplateParametersToScopeSpecifier(
17042 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
17043 TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
17044 if (Kind == TTK_Enum) {
17045 Diag(KWLoc, diag::err_enum_template);
17046 return true;
17049 if (TemplateParams->size() > 0) {
17050 // This is a declaration or definition of a class template (which may
17051 // be a member of another template).
17053 if (Invalid)
17054 return true;
17056 OwnedDecl = false;
17057 DeclResult Result = CheckClassTemplate(
17058 S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
17059 AS, ModulePrivateLoc,
17060 /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
17061 TemplateParameterLists.data(), SkipBody);
17062 return Result.get();
17063 } else {
17064 // The "template<>" header is extraneous.
17065 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
17066 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
17067 isMemberSpecialization = true;
17071 if (!TemplateParameterLists.empty() && isMemberSpecialization &&
17072 CheckTemplateDeclScope(S, TemplateParameterLists.back()))
17073 return true;
17076 // Figure out the underlying type if this a enum declaration. We need to do
17077 // this early, because it's needed to detect if this is an incompatible
17078 // redeclaration.
17079 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
17080 bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
17082 if (Kind == TTK_Enum) {
17083 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
17084 // No underlying type explicitly specified, or we failed to parse the
17085 // type, default to int.
17086 EnumUnderlying = Context.IntTy.getTypePtr();
17087 } else if (UnderlyingType.get()) {
17088 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
17089 // integral type; any cv-qualification is ignored.
17090 TypeSourceInfo *TI = nullptr;
17091 GetTypeFromParser(UnderlyingType.get(), &TI);
17092 EnumUnderlying = TI;
17094 if (CheckEnumUnderlyingType(TI))
17095 // Recover by falling back to int.
17096 EnumUnderlying = Context.IntTy.getTypePtr();
17098 if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
17099 UPPC_FixedUnderlyingType))
17100 EnumUnderlying = Context.IntTy.getTypePtr();
17102 } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) {
17103 // For MSVC ABI compatibility, unfixed enums must use an underlying type
17104 // of 'int'. However, if this is an unfixed forward declaration, don't set
17105 // the underlying type unless the user enables -fms-compatibility. This
17106 // makes unfixed forward declared enums incomplete and is more conforming.
17107 if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
17108 EnumUnderlying = Context.IntTy.getTypePtr();
17112 DeclContext *SearchDC = CurContext;
17113 DeclContext *DC = CurContext;
17114 bool isStdBadAlloc = false;
17115 bool isStdAlignValT = false;
17117 RedeclarationKind Redecl = forRedeclarationInCurContext();
17118 if (TUK == TUK_Friend || TUK == TUK_Reference)
17119 Redecl = NotForRedeclaration;
17121 /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
17122 /// implemented asks for structural equivalence checking, the returned decl
17123 /// here is passed back to the parser, allowing the tag body to be parsed.
17124 auto createTagFromNewDecl = [&]() -> TagDecl * {
17125 assert(!getLangOpts().CPlusPlus && "not meant for C++ usage");
17126 // If there is an identifier, use the location of the identifier as the
17127 // location of the decl, otherwise use the location of the struct/union
17128 // keyword.
17129 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
17130 TagDecl *New = nullptr;
17132 if (Kind == TTK_Enum) {
17133 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
17134 ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
17135 // If this is an undefined enum, bail.
17136 if (TUK != TUK_Definition && !Invalid)
17137 return nullptr;
17138 if (EnumUnderlying) {
17139 EnumDecl *ED = cast<EnumDecl>(New);
17140 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
17141 ED->setIntegerTypeSourceInfo(TI);
17142 else
17143 ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
17144 QualType EnumTy = ED->getIntegerType();
17145 ED->setPromotionType(Context.isPromotableIntegerType(EnumTy)
17146 ? Context.getPromotedIntegerType(EnumTy)
17147 : EnumTy);
17149 } else { // struct/union
17150 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
17151 nullptr);
17154 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
17155 // Add alignment attributes if necessary; these attributes are checked
17156 // when the ASTContext lays out the structure.
17158 // It is important for implementing the correct semantics that this
17159 // happen here (in ActOnTag). The #pragma pack stack is
17160 // maintained as a result of parser callbacks which can occur at
17161 // many points during the parsing of a struct declaration (because
17162 // the #pragma tokens are effectively skipped over during the
17163 // parsing of the struct).
17164 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
17165 AddAlignmentAttributesForRecord(RD);
17166 AddMsStructLayoutForRecord(RD);
17169 New->setLexicalDeclContext(CurContext);
17170 return New;
17173 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
17174 if (Name && SS.isNotEmpty()) {
17175 // We have a nested-name tag ('struct foo::bar').
17177 // Check for invalid 'foo::'.
17178 if (SS.isInvalid()) {
17179 Name = nullptr;
17180 goto CreateNewDecl;
17183 // If this is a friend or a reference to a class in a dependent
17184 // context, don't try to make a decl for it.
17185 if (TUK == TUK_Friend || TUK == TUK_Reference) {
17186 DC = computeDeclContext(SS, false);
17187 if (!DC) {
17188 IsDependent = true;
17189 return true;
17191 } else {
17192 DC = computeDeclContext(SS, true);
17193 if (!DC) {
17194 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
17195 << SS.getRange();
17196 return true;
17200 if (RequireCompleteDeclContext(SS, DC))
17201 return true;
17203 SearchDC = DC;
17204 // Look-up name inside 'foo::'.
17205 LookupQualifiedName(Previous, DC);
17207 if (Previous.isAmbiguous())
17208 return true;
17210 if (Previous.empty()) {
17211 // Name lookup did not find anything. However, if the
17212 // nested-name-specifier refers to the current instantiation,
17213 // and that current instantiation has any dependent base
17214 // classes, we might find something at instantiation time: treat
17215 // this as a dependent elaborated-type-specifier.
17216 // But this only makes any sense for reference-like lookups.
17217 if (Previous.wasNotFoundInCurrentInstantiation() &&
17218 (TUK == TUK_Reference || TUK == TUK_Friend)) {
17219 IsDependent = true;
17220 return true;
17223 // A tag 'foo::bar' must already exist.
17224 Diag(NameLoc, diag::err_not_tag_in_scope)
17225 << Kind << Name << DC << SS.getRange();
17226 Name = nullptr;
17227 Invalid = true;
17228 goto CreateNewDecl;
17230 } else if (Name) {
17231 // C++14 [class.mem]p14:
17232 // If T is the name of a class, then each of the following shall have a
17233 // name different from T:
17234 // -- every member of class T that is itself a type
17235 if (TUK != TUK_Reference && TUK != TUK_Friend &&
17236 DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
17237 return true;
17239 // If this is a named struct, check to see if there was a previous forward
17240 // declaration or definition.
17241 // FIXME: We're looking into outer scopes here, even when we
17242 // shouldn't be. Doing so can result in ambiguities that we
17243 // shouldn't be diagnosing.
17244 LookupName(Previous, S);
17246 // When declaring or defining a tag, ignore ambiguities introduced
17247 // by types using'ed into this scope.
17248 if (Previous.isAmbiguous() &&
17249 (TUK == TUK_Definition || TUK == TUK_Declaration)) {
17250 LookupResult::Filter F = Previous.makeFilter();
17251 while (F.hasNext()) {
17252 NamedDecl *ND = F.next();
17253 if (!ND->getDeclContext()->getRedeclContext()->Equals(
17254 SearchDC->getRedeclContext()))
17255 F.erase();
17257 F.done();
17260 // C++11 [namespace.memdef]p3:
17261 // If the name in a friend declaration is neither qualified nor
17262 // a template-id and the declaration is a function or an
17263 // elaborated-type-specifier, the lookup to determine whether
17264 // the entity has been previously declared shall not consider
17265 // any scopes outside the innermost enclosing namespace.
17267 // MSVC doesn't implement the above rule for types, so a friend tag
17268 // declaration may be a redeclaration of a type declared in an enclosing
17269 // scope. They do implement this rule for friend functions.
17271 // Does it matter that this should be by scope instead of by
17272 // semantic context?
17273 if (!Previous.empty() && TUK == TUK_Friend) {
17274 DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
17275 LookupResult::Filter F = Previous.makeFilter();
17276 bool FriendSawTagOutsideEnclosingNamespace = false;
17277 while (F.hasNext()) {
17278 NamedDecl *ND = F.next();
17279 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
17280 if (DC->isFileContext() &&
17281 !EnclosingNS->Encloses(ND->getDeclContext())) {
17282 if (getLangOpts().MSVCCompat)
17283 FriendSawTagOutsideEnclosingNamespace = true;
17284 else
17285 F.erase();
17288 F.done();
17290 // Diagnose this MSVC extension in the easy case where lookup would have
17291 // unambiguously found something outside the enclosing namespace.
17292 if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
17293 NamedDecl *ND = Previous.getFoundDecl();
17294 Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
17295 << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
17299 // Note: there used to be some attempt at recovery here.
17300 if (Previous.isAmbiguous())
17301 return true;
17303 if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
17304 // FIXME: This makes sure that we ignore the contexts associated
17305 // with C structs, unions, and enums when looking for a matching
17306 // tag declaration or definition. See the similar lookup tweak
17307 // in Sema::LookupName; is there a better way to deal with this?
17308 while (isa<RecordDecl, EnumDecl, ObjCContainerDecl>(SearchDC))
17309 SearchDC = SearchDC->getParent();
17310 } else if (getLangOpts().CPlusPlus) {
17311 // Inside ObjCContainer want to keep it as a lexical decl context but go
17312 // past it (most often to TranslationUnit) to find the semantic decl
17313 // context.
17314 while (isa<ObjCContainerDecl>(SearchDC))
17315 SearchDC = SearchDC->getParent();
17317 } else if (getLangOpts().CPlusPlus) {
17318 // Don't use ObjCContainerDecl as the semantic decl context for anonymous
17319 // TagDecl the same way as we skip it for named TagDecl.
17320 while (isa<ObjCContainerDecl>(SearchDC))
17321 SearchDC = SearchDC->getParent();
17324 if (Previous.isSingleResult() &&
17325 Previous.getFoundDecl()->isTemplateParameter()) {
17326 // Maybe we will complain about the shadowed template parameter.
17327 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
17328 // Just pretend that we didn't see the previous declaration.
17329 Previous.clear();
17332 if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
17333 DC->Equals(getStdNamespace())) {
17334 if (Name->isStr("bad_alloc")) {
17335 // This is a declaration of or a reference to "std::bad_alloc".
17336 isStdBadAlloc = true;
17338 // If std::bad_alloc has been implicitly declared (but made invisible to
17339 // name lookup), fill in this implicit declaration as the previous
17340 // declaration, so that the declarations get chained appropriately.
17341 if (Previous.empty() && StdBadAlloc)
17342 Previous.addDecl(getStdBadAlloc());
17343 } else if (Name->isStr("align_val_t")) {
17344 isStdAlignValT = true;
17345 if (Previous.empty() && StdAlignValT)
17346 Previous.addDecl(getStdAlignValT());
17350 // If we didn't find a previous declaration, and this is a reference
17351 // (or friend reference), move to the correct scope. In C++, we
17352 // also need to do a redeclaration lookup there, just in case
17353 // there's a shadow friend decl.
17354 if (Name && Previous.empty() &&
17355 (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
17356 if (Invalid) goto CreateNewDecl;
17357 assert(SS.isEmpty());
17359 if (TUK == TUK_Reference || IsTemplateParamOrArg) {
17360 // C++ [basic.scope.pdecl]p5:
17361 // -- for an elaborated-type-specifier of the form
17363 // class-key identifier
17365 // if the elaborated-type-specifier is used in the
17366 // decl-specifier-seq or parameter-declaration-clause of a
17367 // function defined in namespace scope, the identifier is
17368 // declared as a class-name in the namespace that contains
17369 // the declaration; otherwise, except as a friend
17370 // declaration, the identifier is declared in the smallest
17371 // non-class, non-function-prototype scope that contains the
17372 // declaration.
17374 // C99 6.7.2.3p8 has a similar (but not identical!) provision for
17375 // C structs and unions.
17377 // It is an error in C++ to declare (rather than define) an enum
17378 // type, including via an elaborated type specifier. We'll
17379 // diagnose that later; for now, declare the enum in the same
17380 // scope as we would have picked for any other tag type.
17382 // GNU C also supports this behavior as part of its incomplete
17383 // enum types extension, while GNU C++ does not.
17385 // Find the context where we'll be declaring the tag.
17386 // FIXME: We would like to maintain the current DeclContext as the
17387 // lexical context,
17388 SearchDC = getTagInjectionContext(SearchDC);
17390 // Find the scope where we'll be declaring the tag.
17391 S = getTagInjectionScope(S, getLangOpts());
17392 } else {
17393 assert(TUK == TUK_Friend);
17394 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(SearchDC);
17396 // C++ [namespace.memdef]p3:
17397 // If a friend declaration in a non-local class first declares a
17398 // class or function, the friend class or function is a member of
17399 // the innermost enclosing namespace.
17400 SearchDC = RD->isLocalClass() ? RD->isLocalClass()
17401 : SearchDC->getEnclosingNamespaceContext();
17404 // In C++, we need to do a redeclaration lookup to properly
17405 // diagnose some problems.
17406 // FIXME: redeclaration lookup is also used (with and without C++) to find a
17407 // hidden declaration so that we don't get ambiguity errors when using a
17408 // type declared by an elaborated-type-specifier. In C that is not correct
17409 // and we should instead merge compatible types found by lookup.
17410 if (getLangOpts().CPlusPlus) {
17411 // FIXME: This can perform qualified lookups into function contexts,
17412 // which are meaningless.
17413 Previous.setRedeclarationKind(forRedeclarationInCurContext());
17414 LookupQualifiedName(Previous, SearchDC);
17415 } else {
17416 Previous.setRedeclarationKind(forRedeclarationInCurContext());
17417 LookupName(Previous, S);
17421 // If we have a known previous declaration to use, then use it.
17422 if (Previous.empty() && SkipBody && SkipBody->Previous)
17423 Previous.addDecl(SkipBody->Previous);
17425 if (!Previous.empty()) {
17426 NamedDecl *PrevDecl = Previous.getFoundDecl();
17427 NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
17429 // It's okay to have a tag decl in the same scope as a typedef
17430 // which hides a tag decl in the same scope. Finding this
17431 // with a redeclaration lookup can only actually happen in C++.
17433 // This is also okay for elaborated-type-specifiers, which is
17434 // technically forbidden by the current standard but which is
17435 // okay according to the likely resolution of an open issue;
17436 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
17437 if (getLangOpts().CPlusPlus) {
17438 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
17439 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
17440 TagDecl *Tag = TT->getDecl();
17441 if (Tag->getDeclName() == Name &&
17442 Tag->getDeclContext()->getRedeclContext()
17443 ->Equals(TD->getDeclContext()->getRedeclContext())) {
17444 PrevDecl = Tag;
17445 Previous.clear();
17446 Previous.addDecl(Tag);
17447 Previous.resolveKind();
17453 // If this is a redeclaration of a using shadow declaration, it must
17454 // declare a tag in the same context. In MSVC mode, we allow a
17455 // redefinition if either context is within the other.
