[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / clang / lib / Sema / SemaDeclCXX.cpp
blobbe79defbbfac6f1b5230eb475f6624b166c6fa6a
1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for C++ declarations.
11 //===----------------------------------------------------------------------===//
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/ComparisonCategories.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/RecordLayout.h"
26 #include "clang/AST/RecursiveASTVisitor.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/AST/TypeLoc.h"
29 #include "clang/AST/TypeOrdering.h"
30 #include "clang/Basic/AttributeCommonInfo.h"
31 #include "clang/Basic/PartialDiagnostic.h"
32 #include "clang/Basic/Specifiers.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Lex/LiteralSupport.h"
35 #include "clang/Lex/Preprocessor.h"
36 #include "clang/Sema/CXXFieldCollector.h"
37 #include "clang/Sema/DeclSpec.h"
38 #include "clang/Sema/EnterExpressionEvaluationContext.h"
39 #include "clang/Sema/Initialization.h"
40 #include "clang/Sema/Lookup.h"
41 #include "clang/Sema/Ownership.h"
42 #include "clang/Sema/ParsedTemplate.h"
43 #include "clang/Sema/Scope.h"
44 #include "clang/Sema/ScopeInfo.h"
45 #include "clang/Sema/SemaInternal.h"
46 #include "clang/Sema/Template.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/STLExtras.h"
49 #include "llvm/ADT/ScopeExit.h"
50 #include "llvm/ADT/SmallString.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/Support/ConvertUTF.h"
53 #include "llvm/Support/SaveAndRestore.h"
54 #include <map>
55 #include <optional>
56 #include <set>
58 using namespace clang;
60 //===----------------------------------------------------------------------===//
61 // CheckDefaultArgumentVisitor
62 //===----------------------------------------------------------------------===//
64 namespace {
65 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
66 /// the default argument of a parameter to determine whether it
67 /// contains any ill-formed subexpressions. For example, this will
68 /// diagnose the use of local variables or parameters within the
69 /// default argument expression.
70 class CheckDefaultArgumentVisitor
71 : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> {
72 Sema &S;
73 const Expr *DefaultArg;
75 public:
76 CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg)
77 : S(S), DefaultArg(DefaultArg) {}
79 bool VisitExpr(const Expr *Node);
80 bool VisitDeclRefExpr(const DeclRefExpr *DRE);
81 bool VisitCXXThisExpr(const CXXThisExpr *ThisE);
82 bool VisitLambdaExpr(const LambdaExpr *Lambda);
83 bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE);
86 /// VisitExpr - Visit all of the children of this expression.
87 bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) {
88 bool IsInvalid = false;
89 for (const Stmt *SubStmt : Node->children())
90 if (SubStmt)
91 IsInvalid |= Visit(SubStmt);
92 return IsInvalid;
95 /// VisitDeclRefExpr - Visit a reference to a declaration, to
96 /// determine whether this declaration can be used in the default
97 /// argument expression.
98 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) {
99 const ValueDecl *Decl = dyn_cast<ValueDecl>(DRE->getDecl());
101 if (!isa<VarDecl, BindingDecl>(Decl))
102 return false;
104 if (const auto *Param = dyn_cast<ParmVarDecl>(Decl)) {
105 // C++ [dcl.fct.default]p9:
106 // [...] parameters of a function shall not be used in default
107 // argument expressions, even if they are not evaluated. [...]
109 // C++17 [dcl.fct.default]p9 (by CWG 2082):
110 // [...] A parameter shall not appear as a potentially-evaluated
111 // expression in a default argument. [...]
113 if (DRE->isNonOdrUse() != NOUR_Unevaluated)
114 return S.Diag(DRE->getBeginLoc(),
115 diag::err_param_default_argument_references_param)
116 << Param->getDeclName() << DefaultArg->getSourceRange();
117 } else if (auto *VD = Decl->getPotentiallyDecomposedVarDecl()) {
118 // C++ [dcl.fct.default]p7:
119 // Local variables shall not be used in default argument
120 // expressions.
122 // C++17 [dcl.fct.default]p7 (by CWG 2082):
123 // A local variable shall not appear as a potentially-evaluated
124 // expression in a default argument.
126 // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346):
127 // Note: A local variable cannot be odr-used (6.3) in a default
128 // argument.
130 if (VD->isLocalVarDecl() && !DRE->isNonOdrUse())
131 return S.Diag(DRE->getBeginLoc(),
132 diag::err_param_default_argument_references_local)
133 << Decl << DefaultArg->getSourceRange();
135 return false;
138 /// VisitCXXThisExpr - Visit a C++ "this" expression.
139 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) {
140 // C++ [dcl.fct.default]p8:
141 // The keyword this shall not be used in a default argument of a
142 // member function.
143 return S.Diag(ThisE->getBeginLoc(),
144 diag::err_param_default_argument_references_this)
145 << ThisE->getSourceRange();
148 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(
149 const PseudoObjectExpr *POE) {
150 bool Invalid = false;
151 for (const Expr *E : POE->semantics()) {
152 // Look through bindings.
153 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) {
154 E = OVE->getSourceExpr();
155 assert(E && "pseudo-object binding without source expression?");
158 Invalid |= Visit(E);
160 return Invalid;
163 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) {
164 // [expr.prim.lambda.capture]p9
165 // a lambda-expression appearing in a default argument cannot implicitly or
166 // explicitly capture any local entity. Such a lambda-expression can still
167 // have an init-capture if any full-expression in its initializer satisfies
168 // the constraints of an expression appearing in a default argument.
169 bool Invalid = false;
170 for (const LambdaCapture &LC : Lambda->captures()) {
171 if (!Lambda->isInitCapture(&LC))
172 return S.Diag(LC.getLocation(), diag::err_lambda_capture_default_arg);
173 // Init captures are always VarDecl.
174 auto *D = cast<VarDecl>(LC.getCapturedVar());
175 Invalid |= Visit(D->getInit());
177 return Invalid;
179 } // namespace
181 void
182 Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
183 const CXXMethodDecl *Method) {
184 // If we have an MSAny spec already, don't bother.
185 if (!Method || ComputedEST == EST_MSAny)
186 return;
188 const FunctionProtoType *Proto
189 = Method->getType()->getAs<FunctionProtoType>();
190 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
191 if (!Proto)
192 return;
194 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
196 // If we have a throw-all spec at this point, ignore the function.
197 if (ComputedEST == EST_None)
198 return;
200 if (EST == EST_None && Method->hasAttr<NoThrowAttr>())
201 EST = EST_BasicNoexcept;
203 switch (EST) {
204 case EST_Unparsed:
205 case EST_Uninstantiated:
206 case EST_Unevaluated:
207 llvm_unreachable("should not see unresolved exception specs here");
209 // If this function can throw any exceptions, make a note of that.
210 case EST_MSAny:
211 case EST_None:
212 // FIXME: Whichever we see last of MSAny and None determines our result.
213 // We should make a consistent, order-independent choice here.
214 ClearExceptions();
215 ComputedEST = EST;
216 return;
217 case EST_NoexceptFalse:
218 ClearExceptions();
219 ComputedEST = EST_None;
220 return;
221 // FIXME: If the call to this decl is using any of its default arguments, we
222 // need to search them for potentially-throwing calls.
223 // If this function has a basic noexcept, it doesn't affect the outcome.
224 case EST_BasicNoexcept:
225 case EST_NoexceptTrue:
226 case EST_NoThrow:
227 return;
228 // If we're still at noexcept(true) and there's a throw() callee,
229 // change to that specification.
230 case EST_DynamicNone:
231 if (ComputedEST == EST_BasicNoexcept)
232 ComputedEST = EST_DynamicNone;
233 return;
234 case EST_DependentNoexcept:
235 llvm_unreachable(
236 "should not generate implicit declarations for dependent cases");
237 case EST_Dynamic:
238 break;
240 assert(EST == EST_Dynamic && "EST case not considered earlier.");
241 assert(ComputedEST != EST_None &&
242 "Shouldn't collect exceptions when throw-all is guaranteed.");
243 ComputedEST = EST_Dynamic;
244 // Record the exceptions in this function's exception specification.
245 for (const auto &E : Proto->exceptions())
246 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
247 Exceptions.push_back(E);
250 void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) {
251 if (!S || ComputedEST == EST_MSAny)
252 return;
254 // FIXME:
256 // C++0x [except.spec]p14:
257 // [An] implicit exception-specification specifies the type-id T if and
258 // only if T is allowed by the exception-specification of a function directly
259 // invoked by f's implicit definition; f shall allow all exceptions if any
260 // function it directly invokes allows all exceptions, and f shall allow no
261 // exceptions if every function it directly invokes allows no exceptions.
263 // Note in particular that if an implicit exception-specification is generated
264 // for a function containing a throw-expression, that specification can still
265 // be noexcept(true).
267 // Note also that 'directly invoked' is not defined in the standard, and there
268 // is no indication that we should only consider potentially-evaluated calls.
270 // Ultimately we should implement the intent of the standard: the exception
271 // specification should be the set of exceptions which can be thrown by the
272 // implicit definition. For now, we assume that any non-nothrow expression can
273 // throw any exception.
275 if (Self->canThrow(S))
276 ComputedEST = EST_None;
279 ExprResult Sema::ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
280 SourceLocation EqualLoc) {
281 if (RequireCompleteType(Param->getLocation(), Param->getType(),
282 diag::err_typecheck_decl_incomplete_type))
283 return true;
285 // C++ [dcl.fct.default]p5
286 // A default argument expression is implicitly converted (clause
287 // 4) to the parameter type. The default argument expression has
288 // the same semantic constraints as the initializer expression in
289 // a declaration of a variable of the parameter type, using the
290 // copy-initialization semantics (8.5).
291 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
292 Param);
293 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
294 EqualLoc);
295 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
296 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
297 if (Result.isInvalid())
298 return true;
299 Arg = Result.getAs<Expr>();
301 CheckCompletedExpr(Arg, EqualLoc);
302 Arg = MaybeCreateExprWithCleanups(Arg);
304 return Arg;
307 void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
308 SourceLocation EqualLoc) {
309 // Add the default argument to the parameter
310 Param->setDefaultArg(Arg);
312 // We have already instantiated this parameter; provide each of the
313 // instantiations with the uninstantiated default argument.
314 UnparsedDefaultArgInstantiationsMap::iterator InstPos
315 = UnparsedDefaultArgInstantiations.find(Param);
316 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
317 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
318 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
320 // We're done tracking this parameter's instantiations.
321 UnparsedDefaultArgInstantiations.erase(InstPos);
325 /// ActOnParamDefaultArgument - Check whether the default argument
326 /// provided for a function parameter is well-formed. If so, attach it
327 /// to the parameter declaration.
328 void
329 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
330 Expr *DefaultArg) {
331 if (!param || !DefaultArg)
332 return;
334 ParmVarDecl *Param = cast<ParmVarDecl>(param);
335 UnparsedDefaultArgLocs.erase(Param);
337 // Default arguments are only permitted in C++
338 if (!getLangOpts().CPlusPlus) {
339 Diag(EqualLoc, diag::err_param_default_argument)
340 << DefaultArg->getSourceRange();
341 return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg);
344 // Check for unexpanded parameter packs.
345 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument))
346 return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg);
348 // C++11 [dcl.fct.default]p3
349 // A default argument expression [...] shall not be specified for a
350 // parameter pack.
351 if (Param->isParameterPack()) {
352 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
353 << DefaultArg->getSourceRange();
354 // Recover by discarding the default argument.
355 Param->setDefaultArg(nullptr);
356 return;
359 ExprResult Result = ConvertParamDefaultArgument(Param, DefaultArg, EqualLoc);
360 if (Result.isInvalid())
361 return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg);
363 DefaultArg = Result.getAs<Expr>();
365 // Check that the default argument is well-formed
366 CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg);
367 if (DefaultArgChecker.Visit(DefaultArg))
368 return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg);
370 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
373 /// ActOnParamUnparsedDefaultArgument - We've seen a default
374 /// argument for a function parameter, but we can't parse it yet
375 /// because we're inside a class definition. Note that this default
376 /// argument will be parsed later.
377 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
378 SourceLocation EqualLoc,
379 SourceLocation ArgLoc) {
380 if (!param)
381 return;
383 ParmVarDecl *Param = cast<ParmVarDecl>(param);
384 Param->setUnparsedDefaultArg();
385 UnparsedDefaultArgLocs[Param] = ArgLoc;
388 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
389 /// the default argument for the parameter param failed.
390 void Sema::ActOnParamDefaultArgumentError(Decl *param, SourceLocation EqualLoc,
391 Expr *DefaultArg) {
392 if (!param)
393 return;
395 ParmVarDecl *Param = cast<ParmVarDecl>(param);
396 Param->setInvalidDecl();
397 UnparsedDefaultArgLocs.erase(Param);
398 ExprResult RE;
399 if (DefaultArg) {
400 RE = CreateRecoveryExpr(EqualLoc, DefaultArg->getEndLoc(), {DefaultArg},
401 Param->getType().getNonReferenceType());
402 } else {
403 RE = CreateRecoveryExpr(EqualLoc, EqualLoc, {},
404 Param->getType().getNonReferenceType());
406 Param->setDefaultArg(RE.get());
409 /// CheckExtraCXXDefaultArguments - Check for any extra default
410 /// arguments in the declarator, which is not a function declaration
411 /// or definition and therefore is not permitted to have default
412 /// arguments. This routine should be invoked for every declarator
413 /// that is not a function declaration or definition.
414 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
415 // C++ [dcl.fct.default]p3
416 // A default argument expression shall be specified only in the
417 // parameter-declaration-clause of a function declaration or in a
418 // template-parameter (14.1). It shall not be specified for a
419 // parameter pack. If it is specified in a
420 // parameter-declaration-clause, it shall not occur within a
421 // declarator or abstract-declarator of a parameter-declaration.
422 bool MightBeFunction = D.isFunctionDeclarationContext();
423 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
424 DeclaratorChunk &chunk = D.getTypeObject(i);
425 if (chunk.Kind == DeclaratorChunk::Function) {
426 if (MightBeFunction) {
427 // This is a function declaration. It can have default arguments, but
428 // keep looking in case its return type is a function type with default
429 // arguments.
430 MightBeFunction = false;
431 continue;
433 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
434 ++argIdx) {
435 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
436 if (Param->hasUnparsedDefaultArg()) {
437 std::unique_ptr<CachedTokens> Toks =
438 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
439 SourceRange SR;
440 if (Toks->size() > 1)
441 SR = SourceRange((*Toks)[1].getLocation(),
442 Toks->back().getLocation());
443 else
444 SR = UnparsedDefaultArgLocs[Param];
445 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
446 << SR;
447 } else if (Param->getDefaultArg()) {
448 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
449 << Param->getDefaultArg()->getSourceRange();
450 Param->setDefaultArg(nullptr);
453 } else if (chunk.Kind != DeclaratorChunk::Paren) {
454 MightBeFunction = false;
459 static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
460 return llvm::any_of(FD->parameters(), [](ParmVarDecl *P) {
461 return P->hasDefaultArg() && !P->hasInheritedDefaultArg();
465 /// MergeCXXFunctionDecl - Merge two declarations of the same C++
466 /// function, once we already know that they have the same
467 /// type. Subroutine of MergeFunctionDecl. Returns true if there was an
468 /// error, false otherwise.
469 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
470 Scope *S) {
471 bool Invalid = false;
473 // The declaration context corresponding to the scope is the semantic
474 // parent, unless this is a local function declaration, in which case
475 // it is that surrounding function.
476 DeclContext *ScopeDC = New->isLocalExternDecl()
477 ? New->getLexicalDeclContext()
478 : New->getDeclContext();
480 // Find the previous declaration for the purpose of default arguments.
481 FunctionDecl *PrevForDefaultArgs = Old;
482 for (/**/; PrevForDefaultArgs;
483 // Don't bother looking back past the latest decl if this is a local
484 // extern declaration; nothing else could work.
485 PrevForDefaultArgs = New->isLocalExternDecl()
486 ? nullptr
487 : PrevForDefaultArgs->getPreviousDecl()) {
488 // Ignore hidden declarations.
489 if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
490 continue;
492 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
493 !New->isCXXClassMember()) {
494 // Ignore default arguments of old decl if they are not in
495 // the same scope and this is not an out-of-line definition of
496 // a member function.
497 continue;
500 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
501 // If only one of these is a local function declaration, then they are
502 // declared in different scopes, even though isDeclInScope may think
503 // they're in the same scope. (If both are local, the scope check is
504 // sufficient, and if neither is local, then they are in the same scope.)
505 continue;
508 // We found the right previous declaration.
509 break;
512 // C++ [dcl.fct.default]p4:
513 // For non-template functions, default arguments can be added in
514 // later declarations of a function in the same
515 // scope. Declarations in different scopes have completely
516 // distinct sets of default arguments. That is, declarations in
517 // inner scopes do not acquire default arguments from
518 // declarations in outer scopes, and vice versa. In a given
519 // function declaration, all parameters subsequent to a
520 // parameter with a default argument shall have default
521 // arguments supplied in this or previous declarations. A
522 // default argument shall not be redefined by a later
523 // declaration (not even to the same value).
525 // C++ [dcl.fct.default]p6:
526 // Except for member functions of class templates, the default arguments
527 // in a member function definition that appears outside of the class
528 // definition are added to the set of default arguments provided by the
529 // member function declaration in the class definition.
530 for (unsigned p = 0, NumParams = PrevForDefaultArgs
531 ? PrevForDefaultArgs->getNumParams()
532 : 0;
533 p < NumParams; ++p) {
534 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
535 ParmVarDecl *NewParam = New->getParamDecl(p);
537 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
538 bool NewParamHasDfl = NewParam->hasDefaultArg();
540 if (OldParamHasDfl && NewParamHasDfl) {
541 unsigned DiagDefaultParamID =
542 diag::err_param_default_argument_redefinition;
544 // MSVC accepts that default parameters be redefined for member functions
545 // of template class. The new default parameter's value is ignored.
546 Invalid = true;
547 if (getLangOpts().MicrosoftExt) {
548 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
549 if (MD && MD->getParent()->getDescribedClassTemplate()) {
550 // Merge the old default argument into the new parameter.
551 NewParam->setHasInheritedDefaultArg();
552 if (OldParam->hasUninstantiatedDefaultArg())
553 NewParam->setUninstantiatedDefaultArg(
554 OldParam->getUninstantiatedDefaultArg());
555 else
556 NewParam->setDefaultArg(OldParam->getInit());
557 DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
558 Invalid = false;
562 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
563 // hint here. Alternatively, we could walk the type-source information
564 // for NewParam to find the last source location in the type... but it
565 // isn't worth the effort right now. This is the kind of test case that
566 // is hard to get right:
567 // int f(int);
568 // void g(int (*fp)(int) = f);
569 // void g(int (*fp)(int) = &f);
570 Diag(NewParam->getLocation(), DiagDefaultParamID)
571 << NewParam->getDefaultArgRange();
573 // Look for the function declaration where the default argument was
574 // actually written, which may be a declaration prior to Old.
575 for (auto Older = PrevForDefaultArgs;
576 OldParam->hasInheritedDefaultArg(); /**/) {
577 Older = Older->getPreviousDecl();
578 OldParam = Older->getParamDecl(p);
581 Diag(OldParam->getLocation(), diag::note_previous_definition)
582 << OldParam->getDefaultArgRange();
583 } else if (OldParamHasDfl) {
584 // Merge the old default argument into the new parameter unless the new
585 // function is a friend declaration in a template class. In the latter
586 // case the default arguments will be inherited when the friend
587 // declaration will be instantiated.
588 if (New->getFriendObjectKind() == Decl::FOK_None ||
589 !New->getLexicalDeclContext()->isDependentContext()) {
590 // It's important to use getInit() here; getDefaultArg()
591 // strips off any top-level ExprWithCleanups.
592 NewParam->setHasInheritedDefaultArg();
593 if (OldParam->hasUnparsedDefaultArg())
594 NewParam->setUnparsedDefaultArg();
595 else if (OldParam->hasUninstantiatedDefaultArg())
596 NewParam->setUninstantiatedDefaultArg(
597 OldParam->getUninstantiatedDefaultArg());
598 else
599 NewParam->setDefaultArg(OldParam->getInit());
601 } else if (NewParamHasDfl) {
602 if (New->getDescribedFunctionTemplate()) {
603 // Paragraph 4, quoted above, only applies to non-template functions.
604 Diag(NewParam->getLocation(),
605 diag::err_param_default_argument_template_redecl)
606 << NewParam->getDefaultArgRange();
607 Diag(PrevForDefaultArgs->getLocation(),
608 diag::note_template_prev_declaration)
609 << false;
610 } else if (New->getTemplateSpecializationKind()
611 != TSK_ImplicitInstantiation &&
612 New->getTemplateSpecializationKind() != TSK_Undeclared) {
613 // C++ [temp.expr.spec]p21:
614 // Default function arguments shall not be specified in a declaration
615 // or a definition for one of the following explicit specializations:
616 // - the explicit specialization of a function template;
617 // - the explicit specialization of a member function template;
618 // - the explicit specialization of a member function of a class
619 // template where the class template specialization to which the
620 // member function specialization belongs is implicitly
621 // instantiated.
622 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
623 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
624 << New->getDeclName()
625 << NewParam->getDefaultArgRange();
626 } else if (New->getDeclContext()->isDependentContext()) {
627 // C++ [dcl.fct.default]p6 (DR217):
628 // Default arguments for a member function of a class template shall
629 // be specified on the initial declaration of the member function
630 // within the class template.
632 // Reading the tea leaves a bit in DR217 and its reference to DR205
633 // leads me to the conclusion that one cannot add default function
634 // arguments for an out-of-line definition of a member function of a
635 // dependent type.
636 int WhichKind = 2;
637 if (CXXRecordDecl *Record
638 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
639 if (Record->getDescribedClassTemplate())
640 WhichKind = 0;
641 else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
642 WhichKind = 1;
643 else
644 WhichKind = 2;
647 Diag(NewParam->getLocation(),
648 diag::err_param_default_argument_member_template_redecl)
649 << WhichKind
650 << NewParam->getDefaultArgRange();
655 // DR1344: If a default argument is added outside a class definition and that
656 // default argument makes the function a special member function, the program
657 // is ill-formed. This can only happen for constructors.
658 if (isa<CXXConstructorDecl>(New) &&
659 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
660 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
661 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
662 if (NewSM != OldSM) {
663 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
664 assert(NewParam->hasDefaultArg());
665 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
666 << NewParam->getDefaultArgRange() << NewSM;
667 Diag(Old->getLocation(), diag::note_previous_declaration);
671 const FunctionDecl *Def;
672 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
673 // template has a constexpr specifier then all its declarations shall
674 // contain the constexpr specifier.
675 if (New->getConstexprKind() != Old->getConstexprKind()) {
676 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
677 << New << static_cast<int>(New->getConstexprKind())
678 << static_cast<int>(Old->getConstexprKind());
679 Diag(Old->getLocation(), diag::note_previous_declaration);
680 Invalid = true;
681 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
682 Old->isDefined(Def) &&
683 // If a friend function is inlined but does not have 'inline'
684 // specifier, it is a definition. Do not report attribute conflict
685 // in this case, redefinition will be diagnosed later.
686 (New->isInlineSpecified() ||
687 New->getFriendObjectKind() == Decl::FOK_None)) {
688 // C++11 [dcl.fcn.spec]p4:
689 // If the definition of a function appears in a translation unit before its
690 // first declaration as inline, the program is ill-formed.
691 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
692 Diag(Def->getLocation(), diag::note_previous_definition);
693 Invalid = true;
696 // C++17 [temp.deduct.guide]p3:
697 // Two deduction guide declarations in the same translation unit
698 // for the same class template shall not have equivalent
699 // parameter-declaration-clauses.
700 if (isa<CXXDeductionGuideDecl>(New) &&
701 !New->isFunctionTemplateSpecialization() && isVisible(Old)) {
702 Diag(New->getLocation(), diag::err_deduction_guide_redeclared);
703 Diag(Old->getLocation(), diag::note_previous_declaration);
706 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
707 // argument expression, that declaration shall be a definition and shall be
708 // the only declaration of the function or function template in the
709 // translation unit.
710 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
711 functionDeclHasDefaultArgument(Old)) {
712 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
713 Diag(Old->getLocation(), diag::note_previous_declaration);
714 Invalid = true;
717 // C++11 [temp.friend]p4 (DR329):
718 // When a function is defined in a friend function declaration in a class
719 // template, the function is instantiated when the function is odr-used.
720 // The same restrictions on multiple declarations and definitions that
721 // apply to non-template function declarations and definitions also apply
722 // to these implicit definitions.
723 const FunctionDecl *OldDefinition = nullptr;
724 if (New->isThisDeclarationInstantiatedFromAFriendDefinition() &&
725 Old->isDefined(OldDefinition, true))
726 CheckForFunctionRedefinition(New, OldDefinition);
728 return Invalid;
731 void Sema::DiagPlaceholderVariableDefinition(SourceLocation Loc) {
732 Diag(Loc, getLangOpts().CPlusPlus26
733 ? diag::warn_cxx23_placeholder_var_definition
734 : diag::ext_placeholder_var_definition);
737 NamedDecl *
738 Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D,
739 MultiTemplateParamsArg TemplateParamLists) {
740 assert(D.isDecompositionDeclarator());
741 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
743 // The syntax only allows a decomposition declarator as a simple-declaration,
744 // a for-range-declaration, or a condition in Clang, but we parse it in more
745 // cases than that.
746 if (!D.mayHaveDecompositionDeclarator()) {
747 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
748 << Decomp.getSourceRange();
749 return nullptr;
752 if (!TemplateParamLists.empty()) {
753 // FIXME: There's no rule against this, but there are also no rules that
754 // would actually make it usable, so we reject it for now.
755 Diag(TemplateParamLists.front()->getTemplateLoc(),
756 diag::err_decomp_decl_template);
757 return nullptr;
760 Diag(Decomp.getLSquareLoc(),
761 !getLangOpts().CPlusPlus17
762 ? diag::ext_decomp_decl
763 : D.getContext() == DeclaratorContext::Condition
764 ? diag::ext_decomp_decl_cond
765 : diag::warn_cxx14_compat_decomp_decl)
766 << Decomp.getSourceRange();
768 // The semantic context is always just the current context.
769 DeclContext *const DC = CurContext;
771 // C++17 [dcl.dcl]/8:
772 // The decl-specifier-seq shall contain only the type-specifier auto
773 // and cv-qualifiers.
774 // C++20 [dcl.dcl]/8:
775 // If decl-specifier-seq contains any decl-specifier other than static,
776 // thread_local, auto, or cv-qualifiers, the program is ill-formed.
777 // C++23 [dcl.pre]/6:
778 // Each decl-specifier in the decl-specifier-seq shall be static,
779 // thread_local, auto (9.2.9.6 [dcl.spec.auto]), or a cv-qualifier.
780 auto &DS = D.getDeclSpec();
782 // Note: While constrained-auto needs to be checked, we do so separately so
783 // we can emit a better diagnostic.
784 SmallVector<StringRef, 8> BadSpecifiers;
785 SmallVector<SourceLocation, 8> BadSpecifierLocs;
786 SmallVector<StringRef, 8> CPlusPlus20Specifiers;
787 SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs;
788 if (auto SCS = DS.getStorageClassSpec()) {
789 if (SCS == DeclSpec::SCS_static) {
790 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS));
791 CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc());
792 } else {
793 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS));
794 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc());
797 if (auto TSCS = DS.getThreadStorageClassSpec()) {
798 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS));
799 CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc());
801 if (DS.hasConstexprSpecifier()) {
802 BadSpecifiers.push_back(
803 DeclSpec::getSpecifierName(DS.getConstexprSpecifier()));
804 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc());
806 if (DS.isInlineSpecified()) {
807 BadSpecifiers.push_back("inline");
808 BadSpecifierLocs.push_back(DS.getInlineSpecLoc());
811 if (!BadSpecifiers.empty()) {
812 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec);
813 Err << (int)BadSpecifiers.size()
814 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " ");
815 // Don't add FixItHints to remove the specifiers; we do still respect
816 // them when building the underlying variable.
817 for (auto Loc : BadSpecifierLocs)
818 Err << SourceRange(Loc, Loc);
819 } else if (!CPlusPlus20Specifiers.empty()) {
820 auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(),
821 getLangOpts().CPlusPlus20
822 ? diag::warn_cxx17_compat_decomp_decl_spec
823 : diag::ext_decomp_decl_spec);
824 Warn << (int)CPlusPlus20Specifiers.size()
825 << llvm::join(CPlusPlus20Specifiers.begin(),
826 CPlusPlus20Specifiers.end(), " ");
827 for (auto Loc : CPlusPlus20SpecifierLocs)
828 Warn << SourceRange(Loc, Loc);
830 // We can't recover from it being declared as a typedef.
831 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
832 return nullptr;
835 // C++2a [dcl.struct.bind]p1:
836 // A cv that includes volatile is deprecated
837 if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) &&
838 getLangOpts().CPlusPlus20)
839 Diag(DS.getVolatileSpecLoc(),
840 diag::warn_deprecated_volatile_structured_binding);
842 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
843 QualType R = TInfo->getType();
845 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
846 UPPC_DeclarationType))
847 D.setInvalidType();
849 // The syntax only allows a single ref-qualifier prior to the decomposition
850 // declarator. No other declarator chunks are permitted. Also check the type
851 // specifier here.
852 if (DS.getTypeSpecType() != DeclSpec::TST_auto ||
853 D.hasGroupingParens() || D.getNumTypeObjects() > 1 ||
854 (D.getNumTypeObjects() == 1 &&
855 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) {
856 Diag(Decomp.getLSquareLoc(),
857 (D.hasGroupingParens() ||
858 (D.getNumTypeObjects() &&
859 D.getTypeObject(0).Kind == DeclaratorChunk::Paren))
860 ? diag::err_decomp_decl_parens
861 : diag::err_decomp_decl_type)
862 << R;
864 // In most cases, there's no actual problem with an explicitly-specified
865 // type, but a function type won't work here, and ActOnVariableDeclarator
866 // shouldn't be called for such a type.
867 if (R->isFunctionType())
868 D.setInvalidType();
871 // Constrained auto is prohibited by [decl.pre]p6, so check that here.
872 if (DS.isConstrainedAuto()) {
873 TemplateIdAnnotation *TemplRep = DS.getRepAsTemplateId();
874 assert(TemplRep->Kind == TNK_Concept_template &&
875 "No other template kind should be possible for a constrained auto");
877 SourceRange TemplRange{TemplRep->TemplateNameLoc,
878 TemplRep->RAngleLoc.isValid()
879 ? TemplRep->RAngleLoc
880 : TemplRep->TemplateNameLoc};
881 Diag(TemplRep->TemplateNameLoc, diag::err_decomp_decl_constraint)
882 << TemplRange << FixItHint::CreateRemoval(TemplRange);
885 // Build the BindingDecls.
886 SmallVector<BindingDecl*, 8> Bindings;
888 // Build the BindingDecls.
889 for (auto &B : D.getDecompositionDeclarator().bindings()) {
890 // Check for name conflicts.
891 DeclarationNameInfo NameInfo(B.Name, B.NameLoc);
892 IdentifierInfo *VarName = B.Name;
893 assert(VarName && "Cannot have an unnamed binding declaration");
895 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
896 ForVisibleRedeclaration);
897 LookupName(Previous, S,
898 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit());
900 // It's not permitted to shadow a template parameter name.
901 if (Previous.isSingleResult() &&
902 Previous.getFoundDecl()->isTemplateParameter()) {
903 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
904 Previous.getFoundDecl());
905 Previous.clear();
908 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, VarName);
910 // Find the shadowed declaration before filtering for scope.
911 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
912 ? getShadowedDeclaration(BD, Previous)
913 : nullptr;
915 bool ConsiderLinkage = DC->isFunctionOrMethod() &&
916 DS.getStorageClassSpec() == DeclSpec::SCS_extern;
917 FilterLookupForScope(Previous, DC, S, ConsiderLinkage,
918 /*AllowInlineNamespace*/false);
920 bool IsPlaceholder = DS.getStorageClassSpec() != DeclSpec::SCS_static &&
921 DC->isFunctionOrMethod() && VarName->isPlaceholder();
922 if (!Previous.empty()) {
923 if (IsPlaceholder) {
924 bool sameDC = (Previous.end() - 1)
925 ->getDeclContext()
926 ->getRedeclContext()
927 ->Equals(DC->getRedeclContext());
928 if (sameDC &&
929 isDeclInScope(*(Previous.end() - 1), CurContext, S, false)) {
930 Previous.clear();
931 DiagPlaceholderVariableDefinition(B.NameLoc);
933 } else {
934 auto *Old = Previous.getRepresentativeDecl();
935 Diag(B.NameLoc, diag::err_redefinition) << B.Name;
936 Diag(Old->getLocation(), diag::note_previous_definition);
938 } else if (ShadowedDecl && !D.isRedeclaration()) {
939 CheckShadow(BD, ShadowedDecl, Previous);
941 PushOnScopeChains(BD, S, true);
942 Bindings.push_back(BD);
943 ParsingInitForAutoVars.insert(BD);
946 // There are no prior lookup results for the variable itself, because it
947 // is unnamed.
948 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr,
949 Decomp.getLSquareLoc());
950 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
951 ForVisibleRedeclaration);
953 // Build the variable that holds the non-decomposed object.
954 bool AddToScope = true;
955 NamedDecl *New =
956 ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
957 MultiTemplateParamsArg(), AddToScope, Bindings);
958 if (AddToScope) {
959 S->AddDecl(New);
960 CurContext->addHiddenDecl(New);
963 if (isInOpenMPDeclareTargetContext())
964 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
966 return New;
969 static bool checkSimpleDecomposition(
970 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src,
971 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType,
972 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) {
973 if ((int64_t)Bindings.size() != NumElems) {
974 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
975 << DecompType << (unsigned)Bindings.size()
976 << (unsigned)NumElems.getLimitedValue(UINT_MAX)
977 << toString(NumElems, 10) << (NumElems < Bindings.size());
978 return true;
981 unsigned I = 0;
982 for (auto *B : Bindings) {
983 SourceLocation Loc = B->getLocation();
984 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
985 if (E.isInvalid())
986 return true;
987 E = GetInit(Loc, E.get(), I++);
988 if (E.isInvalid())
989 return true;
990 B->setBinding(ElemType, E.get());
993 return false;
996 static bool checkArrayLikeDecomposition(Sema &S,
997 ArrayRef<BindingDecl *> Bindings,
998 ValueDecl *Src, QualType DecompType,
999 const llvm::APSInt &NumElems,
1000 QualType ElemType) {
1001 return checkSimpleDecomposition(
1002 S, Bindings, Src, DecompType, NumElems, ElemType,
1003 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
1004 ExprResult E = S.ActOnIntegerConstant(Loc, I);
1005 if (E.isInvalid())
1006 return ExprError();
1007 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc);
1011 static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1012 ValueDecl *Src, QualType DecompType,
1013 const ConstantArrayType *CAT) {
1014 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType,
1015 llvm::APSInt(CAT->getSize()),
1016 CAT->getElementType());
1019 static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1020 ValueDecl *Src, QualType DecompType,
1021 const VectorType *VT) {
1022 return checkArrayLikeDecomposition(
1023 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()),
1024 S.Context.getQualifiedType(VT->getElementType(),
1025 DecompType.getQualifiers()));
1028 static bool checkComplexDecomposition(Sema &S,
1029 ArrayRef<BindingDecl *> Bindings,
1030 ValueDecl *Src, QualType DecompType,
1031 const ComplexType *CT) {
1032 return checkSimpleDecomposition(
1033 S, Bindings, Src, DecompType, llvm::APSInt::get(2),
1034 S.Context.getQualifiedType(CT->getElementType(),
1035 DecompType.getQualifiers()),
1036 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
1037 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base);
1041 static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy,
1042 TemplateArgumentListInfo &Args,
1043 const TemplateParameterList *Params) {
1044 SmallString<128> SS;
1045 llvm::raw_svector_ostream OS(SS);
1046 bool First = true;
1047 unsigned I = 0;
1048 for (auto &Arg : Args.arguments()) {
1049 if (!First)
1050 OS << ", ";
1051 Arg.getArgument().print(PrintingPolicy, OS,
1052 TemplateParameterList::shouldIncludeTypeForArgument(
1053 PrintingPolicy, Params, I));
1054 First = false;
1055 I++;
1057 return std::string(OS.str());
1060 static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup,
1061 SourceLocation Loc, StringRef Trait,
1062 TemplateArgumentListInfo &Args,
1063 unsigned DiagID) {
1064 auto DiagnoseMissing = [&] {
1065 if (DiagID)
1066 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(),
1067 Args, /*Params*/ nullptr);
1068 return true;
1071 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine.
1072 NamespaceDecl *Std = S.getStdNamespace();
1073 if (!Std)
1074 return DiagnoseMissing();
1076 // Look up the trait itself, within namespace std. We can diagnose various
1077 // problems with this lookup even if we've been asked to not diagnose a
1078 // missing specialization, because this can only fail if the user has been
1079 // declaring their own names in namespace std or we don't support the
1080 // standard library implementation in use.
1081 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait),
1082 Loc, Sema::LookupOrdinaryName);
1083 if (!S.LookupQualifiedName(Result, Std))
1084 return DiagnoseMissing();
1085 if (Result.isAmbiguous())
1086 return true;
1088 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>();
1089 if (!TraitTD) {
1090 Result.suppressDiagnostics();
1091 NamedDecl *Found = *Result.begin();
1092 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait;
1093 S.Diag(Found->getLocation(), diag::note_declared_at);
1094 return true;
1097 // Build the template-id.
1098 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args);
1099 if (TraitTy.isNull())
1100 return true;
1101 if (!S.isCompleteType(Loc, TraitTy)) {
1102 if (DiagID)
1103 S.RequireCompleteType(
1104 Loc, TraitTy, DiagID,
1105 printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1106 TraitTD->getTemplateParameters()));
1107 return true;
1110 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl();
1111 assert(RD && "specialization of class template is not a class?");
1113 // Look up the member of the trait type.
1114 S.LookupQualifiedName(TraitMemberLookup, RD);
1115 return TraitMemberLookup.isAmbiguous();
1118 static TemplateArgumentLoc
1119 getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T,
1120 uint64_t I) {
1121 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T);
1122 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc);
1125 static TemplateArgumentLoc
1126 getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) {
1127 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc);
1130 namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; }
1132 static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T,
1133 llvm::APSInt &Size) {
1134 EnterExpressionEvaluationContext ContextRAII(
1135 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1137 DeclarationName Value = S.PP.getIdentifierInfo("value");
1138 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName);
1140 // Form template argument list for tuple_size<T>.
1141 TemplateArgumentListInfo Args(Loc, Loc);
1142 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1144 // If there's no tuple_size specialization or the lookup of 'value' is empty,
1145 // it's not tuple-like.
1146 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) ||
1147 R.empty())
1148 return IsTupleLike::NotTupleLike;
1150 // If we get this far, we've committed to the tuple interpretation, but
1151 // we can still fail if there actually isn't a usable ::value.