17456 if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
17457 auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
17458 if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
17459 isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
17460 !(OldTag && isAcceptableTagRedeclContext(
17461 *this, OldTag->getDeclContext(), SearchDC))) {
17462 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
17463 Diag(Shadow->getTargetDecl()->getLocation(),
17464 diag::note_using_decl_target);
17465 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl)
17466 << 0;
17467 // Recover by ignoring the old declaration.
17468 Previous.clear();
17469 goto CreateNewDecl;
17473 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
17474 // If this is a use of a previous tag, or if the tag is already declared
17475 // in the same scope (so that the definition/declaration completes or
17476 // rementions the tag), reuse the decl.
17477 if (TUK == TUK_Reference || TUK == TUK_Friend ||
17478 isDeclInScope(DirectPrevDecl, SearchDC, S,
17479 SS.isNotEmpty() || isMemberSpecialization)) {
17480 // Make sure that this wasn't declared as an enum and now used as a
17481 // struct or something similar.
17482 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
17483 TUK == TUK_Definition, KWLoc,
17484 Name)) {
17485 bool SafeToContinue
17486 = (PrevTagDecl->getTagKind() != TTK_Enum &&
17487 Kind != TTK_Enum);
17488 if (SafeToContinue)
17489 Diag(KWLoc, diag::err_use_with_wrong_tag)
17490 << Name
17491 << FixItHint::CreateReplacement(SourceRange(KWLoc),
17492 PrevTagDecl->getKindName());
17493 else
17494 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
17495 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
17497 if (SafeToContinue)
17498 Kind = PrevTagDecl->getTagKind();
17499 else {
17500 // Recover by making this an anonymous redefinition.
17501 Name = nullptr;
17502 Previous.clear();
17503 Invalid = true;
17507 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
17508 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
17509 if (TUK == TUK_Reference || TUK == TUK_Friend)
17510 return PrevTagDecl;
17512 QualType EnumUnderlyingTy;
17513 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
17514 EnumUnderlyingTy = TI->getType().getUnqualifiedType();
17515 else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
17516 EnumUnderlyingTy = QualType(T, 0);
17518 // All conflicts with previous declarations are recovered by
17519 // returning the previous declaration, unless this is a definition,
17520 // in which case we want the caller to bail out.
17521 if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
17522 ScopedEnum, EnumUnderlyingTy,
17523 IsFixed, PrevEnum))
17524 return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
17527 // C++11 [class.mem]p1:
17528 // A member shall not be declared twice in the member-specification,
17529 // except that a nested class or member class template can be declared
17530 // and then later defined.
17531 if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
17532 S->isDeclScope(PrevDecl)) {
17533 Diag(NameLoc, diag::ext_member_redeclared);
17534 Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
17537 if (!Invalid) {
17538 // If this is a use, just return the declaration we found, unless
17539 // we have attributes.
17540 if (TUK == TUK_Reference || TUK == TUK_Friend) {
17541 if (!Attrs.empty()) {
17542 // FIXME: Diagnose these attributes. For now, we create a new
17543 // declaration to hold them.
17544 } else if (TUK == TUK_Reference &&
17545 (PrevTagDecl->getFriendObjectKind() ==
17546 Decl::FOK_Undeclared ||
17547 PrevDecl->getOwningModule() != getCurrentModule()) &&
17548 SS.isEmpty()) {
17549 // This declaration is a reference to an existing entity, but
17550 // has different visibility from that entity: it either makes
17551 // a friend visible or it makes a type visible in a new module.
17552 // In either case, create a new declaration. We only do this if
17553 // the declaration would have meant the same thing if no prior
17554 // declaration were found, that is, if it was found in the same
17555 // scope where we would have injected a declaration.
17556 if (!getTagInjectionContext(CurContext)->getRedeclContext()
17557 ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
17558 return PrevTagDecl;
17559 // This is in the injected scope, create a new declaration in
17560 // that scope.
17561 S = getTagInjectionScope(S, getLangOpts());
17562 } else {
17563 return PrevTagDecl;
17567 // Diagnose attempts to redefine a tag.
17568 if (TUK == TUK_Definition) {
17569 if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
17570 // If we're defining a specialization and the previous definition
17571 // is from an implicit instantiation, don't emit an error
17572 // here; we'll catch this in the general case below.
17573 bool IsExplicitSpecializationAfterInstantiation = false;
17574 if (isMemberSpecialization) {
17575 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
17576 IsExplicitSpecializationAfterInstantiation =
17577 RD->getTemplateSpecializationKind() !=
17578 TSK_ExplicitSpecialization;
17579 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
17580 IsExplicitSpecializationAfterInstantiation =
17581 ED->getTemplateSpecializationKind() !=
17582 TSK_ExplicitSpecialization;
17585 // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
17586 // not keep more that one definition around (merge them). However,
17587 // ensure the decl passes the structural compatibility check in
17588 // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
17589 NamedDecl *Hidden = nullptr;
17590 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
17591 // There is a definition of this tag, but it is not visible. We
17592 // explicitly make use of C++'s one definition rule here, and
17593 // assume that this definition is identical to the hidden one
17594 // we already have. Make the existing definition visible and
17595 // use it in place of this one.
17596 if (!getLangOpts().CPlusPlus) {
17597 // Postpone making the old definition visible until after we
17598 // complete parsing the new one and do the structural
17599 // comparison.
17600 SkipBody->CheckSameAsPrevious = true;
17601 SkipBody->New = createTagFromNewDecl();
17602 SkipBody->Previous = Def;
17603 return Def;
17604 } else {
17605 SkipBody->ShouldSkip = true;
17606 SkipBody->Previous = Def;
17607 makeMergedDefinitionVisible(Hidden);
17608 // Carry on and handle it like a normal definition. We'll
17609 // skip starting the definitiion later.
17611 } else if (!IsExplicitSpecializationAfterInstantiation) {
17612 // A redeclaration in function prototype scope in C isn't
17613 // visible elsewhere, so merely issue a warning.
17614 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
17615 Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
17616 else
17617 Diag(NameLoc, diag::err_redefinition) << Name;
17618 notePreviousDefinition(Def,
17619 NameLoc.isValid() ? NameLoc : KWLoc);
17620 // If this is a redefinition, recover by making this
17621 // struct be anonymous, which will make any later
17622 // references get the previous definition.
17623 Name = nullptr;
17624 Previous.clear();
17625 Invalid = true;
17627 } else {
17628 // If the type is currently being defined, complain
17629 // about a nested redefinition.
17630 auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
17631 if (TD->isBeingDefined()) {
17632 Diag(NameLoc, diag::err_nested_redefinition) << Name;
17633 Diag(PrevTagDecl->getLocation(),
17634 diag::note_previous_definition);
17635 Name = nullptr;
17636 Previous.clear();
17637 Invalid = true;
17641 // Okay, this is definition of a previously declared or referenced
17642 // tag. We're going to create a new Decl for it.
17645 // Okay, we're going to make a redeclaration. If this is some kind
17646 // of reference, make sure we build the redeclaration in the same DC
17647 // as the original, and ignore the current access specifier.
17648 if (TUK == TUK_Friend || TUK == TUK_Reference) {
17649 SearchDC = PrevTagDecl->getDeclContext();
17650 AS = AS_none;
17653 // If we get here we have (another) forward declaration or we
17654 // have a definition. Just create a new decl.
17656 } else {
17657 // If we get here, this is a definition of a new tag type in a nested
17658 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
17659 // new decl/type. We set PrevDecl to NULL so that the entities
17660 // have distinct types.
17661 Previous.clear();
17663 // If we get here, we're going to create a new Decl. If PrevDecl
17664 // is non-NULL, it's a definition of the tag declared by
17665 // PrevDecl. If it's NULL, we have a new definition.
17667 // Otherwise, PrevDecl is not a tag, but was found with tag
17668 // lookup. This is only actually possible in C++, where a few
17669 // things like templates still live in the tag namespace.
17670 } else {
17671 // Use a better diagnostic if an elaborated-type-specifier
17672 // found the wrong kind of type on the first
17673 // (non-redeclaration) lookup.
17674 if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
17675 !Previous.isForRedeclaration()) {
17676 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
17677 Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
17678 << Kind;
17679 Diag(PrevDecl->getLocation(), diag::note_declared_at);
17680 Invalid = true;
17682 // Otherwise, only diagnose if the declaration is in scope.
17683 } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
17684 SS.isNotEmpty() || isMemberSpecialization)) {
17685 // do nothing
17687 // Diagnose implicit declarations introduced by elaborated types.
17688 } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
17689 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
17690 Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
17691 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
17692 Invalid = true;
17694 // Otherwise it's a declaration. Call out a particularly common
17695 // case here.
17696 } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
17697 unsigned Kind = 0;
17698 if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
17699 Diag(NameLoc, diag::err_tag_definition_of_typedef)
17700 << Name << Kind << TND->getUnderlyingType();
17701 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
17702 Invalid = true;
17704 // Otherwise, diagnose.
17705 } else {
17706 // The tag name clashes with something else in the target scope,
17707 // issue an error and recover by making this tag be anonymous.
17708 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
17709 notePreviousDefinition(PrevDecl, NameLoc);
17710 Name = nullptr;
17711 Invalid = true;
17714 // The existing declaration isn't relevant to us; we're in a
17715 // new scope, so clear out the previous declaration.
17716 Previous.clear();
17720 CreateNewDecl:
17722 TagDecl *PrevDecl = nullptr;
17723 if (Previous.isSingleResult())
17724 PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
17726 // If there is an identifier, use the location of the identifier as the
17727 // location of the decl, otherwise use the location of the struct/union
17728 // keyword.
17729 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
17731 // Otherwise, create a new declaration. If there is a previous
17732 // declaration of the same entity, the two will be linked via
17733 // PrevDecl.
17734 TagDecl *New;
17736 if (Kind == TTK_Enum) {
17737 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
17738 // enum X { A, B, C } D; D should chain to X.
17739 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
17740 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
17741 ScopedEnumUsesClassTag, IsFixed);
17743 if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
17744 StdAlignValT = cast<EnumDecl>(New);
17746 // If this is an undefined enum, warn.
17747 if (TUK != TUK_Definition && !Invalid) {
17748 TagDecl *Def;
17749 if (IsFixed && cast<EnumDecl>(New)->isFixed()) {
17750 // C++0x: 7.2p2: opaque-enum-declaration.
17751 // Conflicts are diagnosed above. Do nothing.
17753 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
17754 Diag(Loc, diag::ext_forward_ref_enum_def)
17755 << New;
17756 Diag(Def->getLocation(), diag::note_previous_definition);
17757 } else {
17758 unsigned DiagID = diag::ext_forward_ref_enum;
17759 if (getLangOpts().MSVCCompat)
17760 DiagID = diag::ext_ms_forward_ref_enum;
17761 else if (getLangOpts().CPlusPlus)
17762 DiagID = diag::err_forward_ref_enum;
17763 Diag(Loc, DiagID);
17767 if (EnumUnderlying) {
17768 EnumDecl *ED = cast<EnumDecl>(New);
17769 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
17770 ED->setIntegerTypeSourceInfo(TI);
17771 else
17772 ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
17773 QualType EnumTy = ED->getIntegerType();
17774 ED->setPromotionType(Context.isPromotableIntegerType(EnumTy)
17775 ? Context.getPromotedIntegerType(EnumTy)
17776 : EnumTy);
17777 assert(ED->isComplete() && "enum with type should be complete");
17779 } else {
17780 // struct/union/class
17782 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
17783 // struct X { int A; } D; D should chain to X.
17784 if (getLangOpts().CPlusPlus) {
17785 // FIXME: Look for a way to use RecordDecl for simple structs.
17786 New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
17787 cast_or_null<CXXRecordDecl>(PrevDecl));
17789 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
17790 StdBadAlloc = cast<CXXRecordDecl>(New);
17791 } else
17792 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
17793 cast_or_null<RecordDecl>(PrevDecl));
17796 if (OOK != OOK_Outside && TUK == TUK_Definition && !getLangOpts().CPlusPlus)
17797 Diag(New->getLocation(), diag::ext_type_defined_in_offsetof)
17798 << (OOK == OOK_Macro) << New->getSourceRange();
17800 // C++11 [dcl.type]p3:
17801 // A type-specifier-seq shall not define a class or enumeration [...].
17802 if (!Invalid && getLangOpts().CPlusPlus &&
17803 (IsTypeSpecifier || IsTemplateParamOrArg) && TUK == TUK_Definition) {
17804 Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
17805 << Context.getTagDeclType(New);
17806 Invalid = true;
17809 if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
17810 DC->getDeclKind() == Decl::Enum) {
17811 Diag(New->getLocation(), diag::err_type_defined_in_enum)
17812 << Context.getTagDeclType(New);
17813 Invalid = true;
17816 // Maybe add qualifier info.
17817 if (SS.isNotEmpty()) {
17818 if (SS.isSet()) {
17819 // If this is either a declaration or a definition, check the
17820 // nested-name-specifier against the current context.
17821 if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
17822 diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
17823 isMemberSpecialization))
17824 Invalid = true;
17826 New->setQualifierInfo(SS.getWithLocInContext(Context));
17827 if (TemplateParameterLists.size() > 0) {
17828 New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
17831 else
17832 Invalid = true;
17835 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
17836 // Add alignment attributes if necessary; these attributes are checked when
17837 // the ASTContext lays out the structure.
17839 // It is important for implementing the correct semantics that this
17840 // happen here (in ActOnTag). The #pragma pack stack is
17841 // maintained as a result of parser callbacks which can occur at
17842 // many points during the parsing of a struct declaration (because
17843 // the #pragma tokens are effectively skipped over during the
17844 // parsing of the struct).
17845 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
17846 AddAlignmentAttributesForRecord(RD);
17847 AddMsStructLayoutForRecord(RD);
17851 if (ModulePrivateLoc.isValid()) {
17852 if (isMemberSpecialization)
17853 Diag(New->getLocation(), diag::err_module_private_specialization)
17854 << 2
17855 << FixItHint::CreateRemoval(ModulePrivateLoc);
17856 // __module_private__ does not apply to local classes. However, we only
17857 // diagnose this as an error when the declaration specifiers are
17858 // freestanding. Here, we just ignore the __module_private__.
17859 else if (!SearchDC->isFunctionOrMethod())
17860 New->setModulePrivate();
17863 // If this is a specialization of a member class (of a class template),
17864 // check the specialization.
17865 if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
17866 Invalid = true;
17868 // If we're declaring or defining a tag in function prototype scope in C,
17869 // note that this type can only be used within the function and add it to
17870 // the list of decls to inject into the function definition scope.
17871 if ((Name || Kind == TTK_Enum) &&
17872 getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
17873 if (getLangOpts().CPlusPlus) {
17874 // C++ [dcl.fct]p6:
17875 // Types shall not be defined in return or parameter types.
17876 if (TUK == TUK_Definition && !IsTypeSpecifier) {
17877 Diag(Loc, diag::err_type_defined_in_param_type)
17878 << Name;
17879 Invalid = true;
17881 } else if (!PrevDecl) {
17882 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
17886 if (Invalid)
17887 New->setInvalidDecl();
17889 // Set the lexical context. If the tag has a C++ scope specifier, the
17890 // lexical context will be different from the semantic context.
17891 New->setLexicalDeclContext(CurContext);
17893 // Mark this as a friend decl if applicable.
17894 // In Microsoft mode, a friend declaration also acts as a forward
17895 // declaration so we always pass true to setObjectOfFriendDecl to make
17896 // the tag name visible.
17897 if (TUK == TUK_Friend)
17898 New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
17900 // Set the access specifier.
17901 if (!Invalid && SearchDC->isRecord())
17902 SetMemberAccessSpecifier(New, PrevDecl, AS);
17904 if (PrevDecl)
17905 CheckRedeclarationInModule(New, PrevDecl);
17907 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
17908 New->startDefinition();
17910 ProcessDeclAttributeList(S, New, Attrs);
17911 AddPragmaAttributes(S, New);
17913 // If this has an identifier, add it to the scope stack.
17914 if (TUK == TUK_Friend) {
17915 // We might be replacing an existing declaration in the lookup tables;
17916 // if so, borrow its access specifier.
17917 if (PrevDecl)
17918 New->setAccess(PrevDecl->getAccess());
17920 DeclContext *DC = New->getDeclContext()->getRedeclContext();
17921 DC->makeDeclVisibleInContext(New);
17922 if (Name) // can be null along some error paths
17923 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
17924 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
17925 } else if (Name) {
17926 S = getNonFieldDeclScope(S);
17927 PushOnScopeChains(New, S, true);
17928 } else {
17929 CurContext->addDecl(New);
17932 // If this is the C FILE type, notify the AST context.
17933 if (IdentifierInfo *II = New->getIdentifier())
17934 if (!New->isInvalidDecl() &&
17935 New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
17936 II->isStr("FILE"))
17937 Context.setFILEDecl(New);
17939 if (PrevDecl)
17940 mergeDeclAttributes(New, PrevDecl);
17942 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New))
17943 inferGslOwnerPointerAttribute(CXXRD);
17945 // If there's a #pragma GCC visibility in scope, set the visibility of this
17946 // record.
17947 AddPushedVisibilityAttribute(New);
17949 if (isMemberSpecialization && !New->isInvalidDecl())
17950 CompleteMemberSpecialization(New, Previous);
17952 OwnedDecl = true;
17953 // In C++, don't return an invalid declaration. We can't recover well from
17954 // the cases where we make the type anonymous.
17955 if (Invalid && getLangOpts().CPlusPlus) {
17956 if (New->isBeingDefined())
17957 if (auto RD = dyn_cast<RecordDecl>(New))
17958 RD->completeDefinition();
17959 return true;
17960 } else if (SkipBody && SkipBody->ShouldSkip) {
17961 return SkipBody->Previous;
17962 } else {
17963 return New;
17967 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
17968 AdjustDeclIfTemplate(TagD);
17969 TagDecl *Tag = cast<TagDecl>(TagD);
17971 // Enter the tag context.
17972 PushDeclContext(S, Tag);
17974 ActOnDocumentableDecl(TagD);
17976 // If there's a #pragma GCC visibility in scope, set the visibility of this
17977 // record.
17978 AddPushedVisibilityAttribute(Tag);
17981 bool Sema::ActOnDuplicateDefinition(Decl *Prev, SkipBodyInfo &SkipBody) {
17982 if (!hasStructuralCompatLayout(Prev, SkipBody.New))
17983 return false;
17985 // Make the previous decl visible.
17986 makeMergedDefinitionVisible(SkipBody.Previous);
17987 return true;
17990 void Sema::ActOnObjCContainerStartDefinition(ObjCContainerDecl *IDecl) {
17991 assert(IDecl->getLexicalParent() == CurContext &&
17992 "The next DeclContext should be lexically contained in the current one.");
17993 CurContext = IDecl;
17996 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
17997 SourceLocation FinalLoc,
17998 bool IsFinalSpelledSealed,
17999 bool IsAbstract,
18000 SourceLocation LBraceLoc) {
18001 AdjustDeclIfTemplate(TagD);
18002 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
18004 FieldCollector->StartClass();
18006 if (!Record->getIdentifier())
18007 return;
18009 if (IsAbstract)
18010 Record->markAbstract();
18012 if (FinalLoc.isValid()) {
18013 Record->addAttr(FinalAttr::Create(Context, FinalLoc,
18014 IsFinalSpelledSealed
18015 ? FinalAttr::Keyword_sealed
18016 : FinalAttr::Keyword_final));
18018 // C++ [class]p2:
18019 // [...] The class-name is also inserted into the scope of the
18020 // class itself; this is known as the injected-class-name. For
18021 // purposes of access checking, the injected-class-name is treated
18022 // as if it were a public member name.
18023 CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
18024 Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
18025 Record->getLocation(), Record->getIdentifier(),
18026 /*PrevDecl=*/nullptr,
18027 /*DelayTypeCreation=*/true);
18028 Context.getTypeDeclType(InjectedClassName, Record);
18029 InjectedClassName->setImplicit();
18030 InjectedClassName->setAccess(AS_public);
18031 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
18032 InjectedClassName->setDescribedClassTemplate(Template);
18033 PushOnScopeChains(InjectedClassName, S);
18034 assert(InjectedClassName->isInjectedClassName() &&
18035 "Broken injected-class-name");
18038 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
18039 SourceRange BraceRange) {
18040 AdjustDeclIfTemplate(TagD);
18041 TagDecl *Tag = cast<TagDecl>(TagD);
18042 Tag->setBraceRange(BraceRange);
18044 // Make sure we "complete" the definition even it is invalid.
18045 if (Tag->isBeingDefined()) {
18046 assert(Tag->isInvalidDecl() && "We should already have completed it");
18047 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
18048 RD->completeDefinition();
18051 if (auto *RD = dyn_cast<CXXRecordDecl>(Tag)) {
18052 FieldCollector->FinishClass();
18053 if (RD->hasAttr<SYCLSpecialClassAttr>()) {
18054 auto *Def = RD->getDefinition();
18055 assert(Def && "The record is expected to have a completed definition");
18056 unsigned NumInitMethods = 0;
18057 for (auto *Method : Def->methods()) {
18058 if (!Method->getIdentifier())
18059 continue;
18060 if (Method->getName() == "__init")
18061 NumInitMethods++;
18063 if (NumInitMethods > 1 || !Def->hasInitMethod())
18064 Diag(RD->getLocation(), diag::err_sycl_special_type_num_init_method);
18068 // Exit this scope of this tag's definition.
18069 PopDeclContext();
18071 if (getCurLexicalContext()->isObjCContainer() &&
18072 Tag->getDeclContext()->isFileContext())
18073 Tag->setTopLevelDeclInObjCContainer();
18075 // Notify the consumer that we've defined a tag.
18076 if (!Tag->isInvalidDecl())
18077 Consumer.HandleTagDeclDefinition(Tag);
18079 // Clangs implementation of #pragma align(packed) differs in bitfield layout
18080 // from XLs and instead matches the XL #pragma pack(1) behavior.
18081 if (Context.getTargetInfo().getTriple().isOSAIX() &&
18082 AlignPackStack.hasValue()) {
18083 AlignPackInfo APInfo = AlignPackStack.CurrentValue;
18084 // Only diagnose #pragma align(packed).
18085 if (!APInfo.IsAlignAttr() || APInfo.getAlignMode() != AlignPackInfo::Packed)
18086 return;
18087 const RecordDecl *RD = dyn_cast<RecordDecl>(Tag);
18088 if (!RD)
18089 return;
18090 // Only warn if there is at least 1 bitfield member.
18091 if (llvm::any_of(RD->fields(),
18092 [](const FieldDecl *FD) { return FD->isBitField(); }))
18093 Diag(BraceRange.getBegin(), diag::warn_pragma_align_not_xl_compatible);
18097 void Sema::ActOnObjCContainerFinishDefinition() {
18098 // Exit this scope of this interface definition.
18099 PopDeclContext();
18102 void Sema::ActOnObjCTemporaryExitContainerContext(ObjCContainerDecl *ObjCCtx) {
18103 assert(ObjCCtx == CurContext && "Mismatch of container contexts");
18104 OriginalLexicalContext = ObjCCtx;
18105 ActOnObjCContainerFinishDefinition();
18108 void Sema::ActOnObjCReenterContainerContext(ObjCContainerDecl *ObjCCtx) {
18109 ActOnObjCContainerStartDefinition(ObjCCtx);
18110 OriginalLexicalContext = nullptr;
18113 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
18114 AdjustDeclIfTemplate(TagD);
18115 TagDecl *Tag = cast<TagDecl>(TagD);
18116 Tag->setInvalidDecl();
18118 // Make sure we "complete" the definition even it is invalid.
18119 if (Tag->isBeingDefined()) {
18120 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
18121 RD->completeDefinition();
18124 // We're undoing ActOnTagStartDefinition here, not
18125 // ActOnStartCXXMemberDeclarations, so we don't have to mess with
18126 // the FieldCollector.
18128 PopDeclContext();
18131 // Note that FieldName may be null for anonymous bitfields.
18132 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
18133 IdentifierInfo *FieldName, QualType FieldTy,
18134 bool IsMsStruct, Expr *BitWidth) {
18135 assert(BitWidth);
18136 if (BitWidth->containsErrors())
18137 return ExprError();
18139 // C99 6.7.2.1p4 - verify the field type.
18140 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
18141 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
18142 // Handle incomplete and sizeless types with a specific error.
18143 if (RequireCompleteSizedType(FieldLoc, FieldTy,
18144 diag::err_field_incomplete_or_sizeless))
18145 return ExprError();
18146 if (FieldName)
18147 return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
18148 << FieldName << FieldTy << BitWidth->getSourceRange();
18149 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
18150 << FieldTy << BitWidth->getSourceRange();
18151 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
18152 UPPC_BitFieldWidth))
18153 return ExprError();
18155 // If the bit-width is type- or value-dependent, don't try to check
18156 // it now.
18157 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
18158 return BitWidth;
18160 llvm::APSInt Value;
18161 ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value, AllowFold);
18162 if (ICE.isInvalid())
18163 return ICE;
18164 BitWidth = ICE.get();
18166 // Zero-width bitfield is ok for anonymous field.
18167 if (Value == 0 && FieldName)
18168 return Diag(FieldLoc, diag::err_bitfield_has_zero_width)
18169 << FieldName << BitWidth->getSourceRange();
18171 if (Value.isSigned() && Value.isNegative()) {
18172 if (FieldName)
18173 return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
18174 << FieldName << toString(Value, 10);
18175 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
18176 << toString(Value, 10);
18179 // The size of the bit-field must not exceed our maximum permitted object
18180 // size.
18181 if (Value.getActiveBits() > ConstantArrayType::getMaxSizeBits(Context)) {
18182 return Diag(FieldLoc, diag::err_bitfield_too_wide)
18183 << !FieldName << FieldName << toString(Value, 10);
18186 if (!FieldTy->isDependentType()) {
18187 uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
18188 uint64_t TypeWidth = Context.getIntWidth(FieldTy);
18189 bool BitfieldIsOverwide = Value.ugt(TypeWidth);
18191 // Over-wide bitfields are an error in C or when using the MSVC bitfield
18192 // ABI.
18193 bool CStdConstraintViolation =
18194 BitfieldIsOverwide && !getLangOpts().CPlusPlus;
18195 bool MSBitfieldViolation =
18196 Value.ugt(TypeStorageSize) &&
18197 (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
18198 if (CStdConstraintViolation || MSBitfieldViolation) {
18199 unsigned DiagWidth =
18200 CStdConstraintViolation ? TypeWidth : TypeStorageSize;
18201 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
18202 << (bool)FieldName << FieldName << toString(Value, 10)
18203 << !CStdConstraintViolation << DiagWidth;
18206 // Warn on types where the user might conceivably expect to get all
18207 // specified bits as value bits: that's all integral types other than
18208 // 'bool'.
18209 if (BitfieldIsOverwide && !FieldTy->isBooleanType() && FieldName) {
18210 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
18211 << FieldName << toString(Value, 10)
18212 << (unsigned)TypeWidth;
18216 return BitWidth;
18219 /// ActOnField - Each field of a C struct/union is passed into this in order
18220 /// to create a FieldDecl object for it.
18221 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
18222 Declarator &D, Expr *BitfieldWidth) {
18223 FieldDecl *Res = HandleField(S, cast_if_present<RecordDecl>(TagD), DeclStart,
18224 D, BitfieldWidth,
18225 /*InitStyle=*/ICIS_NoInit, AS_public);
18226 return Res;
18229 /// HandleField - Analyze a field of a C struct or a C++ data member.
18231 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
18232 SourceLocation DeclStart,
18233 Declarator &D, Expr *BitWidth,
18234 InClassInitStyle InitStyle,
18235 AccessSpecifier AS) {
18236 if (D.isDecompositionDeclarator()) {
18237 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
18238 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
18239 << Decomp.getSourceRange();
18240 return nullptr;
18243 IdentifierInfo *II = D.getIdentifier();
18244 SourceLocation Loc = DeclStart;
18245 if (II) Loc = D.getIdentifierLoc();
18247 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
18248 QualType T = TInfo->getType();
18249 if (getLangOpts().CPlusPlus) {
18250 CheckExtraCXXDefaultArguments(D);
18252 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
18253 UPPC_DataMemberType)) {
18254 D.setInvalidType();
18255 T = Context.IntTy;
18256 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
18260 DiagnoseFunctionSpecifiers(D.getDeclSpec());
18262 if (D.getDeclSpec().isInlineSpecified())
18263 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
18264 << getLangOpts().CPlusPlus17;
18265 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
18266 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
18267 diag::err_invalid_thread)
18268 << DeclSpec::getSpecifierName(TSCS);
18270 // Check to see if this name was declared as a member previously
18271 NamedDecl *PrevDecl = nullptr;
18272 LookupResult Previous(*this, II, Loc, LookupMemberName,
18273 ForVisibleRedeclaration);
18274 LookupName(Previous, S);
18275 switch (Previous.getResultKind()) {
18276 case LookupResult::Found:
18277 case LookupResult::FoundUnresolvedValue:
18278 PrevDecl = Previous.getAsSingle<NamedDecl>();
18279 break;
18281 case LookupResult::FoundOverloaded:
18282 PrevDecl = Previous.getRepresentativeDecl();
18283 break;
18285 case LookupResult::NotFound:
18286 case LookupResult::NotFoundInCurrentInstantiation:
18287 case LookupResult::Ambiguous:
18288 break;
18290 Previous.suppressDiagnostics();
18292 if (PrevDecl && PrevDecl->isTemplateParameter()) {
18293 // Maybe we will complain about the shadowed template parameter.
18294 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
18295 // Just pretend that we didn't see the previous declaration.