1153 struct ICEDiagnoser : Sema::VerifyICEDiagnoser {
1154 LookupResult &R;
1155 TemplateArgumentListInfo &Args;
1156 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args)
1157 : R(R), Args(Args) {}
1158 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
1159 SourceLocation Loc) override {
1160 return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant)
1161 << printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1162 /*Params*/ nullptr);
1164 } Diagnoser(R, Args);
1166 ExprResult E =
1167 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false);
1168 if (E.isInvalid())
1169 return IsTupleLike::Error;
1171 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser);
1172 if (E.isInvalid())
1173 return IsTupleLike::Error;
1175 return IsTupleLike::TupleLike;
1178 /// \return std::tuple_element<I, T>::type.
1179 static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc,
1180 unsigned I, QualType T) {
1181 // Form template argument list for tuple_element<I, T>.
1182 TemplateArgumentListInfo Args(Loc, Loc);
1183 Args.addArgument(
1184 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1185 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1187 DeclarationName TypeDN = S.PP.getIdentifierInfo("type");
1188 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName);
1189 if (lookupStdTypeTraitMember(
1190 S, R, Loc, "tuple_element", Args,
1191 diag::err_decomp_decl_std_tuple_element_not_specialized))
1192 return QualType();
1194 auto *TD = R.getAsSingle<TypeDecl>();
1195 if (!TD) {
1196 R.suppressDiagnostics();
1197 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized)
1198 << printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1199 /*Params*/ nullptr);
1200 if (!R.empty())
1201 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at);
1202 return QualType();
1205 return S.Context.getTypeDeclType(TD);
1208 namespace {
1209 struct InitializingBinding {
1210 Sema &S;
1211 InitializingBinding(Sema &S, BindingDecl *BD) : S(S) {
1212 Sema::CodeSynthesisContext Ctx;
1213 Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding;
1214 Ctx.PointOfInstantiation = BD->getLocation();
1215 Ctx.Entity = BD;
1216 S.pushCodeSynthesisContext(Ctx);
1218 ~InitializingBinding() {
1219 S.popCodeSynthesisContext();
1224 static bool checkTupleLikeDecomposition(Sema &S,
1225 ArrayRef<BindingDecl *> Bindings,
1226 VarDecl *Src, QualType DecompType,
1227 const llvm::APSInt &TupleSize) {
1228 if ((int64_t)Bindings.size() != TupleSize) {
1229 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1230 << DecompType << (unsigned)Bindings.size()
1231 << (unsigned)TupleSize.getLimitedValue(UINT_MAX)
1232 << toString(TupleSize, 10) << (TupleSize < Bindings.size());
1233 return true;
1236 if (Bindings.empty())
1237 return false;
1239 DeclarationName GetDN = S.PP.getIdentifierInfo("get");
1241 // [dcl.decomp]p3:
1242 // The unqualified-id get is looked up in the scope of E by class member
1243 // access lookup ...
1244 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName);
1245 bool UseMemberGet = false;
1246 if (S.isCompleteType(Src->getLocation(), DecompType)) {
1247 if (auto *RD = DecompType->getAsCXXRecordDecl())
1248 S.LookupQualifiedName(MemberGet, RD);
1249 if (MemberGet.isAmbiguous())
1250 return true;
1251 // ... and if that finds at least one declaration that is a function
1252 // template whose first template parameter is a non-type parameter ...
1253 for (NamedDecl *D : MemberGet) {
1254 if (FunctionTemplateDecl *FTD =
1255 dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) {
1256 TemplateParameterList *TPL = FTD->getTemplateParameters();
1257 if (TPL->size() != 0 &&
1258 isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) {
1259 // ... the initializer is e.get<i>().
1260 UseMemberGet = true;
1261 break;
1267 unsigned I = 0;
1268 for (auto *B : Bindings) {
1269 InitializingBinding InitContext(S, B);
1270 SourceLocation Loc = B->getLocation();
1272 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1273 if (E.isInvalid())
1274 return true;
1276 // e is an lvalue if the type of the entity is an lvalue reference and
1277 // an xvalue otherwise
1278 if (!Src->getType()->isLValueReferenceType())
1279 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp,
1280 E.get(), nullptr, VK_XValue,
1281 FPOptionsOverride());
1283 TemplateArgumentListInfo Args(Loc, Loc);
1284 Args.addArgument(
1285 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1287 if (UseMemberGet) {
1288 // if [lookup of member get] finds at least one declaration, the
1289 // initializer is e.get<i-1>().
1290 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false,
1291 CXXScopeSpec(), SourceLocation(), nullptr,
1292 MemberGet, &Args, nullptr);
1293 if (E.isInvalid())
1294 return true;
1296 E = S.BuildCallExpr(nullptr, E.get(), Loc, std::nullopt, Loc);
1297 } else {
1298 // Otherwise, the initializer is get<i-1>(e), where get is looked up
1299 // in the associated namespaces.
1300 Expr *Get = UnresolvedLookupExpr::Create(
1301 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(),
1302 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/ true, &Args,
1303 UnresolvedSetIterator(), UnresolvedSetIterator(),
1304 /*KnownDependent=*/false);
1306 Expr *Arg = E.get();
1307 E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc);
1309 if (E.isInvalid())
1310 return true;
1311 Expr *Init = E.get();
1313 // Given the type T designated by std::tuple_element<i - 1, E>::type,
1314 QualType T = getTupleLikeElementType(S, Loc, I, DecompType);
1315 if (T.isNull())
1316 return true;
1318 // each vi is a variable of type "reference to T" initialized with the
1319 // initializer, where the reference is an lvalue reference if the
1320 // initializer is an lvalue and an rvalue reference otherwise
1321 QualType RefType =
1322 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName());
1323 if (RefType.isNull())
1324 return true;
1325 auto *RefVD = VarDecl::Create(
1326 S.Context, Src->getDeclContext(), Loc, Loc,
1327 B->getDeclName().getAsIdentifierInfo(), RefType,
1328 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass());
1329 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext());
1330 RefVD->setTSCSpec(Src->getTSCSpec());
1331 RefVD->setImplicit();
1332 if (Src->isInlineSpecified())
1333 RefVD->setInlineSpecified();
1334 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD);
1336 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD);
1337 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc);
1338 InitializationSequence Seq(S, Entity, Kind, Init);
1339 E = Seq.Perform(S, Entity, Kind, Init);
1340 if (E.isInvalid())
1341 return true;
1342 E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false);
1343 if (E.isInvalid())
1344 return true;
1345 RefVD->setInit(E.get());
1346 S.CheckCompleteVariableDeclaration(RefVD);
1348 E = S.BuildDeclarationNameExpr(CXXScopeSpec(),
1349 DeclarationNameInfo(B->getDeclName(), Loc),
1350 RefVD);
1351 if (E.isInvalid())
1352 return true;
1354 B->setBinding(T, E.get());
1355 I++;
1358 return false;
1361 /// Find the base class to decompose in a built-in decomposition of a class type.
1362 /// This base class search is, unfortunately, not quite like any other that we
1363 /// perform anywhere else in C++.
1364 static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc,
1365 const CXXRecordDecl *RD,
1366 CXXCastPath &BasePath) {
1367 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier,
1368 CXXBasePath &Path) {
1369 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields();
1372 const CXXRecordDecl *ClassWithFields = nullptr;
1373 AccessSpecifier AS = AS_public;
1374 if (RD->hasDirectFields())
1375 // [dcl.decomp]p4:
1376 // Otherwise, all of E's non-static data members shall be public direct
1377 // members of E ...
1378 ClassWithFields = RD;
1379 else {
1380 // ... or of ...
1381 CXXBasePaths Paths;
1382 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD));
1383 if (!RD->lookupInBases(BaseHasFields, Paths)) {
1384 // If no classes have fields, just decompose RD itself. (This will work
1385 // if and only if zero bindings were provided.)
1386 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public);
1389 CXXBasePath *BestPath = nullptr;
1390 for (auto &P : Paths) {
1391 if (!BestPath)
1392 BestPath = &P;
1393 else if (!S.Context.hasSameType(P.back().Base->getType(),
1394 BestPath->back().Base->getType())) {
1395 // ... the same ...
1396 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1397 << false << RD << BestPath->back().Base->getType()
1398 << P.back().Base->getType();
1399 return DeclAccessPair();
1400 } else if (P.Access < BestPath->Access) {
1401 BestPath = &P;
1405 // ... unambiguous ...
1406 QualType BaseType = BestPath->back().Base->getType();
1407 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) {
1408 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base)
1409 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths);
1410 return DeclAccessPair();
1413 // ... [accessible, implied by other rules] base class of E.
1414 S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD),
1415 *BestPath, diag::err_decomp_decl_inaccessible_base);
1416 AS = BestPath->Access;
1418 ClassWithFields = BaseType->getAsCXXRecordDecl();
1419 S.BuildBasePathArray(Paths, BasePath);
1422 // The above search did not check whether the selected class itself has base
1423 // classes with fields, so check that now.
1424 CXXBasePaths Paths;
1425 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) {
1426 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1427 << (ClassWithFields == RD) << RD << ClassWithFields
1428 << Paths.front().back().Base->getType();
1429 return DeclAccessPair();
1432 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS);
1435 static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1436 ValueDecl *Src, QualType DecompType,
1437 const CXXRecordDecl *OrigRD) {
1438 if (S.RequireCompleteType(Src->getLocation(), DecompType,
1439 diag::err_incomplete_type))
1440 return true;
1442 CXXCastPath BasePath;
1443 DeclAccessPair BasePair =
1444 findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath);
1445 const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl());
1446 if (!RD)
1447 return true;
1448 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD),
1449 DecompType.getQualifiers());
1451 auto DiagnoseBadNumberOfBindings = [&]() -> bool {
1452 unsigned NumFields = llvm::count_if(
1453 RD->fields(), [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); });
1454 assert(Bindings.size() != NumFields);
1455 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1456 << DecompType << (unsigned)Bindings.size() << NumFields << NumFields
1457 << (NumFields < Bindings.size());
1458 return true;
1461 // all of E's non-static data members shall be [...] well-formed
1462 // when named as e.name in the context of the structured binding,
1463 // E shall not have an anonymous union member, ...
1464 unsigned I = 0;
1465 for (auto *FD : RD->fields()) {
1466 if (FD->isUnnamedBitfield())
1467 continue;
1469 // All the non-static data members are required to be nameable, so they
1470 // must all have names.
1471 if (!FD->getDeclName()) {
1472 if (RD->isLambda()) {
1473 S.Diag(Src->getLocation(), diag::err_decomp_decl_lambda);
1474 S.Diag(RD->getLocation(), diag::note_lambda_decl);
1475 return true;
1478 if (FD->isAnonymousStructOrUnion()) {
1479 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member)
1480 << DecompType << FD->getType()->isUnionType();
1481 S.Diag(FD->getLocation(), diag::note_declared_at);
1482 return true;
1485 // FIXME: Are there any other ways we could have an anonymous member?
1488 // We have a real field to bind.
1489 if (I >= Bindings.size())
1490 return DiagnoseBadNumberOfBindings();
1491 auto *B = Bindings[I++];
1492 SourceLocation Loc = B->getLocation();
1494 // The field must be accessible in the context of the structured binding.
1495 // We already checked that the base class is accessible.
1496 // FIXME: Add 'const' to AccessedEntity's classes so we can remove the
1497 // const_cast here.
1498 S.CheckStructuredBindingMemberAccess(
1499 Loc, const_cast<CXXRecordDecl *>(OrigRD),
1500 DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess(
1501 BasePair.getAccess(), FD->getAccess())));
1503 // Initialize the binding to Src.FD.
1504 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1505 if (E.isInvalid())
1506 return true;
1507 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase,
1508 VK_LValue, &BasePath);
1509 if (E.isInvalid())
1510 return true;
1511 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc,
1512 CXXScopeSpec(), FD,
1513 DeclAccessPair::make(FD, FD->getAccess()),
1514 DeclarationNameInfo(FD->getDeclName(), Loc));
1515 if (E.isInvalid())
1516 return true;
1518 // If the type of the member is T, the referenced type is cv T, where cv is
1519 // the cv-qualification of the decomposition expression.
1521 // FIXME: We resolve a defect here: if the field is mutable, we do not add
1522 // 'const' to the type of the field.
1523 Qualifiers Q = DecompType.getQualifiers();
1524 if (FD->isMutable())
1525 Q.removeConst();
1526 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get());
1529 if (I != Bindings.size())
1530 return DiagnoseBadNumberOfBindings();
1532 return false;
1535 void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) {
1536 QualType DecompType = DD->getType();
1538 // If the type of the decomposition is dependent, then so is the type of
1539 // each binding.
1540 if (DecompType->isDependentType()) {
1541 for (auto *B : DD->bindings())
1542 B->setType(Context.DependentTy);
1543 return;
1546 DecompType = DecompType.getNonReferenceType();
1547 ArrayRef<BindingDecl*> Bindings = DD->bindings();
1549 // C++1z [dcl.decomp]/2:
1550 // If E is an array type [...]
1551 // As an extension, we also support decomposition of built-in complex and
1552 // vector types.
1553 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) {
1554 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT))
1555 DD->setInvalidDecl();
1556 return;
1558 if (auto *VT = DecompType->getAs<VectorType>()) {
1559 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT))
1560 DD->setInvalidDecl();
1561 return;
1563 if (auto *CT = DecompType->getAs<ComplexType>()) {
1564 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT))
1565 DD->setInvalidDecl();
1566 return;
1569 // C++1z [dcl.decomp]/3:
1570 // if the expression std::tuple_size<E>::value is a well-formed integral
1571 // constant expression, [...]
1572 llvm::APSInt TupleSize(32);
1573 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) {
1574 case IsTupleLike::Error:
1575 DD->setInvalidDecl();
1576 return;
1578 case IsTupleLike::TupleLike:
1579 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize))
1580 DD->setInvalidDecl();
1581 return;
1583 case IsTupleLike::NotTupleLike:
1584 break;
1587 // C++1z [dcl.dcl]/8:
1588 // [E shall be of array or non-union class type]
1589 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl();
1590 if (!RD || RD->isUnion()) {
1591 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type)
1592 << DD << !RD << DecompType;
1593 DD->setInvalidDecl();
1594 return;
1597 // C++1z [dcl.decomp]/4:
1598 // all of E's non-static data members shall be [...] direct members of
1599 // E or of the same unambiguous public base class of E, ...
1600 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD))
1601 DD->setInvalidDecl();
1604 /// Merge the exception specifications of two variable declarations.
1606 /// This is called when there's a redeclaration of a VarDecl. The function
1607 /// checks if the redeclaration might have an exception specification and
1608 /// validates compatibility and merges the specs if necessary.
1609 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
1610 // Shortcut if exceptions are disabled.
1611 if (!getLangOpts().CXXExceptions)
1612 return;
1614 assert(Context.hasSameType(New->getType(), Old->getType()) &&
1615 "Should only be called if types are otherwise the same.");
1617 QualType NewType = New->getType();
1618 QualType OldType = Old->getType();
1620 // We're only interested in pointers and references to functions, as well
1621 // as pointers to member functions.
1622 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
1623 NewType = R->getPointeeType();
1624 OldType = OldType->castAs<ReferenceType>()->getPointeeType();
1625 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
1626 NewType = P->getPointeeType();
1627 OldType = OldType->castAs<PointerType>()->getPointeeType();
1628 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
1629 NewType = M->getPointeeType();
1630 OldType = OldType->castAs<MemberPointerType>()->getPointeeType();
1633 if (!NewType->isFunctionProtoType())
1634 return;
1636 // There's lots of special cases for functions. For function pointers, system
1637 // libraries are hopefully not as broken so that we don't need these
1638 // workarounds.
1639 if (CheckEquivalentExceptionSpec(
1640 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
1641 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
1642 New->setInvalidDecl();
1646 /// CheckCXXDefaultArguments - Verify that the default arguments for a
1647 /// function declaration are well-formed according to C++
1648 /// [dcl.fct.default].
1649 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
1650 unsigned NumParams = FD->getNumParams();
1651 unsigned ParamIdx = 0;
1653 // This checking doesn't make sense for explicit specializations; their
1654 // default arguments are determined by the declaration we're specializing,
1655 // not by FD.
1656 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
1657 return;
1658 if (auto *FTD = FD->getDescribedFunctionTemplate())
1659 if (FTD->isMemberSpecialization())
1660 return;
1662 // Find first parameter with a default argument
1663 for (; ParamIdx < NumParams; ++ParamIdx) {
1664 ParmVarDecl *Param = FD->getParamDecl(ParamIdx);
1665 if (Param->hasDefaultArg())
1666 break;
1669 // C++20 [dcl.fct.default]p4:
1670 // In a given function declaration, each parameter subsequent to a parameter
1671 // with a default argument shall have a default argument supplied in this or
1672 // a previous declaration, unless the parameter was expanded from a
1673 // parameter pack, or shall be a function parameter pack.
1674 for (; ParamIdx < NumParams; ++ParamIdx) {
1675 ParmVarDecl *Param = FD->getParamDecl(ParamIdx);
1676 if (!Param->hasDefaultArg() && !Param->isParameterPack() &&
1677 !(CurrentInstantiationScope &&
1678 CurrentInstantiationScope->isLocalPackExpansion(Param))) {
1679 if (Param->isInvalidDecl())
1680 /* We already complained about this parameter. */;
1681 else if (Param->getIdentifier())
1682 Diag(Param->getLocation(),
1683 diag::err_param_default_argument_missing_name)
1684 << Param->getIdentifier();
1685 else
1686 Diag(Param->getLocation(),
1687 diag::err_param_default_argument_missing);
1692 /// Check that the given type is a literal type. Issue a diagnostic if not,
1693 /// if Kind is Diagnose.
1694 /// \return \c true if a problem has been found (and optionally diagnosed).
1695 template <typename... Ts>
1696 static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind,
1697 SourceLocation Loc, QualType T, unsigned DiagID,
1698 Ts &&...DiagArgs) {
1699 if (T->isDependentType())
1700 return false;
1702 switch (Kind) {
1703 case Sema::CheckConstexprKind::Diagnose:
1704 return SemaRef.RequireLiteralType(Loc, T, DiagID,
1705 std::forward<Ts>(DiagArgs)...);
1707 case Sema::CheckConstexprKind::CheckValid:
1708 return !T->isLiteralType(SemaRef.Context);
1711 llvm_unreachable("unknown CheckConstexprKind");
1714 /// Determine whether a destructor cannot be constexpr due to
1715 static bool CheckConstexprDestructorSubobjects(Sema &SemaRef,
1716 const CXXDestructorDecl *DD,
1717 Sema::CheckConstexprKind Kind) {
1718 auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) {
1719 const CXXRecordDecl *RD =
1720 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1721 if (!RD || RD->hasConstexprDestructor())
1722 return true;
1724 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1725 SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject)
1726 << static_cast<int>(DD->getConstexprKind()) << !FD
1727 << (FD ? FD->getDeclName() : DeclarationName()) << T;
1728 SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject)
1729 << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T;
1731 return false;
1734 const CXXRecordDecl *RD = DD->getParent();
1735 for (const CXXBaseSpecifier &B : RD->bases())
1736 if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr))
1737 return false;
1738 for (const FieldDecl *FD : RD->fields())
1739 if (!Check(FD->getLocation(), FD->getType(), FD))
1740 return false;
1741 return true;
1744 /// Check whether a function's parameter types are all literal types. If so,
1745 /// return true. If not, produce a suitable diagnostic and return false.
1746 static bool CheckConstexprParameterTypes(Sema &SemaRef,
1747 const FunctionDecl *FD,
1748 Sema::CheckConstexprKind Kind) {
1749 unsigned ArgIndex = 0;
1750 const auto *FT = FD->getType()->castAs<FunctionProtoType>();
1751 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
1752 e = FT->param_type_end();
1753 i != e; ++i, ++ArgIndex) {
1754 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
1755 assert(PD && "null in a parameter list");
1756 SourceLocation ParamLoc = PD->getLocation();
1757 if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i,
1758 diag::err_constexpr_non_literal_param, ArgIndex + 1,
1759 PD->getSourceRange(), isa<CXXConstructorDecl>(FD),
1760 FD->isConsteval()))
1761 return false;
1763 return true;
1766 /// Check whether a function's return type is a literal type. If so, return
1767 /// true. If not, produce a suitable diagnostic and return false.
1768 static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD,
1769 Sema::CheckConstexprKind Kind) {
1770 if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(),
1771 diag::err_constexpr_non_literal_return,
1772 FD->isConsteval()))
1773 return false;
1774 return true;
1777 /// Get diagnostic %select index for tag kind for
1778 /// record diagnostic message.
1779 /// WARNING: Indexes apply to particular diagnostics only!
1781 /// \returns diagnostic %select index.
1782 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
1783 switch (Tag) {
1784 case TTK_Struct: return 0;
1785 case TTK_Interface: return 1;
1786 case TTK_Class: return 2;
1787 default: llvm_unreachable("Invalid tag kind for record diagnostic!");
1791 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
1792 Stmt *Body,
1793 Sema::CheckConstexprKind Kind);
1795 // Check whether a function declaration satisfies the requirements of a
1796 // constexpr function definition or a constexpr constructor definition. If so,
1797 // return true. If not, produce appropriate diagnostics (unless asked not to by
1798 // Kind) and return false.
1800 // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
1801 bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD,
1802 CheckConstexprKind Kind) {
1803 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
1804 if (MD && MD->isInstance()) {
1805 // C++11 [dcl.constexpr]p4:
1806 // The definition of a constexpr constructor shall satisfy the following
1807 // constraints:
1808 // - the class shall not have any virtual base classes;
1810 // FIXME: This only applies to constructors and destructors, not arbitrary
1811 // member functions.
1812 const CXXRecordDecl *RD = MD->getParent();
1813 if (RD->getNumVBases()) {
1814 if (Kind == CheckConstexprKind::CheckValid)
1815 return false;
1817 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
1818 << isa<CXXConstructorDecl>(NewFD)
1819 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
1820 for (const auto &I : RD->vbases())
1821 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
1822 << I.getSourceRange();
1823 return false;
1827 if (!isa<CXXConstructorDecl>(NewFD)) {
1828 // C++11 [dcl.constexpr]p3:
1829 // The definition of a constexpr function shall satisfy the following
1830 // constraints:
1831 // - it shall not be virtual; (removed in C++20)
1832 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
1833 if (Method && Method->isVirtual()) {
1834 if (getLangOpts().CPlusPlus20) {
1835 if (Kind == CheckConstexprKind::Diagnose)
1836 Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual);
1837 } else {
1838 if (Kind == CheckConstexprKind::CheckValid)
1839 return false;
1841 Method = Method->getCanonicalDecl();
1842 Diag(Method->getLocation(), diag::err_constexpr_virtual);
1844 // If it's not obvious why this function is virtual, find an overridden
1845 // function which uses the 'virtual' keyword.
1846 const CXXMethodDecl *WrittenVirtual = Method;
1847 while (!WrittenVirtual->isVirtualAsWritten())
1848 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
1849 if (WrittenVirtual != Method)
1850 Diag(WrittenVirtual->getLocation(),
1851 diag::note_overridden_virtual_function);
1852 return false;
1856 // - its return type shall be a literal type;
1857 if (!CheckConstexprReturnType(*this, NewFD, Kind))
1858 return false;
1861 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) {
1862 // A destructor can be constexpr only if the defaulted destructor could be;
1863 // we don't need to check the members and bases if we already know they all
1864 // have constexpr destructors.
1865 if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) {
1866 if (Kind == CheckConstexprKind::CheckValid)
1867 return false;
1868 if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind))
1869 return false;
1873 // - each of its parameter types shall be a literal type;
1874 if (!CheckConstexprParameterTypes(*this, NewFD, Kind))
1875 return false;
1877 Stmt *Body = NewFD->getBody();
1878 assert(Body &&
1879 "CheckConstexprFunctionDefinition called on function with no body");
1880 return CheckConstexprFunctionBody(*this, NewFD, Body, Kind);
1883 /// Check the given declaration statement is legal within a constexpr function
1884 /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
1886 /// \return true if the body is OK (maybe only as an extension), false if we
1887 /// have diagnosed a problem.
1888 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
1889 DeclStmt *DS, SourceLocation &Cxx1yLoc,
1890 Sema::CheckConstexprKind Kind) {
1891 // C++11 [dcl.constexpr]p3 and p4:
1892 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
1893 // contain only
1894 for (const auto *DclIt : DS->decls()) {
1895 switch (DclIt->getKind()) {
1896 case Decl::StaticAssert:
1897 case Decl::Using:
1898 case Decl::UsingShadow:
1899 case Decl::UsingDirective:
1900 case Decl::UnresolvedUsingTypename:
1901 case Decl::UnresolvedUsingValue:
1902 case Decl::UsingEnum:
1903 // - static_assert-declarations
1904 // - using-declarations,
1905 // - using-directives,
1906 // - using-enum-declaration
1907 continue;
1909 case Decl::Typedef:
1910 case Decl::TypeAlias: {
1911 // - typedef declarations and alias-declarations that do not define
1912 // classes or enumerations,
1913 const auto *TN = cast<TypedefNameDecl>(DclIt);
1914 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
1915 // Don't allow variably-modified types in constexpr functions.
1916 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1917 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
1918 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
1919 << TL.getSourceRange() << TL.getType()
1920 << isa<CXXConstructorDecl>(Dcl);
1922 return false;
1924 continue;
1927 case Decl::Enum:
1928 case Decl::CXXRecord:
1929 // C++1y allows types to be defined, not just declared.
1930 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) {
1931 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1932 SemaRef.Diag(DS->getBeginLoc(),
1933 SemaRef.getLangOpts().CPlusPlus14
1934 ? diag::warn_cxx11_compat_constexpr_type_definition
1935 : diag::ext_constexpr_type_definition)
1936 << isa<CXXConstructorDecl>(Dcl);
1937 } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1938 return false;
1941 continue;
1943 case Decl::EnumConstant:
1944 case Decl::IndirectField:
1945 case Decl::ParmVar:
1946 // These can only appear with other declarations which are banned in
1947 // C++11 and permitted in C++1y, so ignore them.
1948 continue;
1950 case Decl::Var:
1951 case Decl::Decomposition: {
1952 // C++1y [dcl.constexpr]p3 allows anything except:
1953 // a definition of a variable of non-literal type or of static or
1954 // thread storage duration or [before C++2a] for which no
1955 // initialization is performed.
1956 const auto *VD = cast<VarDecl>(DclIt);
1957 if (VD->isThisDeclarationADefinition()) {
1958 if (VD->isStaticLocal()) {
1959 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1960 SemaRef.Diag(VD->getLocation(),
1961 SemaRef.getLangOpts().CPlusPlus23
1962 ? diag::warn_cxx20_compat_constexpr_var
1963 : diag::ext_constexpr_static_var)
1964 << isa<CXXConstructorDecl>(Dcl)
1965 << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
1966 } else if (!SemaRef.getLangOpts().CPlusPlus23) {
1967 return false;
1970 if (SemaRef.LangOpts.CPlusPlus23) {
1971 CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(),
1972 diag::warn_cxx20_compat_constexpr_var,
1973 isa<CXXConstructorDecl>(Dcl),
1974 /*variable of non-literal type*/ 2);
1975 } else if (CheckLiteralType(
1976 SemaRef, Kind, VD->getLocation(), VD->getType(),
1977 diag::err_constexpr_local_var_non_literal_type,
1978 isa<CXXConstructorDecl>(Dcl))) {
1979 return false;
1981 if (!VD->getType()->isDependentType() &&
1982 !VD->hasInit() && !VD->isCXXForRangeDecl()) {
1983 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1984 SemaRef.Diag(
1985 VD->getLocation(),
1986 SemaRef.getLangOpts().CPlusPlus20
1987 ? diag::warn_cxx17_compat_constexpr_local_var_no_init
1988 : diag::ext_constexpr_local_var_no_init)
1989 << isa<CXXConstructorDecl>(Dcl);
1990 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
1991 return false;
1993 continue;
1996 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1997 SemaRef.Diag(VD->getLocation(),
1998 SemaRef.getLangOpts().CPlusPlus14
1999 ? diag::warn_cxx11_compat_constexpr_local_var
2000 : diag::ext_constexpr_local_var)
2001 << isa<CXXConstructorDecl>(Dcl);
2002 } else if (!SemaRef.getLangOpts().CPlusPlus14) {
2003 return false;
2005 continue;
2008 case Decl::NamespaceAlias:
2009 case Decl::Function:
2010 // These are disallowed in C++11 and permitted in C++1y. Allow them
2011 // everywhere as an extension.
2012 if (!Cxx1yLoc.isValid())
2013 Cxx1yLoc = DS->getBeginLoc();
2014 continue;
2016 default:
2017 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2018 SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
2019 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2021 return false;
2025 return true;
2028 /// Check that the given field is initialized within a constexpr constructor.
2030 /// \param Dcl The constexpr constructor being checked.
2031 /// \param Field The field being checked. This may be a member of an anonymous
2032 /// struct or union nested within the class being checked.
2033 /// \param Inits All declarations, including anonymous struct/union members and
2034 /// indirect members, for which any initialization was provided.
2035 /// \param Diagnosed Whether we've emitted the error message yet. Used to attach
2036 /// multiple notes for different members to the same error.
2037 /// \param Kind Whether we're diagnosing a constructor as written or determining
2038 /// whether the formal requirements are satisfied.
2039 /// \return \c false if we're checking for validity and the constructor does
2040 /// not satisfy the requirements on a constexpr constructor.
2041 static bool CheckConstexprCtorInitializer(Sema &SemaRef,
2042 const FunctionDecl *Dcl,
2043 FieldDecl *Field,
2044 llvm::SmallSet<Decl*, 16> &Inits,
2045 bool &Diagnosed,
2046 Sema::CheckConstexprKind Kind) {
2047 // In C++20 onwards, there's nothing to check for validity.
2048 if (Kind == Sema::CheckConstexprKind::CheckValid &&
2049 SemaRef.getLangOpts().CPlusPlus20)
2050 return true;
2052 if (Field->isInvalidDecl())
2053 return true;
2055 if (Field->isUnnamedBitfield())
2056 return true;
2058 // Anonymous unions with no variant members and empty anonymous structs do not
2059 // need to be explicitly initialized. FIXME: Anonymous structs that contain no
2060 // indirect fields don't need initializing.
2061 if (Field->isAnonymousStructOrUnion() &&
2062 (Field->getType()->isUnionType()
2063 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
2064 : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
2065 return true;
2067 if (!Inits.count(Field)) {
2068 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2069 if (!Diagnosed) {
2070 SemaRef.Diag(Dcl->getLocation(),
2071 SemaRef.getLangOpts().CPlusPlus20
2072 ? diag::warn_cxx17_compat_constexpr_ctor_missing_init
2073 : diag::ext_constexpr_ctor_missing_init);
2074 Diagnosed = true;
2076 SemaRef.Diag(Field->getLocation(),
2077 diag::note_constexpr_ctor_missing_init);
2078 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
2079 return false;
2081 } else if (Field->isAnonymousStructOrUnion()) {
2082 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
2083 for (auto *I : RD->fields())
2084 // If an anonymous union contains an anonymous struct of which any member
2085 // is initialized, all members must be initialized.
2086 if (!RD->isUnion() || Inits.count(I))
2087 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2088 Kind))
2089 return false;
2091 return true;
2094 /// Check the provided statement is allowed in a constexpr function
2095 /// definition.
2096 static bool
2097 CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
2098 SmallVectorImpl<SourceLocation> &ReturnStmts,
2099 SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc,
2100 SourceLocation &Cxx2bLoc,
2101 Sema::CheckConstexprKind Kind) {
2102 // - its function-body shall be [...] a compound-statement that contains only
2103 switch (S->getStmtClass()) {
2104 case Stmt::NullStmtClass:
2105 // - null statements,
2106 return true;
2108 case Stmt::DeclStmtClass:
2109 // - static_assert-declarations
2110 // - using-declarations,
2111 // - using-directives,
2112 // - typedef declarations and alias-declarations that do not define
2113 // classes or enumerations,
2114 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind))
2115 return false;
2116 return true;
2118 case Stmt::ReturnStmtClass:
2119 // - and exactly one return statement;
2120 if (isa<CXXConstructorDecl>(Dcl)) {
2121 // C++1y allows return statements in constexpr constructors.
2122 if (!Cxx1yLoc.isValid())
2123 Cxx1yLoc = S->getBeginLoc();
2124 return true;
2127 ReturnStmts.push_back(S->getBeginLoc());
2128 return true;
2130 case Stmt::AttributedStmtClass:
2131 // Attributes on a statement don't affect its formal kind and hence don't
2132 // affect its validity in a constexpr function.
2133 return CheckConstexprFunctionStmt(
2134 SemaRef, Dcl, cast<AttributedStmt>(S)->getSubStmt(), ReturnStmts,
2135 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind);
2137 case Stmt::CompoundStmtClass: {
2138 // C++1y allows compound-statements.
2139 if (!Cxx1yLoc.isValid())
2140 Cxx1yLoc = S->getBeginLoc();
2142 CompoundStmt *CompStmt = cast<CompoundStmt>(S);
2143 for (auto *BodyIt : CompStmt->body()) {
2144 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
2145 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2146 return false;
2148 return true;
2151 case Stmt::IfStmtClass: {
2152 // C++1y allows if-statements.
2153 if (!Cxx1yLoc.isValid())
2154 Cxx1yLoc = S->getBeginLoc();
2156 IfStmt *If = cast<IfStmt>(S);
2157 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
2158 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2159 return false;
2160 if (If->getElse() &&
2161 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
2162 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2163 return false;
2164 return true;
2167 case Stmt::WhileStmtClass:
2168 case Stmt::DoStmtClass:
2169 case Stmt::ForStmtClass:
2170 case Stmt::CXXForRangeStmtClass:
2171 case Stmt::ContinueStmtClass:
2172 // C++1y allows all of these. We don't allow them as extensions in C++11,
2173 // because they don't make sense without variable mutation.
2174 if (!SemaRef.getLangOpts().CPlusPlus14)
2175 break;
2176 if (!Cxx1yLoc.isValid())
2177 Cxx1yLoc = S->getBeginLoc();
2178 for (Stmt *SubStmt : S->children()) {
2179 if (SubStmt &&
2180 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2181 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2182 return false;
2184 return true;
2186 case Stmt::SwitchStmtClass:
2187 case Stmt::CaseStmtClass:
2188 case Stmt::DefaultStmtClass:
2189 case Stmt::BreakStmtClass:
2190 // C++1y allows switch-statements, and since they don't need variable
2191 // mutation, we can reasonably allow them in C++11 as an extension.
2192 if (!Cxx1yLoc.isValid())
2193 Cxx1yLoc = S->getBeginLoc();
2194 for (Stmt *SubStmt : S->children()) {
2195 if (SubStmt &&
2196 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2197 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2198 return false;
2200 return true;
2202 case Stmt::LabelStmtClass:
2203 case Stmt::GotoStmtClass:
2204 if (Cxx2bLoc.isInvalid())
2205 Cxx2bLoc = S->getBeginLoc();
2206 for (Stmt *SubStmt : S->children()) {
2207 if (SubStmt &&
2208 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2209 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2210 return false;
2212 return true;
2214 case Stmt::GCCAsmStmtClass:
2215 case Stmt::MSAsmStmtClass:
2216 // C++2a allows inline assembly statements.
2217 case Stmt::CXXTryStmtClass:
2218 if (Cxx2aLoc.isInvalid())
2219 Cxx2aLoc = S->getBeginLoc();
2220 for (Stmt *SubStmt : S->children()) {
2221 if (SubStmt &&
2222 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2223 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2224 return false;
2226 return true;
2228 case Stmt::CXXCatchStmtClass:
2229 // Do not bother checking the language mode (already covered by the
2230 // try block check).
2231 if (!CheckConstexprFunctionStmt(
2232 SemaRef, Dcl, cast<CXXCatchStmt>(S)->getHandlerBlock(), ReturnStmts,
2233 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2234 return false;
2235 return true;
2237 default:
2238 if (!isa<Expr>(S))
2239 break;
2241 // C++1y allows expression-statements.
2242 if (!Cxx1yLoc.isValid())
2243 Cxx1yLoc = S->getBeginLoc();
2244 return true;
2247 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2248 SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
2249 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2251 return false;
2254 /// Check the body for the given constexpr function declaration only contains
2255 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
2257 /// \return true if the body is OK, false if we have found or diagnosed a
2258 /// problem.
2259 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
2260 Stmt *Body,
2261 Sema::CheckConstexprKind Kind) {
2262 SmallVector<SourceLocation, 4> ReturnStmts;
2264 if (isa<CXXTryStmt>(Body)) {
2265 // C++11 [dcl.constexpr]p3:
2266 // The definition of a constexpr function shall satisfy the following
2267 // constraints: [...]
2268 // - its function-body shall be = delete, = default, or a
2269 // compound-statement
2271 // C++11 [dcl.constexpr]p4:
2272 // In the definition of a constexpr constructor, [...]
2273 // - its function-body shall not be a function-try-block;
2275 // This restriction is lifted in C++2a, as long as inner statements also
2276 // apply the general constexpr rules.
2277 switch (Kind) {
2278 case Sema::CheckConstexprKind::CheckValid:
2279 if (!SemaRef.getLangOpts().CPlusPlus20)
2280 return false;
2281 break;
2283 case Sema::CheckConstexprKind::Diagnose:
2284 SemaRef.Diag(Body->getBeginLoc(),
2285 !SemaRef.getLangOpts().CPlusPlus20
2286 ? diag::ext_constexpr_function_try_block_cxx20
2287 : diag::warn_cxx17_compat_constexpr_function_try_block)
2288 << isa<CXXConstructorDecl>(Dcl);
2289 break;
2293 // - its function-body shall be [...] a compound-statement that contains only
2294 // [... list of cases ...]
2296 // Note that walking the children here is enough to properly check for
2297 // CompoundStmt and CXXTryStmt body.
2298 SourceLocation Cxx1yLoc, Cxx2aLoc, Cxx2bLoc;
2299 for (Stmt *SubStmt : Body->children()) {
2300 if (SubStmt &&
2301 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2302 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2303 return false;
2306 if (Kind == Sema::CheckConstexprKind::CheckValid) {
2307 // If this is only valid as an extension, report that we don't satisfy the
2308 // constraints of the current language.
2309 if ((Cxx2bLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus23) ||
2310 (Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) ||
2311 (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17))
2312 return false;
2313 } else if (Cxx2bLoc.isValid()) {
2314 SemaRef.Diag(Cxx2bLoc,
2315 SemaRef.getLangOpts().CPlusPlus23
2316 ? diag::warn_cxx20_compat_constexpr_body_invalid_stmt
2317 : diag::ext_constexpr_body_invalid_stmt_cxx23)
2318 << isa<CXXConstructorDecl>(Dcl);
2319 } else if (Cxx2aLoc.isValid()) {
2320 SemaRef.Diag(Cxx2aLoc,
2321 SemaRef.getLangOpts().CPlusPlus20
2322 ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt
2323 : diag::ext_constexpr_body_invalid_stmt_cxx20)
2324 << isa<CXXConstructorDecl>(Dcl);
2325 } else if (Cxx1yLoc.isValid()) {
2326 SemaRef.Diag(Cxx1yLoc,
2327 SemaRef.getLangOpts().CPlusPlus14
2328 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
2329 : diag::ext_constexpr_body_invalid_stmt)
2330 << isa<CXXConstructorDecl>(Dcl);
2333 if (const CXXConstructorDecl *Constructor
2334 = dyn_cast<CXXConstructorDecl>(Dcl)) {
2335 const CXXRecordDecl *RD = Constructor->getParent();
2336 // DR1359:
2337 // - every non-variant non-static data member and base class sub-object
2338 // shall be initialized;
2339 // DR1460:
2340 // - if the class is a union having variant members, exactly one of them
2341 // shall be initialized;
2342 if (RD->isUnion()) {
2343 if (Constructor->getNumCtorInitializers() == 0 &&
2344 RD->hasVariantMembers()) {
2345 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2346 SemaRef.Diag(
2347 Dcl->getLocation(),
2348 SemaRef.getLangOpts().CPlusPlus20
2349 ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init
2350 : diag::ext_constexpr_union_ctor_no_init);
2351 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
2352 return false;
2355 } else if (!Constructor->isDependentContext() &&
2356 !Constructor->isDelegatingConstructor()) {
2357 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
2359 // Skip detailed checking if we have enough initializers, and we would
2360 // allow at most one initializer per member.