18296 PrevDecl = nullptr;
18299 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
18300 PrevDecl = nullptr;
18302 bool Mutable
18303 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
18304 SourceLocation TSSL = D.getBeginLoc();
18305 FieldDecl *NewFD
18306 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
18307 TSSL, AS, PrevDecl, &D);
18309 if (NewFD->isInvalidDecl())
18310 Record->setInvalidDecl();
18312 if (D.getDeclSpec().isModulePrivateSpecified())
18313 NewFD->setModulePrivate();
18315 if (NewFD->isInvalidDecl() && PrevDecl) {
18316 // Don't introduce NewFD into scope; there's already something
18317 // with the same name in the same scope.
18318 } else if (II) {
18319 PushOnScopeChains(NewFD, S);
18320 } else
18321 Record->addDecl(NewFD);
18323 return NewFD;
18326 /// Build a new FieldDecl and check its well-formedness.
18328 /// This routine builds a new FieldDecl given the fields name, type,
18329 /// record, etc. \p PrevDecl should refer to any previous declaration
18330 /// with the same name and in the same scope as the field to be
18331 /// created.
18333 /// \returns a new FieldDecl.
18335 /// \todo The Declarator argument is a hack. It will be removed once
18336 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
18337 TypeSourceInfo *TInfo,
18338 RecordDecl *Record, SourceLocation Loc,
18339 bool Mutable, Expr *BitWidth,
18340 InClassInitStyle InitStyle,
18341 SourceLocation TSSL,
18342 AccessSpecifier AS, NamedDecl *PrevDecl,
18343 Declarator *D) {
18344 IdentifierInfo *II = Name.getAsIdentifierInfo();
18345 bool InvalidDecl = false;
18346 if (D) InvalidDecl = D->isInvalidType();
18348 // If we receive a broken type, recover by assuming 'int' and
18349 // marking this declaration as invalid.
18350 if (T.isNull() || T->containsErrors()) {
18351 InvalidDecl = true;
18352 T = Context.IntTy;
18355 QualType EltTy = Context.getBaseElementType(T);
18356 if (!EltTy->isDependentType() && !EltTy->containsErrors()) {
18357 if (RequireCompleteSizedType(Loc, EltTy,
18358 diag::err_field_incomplete_or_sizeless)) {
18359 // Fields of incomplete type force their record to be invalid.
18360 Record->setInvalidDecl();
18361 InvalidDecl = true;
18362 } else {
18363 NamedDecl *Def;
18364 EltTy->isIncompleteType(&Def);
18365 if (Def && Def->isInvalidDecl()) {
18366 Record->setInvalidDecl();
18367 InvalidDecl = true;
18372 // TR 18037 does not allow fields to be declared with address space
18373 if (T.hasAddressSpace() || T->isDependentAddressSpaceType() ||
18374 T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
18375 Diag(Loc, diag::err_field_with_address_space);
18376 Record->setInvalidDecl();
18377 InvalidDecl = true;
18380 if (LangOpts.OpenCL) {
18381 // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
18382 // used as structure or union field: image, sampler, event or block types.
18383 if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
18384 T->isBlockPointerType()) {
18385 Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
18386 Record->setInvalidDecl();
18387 InvalidDecl = true;
18389 // OpenCL v1.2 s6.9.c: bitfields are not supported, unless Clang extension
18390 // is enabled.
18391 if (BitWidth && !getOpenCLOptions().isAvailableOption(
18392 "__cl_clang_bitfields", LangOpts)) {
18393 Diag(Loc, diag::err_opencl_bitfields);
18394 InvalidDecl = true;
18398 // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
18399 if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
18400 T.hasQualifiers()) {
18401 InvalidDecl = true;
18402 Diag(Loc, diag::err_anon_bitfield_qualifiers);
18405 // C99 6.7.2.1p8: A member of a structure or union may have any type other
18406 // than a variably modified type.
18407 if (!InvalidDecl && T->isVariablyModifiedType()) {
18408 if (!tryToFixVariablyModifiedVarType(
18409 TInfo, T, Loc, diag::err_typecheck_field_variable_size))
18410 InvalidDecl = true;
18413 // Fields can not have abstract class types
18414 if (!InvalidDecl && RequireNonAbstractType(Loc, T,
18415 diag::err_abstract_type_in_decl,
18416 AbstractFieldType))
18417 InvalidDecl = true;
18419 if (InvalidDecl)
18420 BitWidth = nullptr;
18421 // If this is declared as a bit-field, check the bit-field.
18422 if (BitWidth) {
18423 BitWidth =
18424 VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth).get();
18425 if (!BitWidth) {
18426 InvalidDecl = true;
18427 BitWidth = nullptr;
18431 // Check that 'mutable' is consistent with the type of the declaration.
18432 if (!InvalidDecl && Mutable) {
18433 unsigned DiagID = 0;
18434 if (T->isReferenceType())
18435 DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
18436 : diag::err_mutable_reference;
18437 else if (T.isConstQualified())
18438 DiagID = diag::err_mutable_const;
18440 if (DiagID) {
18441 SourceLocation ErrLoc = Loc;
18442 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
18443 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
18444 Diag(ErrLoc, DiagID);
18445 if (DiagID != diag::ext_mutable_reference) {
18446 Mutable = false;
18447 InvalidDecl = true;
18452 // C++11 [class.union]p8 (DR1460):
18453 // At most one variant member of a union may have a
18454 // brace-or-equal-initializer.
18455 if (InitStyle != ICIS_NoInit)
18456 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
18458 FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
18459 BitWidth, Mutable, InitStyle);
18460 if (InvalidDecl)
18461 NewFD->setInvalidDecl();
18463 if (PrevDecl && !isa<TagDecl>(PrevDecl) &&
18464 !PrevDecl->isPlaceholderVar(getLangOpts())) {
18465 Diag(Loc, diag::err_duplicate_member) << II;
18466 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
18467 NewFD->setInvalidDecl();
18470 if (!InvalidDecl && getLangOpts().CPlusPlus) {
18471 if (Record->isUnion()) {
18472 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
18473 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
18474 if (RDecl->getDefinition()) {
18475 // C++ [class.union]p1: An object of a class with a non-trivial
18476 // constructor, a non-trivial copy constructor, a non-trivial
18477 // destructor, or a non-trivial copy assignment operator
18478 // cannot be a member of a union, nor can an array of such
18479 // objects.
18480 if (CheckNontrivialField(NewFD))
18481 NewFD->setInvalidDecl();
18485 // C++ [class.union]p1: If a union contains a member of reference type,
18486 // the program is ill-formed, except when compiling with MSVC extensions
18487 // enabled.
18488 if (EltTy->isReferenceType()) {
18489 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
18490 diag::ext_union_member_of_reference_type :
18491 diag::err_union_member_of_reference_type)
18492 << NewFD->getDeclName() << EltTy;
18493 if (!getLangOpts().MicrosoftExt)
18494 NewFD->setInvalidDecl();
18499 // FIXME: We need to pass in the attributes given an AST
18500 // representation, not a parser representation.
18501 if (D) {
18502 // FIXME: The current scope is almost... but not entirely... correct here.
18503 ProcessDeclAttributes(getCurScope(), NewFD, *D);
18505 if (NewFD->hasAttrs())
18506 CheckAlignasUnderalignment(NewFD);
18509 // In auto-retain/release, infer strong retension for fields of
18510 // retainable type.
18511 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
18512 NewFD->setInvalidDecl();
18514 if (T.isObjCGCWeak())
18515 Diag(Loc, diag::warn_attribute_weak_on_field);
18517 // PPC MMA non-pointer types are not allowed as field types.
18518 if (Context.getTargetInfo().getTriple().isPPC64() &&
18519 CheckPPCMMAType(T, NewFD->getLocation()))
18520 NewFD->setInvalidDecl();
18522 NewFD->setAccess(AS);
18523 return NewFD;
18526 bool Sema::CheckNontrivialField(FieldDecl *FD) {
18527 assert(FD);
18528 assert(getLangOpts().CPlusPlus && "valid check only for C++");
18530 if (FD->isInvalidDecl() || FD->getType()->isDependentType())
18531 return false;
18533 QualType EltTy = Context.getBaseElementType(FD->getType());
18534 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
18535 CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
18536 if (RDecl->getDefinition()) {
18537 // We check for copy constructors before constructors
18538 // because otherwise we'll never get complaints about
18539 // copy constructors.
18541 CXXSpecialMember member = CXXInvalid;
18542 // We're required to check for any non-trivial constructors. Since the
18543 // implicit default constructor is suppressed if there are any
18544 // user-declared constructors, we just need to check that there is a
18545 // trivial default constructor and a trivial copy constructor. (We don't
18546 // worry about move constructors here, since this is a C++98 check.)
18547 if (RDecl->hasNonTrivialCopyConstructor())
18548 member = CXXCopyConstructor;
18549 else if (!RDecl->hasTrivialDefaultConstructor())
18550 member = CXXDefaultConstructor;
18551 else if (RDecl->hasNonTrivialCopyAssignment())
18552 member = CXXCopyAssignment;
18553 else if (RDecl->hasNonTrivialDestructor())
18554 member = CXXDestructor;
18556 if (member != CXXInvalid) {
18557 if (!getLangOpts().CPlusPlus11 &&
18558 getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
18559 // Objective-C++ ARC: it is an error to have a non-trivial field of
18560 // a union. However, system headers in Objective-C programs
18561 // occasionally have Objective-C lifetime objects within unions,
18562 // and rather than cause the program to fail, we make those
18563 // members unavailable.
18564 SourceLocation Loc = FD->getLocation();
18565 if (getSourceManager().isInSystemHeader(Loc)) {
18566 if (!FD->hasAttr<UnavailableAttr>())
18567 FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
18568 UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
18569 return false;
18573 Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
18574 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
18575 diag::err_illegal_union_or_anon_struct_member)
18576 << FD->getParent()->isUnion() << FD->getDeclName() << member;
18577 DiagnoseNontrivial(RDecl, member);
18578 return !getLangOpts().CPlusPlus11;
18583 return false;
18586 /// TranslateIvarVisibility - Translate visibility from a token ID to an
18587 /// AST enum value.
18588 static ObjCIvarDecl::AccessControl
18589 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
18590 switch (ivarVisibility) {
18591 default: llvm_unreachable("Unknown visitibility kind");
18592 case tok::objc_private: return ObjCIvarDecl::Private;
18593 case tok::objc_public: return ObjCIvarDecl::Public;
18594 case tok::objc_protected: return ObjCIvarDecl::Protected;
18595 case tok::objc_package: return ObjCIvarDecl::Package;
18599 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
18600 /// in order to create an IvarDecl object for it.
18601 Decl *Sema::ActOnIvar(Scope *S, SourceLocation DeclStart, Declarator &D,
18602 Expr *BitWidth, tok::ObjCKeywordKind Visibility) {
18604 IdentifierInfo *II = D.getIdentifier();
18605 SourceLocation Loc = DeclStart;
18606 if (II) Loc = D.getIdentifierLoc();
18608 // FIXME: Unnamed fields can be handled in various different ways, for
18609 // example, unnamed unions inject all members into the struct namespace!
18611 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
18612 QualType T = TInfo->getType();
18614 if (BitWidth) {
18615 // 6.7.2.1p3, 6.7.2.1p4
18616 BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
18617 if (!BitWidth)
18618 D.setInvalidType();
18619 } else {
18620 // Not a bitfield.
18622 // validate II.
18625 if (T->isReferenceType()) {
18626 Diag(Loc, diag::err_ivar_reference_type);
18627 D.setInvalidType();
18629 // C99 6.7.2.1p8: A member of a structure or union may have any type other
18630 // than a variably modified type.
18631 else if (T->isVariablyModifiedType()) {
18632 if (!tryToFixVariablyModifiedVarType(
18633 TInfo, T, Loc, diag::err_typecheck_ivar_variable_size))
18634 D.setInvalidType();
18637 // Get the visibility (access control) for this ivar.
18638 ObjCIvarDecl::AccessControl ac =
18639 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
18640 : ObjCIvarDecl::None;
18641 // Must set ivar's DeclContext to its enclosing interface.
18642 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
18643 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
18644 return nullptr;
18645 ObjCContainerDecl *EnclosingContext;
18646 if (ObjCImplementationDecl *IMPDecl =
18647 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
18648 if (LangOpts.ObjCRuntime.isFragile()) {
18649 // Case of ivar declared in an implementation. Context is that of its class.
18650 EnclosingContext = IMPDecl->getClassInterface();
18651 assert(EnclosingContext && "Implementation has no class interface!");
18653 else
18654 EnclosingContext = EnclosingDecl;
18655 } else {
18656 if (ObjCCategoryDecl *CDecl =
18657 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
18658 if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
18659 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
18660 return nullptr;
18663 EnclosingContext = EnclosingDecl;
18666 // Construct the decl.
18667 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(
18668 Context, EnclosingContext, DeclStart, Loc, II, T, TInfo, ac, BitWidth);
18670 if (T->containsErrors())
18671 NewID->setInvalidDecl();
18673 if (II) {
18674 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
18675 ForVisibleRedeclaration);
18676 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
18677 && !isa<TagDecl>(PrevDecl)) {
18678 Diag(Loc, diag::err_duplicate_member) << II;
18679 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
18680 NewID->setInvalidDecl();
18684 // Process attributes attached to the ivar.
18685 ProcessDeclAttributes(S, NewID, D);
18687 if (D.isInvalidType())
18688 NewID->setInvalidDecl();
18690 // In ARC, infer 'retaining' for ivars of retainable type.
18691 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
18692 NewID->setInvalidDecl();
18694 if (D.getDeclSpec().isModulePrivateSpecified())
18695 NewID->setModulePrivate();
18697 if (II) {
18698 // FIXME: When interfaces are DeclContexts, we'll need to add
18699 // these to the interface.
18700 S->AddDecl(NewID);
18701 IdResolver.AddDecl(NewID);
18704 if (LangOpts.ObjCRuntime.isNonFragile() &&
18705 !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
18706 Diag(Loc, diag::warn_ivars_in_interface);
18708 return NewID;
18711 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
18712 /// class and class extensions. For every class \@interface and class
18713 /// extension \@interface, if the last ivar is a bitfield of any type,
18714 /// then add an implicit `char :0` ivar to the end of that interface.
18715 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
18716 SmallVectorImpl<Decl *> &AllIvarDecls) {
18717 if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
18718 return;
18720 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
18721 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
18723 if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
18724 return;
18725 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
18726 if (!ID) {
18727 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
18728 if (!CD->IsClassExtension())
18729 return;
18731 // No need to add this to end of @implementation.
18732 else
18733 return;
18735 // All conditions are met. Add a new bitfield to the tail end of ivars.
18736 llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
18737 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
18739 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
18740 DeclLoc, DeclLoc, nullptr,
18741 Context.CharTy,
18742 Context.getTrivialTypeSourceInfo(Context.CharTy,
18743 DeclLoc),
18744 ObjCIvarDecl::Private, BW,
18745 true);
18746 AllIvarDecls.push_back(Ivar);
18749 /// [class.dtor]p4:
18750 /// At the end of the definition of a class, overload resolution is
18751 /// performed among the prospective destructors declared in that class with
18752 /// an empty argument list to select the destructor for the class, also
18753 /// known as the selected destructor.
18755 /// We do the overload resolution here, then mark the selected constructor in the AST.
18756 /// Later CXXRecordDecl::getDestructor() will return the selected constructor.
18757 static void ComputeSelectedDestructor(Sema &S, CXXRecordDecl *Record) {
18758 if (!Record->hasUserDeclaredDestructor()) {
18759 return;
18762 SourceLocation Loc = Record->getLocation();
18763 OverloadCandidateSet OCS(Loc, OverloadCandidateSet::CSK_Normal);
18765 for (auto *Decl : Record->decls()) {
18766 if (auto *DD = dyn_cast<CXXDestructorDecl>(Decl)) {
18767 if (DD->isInvalidDecl())
18768 continue;
18769 S.AddOverloadCandidate(DD, DeclAccessPair::make(DD, DD->getAccess()), {},
18770 OCS);
18771 assert(DD->isIneligibleOrNotSelected() && "Selecting a destructor but a destructor was already selected.");
18775 if (OCS.empty()) {
18776 return;
18778 OverloadCandidateSet::iterator Best;
18779 unsigned Msg = 0;
18780 OverloadCandidateDisplayKind DisplayKind;
18782 switch (OCS.BestViableFunction(S, Loc, Best)) {
18783 case OR_Success:
18784 case OR_Deleted:
18785 Record->addedSelectedDestructor(dyn_cast<CXXDestructorDecl>(Best->Function));
18786 break;
18788 case OR_Ambiguous:
18789 Msg = diag::err_ambiguous_destructor;
18790 DisplayKind = OCD_AmbiguousCandidates;
18791 break;
18793 case OR_No_Viable_Function:
18794 Msg = diag::err_no_viable_destructor;
18795 DisplayKind = OCD_AllCandidates;
18796 break;
18799 if (Msg) {
18800 // OpenCL have got their own thing going with destructors. It's slightly broken,
18801 // but we allow it.
18802 if (!S.LangOpts.OpenCL) {
18803 PartialDiagnostic Diag = S.PDiag(Msg) << Record;
18804 OCS.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, DisplayKind, {});
18805 Record->setInvalidDecl();
18807 // It's a bit hacky: At this point we've raised an error but we want the
18808 // rest of the compiler to continue somehow working. However almost
18809 // everything we'll try to do with the class will depend on there being a
18810 // destructor. So let's pretend the first one is selected and hope for the
18811 // best.
18812 Record->addedSelectedDestructor(dyn_cast<CXXDestructorDecl>(OCS.begin()->Function));
18816 /// [class.mem.special]p5
18817 /// Two special member functions are of the same kind if:
18818 /// - they are both default constructors,
18819 /// - they are both copy or move constructors with the same first parameter
18820 /// type, or
18821 /// - they are both copy or move assignment operators with the same first
18822 /// parameter type and the same cv-qualifiers and ref-qualifier, if any.
18823 static bool AreSpecialMemberFunctionsSameKind(ASTContext &Context,
18824 CXXMethodDecl *M1,
18825 CXXMethodDecl *M2,
18826 Sema::CXXSpecialMember CSM) {
18827 // We don't want to compare templates to non-templates: See
18828 // https://github.com/llvm/llvm-project/issues/59206
18829 if (CSM == Sema::CXXDefaultConstructor)
18830 return bool(M1->getDescribedFunctionTemplate()) ==
18831 bool(M2->getDescribedFunctionTemplate());
18832 // FIXME: better resolve CWG
18833 // https://cplusplus.github.io/CWG/issues/2787.html
18834 if (!Context.hasSameType(M1->getNonObjectParameter(0)->getType(),
18835 M2->getNonObjectParameter(0)->getType()))
18836 return false;
18837 if (!Context.hasSameType(M1->getFunctionObjectParameterReferenceType(),
18838 M2->getFunctionObjectParameterReferenceType()))
18839 return false;
18841 return true;
18844 /// [class.mem.special]p6:
18845 /// An eligible special member function is a special member function for which:
18846 /// - the function is not deleted,
18847 /// - the associated constraints, if any, are satisfied, and
18848 /// - no special member function of the same kind whose associated constraints
18849 /// [CWG2595], if any, are satisfied is more constrained.
18850 static void SetEligibleMethods(Sema &S, CXXRecordDecl *Record,
18851 ArrayRef<CXXMethodDecl *> Methods,
18852 Sema::CXXSpecialMember CSM) {
18853 SmallVector<bool, 4> SatisfactionStatus;
18855 for (CXXMethodDecl *Method : Methods) {
18856 const Expr *Constraints = Method->getTrailingRequiresClause();
18857 if (!Constraints)
18858 SatisfactionStatus.push_back(true);
18859 else {
18860 ConstraintSatisfaction Satisfaction;
18861 if (S.CheckFunctionConstraints(Method, Satisfaction))
18862 SatisfactionStatus.push_back(false);
18863 else
18864 SatisfactionStatus.push_back(Satisfaction.IsSatisfied);
18868 for (size_t i = 0; i < Methods.size(); i++) {
18869 if (!SatisfactionStatus[i])
18870 continue;
18871 CXXMethodDecl *Method = Methods[i];
18872 CXXMethodDecl *OrigMethod = Method;
18873 if (FunctionDecl *MF = OrigMethod->getInstantiatedFromMemberFunction())
18874 OrigMethod = cast<CXXMethodDecl>(MF);
18876 const Expr *Constraints = OrigMethod->getTrailingRequiresClause();
18877 bool AnotherMethodIsMoreConstrained = false;
18878 for (size_t j = 0; j < Methods.size(); j++) {
18879 if (i == j || !SatisfactionStatus[j])
18880 continue;
18881 CXXMethodDecl *OtherMethod = Methods[j];
18882 if (FunctionDecl *MF = OtherMethod->getInstantiatedFromMemberFunction())
18883 OtherMethod = cast<CXXMethodDecl>(MF);
18885 if (!AreSpecialMemberFunctionsSameKind(S.Context, OrigMethod, OtherMethod,
18886 CSM))
18887 continue;
18889 const Expr *OtherConstraints = OtherMethod->getTrailingRequiresClause();
18890 if (!OtherConstraints)
18891 continue;
18892 if (!Constraints) {
18893 AnotherMethodIsMoreConstrained = true;
18894 break;
18896 if (S.IsAtLeastAsConstrained(OtherMethod, {OtherConstraints}, OrigMethod,
18897 {Constraints},
18898 AnotherMethodIsMoreConstrained)) {
18899 // There was an error with the constraints comparison. Exit the loop
18900 // and don't consider this function eligible.
18901 AnotherMethodIsMoreConstrained = true;
18903 if (AnotherMethodIsMoreConstrained)
18904 break;
18906 // FIXME: Do not consider deleted methods as eligible after implementing
18907 // DR1734 and DR1496.
18908 if (!AnotherMethodIsMoreConstrained) {
18909 Method->setIneligibleOrNotSelected(false);
18910 Record->addedEligibleSpecialMemberFunction(Method, 1 << CSM);
18915 static void ComputeSpecialMemberFunctionsEligiblity(Sema &S,
18916 CXXRecordDecl *Record) {
18917 SmallVector<CXXMethodDecl *, 4> DefaultConstructors;
18918 SmallVector<CXXMethodDecl *, 4> CopyConstructors;
18919 SmallVector<CXXMethodDecl *, 4> MoveConstructors;
18920 SmallVector<CXXMethodDecl *, 4> CopyAssignmentOperators;
18921 SmallVector<CXXMethodDecl *, 4> MoveAssignmentOperators;
18923 for (auto *Decl : Record->decls()) {
18924 auto *MD = dyn_cast<CXXMethodDecl>(Decl);
18925 if (!MD) {
18926 auto *FTD = dyn_cast<FunctionTemplateDecl>(Decl);
18927 if (FTD)
18928 MD = dyn_cast<CXXMethodDecl>(FTD->getTemplatedDecl());
18930 if (!MD)
18931 continue;
18932 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
18933 if (CD->isInvalidDecl())
18934 continue;
18935 if (CD->isDefaultConstructor())
18936 DefaultConstructors.push_back(MD);
18937 else if (CD->isCopyConstructor())
18938 CopyConstructors.push_back(MD);
18939 else if (CD->isMoveConstructor())
18940 MoveConstructors.push_back(MD);
18941 } else if (MD->isCopyAssignmentOperator()) {
18942 CopyAssignmentOperators.push_back(MD);
18943 } else if (MD->isMoveAssignmentOperator()) {
18944 MoveAssignmentOperators.push_back(MD);
18948 SetEligibleMethods(S, Record, DefaultConstructors,
18949 Sema::CXXDefaultConstructor);
18950 SetEligibleMethods(S, Record, CopyConstructors, Sema::CXXCopyConstructor);
18951 SetEligibleMethods(S, Record, MoveConstructors, Sema::CXXMoveConstructor);
18952 SetEligibleMethods(S, Record, CopyAssignmentOperators,
18953 Sema::CXXCopyAssignment);
18954 SetEligibleMethods(S, Record, MoveAssignmentOperators,
18955 Sema::CXXMoveAssignment);
18958 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
18959 ArrayRef<Decl *> Fields, SourceLocation LBrac,
18960 SourceLocation RBrac,
18961 const ParsedAttributesView &Attrs) {
18962 assert(EnclosingDecl && "missing record or interface decl");
18964 // If this is an Objective-C @implementation or category and we have
18965 // new fields here we should reset the layout of the interface since
18966 // it will now change.
18967 if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
18968 ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
18969 switch (DC->getKind()) {
18970 default: break;
18971 case Decl::ObjCCategory:
18972 Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
18973 break;
18974 case Decl::ObjCImplementation:
18975 Context.
18976 ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
18977 break;
18981 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
18982 CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
18984 // Start counting up the number of named members; make sure to include
18985 // members of anonymous structs and unions in the total.
18986 unsigned NumNamedMembers = 0;
18987 if (Record) {
18988 for (const auto *I : Record->decls()) {
18989 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
18990 if (IFD->getDeclName())
18991 ++NumNamedMembers;
18995 // Verify that all the fields are okay.
18996 SmallVector<FieldDecl*, 32> RecFields;
18998 for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
18999 i != end; ++i) {
19000 FieldDecl *FD = cast<FieldDecl>(*i);
19002 // Get the type for the field.
19003 const Type *FDTy = FD->getType().getTypePtr();
19005 if (!FD->isAnonymousStructOrUnion()) {
19006 // Remember all fields written by the user.
19007 RecFields.push_back(FD);
19010 // If the field is already invalid for some reason, don't emit more
19011 // diagnostics about it.
19012 if (FD->isInvalidDecl()) {
19013 EnclosingDecl->setInvalidDecl();
19014 continue;
19017 // C99 6.7.2.1p2:
19018 // A structure or union shall not contain a member with
19019 // incomplete or function type (hence, a structure shall not
19020 // contain an instance of itself, but may contain a pointer to
19021 // an instance of itself), except that the last member of a
19022 // structure with more than one named member may have incomplete
19023 // array type; such a structure (and any union containing,
19024 // possibly recursively, a member that is such a structure)
19025 // shall not be a member of a structure or an element of an
19026 // array.
19027 bool IsLastField = (i + 1 == Fields.end());
19028 if (FDTy->isFunctionType()) {
19029 // Field declared as a function.
19030 Diag(FD->getLocation(), diag::err_field_declared_as_function)
19031 << FD->getDeclName();
19032 FD->setInvalidDecl();
19033 EnclosingDecl->setInvalidDecl();
19034 continue;
19035 } else if (FDTy->isIncompleteArrayType() &&
19036 (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
19037 if (Record) {
19038 // Flexible array member.
19039 // Microsoft and g++ is more permissive regarding flexible array.
19040 // It will accept flexible array in union and also
19041 // as the sole element of a struct/class.
19042 unsigned DiagID = 0;
19043 if (!Record->isUnion() && !IsLastField) {
19044 Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
19045 << FD->getDeclName() << FD->getType() << Record->getTagKind();
19046 Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
19047 FD->setInvalidDecl();
19048 EnclosingDecl->setInvalidDecl();
19049 continue;
19050 } else if (Record->isUnion())
19051 DiagID = getLangOpts().MicrosoftExt
19052 ? diag::ext_flexible_array_union_ms
19053 : getLangOpts().CPlusPlus
19054 ? diag::ext_flexible_array_union_gnu
19055 : diag::err_flexible_array_union;
19056 else if (NumNamedMembers < 1)
19057 DiagID = getLangOpts().MicrosoftExt
19058 ? diag::ext_flexible_array_empty_aggregate_ms
19059 : getLangOpts().CPlusPlus
19060 ? diag::ext_flexible_array_empty_aggregate_gnu
19061 : diag::err_flexible_array_empty_aggregate;
19063 if (DiagID)
19064 Diag(FD->getLocation(), DiagID) << FD->getDeclName()
19065 << Record->getTagKind();
19066 // While the layout of types that contain virtual bases is not specified
19067 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
19068 // virtual bases after the derived members. This would make a flexible
19069 // array member declared at the end of an object not adjacent to the end
19070 // of the type.
19071 if (CXXRecord && CXXRecord->getNumVBases() != 0)
19072 Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
19073 << FD->getDeclName() << Record->getTagKind();
19074 if (!getLangOpts().C99)
19075 Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
19076 << FD->getDeclName() << Record->getTagKind();
19078 // If the element type has a non-trivial destructor, we would not
19079 // implicitly destroy the elements, so disallow it for now.
19081 // FIXME: GCC allows this. We should probably either implicitly delete
19082 // the destructor of the containing class, or just allow this.
19083 QualType BaseElem = Context.getBaseElementType(FD->getType());
19084 if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
19085 Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
19086 << FD->getDeclName() << FD->getType();
19087 FD->setInvalidDecl();
19088 EnclosingDecl->setInvalidDecl();
19089 continue;
19091 // Okay, we have a legal flexible array member at the end of the struct.
19092 Record->setHasFlexibleArrayMember(true);
19093 } else {
19094 // In ObjCContainerDecl ivars with incomplete array type are accepted,
19095 // unless they are followed by another ivar. That check is done
19096 // elsewhere, after synthesized ivars are known.
19098 } else if (!FDTy->isDependentType() &&
19099 RequireCompleteSizedType(
19100 FD->getLocation(), FD->getType(),
19101 diag::err_field_incomplete_or_sizeless)) {
19102 // Incomplete type
19103 FD->setInvalidDecl();
19104 EnclosingDecl->setInvalidDecl();
19105 continue;
19106 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
19107 if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
19108 // A type which contains a flexible array member is considered to be a
19109 // flexible array member.
19110 Record->setHasFlexibleArrayMember(true);
19111 if (!Record->isUnion()) {
19112 // If this is a struct/class and this is not the last element, reject
19113 // it. Note that GCC supports variable sized arrays in the middle of
19114 // structures.
19115 if (!IsLastField)
19116 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
19117 << FD->getDeclName() << FD->getType();
19118 else {
19119 // We support flexible arrays at the end of structs in
19120 // other structs as an extension.