2361 bool AnyAnonStructUnionMembers = false;
2362 unsigned Fields = 0;
2363 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
2364 E = RD->field_end(); I != E; ++I, ++Fields) {
2365 if (I->isAnonymousStructOrUnion()) {
2366 AnyAnonStructUnionMembers = true;
2367 break;
2370 // DR1460:
2371 // - if the class is a union-like class, but is not a union, for each of
2372 // its anonymous union members having variant members, exactly one of
2373 // them shall be initialized;
2374 if (AnyAnonStructUnionMembers ||
2375 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
2376 // Check initialization of non-static data members. Base classes are
2377 // always initialized so do not need to be checked. Dependent bases
2378 // might not have initializers in the member initializer list.
2379 llvm::SmallSet<Decl*, 16> Inits;
2380 for (const auto *I: Constructor->inits()) {
2381 if (FieldDecl *FD = I->getMember())
2382 Inits.insert(FD);
2383 else if (IndirectFieldDecl *ID = I->getIndirectMember())
2384 Inits.insert(ID->chain_begin(), ID->chain_end());
2387 bool Diagnosed = false;
2388 for (auto *I : RD->fields())
2389 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2390 Kind))
2391 return false;
2394 } else {
2395 if (ReturnStmts.empty()) {
2396 // C++1y doesn't require constexpr functions to contain a 'return'
2397 // statement. We still do, unless the return type might be void, because
2398 // otherwise if there's no return statement, the function cannot
2399 // be used in a core constant expression.
2400 bool OK = SemaRef.getLangOpts().CPlusPlus14 &&
2401 (Dcl->getReturnType()->isVoidType() ||
2402 Dcl->getReturnType()->isDependentType());
2403 switch (Kind) {
2404 case Sema::CheckConstexprKind::Diagnose:
2405 SemaRef.Diag(Dcl->getLocation(),
2406 OK ? diag::warn_cxx11_compat_constexpr_body_no_return
2407 : diag::err_constexpr_body_no_return)
2408 << Dcl->isConsteval();
2409 if (!OK)
2410 return false;
2411 break;
2413 case Sema::CheckConstexprKind::CheckValid:
2414 // The formal requirements don't include this rule in C++14, even
2415 // though the "must be able to produce a constant expression" rules
2416 // still imply it in some cases.
2417 if (!SemaRef.getLangOpts().CPlusPlus14)
2418 return false;
2419 break;
2421 } else if (ReturnStmts.size() > 1) {
2422 switch (Kind) {
2423 case Sema::CheckConstexprKind::Diagnose:
2424 SemaRef.Diag(
2425 ReturnStmts.back(),
2426 SemaRef.getLangOpts().CPlusPlus14
2427 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
2428 : diag::ext_constexpr_body_multiple_return);
2429 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
2430 SemaRef.Diag(ReturnStmts[I],
2431 diag::note_constexpr_body_previous_return);
2432 break;
2434 case Sema::CheckConstexprKind::CheckValid:
2435 if (!SemaRef.getLangOpts().CPlusPlus14)
2436 return false;
2437 break;
2442 // C++11 [dcl.constexpr]p5:
2443 // if no function argument values exist such that the function invocation
2444 // substitution would produce a constant expression, the program is
2445 // ill-formed; no diagnostic required.
2446 // C++11 [dcl.constexpr]p3:
2447 // - every constructor call and implicit conversion used in initializing the
2448 // return value shall be one of those allowed in a constant expression.
2449 // C++11 [dcl.constexpr]p4:
2450 // - every constructor involved in initializing non-static data members and
2451 // base class sub-objects shall be a constexpr constructor.
2453 // Note that this rule is distinct from the "requirements for a constexpr
2454 // function", so is not checked in CheckValid mode.
2455 SmallVector<PartialDiagnosticAt, 8> Diags;
2456 if (Kind == Sema::CheckConstexprKind::Diagnose &&
2457 !Expr::isPotentialConstantExpr(Dcl, Diags)) {
2458 SemaRef.Diag(Dcl->getLocation(),
2459 diag::ext_constexpr_function_never_constant_expr)
2460 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval()
2461 << Dcl->getNameInfo().getSourceRange();
2462 for (size_t I = 0, N = Diags.size(); I != N; ++I)
2463 SemaRef.Diag(Diags[I].first, Diags[I].second);
2464 // Don't return false here: we allow this for compatibility in
2465 // system headers.
2468 return true;
2471 bool Sema::CheckImmediateEscalatingFunctionDefinition(
2472 FunctionDecl *FD, const sema::FunctionScopeInfo *FSI) {
2473 if (!getLangOpts().CPlusPlus20 || !FD->isImmediateEscalating())
2474 return true;
2475 FD->setBodyContainsImmediateEscalatingExpressions(
2476 FSI->FoundImmediateEscalatingExpression);
2477 if (FSI->FoundImmediateEscalatingExpression) {
2478 auto it = UndefinedButUsed.find(FD->getCanonicalDecl());
2479 if (it != UndefinedButUsed.end()) {
2480 Diag(it->second, diag::err_immediate_function_used_before_definition)
2481 << it->first;
2482 Diag(FD->getLocation(), diag::note_defined_here) << FD;
2483 if (FD->isImmediateFunction() && !FD->isConsteval())
2484 DiagnoseImmediateEscalatingReason(FD);
2485 return false;
2488 return true;
2491 void Sema::DiagnoseImmediateEscalatingReason(FunctionDecl *FD) {
2492 assert(FD->isImmediateEscalating() && !FD->isConsteval() &&
2493 "expected an immediate function");
2494 assert(FD->hasBody() && "expected the function to have a body");
2495 struct ImmediateEscalatingExpressionsVisitor
2496 : public RecursiveASTVisitor<ImmediateEscalatingExpressionsVisitor> {
2498 using Base = RecursiveASTVisitor<ImmediateEscalatingExpressionsVisitor>;
2499 Sema &SemaRef;
2501 const FunctionDecl *ImmediateFn;
2502 bool ImmediateFnIsConstructor;
2503 CXXConstructorDecl *CurrentConstructor = nullptr;
2504 CXXCtorInitializer *CurrentInit = nullptr;
2506 ImmediateEscalatingExpressionsVisitor(Sema &SemaRef, FunctionDecl *FD)
2507 : SemaRef(SemaRef), ImmediateFn(FD),
2508 ImmediateFnIsConstructor(isa<CXXConstructorDecl>(FD)) {}
2510 bool shouldVisitImplicitCode() const { return true; }
2511 bool shouldVisitLambdaBody() const { return false; }
2513 void Diag(const Expr *E, const FunctionDecl *Fn, bool IsCall) {
2514 SourceLocation Loc = E->getBeginLoc();
2515 SourceRange Range = E->getSourceRange();
2516 if (CurrentConstructor && CurrentInit) {
2517 Loc = CurrentConstructor->getLocation();
2518 Range = CurrentInit->isWritten() ? CurrentInit->getSourceRange()
2519 : SourceRange();
2522 FieldDecl* InitializedField = CurrentInit ? CurrentInit->getAnyMember() : nullptr;
2524 SemaRef.Diag(Loc, diag::note_immediate_function_reason)
2525 << ImmediateFn << Fn << Fn->isConsteval() << IsCall
2526 << isa<CXXConstructorDecl>(Fn) << ImmediateFnIsConstructor
2527 << (InitializedField != nullptr)
2528 << (CurrentInit && !CurrentInit->isWritten())
2529 << InitializedField << Range;
2531 bool TraverseCallExpr(CallExpr *E) {
2532 if (const auto *DR =
2533 dyn_cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit());
2534 DR && DR->isImmediateEscalating()) {
2535 Diag(E, E->getDirectCallee(), /*IsCall=*/true);
2536 return false;
2539 for (Expr *A : E->arguments())
2540 if (!getDerived().TraverseStmt(A))
2541 return false;
2543 return true;
2546 bool VisitDeclRefExpr(DeclRefExpr *E) {
2547 if (const auto *ReferencedFn = dyn_cast<FunctionDecl>(E->getDecl());
2548 ReferencedFn && E->isImmediateEscalating()) {
2549 Diag(E, ReferencedFn, /*IsCall=*/false);
2550 return false;
2553 return true;
2556 bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2557 CXXConstructorDecl *D = E->getConstructor();
2558 if (E->isImmediateEscalating()) {
2559 Diag(E, D, /*IsCall=*/true);
2560 return false;
2562 return true;
2565 bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
2566 llvm::SaveAndRestore RAII(CurrentInit, Init);
2567 return Base::TraverseConstructorInitializer(Init);
2570 bool TraverseCXXConstructorDecl(CXXConstructorDecl *Ctr) {
2571 llvm::SaveAndRestore RAII(CurrentConstructor, Ctr);
2572 return Base::TraverseCXXConstructorDecl(Ctr);
2575 bool TraverseType(QualType T) { return true; }
2576 bool VisitBlockExpr(BlockExpr *T) { return true; }
2578 } Visitor(*this, FD);
2579 Visitor.TraverseDecl(FD);
2582 /// Get the class that is directly named by the current context. This is the
2583 /// class for which an unqualified-id in this scope could name a constructor
2584 /// or destructor.
2586 /// If the scope specifier denotes a class, this will be that class.
2587 /// If the scope specifier is empty, this will be the class whose
2588 /// member-specification we are currently within. Otherwise, there
2589 /// is no such class.
2590 CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) {
2591 assert(getLangOpts().CPlusPlus && "No class names in C!");
2593 if (SS && SS->isInvalid())
2594 return nullptr;
2596 if (SS && SS->isNotEmpty()) {
2597 DeclContext *DC = computeDeclContext(*SS, true);
2598 return dyn_cast_or_null<CXXRecordDecl>(DC);
2601 return dyn_cast_or_null<CXXRecordDecl>(CurContext);
2604 /// isCurrentClassName - Determine whether the identifier II is the
2605 /// name of the class type currently being defined. In the case of
2606 /// nested classes, this will only return true if II is the name of
2607 /// the innermost class.
2608 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S,
2609 const CXXScopeSpec *SS) {
2610 CXXRecordDecl *CurDecl = getCurrentClass(S, SS);
2611 return CurDecl && &II == CurDecl->getIdentifier();
2614 /// Determine whether the identifier II is a typo for the name of
2615 /// the class type currently being defined. If so, update it to the identifier
2616 /// that should have been used.
2617 bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
2618 assert(getLangOpts().CPlusPlus && "No class names in C!");
2620 if (!getLangOpts().SpellChecking)
2621 return false;
2623 CXXRecordDecl *CurDecl;
2624 if (SS && SS->isSet() && !SS->isInvalid()) {
2625 DeclContext *DC = computeDeclContext(*SS, true);
2626 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2627 } else
2628 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2630 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
2631 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
2632 < II->getLength()) {
2633 II = CurDecl->getIdentifier();
2634 return true;
2637 return false;
2640 /// Determine whether the given class is a base class of the given
2641 /// class, including looking at dependent bases.
2642 static bool findCircularInheritance(const CXXRecordDecl *Class,
2643 const CXXRecordDecl *Current) {
2644 SmallVector<const CXXRecordDecl*, 8> Queue;
2646 Class = Class->getCanonicalDecl();
2647 while (true) {
2648 for (const auto &I : Current->bases()) {
2649 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
2650 if (!Base)
2651 continue;
2653 Base = Base->getDefinition();
2654 if (!Base)
2655 continue;
2657 if (Base->getCanonicalDecl() == Class)
2658 return true;
2660 Queue.push_back(Base);
2663 if (Queue.empty())
2664 return false;
2666 Current = Queue.pop_back_val();
2669 return false;
2672 /// Check the validity of a C++ base class specifier.
2674 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
2675 /// and returns NULL otherwise.
2676 CXXBaseSpecifier *
2677 Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
2678 SourceRange SpecifierRange,
2679 bool Virtual, AccessSpecifier Access,
2680 TypeSourceInfo *TInfo,
2681 SourceLocation EllipsisLoc) {
2682 // In HLSL, unspecified class access is public rather than private.
2683 if (getLangOpts().HLSL && Class->getTagKind() == TTK_Class &&
2684 Access == AS_none)
2685 Access = AS_public;
2687 QualType BaseType = TInfo->getType();
2688 if (BaseType->containsErrors()) {
2689 // Already emitted a diagnostic when parsing the error type.
2690 return nullptr;
2692 // C++ [class.union]p1:
2693 // A union shall not have base classes.
2694 if (Class->isUnion()) {
2695 Diag(Class->getLocation(), diag::err_base_clause_on_union)
2696 << SpecifierRange;
2697 return nullptr;
2700 if (EllipsisLoc.isValid() &&
2701 !TInfo->getType()->containsUnexpandedParameterPack()) {
2702 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2703 << TInfo->getTypeLoc().getSourceRange();
2704 EllipsisLoc = SourceLocation();
2707 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
2709 if (BaseType->isDependentType()) {
2710 // Make sure that we don't have circular inheritance among our dependent
2711 // bases. For non-dependent bases, the check for completeness below handles
2712 // this.
2713 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
2714 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
2715 ((BaseDecl = BaseDecl->getDefinition()) &&
2716 findCircularInheritance(Class, BaseDecl))) {
2717 Diag(BaseLoc, diag::err_circular_inheritance)
2718 << BaseType << Context.getTypeDeclType(Class);
2720 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
2721 Diag(BaseDecl->getLocation(), diag::note_previous_decl)
2722 << BaseType;
2724 return nullptr;
2728 // Make sure that we don't make an ill-formed AST where the type of the
2729 // Class is non-dependent and its attached base class specifier is an
2730 // dependent type, which violates invariants in many clang code paths (e.g.
2731 // constexpr evaluator). If this case happens (in errory-recovery mode), we
2732 // explicitly mark the Class decl invalid. The diagnostic was already
2733 // emitted.
2734 if (!Class->getTypeForDecl()->isDependentType())
2735 Class->setInvalidDecl();
2736 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2737 Class->getTagKind() == TTK_Class,
2738 Access, TInfo, EllipsisLoc);
2741 // Base specifiers must be record types.
2742 if (!BaseType->isRecordType()) {
2743 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
2744 return nullptr;
2747 // C++ [class.union]p1:
2748 // A union shall not be used as a base class.
2749 if (BaseType->isUnionType()) {
2750 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
2751 return nullptr;
2754 // For the MS ABI, propagate DLL attributes to base class templates.
2755 if (Context.getTargetInfo().getCXXABI().isMicrosoft() ||
2756 Context.getTargetInfo().getTriple().isPS()) {
2757 if (Attr *ClassAttr = getDLLAttr(Class)) {
2758 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
2759 BaseType->getAsCXXRecordDecl())) {
2760 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
2761 BaseLoc);
2766 // C++ [class.derived]p2:
2767 // The class-name in a base-specifier shall not be an incompletely
2768 // defined class.
2769 if (RequireCompleteType(BaseLoc, BaseType,
2770 diag::err_incomplete_base_class, SpecifierRange)) {
2771 Class->setInvalidDecl();
2772 return nullptr;
2775 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
2776 RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl();
2777 assert(BaseDecl && "Record type has no declaration");
2778 BaseDecl = BaseDecl->getDefinition();
2779 assert(BaseDecl && "Base type is not incomplete, but has no definition");
2780 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
2781 assert(CXXBaseDecl && "Base type is not a C++ type");
2783 // Microsoft docs say:
2784 // "If a base-class has a code_seg attribute, derived classes must have the
2785 // same attribute."
2786 const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>();
2787 const auto *DerivedCSA = Class->getAttr<CodeSegAttr>();
2788 if ((DerivedCSA || BaseCSA) &&
2789 (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) {
2790 Diag(Class->getLocation(), diag::err_mismatched_code_seg_base);
2791 Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here)
2792 << CXXBaseDecl;
2793 return nullptr;
2796 // A class which contains a flexible array member is not suitable for use as a
2797 // base class:
2798 // - If the layout determines that a base comes before another base,
2799 // the flexible array member would index into the subsequent base.
2800 // - If the layout determines that base comes before the derived class,
2801 // the flexible array member would index into the derived class.
2802 if (CXXBaseDecl->hasFlexibleArrayMember()) {
2803 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
2804 << CXXBaseDecl->getDeclName();
2805 return nullptr;
2808 // C++ [class]p3:
2809 // If a class is marked final and it appears as a base-type-specifier in
2810 // base-clause, the program is ill-formed.
2811 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
2812 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
2813 << CXXBaseDecl->getDeclName()
2814 << FA->isSpelledAsSealed();
2815 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
2816 << CXXBaseDecl->getDeclName() << FA->getRange();
2817 return nullptr;
2820 if (BaseDecl->isInvalidDecl())
2821 Class->setInvalidDecl();
2823 // Create the base specifier.
2824 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2825 Class->getTagKind() == TTK_Class,
2826 Access, TInfo, EllipsisLoc);
2829 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
2830 /// one entry in the base class list of a class specifier, for
2831 /// example:
2832 /// class foo : public bar, virtual private baz {
2833 /// 'public bar' and 'virtual private baz' are each base-specifiers.
2834 BaseResult Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
2835 const ParsedAttributesView &Attributes,
2836 bool Virtual, AccessSpecifier Access,
2837 ParsedType basetype, SourceLocation BaseLoc,
2838 SourceLocation EllipsisLoc) {
2839 if (!classdecl)
2840 return true;
2842 AdjustDeclIfTemplate(classdecl);
2843 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
2844 if (!Class)
2845 return true;
2847 // We haven't yet attached the base specifiers.
2848 Class->setIsParsingBaseSpecifiers();
2850 // We do not support any C++11 attributes on base-specifiers yet.
2851 // Diagnose any attributes we see.
2852 for (const ParsedAttr &AL : Attributes) {
2853 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
2854 continue;
2855 if (AL.getKind() == ParsedAttr::UnknownAttribute)
2856 Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
2857 << AL << AL.getRange();
2858 else
2859 Diag(AL.getLoc(), diag::err_base_specifier_attribute)
2860 << AL << AL.isRegularKeywordAttribute() << AL.getRange();
2863 TypeSourceInfo *TInfo = nullptr;
2864 GetTypeFromParser(basetype, &TInfo);
2866 if (EllipsisLoc.isInvalid() &&
2867 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
2868 UPPC_BaseType))
2869 return true;
2871 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
2872 Virtual, Access, TInfo,
2873 EllipsisLoc))
2874 return BaseSpec;
2875 else
2876 Class->setInvalidDecl();
2878 return true;
2881 /// Use small set to collect indirect bases. As this is only used
2882 /// locally, there's no need to abstract the small size parameter.
2883 typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
2885 /// Recursively add the bases of Type. Don't add Type itself.
2886 static void
2887 NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
2888 const QualType &Type)
2890 // Even though the incoming type is a base, it might not be
2891 // a class -- it could be a template parm, for instance.
2892 if (auto Rec = Type->getAs<RecordType>()) {
2893 auto Decl = Rec->getAsCXXRecordDecl();
2895 // Iterate over its bases.
2896 for (const auto &BaseSpec : Decl->bases()) {
2897 QualType Base = Context.getCanonicalType(BaseSpec.getType())
2898 .getUnqualifiedType();
2899 if (Set.insert(Base).second)
2900 // If we've not already seen it, recurse.
2901 NoteIndirectBases(Context, Set, Base);
2906 /// Performs the actual work of attaching the given base class
2907 /// specifiers to a C++ class.
2908 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class,
2909 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2910 if (Bases.empty())
2911 return false;
2913 // Used to keep track of which base types we have already seen, so
2914 // that we can properly diagnose redundant direct base types. Note
2915 // that the key is always the unqualified canonical type of the base
2916 // class.
2917 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
2919 // Used to track indirect bases so we can see if a direct base is
2920 // ambiguous.
2921 IndirectBaseSet IndirectBaseTypes;
2923 // Copy non-redundant base specifiers into permanent storage.
2924 unsigned NumGoodBases = 0;
2925 bool Invalid = false;
2926 for (unsigned idx = 0; idx < Bases.size(); ++idx) {
2927 QualType NewBaseType
2928 = Context.getCanonicalType(Bases[idx]->getType());
2929 NewBaseType = NewBaseType.getLocalUnqualifiedType();
2931 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
2932 if (KnownBase) {
2933 // C++ [class.mi]p3:
2934 // A class shall not be specified as a direct base class of a
2935 // derived class more than once.
2936 Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class)
2937 << KnownBase->getType() << Bases[idx]->getSourceRange();
2939 // Delete the duplicate base class specifier; we're going to
2940 // overwrite its pointer later.
2941 Context.Deallocate(Bases[idx]);
2943 Invalid = true;
2944 } else {
2945 // Okay, add this new base class.
2946 KnownBase = Bases[idx];
2947 Bases[NumGoodBases++] = Bases[idx];
2949 if (NewBaseType->isDependentType())
2950 continue;
2951 // Note this base's direct & indirect bases, if there could be ambiguity.
2952 if (Bases.size() > 1)
2953 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
2955 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
2956 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2957 if (Class->isInterface() &&
2958 (!RD->isInterfaceLike() ||
2959 KnownBase->getAccessSpecifier() != AS_public)) {
2960 // The Microsoft extension __interface does not permit bases that
2961 // are not themselves public interfaces.
2962 Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface)
2963 << getRecordDiagFromTagKind(RD->getTagKind()) << RD
2964 << RD->getSourceRange();
2965 Invalid = true;
2967 if (RD->hasAttr<WeakAttr>())
2968 Class->addAttr(WeakAttr::CreateImplicit(Context));
2973 // Attach the remaining base class specifiers to the derived class.
2974 Class->setBases(Bases.data(), NumGoodBases);
2976 // Check that the only base classes that are duplicate are virtual.
2977 for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
2978 // Check whether this direct base is inaccessible due to ambiguity.
2979 QualType BaseType = Bases[idx]->getType();
2981 // Skip all dependent types in templates being used as base specifiers.
2982 // Checks below assume that the base specifier is a CXXRecord.
2983 if (BaseType->isDependentType())
2984 continue;
2986 CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
2987 .getUnqualifiedType();
2989 if (IndirectBaseTypes.count(CanonicalBase)) {
2990 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2991 /*DetectVirtual=*/true);
2992 bool found
2993 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
2994 assert(found);
2995 (void)found;
2997 if (Paths.isAmbiguous(CanonicalBase))
2998 Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class)
2999 << BaseType << getAmbiguousPathsDisplayString(Paths)
3000 << Bases[idx]->getSourceRange();
3001 else
3002 assert(Bases[idx]->isVirtual());
3005 // Delete the base class specifier, since its data has been copied
3006 // into the CXXRecordDecl.
3007 Context.Deallocate(Bases[idx]);
3010 return Invalid;
3013 /// ActOnBaseSpecifiers - Attach the given base specifiers to the
3014 /// class, after checking whether there are any duplicate base
3015 /// classes.
3016 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl,
3017 MutableArrayRef<CXXBaseSpecifier *> Bases) {
3018 if (!ClassDecl || Bases.empty())
3019 return;
3021 AdjustDeclIfTemplate(ClassDecl);
3022 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases);
3025 /// Determine whether the type \p Derived is a C++ class that is
3026 /// derived from the type \p Base.
3027 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
3028 if (!getLangOpts().CPlusPlus)
3029 return false;
3031 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
3032 if (!DerivedRD)
3033 return false;
3035 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
3036 if (!BaseRD)
3037 return false;
3039 // If either the base or the derived type is invalid, don't try to
3040 // check whether one is derived from the other.
3041 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
3042 return false;
3044 // FIXME: In a modules build, do we need the entire path to be visible for us
3045 // to be able to use the inheritance relationship?
3046 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
3047 return false;
3049 return DerivedRD->isDerivedFrom(BaseRD);
3052 /// Determine whether the type \p Derived is a C++ class that is
3053 /// derived from the type \p Base.
3054 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
3055 CXXBasePaths &Paths) {
3056 if (!getLangOpts().CPlusPlus)
3057 return false;
3059 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
3060 if (!DerivedRD)
3061 return false;
3063 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
3064 if (!BaseRD)
3065 return false;
3067 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
3068 return false;
3070 return DerivedRD->isDerivedFrom(BaseRD, Paths);
3073 static void BuildBasePathArray(const CXXBasePath &Path,
3074 CXXCastPath &BasePathArray) {
3075 // We first go backward and check if we have a virtual base.
3076 // FIXME: It would be better if CXXBasePath had the base specifier for
3077 // the nearest virtual base.
3078 unsigned Start = 0;
3079 for (unsigned I = Path.size(); I != 0; --I) {
3080 if (Path[I - 1].Base->isVirtual()) {
3081 Start = I - 1;
3082 break;
3086 // Now add all bases.
3087 for (unsigned I = Start, E = Path.size(); I != E; ++I)
3088 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
3092 void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
3093 CXXCastPath &BasePathArray) {
3094 assert(BasePathArray.empty() && "Base path array must be empty!");
3095 assert(Paths.isRecordingPaths() && "Must record paths!");
3096 return ::BuildBasePathArray(Paths.front(), BasePathArray);
3098 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
3099 /// conversion (where Derived and Base are class types) is
3100 /// well-formed, meaning that the conversion is unambiguous (and
3101 /// that all of the base classes are accessible). Returns true
3102 /// and emits a diagnostic if the code is ill-formed, returns false
3103 /// otherwise. Loc is the location where this routine should point to
3104 /// if there is an error, and Range is the source range to highlight
3105 /// if there is an error.
3107 /// If either InaccessibleBaseID or AmbiguousBaseConvID are 0, then the
3108 /// diagnostic for the respective type of error will be suppressed, but the
3109 /// check for ill-formed code will still be performed.
3110 bool
3111 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
3112 unsigned InaccessibleBaseID,
3113 unsigned AmbiguousBaseConvID,
3114 SourceLocation Loc, SourceRange Range,
3115 DeclarationName Name,
3116 CXXCastPath *BasePath,
3117 bool IgnoreAccess) {
3118 // First, determine whether the path from Derived to Base is
3119 // ambiguous. This is slightly more expensive than checking whether
3120 // the Derived to Base conversion exists, because here we need to
3121 // explore multiple paths to determine if there is an ambiguity.
3122 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3123 /*DetectVirtual=*/false);
3124 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
3125 if (!DerivationOkay)
3126 return true;
3128 const CXXBasePath *Path = nullptr;
3129 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType()))
3130 Path = &Paths.front();
3132 // For MSVC compatibility, check if Derived directly inherits from Base. Clang
3133 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the
3134 // user to access such bases.
3135 if (!Path && getLangOpts().MSVCCompat) {
3136 for (const CXXBasePath &PossiblePath : Paths) {
3137 if (PossiblePath.size() == 1) {
3138 Path = &PossiblePath;
3139 if (AmbiguousBaseConvID)
3140 Diag(Loc, diag::ext_ms_ambiguous_direct_base)
3141 << Base << Derived << Range;
3142 break;
3147 if (Path) {
3148 if (!IgnoreAccess) {
3149 // Check that the base class can be accessed.
3150 switch (
3151 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) {
3152 case AR_inaccessible:
3153 return true;
3154 case AR_accessible:
3155 case AR_dependent:
3156 case AR_delayed:
3157 break;
3161 // Build a base path if necessary.
3162 if (BasePath)
3163 ::BuildBasePathArray(*Path, *BasePath);
3164 return false;
3167 if (AmbiguousBaseConvID) {
3168 // We know that the derived-to-base conversion is ambiguous, and
3169 // we're going to produce a diagnostic. Perform the derived-to-base
3170 // search just one more time to compute all of the possible paths so
3171 // that we can print them out. This is more expensive than any of
3172 // the previous derived-to-base checks we've done, but at this point
3173 // performance isn't as much of an issue.
3174 Paths.clear();
3175 Paths.setRecordingPaths(true);
3176 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
3177 assert(StillOkay && "Can only be used with a derived-to-base conversion");
3178 (void)StillOkay;
3180 // Build up a textual representation of the ambiguous paths, e.g.,
3181 // D -> B -> A, that will be used to illustrate the ambiguous
3182 // conversions in the diagnostic. We only print one of the paths
3183 // to each base class subobject.
3184 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3186 Diag(Loc, AmbiguousBaseConvID)
3187 << Derived << Base << PathDisplayStr << Range << Name;
3189 return true;
3192 bool
3193 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
3194 SourceLocation Loc, SourceRange Range,
3195 CXXCastPath *BasePath,
3196 bool IgnoreAccess) {
3197 return CheckDerivedToBaseConversion(
3198 Derived, Base, diag::err_upcast_to_inaccessible_base,
3199 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(),
3200 BasePath, IgnoreAccess);
3204 /// Builds a string representing ambiguous paths from a
3205 /// specific derived class to different subobjects of the same base
3206 /// class.
3208 /// This function builds a string that can be used in error messages
3209 /// to show the different paths that one can take through the
3210 /// inheritance hierarchy to go from the derived class to different
3211 /// subobjects of a base class. The result looks something like this:
3212 /// @code
3213 /// struct D -> struct B -> struct A
3214 /// struct D -> struct C -> struct A
3215 /// @endcode
3216 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
3217 std::string PathDisplayStr;
3218 std::set<unsigned> DisplayedPaths;
3219 for (CXXBasePaths::paths_iterator Path = Paths.begin();
3220 Path != Paths.end(); ++Path) {
3221 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
3222 // We haven't displayed a path to this particular base
3223 // class subobject yet.
3224 PathDisplayStr += "\n ";
3225 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
3226 for (CXXBasePath::const_iterator Element = Path->begin();
3227 Element != Path->end(); ++Element)
3228 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
3232 return PathDisplayStr;
3235 //===----------------------------------------------------------------------===//
3236 // C++ class member Handling
3237 //===----------------------------------------------------------------------===//
3239 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
3240 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
3241 SourceLocation ColonLoc,
3242 const ParsedAttributesView &Attrs) {
3243 assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
3244 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
3245 ASLoc, ColonLoc);
3246 CurContext->addHiddenDecl(ASDecl);
3247 return ProcessAccessDeclAttributeList(ASDecl, Attrs);
3250 /// CheckOverrideControl - Check C++11 override control semantics.
3251 void Sema::CheckOverrideControl(NamedDecl *D) {
3252 if (D->isInvalidDecl())
3253 return;
3255 // We only care about "override" and "final" declarations.
3256 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
3257 return;
3259 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3261 // We can't check dependent instance methods.
3262 if (MD && MD->isInstance() &&
3263 (MD->getParent()->hasAnyDependentBases() ||
3264 MD->getType()->isDependentType()))
3265 return;
3267 if (MD && !MD->isVirtual()) {
3268 // If we have a non-virtual method, check if it hides a virtual method.
3269 // (In that case, it's most likely the method has the wrong type.)
3270 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
3271 FindHiddenVirtualMethods(MD, OverloadedMethods);
3273 if (!OverloadedMethods.empty()) {
3274 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3275 Diag(OA->getLocation(),
3276 diag::override_keyword_hides_virtual_member_function)
3277 << "override" << (OverloadedMethods.size() > 1);
3278 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3279 Diag(FA->getLocation(),
3280 diag::override_keyword_hides_virtual_member_function)
3281 << (FA->isSpelledAsSealed() ? "sealed" : "final")
3282 << (OverloadedMethods.size() > 1);
3284 NoteHiddenVirtualMethods(MD, OverloadedMethods);
3285 MD->setInvalidDecl();
3286 return;
3288 // Fall through into the general case diagnostic.
3289 // FIXME: We might want to attempt typo correction here.
3292 if (!MD || !MD->isVirtual()) {
3293 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3294 Diag(OA->getLocation(),
3295 diag::override_keyword_only_allowed_on_virtual_member_functions)
3296 << "override" << FixItHint::CreateRemoval(OA->getLocation());
3297 D->dropAttr<OverrideAttr>();
3299 if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3300 Diag(FA->getLocation(),
3301 diag::override_keyword_only_allowed_on_virtual_member_functions)
3302 << (FA->isSpelledAsSealed() ? "sealed" : "final")
3303 << FixItHint::CreateRemoval(FA->getLocation());
3304 D->dropAttr<FinalAttr>();
3306 return;
3309 // C++11 [class.virtual]p5:
3310 // If a function is marked with the virt-specifier override and
3311 // does not override a member function of a base class, the program is
3312 // ill-formed.
3313 bool HasOverriddenMethods = MD->size_overridden_methods() != 0;
3314 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
3315 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
3316 << MD->getDeclName();
3319 void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) {
3320 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
3321 return;
3322 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3323 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>())
3324 return;
3326 SourceLocation Loc = MD->getLocation();
3327 SourceLocation SpellingLoc = Loc;
3328 if (getSourceManager().isMacroArgExpansion(Loc))
3329 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin();
3330 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
3331 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
3332 return;
3334 if (MD->size_overridden_methods() > 0) {
3335 auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) {
3336 unsigned DiagID =
3337 Inconsistent && !Diags.isIgnored(DiagInconsistent, MD->getLocation())
3338 ? DiagInconsistent
3339 : DiagSuggest;
3340 Diag(MD->getLocation(), DiagID) << MD->getDeclName();
3341 const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
3342 Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
3344 if (isa<CXXDestructorDecl>(MD))
3345 EmitDiag(
3346 diag::warn_inconsistent_destructor_marked_not_override_overriding,
3347 diag::warn_suggest_destructor_marked_not_override_overriding);
3348 else
3349 EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding,
3350 diag::warn_suggest_function_marked_not_override_overriding);
3354 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
3355 /// function overrides a virtual member function marked 'final', according to
3356 /// C++11 [class.virtual]p4.
3357 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
3358 const CXXMethodDecl *Old) {
3359 FinalAttr *FA = Old->getAttr<FinalAttr>();
3360 if (!FA)
3361 return false;
3363 Diag(New->getLocation(), diag::err_final_function_overridden)
3364 << New->getDeclName()
3365 << FA->isSpelledAsSealed();
3366 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3367 return true;
3370 static bool InitializationHasSideEffects(const FieldDecl &FD) {
3371 const Type *T = FD.getType()->getBaseElementTypeUnsafe();
3372 // FIXME: Destruction of ObjC lifetime types has side-effects.
3373 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3374 return !RD->isCompleteDefinition() ||
3375 !RD->hasTrivialDefaultConstructor() ||
3376 !RD->hasTrivialDestructor();
3377 return false;
3380 // Check if there is a field shadowing.
3381 void Sema::CheckShadowInheritedFields(const SourceLocation &Loc,
3382 DeclarationName FieldName,
3383 const CXXRecordDecl *RD,
3384 bool DeclIsField) {
3385 if (Diags.isIgnored(diag::warn_shadow_field, Loc))
3386 return;
3388 // To record a shadowed field in a base
3389 std::map<CXXRecordDecl*, NamedDecl*> Bases;
3390 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier,
3391 CXXBasePath &Path) {
3392 const auto Base = Specifier->getType()->getAsCXXRecordDecl();
3393 // Record an ambiguous path directly
3394 if (Bases.find(Base) != Bases.end())
3395 return true;
3396 for (const auto Field : Base->lookup(FieldName)) {
3397 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) &&
3398 Field->getAccess() != AS_private) {
3399 assert(Field->getAccess() != AS_none);
3400 assert(Bases.find(Base) == Bases.end());
3401 Bases[Base] = Field;
3402 return true;
3405 return false;
3408 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3409 /*DetectVirtual=*/true);
3410 if (!RD->lookupInBases(FieldShadowed, Paths))
3411 return;
3413 for (const auto &P : Paths) {
3414 auto Base = P.back().Base->getType()->getAsCXXRecordDecl();
3415 auto It = Bases.find(Base);
3416 // Skip duplicated bases
3417 if (It == Bases.end())
3418 continue;
3419 auto BaseField = It->second;
3420 assert(BaseField->getAccess() != AS_private);
3421 if (AS_none !=
3422 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) {
3423 Diag(Loc, diag::warn_shadow_field)
3424 << FieldName << RD << Base << DeclIsField;
3425 Diag(BaseField->getLocation(), diag::note_shadow_field);
3426 Bases.erase(It);
3431 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
3432 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
3433 /// bitfield width if there is one, 'InitExpr' specifies the initializer if
3434 /// one has been parsed, and 'InitStyle' is set if an in-class initializer is
3435 /// present (but parsing it has been deferred).
3436 NamedDecl *
3437 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
3438 MultiTemplateParamsArg TemplateParameterLists,
3439 Expr *BW, const VirtSpecifiers &VS,
3440 InClassInitStyle InitStyle) {
3441 const DeclSpec &DS = D.getDeclSpec();
3442 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3443 DeclarationName Name = NameInfo.getName();
3444 SourceLocation Loc = NameInfo.getLoc();
3446 // For anonymous bitfields, the location should point to the type.
3447 if (Loc.isInvalid())
3448 Loc = D.getBeginLoc();
3450 Expr *BitWidth = static_cast<Expr*>(BW);
3452 assert(isa<CXXRecordDecl>(CurContext));
3453 assert(!DS.isFriendSpecified());
3455 bool isFunc = D.isDeclarationOfFunction();
3456 const ParsedAttr *MSPropertyAttr =
3457 D.getDeclSpec().getAttributes().getMSPropertyAttr();
3459 if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
3460 // The Microsoft extension __interface only permits public member functions
3461 // and prohibits constructors, destructors, operators, non-public member
3462 // functions, static methods and data members.
3463 unsigned InvalidDecl;
3464 bool ShowDeclName = true;
3465 if (!isFunc &&
3466 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr))
3467 InvalidDecl = 0;
3468 else if (!isFunc)
3469 InvalidDecl = 1;
3470 else if (AS != AS_public)
3471 InvalidDecl = 2;
3472 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
3473 InvalidDecl = 3;
3474 else switch (Name.getNameKind()) {
3475 case DeclarationName::CXXConstructorName:
3476 InvalidDecl = 4;
3477 ShowDeclName = false;
3478 break;
3480 case DeclarationName::CXXDestructorName:
3481 InvalidDecl = 5;
3482 ShowDeclName = false;
3483 break;
3485 case DeclarationName::CXXOperatorName:
3486 case DeclarationName::CXXConversionFunctionName:
3487 InvalidDecl = 6;
3488 break;
3490 default:
3491 InvalidDecl = 0;
3492 break;
3495 if (InvalidDecl) {
3496 if (ShowDeclName)
3497 Diag(Loc, diag::err_invalid_member_in_interface)
3498 << (InvalidDecl-1) << Name;
3499 else
3500 Diag(Loc, diag::err_invalid_member_in_interface)
3501 << (InvalidDecl-1) << "";
3502 return nullptr;
3506 // C++ 9.2p6: A member shall not be declared to have automatic storage
3507 // duration (auto, register) or with the extern storage-class-specifier.