19121 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
19122 << FD->getDeclName();
19126 if (isa<ObjCContainerDecl>(EnclosingDecl) &&
19127 RequireNonAbstractType(FD->getLocation(), FD->getType(),
19128 diag::err_abstract_type_in_decl,
19129 AbstractIvarType)) {
19130 // Ivars can not have abstract class types
19131 FD->setInvalidDecl();
19133 if (Record && FDTTy->getDecl()->hasObjectMember())
19134 Record->setHasObjectMember(true);
19135 if (Record && FDTTy->getDecl()->hasVolatileMember())
19136 Record->setHasVolatileMember(true);
19137 } else if (FDTy->isObjCObjectType()) {
19138 /// A field cannot be an Objective-c object
19139 Diag(FD->getLocation(), diag::err_statically_allocated_object)
19140 << FixItHint::CreateInsertion(FD->getLocation(), "*");
19141 QualType T = Context.getObjCObjectPointerType(FD->getType());
19142 FD->setType(T);
19143 } else if (Record && Record->isUnion() &&
19144 FD->getType().hasNonTrivialObjCLifetime() &&
19145 getSourceManager().isInSystemHeader(FD->getLocation()) &&
19146 !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() &&
19147 (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong ||
19148 !Context.hasDirectOwnershipQualifier(FD->getType()))) {
19149 // For backward compatibility, fields of C unions declared in system
19150 // headers that have non-trivial ObjC ownership qualifications are marked
19151 // as unavailable unless the qualifier is explicit and __strong. This can
19152 // break ABI compatibility between programs compiled with ARC and MRR, but
19153 // is a better option than rejecting programs using those unions under
19154 // ARC.
19155 FD->addAttr(UnavailableAttr::CreateImplicit(
19156 Context, "", UnavailableAttr::IR_ARCFieldWithOwnership,
19157 FD->getLocation()));
19158 } else if (getLangOpts().ObjC &&
19159 getLangOpts().getGC() != LangOptions::NonGC && Record &&
19160 !Record->hasObjectMember()) {
19161 if (FD->getType()->isObjCObjectPointerType() ||
19162 FD->getType().isObjCGCStrong())
19163 Record->setHasObjectMember(true);
19164 else if (Context.getAsArrayType(FD->getType())) {
19165 QualType BaseType = Context.getBaseElementType(FD->getType());
19166 if (BaseType->isRecordType() &&
19167 BaseType->castAs<RecordType>()->getDecl()->hasObjectMember())
19168 Record->setHasObjectMember(true);
19169 else if (BaseType->isObjCObjectPointerType() ||
19170 BaseType.isObjCGCStrong())
19171 Record->setHasObjectMember(true);
19175 if (Record && !getLangOpts().CPlusPlus &&
19176 !shouldIgnoreForRecordTriviality(FD)) {
19177 QualType FT = FD->getType();
19178 if (FT.isNonTrivialToPrimitiveDefaultInitialize()) {
19179 Record->setNonTrivialToPrimitiveDefaultInitialize(true);
19180 if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
19181 Record->isUnion())
19182 Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true);
19184 QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
19185 if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) {
19186 Record->setNonTrivialToPrimitiveCopy(true);
19187 if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion())
19188 Record->setHasNonTrivialToPrimitiveCopyCUnion(true);
19190 if (FT.isDestructedType()) {
19191 Record->setNonTrivialToPrimitiveDestroy(true);
19192 Record->setParamDestroyedInCallee(true);
19193 if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion())
19194 Record->setHasNonTrivialToPrimitiveDestructCUnion(true);
19197 if (const auto *RT = FT->getAs<RecordType>()) {
19198 if (RT->getDecl()->getArgPassingRestrictions() ==
19199 RecordArgPassingKind::CanNeverPassInRegs)
19200 Record->setArgPassingRestrictions(
19201 RecordArgPassingKind::CanNeverPassInRegs);
19202 } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
19203 Record->setArgPassingRestrictions(
19204 RecordArgPassingKind::CanNeverPassInRegs);
19207 if (Record && FD->getType().isVolatileQualified())
19208 Record->setHasVolatileMember(true);
19209 // Keep track of the number of named members.
19210 if (FD->getIdentifier())
19211 ++NumNamedMembers;
19214 // Okay, we successfully defined 'Record'.
19215 if (Record) {
19216 bool Completed = false;
19217 if (CXXRecord) {
19218 if (!CXXRecord->isInvalidDecl()) {
19219 // Set access bits correctly on the directly-declared conversions.
19220 for (CXXRecordDecl::conversion_iterator
19221 I = CXXRecord->conversion_begin(),
19222 E = CXXRecord->conversion_end(); I != E; ++I)
19223 I.setAccess((*I)->getAccess());
19226 // Add any implicitly-declared members to this class.
19227 AddImplicitlyDeclaredMembersToClass(CXXRecord);
19229 if (!CXXRecord->isDependentType()) {
19230 if (!CXXRecord->isInvalidDecl()) {
19231 // If we have virtual base classes, we may end up finding multiple
19232 // final overriders for a given virtual function. Check for this
19233 // problem now.
19234 if (CXXRecord->getNumVBases()) {
19235 CXXFinalOverriderMap FinalOverriders;
19236 CXXRecord->getFinalOverriders(FinalOverriders);
19238 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
19239 MEnd = FinalOverriders.end();
19240 M != MEnd; ++M) {
19241 for (OverridingMethods::iterator SO = M->second.begin(),
19242 SOEnd = M->second.end();
19243 SO != SOEnd; ++SO) {
19244 assert(SO->second.size() > 0 &&
19245 "Virtual function without overriding functions?");
19246 if (SO->second.size() == 1)
19247 continue;
19249 // C++ [class.virtual]p2:
19250 // In a derived class, if a virtual member function of a base
19251 // class subobject has more than one final overrider the
19252 // program is ill-formed.
19253 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
19254 << (const NamedDecl *)M->first << Record;
19255 Diag(M->first->getLocation(),
19256 diag::note_overridden_virtual_function);
19257 for (OverridingMethods::overriding_iterator
19258 OM = SO->second.begin(),
19259 OMEnd = SO->second.end();
19260 OM != OMEnd; ++OM)
19261 Diag(OM->Method->getLocation(), diag::note_final_overrider)
19262 << (const NamedDecl *)M->first << OM->Method->getParent();
19264 Record->setInvalidDecl();
19267 CXXRecord->completeDefinition(&FinalOverriders);
19268 Completed = true;
19271 ComputeSelectedDestructor(*this, CXXRecord);
19272 ComputeSpecialMemberFunctionsEligiblity(*this, CXXRecord);
19276 if (!Completed)
19277 Record->completeDefinition();
19279 // Handle attributes before checking the layout.
19280 ProcessDeclAttributeList(S, Record, Attrs);
19282 // Check to see if a FieldDecl is a pointer to a function.
19283 auto IsFunctionPointerOrForwardDecl = [&](const Decl *D) {
19284 const FieldDecl *FD = dyn_cast<FieldDecl>(D);
19285 if (!FD) {
19286 // Check whether this is a forward declaration that was inserted by
19287 // Clang. This happens when a non-forward declared / defined type is
19288 // used, e.g.:
19290 // struct foo {
19291 // struct bar *(*f)();
19292 // struct bar *(*g)();
19293 // };
19295 // "struct bar" shows up in the decl AST as a "RecordDecl" with an
19296 // incomplete definition.
19297 if (const auto *TD = dyn_cast<TagDecl>(D))
19298 return !TD->isCompleteDefinition();
19299 return false;
19301 QualType FieldType = FD->getType().getDesugaredType(Context);
19302 if (isa<PointerType>(FieldType)) {
19303 QualType PointeeType = cast<PointerType>(FieldType)->getPointeeType();
19304 return PointeeType.getDesugaredType(Context)->isFunctionType();
19306 return false;
19309 // Maybe randomize the record's decls. We automatically randomize a record
19310 // of function pointers, unless it has the "no_randomize_layout" attribute.
19311 if (!getLangOpts().CPlusPlus &&
19312 (Record->hasAttr<RandomizeLayoutAttr>() ||
19313 (!Record->hasAttr<NoRandomizeLayoutAttr>() &&
19314 llvm::all_of(Record->decls(), IsFunctionPointerOrForwardDecl))) &&
19315 !Record->isUnion() && !getLangOpts().RandstructSeed.empty() &&
19316 !Record->isRandomized()) {
19317 SmallVector<Decl *, 32> NewDeclOrdering;
19318 if (randstruct::randomizeStructureLayout(Context, Record,
19319 NewDeclOrdering))
19320 Record->reorderDecls(NewDeclOrdering);
19323 // We may have deferred checking for a deleted destructor. Check now.
19324 if (CXXRecord) {
19325 auto *Dtor = CXXRecord->getDestructor();
19326 if (Dtor && Dtor->isImplicit() &&
19327 ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
19328 CXXRecord->setImplicitDestructorIsDeleted();
19329 SetDeclDeleted(Dtor, CXXRecord->getLocation());
19333 if (Record->hasAttrs()) {
19334 CheckAlignasUnderalignment(Record);
19336 if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
19337 checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
19338 IA->getRange(), IA->getBestCase(),
19339 IA->getInheritanceModel());
19342 // Check if the structure/union declaration is a type that can have zero
19343 // size in C. For C this is a language extension, for C++ it may cause
19344 // compatibility problems.
19345 bool CheckForZeroSize;
19346 if (!getLangOpts().CPlusPlus) {
19347 CheckForZeroSize = true;
19348 } else {
19349 // For C++ filter out types that cannot be referenced in C code.
19350 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
19351 CheckForZeroSize =
19352 CXXRecord->getLexicalDeclContext()->isExternCContext() &&
19353 !CXXRecord->isDependentType() && !inTemplateInstantiation() &&
19354 CXXRecord->isCLike();
19356 if (CheckForZeroSize) {
19357 bool ZeroSize = true;
19358 bool IsEmpty = true;
19359 unsigned NonBitFields = 0;
19360 for (RecordDecl::field_iterator I = Record->field_begin(),
19361 E = Record->field_end();
19362 (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
19363 IsEmpty = false;
19364 if (I->isUnnamedBitfield()) {
19365 if (!I->isZeroLengthBitField(Context))
19366 ZeroSize = false;
19367 } else {
19368 ++NonBitFields;
19369 QualType FieldType = I->getType();
19370 if (FieldType->isIncompleteType() ||
19371 !Context.getTypeSizeInChars(FieldType).isZero())
19372 ZeroSize = false;
19376 // Empty structs are an extension in C (C99 6.7.2.1p7). They are
19377 // allowed in C++, but warn if its declaration is inside
19378 // extern "C" block.
19379 if (ZeroSize) {
19380 Diag(RecLoc, getLangOpts().CPlusPlus ?
19381 diag::warn_zero_size_struct_union_in_extern_c :
19382 diag::warn_zero_size_struct_union_compat)
19383 << IsEmpty << Record->isUnion() << (NonBitFields > 1);
19386 // Structs without named members are extension in C (C99 6.7.2.1p7),
19387 // but are accepted by GCC.
19388 if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
19389 Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
19390 diag::ext_no_named_members_in_struct_union)
19391 << Record->isUnion();
19394 } else {
19395 ObjCIvarDecl **ClsFields =
19396 reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
19397 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
19398 ID->setEndOfDefinitionLoc(RBrac);
19399 // Add ivar's to class's DeclContext.
19400 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
19401 ClsFields[i]->setLexicalDeclContext(ID);
19402 ID->addDecl(ClsFields[i]);
19404 // Must enforce the rule that ivars in the base classes may not be
19405 // duplicates.
19406 if (ID->getSuperClass())
19407 DiagnoseDuplicateIvars(ID, ID->getSuperClass());
19408 } else if (ObjCImplementationDecl *IMPDecl =
19409 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
19410 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
19411 for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
19412 // Ivar declared in @implementation never belongs to the implementation.
19413 // Only it is in implementation's lexical context.
19414 ClsFields[I]->setLexicalDeclContext(IMPDecl);
19415 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
19416 IMPDecl->setIvarLBraceLoc(LBrac);
19417 IMPDecl->setIvarRBraceLoc(RBrac);
19418 } else if (ObjCCategoryDecl *CDecl =
19419 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
19420 // case of ivars in class extension; all other cases have been
19421 // reported as errors elsewhere.
19422 // FIXME. Class extension does not have a LocEnd field.
19423 // CDecl->setLocEnd(RBrac);
19424 // Add ivar's to class extension's DeclContext.
19425 // Diagnose redeclaration of private ivars.
19426 ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
19427 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
19428 if (IDecl) {
19429 if (const ObjCIvarDecl *ClsIvar =
19430 IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
19431 Diag(ClsFields[i]->getLocation(),
19432 diag::err_duplicate_ivar_declaration);
19433 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
19434 continue;
19436 for (const auto *Ext : IDecl->known_extensions()) {
19437 if (const ObjCIvarDecl *ClsExtIvar
19438 = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
19439 Diag(ClsFields[i]->getLocation(),
19440 diag::err_duplicate_ivar_declaration);
19441 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
19442 continue;
19446 ClsFields[i]->setLexicalDeclContext(CDecl);
19447 CDecl->addDecl(ClsFields[i]);
19449 CDecl->setIvarLBraceLoc(LBrac);
19450 CDecl->setIvarRBraceLoc(RBrac);
19454 // Check the "counted_by" attribute to ensure that the count field exists in
19455 // the struct. Make sure we're performing this check on the outer-most
19456 // record. This is a C-only feature.
19457 if (!getLangOpts().CPlusPlus && Record &&
19458 !isa<RecordDecl>(Record->getParent())) {
19459 auto Pred = [](const Decl *D) {
19460 if (const auto *FD = dyn_cast_if_present<FieldDecl>(D))
19461 return FD->hasAttr<CountedByAttr>();
19462 return false;
19464 if (const FieldDecl *FD = Record->findFieldIf(Pred))
19465 CheckCountedByAttr(S, FD);
19469 /// Determine whether the given integral value is representable within
19470 /// the given type T.
19471 static bool isRepresentableIntegerValue(ASTContext &Context,
19472 llvm::APSInt &Value,
19473 QualType T) {
19474 assert((T->isIntegralType(Context) || T->isEnumeralType()) &&
19475 "Integral type required!");
19476 unsigned BitWidth = Context.getIntWidth(T);
19478 if (Value.isUnsigned() || Value.isNonNegative()) {
19479 if (T->isSignedIntegerOrEnumerationType())
19480 --BitWidth;
19481 return Value.getActiveBits() <= BitWidth;
19483 return Value.getSignificantBits() <= BitWidth;
19486 // Given an integral type, return the next larger integral type
19487 // (or a NULL type of no such type exists).
19488 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
19489 // FIXME: Int128/UInt128 support, which also needs to be introduced into
19490 // enum checking below.
19491 assert((T->isIntegralType(Context) ||
19492 T->isEnumeralType()) && "Integral type required!");
19493 const unsigned NumTypes = 4;
19494 QualType SignedIntegralTypes[NumTypes] = {
19495 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
19497 QualType UnsignedIntegralTypes[NumTypes] = {
19498 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
19499 Context.UnsignedLongLongTy
19502 unsigned BitWidth = Context.getTypeSize(T);
19503 QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
19504 : UnsignedIntegralTypes;
19505 for (unsigned I = 0; I != NumTypes; ++I)
19506 if (Context.getTypeSize(Types[I]) > BitWidth)
19507 return Types[I];
19509 return QualType();
19512 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
19513 EnumConstantDecl *LastEnumConst,
19514 SourceLocation IdLoc,
19515 IdentifierInfo *Id,
19516 Expr *Val) {
19517 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
19518 llvm::APSInt EnumVal(IntWidth);
19519 QualType EltTy;
19521 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
19522 Val = nullptr;
19524 if (Val)
19525 Val = DefaultLvalueConversion(Val).get();
19527 if (Val) {
19528 if (Enum->isDependentType() || Val->isTypeDependent() ||
19529 Val->containsErrors())
19530 EltTy = Context.DependentTy;
19531 else {
19532 // FIXME: We don't allow folding in C++11 mode for an enum with a fixed
19533 // underlying type, but do allow it in all other contexts.
19534 if (getLangOpts().CPlusPlus11 && Enum->isFixed()) {
19535 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
19536 // constant-expression in the enumerator-definition shall be a converted
19537 // constant expression of the underlying type.
19538 EltTy = Enum->getIntegerType();
19539 ExprResult Converted =
19540 CheckConvertedConstantExpression(Val, EltTy, EnumVal,
19541 CCEK_Enumerator);
19542 if (Converted.isInvalid())
19543 Val = nullptr;
19544 else
19545 Val = Converted.get();
19546 } else if (!Val->isValueDependent() &&
19547 !(Val =
19548 VerifyIntegerConstantExpression(Val, &EnumVal, AllowFold)
19549 .get())) {
19550 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
19551 } else {
19552 if (Enum->isComplete()) {
19553 EltTy = Enum->getIntegerType();
19555 // In Obj-C and Microsoft mode, require the enumeration value to be
19556 // representable in the underlying type of the enumeration. In C++11,
19557 // we perform a non-narrowing conversion as part of converted constant
19558 // expression checking.
19559 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
19560 if (Context.getTargetInfo()
19561 .getTriple()
19562 .isWindowsMSVCEnvironment()) {
19563 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
19564 } else {
19565 Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
19569 // Cast to the underlying type.
19570 Val = ImpCastExprToType(Val, EltTy,
19571 EltTy->isBooleanType() ? CK_IntegralToBoolean
19572 : CK_IntegralCast)
19573 .get();
19574 } else if (getLangOpts().CPlusPlus) {
19575 // C++11 [dcl.enum]p5:
19576 // If the underlying type is not fixed, the type of each enumerator
19577 // is the type of its initializing value:
19578 // - If an initializer is specified for an enumerator, the
19579 // initializing value has the same type as the expression.
19580 EltTy = Val->getType();
19581 } else {
19582 // C99 6.7.2.2p2:
19583 // The expression that defines the value of an enumeration constant
19584 // shall be an integer constant expression that has a value
19585 // representable as an int.
19587 // Complain if the value is not representable in an int.
19588 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
19589 Diag(IdLoc, diag::ext_enum_value_not_int)
19590 << toString(EnumVal, 10) << Val->getSourceRange()
19591 << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
19592 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
19593 // Force the type of the expression to 'int'.
19594 Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
19596 EltTy = Val->getType();
19602 if (!Val) {
19603 if (Enum->isDependentType())
19604 EltTy = Context.DependentTy;
19605 else if (!LastEnumConst) {
19606 // C++0x [dcl.enum]p5:
19607 // If the underlying type is not fixed, the type of each enumerator
19608 // is the type of its initializing value:
19609 // - If no initializer is specified for the first enumerator, the
19610 // initializing value has an unspecified integral type.
19612 // GCC uses 'int' for its unspecified integral type, as does
19613 // C99 6.7.2.2p3.
19614 if (Enum->isFixed()) {
19615 EltTy = Enum->getIntegerType();
19617 else {
19618 EltTy = Context.IntTy;
19620 } else {
19621 // Assign the last value + 1.
19622 EnumVal = LastEnumConst->getInitVal();
19623 ++EnumVal;
19624 EltTy = LastEnumConst->getType();
19626 // Check for overflow on increment.
19627 if (EnumVal < LastEnumConst->getInitVal()) {
19628 // C++0x [dcl.enum]p5:
19629 // If the underlying type is not fixed, the type of each enumerator
19630 // is the type of its initializing value:
19632 // - Otherwise the type of the initializing value is the same as
19633 // the type of the initializing value of the preceding enumerator
19634 // unless the incremented value is not representable in that type,
19635 // in which case the type is an unspecified integral type
19636 // sufficient to contain the incremented value. If no such type
19637 // exists, the program is ill-formed.
19638 QualType T = getNextLargerIntegralType(Context, EltTy);
19639 if (T.isNull() || Enum->isFixed()) {
19640 // There is no integral type larger enough to represent this
19641 // value. Complain, then allow the value to wrap around.
19642 EnumVal = LastEnumConst->getInitVal();
19643 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
19644 ++EnumVal;
19645 if (Enum->isFixed())
19646 // When the underlying type is fixed, this is ill-formed.
19647 Diag(IdLoc, diag::err_enumerator_wrapped)
19648 << toString(EnumVal, 10)
19649 << EltTy;
19650 else
19651 Diag(IdLoc, diag::ext_enumerator_increment_too_large)
19652 << toString(EnumVal, 10);
19653 } else {
19654 EltTy = T;
19657 // Retrieve the last enumerator's value, extent that type to the
19658 // type that is supposed to be large enough to represent the incremented
19659 // value, then increment.
19660 EnumVal = LastEnumConst->getInitVal();
19661 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
19662 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
19663 ++EnumVal;
19665 // If we're not in C++, diagnose the overflow of enumerator values,
19666 // which in C99 means that the enumerator value is not representable in
19667 // an int (C99 6.7.2.2p2). However, we support GCC's extension that
19668 // permits enumerator values that are representable in some larger
19669 // integral type.
19670 if (!getLangOpts().CPlusPlus && !T.isNull())
19671 Diag(IdLoc, diag::warn_enum_value_overflow);
19672 } else if (!getLangOpts().CPlusPlus &&
19673 !EltTy->isDependentType() &&
19674 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
19675 // Enforce C99 6.7.2.2p2 even when we compute the next value.
19676 Diag(IdLoc, diag::ext_enum_value_not_int)
19677 << toString(EnumVal, 10) << 1;
19682 if (!EltTy->isDependentType()) {
19683 // Make the enumerator value match the signedness and size of the
19684 // enumerator's type.
19685 EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
19686 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
19689 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
19690 Val, EnumVal);
19693 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
19694 SourceLocation IILoc) {
19695 if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
19696 !getLangOpts().CPlusPlus)
19697 return SkipBodyInfo();
19699 // We have an anonymous enum definition. Look up the first enumerator to
19700 // determine if we should merge the definition with an existing one and
19701 // skip the body.
19702 NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
19703 forRedeclarationInCurContext());
19704 auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
19705 if (!PrevECD)
19706 return SkipBodyInfo();
19708 EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
19709 NamedDecl *Hidden;
19710 if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
19711 SkipBodyInfo Skip;
19712 Skip.Previous = Hidden;
19713 return Skip;
19716 return SkipBodyInfo();
19719 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
19720 SourceLocation IdLoc, IdentifierInfo *Id,
19721 const ParsedAttributesView &Attrs,
19722 SourceLocation EqualLoc, Expr *Val) {
19723 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
19724 EnumConstantDecl *LastEnumConst =
19725 cast_or_null<EnumConstantDecl>(lastEnumConst);
19727 // The scope passed in may not be a decl scope. Zip up the scope tree until
19728 // we find one that is.
19729 S = getNonFieldDeclScope(S);
19731 // Verify that there isn't already something declared with this name in this
19732 // scope.
19733 LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
19734 LookupName(R, S);
19735 NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
19737 if (PrevDecl && PrevDecl->isTemplateParameter()) {
19738 // Maybe we will complain about the shadowed template parameter.
19739 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
19740 // Just pretend that we didn't see the previous declaration.
19741 PrevDecl = nullptr;
19744 // C++ [class.mem]p15:
19745 // If T is the name of a class, then each of the following shall have a name
19746 // different from T:
19747 // - every enumerator of every member of class T that is an unscoped
19748 // enumerated type
19749 if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
19750 DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
19751 DeclarationNameInfo(Id, IdLoc));
19753 EnumConstantDecl *New =
19754 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
19755 if (!New)
19756 return nullptr;
19758 if (PrevDecl) {
19759 if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
19760 // Check for other kinds of shadowing not already handled.
19761 CheckShadow(New, PrevDecl, R);
19764 // When in C++, we may get a TagDecl with the same name; in this case the
19765 // enum constant will 'hide' the tag.
19766 assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
19767 "Received TagDecl when not in C++!");
19768 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
19769 if (isa<EnumConstantDecl>(PrevDecl))
19770 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
19771 else
19772 Diag(IdLoc, diag::err_redefinition) << Id;
19773 notePreviousDefinition(PrevDecl, IdLoc);
19774 return nullptr;
19778 // Process attributes.
19779 ProcessDeclAttributeList(S, New, Attrs);
19780 AddPragmaAttributes(S, New);
19782 // Register this decl in the current scope stack.
19783 New->setAccess(TheEnumDecl->getAccess());
19784 PushOnScopeChains(New, S);
19786 ActOnDocumentableDecl(New);
19788 return New;
19791 // Returns true when the enum initial expression does not trigger the
19792 // duplicate enum warning. A few common cases are exempted as follows:
19793 // Element2 = Element1
19794 // Element2 = Element1 + 1
19795 // Element2 = Element1 - 1
19796 // Where Element2 and Element1 are from the same enum.
19797 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
19798 Expr *InitExpr = ECD->getInitExpr();
19799 if (!InitExpr)
19800 return true;
19801 InitExpr = InitExpr->IgnoreImpCasts();
19803 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
19804 if (!BO->isAdditiveOp())
19805 return true;
19806 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
19807 if (!IL)
19808 return true;
19809 if (IL->getValue() != 1)
19810 return true;
19812 InitExpr = BO->getLHS();
19815 // This checks if the elements are from the same enum.
19816 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
19817 if (!DRE)
19818 return true;
19820 EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
19821 if (!EnumConstant)
19822 return true;
19824 if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
19825 Enum)
19826 return true;
19828 return false;
19831 // Emits a warning when an element is implicitly set a value that
19832 // a previous element has already been set to.
19833 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
19834 EnumDecl *Enum, QualType EnumType) {
19835 // Avoid anonymous enums
19836 if (!Enum->getIdentifier())
19837 return;
19839 // Only check for small enums.
19840 if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
19841 return;
19843 if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
19844 return;
19846 typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
19847 typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
19849 typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
19851 // DenseMaps cannot contain the all ones int64_t value, so use unordered_map.
19852 typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
19854 // Use int64_t as a key to avoid needing special handling for map keys.
19855 auto EnumConstantToKey = [](const EnumConstantDecl *D) {
19856 llvm::APSInt Val = D->getInitVal();
19857 return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
19860 DuplicatesVector DupVector;
19861 ValueToVectorMap EnumMap;
19863 // Populate the EnumMap with all values represented by enum constants without
19864 // an initializer.
19865 for (auto *Element : Elements) {
19866 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
19868 // Null EnumConstantDecl means a previous diagnostic has been emitted for
19869 // this constant. Skip this enum since it may be ill-formed.
19870 if (!ECD) {
19871 return;
19874 // Constants with initializers are handled in the next loop.
19875 if (ECD->getInitExpr())
19876 continue;
19878 // Duplicate values are handled in the next loop.
19879 EnumMap.insert({EnumConstantToKey(ECD), ECD});
19882 if (EnumMap.size() == 0)
19883 return;
19885 // Create vectors for any values that has duplicates.
19886 for (auto *Element : Elements) {
19887 // The last loop returned if any constant was null.
19888 EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
19889 if (!ValidDuplicateEnum(ECD, Enum))
19890 continue;
19892 auto Iter = EnumMap.find(EnumConstantToKey(ECD));
19893 if (Iter == EnumMap.end())
19894 continue;
19896 DeclOrVector& Entry = Iter->second;
19897 if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
19898 // Ensure constants are different.
19899 if (D == ECD)
19900 continue;
19902 // Create new vector and push values onto it.
19903 auto Vec = std::make_unique<ECDVector>();
19904 Vec->push_back(D);
19905 Vec->push_back(ECD);
19907 // Update entry to point to the duplicates vector.
19908 Entry = Vec.get();
19910 // Store the vector somewhere we can consult later for quick emission of
19911 // diagnostics.
19912 DupVector.emplace_back(std::move(Vec));
19913 continue;
19916 ECDVector *Vec = Entry.get<ECDVector*>();
19917 // Make sure constants are not added more than once.
19918 if (*Vec->begin() == ECD)
19919 continue;
19921 Vec->push_back(ECD);
19924 // Emit diagnostics.
19925 for (const auto &Vec : DupVector) {
19926 assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
19928 // Emit warning for one enum constant.
19929 auto *FirstECD = Vec->front();
19930 S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
19931 << FirstECD << toString(FirstECD->getInitVal(), 10)
19932 << FirstECD->getSourceRange();
19934 // Emit one note for each of the remaining enum constants with
19935 // the same value.
19936 for (auto *ECD : llvm::drop_begin(*Vec))
19937 S.Diag(ECD->getLocation(), diag::note_duplicate_element)
19938 << ECD << toString(ECD->getInitVal(), 10)
19939 << ECD->getSourceRange();
19943 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
19944 bool AllowMask) const {
19945 assert(ED->isClosedFlag() && "looking for value in non-flag or open enum");
19946 assert(ED->isCompleteDefinition() && "expected enum definition");
19948 auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
19949 llvm::APInt &FlagBits = R.first->second;
19951 if (R.second) {
19952 for (auto *E : ED->enumerators()) {
19953 const auto &EVal = E->getInitVal();
19954 // Only single-bit enumerators introduce new flag values.
19955 if (EVal.isPowerOf2())
19956 FlagBits = FlagBits.zext(EVal.getBitWidth()) | EVal;
19960 // A value is in a flag enum if either its bits are a subset of the enum's
19961 // flag bits (the first condition) or we are allowing masks and the same is
19962 // true of its complement (the second condition). When masks are allowed, we
19963 // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
19965 // While it's true that any value could be used as a mask, the assumption is
19966 // that a mask will have all of the insignificant bits set. Anything else is
19967 // likely a logic error.
19968 llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
19969 return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
19972 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
19973 Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
19974 const ParsedAttributesView &Attrs) {
19975 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
19976 QualType EnumType = Context.getTypeDeclType(Enum);
19978 ProcessDeclAttributeList(S, Enum, Attrs);
19980 if (Enum->isDependentType()) {
19981 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
19982 EnumConstantDecl *ECD =
19983 cast_or_null<EnumConstantDecl>(Elements[i]);
19984 if (!ECD) continue;
19986 ECD->setType(EnumType);
19989 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
19990 return;
19993 // TODO: If the result value doesn't fit in an int, it must be a long or long
19994 // long value. ISO C does not support this, but GCC does as an extension,
19995 // emit a warning.