3508 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
3509 // data members and cannot be applied to names declared const or static,
3510 // and cannot be applied to reference members.
3511 switch (DS.getStorageClassSpec()) {
3512 case DeclSpec::SCS_unspecified:
3513 case DeclSpec::SCS_typedef:
3514 case DeclSpec::SCS_static:
3515 break;
3516 case DeclSpec::SCS_mutable:
3517 if (isFunc) {
3518 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
3520 // FIXME: It would be nicer if the keyword was ignored only for this
3521 // declarator. Otherwise we could get follow-up errors.
3522 D.getMutableDeclSpec().ClearStorageClassSpecs();
3524 break;
3525 default:
3526 Diag(DS.getStorageClassSpecLoc(),
3527 diag::err_storageclass_invalid_for_member);
3528 D.getMutableDeclSpec().ClearStorageClassSpecs();
3529 break;
3532 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
3533 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
3534 !isFunc);
3536 if (DS.hasConstexprSpecifier() && isInstField) {
3537 SemaDiagnosticBuilder B =
3538 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
3539 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
3540 if (InitStyle == ICIS_NoInit) {
3541 B << 0 << 0;
3542 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
3543 B << FixItHint::CreateRemoval(ConstexprLoc);
3544 else {
3545 B << FixItHint::CreateReplacement(ConstexprLoc, "const");
3546 D.getMutableDeclSpec().ClearConstexprSpec();
3547 const char *PrevSpec;
3548 unsigned DiagID;
3549 bool Failed = D.getMutableDeclSpec().SetTypeQual(
3550 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
3551 (void)Failed;
3552 assert(!Failed && "Making a constexpr member const shouldn't fail");
3554 } else {
3555 B << 1;
3556 const char *PrevSpec;
3557 unsigned DiagID;
3558 if (D.getMutableDeclSpec().SetStorageClassSpec(
3559 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
3560 Context.getPrintingPolicy())) {
3561 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
3562 "This is the only DeclSpec that should fail to be applied");
3563 B << 1;
3564 } else {
3565 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
3566 isInstField = false;
3571 NamedDecl *Member;
3572 if (isInstField) {
3573 CXXScopeSpec &SS = D.getCXXScopeSpec();
3575 // Data members must have identifiers for names.
3576 if (!Name.isIdentifier()) {
3577 Diag(Loc, diag::err_bad_variable_name)
3578 << Name;
3579 return nullptr;
3582 IdentifierInfo *II = Name.getAsIdentifierInfo();
3584 // Member field could not be with "template" keyword.
3585 // So TemplateParameterLists should be empty in this case.
3586 if (TemplateParameterLists.size()) {
3587 TemplateParameterList* TemplateParams = TemplateParameterLists[0];
3588 if (TemplateParams->size()) {
3589 // There is no such thing as a member field template.
3590 Diag(D.getIdentifierLoc(), diag::err_template_member)
3591 << II
3592 << SourceRange(TemplateParams->getTemplateLoc(),
3593 TemplateParams->getRAngleLoc());
3594 } else {
3595 // There is an extraneous 'template<>' for this member.
3596 Diag(TemplateParams->getTemplateLoc(),
3597 diag::err_template_member_noparams)
3598 << II
3599 << SourceRange(TemplateParams->getTemplateLoc(),
3600 TemplateParams->getRAngleLoc());
3602 return nullptr;
3605 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
3606 Diag(D.getIdentifierLoc(), diag::err_member_with_template_arguments)
3607 << II
3608 << SourceRange(D.getName().TemplateId->LAngleLoc,
3609 D.getName().TemplateId->RAngleLoc)
3610 << D.getName().TemplateId->LAngleLoc;
3611 D.SetIdentifier(II, Loc);
3614 if (SS.isSet() && !SS.isInvalid()) {
3615 // The user provided a superfluous scope specifier inside a class
3616 // definition:
3618 // class X {
3619 // int X::member;
3620 // };
3621 if (DeclContext *DC = computeDeclContext(SS, false))
3622 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(),
3623 D.getName().getKind() ==
3624 UnqualifiedIdKind::IK_TemplateId);
3625 else
3626 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3627 << Name << SS.getRange();
3629 SS.clear();
3632 if (MSPropertyAttr) {
3633 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3634 BitWidth, InitStyle, AS, *MSPropertyAttr);
3635 if (!Member)
3636 return nullptr;
3637 isInstField = false;
3638 } else {
3639 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3640 BitWidth, InitStyle, AS);
3641 if (!Member)
3642 return nullptr;
3645 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext));
3646 } else {
3647 Member = HandleDeclarator(S, D, TemplateParameterLists);
3648 if (!Member)
3649 return nullptr;
3651 // Non-instance-fields can't have a bitfield.
3652 if (BitWidth) {
3653 if (Member->isInvalidDecl()) {
3654 // don't emit another diagnostic.
3655 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
3656 // C++ 9.6p3: A bit-field shall not be a static member.
3657 // "static member 'A' cannot be a bit-field"
3658 Diag(Loc, diag::err_static_not_bitfield)
3659 << Name << BitWidth->getSourceRange();
3660 } else if (isa<TypedefDecl>(Member)) {
3661 // "typedef member 'x' cannot be a bit-field"
3662 Diag(Loc, diag::err_typedef_not_bitfield)
3663 << Name << BitWidth->getSourceRange();
3664 } else {
3665 // A function typedef ("typedef int f(); f a;").
3666 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3667 Diag(Loc, diag::err_not_integral_type_bitfield)
3668 << Name << cast<ValueDecl>(Member)->getType()
3669 << BitWidth->getSourceRange();
3672 BitWidth = nullptr;
3673 Member->setInvalidDecl();
3676 NamedDecl *NonTemplateMember = Member;
3677 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
3678 NonTemplateMember = FunTmpl->getTemplatedDecl();
3679 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
3680 NonTemplateMember = VarTmpl->getTemplatedDecl();
3682 Member->setAccess(AS);
3684 // If we have declared a member function template or static data member
3685 // template, set the access of the templated declaration as well.
3686 if (NonTemplateMember != Member)
3687 NonTemplateMember->setAccess(AS);
3689 // C++ [temp.deduct.guide]p3:
3690 // A deduction guide [...] for a member class template [shall be
3691 // declared] with the same access [as the template].
3692 if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) {
3693 auto *TD = DG->getDeducedTemplate();
3694 // Access specifiers are only meaningful if both the template and the
3695 // deduction guide are from the same scope.
3696 if (AS != TD->getAccess() &&
3697 TD->getDeclContext()->getRedeclContext()->Equals(
3698 DG->getDeclContext()->getRedeclContext())) {
3699 Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access);
3700 Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access)
3701 << TD->getAccess();
3702 const AccessSpecDecl *LastAccessSpec = nullptr;
3703 for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) {
3704 if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D))
3705 LastAccessSpec = AccessSpec;
3707 assert(LastAccessSpec && "differing access with no access specifier");
3708 Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access)
3709 << AS;
3714 if (VS.isOverrideSpecified())
3715 Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc()));
3716 if (VS.isFinalSpecified())
3717 Member->addAttr(FinalAttr::Create(Context, VS.getFinalLoc(),
3718 VS.isFinalSpelledSealed()
3719 ? FinalAttr::Keyword_sealed
3720 : FinalAttr::Keyword_final));
3722 if (VS.getLastLocation().isValid()) {
3723 // Update the end location of a method that has a virt-specifiers.
3724 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
3725 MD->setRangeEnd(VS.getLastLocation());
3728 CheckOverrideControl(Member);
3730 assert((Name || isInstField) && "No identifier for non-field ?");
3732 if (isInstField) {
3733 FieldDecl *FD = cast<FieldDecl>(Member);
3734 FieldCollector->Add(FD);
3736 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
3737 // Remember all explicit private FieldDecls that have a name, no side
3738 // effects and are not part of a dependent type declaration.
3740 auto DeclHasUnusedAttr = [](const QualType &T) {
3741 if (const TagDecl *TD = T->getAsTagDecl())
3742 return TD->hasAttr<UnusedAttr>();
3743 if (const TypedefType *TDT = T->getAs<TypedefType>())
3744 return TDT->getDecl()->hasAttr<UnusedAttr>();
3745 return false;
3748 if (!FD->isImplicit() && FD->getDeclName() &&
3749 FD->getAccess() == AS_private &&
3750 !FD->hasAttr<UnusedAttr>() &&
3751 !FD->getParent()->isDependentContext() &&
3752 !DeclHasUnusedAttr(FD->getType()) &&
3753 !InitializationHasSideEffects(*FD))
3754 UnusedPrivateFields.insert(FD);
3758 return Member;
3761 namespace {
3762 class UninitializedFieldVisitor
3763 : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
3764 Sema &S;
3765 // List of Decls to generate a warning on. Also remove Decls that become
3766 // initialized.
3767 llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
3768 // List of base classes of the record. Classes are removed after their
3769 // initializers.
3770 llvm::SmallPtrSetImpl<QualType> &BaseClasses;
3771 // Vector of decls to be removed from the Decl set prior to visiting the
3772 // nodes. These Decls may have been initialized in the prior initializer.
3773 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
3774 // If non-null, add a note to the warning pointing back to the constructor.
3775 const CXXConstructorDecl *Constructor;
3776 // Variables to hold state when processing an initializer list. When
3777 // InitList is true, special case initialization of FieldDecls matching
3778 // InitListFieldDecl.
3779 bool InitList;
3780 FieldDecl *InitListFieldDecl;
3781 llvm::SmallVector<unsigned, 4> InitFieldIndex;
3783 public:
3784 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
3785 UninitializedFieldVisitor(Sema &S,
3786 llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
3787 llvm::SmallPtrSetImpl<QualType> &BaseClasses)
3788 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
3789 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
3791 // Returns true if the use of ME is not an uninitialized use.
3792 bool IsInitListMemberExprInitialized(MemberExpr *ME,
3793 bool CheckReferenceOnly) {
3794 llvm::SmallVector<FieldDecl*, 4> Fields;
3795 bool ReferenceField = false;
3796 while (ME) {
3797 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
3798 if (!FD)
3799 return false;
3800 Fields.push_back(FD);
3801 if (FD->getType()->isReferenceType())
3802 ReferenceField = true;
3803 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
3806 // Binding a reference to an uninitialized field is not an
3807 // uninitialized use.
3808 if (CheckReferenceOnly && !ReferenceField)
3809 return true;
3811 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
3812 // Discard the first field since it is the field decl that is being
3813 // initialized.
3814 for (const FieldDecl *FD : llvm::drop_begin(llvm::reverse(Fields)))
3815 UsedFieldIndex.push_back(FD->getFieldIndex());
3817 for (auto UsedIter = UsedFieldIndex.begin(),
3818 UsedEnd = UsedFieldIndex.end(),
3819 OrigIter = InitFieldIndex.begin(),
3820 OrigEnd = InitFieldIndex.end();
3821 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
3822 if (*UsedIter < *OrigIter)
3823 return true;
3824 if (*UsedIter > *OrigIter)
3825 break;
3828 return false;
3831 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
3832 bool AddressOf) {
3833 if (isa<EnumConstantDecl>(ME->getMemberDecl()))
3834 return;
3836 // FieldME is the inner-most MemberExpr that is not an anonymous struct
3837 // or union.
3838 MemberExpr *FieldME = ME;
3840 bool AllPODFields = FieldME->getType().isPODType(S.Context);
3842 Expr *Base = ME;
3843 while (MemberExpr *SubME =
3844 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
3846 if (isa<VarDecl>(SubME->getMemberDecl()))
3847 return;
3849 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
3850 if (!FD->isAnonymousStructOrUnion())
3851 FieldME = SubME;
3853 if (!FieldME->getType().isPODType(S.Context))
3854 AllPODFields = false;
3856 Base = SubME->getBase();
3859 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) {
3860 Visit(Base);
3861 return;
3864 if (AddressOf && AllPODFields)
3865 return;
3867 ValueDecl* FoundVD = FieldME->getMemberDecl();
3869 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
3870 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
3871 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
3874 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
3875 QualType T = BaseCast->getType();
3876 if (T->isPointerType() &&
3877 BaseClasses.count(T->getPointeeType())) {
3878 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
3879 << T->getPointeeType() << FoundVD;
3884 if (!Decls.count(FoundVD))
3885 return;
3887 const bool IsReference = FoundVD->getType()->isReferenceType();
3889 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
3890 // Special checking for initializer lists.
3891 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
3892 return;
3894 } else {
3895 // Prevent double warnings on use of unbounded references.
3896 if (CheckReferenceOnly && !IsReference)
3897 return;
3900 unsigned diag = IsReference
3901 ? diag::warn_reference_field_is_uninit
3902 : diag::warn_field_is_uninit;
3903 S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
3904 if (Constructor)
3905 S.Diag(Constructor->getLocation(),
3906 diag::note_uninit_in_this_constructor)
3907 << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
3911 void HandleValue(Expr *E, bool AddressOf) {
3912 E = E->IgnoreParens();
3914 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3915 HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
3916 AddressOf /*AddressOf*/);
3917 return;
3920 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3921 Visit(CO->getCond());
3922 HandleValue(CO->getTrueExpr(), AddressOf);
3923 HandleValue(CO->getFalseExpr(), AddressOf);
3924 return;
3927 if (BinaryConditionalOperator *BCO =
3928 dyn_cast<BinaryConditionalOperator>(E)) {
3929 Visit(BCO->getCond());
3930 HandleValue(BCO->getFalseExpr(), AddressOf);
3931 return;
3934 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
3935 HandleValue(OVE->getSourceExpr(), AddressOf);
3936 return;
3939 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3940 switch (BO->getOpcode()) {
3941 default:
3942 break;
3943 case(BO_PtrMemD):
3944 case(BO_PtrMemI):
3945 HandleValue(BO->getLHS(), AddressOf);
3946 Visit(BO->getRHS());
3947 return;
3948 case(BO_Comma):
3949 Visit(BO->getLHS());
3950 HandleValue(BO->getRHS(), AddressOf);
3951 return;
3955 Visit(E);
3958 void CheckInitListExpr(InitListExpr *ILE) {
3959 InitFieldIndex.push_back(0);
3960 for (auto *Child : ILE->children()) {
3961 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
3962 CheckInitListExpr(SubList);
3963 } else {
3964 Visit(Child);
3966 ++InitFieldIndex.back();
3968 InitFieldIndex.pop_back();
3971 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
3972 FieldDecl *Field, const Type *BaseClass) {
3973 // Remove Decls that may have been initialized in the previous
3974 // initializer.
3975 for (ValueDecl* VD : DeclsToRemove)
3976 Decls.erase(VD);
3977 DeclsToRemove.clear();
3979 Constructor = FieldConstructor;
3980 InitListExpr *ILE = dyn_cast<InitListExpr>(E);
3982 if (ILE && Field) {
3983 InitList = true;
3984 InitListFieldDecl = Field;
3985 InitFieldIndex.clear();
3986 CheckInitListExpr(ILE);
3987 } else {
3988 InitList = false;
3989 Visit(E);
3992 if (Field)
3993 Decls.erase(Field);
3994 if (BaseClass)
3995 BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
3998 void VisitMemberExpr(MemberExpr *ME) {
3999 // All uses of unbounded reference fields will warn.
4000 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
4003 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
4004 if (E->getCastKind() == CK_LValueToRValue) {
4005 HandleValue(E->getSubExpr(), false /*AddressOf*/);
4006 return;
4009 Inherited::VisitImplicitCastExpr(E);
4012 void VisitCXXConstructExpr(CXXConstructExpr *E) {
4013 if (E->getConstructor()->isCopyConstructor()) {
4014 Expr *ArgExpr = E->getArg(0);
4015 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
4016 if (ILE->getNumInits() == 1)
4017 ArgExpr = ILE->getInit(0);
4018 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
4019 if (ICE->getCastKind() == CK_NoOp)
4020 ArgExpr = ICE->getSubExpr();
4021 HandleValue(ArgExpr, false /*AddressOf*/);
4022 return;
4024 Inherited::VisitCXXConstructExpr(E);
4027 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
4028 Expr *Callee = E->getCallee();
4029 if (isa<MemberExpr>(Callee)) {
4030 HandleValue(Callee, false /*AddressOf*/);
4031 for (auto *Arg : E->arguments())
4032 Visit(Arg);
4033 return;
4036 Inherited::VisitCXXMemberCallExpr(E);
4039 void VisitCallExpr(CallExpr *E) {
4040 // Treat std::move as a use.
4041 if (E->isCallToStdMove()) {
4042 HandleValue(E->getArg(0), /*AddressOf=*/false);
4043 return;
4046 Inherited::VisitCallExpr(E);
4049 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
4050 Expr *Callee = E->getCallee();
4052 if (isa<UnresolvedLookupExpr>(Callee))
4053 return Inherited::VisitCXXOperatorCallExpr(E);
4055 Visit(Callee);
4056 for (auto *Arg : E->arguments())
4057 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
4060 void VisitBinaryOperator(BinaryOperator *E) {
4061 // If a field assignment is detected, remove the field from the
4062 // uninitiailized field set.
4063 if (E->getOpcode() == BO_Assign)
4064 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
4065 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
4066 if (!FD->getType()->isReferenceType())
4067 DeclsToRemove.push_back(FD);
4069 if (E->isCompoundAssignmentOp()) {
4070 HandleValue(E->getLHS(), false /*AddressOf*/);
4071 Visit(E->getRHS());
4072 return;
4075 Inherited::VisitBinaryOperator(E);
4078 void VisitUnaryOperator(UnaryOperator *E) {
4079 if (E->isIncrementDecrementOp()) {
4080 HandleValue(E->getSubExpr(), false /*AddressOf*/);
4081 return;
4083 if (E->getOpcode() == UO_AddrOf) {
4084 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
4085 HandleValue(ME->getBase(), true /*AddressOf*/);
4086 return;
4090 Inherited::VisitUnaryOperator(E);
4094 // Diagnose value-uses of fields to initialize themselves, e.g.
4095 // foo(foo)
4096 // where foo is not also a parameter to the constructor.
4097 // Also diagnose across field uninitialized use such as
4098 // x(y), y(x)
4099 // TODO: implement -Wuninitialized and fold this into that framework.
4100 static void DiagnoseUninitializedFields(
4101 Sema &SemaRef, const CXXConstructorDecl *Constructor) {
4103 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
4104 Constructor->getLocation())) {
4105 return;
4108 if (Constructor->isInvalidDecl())
4109 return;
4111 const CXXRecordDecl *RD = Constructor->getParent();
4113 if (RD->isDependentContext())
4114 return;
4116 // Holds fields that are uninitialized.
4117 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
4119 // At the beginning, all fields are uninitialized.
4120 for (auto *I : RD->decls()) {
4121 if (auto *FD = dyn_cast<FieldDecl>(I)) {
4122 UninitializedFields.insert(FD);
4123 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
4124 UninitializedFields.insert(IFD->getAnonField());
4128 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
4129 for (const auto &I : RD->bases())
4130 UninitializedBaseClasses.insert(I.getType().getCanonicalType());
4132 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
4133 return;
4135 UninitializedFieldVisitor UninitializedChecker(SemaRef,
4136 UninitializedFields,
4137 UninitializedBaseClasses);
4139 for (const auto *FieldInit : Constructor->inits()) {
4140 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
4141 break;
4143 Expr *InitExpr = FieldInit->getInit();
4144 if (!InitExpr)
4145 continue;
4147 if (CXXDefaultInitExpr *Default =
4148 dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
4149 InitExpr = Default->getExpr();
4150 if (!InitExpr)
4151 continue;
4152 // In class initializers will point to the constructor.
4153 UninitializedChecker.CheckInitializer(InitExpr, Constructor,
4154 FieldInit->getAnyMember(),
4155 FieldInit->getBaseClass());
4156 } else {
4157 UninitializedChecker.CheckInitializer(InitExpr, nullptr,
4158 FieldInit->getAnyMember(),
4159 FieldInit->getBaseClass());
4163 } // namespace
4165 /// Enter a new C++ default initializer scope. After calling this, the
4166 /// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
4167 /// parsing or instantiating the initializer failed.
4168 void Sema::ActOnStartCXXInClassMemberInitializer() {
4169 // Create a synthetic function scope to represent the call to the constructor
4170 // that notionally surrounds a use of this initializer.
4171 PushFunctionScope();
4174 void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) {
4175 if (!D.isFunctionDeclarator())
4176 return;
4177 auto &FTI = D.getFunctionTypeInfo();
4178 if (!FTI.Params)
4179 return;
4180 for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params,
4181 FTI.NumParams)) {
4182 auto *ParamDecl = cast<NamedDecl>(Param.Param);
4183 if (ParamDecl->getDeclName())
4184 PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false);
4188 ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) {
4189 return ActOnRequiresClause(ConstraintExpr);
4192 ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) {
4193 if (ConstraintExpr.isInvalid())
4194 return ExprError();
4196 ConstraintExpr = CorrectDelayedTyposInExpr(ConstraintExpr);
4197 if (ConstraintExpr.isInvalid())
4198 return ExprError();
4200 if (DiagnoseUnexpandedParameterPack(ConstraintExpr.get(),
4201 UPPC_RequiresClause))
4202 return ExprError();
4204 return ConstraintExpr;
4207 ExprResult Sema::ConvertMemberDefaultInitExpression(FieldDecl *FD,
4208 Expr *InitExpr,
4209 SourceLocation InitLoc) {
4210 InitializedEntity Entity =
4211 InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD);
4212 InitializationKind Kind =
4213 FD->getInClassInitStyle() == ICIS_ListInit
4214 ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(),
4215 InitExpr->getBeginLoc(),
4216 InitExpr->getEndLoc())
4217 : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc);
4218 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
4219 return Seq.Perform(*this, Entity, Kind, InitExpr);
4222 /// This is invoked after parsing an in-class initializer for a
4223 /// non-static C++ class member, and after instantiating an in-class initializer
4224 /// in a class template. Such actions are deferred until the class is complete.
4225 void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
4226 SourceLocation InitLoc,
4227 Expr *InitExpr) {
4228 // Pop the notional constructor scope we created earlier.
4229 PopFunctionScopeInfo(nullptr, D);
4231 FieldDecl *FD = dyn_cast<FieldDecl>(D);
4232 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&
4233 "must set init style when field is created");
4235 if (!InitExpr) {
4236 D->setInvalidDecl();
4237 if (FD)
4238 FD->removeInClassInitializer();
4239 return;
4242 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
4243 FD->setInvalidDecl();
4244 FD->removeInClassInitializer();
4245 return;
4248 ExprResult Init = CorrectDelayedTyposInExpr(InitExpr, /*InitDecl=*/nullptr,
4249 /*RecoverUncorrectedTypos=*/true);
4250 assert(Init.isUsable() && "Init should at least have a RecoveryExpr");
4251 if (!FD->getType()->isDependentType() && !Init.get()->isTypeDependent()) {
4252 Init = ConvertMemberDefaultInitExpression(FD, Init.get(), InitLoc);
4253 // C++11 [class.base.init]p7:
4254 // The initialization of each base and member constitutes a
4255 // full-expression.
4256 if (!Init.isInvalid())
4257 Init = ActOnFinishFullExpr(Init.get(), /*DiscarededValue=*/false);
4258 if (Init.isInvalid()) {
4259 FD->setInvalidDecl();
4260 return;
4264 FD->setInClassInitializer(Init.get());
4267 /// Find the direct and/or virtual base specifiers that
4268 /// correspond to the given base type, for use in base initialization
4269 /// within a constructor.
4270 static bool FindBaseInitializer(Sema &SemaRef,
4271 CXXRecordDecl *ClassDecl,
4272 QualType BaseType,
4273 const CXXBaseSpecifier *&DirectBaseSpec,
4274 const CXXBaseSpecifier *&VirtualBaseSpec) {
4275 // First, check for a direct base class.
4276 DirectBaseSpec = nullptr;
4277 for (const auto &Base : ClassDecl->bases()) {
4278 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
4279 // We found a direct base of this type. That's what we're
4280 // initializing.
4281 DirectBaseSpec = &Base;
4282 break;
4286 // Check for a virtual base class.
4287 // FIXME: We might be able to short-circuit this if we know in advance that
4288 // there are no virtual bases.
4289 VirtualBaseSpec = nullptr;
4290 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
4291 // We haven't found a base yet; search the class hierarchy for a
4292 // virtual base class.
4293 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
4294 /*DetectVirtual=*/false);
4295 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
4296 SemaRef.Context.getTypeDeclType(ClassDecl),
4297 BaseType, Paths)) {
4298 for (CXXBasePaths::paths_iterator Path = Paths.begin();
4299 Path != Paths.end(); ++Path) {
4300 if (Path->back().Base->isVirtual()) {
4301 VirtualBaseSpec = Path->back().Base;
4302 break;
4308 return DirectBaseSpec || VirtualBaseSpec;
4311 /// Handle a C++ member initializer using braced-init-list syntax.
4312 MemInitResult
4313 Sema::ActOnMemInitializer(Decl *ConstructorD,
4314 Scope *S,
4315 CXXScopeSpec &SS,
4316 IdentifierInfo *MemberOrBase,
4317 ParsedType TemplateTypeTy,
4318 const DeclSpec &DS,
4319 SourceLocation IdLoc,
4320 Expr *InitList,
4321 SourceLocation EllipsisLoc) {
4322 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4323 DS, IdLoc, InitList,
4324 EllipsisLoc);
4327 /// Handle a C++ member initializer using parentheses syntax.
4328 MemInitResult
4329 Sema::ActOnMemInitializer(Decl *ConstructorD,
4330 Scope *S,
4331 CXXScopeSpec &SS,
4332 IdentifierInfo *MemberOrBase,
4333 ParsedType TemplateTypeTy,
4334 const DeclSpec &DS,
4335 SourceLocation IdLoc,
4336 SourceLocation LParenLoc,
4337 ArrayRef<Expr *> Args,
4338 SourceLocation RParenLoc,
4339 SourceLocation EllipsisLoc) {
4340 Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc);
4341 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4342 DS, IdLoc, List, EllipsisLoc);
4345 namespace {
4347 // Callback to only accept typo corrections that can be a valid C++ member
4348 // initializer: either a non-static field member or a base class.
4349 class MemInitializerValidatorCCC final : public CorrectionCandidateCallback {
4350 public:
4351 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
4352 : ClassDecl(ClassDecl) {}
4354 bool ValidateCandidate(const TypoCorrection &candidate) override {
4355 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
4356 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
4357 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
4358 return isa<TypeDecl>(ND);
4360 return false;
4363 std::unique_ptr<CorrectionCandidateCallback> clone() override {
4364 return std::make_unique<MemInitializerValidatorCCC>(*this);
4367 private:
4368 CXXRecordDecl *ClassDecl;
4373 bool Sema::DiagRedefinedPlaceholderFieldDecl(SourceLocation Loc,
4374 RecordDecl *ClassDecl,
4375 const IdentifierInfo *Name) {
4376 DeclContextLookupResult Result = ClassDecl->lookup(Name);
4377 DeclContextLookupResult::iterator Found =
4378 llvm::find_if(Result, [this](const NamedDecl *Elem) {
4379 return isa<FieldDecl, IndirectFieldDecl>(Elem) &&
4380 Elem->isPlaceholderVar(getLangOpts());
4382 // We did not find a placeholder variable
4383 if (Found == Result.end())
4384 return false;
4385 Diag(Loc, diag::err_using_placeholder_variable) << Name;
4386 for (DeclContextLookupResult::iterator It = Found; It != Result.end(); It++) {
4387 const NamedDecl *ND = *It;
4388 if (ND->getDeclContext() != ND->getDeclContext())
4389 break;
4390 if (isa<FieldDecl, IndirectFieldDecl>(ND) &&
4391 ND->isPlaceholderVar(getLangOpts()))
4392 Diag(ND->getLocation(), diag::note_reference_placeholder) << ND;
4394 return true;
4397 ValueDecl *
4398 Sema::tryLookupUnambiguousFieldDecl(RecordDecl *ClassDecl,
4399 const IdentifierInfo *MemberOrBase) {
4400 ValueDecl *ND = nullptr;
4401 for (auto *D : ClassDecl->lookup(MemberOrBase)) {
4402 if (isa<FieldDecl, IndirectFieldDecl>(D)) {
4403 bool IsPlaceholder = D->isPlaceholderVar(getLangOpts());
4404 if (ND) {
4405 if (IsPlaceholder && D->getDeclContext() == ND->getDeclContext())
4406 return nullptr;
4407 break;
4409 if (!IsPlaceholder)
4410 return cast<ValueDecl>(D);
4411 ND = cast<ValueDecl>(D);
4414 return ND;
4417 ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
4418 CXXScopeSpec &SS,
4419 ParsedType TemplateTypeTy,
4420 IdentifierInfo *MemberOrBase) {
4421 if (SS.getScopeRep() || TemplateTypeTy)
4422 return nullptr;
4423 return tryLookupUnambiguousFieldDecl(ClassDecl, MemberOrBase);
4426 /// Handle a C++ member initializer.
4427 MemInitResult
4428 Sema::BuildMemInitializer(Decl *ConstructorD,
4429 Scope *S,
4430 CXXScopeSpec &SS,
4431 IdentifierInfo *MemberOrBase,
4432 ParsedType TemplateTypeTy,
4433 const DeclSpec &DS,
4434 SourceLocation IdLoc,
4435 Expr *Init,
4436 SourceLocation EllipsisLoc) {
4437 ExprResult Res = CorrectDelayedTyposInExpr(Init, /*InitDecl=*/nullptr,
4438 /*RecoverUncorrectedTypos=*/true);
4439 if (!Res.isUsable())
4440 return true;
4441 Init = Res.get();
4443 if (!ConstructorD)
4444 return true;
4446 AdjustDeclIfTemplate(ConstructorD);
4448 CXXConstructorDecl *Constructor
4449 = dyn_cast<CXXConstructorDecl>(ConstructorD);
4450 if (!Constructor) {
4451 // The user wrote a constructor initializer on a function that is
4452 // not a C++ constructor. Ignore the error for now, because we may
4453 // have more member initializers coming; we'll diagnose it just
4454 // once in ActOnMemInitializers.
4455 return true;
4458 CXXRecordDecl *ClassDecl = Constructor->getParent();
4460 // C++ [class.base.init]p2:
4461 // Names in a mem-initializer-id are looked up in the scope of the
4462 // constructor's class and, if not found in that scope, are looked
4463 // up in the scope containing the constructor's definition.
4464 // [Note: if the constructor's class contains a member with the
4465 // same name as a direct or virtual base class of the class, a
4466 // mem-initializer-id naming the member or base class and composed
4467 // of a single identifier refers to the class member. A
4468 // mem-initializer-id for the hidden base class may be specified
4469 // using a qualified name. ]
4471 // Look for a member, first.
4472 if (ValueDecl *Member = tryLookupCtorInitMemberDecl(
4473 ClassDecl, SS, TemplateTypeTy, MemberOrBase)) {
4474 if (EllipsisLoc.isValid())
4475 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
4476 << MemberOrBase
4477 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
4479 return BuildMemberInitializer(Member, Init, IdLoc);
4481 // It didn't name a member, so see if it names a class.
4482 QualType BaseType;
4483 TypeSourceInfo *TInfo = nullptr;
4485 if (TemplateTypeTy) {
4486 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
4487 if (BaseType.isNull())
4488 return true;
4489 } else if (DS.getTypeSpecType() == TST_decltype) {
4490 BaseType = BuildDecltypeType(DS.getRepAsExpr());
4491 } else if (DS.getTypeSpecType() == TST_decltype_auto) {
4492 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
4493 return true;
4494 } else {
4495 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
4496 LookupParsedName(R, S, &SS);
4498 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
4499 if (!TyD) {
4500 if (R.isAmbiguous()) return true;
4502 // We don't want access-control diagnostics here.
4503 R.suppressDiagnostics();
4505 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
4506 bool NotUnknownSpecialization = false;
4507 DeclContext *DC = computeDeclContext(SS, false);
4508 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
4509 NotUnknownSpecialization = !Record->hasAnyDependentBases();
4511 if (!NotUnknownSpecialization) {
4512 // When the scope specifier can refer to a member of an unknown
4513 // specialization, we take it as a type name.
4514 BaseType = CheckTypenameType(
4515 ElaboratedTypeKeyword::None, SourceLocation(),
4516 SS.getWithLocInContext(Context), *MemberOrBase, IdLoc);
4517 if (BaseType.isNull())
4518 return true;
4520 TInfo = Context.CreateTypeSourceInfo(BaseType);
4521 DependentNameTypeLoc TL =
4522 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>();
4523 if (!TL.isNull()) {
4524 TL.setNameLoc(IdLoc);
4525 TL.setElaboratedKeywordLoc(SourceLocation());
4526 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4529 R.clear();
4530 R.setLookupName(MemberOrBase);
4534 if (getLangOpts().MSVCCompat && !getLangOpts().CPlusPlus20) {
4535 if (auto UnqualifiedBase = R.getAsSingle<ClassTemplateDecl>()) {
4536 auto *TempSpec = cast<TemplateSpecializationType>(
4537 UnqualifiedBase->getInjectedClassNameSpecialization());
4538 TemplateName TN = TempSpec->getTemplateName();
4539 for (auto const &Base : ClassDecl->bases()) {
4540 auto BaseTemplate =
4541 Base.getType()->getAs<TemplateSpecializationType>();
4542 if (BaseTemplate && Context.hasSameTemplateName(
4543 BaseTemplate->getTemplateName(), TN)) {
4544 Diag(IdLoc, diag::ext_unqualified_base_class)
4545 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
4546 BaseType = Base.getType();
4547 break;
4553 // If no results were found, try to correct typos.
4554 TypoCorrection Corr;
4555 MemInitializerValidatorCCC CCC(ClassDecl);
4556 if (R.empty() && BaseType.isNull() &&
4557 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
4558 CCC, CTK_ErrorRecovery, ClassDecl))) {
4559 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
4560 // We have found a non-static data member with a similar
4561 // name to what was typed; complain and initialize that
4562 // member.
4563 diagnoseTypo(Corr,
4564 PDiag(diag::err_mem_init_not_member_or_class_suggest)
4565 << MemberOrBase << true);
4566 return BuildMemberInitializer(Member, Init, IdLoc);
4567 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
4568 const CXXBaseSpecifier *DirectBaseSpec;
4569 const CXXBaseSpecifier *VirtualBaseSpec;
4570 if (FindBaseInitializer(*this, ClassDecl,
4571 Context.getTypeDeclType(Type),
4572 DirectBaseSpec, VirtualBaseSpec)) {
4573 // We have found a direct or virtual base class with a
4574 // similar name to what was typed; complain and initialize
4575 // that base class.
4576 diagnoseTypo(Corr,
4577 PDiag(diag::err_mem_init_not_member_or_class_suggest)
4578 << MemberOrBase << false,
4579 PDiag() /*Suppress note, we provide our own.*/);
4581 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
4582 : VirtualBaseSpec;
4583 Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here)
4584 << BaseSpec->getType() << BaseSpec->getSourceRange();
4586 TyD = Type;
4591 if (!TyD && BaseType.isNull()) {
4592 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
4593 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
4594 return true;
4598 if (BaseType.isNull()) {
4599 BaseType = getElaboratedType(ElaboratedTypeKeyword::None, SS,
4600 Context.getTypeDeclType(TyD));
4601 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
4602 TInfo = Context.CreateTypeSourceInfo(BaseType);
4603 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
4604 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
4605 TL.setElaboratedKeywordLoc(SourceLocation());
4606 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4610 if (!TInfo)
4611 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
4613 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
4616 MemInitResult
4617 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
4618 SourceLocation IdLoc) {
4619 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
4620 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
4621 assert((DirectMember || IndirectMember) &&
4622 "Member must be a FieldDecl or IndirectFieldDecl");
4624 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4625 return true;
4627 if (Member->isInvalidDecl())
4628 return true;
4630 MultiExprArg Args;
4631 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4632 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4633 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
4634 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
4635 } else {
4636 // Template instantiation doesn't reconstruct ParenListExprs for us.
4637 Args = Init;
4640 SourceRange InitRange = Init->getSourceRange();
4642 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
4643 // Can't check initialization for a member of dependent type or when
4644 // any of the arguments are type-dependent expressions.
4645 DiscardCleanupsInEvaluationContext();
4646 } else {
4647 bool InitList = false;
4648 if (isa<InitListExpr>(Init)) {
4649 InitList = true;
4650 Args = Init;
4653 // Initialize the member.
4654 InitializedEntity MemberEntity =
4655 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
4656 : InitializedEntity::InitializeMember(IndirectMember,
4657 nullptr);
4658 InitializationKind Kind =
4659 InitList ? InitializationKind::CreateDirectList(
4660 IdLoc, Init->getBeginLoc(), Init->getEndLoc())
4661 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
4662 InitRange.getEnd());
4664 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
4665 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
4666 nullptr);
4667 if (!MemberInit.isInvalid()) {
4668 // C++11 [class.base.init]p7:
4669 // The initialization of each base and member constitutes a
4670 // full-expression.
4671 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(),
4672 /*DiscardedValue*/ false);
4675 if (MemberInit.isInvalid()) {
4676 // Args were sensible expressions but we couldn't initialize the member
4677 // from them. Preserve them in a RecoveryExpr instead.
4678 Init = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args,
4679 Member->getType())
4680 .get();
4681 if (!Init)
4682 return true;
4683 } else {
4684 Init = MemberInit.get();
4688 if (DirectMember) {
4689 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
4690 InitRange.getBegin(), Init,
4691 InitRange.getEnd());
4692 } else {
4693 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
4694 InitRange.getBegin(), Init,
4695 InitRange.getEnd());
4699 MemInitResult
4700 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
4701 CXXRecordDecl *ClassDecl) {
4702 SourceLocation NameLoc = TInfo->getTypeLoc().getSourceRange().getBegin();
4703 if (!LangOpts.CPlusPlus11)
4704 return Diag(NameLoc, diag::err_delegating_ctor)
4705 << TInfo->getTypeLoc().getSourceRange();
4706 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
4708 bool InitList = true;
4709 MultiExprArg Args = Init;
4710 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4711 InitList = false;
4712 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4715 SourceRange InitRange = Init->getSourceRange();
4716 // Initialize the object.
4717 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
4718 QualType(ClassDecl->getTypeForDecl(), 0));
4719 InitializationKind Kind =
4720 InitList ? InitializationKind::CreateDirectList(
4721 NameLoc, Init->getBeginLoc(), Init->getEndLoc())
4722 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
4723 InitRange.getEnd());
4724 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
4725 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
4726 Args, nullptr);
4727 if (!DelegationInit.isInvalid()) {
4728 assert((DelegationInit.get()->containsErrors() ||
4729 cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) &&
4730 "Delegating constructor with no target?");
4732 // C++11 [class.base.init]p7:
4733 // The initialization of each base and member constitutes a
4734 // full-expression.
4735 DelegationInit = ActOnFinishFullExpr(
4736 DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false);
4739 if (DelegationInit.isInvalid()) {
4740 DelegationInit =
4741 CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args,
4742 QualType(ClassDecl->getTypeForDecl(), 0));
4743 if (DelegationInit.isInvalid())
4744 return true;
4745 } else {
4746 // If we are in a dependent context, template instantiation will
4747 // perform this type-checking again. Just save the arguments that we
4748 // received in a ParenListExpr.
4749 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4750 // of the information that we have about the base
4751 // initializer. However, deconstructing the ASTs is a dicey process,
4752 // and this approach is far more likely to get the corner cases right.
4753 if (CurContext->isDependentContext())
4754 DelegationInit = Init;
4757 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
4758 DelegationInit.getAs<Expr>(),
4759 InitRange.getEnd());
4762 MemInitResult
4763 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
4764 Expr *Init, CXXRecordDecl *ClassDecl,
4765 SourceLocation EllipsisLoc) {
4766 SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getBeginLoc();
4768 if (!BaseType->isDependentType() && !BaseType->isRecordType())
4769 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
4770 << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
4772 // C++ [class.base.init]p2:
4773 // [...] Unless the mem-initializer-id names a nonstatic data
4774 // member of the constructor's class or a direct or virtual base
4775 // of that class, the mem-initializer is ill-formed. A
4776 // mem-initializer-list can initialize a base class using any
4777 // name that denotes that base class type.
4779 // We can store the initializers in "as-written" form and delay analysis until
4780 // instantiation if the constructor is dependent. But not for dependent
4781 // (broken) code in a non-template! SetCtorInitializers does not expect this.
4782 bool Dependent = CurContext->isDependentContext() &&
4783 (BaseType->isDependentType() || Init->isTypeDependent());
4785 SourceRange InitRange = Init->getSourceRange();
4786 if (EllipsisLoc.isValid()) {
4787 // This is a pack expansion.
4788 if (!BaseType->containsUnexpandedParameterPack()) {
4789 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
4790 << SourceRange(BaseLoc, InitRange.getEnd());
4792 EllipsisLoc = SourceLocation();
4794 } else {
4795 // Check for any unexpanded parameter packs.
4796 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
4797 return true;
4799 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4800 return true;
4803 // Check for direct and virtual base classes.
4804 const CXXBaseSpecifier *DirectBaseSpec = nullptr;
4805 const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
4806 if (!Dependent) {
4807 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
4808 BaseType))
4809 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
4811 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
4812 VirtualBaseSpec);
4814 // C++ [base.class.init]p2:
4815 // Unless the mem-initializer-id names a nonstatic data member of the
4816 // constructor's class or a direct or virtual base of that class, the
4817 // mem-initializer is ill-formed.
4818 if (!DirectBaseSpec && !VirtualBaseSpec) {
4819 // If the class has any dependent bases, then it's possible that
4820 // one of those types will resolve to the same type as
4821 // BaseType. Therefore, just treat this as a dependent base
4822 // class initialization. FIXME: Should we try to check the
4823 // initialization anyway? It seems odd.
4824 if (ClassDecl->hasAnyDependentBases())
4825 Dependent = true;
4826 else
4827 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
4828 << BaseType << Context.getTypeDeclType(ClassDecl)
4829 << BaseTInfo->getTypeLoc().getSourceRange();
4833 if (Dependent) {
4834 DiscardCleanupsInEvaluationContext();
4836 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4837 /*IsVirtual=*/false,
4838 InitRange.getBegin(), Init,
4839 InitRange.getEnd(), EllipsisLoc);
4842 // C++ [base.class.init]p2:
4843 // If a mem-initializer-id is ambiguous because it designates both
4844 // a direct non-virtual base class and an inherited virtual base
4845 // class, the mem-initializer is ill-formed.
4846 if (DirectBaseSpec && VirtualBaseSpec)
4847 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
4848 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4850 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
4851 if (!BaseSpec)
4852 BaseSpec = VirtualBaseSpec;
4854 // Initialize the base.
4855 bool InitList = true;
4856 MultiExprArg Args = Init;
4857 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4858 InitList = false;
4859 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4862 InitializedEntity BaseEntity =
4863 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
4864 InitializationKind Kind =
4865 InitList ? InitializationKind::CreateDirectList(BaseLoc)
4866 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
4867 InitRange.getEnd());
4868 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
4869 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
4870 if (!BaseInit.isInvalid()) {
4871 // C++11 [class.base.init]p7:
4872 // The initialization of each base and member constitutes a
4873 // full-expression.
4874 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(),
4875 /*DiscardedValue*/ false);
4878 if (BaseInit.isInvalid()) {
4879 BaseInit = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(),
4880 Args, BaseType);
4881 if (BaseInit.isInvalid())
4882 return true;
4883 } else {
4884 // If we are in a dependent context, template instantiation will
4885 // perform this type-checking again. Just save the arguments that we
4886 // received in a ParenListExpr.
4887 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4888 // of the information that we have about the base
4889 // initializer. However, deconstructing the ASTs is a dicey process,
4890 // and this approach is far more likely to get the corner cases right.
4891 if (CurContext->isDependentContext())
4892 BaseInit = Init;
4895 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4896 BaseSpec->isVirtual(),
4897 InitRange.getBegin(),
4898 BaseInit.getAs<Expr>(),
4899 InitRange.getEnd(), EllipsisLoc);
4902 // Create a static_cast\<T&&>(expr).
4903 static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
4904 QualType TargetType =
4905 SemaRef.BuildReferenceType(E->getType(), /*SpelledAsLValue*/ false,
4906 SourceLocation(), DeclarationName());
4907 SourceLocation ExprLoc = E->getBeginLoc();
4908 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
4909 TargetType, ExprLoc);
4911 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
4912 SourceRange(ExprLoc, ExprLoc),
4913 E->getSourceRange()).get();
4916 /// ImplicitInitializerKind - How an implicit base or member initializer should
4917 /// initialize its base or member.
4918 enum ImplicitInitializerKind {
4919 IIK_Default,
4920 IIK_Copy,
4921 IIK_Move,
4922 IIK_Inherit
4925 static bool
4926 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4927 ImplicitInitializerKind ImplicitInitKind,
4928 CXXBaseSpecifier *BaseSpec,
4929 bool IsInheritedVirtualBase,
4930 CXXCtorInitializer *&CXXBaseInit) {
4931 InitializedEntity InitEntity
4932 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
4933 IsInheritedVirtualBase);
4935 ExprResult BaseInit;
4937 switch (ImplicitInitKind) {
4938 case IIK_Inherit:
4939 case IIK_Default: {
4940 InitializationKind InitKind
4941 = InitializationKind::CreateDefault(Constructor->getLocation());
4942 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, std::nullopt);
4943 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, std::nullopt);
4944 break;
4947 case IIK_Move:
4948 case IIK_Copy: {
4949 bool Moving = ImplicitInitKind == IIK_Move;
4950 ParmVarDecl *Param = Constructor->getParamDecl(0);
4951 QualType ParamType = Param->getType().getNonReferenceType();
4953 Expr *CopyCtorArg =
4954 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4955 SourceLocation(), Param, false,
4956 Constructor->getLocation(), ParamType,
4957 VK_LValue, nullptr);
4959 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
4961 // Cast to the base class to avoid ambiguities.
4962 QualType ArgTy =
4963 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
4964 ParamType.getQualifiers());
4966 if (Moving) {
4967 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
4970 CXXCastPath BasePath;
4971 BasePath.push_back(BaseSpec);
4972 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
4973 CK_UncheckedDerivedToBase,
4974 Moving ? VK_XValue : VK_LValue,
4975 &BasePath).get();
4977 InitializationKind InitKind
4978 = InitializationKind::CreateDirect(Constructor->getLocation(),
4979 SourceLocation(), SourceLocation());
4980 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
4981 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
4982 break;
4986 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
4987 if (BaseInit.isInvalid())
4988 return true;
4990 CXXBaseInit =
4991 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4992 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
4993 SourceLocation()),
4994 BaseSpec->isVirtual(),
4995 SourceLocation(),
4996 BaseInit.getAs<Expr>(),
4997 SourceLocation(),
4998 SourceLocation());
5000 return false;
5003 static bool RefersToRValueRef(Expr *MemRef) {
5004 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
5005 return Referenced->getType()->isRValueReferenceType();
5008 static bool
5009 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
5010 ImplicitInitializerKind ImplicitInitKind,
5011 FieldDecl *Field, IndirectFieldDecl *Indirect,
5012 CXXCtorInitializer *&CXXMemberInit) {
5013 if (Field->isInvalidDecl())
5014 return true;
5016 SourceLocation Loc = Constructor->getLocation();
5018 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
5019 bool Moving = ImplicitInitKind == IIK_Move;
5020 ParmVarDecl *Param = Constructor->getParamDecl(0);
5021 QualType ParamType = Param->getType().getNonReferenceType();
5023 // Suppress copying zero-width bitfields.
5024 if (Field->isZeroLengthBitField(SemaRef.Context))
5025 return false;
5027 Expr *MemberExprBase =
5028 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
5029 SourceLocation(), Param, false,
5030 Loc, ParamType, VK_LValue, nullptr);
5032 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
5034 if (Moving) {
5035 MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
5038 // Build a reference to this field within the parameter.
5039 CXXScopeSpec SS;
5040 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
5041 Sema::LookupMemberName);
5042 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
5043 : cast<ValueDecl>(Field), AS_public);
5044 MemberLookup.resolveKind();
5045 ExprResult CtorArg
5046 = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
5047 ParamType, Loc,
5048 /*IsArrow=*/false,
5050 /*TemplateKWLoc=*/SourceLocation(),
5051 /*FirstQualifierInScope=*/nullptr,
5052 MemberLookup,
5053 /*TemplateArgs=*/nullptr,
5054 /*S*/nullptr);
5055 if (CtorArg.isInvalid())
5056 return true;
5058 // C++11 [class.copy]p15:
5059 // - if a member m has rvalue reference type T&&, it is direct-initialized
5060 // with static_cast<T&&>(x.m);
5061 if (RefersToRValueRef(CtorArg.get())) {
5062 CtorArg = CastForMoving(SemaRef, CtorArg.get());
5065 InitializedEntity Entity =
5066 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
5067 /*Implicit*/ true)
5068 : InitializedEntity::InitializeMember(Field, nullptr,
5069 /*Implicit*/ true);
5071 // Direct-initialize to use the copy constructor.
5072 InitializationKind InitKind =
5073 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
5075 Expr *CtorArgE = CtorArg.getAs<Expr>();
5076 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE);
5077 ExprResult MemberInit =
5078 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1));
5079 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
5080 if (MemberInit.isInvalid())
5081 return true;
5083 if (Indirect)
5084 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
5085 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
5086 else
5087 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
5088 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
5089 return false;
5092 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
5093 "Unhandled implicit init kind!");
5095 QualType FieldBaseElementType =
5096 SemaRef.Context.getBaseElementType(Field->getType());
5098 if (FieldBaseElementType->isRecordType()) {
5099 InitializedEntity InitEntity =
5100 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
5101 /*Implicit*/ true)
5102 : InitializedEntity::InitializeMember(Field, nullptr,
5103 /*Implicit*/ true);
5104 InitializationKind InitKind =
5105 InitializationKind::CreateDefault(Loc);
5107 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, std::nullopt);
5108 ExprResult MemberInit =
5109 InitSeq.Perform(SemaRef, InitEntity, InitKind, std::nullopt);
5111 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
5112 if (MemberInit.isInvalid())
5113 return true;
5115 if (Indirect)
5116 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
5117 Indirect, Loc,
5118 Loc,
5119 MemberInit.get(),
5120 Loc);
5121 else
5122 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
5123 Field, Loc, Loc,
5124 MemberInit.get(),
5125 Loc);
5126 return false;
5129 if (!Field->getParent()->isUnion()) {
5130 if (FieldBaseElementType->isReferenceType()) {
5131 SemaRef.Diag(Constructor->getLocation(),
5132 diag::err_uninitialized_member_in_ctor)
5133 << (int)Constructor->isImplicit()
5134 << SemaRef.Context.getTagDeclType(Constructor->getParent())
5135 << 0 << Field->getDeclName();
5136 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
5137 return true;
5140 if (FieldBaseElementType.isConstQualified()) {
5141 SemaRef.Diag(Constructor->getLocation(),
5142 diag::err_uninitialized_member_in_ctor)
5143 << (int)Constructor->isImplicit()
5144 << SemaRef.Context.getTagDeclType(Constructor->getParent())
5145 << 1 << Field->getDeclName();
5146 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
5147 return true;
5151 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) {
5152 // ARC and Weak:
5153 // Default-initialize Objective-C pointers to NULL.
5154 CXXMemberInit
5155 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
5156 Loc, Loc,
5157 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
5158 Loc);
5159 return false;
5162 // Nothing to initialize.
5163 CXXMemberInit = nullptr;
5164 return false;
5167 namespace {
5168 struct BaseAndFieldInfo {
5169 Sema &S;
5170 CXXConstructorDecl *Ctor;
5171 bool AnyErrorsInInits;
5172 ImplicitInitializerKind IIK;
5173 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
5174 SmallVector<CXXCtorInitializer*, 8> AllToInit;
5175 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
5177 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
5178 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
5179 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
5180 if (Ctor->getInheritedConstructor())
5181 IIK = IIK_Inherit;
5182 else if (Generated && Ctor->isCopyConstructor())
5183 IIK = IIK_Copy;
5184 else if (Generated && Ctor->isMoveConstructor())
5185 IIK = IIK_Move;
5186 else
5187 IIK = IIK_Default;
5190 bool isImplicitCopyOrMove() const {
5191 switch (IIK) {
5192 case IIK_Copy:
5193 case IIK_Move:
5194 return true;
5196 case IIK_Default:
5197 case IIK_Inherit:
5198 return false;
5201 llvm_unreachable("Invalid ImplicitInitializerKind!");
5204 bool addFieldInitializer(CXXCtorInitializer *Init) {
5205 AllToInit.push_back(Init);
5207 // Check whether this initializer makes the field "used".
5208 if (Init->getInit()->HasSideEffects(S.Context))
5209 S.UnusedPrivateFields.remove(Init->getAnyMember());
5211 return false;
5214 bool isInactiveUnionMember(FieldDecl *Field) {
5215 RecordDecl *Record = Field->getParent();
5216 if (!Record->isUnion())
5217 return false;
5219 if (FieldDecl *Active =
5220 ActiveUnionMember.lookup(Record->getCanonicalDecl()))
5221 return Active != Field->getCanonicalDecl();
5223 // In an implicit copy or move constructor, ignore any in-class initializer.
5224 if (isImplicitCopyOrMove())
5225 return true;
5227 // If there's no explicit initialization, the field is active only if it
5228 // has an in-class initializer...
5229 if (Field->hasInClassInitializer())
5230 return false;
5231 // ... or it's an anonymous struct or union whose class has an in-class
5232 // initializer.
5233 if (!Field->isAnonymousStructOrUnion())
5234 return true;
5235 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
5236 return !FieldRD->hasInClassInitializer();
5239 /// Determine whether the given field is, or is within, a union member
5240 /// that is inactive (because there was an initializer given for a different
5241 /// member of the union, or because the union was not initialized at all).
5242 bool isWithinInactiveUnionMember(FieldDecl *Field,
5243 IndirectFieldDecl *Indirect) {
5244 if (!Indirect)
5245 return isInactiveUnionMember(Field);
5247 for (auto *C : Indirect->chain()) {
5248 FieldDecl *Field = dyn_cast<FieldDecl>(C);
5249 if (Field && isInactiveUnionMember(Field))
5250 return true;
5252 return false;
5257 /// Determine whether the given type is an incomplete or zero-lenfgth
5258 /// array type.
5259 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
5260 if (T->isIncompleteArrayType())
5261 return true;
5263 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
5264 if (!ArrayT->getSize())
5265 return true;
5267 T = ArrayT->getElementType();
5270 return false;
5273 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
5274 FieldDecl *Field,
5275 IndirectFieldDecl *Indirect = nullptr) {
5276 if (Field->isInvalidDecl())
5277 return false;
5279 // Overwhelmingly common case: we have a direct initializer for this field.
5280 if (CXXCtorInitializer *Init =
5281 Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
5282 return Info.addFieldInitializer(Init);
5284 // C++11 [class.base.init]p8:
5285 // if the entity is a non-static data member that has a
5286 // brace-or-equal-initializer and either
5287 // -- the constructor's class is a union and no other variant member of that
5288 // union is designated by a mem-initializer-id or
5289 // -- the constructor's class is not a union, and, if the entity is a member
5290 // of an anonymous union, no other member of that union is designated by
5291 // a mem-initializer-id,
5292 // the entity is initialized as specified in [dcl.init].
5294 // We also apply the same rules to handle anonymous structs within anonymous
5295 // unions.
5296 if (Info.isWithinInactiveUnionMember(Field, Indirect))
5297 return false;
5299 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
5300 ExprResult DIE =
5301 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
5302 if (DIE.isInvalid())
5303 return true;
5305 auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true);
5306 SemaRef.checkInitializerLifetime(Entity, DIE.get());
5308 CXXCtorInitializer *Init;
5309 if (Indirect)
5310 Init = new (SemaRef.Context)
5311 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
5312 SourceLocation(), DIE.get(), SourceLocation());
5313 else
5314 Init = new (SemaRef.Context)
5315 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
5316 SourceLocation(), DIE.get(), SourceLocation());
5317 return Info.addFieldInitializer(Init);
5320 // Don't initialize incomplete or zero-length arrays.
5321 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
5322 return false;
5324 // Don't try to build an implicit initializer if there were semantic
5325 // errors in any of the initializers (and therefore we might be
5326 // missing some that the user actually wrote).
5327 if (Info.AnyErrorsInInits)
5328 return false;
5330 CXXCtorInitializer *Init = nullptr;
5331 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
5332 Indirect, Init))
5333 return true;
5335 if (!Init)
5336 return false;
5338 return Info.addFieldInitializer(Init);
5341 bool
5342 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
5343 CXXCtorInitializer *Initializer) {
5344 assert(Initializer->isDelegatingInitializer());
5345 Constructor->setNumCtorInitializers(1);
5346 CXXCtorInitializer **initializer =
5347 new (Context) CXXCtorInitializer*[1];
5348 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
5349 Constructor->setCtorInitializers(initializer);
5351 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
5352 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
5353 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
5356 DelegatingCtorDecls.push_back(Constructor);
5358 DiagnoseUninitializedFields(*this, Constructor);
5360 return false;
5363 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
5364 ArrayRef<CXXCtorInitializer *> Initializers) {
5365 if (Constructor->isDependentContext()) {
5366 // Just store the initializers as written, they will be checked during
5367 // instantiation.
5368 if (!Initializers.empty()) {
5369 Constructor->setNumCtorInitializers(Initializers.size());
5370 CXXCtorInitializer **baseOrMemberInitializers =
5371 new (Context) CXXCtorInitializer*[Initializers.size()];
5372 memcpy(baseOrMemberInitializers, Initializers.data(),
5373 Initializers.size() * sizeof(CXXCtorInitializer*));
5374 Constructor->setCtorInitializers(baseOrMemberInitializers);
5377 // Let template instantiation know whether we had errors.
5378 if (AnyErrors)
5379 Constructor->setInvalidDecl();
5381 return false;
5384 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
5386 // We need to build the initializer AST according to order of construction
5387 // and not what user specified in the Initializers list.
5388 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
5389 if (!ClassDecl)
5390 return true;
5392 bool HadError = false;
5394 for (unsigned i = 0; i < Initializers.size(); i++) {
5395 CXXCtorInitializer *Member = Initializers[i];
5397 if (Member->isBaseInitializer())
5398 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
5399 else {
5400 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
5402 if (IndirectFieldDecl *F = Member->getIndirectMember()) {
5403 for (auto *C : F->chain()) {
5404 FieldDecl *FD = dyn_cast<FieldDecl>(C);
5405 if (FD && FD->getParent()->isUnion())
5406 Info.ActiveUnionMember.insert(std::make_pair(
5407 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5409 } else if (FieldDecl *FD = Member->getMember()) {
5410 if (FD->getParent()->isUnion())
5411 Info.ActiveUnionMember.insert(std::make_pair(
5412 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5417 // Keep track of the direct virtual bases.
5418 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
5419 for (auto &I : ClassDecl->bases()) {
5420 if (I.isVirtual())
5421 DirectVBases.insert(&I);
5424 // Push virtual bases before others.
5425 for (auto &VBase : ClassDecl->vbases()) {
5426 if (CXXCtorInitializer *Value
5427 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
5428 // [class.base.init]p7, per DR257:
5429 // A mem-initializer where the mem-initializer-id names a virtual base
5430 // class is ignored during execution of a constructor of any class that
5431 // is not the most derived class.
5432 if (ClassDecl->isAbstract()) {
5433 // FIXME: Provide a fixit to remove the base specifier. This requires
5434 // tracking the location of the associated comma for a base specifier.
5435 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
5436 << VBase.getType() << ClassDecl;
5437 DiagnoseAbstractType(ClassDecl);
5440 Info.AllToInit.push_back(Value);
5441 } else if (!AnyErrors && !ClassDecl->isAbstract()) {
5442 // [class.base.init]p8, per DR257:
5443 // If a given [...] base class is not named by a mem-initializer-id
5444 // [...] and the entity is not a virtual base class of an abstract
5445 // class, then [...] the entity is default-initialized.
5446 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
5447 CXXCtorInitializer *CXXBaseInit;
5448 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5449 &VBase, IsInheritedVirtualBase,
5450 CXXBaseInit)) {
5451 HadError = true;
5452 continue;
5455 Info.AllToInit.push_back(CXXBaseInit);
5459 // Non-virtual bases.
5460 for (auto &Base : ClassDecl->bases()) {
5461 // Virtuals are in the virtual base list and already constructed.
5462 if (Base.isVirtual())
5463 continue;
5465 if (CXXCtorInitializer *Value
5466 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
5467 Info.AllToInit.push_back(Value);
5468 } else if (!AnyErrors) {
5469 CXXCtorInitializer *CXXBaseInit;
5470 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5471 &Base, /*IsInheritedVirtualBase=*/false,
5472 CXXBaseInit)) {
5473 HadError = true;
5474 continue;
5477 Info.AllToInit.push_back(CXXBaseInit);
5481 // Fields.
5482 for (auto *Mem : ClassDecl->decls()) {
5483 if (auto *F = dyn_cast<FieldDecl>(Mem)) {
5484 // C++ [class.bit]p2:
5485 // A declaration for a bit-field that omits the identifier declares an
5486 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
5487 // initialized.
5488 if (F->isUnnamedBitfield())
5489 continue;
5491 // If we're not generating the implicit copy/move constructor, then we'll
5492 // handle anonymous struct/union fields based on their individual
5493 // indirect fields.
5494 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
5495 continue;
5497 if (CollectFieldInitializer(*this, Info, F))
5498 HadError = true;
5499 continue;
5502 // Beyond this point, we only consider default initialization.
5503 if (Info.isImplicitCopyOrMove())
5504 continue;
5506 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
5507 if (F->getType()->isIncompleteArrayType()) {
5508 assert(ClassDecl->hasFlexibleArrayMember() &&
5509 "Incomplete array type is not valid");
5510 continue;
5513 // Initialize each field of an anonymous struct individually.
5514 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
5515 HadError = true;
5517 continue;
5521 unsigned NumInitializers = Info.AllToInit.size();
5522 if (NumInitializers > 0) {
5523 Constructor->setNumCtorInitializers(NumInitializers);
5524 CXXCtorInitializer **baseOrMemberInitializers =
5525 new (Context) CXXCtorInitializer*[NumInitializers];
5526 memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
5527 NumInitializers * sizeof(CXXCtorInitializer*));
5528 Constructor->setCtorInitializers(baseOrMemberInitializers);
5530 // Constructors implicitly reference the base and member
5531 // destructors.
5532 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
5533 Constructor->getParent());
5536 return HadError;
5539 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
5540 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
5541 const RecordDecl *RD = RT->getDecl();
5542 if (RD->isAnonymousStructOrUnion()) {
5543 for (auto *Field : RD->fields())
5544 PopulateKeysForFields(Field, IdealInits);
5545 return;
5548 IdealInits.push_back(Field->getCanonicalDecl());
5551 static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
5552 return Context.getCanonicalType(BaseType).getTypePtr();
5555 static const void *GetKeyForMember(ASTContext &Context,
5556 CXXCtorInitializer *Member) {
5557 if (!Member->isAnyMemberInitializer())
5558 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
5560 return Member->getAnyMember()->getCanonicalDecl();
5563 static void AddInitializerToDiag(const Sema::SemaDiagnosticBuilder &Diag,
5564 const CXXCtorInitializer *Previous,
5565 const CXXCtorInitializer *Current) {
5566 if (Previous->isAnyMemberInitializer())
5567 Diag << 0 << Previous->getAnyMember();
5568 else
5569 Diag << 1 << Previous->getTypeSourceInfo()->getType();
5571 if (Current->isAnyMemberInitializer())
5572 Diag << 0 << Current->getAnyMember();
5573 else
5574 Diag << 1 << Current->getTypeSourceInfo()->getType();
5577 static void DiagnoseBaseOrMemInitializerOrder(
5578 Sema &SemaRef, const CXXConstructorDecl *Constructor,
5579 ArrayRef<CXXCtorInitializer *> Inits) {
5580 if (Constructor->getDeclContext()->isDependentContext())
5581 return;
5583 // Don't check initializers order unless the warning is enabled at the
5584 // location of at least one initializer.
5585 bool ShouldCheckOrder = false;
5586 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5587 CXXCtorInitializer *Init = Inits[InitIndex];
5588 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
5589 Init->getSourceLocation())) {
5590 ShouldCheckOrder = true;
5591 break;
5594 if (!ShouldCheckOrder)
5595 return;
5597 // Build the list of bases and members in the order that they'll
5598 // actually be initialized. The explicit initializers should be in
5599 // this same order but may be missing things.
5600 SmallVector<const void*, 32> IdealInitKeys;
5602 const CXXRecordDecl *ClassDecl = Constructor->getParent();
5604 // 1. Virtual bases.
5605 for (const auto &VBase : ClassDecl->vbases())
5606 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
5608 // 2. Non-virtual bases.
5609 for (const auto &Base : ClassDecl->bases()) {
5610 if (Base.isVirtual())
5611 continue;
5612 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
5615 // 3. Direct fields.
5616 for (auto *Field : ClassDecl->fields()) {
5617 if (Field->isUnnamedBitfield())
5618 continue;
5620 PopulateKeysForFields(Field, IdealInitKeys);
5623 unsigned NumIdealInits = IdealInitKeys.size();
5624 unsigned IdealIndex = 0;
5626 // Track initializers that are in an incorrect order for either a warning or
5627 // note if multiple ones occur.
5628 SmallVector<unsigned> WarnIndexes;
5629 // Correlates the index of an initializer in the init-list to the index of
5630 // the field/base in the class.
5631 SmallVector<std::pair<unsigned, unsigned>, 32> CorrelatedInitOrder;
5633 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5634 const void *InitKey = GetKeyForMember(SemaRef.Context, Inits[InitIndex]);
5636 // Scan forward to try to find this initializer in the idealized
5637 // initializers list.
5638 for (; IdealIndex != NumIdealInits; ++IdealIndex)
5639 if (InitKey == IdealInitKeys[IdealIndex])
5640 break;
5642 // If we didn't find this initializer, it must be because we
5643 // scanned past it on a previous iteration. That can only
5644 // happen if we're out of order; emit a warning.
5645 if (IdealIndex == NumIdealInits && InitIndex) {
5646 WarnIndexes.push_back(InitIndex);
5648 // Move back to the initializer's location in the ideal list.
5649 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
5650 if (InitKey == IdealInitKeys[IdealIndex])
5651 break;
5653 assert(IdealIndex < NumIdealInits &&
5654 "initializer not found in initializer list");
5656 CorrelatedInitOrder.emplace_back(IdealIndex, InitIndex);
5659 if (WarnIndexes.empty())
5660 return;
5662 // Sort based on the ideal order, first in the pair.
5663 llvm::sort(CorrelatedInitOrder, llvm::less_first());
5665 // Introduce a new scope as SemaDiagnosticBuilder needs to be destroyed to
5666 // emit the diagnostic before we can try adding notes.
5668 Sema::SemaDiagnosticBuilder D = SemaRef.Diag(
5669 Inits[WarnIndexes.front() - 1]->getSourceLocation(),
5670 WarnIndexes.size() == 1 ? diag::warn_initializer_out_of_order
5671 : diag::warn_some_initializers_out_of_order);
5673 for (unsigned I = 0; I < CorrelatedInitOrder.size(); ++I) {
5674 if (CorrelatedInitOrder[I].second == I)
5675 continue;
5676 // Ideally we would be using InsertFromRange here, but clang doesn't
5677 // appear to handle InsertFromRange correctly when the source range is
5678 // modified by another fix-it.
5679 D << FixItHint::CreateReplacement(
5680 Inits[I]->getSourceRange(),
5681 Lexer::getSourceText(
5682 CharSourceRange::getTokenRange(
5683 Inits[CorrelatedInitOrder[I].second]->getSourceRange()),
5684 SemaRef.getSourceManager(), SemaRef.getLangOpts()));
5687 // If there is only 1 item out of order, the warning expects the name and
5688 // type of each being added to it.
5689 if (WarnIndexes.size() == 1) {
5690 AddInitializerToDiag(D, Inits[WarnIndexes.front() - 1],
5691 Inits[WarnIndexes.front()]);
5692 return;
5695 // More than 1 item to warn, create notes letting the user know which ones
5696 // are bad.
5697 for (unsigned WarnIndex : WarnIndexes) {
5698 const clang::CXXCtorInitializer *PrevInit = Inits[WarnIndex - 1];
5699 auto D = SemaRef.Diag(PrevInit->getSourceLocation(),
5700 diag::note_initializer_out_of_order);
5701 AddInitializerToDiag(D, PrevInit, Inits[WarnIndex]);
5702 D << PrevInit->getSourceRange();
5706 namespace {
5707 bool CheckRedundantInit(Sema &S,
5708 CXXCtorInitializer *Init,
5709 CXXCtorInitializer *&PrevInit) {
5710 if (!PrevInit) {
5711 PrevInit = Init;
5712 return false;
5715 if (FieldDecl *Field = Init->getAnyMember())
5716 S.Diag(Init->getSourceLocation(),
5717 diag::err_multiple_mem_initialization)
5718 << Field->getDeclName()
5719 << Init->getSourceRange();
5720 else {
5721 const Type *BaseClass = Init->getBaseClass();
5722 assert(BaseClass && "neither field nor base");
5723 S.Diag(Init->getSourceLocation(),
5724 diag::err_multiple_base_initialization)
5725 << QualType(BaseClass, 0)
5726 << Init->getSourceRange();
5728 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
5729 << 0 << PrevInit->getSourceRange();
5731 return true;
5734 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
5735 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
5737 bool CheckRedundantUnionInit(Sema &S,
5738 CXXCtorInitializer *Init,
5739 RedundantUnionMap &Unions) {
5740 FieldDecl *Field = Init->getAnyMember();
5741 RecordDecl *Parent = Field->getParent();
5742 NamedDecl *Child = Field;
5744 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
5745 if (Parent->isUnion()) {
5746 UnionEntry &En = Unions[Parent];
5747 if (En.first && En.first != Child) {
5748 S.Diag(Init->getSourceLocation(),
5749 diag::err_multiple_mem_union_initialization)
5750 << Field->getDeclName()
5751 << Init->getSourceRange();
5752 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
5753 << 0 << En.second->getSourceRange();
5754 return true;
5756 if (!En.first) {
5757 En.first = Child;
5758 En.second = Init;
5760 if (!Parent->isAnonymousStructOrUnion())
5761 return false;
5764 Child = Parent;
5765 Parent = cast<RecordDecl>(Parent->getDeclContext());
5768 return false;
5770 } // namespace
5772 /// ActOnMemInitializers - Handle the member initializers for a constructor.
5773 void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
5774 SourceLocation ColonLoc,
5775 ArrayRef<CXXCtorInitializer*> MemInits,
5776 bool AnyErrors) {
5777 if (!ConstructorDecl)
5778 return;
5780 AdjustDeclIfTemplate(ConstructorDecl);
5782 CXXConstructorDecl *Constructor
5783 = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
5785 if (!Constructor) {
5786 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
5787 return;
5790 // Mapping for the duplicate initializers check.
5791 // For member initializers, this is keyed with a FieldDecl*.
5792 // For base initializers, this is keyed with a Type*.
5793 llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
5795 // Mapping for the inconsistent anonymous-union initializers check.
5796 RedundantUnionMap MemberUnions;
5798 bool HadError = false;
5799 for (unsigned i = 0; i < MemInits.size(); i++) {
5800 CXXCtorInitializer *Init = MemInits[i];
5802 // Set the source order index.
5803 Init->setSourceOrder(i);
5805 if (Init->isAnyMemberInitializer()) {
5806 const void *Key = GetKeyForMember(Context, Init);
5807 if (CheckRedundantInit(*this, Init, Members[Key]) ||
5808 CheckRedundantUnionInit(*this, Init, MemberUnions))
5809 HadError = true;
5810 } else if (Init->isBaseInitializer()) {
5811 const void *Key = GetKeyForMember(Context, Init);
5812 if (CheckRedundantInit(*this, Init, Members[Key]))
5813 HadError = true;
5814 } else {
5815 assert(Init->isDelegatingInitializer());
5816 // This must be the only initializer
5817 if (MemInits.size() != 1) {
5818 Diag(Init->getSourceLocation(),
5819 diag::err_delegating_initializer_alone)
5820 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
5821 // We will treat this as being the only initializer.
5823 SetDelegatingInitializer(Constructor, MemInits[i]);
5824 // Return immediately as the initializer is set.
5825 return;
5829 if (HadError)
5830 return;
5832 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
5834 SetCtorInitializers(Constructor, AnyErrors, MemInits);
5836 DiagnoseUninitializedFields(*this, Constructor);
5839 void
5840 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
5841 CXXRecordDecl *ClassDecl) {
5842 // Ignore dependent contexts. Also ignore unions, since their members never
5843 // have destructors implicitly called.
5844 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
5845 return;
5847 // FIXME: all the access-control diagnostics are positioned on the
5848 // field/base declaration. That's probably good; that said, the
5849 // user might reasonably want to know why the destructor is being
5850 // emitted, and we currently don't say.
5852 // Non-static data members.
5853 for (auto *Field : ClassDecl->fields()) {
5854 if (Field->isInvalidDecl())
5855 continue;
5857 // Don't destroy incomplete or zero-length arrays.
5858 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
5859 continue;
5861 QualType FieldType = Context.getBaseElementType(Field->getType());
5863 const RecordType* RT = FieldType->getAs<RecordType>();
5864 if (!RT)
5865 continue;
5867 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5868 if (FieldClassDecl->isInvalidDecl())
5869 continue;
5870 if (FieldClassDecl->hasIrrelevantDestructor())
5871 continue;
5872 // The destructor for an implicit anonymous union member is never invoked.
5873 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
5874 continue;
5876 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
5877 // Dtor might still be missing, e.g because it's invalid.
5878 if (!Dtor)
5879 continue;
5880 CheckDestructorAccess(Field->getLocation(), Dtor,
5881 PDiag(diag::err_access_dtor_field)
5882 << Field->getDeclName()
5883 << FieldType);
5885 MarkFunctionReferenced(Location, Dtor);
5886 DiagnoseUseOfDecl(Dtor, Location);
5889 // We only potentially invoke the destructors of potentially constructed
5890 // subobjects.
5891 bool VisitVirtualBases = !ClassDecl->isAbstract();
5893 // If the destructor exists and has already been marked used in the MS ABI,
5894 // then virtual base destructors have already been checked and marked used.
5895 // Skip checking them again to avoid duplicate diagnostics.
5896 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5897 CXXDestructorDecl *Dtor = ClassDecl->getDestructor();
5898 if (Dtor && Dtor->isUsed())
5899 VisitVirtualBases = false;
5902 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
5904 // Bases.
5905 for (const auto &Base : ClassDecl->bases()) {
5906 const RecordType *RT = Base.getType()->getAs<RecordType>();
5907 if (!RT)
5908 continue;
5910 // Remember direct virtual bases.
5911 if (Base.isVirtual()) {
5912 if (!VisitVirtualBases)
5913 continue;
5914 DirectVirtualBases.insert(RT);
5917 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5918 // If our base class is invalid, we probably can't get its dtor anyway.
5919 if (BaseClassDecl->isInvalidDecl())
5920 continue;
5921 if (BaseClassDecl->hasIrrelevantDestructor())
5922 continue;
5924 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5925 // Dtor might still be missing, e.g because it's invalid.
5926 if (!Dtor)
5927 continue;
5929 // FIXME: caret should be on the start of the class name
5930 CheckDestructorAccess(Base.getBeginLoc(), Dtor,
5931 PDiag(diag::err_access_dtor_base)
5932 << Base.getType() << Base.getSourceRange(),
5933 Context.getTypeDeclType(ClassDecl));
5935 MarkFunctionReferenced(Location, Dtor);
5936 DiagnoseUseOfDecl(Dtor, Location);
5939 if (VisitVirtualBases)
5940 MarkVirtualBaseDestructorsReferenced(Location, ClassDecl,
5941 &DirectVirtualBases);
5944 void Sema::MarkVirtualBaseDestructorsReferenced(
5945 SourceLocation Location, CXXRecordDecl *ClassDecl,
5946 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases) {
5947 // Virtual bases.
5948 for (const auto &VBase : ClassDecl->vbases()) {
5949 // Bases are always records in a well-formed non-dependent class.
5950 const RecordType *RT = VBase.getType()->castAs<RecordType>();
5952 // Ignore already visited direct virtual bases.
5953 if (DirectVirtualBases && DirectVirtualBases->count(RT))
5954 continue;
5956 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5957 // If our base class is invalid, we probably can't get its dtor anyway.
5958 if (BaseClassDecl->isInvalidDecl())
5959 continue;
5960 if (BaseClassDecl->hasIrrelevantDestructor())
5961 continue;
5963 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5964 // Dtor might still be missing, e.g because it's invalid.
5965 if (!Dtor)
5966 continue;
5967 if (CheckDestructorAccess(
5968 ClassDecl->getLocation(), Dtor,
5969 PDiag(diag::err_access_dtor_vbase)
5970 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
5971 Context.getTypeDeclType(ClassDecl)) ==
5972 AR_accessible) {
5973 CheckDerivedToBaseConversion(
5974 Context.getTypeDeclType(ClassDecl), VBase.getType(),
5975 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
5976 SourceRange(), DeclarationName(), nullptr);
5979 MarkFunctionReferenced(Location, Dtor);
5980 DiagnoseUseOfDecl(Dtor, Location);
5984 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
5985 if (!CDtorDecl)
5986 return;
5988 if (CXXConstructorDecl *Constructor
5989 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
5990 SetCtorInitializers(Constructor, /*AnyErrors=*/false);
5991 DiagnoseUninitializedFields(*this, Constructor);
5995 bool Sema::isAbstractType(SourceLocation Loc, QualType T) {
5996 if (!getLangOpts().CPlusPlus)
5997 return false;
5999 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl();
6000 if (!RD)
6001 return false;
6003 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a
6004 // class template specialization here, but doing so breaks a lot of code.
6006 // We can't answer whether something is abstract until it has a
6007 // definition. If it's currently being defined, we'll walk back
6008 // over all the declarations when we have a full definition.