19996 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
19997 unsigned CharWidth = Context.getTargetInfo().getCharWidth();
19998 unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
20000 // Verify that all the values are okay, compute the size of the values, and
20001 // reverse the list.
20002 unsigned NumNegativeBits = 0;
20003 unsigned NumPositiveBits = 0;
20005 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
20006 EnumConstantDecl *ECD =
20007 cast_or_null<EnumConstantDecl>(Elements[i]);
20008 if (!ECD) continue; // Already issued a diagnostic.
20010 const llvm::APSInt &InitVal = ECD->getInitVal();
20012 // Keep track of the size of positive and negative values.
20013 if (InitVal.isUnsigned() || InitVal.isNonNegative()) {
20014 // If the enumerator is zero that should still be counted as a positive
20015 // bit since we need a bit to store the value zero.
20016 unsigned ActiveBits = InitVal.getActiveBits();
20017 NumPositiveBits = std::max({NumPositiveBits, ActiveBits, 1u});
20018 } else {
20019 NumNegativeBits =
20020 std::max(NumNegativeBits, (unsigned)InitVal.getSignificantBits());
20024 // If we have an empty set of enumerators we still need one bit.
20025 // From [dcl.enum]p8
20026 // If the enumerator-list is empty, the values of the enumeration are as if
20027 // the enumeration had a single enumerator with value 0
20028 if (!NumPositiveBits && !NumNegativeBits)
20029 NumPositiveBits = 1;
20031 // Figure out the type that should be used for this enum.
20032 QualType BestType;
20033 unsigned BestWidth;
20035 // C++0x N3000 [conv.prom]p3:
20036 // An rvalue of an unscoped enumeration type whose underlying
20037 // type is not fixed can be converted to an rvalue of the first
20038 // of the following types that can represent all the values of
20039 // the enumeration: int, unsigned int, long int, unsigned long
20040 // int, long long int, or unsigned long long int.
20041 // C99 6.4.4.3p2:
20042 // An identifier declared as an enumeration constant has type int.
20043 // The C99 rule is modified by a gcc extension
20044 QualType BestPromotionType;
20046 bool Packed = Enum->hasAttr<PackedAttr>();
20047 // -fshort-enums is the equivalent to specifying the packed attribute on all
20048 // enum definitions.
20049 if (LangOpts.ShortEnums)
20050 Packed = true;
20052 // If the enum already has a type because it is fixed or dictated by the
20053 // target, promote that type instead of analyzing the enumerators.
20054 if (Enum->isComplete()) {
20055 BestType = Enum->getIntegerType();
20056 if (Context.isPromotableIntegerType(BestType))
20057 BestPromotionType = Context.getPromotedIntegerType(BestType);
20058 else
20059 BestPromotionType = BestType;
20061 BestWidth = Context.getIntWidth(BestType);
20063 else if (NumNegativeBits) {
20064 // If there is a negative value, figure out the smallest integer type (of
20065 // int/long/longlong) that fits.
20066 // If it's packed, check also if it fits a char or a short.
20067 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
20068 BestType = Context.SignedCharTy;
20069 BestWidth = CharWidth;
20070 } else if (Packed && NumNegativeBits <= ShortWidth &&
20071 NumPositiveBits < ShortWidth) {
20072 BestType = Context.ShortTy;
20073 BestWidth = ShortWidth;
20074 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
20075 BestType = Context.IntTy;
20076 BestWidth = IntWidth;
20077 } else {
20078 BestWidth = Context.getTargetInfo().getLongWidth();
20080 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
20081 BestType = Context.LongTy;
20082 } else {
20083 BestWidth = Context.getTargetInfo().getLongLongWidth();
20085 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
20086 Diag(Enum->getLocation(), diag::ext_enum_too_large);
20087 BestType = Context.LongLongTy;
20090 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
20091 } else {
20092 // If there is no negative value, figure out the smallest type that fits
20093 // all of the enumerator values.
20094 // If it's packed, check also if it fits a char or a short.
20095 if (Packed && NumPositiveBits <= CharWidth) {
20096 BestType = Context.UnsignedCharTy;
20097 BestPromotionType = Context.IntTy;
20098 BestWidth = CharWidth;
20099 } else if (Packed && NumPositiveBits <= ShortWidth) {
20100 BestType = Context.UnsignedShortTy;
20101 BestPromotionType = Context.IntTy;
20102 BestWidth = ShortWidth;
20103 } else if (NumPositiveBits <= IntWidth) {
20104 BestType = Context.UnsignedIntTy;
20105 BestWidth = IntWidth;
20106 BestPromotionType
20107 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
20108 ? Context.UnsignedIntTy : Context.IntTy;
20109 } else if (NumPositiveBits <=
20110 (BestWidth = Context.getTargetInfo().getLongWidth())) {
20111 BestType = Context.UnsignedLongTy;
20112 BestPromotionType
20113 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
20114 ? Context.UnsignedLongTy : Context.LongTy;
20115 } else {
20116 BestWidth = Context.getTargetInfo().getLongLongWidth();
20117 assert(NumPositiveBits <= BestWidth &&
20118 "How could an initializer get larger than ULL?");
20119 BestType = Context.UnsignedLongLongTy;
20120 BestPromotionType
20121 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
20122 ? Context.UnsignedLongLongTy : Context.LongLongTy;
20126 // Loop over all of the enumerator constants, changing their types to match
20127 // the type of the enum if needed.
20128 for (auto *D : Elements) {
20129 auto *ECD = cast_or_null<EnumConstantDecl>(D);
20130 if (!ECD) continue; // Already issued a diagnostic.
20132 // Standard C says the enumerators have int type, but we allow, as an
20133 // extension, the enumerators to be larger than int size. If each
20134 // enumerator value fits in an int, type it as an int, otherwise type it the
20135 // same as the enumerator decl itself. This means that in "enum { X = 1U }"
20136 // that X has type 'int', not 'unsigned'.
20138 // Determine whether the value fits into an int.
20139 llvm::APSInt InitVal = ECD->getInitVal();
20141 // If it fits into an integer type, force it. Otherwise force it to match
20142 // the enum decl type.
20143 QualType NewTy;
20144 unsigned NewWidth;
20145 bool NewSign;
20146 if (!getLangOpts().CPlusPlus &&
20147 !Enum->isFixed() &&
20148 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
20149 NewTy = Context.IntTy;
20150 NewWidth = IntWidth;
20151 NewSign = true;
20152 } else if (ECD->getType() == BestType) {
20153 // Already the right type!
20154 if (getLangOpts().CPlusPlus)
20155 // C++ [dcl.enum]p4: Following the closing brace of an
20156 // enum-specifier, each enumerator has the type of its
20157 // enumeration.
20158 ECD->setType(EnumType);
20159 continue;
20160 } else {
20161 NewTy = BestType;
20162 NewWidth = BestWidth;
20163 NewSign = BestType->isSignedIntegerOrEnumerationType();
20166 // Adjust the APSInt value.
20167 InitVal = InitVal.extOrTrunc(NewWidth);
20168 InitVal.setIsSigned(NewSign);
20169 ECD->setInitVal(InitVal);
20171 // Adjust the Expr initializer and type.
20172 if (ECD->getInitExpr() &&
20173 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
20174 ECD->setInitExpr(ImplicitCastExpr::Create(
20175 Context, NewTy, CK_IntegralCast, ECD->getInitExpr(),
20176 /*base paths*/ nullptr, VK_PRValue, FPOptionsOverride()));
20177 if (getLangOpts().CPlusPlus)
20178 // C++ [dcl.enum]p4: Following the closing brace of an
20179 // enum-specifier, each enumerator has the type of its
20180 // enumeration.
20181 ECD->setType(EnumType);
20182 else
20183 ECD->setType(NewTy);
20186 Enum->completeDefinition(BestType, BestPromotionType,
20187 NumPositiveBits, NumNegativeBits);
20189 CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
20191 if (Enum->isClosedFlag()) {
20192 for (Decl *D : Elements) {
20193 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
20194 if (!ECD) continue; // Already issued a diagnostic.
20196 llvm::APSInt InitVal = ECD->getInitVal();
20197 if (InitVal != 0 && !InitVal.isPowerOf2() &&
20198 !IsValueInFlagEnum(Enum, InitVal, true))
20199 Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
20200 << ECD << Enum;
20204 // Now that the enum type is defined, ensure it's not been underaligned.
20205 if (Enum->hasAttrs())
20206 CheckAlignasUnderalignment(Enum);
20209 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
20210 SourceLocation StartLoc,
20211 SourceLocation EndLoc) {
20212 StringLiteral *AsmString = cast<StringLiteral>(expr);
20214 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
20215 AsmString, StartLoc,
20216 EndLoc);
20217 CurContext->addDecl(New);
20218 return New;
20221 Decl *Sema::ActOnTopLevelStmtDecl(Stmt *Statement) {
20222 auto *New = TopLevelStmtDecl::Create(Context, Statement);
20223 Context.getTranslationUnitDecl()->addDecl(New);
20224 return New;
20227 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
20228 IdentifierInfo* AliasName,
20229 SourceLocation PragmaLoc,
20230 SourceLocation NameLoc,
20231 SourceLocation AliasNameLoc) {
20232 NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
20233 LookupOrdinaryName);
20234 AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc),
20235 AttributeCommonInfo::Form::Pragma());
20236 AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit(
20237 Context, AliasName->getName(), /*IsLiteralLabel=*/true, Info);
20239 // If a declaration that:
20240 // 1) declares a function or a variable
20241 // 2) has external linkage
20242 // already exists, add a label attribute to it.
20243 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
20244 if (isDeclExternC(PrevDecl))
20245 PrevDecl->addAttr(Attr);
20246 else
20247 Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
20248 << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
20249 // Otherwise, add a label attribute to ExtnameUndeclaredIdentifiers.
20250 } else
20251 (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
20254 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
20255 SourceLocation PragmaLoc,
20256 SourceLocation NameLoc) {
20257 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
20259 if (PrevDecl) {
20260 PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
20261 } else {
20262 (void)WeakUndeclaredIdentifiers[Name].insert(WeakInfo(nullptr, NameLoc));
20266 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
20267 IdentifierInfo* AliasName,
20268 SourceLocation PragmaLoc,
20269 SourceLocation NameLoc,
20270 SourceLocation AliasNameLoc) {
20271 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
20272 LookupOrdinaryName);
20273 WeakInfo W = WeakInfo(Name, NameLoc);
20275 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
20276 if (!PrevDecl->hasAttr<AliasAttr>())
20277 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
20278 DeclApplyPragmaWeak(TUScope, ND, W);
20279 } else {
20280 (void)WeakUndeclaredIdentifiers[AliasName].insert(W);
20284 ObjCContainerDecl *Sema::getObjCDeclContext() const {
20285 return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
20288 Sema::FunctionEmissionStatus Sema::getEmissionStatus(const FunctionDecl *FD,
20289 bool Final) {
20290 assert(FD && "Expected non-null FunctionDecl");
20292 // SYCL functions can be template, so we check if they have appropriate
20293 // attribute prior to checking if it is a template.
20294 if (LangOpts.SYCLIsDevice && FD->hasAttr<SYCLKernelAttr>())
20295 return FunctionEmissionStatus::Emitted;
20297 // Templates are emitted when they're instantiated.
20298 if (FD->isDependentContext())
20299 return FunctionEmissionStatus::TemplateDiscarded;
20301 // Check whether this function is an externally visible definition.
20302 auto IsEmittedForExternalSymbol = [this, FD]() {
20303 // We have to check the GVA linkage of the function's *definition* -- if we
20304 // only have a declaration, we don't know whether or not the function will
20305 // be emitted, because (say) the definition could include "inline".
20306 const FunctionDecl *Def = FD->getDefinition();
20308 return Def && !isDiscardableGVALinkage(
20309 getASTContext().GetGVALinkageForFunction(Def));
20312 if (LangOpts.OpenMPIsTargetDevice) {
20313 // In OpenMP device mode we will not emit host only functions, or functions
20314 // we don't need due to their linkage.
20315 std::optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
20316 OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
20317 // DevTy may be changed later by
20318 // #pragma omp declare target to(*) device_type(*).
20319 // Therefore DevTy having no value does not imply host. The emission status
20320 // will be checked again at the end of compilation unit with Final = true.
20321 if (DevTy)
20322 if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host)
20323 return FunctionEmissionStatus::OMPDiscarded;
20324 // If we have an explicit value for the device type, or we are in a target
20325 // declare context, we need to emit all extern and used symbols.
20326 if (isInOpenMPDeclareTargetContext() || DevTy)
20327 if (IsEmittedForExternalSymbol())
20328 return FunctionEmissionStatus::Emitted;
20329 // Device mode only emits what it must, if it wasn't tagged yet and needed,
20330 // we'll omit it.
20331 if (Final)
20332 return FunctionEmissionStatus::OMPDiscarded;
20333 } else if (LangOpts.OpenMP > 45) {
20334 // In OpenMP host compilation prior to 5.0 everything was an emitted host
20335 // function. In 5.0, no_host was introduced which might cause a function to
20336 // be ommitted.
20337 std::optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
20338 OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
20339 if (DevTy)
20340 if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost)
20341 return FunctionEmissionStatus::OMPDiscarded;
20344 if (Final && LangOpts.OpenMP && !LangOpts.CUDA)
20345 return FunctionEmissionStatus::Emitted;
20347 if (LangOpts.CUDA) {
20348 // When compiling for device, host functions are never emitted. Similarly,
20349 // when compiling for host, device and global functions are never emitted.
20350 // (Technically, we do emit a host-side stub for global functions, but this
20351 // doesn't count for our purposes here.)
20352 Sema::CUDAFunctionTarget T = IdentifyCUDATarget(FD);
20353 if (LangOpts.CUDAIsDevice && T == Sema::CFT_Host)
20354 return FunctionEmissionStatus::CUDADiscarded;
20355 if (!LangOpts.CUDAIsDevice &&
20356 (T == Sema::CFT_Device || T == Sema::CFT_Global))
20357 return FunctionEmissionStatus::CUDADiscarded;
20359 if (IsEmittedForExternalSymbol())
20360 return FunctionEmissionStatus::Emitted;
20363 // Otherwise, the function is known-emitted if it's in our set of
20364 // known-emitted functions.
20365 return FunctionEmissionStatus::Unknown;
20368 bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) {
20369 // Host-side references to a __global__ function refer to the stub, so the
20370 // function itself is never emitted and therefore should not be marked.
20371 // If we have host fn calls kernel fn calls host+device, the HD function
20372 // does not get instantiated on the host. We model this by omitting at the
20373 // call to the kernel from the callgraph. This ensures that, when compiling
20374 // for host, only HD functions actually called from the host get marked as
20375 // known-emitted.
20376 return LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
20377 IdentifyCUDATarget(Callee) == CFT_Global;