6009 const CXXRecordDecl *Def = RD->getDefinition();
6010 if (!Def || Def->isBeingDefined())
6011 return false;
6013 return RD->isAbstract();
6016 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
6017 TypeDiagnoser &Diagnoser) {
6018 if (!isAbstractType(Loc, T))
6019 return false;
6021 T = Context.getBaseElementType(T);
6022 Diagnoser.diagnose(*this, Loc, T);
6023 DiagnoseAbstractType(T->getAsCXXRecordDecl());
6024 return true;
6027 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
6028 // Check if we've already emitted the list of pure virtual functions
6029 // for this class.
6030 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
6031 return;
6033 // If the diagnostic is suppressed, don't emit the notes. We're only
6034 // going to emit them once, so try to attach them to a diagnostic we're
6035 // actually going to show.
6036 if (Diags.isLastDiagnosticIgnored())
6037 return;
6039 CXXFinalOverriderMap FinalOverriders;
6040 RD->getFinalOverriders(FinalOverriders);
6042 // Keep a set of seen pure methods so we won't diagnose the same method
6043 // more than once.
6044 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
6046 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
6047 MEnd = FinalOverriders.end();
6048 M != MEnd;
6049 ++M) {
6050 for (OverridingMethods::iterator SO = M->second.begin(),
6051 SOEnd = M->second.end();
6052 SO != SOEnd; ++SO) {
6053 // C++ [class.abstract]p4:
6054 // A class is abstract if it contains or inherits at least one
6055 // pure virtual function for which the final overrider is pure
6056 // virtual.
6059 if (SO->second.size() != 1)
6060 continue;
6062 if (!SO->second.front().Method->isPure())
6063 continue;
6065 if (!SeenPureMethods.insert(SO->second.front().Method).second)
6066 continue;
6068 Diag(SO->second.front().Method->getLocation(),
6069 diag::note_pure_virtual_function)
6070 << SO->second.front().Method->getDeclName() << RD->getDeclName();
6074 if (!PureVirtualClassDiagSet)
6075 PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
6076 PureVirtualClassDiagSet->insert(RD);
6079 namespace {
6080 struct AbstractUsageInfo {
6081 Sema &S;
6082 CXXRecordDecl *Record;
6083 CanQualType AbstractType;
6084 bool Invalid;
6086 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
6087 : S(S), Record(Record),
6088 AbstractType(S.Context.getCanonicalType(
6089 S.Context.getTypeDeclType(Record))),
6090 Invalid(false) {}
6092 void DiagnoseAbstractType() {
6093 if (Invalid) return;
6094 S.DiagnoseAbstractType(Record);
6095 Invalid = true;
6098 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
6101 struct CheckAbstractUsage {
6102 AbstractUsageInfo &Info;
6103 const NamedDecl *Ctx;
6105 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
6106 : Info(Info), Ctx(Ctx) {}
6108 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
6109 switch (TL.getTypeLocClass()) {
6110 #define ABSTRACT_TYPELOC(CLASS, PARENT)
6111 #define TYPELOC(CLASS, PARENT) \
6112 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
6113 #include "clang/AST/TypeLocNodes.def"
6117 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
6118 Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
6119 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
6120 if (!TL.getParam(I))
6121 continue;
6123 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
6124 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
6128 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
6129 Visit(TL.getElementLoc(), Sema::AbstractArrayType);
6132 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
6133 // Visit the type parameters from a permissive context.
6134 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
6135 TemplateArgumentLoc TAL = TL.getArgLoc(I);
6136 if (TAL.getArgument().getKind() == TemplateArgument::Type)
6137 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
6138 Visit(TSI->getTypeLoc(), Sema::AbstractNone);
6139 // TODO: other template argument types?
6143 // Visit pointee types from a permissive context.
6144 #define CheckPolymorphic(Type) \
6145 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
6146 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
6148 CheckPolymorphic(PointerTypeLoc)
6149 CheckPolymorphic(ReferenceTypeLoc)
6150 CheckPolymorphic(MemberPointerTypeLoc)
6151 CheckPolymorphic(BlockPointerTypeLoc)
6152 CheckPolymorphic(AtomicTypeLoc)
6154 /// Handle all the types we haven't given a more specific
6155 /// implementation for above.
6156 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
6157 // Every other kind of type that we haven't called out already
6158 // that has an inner type is either (1) sugar or (2) contains that
6159 // inner type in some way as a subobject.
6160 if (TypeLoc Next = TL.getNextTypeLoc())
6161 return Visit(Next, Sel);
6163 // If there's no inner type and we're in a permissive context,
6164 // don't diagnose.
6165 if (Sel == Sema::AbstractNone) return;
6167 // Check whether the type matches the abstract type.
6168 QualType T = TL.getType();
6169 if (T->isArrayType()) {
6170 Sel = Sema::AbstractArrayType;
6171 T = Info.S.Context.getBaseElementType(T);
6173 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
6174 if (CT != Info.AbstractType) return;
6176 // It matched; do some magic.
6177 // FIXME: These should be at most warnings. See P0929R2, CWG1640, CWG1646.
6178 if (Sel == Sema::AbstractArrayType) {
6179 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
6180 << T << TL.getSourceRange();
6181 } else {
6182 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
6183 << Sel << T << TL.getSourceRange();
6185 Info.DiagnoseAbstractType();
6189 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
6190 Sema::AbstractDiagSelID Sel) {
6191 CheckAbstractUsage(*this, D).Visit(TL, Sel);
6196 /// Check for invalid uses of an abstract type in a function declaration.
6197 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
6198 FunctionDecl *FD) {
6199 // Only definitions are required to refer to complete and
6200 // non-abstract types.
6201 if (!FD->doesThisDeclarationHaveABody())
6202 return;
6204 // For safety's sake, just ignore it if we don't have type source
6205 // information. This should never happen for non-implicit methods,
6206 // but...
6207 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
6208 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractNone);
6211 /// Check for invalid uses of an abstract type in a variable0 declaration.
6212 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
6213 VarDecl *VD) {
6214 // No need to do the check on definitions, which require that
6215 // the type is complete.
6216 if (VD->isThisDeclarationADefinition())
6217 return;
6219 Info.CheckType(VD, VD->getTypeSourceInfo()->getTypeLoc(),
6220 Sema::AbstractVariableType);
6223 /// Check for invalid uses of an abstract type within a class definition.
6224 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
6225 CXXRecordDecl *RD) {
6226 for (auto *D : RD->decls()) {
6227 if (D->isImplicit()) continue;
6229 // Step through friends to the befriended declaration.
6230 if (auto *FD = dyn_cast<FriendDecl>(D)) {
6231 D = FD->getFriendDecl();
6232 if (!D) continue;
6235 // Functions and function templates.
6236 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
6237 CheckAbstractClassUsage(Info, FD);
6238 } else if (auto *FTD = dyn_cast<FunctionTemplateDecl>(D)) {
6239 CheckAbstractClassUsage(Info, FTD->getTemplatedDecl());
6241 // Fields and static variables.
6242 } else if (auto *FD = dyn_cast<FieldDecl>(D)) {
6243 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
6244 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
6245 } else if (auto *VD = dyn_cast<VarDecl>(D)) {
6246 CheckAbstractClassUsage(Info, VD);
6247 } else if (auto *VTD = dyn_cast<VarTemplateDecl>(D)) {
6248 CheckAbstractClassUsage(Info, VTD->getTemplatedDecl());
6250 // Nested classes and class templates.
6251 } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
6252 CheckAbstractClassUsage(Info, RD);
6253 } else if (auto *CTD = dyn_cast<ClassTemplateDecl>(D)) {
6254 CheckAbstractClassUsage(Info, CTD->getTemplatedDecl());
6259 static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) {
6260 Attr *ClassAttr = getDLLAttr(Class);
6261 if (!ClassAttr)
6262 return;
6264 assert(ClassAttr->getKind() == attr::DLLExport);
6266 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
6268 if (TSK == TSK_ExplicitInstantiationDeclaration)
6269 // Don't go any further if this is just an explicit instantiation
6270 // declaration.
6271 return;
6273 // Add a context note to explain how we got to any diagnostics produced below.
6274 struct MarkingClassDllexported {
6275 Sema &S;
6276 MarkingClassDllexported(Sema &S, CXXRecordDecl *Class,
6277 SourceLocation AttrLoc)
6278 : S(S) {
6279 Sema::CodeSynthesisContext Ctx;
6280 Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported;
6281 Ctx.PointOfInstantiation = AttrLoc;
6282 Ctx.Entity = Class;
6283 S.pushCodeSynthesisContext(Ctx);
6285 ~MarkingClassDllexported() {
6286 S.popCodeSynthesisContext();
6288 } MarkingDllexportedContext(S, Class, ClassAttr->getLocation());
6290 if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
6291 S.MarkVTableUsed(Class->getLocation(), Class, true);
6293 for (Decl *Member : Class->decls()) {
6294 // Skip members that were not marked exported.
6295 if (!Member->hasAttr<DLLExportAttr>())
6296 continue;
6298 // Defined static variables that are members of an exported base
6299 // class must be marked export too.
6300 auto *VD = dyn_cast<VarDecl>(Member);
6301 if (VD && VD->getStorageClass() == SC_Static &&
6302 TSK == TSK_ImplicitInstantiation)
6303 S.MarkVariableReferenced(VD->getLocation(), VD);
6305 auto *MD = dyn_cast<CXXMethodDecl>(Member);
6306 if (!MD)
6307 continue;
6309 if (MD->isUserProvided()) {
6310 // Instantiate non-default class member functions ...
6312 // .. except for certain kinds of template specializations.
6313 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
6314 continue;
6316 // If this is an MS ABI dllexport default constructor, instantiate any
6317 // default arguments.
6318 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
6319 auto *CD = dyn_cast<CXXConstructorDecl>(MD);
6320 if (CD && CD->isDefaultConstructor() && TSK == TSK_Undeclared) {
6321 S.InstantiateDefaultCtorDefaultArgs(CD);
6325 S.MarkFunctionReferenced(Class->getLocation(), MD);
6327 // The function will be passed to the consumer when its definition is
6328 // encountered.
6329 } else if (MD->isExplicitlyDefaulted()) {
6330 // Synthesize and instantiate explicitly defaulted methods.
6331 S.MarkFunctionReferenced(Class->getLocation(), MD);
6333 if (TSK != TSK_ExplicitInstantiationDefinition) {
6334 // Except for explicit instantiation defs, we will not see the
6335 // definition again later, so pass it to the consumer now.
6336 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
6338 } else if (!MD->isTrivial() ||
6339 MD->isCopyAssignmentOperator() ||
6340 MD->isMoveAssignmentOperator()) {
6341 // Synthesize and instantiate non-trivial implicit methods, and the copy
6342 // and move assignment operators. The latter are exported even if they
6343 // are trivial, because the address of an operator can be taken and
6344 // should compare equal across libraries.
6345 S.MarkFunctionReferenced(Class->getLocation(), MD);
6347 // There is no later point when we will see the definition of this
6348 // function, so pass it to the consumer now.
6349 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
6354 static void checkForMultipleExportedDefaultConstructors(Sema &S,
6355 CXXRecordDecl *Class) {
6356 // Only the MS ABI has default constructor closures, so we don't need to do
6357 // this semantic checking anywhere else.
6358 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft())
6359 return;
6361 CXXConstructorDecl *LastExportedDefaultCtor = nullptr;
6362 for (Decl *Member : Class->decls()) {
6363 // Look for exported default constructors.
6364 auto *CD = dyn_cast<CXXConstructorDecl>(Member);
6365 if (!CD || !CD->isDefaultConstructor())
6366 continue;
6367 auto *Attr = CD->getAttr<DLLExportAttr>();
6368 if (!Attr)
6369 continue;
6371 // If the class is non-dependent, mark the default arguments as ODR-used so
6372 // that we can properly codegen the constructor closure.
6373 if (!Class->isDependentContext()) {
6374 for (ParmVarDecl *PD : CD->parameters()) {
6375 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD);
6376 S.DiscardCleanupsInEvaluationContext();
6380 if (LastExportedDefaultCtor) {
6381 S.Diag(LastExportedDefaultCtor->getLocation(),
6382 diag::err_attribute_dll_ambiguous_default_ctor)
6383 << Class;
6384 S.Diag(CD->getLocation(), diag::note_entity_declared_at)
6385 << CD->getDeclName();
6386 return;
6388 LastExportedDefaultCtor = CD;
6392 static void checkCUDADeviceBuiltinSurfaceClassTemplate(Sema &S,
6393 CXXRecordDecl *Class) {
6394 bool ErrorReported = false;
6395 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S,
6396 ClassTemplateDecl *TD) {
6397 if (ErrorReported)
6398 return;
6399 S.Diag(TD->getLocation(),
6400 diag::err_cuda_device_builtin_surftex_cls_template)
6401 << /*surface*/ 0 << TD;
6402 ErrorReported = true;
6405 ClassTemplateDecl *TD = Class->getDescribedClassTemplate();
6406 if (!TD) {
6407 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class);
6408 if (!SD) {
6409 S.Diag(Class->getLocation(),
6410 diag::err_cuda_device_builtin_surftex_ref_decl)
6411 << /*surface*/ 0 << Class;
6412 S.Diag(Class->getLocation(),
6413 diag::note_cuda_device_builtin_surftex_should_be_template_class)
6414 << Class;
6415 return;
6417 TD = SD->getSpecializedTemplate();
6420 TemplateParameterList *Params = TD->getTemplateParameters();
6421 unsigned N = Params->size();
6423 if (N != 2) {
6424 reportIllegalClassTemplate(S, TD);
6425 S.Diag(TD->getLocation(),
6426 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args)
6427 << TD << 2;
6429 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6430 reportIllegalClassTemplate(S, TD);
6431 S.Diag(TD->getLocation(),
6432 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6433 << TD << /*1st*/ 0 << /*type*/ 0;
6435 if (N > 1) {
6436 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
6437 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6438 reportIllegalClassTemplate(S, TD);
6439 S.Diag(TD->getLocation(),
6440 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6441 << TD << /*2nd*/ 1 << /*integer*/ 1;
6446 static void checkCUDADeviceBuiltinTextureClassTemplate(Sema &S,
6447 CXXRecordDecl *Class) {
6448 bool ErrorReported = false;
6449 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S,
6450 ClassTemplateDecl *TD) {
6451 if (ErrorReported)
6452 return;
6453 S.Diag(TD->getLocation(),
6454 diag::err_cuda_device_builtin_surftex_cls_template)
6455 << /*texture*/ 1 << TD;
6456 ErrorReported = true;
6459 ClassTemplateDecl *TD = Class->getDescribedClassTemplate();
6460 if (!TD) {
6461 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class);
6462 if (!SD) {
6463 S.Diag(Class->getLocation(),
6464 diag::err_cuda_device_builtin_surftex_ref_decl)
6465 << /*texture*/ 1 << Class;
6466 S.Diag(Class->getLocation(),
6467 diag::note_cuda_device_builtin_surftex_should_be_template_class)
6468 << Class;
6469 return;
6471 TD = SD->getSpecializedTemplate();
6474 TemplateParameterList *Params = TD->getTemplateParameters();
6475 unsigned N = Params->size();
6477 if (N != 3) {
6478 reportIllegalClassTemplate(S, TD);
6479 S.Diag(TD->getLocation(),
6480 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args)
6481 << TD << 3;
6483 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6484 reportIllegalClassTemplate(S, TD);
6485 S.Diag(TD->getLocation(),
6486 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6487 << TD << /*1st*/ 0 << /*type*/ 0;
6489 if (N > 1) {
6490 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
6491 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6492 reportIllegalClassTemplate(S, TD);
6493 S.Diag(TD->getLocation(),
6494 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6495 << TD << /*2nd*/ 1 << /*integer*/ 1;
6498 if (N > 2) {
6499 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(2));
6500 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6501 reportIllegalClassTemplate(S, TD);
6502 S.Diag(TD->getLocation(),
6503 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6504 << TD << /*3rd*/ 2 << /*integer*/ 1;
6509 void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) {
6510 // Mark any compiler-generated routines with the implicit code_seg attribute.
6511 for (auto *Method : Class->methods()) {
6512 if (Method->isUserProvided())
6513 continue;
6514 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
6515 Method->addAttr(A);
6519 /// Check class-level dllimport/dllexport attribute.
6520 void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) {
6521 Attr *ClassAttr = getDLLAttr(Class);
6523 // MSVC inherits DLL attributes to partial class template specializations.
6524 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && !ClassAttr) {
6525 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
6526 if (Attr *TemplateAttr =
6527 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
6528 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext()));
6529 A->setInherited(true);
6530 ClassAttr = A;
6535 if (!ClassAttr)
6536 return;
6538 // MSVC allows imported or exported template classes that have UniqueExternal
6539 // linkage. This occurs when the template class has been instantiated with
6540 // a template parameter which itself has internal linkage.
6541 // We drop the attribute to avoid exporting or importing any members.
6542 if ((Context.getTargetInfo().getCXXABI().isMicrosoft() ||
6543 Context.getTargetInfo().getTriple().isPS()) &&
6544 (!Class->isExternallyVisible() && Class->hasExternalFormalLinkage())) {
6545 Class->dropAttr<DLLExportAttr>();
6546 Class->dropAttr<DLLImportAttr>();
6547 return;
6550 if (!Class->isExternallyVisible()) {
6551 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
6552 << Class << ClassAttr;
6553 return;
6556 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
6557 !ClassAttr->isInherited()) {
6558 // Diagnose dll attributes on members of class with dll attribute.
6559 for (Decl *Member : Class->decls()) {
6560 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
6561 continue;
6562 InheritableAttr *MemberAttr = getDLLAttr(Member);
6563 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
6564 continue;
6566 Diag(MemberAttr->getLocation(),
6567 diag::err_attribute_dll_member_of_dll_class)
6568 << MemberAttr << ClassAttr;
6569 Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
6570 Member->setInvalidDecl();
6574 if (Class->getDescribedClassTemplate())
6575 // Don't inherit dll attribute until the template is instantiated.
6576 return;
6578 // The class is either imported or exported.
6579 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
6581 // Check if this was a dllimport attribute propagated from a derived class to
6582 // a base class template specialization. We don't apply these attributes to
6583 // static data members.
6584 const bool PropagatedImport =
6585 !ClassExported &&
6586 cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate();
6588 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
6590 // Ignore explicit dllexport on explicit class template instantiation
6591 // declarations, except in MinGW mode.
6592 if (ClassExported && !ClassAttr->isInherited() &&
6593 TSK == TSK_ExplicitInstantiationDeclaration &&
6594 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
6595 Class->dropAttr<DLLExportAttr>();
6596 return;
6599 // Force declaration of implicit members so they can inherit the attribute.
6600 ForceDeclarationOfImplicitMembers(Class);
6602 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
6603 // seem to be true in practice?
6605 for (Decl *Member : Class->decls()) {
6606 VarDecl *VD = dyn_cast<VarDecl>(Member);
6607 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
6609 // Only methods and static fields inherit the attributes.
6610 if (!VD && !MD)
6611 continue;
6613 if (MD) {
6614 // Don't process deleted methods.
6615 if (MD->isDeleted())
6616 continue;
6618 if (MD->isInlined()) {
6619 // MinGW does not import or export inline methods. But do it for
6620 // template instantiations.
6621 if (!Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
6622 TSK != TSK_ExplicitInstantiationDeclaration &&
6623 TSK != TSK_ExplicitInstantiationDefinition)
6624 continue;
6626 // MSVC versions before 2015 don't export the move assignment operators
6627 // and move constructor, so don't attempt to import/export them if
6628 // we have a definition.
6629 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD);
6630 if ((MD->isMoveAssignmentOperator() ||
6631 (Ctor && Ctor->isMoveConstructor())) &&
6632 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
6633 continue;
6635 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign
6636 // operator is exported anyway.
6637 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
6638 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial())
6639 continue;
6643 // Don't apply dllimport attributes to static data members of class template
6644 // instantiations when the attribute is propagated from a derived class.
6645 if (VD && PropagatedImport)
6646 continue;
6648 if (!cast<NamedDecl>(Member)->isExternallyVisible())
6649 continue;
6651 if (!getDLLAttr(Member)) {
6652 InheritableAttr *NewAttr = nullptr;
6654 // Do not export/import inline function when -fno-dllexport-inlines is
6655 // passed. But add attribute for later local static var check.
6656 if (!getLangOpts().DllExportInlines && MD && MD->isInlined() &&
6657 TSK != TSK_ExplicitInstantiationDeclaration &&
6658 TSK != TSK_ExplicitInstantiationDefinition) {
6659 if (ClassExported) {
6660 NewAttr = ::new (getASTContext())
6661 DLLExportStaticLocalAttr(getASTContext(), *ClassAttr);
6662 } else {
6663 NewAttr = ::new (getASTContext())
6664 DLLImportStaticLocalAttr(getASTContext(), *ClassAttr);
6666 } else {
6667 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6670 NewAttr->setInherited(true);
6671 Member->addAttr(NewAttr);
6673 if (MD) {
6674 // Propagate DLLAttr to friend re-declarations of MD that have already
6675 // been constructed.
6676 for (FunctionDecl *FD = MD->getMostRecentDecl(); FD;
6677 FD = FD->getPreviousDecl()) {
6678 if (FD->getFriendObjectKind() == Decl::FOK_None)
6679 continue;
6680 assert(!getDLLAttr(FD) &&
6681 "friend re-decl should not already have a DLLAttr");
6682 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6683 NewAttr->setInherited(true);
6684 FD->addAttr(NewAttr);
6690 if (ClassExported)
6691 DelayedDllExportClasses.push_back(Class);
6694 /// Perform propagation of DLL attributes from a derived class to a
6695 /// templated base class for MS compatibility.
6696 void Sema::propagateDLLAttrToBaseClassTemplate(
6697 CXXRecordDecl *Class, Attr *ClassAttr,
6698 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
6699 if (getDLLAttr(
6700 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
6701 // If the base class template has a DLL attribute, don't try to change it.
6702 return;
6705 auto TSK = BaseTemplateSpec->getSpecializationKind();
6706 if (!getDLLAttr(BaseTemplateSpec) &&
6707 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration ||
6708 TSK == TSK_ImplicitInstantiation)) {
6709 // The template hasn't been instantiated yet (or it has, but only as an
6710 // explicit instantiation declaration or implicit instantiation, which means
6711 // we haven't codegenned any members yet), so propagate the attribute.
6712 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6713 NewAttr->setInherited(true);
6714 BaseTemplateSpec->addAttr(NewAttr);
6716 // If this was an import, mark that we propagated it from a derived class to
6717 // a base class template specialization.
6718 if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr))
6719 ImportAttr->setPropagatedToBaseTemplate();
6721 // If the template is already instantiated, checkDLLAttributeRedeclaration()
6722 // needs to be run again to work see the new attribute. Otherwise this will
6723 // get run whenever the template is instantiated.
6724 if (TSK != TSK_Undeclared)
6725 checkClassLevelDLLAttribute(BaseTemplateSpec);
6727 return;
6730 if (getDLLAttr(BaseTemplateSpec)) {
6731 // The template has already been specialized or instantiated with an
6732 // attribute, explicitly or through propagation. We should not try to change
6733 // it.
6734 return;
6737 // The template was previously instantiated or explicitly specialized without
6738 // a dll attribute, It's too late for us to add an attribute, so warn that
6739 // this is unsupported.
6740 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
6741 << BaseTemplateSpec->isExplicitSpecialization();
6742 Diag(ClassAttr->getLocation(), diag::note_attribute);
6743 if (BaseTemplateSpec->isExplicitSpecialization()) {
6744 Diag(BaseTemplateSpec->getLocation(),
6745 diag::note_template_class_explicit_specialization_was_here)
6746 << BaseTemplateSpec;
6747 } else {
6748 Diag(BaseTemplateSpec->getPointOfInstantiation(),
6749 diag::note_template_class_instantiation_was_here)
6750 << BaseTemplateSpec;
6754 /// Determine the kind of defaulting that would be done for a given function.
6756 /// If the function is both a default constructor and a copy / move constructor
6757 /// (due to having a default argument for the first parameter), this picks
6758 /// CXXDefaultConstructor.
6760 /// FIXME: Check that case is properly handled by all callers.
6761 Sema::DefaultedFunctionKind
6762 Sema::getDefaultedFunctionKind(const FunctionDecl *FD) {
6763 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
6764 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
6765 if (Ctor->isDefaultConstructor())
6766 return Sema::CXXDefaultConstructor;
6768 if (Ctor->isCopyConstructor())
6769 return Sema::CXXCopyConstructor;
6771 if (Ctor->isMoveConstructor())
6772 return Sema::CXXMoveConstructor;
6775 if (MD->isCopyAssignmentOperator())
6776 return Sema::CXXCopyAssignment;
6778 if (MD->isMoveAssignmentOperator())
6779 return Sema::CXXMoveAssignment;
6781 if (isa<CXXDestructorDecl>(FD))
6782 return Sema::CXXDestructor;
6785 switch (FD->getDeclName().getCXXOverloadedOperator()) {
6786 case OO_EqualEqual:
6787 return DefaultedComparisonKind::Equal;
6789 case OO_ExclaimEqual:
6790 return DefaultedComparisonKind::NotEqual;
6792 case OO_Spaceship:
6793 // No point allowing this if <=> doesn't exist in the current language mode.
6794 if (!getLangOpts().CPlusPlus20)
6795 break;
6796 return DefaultedComparisonKind::ThreeWay;
6798 case OO_Less:
6799 case OO_LessEqual:
6800 case OO_Greater:
6801 case OO_GreaterEqual:
6802 // No point allowing this if <=> doesn't exist in the current language mode.
6803 if (!getLangOpts().CPlusPlus20)
6804 break;
6805 return DefaultedComparisonKind::Relational;
6807 default:
6808 break;
6811 // Not defaultable.
6812 return DefaultedFunctionKind();
6815 static void DefineDefaultedFunction(Sema &S, FunctionDecl *FD,
6816 SourceLocation DefaultLoc) {
6817 Sema::DefaultedFunctionKind DFK = S.getDefaultedFunctionKind(FD);
6818 if (DFK.isComparison())
6819 return S.DefineDefaultedComparison(DefaultLoc, FD, DFK.asComparison());
6821 switch (DFK.asSpecialMember()) {
6822 case Sema::CXXDefaultConstructor:
6823 S.DefineImplicitDefaultConstructor(DefaultLoc,
6824 cast<CXXConstructorDecl>(FD));
6825 break;
6826 case Sema::CXXCopyConstructor:
6827 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD));
6828 break;
6829 case Sema::CXXCopyAssignment:
6830 S.DefineImplicitCopyAssignment(DefaultLoc, cast<CXXMethodDecl>(FD));
6831 break;
6832 case Sema::CXXDestructor:
6833 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(FD));
6834 break;
6835 case Sema::CXXMoveConstructor:
6836 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD));
6837 break;
6838 case Sema::CXXMoveAssignment:
6839 S.DefineImplicitMoveAssignment(DefaultLoc, cast<CXXMethodDecl>(FD));
6840 break;
6841 case Sema::CXXInvalid:
6842 llvm_unreachable("Invalid special member.");
6846 /// Determine whether a type is permitted to be passed or returned in
6847 /// registers, per C++ [class.temporary]p3.
6848 static bool canPassInRegisters(Sema &S, CXXRecordDecl *D,
6849 TargetInfo::CallingConvKind CCK) {
6850 if (D->isDependentType() || D->isInvalidDecl())
6851 return false;
6853 // Clang <= 4 used the pre-C++11 rule, which ignores move operations.
6854 // The PS4 platform ABI follows the behavior of Clang 3.2.
6855 if (CCK == TargetInfo::CCK_ClangABI4OrPS4)
6856 return !D->hasNonTrivialDestructorForCall() &&
6857 !D->hasNonTrivialCopyConstructorForCall();
6859 if (CCK == TargetInfo::CCK_MicrosoftWin64) {
6860 bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false;
6861 bool DtorIsTrivialForCall = false;
6863 // If a class has at least one eligible, trivial copy constructor, it
6864 // is passed according to the C ABI. Otherwise, it is passed indirectly.
6866 // Note: This permits classes with non-trivial copy or move ctors to be
6867 // passed in registers, so long as they *also* have a trivial copy ctor,
6868 // which is non-conforming.
6869 if (D->needsImplicitCopyConstructor()) {
6870 if (!D->defaultedCopyConstructorIsDeleted()) {
6871 if (D->hasTrivialCopyConstructor())
6872 CopyCtorIsTrivial = true;
6873 if (D->hasTrivialCopyConstructorForCall())
6874 CopyCtorIsTrivialForCall = true;
6876 } else {
6877 for (const CXXConstructorDecl *CD : D->ctors()) {
6878 if (CD->isCopyConstructor() && !CD->isDeleted() &&
6879 !CD->isIneligibleOrNotSelected()) {
6880 if (CD->isTrivial())
6881 CopyCtorIsTrivial = true;
6882 if (CD->isTrivialForCall())
6883 CopyCtorIsTrivialForCall = true;
6888 if (D->needsImplicitDestructor()) {
6889 if (!D->defaultedDestructorIsDeleted() &&
6890 D->hasTrivialDestructorForCall())
6891 DtorIsTrivialForCall = true;
6892 } else if (const auto *DD = D->getDestructor()) {
6893 if (!DD->isDeleted() && DD->isTrivialForCall())
6894 DtorIsTrivialForCall = true;
6897 // If the copy ctor and dtor are both trivial-for-calls, pass direct.
6898 if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall)
6899 return true;
6901 // If a class has a destructor, we'd really like to pass it indirectly
6902 // because it allows us to elide copies. Unfortunately, MSVC makes that
6903 // impossible for small types, which it will pass in a single register or
6904 // stack slot. Most objects with dtors are large-ish, so handle that early.
6905 // We can't call out all large objects as being indirect because there are
6906 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate
6907 // how we pass large POD types.
6909 // Note: This permits small classes with nontrivial destructors to be
6910 // passed in registers, which is non-conforming.
6911 bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
6912 uint64_t TypeSize = isAArch64 ? 128 : 64;
6914 if (CopyCtorIsTrivial &&
6915 S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize)
6916 return true;
6917 return false;
6920 // Per C++ [class.temporary]p3, the relevant condition is:
6921 // each copy constructor, move constructor, and destructor of X is
6922 // either trivial or deleted, and X has at least one non-deleted copy
6923 // or move constructor
6924 bool HasNonDeletedCopyOrMove = false;
6926 if (D->needsImplicitCopyConstructor() &&
6927 !D->defaultedCopyConstructorIsDeleted()) {
6928 if (!D->hasTrivialCopyConstructorForCall())
6929 return false;
6930 HasNonDeletedCopyOrMove = true;
6933 if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() &&
6934 !D->defaultedMoveConstructorIsDeleted()) {
6935 if (!D->hasTrivialMoveConstructorForCall())
6936 return false;
6937 HasNonDeletedCopyOrMove = true;
6940 if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() &&
6941 !D->hasTrivialDestructorForCall())
6942 return false;
6944 for (const CXXMethodDecl *MD : D->methods()) {
6945 if (MD->isDeleted() || MD->isIneligibleOrNotSelected())
6946 continue;
6948 auto *CD = dyn_cast<CXXConstructorDecl>(MD);
6949 if (CD && CD->isCopyOrMoveConstructor())
6950 HasNonDeletedCopyOrMove = true;
6951 else if (!isa<CXXDestructorDecl>(MD))
6952 continue;
6954 if (!MD->isTrivialForCall())
6955 return false;
6958 return HasNonDeletedCopyOrMove;
6961 /// Report an error regarding overriding, along with any relevant
6962 /// overridden methods.
6964 /// \param DiagID the primary error to report.
6965 /// \param MD the overriding method.
6966 static bool
6967 ReportOverrides(Sema &S, unsigned DiagID, const CXXMethodDecl *MD,
6968 llvm::function_ref<bool(const CXXMethodDecl *)> Report) {
6969 bool IssuedDiagnostic = false;
6970 for (const CXXMethodDecl *O : MD->overridden_methods()) {
6971 if (Report(O)) {
6972 if (!IssuedDiagnostic) {
6973 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
6974 IssuedDiagnostic = true;
6976 S.Diag(O->getLocation(), diag::note_overridden_virtual_function);
6979 return IssuedDiagnostic;
6982 /// Perform semantic checks on a class definition that has been
6983 /// completing, introducing implicitly-declared members, checking for
6984 /// abstract types, etc.
6986 /// \param S The scope in which the class was parsed. Null if we didn't just
6987 /// parse a class definition.
6988 /// \param Record The completed class.
6989 void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
6990 if (!Record)
6991 return;
6993 if (Record->isAbstract() && !Record->isInvalidDecl()) {
6994 AbstractUsageInfo Info(*this, Record);
6995 CheckAbstractClassUsage(Info, Record);
6998 // If this is not an aggregate type and has no user-declared constructor,
6999 // complain about any non-static data members of reference or const scalar
7000 // type, since they will never get initializers.
7001 if (!Record->isInvalidDecl() && !Record->isDependentType() &&
7002 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
7003 !Record->isLambda()) {
7004 bool Complained = false;
7005 for (const auto *F : Record->fields()) {
7006 if (F->hasInClassInitializer() || F->isUnnamedBitfield())
7007 continue;
7009 if (F->getType()->isReferenceType() ||
7010 (F->getType().isConstQualified() && F->getType()->isScalarType())) {
7011 if (!Complained) {
7012 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
7013 << Record->getTagKind() << Record;
7014 Complained = true;
7017 Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
7018 << F->getType()->isReferenceType()
7019 << F->getDeclName();
7024 if (Record->getIdentifier()) {
7025 // C++ [class.mem]p13:
7026 // If T is the name of a class, then each of the following shall have a
7027 // name different from T:
7028 // - every member of every anonymous union that is a member of class T.
7030 // C++ [class.mem]p14:
7031 // In addition, if class T has a user-declared constructor (12.1), every
7032 // non-static data member of class T shall have a name different from T.
7033 DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
7034 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
7035 ++I) {
7036 NamedDecl *D = (*I)->getUnderlyingDecl();
7037 if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) &&
7038 Record->hasUserDeclaredConstructor()) ||
7039 isa<IndirectFieldDecl>(D)) {
7040 Diag((*I)->getLocation(), diag::err_member_name_of_class)
7041 << D->getDeclName();
7042 break;
7047 // Warn if the class has virtual methods but non-virtual public destructor.
7048 if (Record->isPolymorphic() && !Record->isDependentType()) {
7049 CXXDestructorDecl *dtor = Record->getDestructor();
7050 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
7051 !Record->hasAttr<FinalAttr>())
7052 Diag(dtor ? dtor->getLocation() : Record->getLocation(),
7053 diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
7056 if (Record->isAbstract()) {
7057 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
7058 Diag(Record->getLocation(), diag::warn_abstract_final_class)
7059 << FA->isSpelledAsSealed();
7060 DiagnoseAbstractType(Record);
7064 // Warn if the class has a final destructor but is not itself marked final.
7065 if (!Record->hasAttr<FinalAttr>()) {
7066 if (const CXXDestructorDecl *dtor = Record->getDestructor()) {
7067 if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) {
7068 Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class)
7069 << FA->isSpelledAsSealed()
7070 << FixItHint::CreateInsertion(
7071 getLocForEndOfToken(Record->getLocation()),
7072 (FA->isSpelledAsSealed() ? " sealed" : " final"));
7073 Diag(Record->getLocation(),
7074 diag::note_final_dtor_non_final_class_silence)
7075 << Context.getRecordType(Record) << FA->isSpelledAsSealed();
7080 // See if trivial_abi has to be dropped.
7081 if (Record->hasAttr<TrivialABIAttr>())
7082 checkIllFormedTrivialABIStruct(*Record);
7084 // Set HasTrivialSpecialMemberForCall if the record has attribute
7085 // "trivial_abi".
7086 bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>();
7088 if (HasTrivialABI)
7089 Record->setHasTrivialSpecialMemberForCall();
7091 // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=).
7092 // We check these last because they can depend on the properties of the
7093 // primary comparison functions (==, <=>).
7094 llvm::SmallVector<FunctionDecl*, 5> DefaultedSecondaryComparisons;
7096 // Perform checks that can't be done until we know all the properties of a
7097 // member function (whether it's defaulted, deleted, virtual, overriding,
7098 // ...).
7099 auto CheckCompletedMemberFunction = [&](CXXMethodDecl *MD) {
7100 // A static function cannot override anything.
7101 if (MD->getStorageClass() == SC_Static) {
7102 if (ReportOverrides(*this, diag::err_static_overrides_virtual, MD,
7103 [](const CXXMethodDecl *) { return true; }))
7104 return;
7107 // A deleted function cannot override a non-deleted function and vice
7108 // versa.
7109 if (ReportOverrides(*this,
7110 MD->isDeleted() ? diag::err_deleted_override
7111 : diag::err_non_deleted_override,
7112 MD, [&](const CXXMethodDecl *V) {
7113 return MD->isDeleted() != V->isDeleted();
7114 })) {
7115 if (MD->isDefaulted() && MD->isDeleted())
7116 // Explain why this defaulted function was deleted.
7117 DiagnoseDeletedDefaultedFunction(MD);
7118 return;
7121 // A consteval function cannot override a non-consteval function and vice
7122 // versa.
7123 if (ReportOverrides(*this,
7124 MD->isConsteval() ? diag::err_consteval_override
7125 : diag::err_non_consteval_override,
7126 MD, [&](const CXXMethodDecl *V) {
7127 return MD->isConsteval() != V->isConsteval();
7128 })) {
7129 if (MD->isDefaulted() && MD->isDeleted())
7130 // Explain why this defaulted function was deleted.
7131 DiagnoseDeletedDefaultedFunction(MD);
7132 return;
7136 auto CheckForDefaultedFunction = [&](FunctionDecl *FD) -> bool {
7137 if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted())
7138 return false;
7140 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD);
7141 if (DFK.asComparison() == DefaultedComparisonKind::NotEqual ||
7142 DFK.asComparison() == DefaultedComparisonKind::Relational) {
7143 DefaultedSecondaryComparisons.push_back(FD);
7144 return true;
7147 CheckExplicitlyDefaultedFunction(S, FD);
7148 return false;
7151 auto CompleteMemberFunction = [&](CXXMethodDecl *M) {
7152 // Check whether the explicitly-defaulted members are valid.
7153 bool Incomplete = CheckForDefaultedFunction(M);
7155 // Skip the rest of the checks for a member of a dependent class.
7156 if (Record->isDependentType())
7157 return;
7159 // For an explicitly defaulted or deleted special member, we defer
7160 // determining triviality until the class is complete. That time is now!
7161 CXXSpecialMember CSM = getSpecialMember(M);
7162 if (!M->isImplicit() && !M->isUserProvided()) {
7163 if (CSM != CXXInvalid) {
7164 M->setTrivial(SpecialMemberIsTrivial(M, CSM));
7165 // Inform the class that we've finished declaring this member.
7166 Record->finishedDefaultedOrDeletedMember(M);
7167 M->setTrivialForCall(
7168 HasTrivialABI ||
7169 SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI));
7170 Record->setTrivialForCallFlags(M);
7174 // Set triviality for the purpose of calls if this is a user-provided
7175 // copy/move constructor or destructor.
7176 if ((CSM == CXXCopyConstructor || CSM == CXXMoveConstructor ||
7177 CSM == CXXDestructor) && M->isUserProvided()) {
7178 M->setTrivialForCall(HasTrivialABI);
7179 Record->setTrivialForCallFlags(M);
7182 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() &&
7183 M->hasAttr<DLLExportAttr>()) {
7184 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
7185 M->isTrivial() &&
7186 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor ||
7187 CSM == CXXDestructor))
7188 M->dropAttr<DLLExportAttr>();
7190 if (M->hasAttr<DLLExportAttr>()) {
7191 // Define after any fields with in-class initializers have been parsed.
7192 DelayedDllExportMemberFunctions.push_back(M);
7196 // Define defaulted constexpr virtual functions that override a base class
7197 // function right away.
7198 // FIXME: We can defer doing this until the vtable is marked as used.
7199 if (CSM != CXXInvalid && !M->isDeleted() && M->isDefaulted() &&
7200 M->isConstexpr() && M->size_overridden_methods())
7201 DefineDefaultedFunction(*this, M, M->getLocation());
7203 if (!Incomplete)
7204 CheckCompletedMemberFunction(M);
7207 // Check the destructor before any other member function. We need to
7208 // determine whether it's trivial in order to determine whether the claas
7209 // type is a literal type, which is a prerequisite for determining whether
7210 // other special member functions are valid and whether they're implicitly
7211 // 'constexpr'.
7212 if (CXXDestructorDecl *Dtor = Record->getDestructor())
7213 CompleteMemberFunction(Dtor);
7215 bool HasMethodWithOverrideControl = false,
7216 HasOverridingMethodWithoutOverrideControl = false;
7217 for (auto *D : Record->decls()) {
7218 if (auto *M = dyn_cast<CXXMethodDecl>(D)) {
7219 // FIXME: We could do this check for dependent types with non-dependent
7220 // bases.
7221 if (!Record->isDependentType()) {
7222 // See if a method overloads virtual methods in a base
7223 // class without overriding any.
7224 if (!M->isStatic())
7225 DiagnoseHiddenVirtualMethods(M);
7226 if (M->hasAttr<OverrideAttr>())
7227 HasMethodWithOverrideControl = true;
7228 else if (M->size_overridden_methods() > 0)
7229 HasOverridingMethodWithoutOverrideControl = true;
7232 if (!isa<CXXDestructorDecl>(M))
7233 CompleteMemberFunction(M);
7234 } else if (auto *F = dyn_cast<FriendDecl>(D)) {
7235 CheckForDefaultedFunction(
7236 dyn_cast_or_null<FunctionDecl>(F->getFriendDecl()));
7240 if (HasOverridingMethodWithoutOverrideControl) {
7241 bool HasInconsistentOverrideControl = HasMethodWithOverrideControl;
7242 for (auto *M : Record->methods())
7243 DiagnoseAbsenceOfOverrideControl(M, HasInconsistentOverrideControl);
7246 // Check the defaulted secondary comparisons after any other member functions.
7247 for (FunctionDecl *FD : DefaultedSecondaryComparisons) {
7248 CheckExplicitlyDefaultedFunction(S, FD);
7250 // If this is a member function, we deferred checking it until now.
7251 if (auto *MD = dyn_cast<CXXMethodDecl>(FD))
7252 CheckCompletedMemberFunction(MD);
7255 // ms_struct is a request to use the same ABI rules as MSVC. Check
7256 // whether this class uses any C++ features that are implemented
7257 // completely differently in MSVC, and if so, emit a diagnostic.
7258 // That diagnostic defaults to an error, but we allow projects to
7259 // map it down to a warning (or ignore it). It's a fairly common
7260 // practice among users of the ms_struct pragma to mass-annotate
7261 // headers, sweeping up a bunch of types that the project doesn't
7262 // really rely on MSVC-compatible layout for. We must therefore
7263 // support "ms_struct except for C++ stuff" as a secondary ABI.
7264 // Don't emit this diagnostic if the feature was enabled as a
7265 // language option (as opposed to via a pragma or attribute), as
7266 // the option -mms-bitfields otherwise essentially makes it impossible
7267 // to build C++ code, unless this diagnostic is turned off.
7268 if (Record->isMsStruct(Context) && !Context.getLangOpts().MSBitfields &&
7269 (Record->isPolymorphic() || Record->getNumBases())) {
7270 Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
7273 checkClassLevelDLLAttribute(Record);
7274 checkClassLevelCodeSegAttribute(Record);
7276 bool ClangABICompat4 =
7277 Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4;
7278 TargetInfo::CallingConvKind CCK =
7279 Context.getTargetInfo().getCallingConvKind(ClangABICompat4);
7280 bool CanPass = canPassInRegisters(*this, Record, CCK);
7282 // Do not change ArgPassingRestrictions if it has already been set to
7283 // ArgPassingKind::CanNeverPassInRegs.
7284 if (Record->getArgPassingRestrictions() !=
7285 RecordArgPassingKind::CanNeverPassInRegs)
7286 Record->setArgPassingRestrictions(
7287 CanPass ? RecordArgPassingKind::CanPassInRegs
7288 : RecordArgPassingKind::CannotPassInRegs);
7290 // If canPassInRegisters returns true despite the record having a non-trivial
7291 // destructor, the record is destructed in the callee. This happens only when
7292 // the record or one of its subobjects has a field annotated with trivial_abi
7293 // or a field qualified with ObjC __strong/__weak.
7294 if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee())
7295 Record->setParamDestroyedInCallee(true);
7296 else if (Record->hasNonTrivialDestructor())
7297 Record->setParamDestroyedInCallee(CanPass);
7299 if (getLangOpts().ForceEmitVTables) {
7300 // If we want to emit all the vtables, we need to mark it as used. This
7301 // is especially required for cases like vtable assumption loads.
7302 MarkVTableUsed(Record->getInnerLocStart(), Record);
7305 if (getLangOpts().CUDA) {
7306 if (Record->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>())
7307 checkCUDADeviceBuiltinSurfaceClassTemplate(*this, Record);
7308 else if (Record->hasAttr<CUDADeviceBuiltinTextureTypeAttr>())
7309 checkCUDADeviceBuiltinTextureClassTemplate(*this, Record);
7313 /// Look up the special member function that would be called by a special
7314 /// member function for a subobject of class type.
7316 /// \param Class The class type of the subobject.
7317 /// \param CSM The kind of special member function.
7318 /// \param FieldQuals If the subobject is a field, its cv-qualifiers.
7319 /// \param ConstRHS True if this is a copy operation with a const object
7320 /// on its RHS, that is, if the argument to the outer special member
7321 /// function is 'const' and this is not a field marked 'mutable'.
7322 static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember(
7323 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
7324 unsigned FieldQuals, bool ConstRHS) {
7325 unsigned LHSQuals = 0;
7326 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
7327 LHSQuals = FieldQuals;
7329 unsigned RHSQuals = FieldQuals;
7330 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
7331 RHSQuals = 0;
7332 else if (ConstRHS)
7333 RHSQuals |= Qualifiers::Const;
7335 return S.LookupSpecialMember(Class, CSM,
7336 RHSQuals & Qualifiers::Const,
7337 RHSQuals & Qualifiers::Volatile,
7338 false,
7339 LHSQuals & Qualifiers::Const,
7340 LHSQuals & Qualifiers::Volatile);
7343 class Sema::InheritedConstructorInfo {
7344 Sema &S;
7345 SourceLocation UseLoc;
7347 /// A mapping from the base classes through which the constructor was
7348 /// inherited to the using shadow declaration in that base class (or a null
7349 /// pointer if the constructor was declared in that base class).
7350 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *>
7351 InheritedFromBases;
7353 public:
7354 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc,
7355 ConstructorUsingShadowDecl *Shadow)
7356 : S(S), UseLoc(UseLoc) {
7357 bool DiagnosedMultipleConstructedBases = false;
7358 CXXRecordDecl *ConstructedBase = nullptr;
7359 BaseUsingDecl *ConstructedBaseIntroducer = nullptr;
7361 // Find the set of such base class subobjects and check that there's a
7362 // unique constructed subobject.
7363 for (auto *D : Shadow->redecls()) {
7364 auto *DShadow = cast<ConstructorUsingShadowDecl>(D);
7365 auto *DNominatedBase = DShadow->getNominatedBaseClass();
7366 auto *DConstructedBase = DShadow->getConstructedBaseClass();
7368 InheritedFromBases.insert(
7369 std::make_pair(DNominatedBase->getCanonicalDecl(),
7370 DShadow->getNominatedBaseClassShadowDecl()));
7371 if (DShadow->constructsVirtualBase())
7372 InheritedFromBases.insert(
7373 std::make_pair(DConstructedBase->getCanonicalDecl(),
7374 DShadow->getConstructedBaseClassShadowDecl()));
7375 else
7376 assert(DNominatedBase == DConstructedBase);
7378 // [class.inhctor.init]p2:
7379 // If the constructor was inherited from multiple base class subobjects
7380 // of type B, the program is ill-formed.
7381 if (!ConstructedBase) {
7382 ConstructedBase = DConstructedBase;
7383 ConstructedBaseIntroducer = D->getIntroducer();
7384 } else if (ConstructedBase != DConstructedBase &&
7385 !Shadow->isInvalidDecl()) {
7386 if (!DiagnosedMultipleConstructedBases) {
7387 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor)
7388 << Shadow->getTargetDecl();
7389 S.Diag(ConstructedBaseIntroducer->getLocation(),
7390 diag::note_ambiguous_inherited_constructor_using)
7391 << ConstructedBase;
7392 DiagnosedMultipleConstructedBases = true;
7394 S.Diag(D->getIntroducer()->getLocation(),
7395 diag::note_ambiguous_inherited_constructor_using)
7396 << DConstructedBase;
7400 if (DiagnosedMultipleConstructedBases)
7401 Shadow->setInvalidDecl();
7404 /// Find the constructor to use for inherited construction of a base class,
7405 /// and whether that base class constructor inherits the constructor from a
7406 /// virtual base class (in which case it won't actually invoke it).
7407 std::pair<CXXConstructorDecl *, bool>
7408 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const {
7409 auto It = InheritedFromBases.find(Base->getCanonicalDecl());
7410 if (It == InheritedFromBases.end())
7411 return std::make_pair(nullptr, false);
7413 // This is an intermediary class.
7414 if (It->second)
7415 return std::make_pair(
7416 S.findInheritingConstructor(UseLoc, Ctor, It->second),
7417 It->second->constructsVirtualBase());
7419 // This is the base class from which the constructor was inherited.
7420 return std::make_pair(Ctor, false);
7424 /// Is the special member function which would be selected to perform the
7425 /// specified operation on the specified class type a constexpr constructor?
7426 static bool
7427 specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
7428 Sema::CXXSpecialMember CSM, unsigned Quals,
7429 bool ConstRHS,
7430 CXXConstructorDecl *InheritedCtor = nullptr,
7431 Sema::InheritedConstructorInfo *Inherited = nullptr) {
7432 // Suppress duplicate constraint checking here, in case a constraint check
7433 // caused us to decide to do this. Any truely recursive checks will get
7434 // caught during these checks anyway.
7435 Sema::SatisfactionStackResetRAII SSRAII{S};
7437 // If we're inheriting a constructor, see if we need to call it for this base
7438 // class.
7439 if (InheritedCtor) {
7440 assert(CSM == Sema::CXXDefaultConstructor);
7441 auto BaseCtor =
7442 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first;
7443 if (BaseCtor)
7444 return BaseCtor->isConstexpr();
7447 if (CSM == Sema::CXXDefaultConstructor)
7448 return ClassDecl->hasConstexprDefaultConstructor();
7449 if (CSM == Sema::CXXDestructor)
7450 return ClassDecl->hasConstexprDestructor();
7452 Sema::SpecialMemberOverloadResult SMOR =
7453 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
7454 if (!SMOR.getMethod())
7455 // A constructor we wouldn't select can't be "involved in initializing"
7456 // anything.
7457 return true;
7458 return SMOR.getMethod()->isConstexpr();
7461 /// Determine whether the specified special member function would be constexpr
7462 /// if it were implicitly defined.
7463 static bool defaultedSpecialMemberIsConstexpr(
7464 Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM,
7465 bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr,
7466 Sema::InheritedConstructorInfo *Inherited = nullptr) {
7467 if (!S.getLangOpts().CPlusPlus11)
7468 return false;
7470 // C++11 [dcl.constexpr]p4:
7471 // In the definition of a constexpr constructor [...]
7472 bool Ctor = true;
7473 switch (CSM) {
7474 case Sema::CXXDefaultConstructor:
7475 if (Inherited)
7476 break;
7477 // Since default constructor lookup is essentially trivial (and cannot
7478 // involve, for instance, template instantiation), we compute whether a
7479 // defaulted default constructor is constexpr directly within CXXRecordDecl.
7481 // This is important for performance; we need to know whether the default
7482 // constructor is constexpr to determine whether the type is a literal type.
7483 return ClassDecl->defaultedDefaultConstructorIsConstexpr();
7485 case Sema::CXXCopyConstructor:
7486 case Sema::CXXMoveConstructor:
7487 // For copy or move constructors, we need to perform overload resolution.
7488 break;
7490 case Sema::CXXCopyAssignment:
7491 case Sema::CXXMoveAssignment:
7492 if (!S.getLangOpts().CPlusPlus14)
7493 return false;
7494 // In C++1y, we need to perform overload resolution.
7495 Ctor = false;
7496 break;
7498 case Sema::CXXDestructor:
7499 return ClassDecl->defaultedDestructorIsConstexpr();
7501 case Sema::CXXInvalid:
7502 return false;
7505 // -- if the class is a non-empty union, or for each non-empty anonymous
7506 // union member of a non-union class, exactly one non-static data member
7507 // shall be initialized; [DR1359]
7509 // If we squint, this is guaranteed, since exactly one non-static data member
7510 // will be initialized (if the constructor isn't deleted), we just don't know
7511 // which one.
7512 if (Ctor && ClassDecl->isUnion())
7513 return CSM == Sema::CXXDefaultConstructor
7514 ? ClassDecl->hasInClassInitializer() ||
7515 !ClassDecl->hasVariantMembers()
7516 : true;
7518 // -- the class shall not have any virtual base classes;
7519 if (Ctor && ClassDecl->getNumVBases())
7520 return false;
7522 // C++1y [class.copy]p26:
7523 // -- [the class] is a literal type, and
7524 if (!Ctor && !ClassDecl->isLiteral())
7525 return false;
7527 // -- every constructor involved in initializing [...] base class
7528 // sub-objects shall be a constexpr constructor;
7529 // -- the assignment operator selected to copy/move each direct base
7530 // class is a constexpr function, and
7531 for (const auto &B : ClassDecl->bases()) {
7532 const RecordType *BaseType = B.getType()->getAs<RecordType>();
7533 if (!BaseType)
7534 continue;
7535 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7536 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg,
7537 InheritedCtor, Inherited))
7538 return false;
7541 // -- every constructor involved in initializing non-static data members
7542 // [...] shall be a constexpr constructor;
7543 // -- every non-static data member and base class sub-object shall be
7544 // initialized
7545 // -- for each non-static data member of X that is of class type (or array
7546 // thereof), the assignment operator selected to copy/move that member is
7547 // a constexpr function
7548 for (const auto *F : ClassDecl->fields()) {
7549 if (F->isInvalidDecl())
7550 continue;
7551 if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer())
7552 continue;
7553 QualType BaseType = S.Context.getBaseElementType(F->getType());
7554 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
7555 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7556 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
7557 BaseType.getCVRQualifiers(),
7558 ConstArg && !F->isMutable()))
7559 return false;
7560 } else if (CSM == Sema::CXXDefaultConstructor) {
7561 return false;
7565 // All OK, it's constexpr!
7566 return true;
7569 namespace {
7570 /// RAII object to register a defaulted function as having its exception
7571 /// specification computed.
7572 struct ComputingExceptionSpec {
7573 Sema &S;
7575 ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc)
7576 : S(S) {
7577 Sema::CodeSynthesisContext Ctx;
7578 Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation;
7579 Ctx.PointOfInstantiation = Loc;
7580 Ctx.Entity = FD;
7581 S.pushCodeSynthesisContext(Ctx);
7583 ~ComputingExceptionSpec() {
7584 S.popCodeSynthesisContext();
7589 static Sema::ImplicitExceptionSpecification
7590 ComputeDefaultedSpecialMemberExceptionSpec(
7591 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
7592 Sema::InheritedConstructorInfo *ICI);
7594 static Sema::ImplicitExceptionSpecification
7595 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc,
7596 FunctionDecl *FD,
7597 Sema::DefaultedComparisonKind DCK);
7599 static Sema::ImplicitExceptionSpecification
7600 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) {
7601 auto DFK = S.getDefaultedFunctionKind(FD);
7602 if (DFK.isSpecialMember())
7603 return ComputeDefaultedSpecialMemberExceptionSpec(
7604 S, Loc, cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), nullptr);
7605 if (DFK.isComparison())
7606 return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD,
7607 DFK.asComparison());
7609 auto *CD = cast<CXXConstructorDecl>(FD);
7610 assert(CD->getInheritedConstructor() &&
7611 "only defaulted functions and inherited constructors have implicit "
7612 "exception specs");
7613 Sema::InheritedConstructorInfo ICI(
7614 S, Loc, CD->getInheritedConstructor().getShadowDecl());
7615 return ComputeDefaultedSpecialMemberExceptionSpec(
7616 S, Loc, CD, Sema::CXXDefaultConstructor, &ICI);
7619 static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
7620 CXXMethodDecl *MD) {
7621 FunctionProtoType::ExtProtoInfo EPI;
7623 // Build an exception specification pointing back at this member.
7624 EPI.ExceptionSpec.Type = EST_Unevaluated;
7625 EPI.ExceptionSpec.SourceDecl = MD;
7627 // Set the calling convention to the default for C++ instance methods.
7628 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
7629 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
7630 /*IsCXXMethod=*/true));
7631 return EPI;
7634 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) {
7635 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
7636 if (FPT->getExceptionSpecType() != EST_Unevaluated)
7637 return;
7639 // Evaluate the exception specification.
7640 auto IES = computeImplicitExceptionSpec(*this, Loc, FD);
7641 auto ESI = IES.getExceptionSpec();
7643 // Update the type of the special member to use it.
7644 UpdateExceptionSpec(FD, ESI);
7647 void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) {
7648 assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted");
7650 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD);
7651 if (!DefKind) {
7652 assert(FD->getDeclContext()->isDependentContext());
7653 return;
7656 if (DefKind.isComparison())
7657 UnusedPrivateFields.clear();
7659 if (DefKind.isSpecialMember()
7660 ? CheckExplicitlyDefaultedSpecialMember(cast<CXXMethodDecl>(FD),
7661 DefKind.asSpecialMember(),
7662 FD->getDefaultLoc())
7663 : CheckExplicitlyDefaultedComparison(S, FD, DefKind.asComparison()))
7664 FD->setInvalidDecl();
7667 bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD,
7668 CXXSpecialMember CSM,
7669 SourceLocation DefaultLoc) {
7670 CXXRecordDecl *RD = MD->getParent();
7672 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
7673 "not an explicitly-defaulted special member");
7675 // Defer all checking for special members of a dependent type.
7676 if (RD->isDependentType())
7677 return false;
7679 // Whether this was the first-declared instance of the constructor.
7680 // This affects whether we implicitly add an exception spec and constexpr.
7681 bool First = MD == MD->getCanonicalDecl();
7683 bool HadError = false;
7685 // C++11 [dcl.fct.def.default]p1:
7686 // A function that is explicitly defaulted shall
7687 // -- be a special member function [...] (checked elsewhere),
7688 // -- have the same type (except for ref-qualifiers, and except that a
7689 // copy operation can take a non-const reference) as an implicit
7690 // declaration, and
7691 // -- not have default arguments.
7692 // C++2a changes the second bullet to instead delete the function if it's
7693 // defaulted on its first declaration, unless it's "an assignment operator,
7694 // and its return type differs or its parameter type is not a reference".
7695 bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus20 && First;
7696 bool ShouldDeleteForTypeMismatch = false;
7697 unsigned ExpectedParams = 1;
7698 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
7699 ExpectedParams = 0;
7700 if (MD->getNumExplicitParams() != ExpectedParams) {
7701 // This checks for default arguments: a copy or move constructor with a
7702 // default argument is classified as a default constructor, and assignment
7703 // operations and destructors can't have default arguments.
7704 Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
7705 << CSM << MD->getSourceRange();
7706 HadError = true;
7707 } else if (MD->isVariadic()) {
7708 if (DeleteOnTypeMismatch)
7709 ShouldDeleteForTypeMismatch = true;
7710 else {
7711 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
7712 << CSM << MD->getSourceRange();
7713 HadError = true;
7717 const FunctionProtoType *Type = MD->getType()->castAs<FunctionProtoType>();
7719 bool CanHaveConstParam = false;
7720 if (CSM == CXXCopyConstructor)
7721 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
7722 else if (CSM == CXXCopyAssignment)
7723 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
7725 QualType ReturnType = Context.VoidTy;
7726 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
7727 // Check for return type matching.
7728 ReturnType = Type->getReturnType();
7729 QualType ThisType = MD->getFunctionObjectParameterType();
7731 QualType DeclType = Context.getTypeDeclType(RD);
7732 DeclType = Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr,
7733 DeclType, nullptr);
7734 DeclType = Context.getAddrSpaceQualType(
7735 DeclType, ThisType.getQualifiers().getAddressSpace());
7736 QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType);
7738 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
7739 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
7740 << (CSM == CXXMoveAssignment) << ExpectedReturnType;
7741 HadError = true;
7744 // A defaulted special member cannot have cv-qualifiers.
7745 if (ThisType.isConstQualified() || ThisType.isVolatileQualified()) {
7746 if (DeleteOnTypeMismatch)
7747 ShouldDeleteForTypeMismatch = true;
7748 else {
7749 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
7750 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
7751 HadError = true;
7754 // [C++23][dcl.fct.def.default]/p2.2
7755 // if F2 has an implicit object parameter of type “reference to C”,
7756 // F1 may be an explicit object member function whose explicit object
7757 // parameter is of (possibly different) type “reference to C”,
7758 // in which case the type of F1 would differ from the type of F2
7759 // in that the type of F1 has an additional parameter;
7760 if (!Context.hasSameType(
7761 ThisType.getNonReferenceType().getUnqualifiedType(),
7762 Context.getRecordType(RD))) {
7763 if (DeleteOnTypeMismatch)
7764 ShouldDeleteForTypeMismatch = true;
7765 else {
7766 Diag(MD->getLocation(),
7767 diag::err_defaulted_special_member_explicit_object_mismatch)
7768 << (CSM == CXXMoveAssignment) << RD << MD->getSourceRange();
7769 HadError = true;
7774 // Check for parameter type matching.
7775 QualType ArgType =
7776 ExpectedParams
7777 ? Type->getParamType(MD->isExplicitObjectMemberFunction() ? 1 : 0)
7778 : QualType();
7779 bool HasConstParam = false;
7780 if (ExpectedParams && ArgType->isReferenceType()) {
7781 // Argument must be reference to possibly-const T.
7782 QualType ReferentType = ArgType->getPointeeType();
7783 HasConstParam = ReferentType.isConstQualified();
7785 if (ReferentType.isVolatileQualified()) {
7786 if (DeleteOnTypeMismatch)
7787 ShouldDeleteForTypeMismatch = true;
7788 else {
7789 Diag(MD->getLocation(),
7790 diag::err_defaulted_special_member_volatile_param) << CSM;
7791 HadError = true;
7795 if (HasConstParam && !CanHaveConstParam) {
7796 if (DeleteOnTypeMismatch)
7797 ShouldDeleteForTypeMismatch = true;
7798 else if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
7799 Diag(MD->getLocation(),
7800 diag::err_defaulted_special_member_copy_const_param)
7801 << (CSM == CXXCopyAssignment);
7802 // FIXME: Explain why this special member can't be const.
7803 HadError = true;
7804 } else {
7805 Diag(MD->getLocation(),
7806 diag::err_defaulted_special_member_move_const_param)
7807 << (CSM == CXXMoveAssignment);
7808 HadError = true;
7811 } else if (ExpectedParams) {
7812 // A copy assignment operator can take its argument by value, but a
7813 // defaulted one cannot.
7814 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
7815 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
7816 HadError = true;
7819 // C++11 [dcl.fct.def.default]p2:
7820 // An explicitly-defaulted function may be declared constexpr only if it
7821 // would have been implicitly declared as constexpr,
7822 // Do not apply this rule to members of class templates, since core issue 1358
7823 // makes such functions always instantiate to constexpr functions. For
7824 // functions which cannot be constexpr (for non-constructors in C++11 and for
7825 // destructors in C++14 and C++17), this is checked elsewhere.
7827 // FIXME: This should not apply if the member is deleted.
7828 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
7829 HasConstParam);
7831 // C++14 [dcl.constexpr]p6 (CWG DR647/CWG DR1358):
7832 // If the instantiated template specialization of a constexpr function
7833 // template or member function of a class template would fail to satisfy
7834 // the requirements for a constexpr function or constexpr constructor, that
7835 // specialization is still a constexpr function or constexpr constructor,
7836 // even though a call to such a function cannot appear in a constant
7837 // expression.
7838 if (MD->isTemplateInstantiation() && MD->isConstexpr())
7839 Constexpr = true;
7841 if ((getLangOpts().CPlusPlus20 ||
7842 (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
7843 : isa<CXXConstructorDecl>(MD))) &&
7844 MD->isConstexpr() && !Constexpr &&
7845 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
7846 if (!MD->isConsteval() && RD->getNumVBases()) {
7847 Diag(MD->getBeginLoc(), diag::err_incorrect_defaulted_constexpr_with_vb)
7848 << CSM;
7849 for (const auto &I : RD->vbases())
7850 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here);
7851 } else {
7852 Diag(MD->getBeginLoc(), MD->isConsteval()
7853 ? diag::err_incorrect_defaulted_consteval
7854 : diag::err_incorrect_defaulted_constexpr)
7855 << CSM;
7857 // FIXME: Explain why the special member can't be constexpr.
7858 HadError = true;
7861 if (First) {
7862 // C++2a [dcl.fct.def.default]p3:
7863 // If a function is explicitly defaulted on its first declaration, it is
7864 // implicitly considered to be constexpr if the implicit declaration
7865 // would be.
7866 MD->setConstexprKind(Constexpr ? (MD->isConsteval()
7867 ? ConstexprSpecKind::Consteval
7868 : ConstexprSpecKind::Constexpr)
7869 : ConstexprSpecKind::Unspecified);
7871 if (!Type->hasExceptionSpec()) {
7872 // C++2a [except.spec]p3:
7873 // If a declaration of a function does not have a noexcept-specifier
7874 // [and] is defaulted on its first declaration, [...] the exception
7875 // specification is as specified below
7876 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
7877 EPI.ExceptionSpec.Type = EST_Unevaluated;
7878 EPI.ExceptionSpec.SourceDecl = MD;
7879 MD->setType(
7880 Context.getFunctionType(ReturnType, Type->getParamTypes(), EPI));
7884 if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) {
7885 if (First) {
7886 SetDeclDeleted(MD, MD->getLocation());
7887 if (!inTemplateInstantiation() && !HadError) {
7888 Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << CSM;
7889 if (ShouldDeleteForTypeMismatch) {
7890 Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << CSM;
7891 } else if (ShouldDeleteSpecialMember(MD, CSM, nullptr,
7892 /*Diagnose*/ true) &&
7893 DefaultLoc.isValid()) {
7894 Diag(DefaultLoc, diag::note_replace_equals_default_to_delete)
7895 << FixItHint::CreateReplacement(DefaultLoc, "delete");
7898 if (ShouldDeleteForTypeMismatch && !HadError) {
7899 Diag(MD->getLocation(),
7900 diag::warn_cxx17_compat_defaulted_method_type_mismatch) << CSM;
7902 } else {
7903 // C++11 [dcl.fct.def.default]p4:
7904 // [For a] user-provided explicitly-defaulted function [...] if such a
7905 // function is implicitly defined as deleted, the program is ill-formed.
7906 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
7907 assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl");
7908 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
7909 HadError = true;
7913 return HadError;
7916 namespace {
7917 /// Helper class for building and checking a defaulted comparison.
7919 /// Defaulted functions are built in two phases:
7921 /// * First, the set of operations that the function will perform are
7922 /// identified, and some of them are checked. If any of the checked
7923 /// operations is invalid in certain ways, the comparison function is
7924 /// defined as deleted and no body is built.
7925 /// * Then, if the function is not defined as deleted, the body is built.
7927 /// This is accomplished by performing two visitation steps over the eventual
7928 /// body of the function.
7929 template<typename Derived, typename ResultList, typename Result,
7930 typename Subobject>
7931 class DefaultedComparisonVisitor {
7932 public:
7933 using DefaultedComparisonKind = Sema::DefaultedComparisonKind;
7935 DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7936 DefaultedComparisonKind DCK)
7937 : S(S), RD(RD), FD(FD), DCK(DCK) {
7938 if (auto *Info = FD->getDefaultedFunctionInfo()) {
7939 // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an
7940 // UnresolvedSet to avoid this copy.
7941 Fns.assign(Info->getUnqualifiedLookups().begin(),
7942 Info->getUnqualifiedLookups().end());
7946 ResultList visit() {
7947 // The type of an lvalue naming a parameter of this function.
7948 QualType ParamLvalType =
7949 FD->getParamDecl(0)->getType().getNonReferenceType();
7951 ResultList Results;
7953 switch (DCK) {
7954 case DefaultedComparisonKind::None:
7955 llvm_unreachable("not a defaulted comparison");
7957 case DefaultedComparisonKind::Equal:
7958 case DefaultedComparisonKind::ThreeWay:
7959 getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers());
7960 return Results;
7962 case DefaultedComparisonKind::NotEqual:
7963 case DefaultedComparisonKind::Relational:
7964 Results.add(getDerived().visitExpandedSubobject(
7965 ParamLvalType, getDerived().getCompleteObject()));
7966 return Results;
7968 llvm_unreachable("");
7971 protected:
7972 Derived &getDerived() { return static_cast<Derived&>(*this); }
7974 /// Visit the expanded list of subobjects of the given type, as specified in
7975 /// C++2a [class.compare.default].
7977 /// \return \c true if the ResultList object said we're done, \c false if not.
7978 bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record,
7979 Qualifiers Quals) {
7980 // C++2a [class.compare.default]p4:
7981 // The direct base class subobjects of C
7982 for (CXXBaseSpecifier &Base : Record->bases())
7983 if (Results.add(getDerived().visitSubobject(
7984 S.Context.getQualifiedType(Base.getType(), Quals),
7985 getDerived().getBase(&Base))))
7986 return true;
7988 // followed by the non-static data members of C
7989 for (FieldDecl *Field : Record->fields()) {
7990 // C++23 [class.bit]p2:
7991 // Unnamed bit-fields are not members ...
7992 if (Field->isUnnamedBitfield())
7993 continue;
7994 // Recursively expand anonymous structs.
7995 if (Field->isAnonymousStructOrUnion()) {
7996 if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(),
7997 Quals))
7998 return true;
7999 continue;
8002 // Figure out the type of an lvalue denoting this field.
8003 Qualifiers FieldQuals = Quals;
8004 if (Field->isMutable())
8005 FieldQuals.removeConst();
8006 QualType FieldType =
8007 S.Context.getQualifiedType(Field->getType(), FieldQuals);
8009 if (Results.add(getDerived().visitSubobject(
8010 FieldType, getDerived().getField(Field))))
8011 return true;
8014 // form a list of subobjects.
8015 return false;
8018 Result visitSubobject(QualType Type, Subobject Subobj) {
8019 // In that list, any subobject of array type is recursively expanded
8020 const ArrayType *AT = S.Context.getAsArrayType(Type);
8021 if (auto *CAT = dyn_cast_or_null<ConstantArrayType>(AT))
8022 return getDerived().visitSubobjectArray(CAT->getElementType(),
8023 CAT->getSize(), Subobj);
8024 return getDerived().visitExpandedSubobject(Type, Subobj);
8027 Result visitSubobjectArray(QualType Type, const llvm::APInt &Size,
8028 Subobject Subobj) {
8029 return getDerived().visitSubobject(Type, Subobj);
8032 protected:
8033 Sema &S;
8034 CXXRecordDecl *RD;
8035 FunctionDecl *FD;
8036 DefaultedComparisonKind DCK;
8037 UnresolvedSet<16> Fns;
8040 /// Information about a defaulted comparison, as determined by
8041 /// DefaultedComparisonAnalyzer.
8042 struct DefaultedComparisonInfo {
8043 bool Deleted = false;
8044 bool Constexpr = true;
8045 ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering;
8047 static DefaultedComparisonInfo deleted() {
8048 DefaultedComparisonInfo Deleted;
8049 Deleted.Deleted = true;
8050 return Deleted;
8053 bool add(const DefaultedComparisonInfo &R) {
8054 Deleted |= R.Deleted;
8055 Constexpr &= R.Constexpr;
8056 Category = commonComparisonType(Category, R.Category);
8057 return Deleted;
8061 /// An element in the expanded list of subobjects of a defaulted comparison, as
8062 /// specified in C++2a [class.compare.default]p4.
8063 struct DefaultedComparisonSubobject {
8064 enum { CompleteObject, Member, Base } Kind;
8065 NamedDecl *Decl;
8066 SourceLocation Loc;
8069 /// A visitor over the notional body of a defaulted comparison that determines
8070 /// whether that body would be deleted or constexpr.
8071 class DefaultedComparisonAnalyzer
8072 : public DefaultedComparisonVisitor<DefaultedComparisonAnalyzer,
8073 DefaultedComparisonInfo,
8074 DefaultedComparisonInfo,
8075 DefaultedComparisonSubobject> {
8076 public:
8077 enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr };
8079 private:
8080 DiagnosticKind Diagnose;
8082 public:
8083 using Base = DefaultedComparisonVisitor;
8084 using Result = DefaultedComparisonInfo;
8085 using Subobject = DefaultedComparisonSubobject;
8087 friend Base;
8089 DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
8090 DefaultedComparisonKind DCK,
8091 DiagnosticKind Diagnose = NoDiagnostics)
8092 : Base(S, RD, FD, DCK), Diagnose(Diagnose) {}
8094 Result visit() {
8095 if ((DCK == DefaultedComparisonKind::Equal ||
8096 DCK == DefaultedComparisonKind::ThreeWay) &&
8097 RD->hasVariantMembers()) {
8098 // C++2a [class.compare.default]p2 [P2002R0]:
8099 // A defaulted comparison operator function for class C is defined as
8100 // deleted if [...] C has variant members.
8101 if (Diagnose == ExplainDeleted) {
8102 S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union)
8103 << FD << RD->isUnion() << RD;
8105 return Result::deleted();
8108 return Base::visit();
8111 private:
8112 Subobject getCompleteObject() {
8113 return Subobject{Subobject::CompleteObject, RD, FD->getLocation()};
8116 Subobject getBase(CXXBaseSpecifier *Base) {
8117 return Subobject{Subobject::Base, Base->getType()->getAsCXXRecordDecl(),
8118 Base->getBaseTypeLoc()};
8121 Subobject getField(FieldDecl *Field) {
8122 return Subobject{Subobject::Member, Field, Field->getLocation()};
8125 Result visitExpandedSubobject(QualType Type, Subobject Subobj) {
8126 // C++2a [class.compare.default]p2 [P2002R0]:
8127 // A defaulted <=> or == operator function for class C is defined as
8128 // deleted if any non-static data member of C is of reference type
8129 if (Type->isReferenceType()) {
8130 if (Diagnose == ExplainDeleted) {
8131 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member)
8132 << FD << RD;
8134 return Result::deleted();
8137 // [...] Let xi be an lvalue denoting the ith element [...]
8138 OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue);
8139 Expr *Args[] = {&Xi, &Xi};
8141 // All operators start by trying to apply that same operator recursively.
8142 OverloadedOperatorKind OO = FD->getOverloadedOperator();
8143 assert(OO != OO_None && "not an overloaded operator!");
8144 return visitBinaryOperator(OO, Args, Subobj);
8147 Result
8148 visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef<Expr *> Args,
8149 Subobject Subobj,
8150 OverloadCandidateSet *SpaceshipCandidates = nullptr) {
8151 // Note that there is no need to consider rewritten candidates here if
8152 // we've already found there is no viable 'operator<=>' candidate (and are
8153 // considering synthesizing a '<=>' from '==' and '<').
8154 OverloadCandidateSet CandidateSet(
8155 FD->getLocation(), OverloadCandidateSet::CSK_Operator,
8156 OverloadCandidateSet::OperatorRewriteInfo(
8157 OO, FD->getLocation(),
8158 /*AllowRewrittenCandidates=*/!SpaceshipCandidates));
8160 /// C++2a [class.compare.default]p1 [P2002R0]:
8161 /// [...] the defaulted function itself is never a candidate for overload
8162 /// resolution [...]
8163 CandidateSet.exclude(FD);
8165 if (Args[0]->getType()->isOverloadableType())
8166 S.LookupOverloadedBinOp(CandidateSet, OO, Fns, Args);
8167 else
8168 // FIXME: We determine whether this is a valid expression by checking to
8169 // see if there's a viable builtin operator candidate for it. That isn't
8170 // really what the rules ask us to do, but should give the right results.
8171 S.AddBuiltinOperatorCandidates(OO, FD->getLocation(), Args, CandidateSet);
8173 Result R;
8175 OverloadCandidateSet::iterator Best;
8176 switch (CandidateSet.BestViableFunction(S, FD->getLocation(), Best)) {
8177 case OR_Success: {
8178 // C++2a [class.compare.secondary]p2 [P2002R0]:
8179 // The operator function [...] is defined as deleted if [...] the
8180 // candidate selected by overload resolution is not a rewritten
8181 // candidate.
8182 if ((DCK == DefaultedComparisonKind::NotEqual ||
8183 DCK == DefaultedComparisonKind::Relational) &&
8184 !Best->RewriteKind) {
8185 if (Diagnose == ExplainDeleted) {
8186 if (Best->Function) {
8187 S.Diag(Best->Function->getLocation(),
8188 diag::note_defaulted_comparison_not_rewritten_callee)
8189 << FD;
8190 } else {
8191 assert(Best->Conversions.size() == 2 &&
8192 Best->Conversions[0].isUserDefined() &&
8193 "non-user-defined conversion from class to built-in "
8194 "comparison");
8195 S.Diag(Best->Conversions[0]
8196 .UserDefined.FoundConversionFunction.getDecl()
8197 ->getLocation(),
8198 diag::note_defaulted_comparison_not_rewritten_conversion)
8199 << FD;
8202 return Result::deleted();
8205 // Throughout C++2a [class.compare]: if overload resolution does not
8206 // result in a usable function, the candidate function is defined as
8207 // deleted. This requires that we selected an accessible function.
8209 // Note that this only considers the access of the function when named
8210 // within the type of the subobject, and not the access path for any
8211 // derived-to-base conversion.
8212 CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl();
8213 if (ArgClass && Best->FoundDecl.getDecl() &&
8214 Best->FoundDecl.getDecl()->isCXXClassMember()) {
8215 QualType ObjectType = Subobj.Kind == Subobject::Member
8216 ? Args[0]->getType()
8217 : S.Context.getRecordType(RD);
8218 if (!S.isMemberAccessibleForDeletion(
8219 ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc,
8220 Diagnose == ExplainDeleted
8221 ? S.PDiag(diag::note_defaulted_comparison_inaccessible)
8222 << FD << Subobj.Kind << Subobj.Decl
8223 : S.PDiag()))
8224 return Result::deleted();
8227 bool NeedsDeducing =
8228 OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType();
8230 if (FunctionDecl *BestFD = Best->Function) {
8231 // C++2a [class.compare.default]p3 [P2002R0]:
8232 // A defaulted comparison function is constexpr-compatible if
8233 // [...] no overlod resolution performed [...] results in a
8234 // non-constexpr function.
8235 assert(!BestFD->isDeleted() && "wrong overload resolution result");
8236 // If it's not constexpr, explain why not.
8237 if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) {
8238 if (Subobj.Kind != Subobject::CompleteObject)
8239 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr)
8240 << Subobj.Kind << Subobj.Decl;
8241 S.Diag(BestFD->getLocation(),
8242 diag::note_defaulted_comparison_not_constexpr_here);
8243 // Bail out after explaining; we don't want any more notes.
8244 return Result::deleted();
8246 R.Constexpr &= BestFD->isConstexpr();
8248 if (NeedsDeducing) {
8249 // If any callee has an undeduced return type, deduce it now.
8250 // FIXME: It's not clear how a failure here should be handled. For
8251 // now, we produce an eager diagnostic, because that is forward
8252 // compatible with most (all?) other reasonable options.
8253 if (BestFD->getReturnType()->isUndeducedType() &&
8254 S.DeduceReturnType(BestFD, FD->getLocation(),
8255 /*Diagnose=*/false)) {
8256 // Don't produce a duplicate error when asked to explain why the
8257 // comparison is deleted: we diagnosed that when initially checking
8258 // the defaulted operator.
8259 if (Diagnose == NoDiagnostics) {
8260 S.Diag(
8261 FD->getLocation(),
8262 diag::err_defaulted_comparison_cannot_deduce_undeduced_auto)
8263 << Subobj.Kind << Subobj.Decl;
8264 S.Diag(
8265 Subobj.Loc,
8266 diag::note_defaulted_comparison_cannot_deduce_undeduced_auto)
8267 << Subobj.Kind << Subobj.Decl;
8268 S.Diag(BestFD->getLocation(),
8269 diag::note_defaulted_comparison_cannot_deduce_callee)
8270 << Subobj.Kind << Subobj.Decl;
8272 return Result::deleted();
8274 auto *Info = S.Context.CompCategories.lookupInfoForType(
8275 BestFD->getCallResultType());
8276 if (!Info) {
8277 if (Diagnose == ExplainDeleted) {
8278 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce)
8279 << Subobj.Kind << Subobj.Decl
8280 << BestFD->getCallResultType().withoutLocalFastQualifiers();
8281 S.Diag(BestFD->getLocation(),
8282 diag::note_defaulted_comparison_cannot_deduce_callee)
8283 << Subobj.Kind << Subobj.Decl;
8285 return Result::deleted();
8287 R.Category = Info->Kind;
8289 } else {
8290 QualType T = Best->BuiltinParamTypes[0];
8291 assert(T == Best->BuiltinParamTypes[1] &&
8292 "builtin comparison for different types?");
8293 assert(Best->BuiltinParamTypes[2].isNull() &&
8294 "invalid builtin comparison");
8296 if (NeedsDeducing) {
8297 std::optional<ComparisonCategoryType> Cat =
8298 getComparisonCategoryForBuiltinCmp(T);
8299 assert(Cat && "no category for builtin comparison?");
8300 R.Category = *Cat;
8304 // Note that we might be rewriting to a different operator. That call is
8305 // not considered until we come to actually build the comparison function.
8306 break;
8309 case OR_Ambiguous:
8310 if (Diagnose == ExplainDeleted) {
8311 unsigned Kind = 0;
8312 if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship)
8313 Kind = OO == OO_EqualEqual ? 1 : 2;
8314 CandidateSet.NoteCandidates(
8315 PartialDiagnosticAt(
8316 Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous)
8317 << FD << Kind << Subobj.Kind << Subobj.Decl),
8318 S, OCD_AmbiguousCandidates, Args);
8320 R = Result::deleted();
8321 break;
8323 case OR_Deleted:
8324 if (Diagnose == ExplainDeleted) {
8325 if ((DCK == DefaultedComparisonKind::NotEqual ||
8326 DCK == DefaultedComparisonKind::Relational) &&
8327 !Best->RewriteKind) {
8328 S.Diag(Best->Function->getLocation(),
8329 diag::note_defaulted_comparison_not_rewritten_callee)
8330 << FD;
8331 } else {
8332 S.Diag(Subobj.Loc,
8333 diag::note_defaulted_comparison_calls_deleted)
8334 << FD << Subobj.Kind << Subobj.Decl;
8335 S.NoteDeletedFunction(Best->Function);
8338 R = Result::deleted();
8339 break;
8341 case OR_No_Viable_Function:
8342 // If there's no usable candidate, we're done unless we can rewrite a
8343 // '<=>' in terms of '==' and '<'.
8344 if (OO == OO_Spaceship &&
8345 S.Context.CompCategories.lookupInfoForType(FD->getReturnType())) {
8346 // For any kind of comparison category return type, we need a usable
8347 // '==' and a usable '<'.
8348 if (!R.add(visitBinaryOperator(OO_EqualEqual, Args, Subobj,
8349 &CandidateSet)))
8350 R.add(visitBinaryOperator(OO_Less, Args, Subobj, &CandidateSet));
8351 break;
8354 if (Diagnose == ExplainDeleted) {
8355 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function)
8356 << FD << (OO == OO_EqualEqual || OO == OO_ExclaimEqual)
8357 << Subobj.Kind << Subobj.Decl;
8359 // For a three-way comparison, list both the candidates for the
8360 // original operator and the candidates for the synthesized operator.
8361 if (SpaceshipCandidates) {
8362 SpaceshipCandidates->NoteCandidates(
8363 S, Args,
8364 SpaceshipCandidates->CompleteCandidates(S, OCD_AllCandidates,
8365 Args, FD->getLocation()));
8366 S.Diag(Subobj.Loc,
8367 diag::note_defaulted_comparison_no_viable_function_synthesized)
8368 << (OO == OO_EqualEqual ? 0 : 1);
8371 CandidateSet.NoteCandidates(
8372 S, Args,
8373 CandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args,
8374 FD->getLocation()));
8376 R = Result::deleted();
8377 break;
8380 return R;
8384 /// A list of statements.
8385 struct StmtListResult {
8386 bool IsInvalid = false;
8387 llvm::SmallVector<Stmt*, 16> Stmts;
8389 bool add(const StmtResult &S) {
8390 IsInvalid |= S.isInvalid();
8391 if (IsInvalid)
8392 return true;
8393 Stmts.push_back(S.get());
8394 return false;
8398 /// A visitor over the notional body of a defaulted comparison that synthesizes
8399 /// the actual body.
8400 class DefaultedComparisonSynthesizer
8401 : public DefaultedComparisonVisitor<DefaultedComparisonSynthesizer,
8402 StmtListResult, StmtResult,
8403 std::pair<ExprResult, ExprResult>> {
8404 SourceLocation Loc;
8405 unsigned ArrayDepth = 0;
8407 public:
8408 using Base = DefaultedComparisonVisitor;
8409 using ExprPair = std::pair<ExprResult, ExprResult>;
8411 friend Base;
8413 DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
8414 DefaultedComparisonKind DCK,
8415 SourceLocation BodyLoc)
8416 : Base(S, RD, FD, DCK), Loc(BodyLoc) {}
8418 /// Build a suitable function body for this defaulted comparison operator.
8419 StmtResult build() {
8420 Sema::CompoundScopeRAII CompoundScope(S);
8422 StmtListResult Stmts = visit();
8423 if (Stmts.IsInvalid)
8424 return StmtError();
8426 ExprResult RetVal;
8427 switch (DCK) {
8428 case DefaultedComparisonKind::None:
8429 llvm_unreachable("not a defaulted comparison");
8431 case DefaultedComparisonKind::Equal: {
8432 // C++2a [class.eq]p3:
8433 // [...] compar[e] the corresponding elements [...] until the first
8434 // index i where xi == yi yields [...] false. If no such index exists,
8435 // V is true. Otherwise, V is false.
8437 // Join the comparisons with '&&'s and return the result. Use a right
8438 // fold (traversing the conditions right-to-left), because that
8439 // short-circuits more naturally.
8440 auto OldStmts = std::move(Stmts.Stmts);
8441 Stmts.Stmts.clear();
8442 ExprResult CmpSoFar;
8443 // Finish a particular comparison chain.
8444 auto FinishCmp = [&] {
8445 if (Expr *Prior = CmpSoFar.get()) {
8446 // Convert the last expression to 'return ...;'
8447 if (RetVal.isUnset() && Stmts.Stmts.empty())
8448 RetVal = CmpSoFar;
8449 // Convert any prior comparison to 'if (!(...)) return false;'
8450 else if (Stmts.add(buildIfNotCondReturnFalse(Prior)))
8451 return true;
8452 CmpSoFar = ExprResult();
8454 return false;
8456 for (Stmt *EAsStmt : llvm::reverse(OldStmts)) {
8457 Expr *E = dyn_cast<Expr>(EAsStmt);
8458 if (!E) {
8459 // Found an array comparison.
8460 if (FinishCmp() || Stmts.add(EAsStmt))
8461 return StmtError();
8462 continue;
8465 if (CmpSoFar.isUnset()) {
8466 CmpSoFar = E;
8467 continue;
8469 CmpSoFar = S.CreateBuiltinBinOp(Loc, BO_LAnd, E, CmpSoFar.get());
8470 if (CmpSoFar.isInvalid())
8471 return StmtError();
8473 if (FinishCmp())
8474 return StmtError();
8475 std::reverse(Stmts.Stmts.begin(), Stmts.Stmts.end());
8476 // If no such index exists, V is true.
8477 if (RetVal.isUnset())
8478 RetVal = S.ActOnCXXBoolLiteral(Loc, tok::kw_true);
8479 break;
8482 case DefaultedComparisonKind::ThreeWay: {
8483 // Per C++2a [class.spaceship]p3, as a fallback add:
8484 // return static_cast<R>(std::strong_ordering::equal);
8485 QualType StrongOrdering = S.CheckComparisonCategoryType(
8486 ComparisonCategoryType::StrongOrdering, Loc,
8487 Sema::ComparisonCategoryUsage::DefaultedOperator);
8488 if (StrongOrdering.isNull())
8489 return StmtError();
8490 VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(StrongOrdering)
8491 .getValueInfo(ComparisonCategoryResult::Equal)
8492 ->VD;
8493 RetVal = getDecl(EqualVD);
8494 if (RetVal.isInvalid())
8495 return StmtError();
8496 RetVal = buildStaticCastToR(RetVal.get());
8497 break;
8500 case DefaultedComparisonKind::NotEqual:
8501 case DefaultedComparisonKind::Relational:
8502 RetVal = cast<Expr>(Stmts.Stmts.pop_back_val());
8503 break;
8506 // Build the final return statement.
8507 if (RetVal.isInvalid())
8508 return StmtError();
8509 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, RetVal.get());
8510 if (ReturnStmt.isInvalid())
8511 return StmtError();
8512 Stmts.Stmts.push_back(ReturnStmt.get());
8514 return S.ActOnCompoundStmt(Loc, Loc, Stmts.Stmts, /*IsStmtExpr=*/false);
8517 private:
8518 ExprResult getDecl(ValueDecl *VD) {
8519 return S.BuildDeclarationNameExpr(
8520 CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD);
8523 ExprResult getParam(unsigned I) {
8524 ParmVarDecl *PD = FD->getParamDecl(I);
8525 return getDecl(PD);
8528 ExprPair getCompleteObject() {
8529 unsigned Param = 0;
8530 ExprResult LHS;
8531 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD);
8532 MD && MD->isImplicitObjectMemberFunction()) {
8533 // LHS is '*this'.
8534 LHS = S.ActOnCXXThis(Loc);
8535 if (!LHS.isInvalid())
8536 LHS = S.CreateBuiltinUnaryOp(Loc, UO_Deref, LHS.get());
8537 } else {
8538 LHS = getParam(Param++);
8540 ExprResult RHS = getParam(Param++);
8541 assert(Param == FD->getNumParams());
8542 return {LHS, RHS};
8545 ExprPair getBase(CXXBaseSpecifier *Base) {
8546 ExprPair Obj = getCompleteObject();
8547 if (Obj.first.isInvalid() || Obj.second.isInvalid())
8548 return {ExprError(), ExprError()};
8549 CXXCastPath Path = {Base};
8550 return {S.ImpCastExprToType(Obj.first.get(), Base->getType(),
8551 CK_DerivedToBase, VK_LValue, &Path),
8552 S.ImpCastExprToType(Obj.second.get(), Base->getType(),
8553 CK_DerivedToBase, VK_LValue, &Path)};
8556 ExprPair getField(FieldDecl *Field) {
8557 ExprPair Obj = getCompleteObject();
8558 if (Obj.first.isInvalid() || Obj.second.isInvalid())
8559 return {ExprError(), ExprError()};
8561 DeclAccessPair Found = DeclAccessPair::make(Field, Field->getAccess());
8562 DeclarationNameInfo NameInfo(Field->getDeclName(), Loc);
8563 return {S.BuildFieldReferenceExpr(Obj.first.get(), /*IsArrow=*/false, Loc,
8564 CXXScopeSpec(), Field, Found, NameInfo),
8565 S.BuildFieldReferenceExpr(Obj.second.get(), /*IsArrow=*/false, Loc,
8566 CXXScopeSpec(), Field, Found, NameInfo)};
8569 // FIXME: When expanding a subobject, register a note in the code synthesis
8570 // stack to say which subobject we're comparing.
8572 StmtResult buildIfNotCondReturnFalse(ExprResult Cond) {
8573 if (Cond.isInvalid())
8574 return StmtError();
8576 ExprResult NotCond = S.CreateBuiltinUnaryOp(Loc, UO_LNot, Cond.get());
8577 if (NotCond.isInvalid())
8578 return StmtError();
8580 ExprResult False = S.ActOnCXXBoolLiteral(Loc, tok::kw_false);
8581 assert(!False.isInvalid() && "should never fail");
8582 StmtResult ReturnFalse = S.BuildReturnStmt(Loc, False.get());
8583 if (ReturnFalse.isInvalid())
8584 return StmtError();
8586 return S.ActOnIfStmt(Loc, IfStatementKind::Ordinary, Loc, nullptr,
8587 S.ActOnCondition(nullptr, Loc, NotCond.get(),
8588 Sema::ConditionKind::Boolean),
8589 Loc, ReturnFalse.get(), SourceLocation(), nullptr);
8592 StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size,
8593 ExprPair Subobj) {
8594 QualType SizeType = S.Context.getSizeType();
8595 Size = Size.zextOrTrunc(S.Context.getTypeSize(SizeType));
8597 // Build 'size_t i$n = 0'.
8598 IdentifierInfo *IterationVarName = nullptr;
8600 SmallString<8> Str;
8601 llvm::raw_svector_ostream OS(Str);
8602 OS << "i" << ArrayDepth;
8603 IterationVarName = &S.Context.Idents.get(OS.str());
8605 VarDecl *IterationVar = VarDecl::Create(
8606 S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType,
8607 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None);
8608 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
8609 IterationVar->setInit(
8610 IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
8611 Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc);
8613 auto IterRef = [&] {
8614 ExprResult Ref = S.BuildDeclarationNameExpr(
8615 CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc),
8616 IterationVar);
8617 assert(!Ref.isInvalid() && "can't reference our own variable?");
8618 return Ref.get();
8621 // Build 'i$n != Size'.
8622 ExprResult Cond = S.CreateBuiltinBinOp(
8623 Loc, BO_NE, IterRef(),
8624 IntegerLiteral::Create(S.Context, Size, SizeType, Loc));
8625 assert(!Cond.isInvalid() && "should never fail");
8627 // Build '++i$n'.
8628 ExprResult Inc = S.CreateBuiltinUnaryOp(Loc, UO_PreInc, IterRef());
8629 assert(!Inc.isInvalid() && "should never fail");
8631 // Build 'a[i$n]' and 'b[i$n]'.
8632 auto Index = [&](ExprResult E) {
8633 if (E.isInvalid())
8634 return ExprError();
8635 return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc);
8637 Subobj.first = Index(Subobj.first);
8638 Subobj.second = Index(Subobj.second);
8640 // Compare the array elements.
8641 ++ArrayDepth;
8642 StmtResult Substmt = visitSubobject(Type, Subobj);
8643 --ArrayDepth;
8645 if (Substmt.isInvalid())
8646 return StmtError();
8648 // For the inner level of an 'operator==', build 'if (!cmp) return false;'.
8649 // For outer levels or for an 'operator<=>' we already have a suitable
8650 // statement that returns as necessary.
8651 if (Expr *ElemCmp = dyn_cast<Expr>(Substmt.get())) {
8652 assert(DCK == DefaultedComparisonKind::Equal &&
8653 "should have non-expression statement");
8654 Substmt = buildIfNotCondReturnFalse(ElemCmp);
8655 if (Substmt.isInvalid())
8656 return StmtError();
8659 // Build 'for (...) ...'
8660 return S.ActOnForStmt(Loc, Loc, Init,
8661 S.ActOnCondition(nullptr, Loc, Cond.get(),
8662 Sema::ConditionKind::Boolean),
8663 S.MakeFullDiscardedValueExpr(Inc.get()), Loc,
8664 Substmt.get());
8667 StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) {
8668 if (Obj.first.isInvalid() || Obj.second.isInvalid())
8669 return StmtError();
8671 OverloadedOperatorKind OO = FD->getOverloadedOperator();
8672 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(OO);
8673 ExprResult Op;
8674 if (Type->isOverloadableType())
8675 Op = S.CreateOverloadedBinOp(Loc, Opc, Fns, Obj.first.get(),
8676 Obj.second.get(), /*PerformADL=*/true,
8677 /*AllowRewrittenCandidates=*/true, FD);
8678 else
8679 Op = S.CreateBuiltinBinOp(Loc, Opc, Obj.first.get(), Obj.second.get());
8680 if (Op.isInvalid())
8681 return StmtError();
8683 switch (DCK) {
8684 case DefaultedComparisonKind::None:
8685 llvm_unreachable("not a defaulted comparison");
8687 case DefaultedComparisonKind::Equal:
8688 // Per C++2a [class.eq]p2, each comparison is individually contextually
8689 // converted to bool.
8690 Op = S.PerformContextuallyConvertToBool(Op.get());
8691 if (Op.isInvalid())
8692 return StmtError();
8693 return Op.get();
8695 case DefaultedComparisonKind::ThreeWay: {
8696 // Per C++2a [class.spaceship]p3, form:
8697 // if (R cmp = static_cast<R>(op); cmp != 0)
8698 // return cmp;
8699 QualType R = FD->getReturnType();
8700 Op = buildStaticCastToR(Op.get());
8701 if (Op.isInvalid())
8702 return StmtError();
8704 // R cmp = ...;
8705 IdentifierInfo *Name = &S.Context.Idents.get("cmp");
8706 VarDecl *VD =
8707 VarDecl::Create(S.Context, S.CurContext, Loc, Loc, Name, R,
8708 S.Context.getTrivialTypeSourceInfo(R, Loc), SC_None);
8709 S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false);
8710 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc);
8712 // cmp != 0
8713 ExprResult VDRef = getDecl(VD);
8714 if (VDRef.isInvalid())
8715 return StmtError();
8716 llvm::APInt ZeroVal(S.Context.getIntWidth(S.Context.IntTy), 0);
8717 Expr *Zero =
8718 IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc);
8719 ExprResult Comp;
8720 if (VDRef.get()->getType()->isOverloadableType())
8721 Comp = S.CreateOverloadedBinOp(Loc, BO_NE, Fns, VDRef.get(), Zero, true,
8722 true, FD);
8723 else
8724 Comp = S.CreateBuiltinBinOp(Loc, BO_NE, VDRef.get(), Zero);
8725 if (Comp.isInvalid())
8726 return StmtError();
8727 Sema::ConditionResult Cond = S.ActOnCondition(
8728 nullptr, Loc, Comp.get(), Sema::ConditionKind::Boolean);
8729 if (Cond.isInvalid())
8730 return StmtError();
8732 // return cmp;
8733 VDRef = getDecl(VD);
8734 if (VDRef.isInvalid())
8735 return StmtError();
8736 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, VDRef.get());
8737 if (ReturnStmt.isInvalid())
8738 return StmtError();
8740 // if (...)
8741 return S.ActOnIfStmt(Loc, IfStatementKind::Ordinary, Loc, InitStmt, Cond,
8742 Loc, ReturnStmt.get(),
8743 /*ElseLoc=*/SourceLocation(), /*Else=*/nullptr);
8746 case DefaultedComparisonKind::NotEqual:
8747 case DefaultedComparisonKind::Relational:
8748 // C++2a [class.compare.secondary]p2:
8749 // Otherwise, the operator function yields x @ y.
8750 return Op.get();
8752 llvm_unreachable("");
8755 /// Build "static_cast<R>(E)".
8756 ExprResult buildStaticCastToR(Expr *E) {
8757 QualType R = FD->getReturnType();
8758 assert(!R->isUndeducedType() && "type should have been deduced already");
8760 // Don't bother forming a no-op cast in the common case.
8761 if (E->isPRValue() && S.Context.hasSameType(E->getType(), R))
8762 return E;
8763 return S.BuildCXXNamedCast(Loc, tok::kw_static_cast,
8764 S.Context.getTrivialTypeSourceInfo(R, Loc), E,
8765 SourceRange(Loc, Loc), SourceRange(Loc, Loc));
8770 /// Perform the unqualified lookups that might be needed to form a defaulted
8771 /// comparison function for the given operator.
8772 static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S,
8773 UnresolvedSetImpl &Operators,
8774 OverloadedOperatorKind Op) {
8775 auto Lookup = [&](OverloadedOperatorKind OO) {
8776 Self.LookupOverloadedOperatorName(OO, S, Operators);
8779 // Every defaulted operator looks up itself.
8780 Lookup(Op);
8781 // ... and the rewritten form of itself, if any.
8782 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Op))
8783 Lookup(ExtraOp);
8785 // For 'operator<=>', we also form a 'cmp != 0' expression, and might
8786 // synthesize a three-way comparison from '<' and '=='. In a dependent
8787 // context, we also need to look up '==' in case we implicitly declare a
8788 // defaulted 'operator=='.
8789 if (Op == OO_Spaceship) {
8790 Lookup(OO_ExclaimEqual);
8791 Lookup(OO_Less);
8792 Lookup(OO_EqualEqual);
8796 bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD,
8797 DefaultedComparisonKind DCK) {
8798 assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison");
8800 // Perform any unqualified lookups we're going to need to default this
8801 // function.
8802 if (S) {
8803 UnresolvedSet<32> Operators;
8804 lookupOperatorsForDefaultedComparison(*this, S, Operators,
8805 FD->getOverloadedOperator());
8806 FD->setDefaultedFunctionInfo(FunctionDecl::DefaultedFunctionInfo::Create(
8807 Context, Operators.pairs()));
8810 // C++2a [class.compare.default]p1:
8811 // A defaulted comparison operator function for some class C shall be a
8812 // non-template function declared in the member-specification of C that is
8813 // -- a non-static const non-volatile member of C having one parameter of
8814 // type const C& and either no ref-qualifier or the ref-qualifier &, or
8815 // -- a friend of C having two parameters of type const C& or two
8816 // parameters of type C.
8818 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext());
8819 bool IsMethod = isa<CXXMethodDecl>(FD);
8820 if (IsMethod) {
8821 auto *MD = cast<CXXMethodDecl>(FD);
8822 assert(!MD->isStatic() && "comparison function cannot be a static member");
8824 if (MD->getRefQualifier() == RQ_RValue) {
8825 Diag(MD->getLocation(), diag::err_ref_qualifier_comparison_operator);
8827 // Remove the ref qualifier to recover.
8828 const auto *FPT = MD->getType()->castAs<FunctionProtoType>();
8829 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8830 EPI.RefQualifier = RQ_None;
8831 MD->setType(Context.getFunctionType(FPT->getReturnType(),
8832 FPT->getParamTypes(), EPI));
8835 // If we're out-of-class, this is the class we're comparing.
8836 if (!RD)
8837 RD = MD->getParent();
8838 QualType T = MD->getFunctionObjectParameterType();
8839 if (!T.isConstQualified()) {
8840 SourceLocation Loc, InsertLoc;
8841 if (MD->isExplicitObjectMemberFunction()) {
8842 Loc = MD->getParamDecl(0)->getBeginLoc();
8843 InsertLoc = getLocForEndOfToken(
8844 MD->getParamDecl(0)->getExplicitObjectParamThisLoc());
8845 } else {
8846 Loc = MD->getLocation();
8847 if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc())
8848 InsertLoc = Loc.getRParenLoc();
8850 // Don't diagnose an implicit 'operator=='; we will have diagnosed the
8851 // corresponding defaulted 'operator<=>' already.
8852 if (!MD->isImplicit()) {
8853 Diag(Loc, diag::err_defaulted_comparison_non_const)
8854 << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const");
8857 // Add the 'const' to the type to recover.
8858 const auto *FPT = MD->getType()->castAs<FunctionProtoType>();
8859 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8860 EPI.TypeQuals.addConst();
8861 MD->setType(Context.getFunctionType(FPT->getReturnType(),
8862 FPT->getParamTypes(), EPI));
8865 if (MD->isVolatile()) {
8866 Diag(MD->getLocation(), diag::err_volatile_comparison_operator);
8868 // Remove the 'volatile' from the type to recover.
8869 const auto *FPT = MD->getType()->castAs<FunctionProtoType>();
8870 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8871 EPI.TypeQuals.removeVolatile();
8872 MD->setType(Context.getFunctionType(FPT->getReturnType(),
8873 FPT->getParamTypes(), EPI));
8877 if ((FD->getNumParams() -
8878 (unsigned)FD->hasCXXExplicitFunctionObjectParameter()) !=
8879 (IsMethod ? 1 : 2)) {
8880 // Let's not worry about using a variadic template pack here -- who would do
8881 // such a thing?
8882 Diag(FD->getLocation(), diag::err_defaulted_comparison_num_args)
8883 << int(IsMethod) << int(DCK);
8884 return true;
8887 const ParmVarDecl *KnownParm = nullptr;
8888 for (const ParmVarDecl *Param : FD->parameters()) {
8889 if (Param->isExplicitObjectParameter())
8890 continue;
8891 QualType ParmTy = Param->getType();
8893 if (!KnownParm) {
8894 auto CTy = ParmTy;
8895 // Is it `T const &`?
8896 bool Ok = !IsMethod;
8897 QualType ExpectedTy;
8898 if (RD)
8899 ExpectedTy = Context.getRecordType(RD);
8900 if (auto *Ref = CTy->getAs<ReferenceType>()) {
8901 CTy = Ref->getPointeeType();
8902 if (RD)
8903 ExpectedTy.addConst();
8904 Ok = true;
8907 // Is T a class?
8908 if (!Ok) {
8909 } else if (RD) {
8910 if (!RD->isDependentType() && !Context.hasSameType(CTy, ExpectedTy))
8911 Ok = false;
8912 } else if (auto *CRD = CTy->getAsRecordDecl()) {
8913 RD = cast<CXXRecordDecl>(CRD);
8914 } else {
8915 Ok = false;
8918 if (Ok) {
8919 KnownParm = Param;
8920 } else {
8921 // Don't diagnose an implicit 'operator=='; we will have diagnosed the
8922 // corresponding defaulted 'operator<=>' already.
8923 if (!FD->isImplicit()) {
8924 if (RD) {
8925 QualType PlainTy = Context.getRecordType(RD);
8926 QualType RefTy =
8927 Context.getLValueReferenceType(PlainTy.withConst());
8928 Diag(FD->getLocation(), diag::err_defaulted_comparison_param)
8929 << int(DCK) << ParmTy << RefTy << int(!IsMethod) << PlainTy
8930 << Param->getSourceRange();
8931 } else {
8932 assert(!IsMethod && "should know expected type for method");
8933 Diag(FD->getLocation(),
8934 diag::err_defaulted_comparison_param_unknown)
8935 << int(DCK) << ParmTy << Param->getSourceRange();
8938 return true;
8940 } else if (!Context.hasSameType(KnownParm->getType(), ParmTy)) {
8941 Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch)
8942 << int(DCK) << KnownParm->getType() << KnownParm->getSourceRange()
8943 << ParmTy << Param->getSourceRange();
8944 return true;
8948 assert(RD && "must have determined class");
8949 if (IsMethod) {
8950 } else if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
8951 // In-class, must be a friend decl.
8952 assert(FD->getFriendObjectKind() && "expected a friend declaration");
8953 } else {
8954 // Out of class, require the defaulted comparison to be a friend (of a
8955 // complete type).
8956 if (RequireCompleteType(FD->getLocation(), Context.getRecordType(RD),
8957 diag::err_defaulted_comparison_not_friend, int(DCK),
8958 int(1)))
8959 return true;
8961 if (llvm::none_of(RD->friends(), [&](const FriendDecl *F) {
8962 return FD->getCanonicalDecl() ==
8963 F->getFriendDecl()->getCanonicalDecl();
8964 })) {
8965 Diag(FD->getLocation(), diag::err_defaulted_comparison_not_friend)
8966 << int(DCK) << int(0) << RD;
8967 Diag(RD->getCanonicalDecl()->getLocation(), diag::note_declared_at);
8968 return true;
8972 // C++2a [class.eq]p1, [class.rel]p1:
8973 // A [defaulted comparison other than <=>] shall have a declared return
8974 // type bool.
8975 if (DCK != DefaultedComparisonKind::ThreeWay &&
8976 !FD->getDeclaredReturnType()->isDependentType() &&
8977 !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) {
8978 Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool)
8979 << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy
8980 << FD->getReturnTypeSourceRange();
8981 return true;
8983 // C++2a [class.spaceship]p2 [P2002R0]:
8984 // Let R be the declared return type [...]. If R is auto, [...]. Otherwise,
8985 // R shall not contain a placeholder type.
8986 if (QualType RT = FD->getDeclaredReturnType();
8987 DCK == DefaultedComparisonKind::ThreeWay &&
8988 RT->getContainedDeducedType() &&
8989 (!Context.hasSameType(RT, Context.getAutoDeductType()) ||
8990 RT->getContainedAutoType()->isConstrained())) {
8991 Diag(FD->getLocation(),
8992 diag::err_defaulted_comparison_deduced_return_type_not_auto)
8993 << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy
8994 << FD->getReturnTypeSourceRange();
8995 return true;
8998 // For a defaulted function in a dependent class, defer all remaining checks
8999 // until instantiation.
9000 if (RD->isDependentType())
9001 return false;
9003 // Determine whether the function should be defined as deleted.
9004 DefaultedComparisonInfo Info =
9005 DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit();
9007 bool First = FD == FD->getCanonicalDecl();
9009 if (!First) {
9010 if (Info.Deleted) {
9011 // C++11 [dcl.fct.def.default]p4:
9012 // [For a] user-provided explicitly-defaulted function [...] if such a
9013 // function is implicitly defined as deleted, the program is ill-formed.
9015 // This is really just a consequence of the general rule that you can
9016 // only delete a function on its first declaration.
9017 Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes)
9018 << FD->isImplicit() << (int)DCK;
9019 DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
9020 DefaultedComparisonAnalyzer::ExplainDeleted)
9021 .visit();
9022 return true;
9024 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
9025 // C++20 [class.compare.default]p1:
9026 // [...] A definition of a comparison operator as defaulted that appears
9027 // in a class shall be the first declaration of that function.
9028 Diag(FD->getLocation(), diag::err_non_first_default_compare_in_class)
9029 << (int)DCK;
9030 Diag(FD->getCanonicalDecl()->getLocation(),
9031 diag::note_previous_declaration);
9032 return true;
9036 // If we want to delete the function, then do so; there's nothing else to
9037 // check in that case.
9038 if (Info.Deleted) {
9039 SetDeclDeleted(FD, FD->getLocation());
9040 if (!inTemplateInstantiation() && !FD->isImplicit()) {
9041 Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted)
9042 << (int)DCK;
9043 DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
9044 DefaultedComparisonAnalyzer::ExplainDeleted)
9045 .visit();
9046 if (FD->getDefaultLoc().isValid())
9047 Diag(FD->getDefaultLoc(), diag::note_replace_equals_default_to_delete)
9048 << FixItHint::CreateReplacement(FD->getDefaultLoc(), "delete");
9050 return false;
9053 // C++2a [class.spaceship]p2:
9054 // The return type is deduced as the common comparison type of R0, R1, ...
9055 if (DCK == DefaultedComparisonKind::ThreeWay &&
9056 FD->getDeclaredReturnType()->isUndeducedAutoType()) {
9057 SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin();
9058 if (RetLoc.isInvalid())
9059 RetLoc = FD->getBeginLoc();
9060 // FIXME: Should we really care whether we have the complete type and the
9061 // 'enumerator' constants here? A forward declaration seems sufficient.
9062 QualType Cat = CheckComparisonCategoryType(
9063 Info.Category, RetLoc, ComparisonCategoryUsage::DefaultedOperator);
9064 if (Cat.isNull())
9065 return true;
9066 Context.adjustDeducedFunctionResultType(
9067 FD, SubstAutoType(FD->getDeclaredReturnType(), Cat));
9070 // C++2a [dcl.fct.def.default]p3 [P2002R0]:
9071 // An explicitly-defaulted function that is not defined as deleted may be
9072 // declared constexpr or consteval only if it is constexpr-compatible.
9073 // C++2a [class.compare.default]p3 [P2002R0]:
9074 // A defaulted comparison function is constexpr-compatible if it satisfies
9075 // the requirements for a constexpr function [...]
9076 // The only relevant requirements are that the parameter and return types are
9077 // literal types. The remaining conditions are checked by the analyzer.
9079 // We support P2448R2 in language modes earlier than C++23 as an extension.
9080 // The concept of constexpr-compatible was removed.
9081 // C++23 [dcl.fct.def.default]p3 [P2448R2]
9082 // A function explicitly defaulted on its first declaration is implicitly
9083 // inline, and is implicitly constexpr if it is constexpr-suitable.
9084 // C++23 [dcl.constexpr]p3
9085 // A function is constexpr-suitable if
9086 // - it is not a coroutine, and
9087 // - if the function is a constructor or destructor, its class does not
9088 // have any virtual base classes.
9089 if (FD->isConstexpr()) {
9090 if (CheckConstexprReturnType(*this, FD, CheckConstexprKind::Diagnose) &&
9091 CheckConstexprParameterTypes(*this, FD, CheckConstexprKind::Diagnose) &&
9092 !Info.Constexpr) {
9093 Diag(FD->getBeginLoc(),
9094 getLangOpts().CPlusPlus23
9095 ? diag::warn_cxx23_compat_defaulted_comparison_constexpr_mismatch
9096 : diag::ext_defaulted_comparison_constexpr_mismatch)
9097 << FD->isImplicit() << (int)DCK << FD->isConsteval();
9098 DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
9099 DefaultedComparisonAnalyzer::ExplainConstexpr)
9100 .visit();
9104 // C++2a [dcl.fct.def.default]p3 [P2002R0]:
9105 // If a constexpr-compatible function is explicitly defaulted on its first
9106 // declaration, it is implicitly considered to be constexpr.
9107 // FIXME: Only applying this to the first declaration seems problematic, as
9108 // simple reorderings can affect the meaning of the program.
9109 if (First && !FD->isConstexpr() && Info.Constexpr)
9110 FD->setConstexprKind(ConstexprSpecKind::Constexpr);
9112 // C++2a [except.spec]p3:
9113 // If a declaration of a function does not have a noexcept-specifier
9114 // [and] is defaulted on its first declaration, [...] the exception
9115 // specification is as specified below
9116 if (FD->getExceptionSpecType() == EST_None) {
9117 auto *FPT = FD->getType()->castAs<FunctionProtoType>();
9118 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9119 EPI.ExceptionSpec.Type = EST_Unevaluated;
9120 EPI.ExceptionSpec.SourceDecl = FD;
9121 FD->setType(Context.getFunctionType(FPT->getReturnType(),
9122 FPT->getParamTypes(), EPI));
9125 return false;
9128 void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD,
9129 FunctionDecl *Spaceship) {
9130 Sema::CodeSynthesisContext Ctx;
9131 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison;
9132 Ctx.PointOfInstantiation = Spaceship->getEndLoc();
9133 Ctx.Entity = Spaceship;
9134 pushCodeSynthesisContext(Ctx);
9136 if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship))
9137 EqualEqual->setImplicit();
9139 popCodeSynthesisContext();
9142 void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD,
9143 DefaultedComparisonKind DCK) {
9144 assert(FD->isDefaulted() && !FD->isDeleted() &&
9145 !FD->doesThisDeclarationHaveABody());
9146 if (FD->willHaveBody() || FD->isInvalidDecl())
9147 return;
9149 SynthesizedFunctionScope Scope(*this, FD);
9151 // Add a context note for diagnostics produced after this point.
9152 Scope.addContextNote(UseLoc);
9155 // Build and set up the function body.
9156 // The first parameter has type maybe-ref-to maybe-const T, use that to get
9157 // the type of the class being compared.
9158 auto PT = FD->getParamDecl(0)->getType();
9159 CXXRecordDecl *RD = PT.getNonReferenceType()->getAsCXXRecordDecl();
9160 SourceLocation BodyLoc =
9161 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation();
9162 StmtResult Body =
9163 DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build();
9164 if (Body.isInvalid()) {
9165 FD->setInvalidDecl();
9166 return;
9168 FD->setBody(Body.get());
9169 FD->markUsed(Context);
9172 // The exception specification is needed because we are defining the
9173 // function. Note that this will reuse the body we just built.
9174 ResolveExceptionSpec(UseLoc, FD->getType()->castAs<FunctionProtoType>());
9176 if (ASTMutationListener *L = getASTMutationListener())
9177 L->CompletedImplicitDefinition(FD);
9180 static Sema::ImplicitExceptionSpecification
9181 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc,
9182 FunctionDecl *FD,
9183 Sema::DefaultedComparisonKind DCK) {
9184 ComputingExceptionSpec CES(S, FD, Loc);
9185 Sema::ImplicitExceptionSpecification ExceptSpec(S);
9187 if (FD->isInvalidDecl())
9188 return ExceptSpec;
9190 // The common case is that we just defined the comparison function. In that
9191 // case, just look at whether the body can throw.
9192 if (FD->hasBody()) {
9193 ExceptSpec.CalledStmt(FD->getBody());
9194 } else {
9195 // Otherwise, build a body so we can check it. This should ideally only
9196 // happen when we're not actually marking the function referenced. (This is
9197 // only really important for efficiency: we don't want to build and throw
9198 // away bodies for comparison functions more than we strictly need to.)
9200 // Pretend to synthesize the function body in an unevaluated context.
9201 // Note that we can't actually just go ahead and define the function here:
9202 // we are not permitted to mark its callees as referenced.
9203 Sema::SynthesizedFunctionScope Scope(S, FD);
9204 EnterExpressionEvaluationContext Context(
9205 S, Sema::ExpressionEvaluationContext::Unevaluated);
9207 CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent());
9208 SourceLocation BodyLoc =
9209 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation();
9210 StmtResult Body =
9211 DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build();
9212 if (!Body.isInvalid())
9213 ExceptSpec.CalledStmt(Body.get());
9215 // FIXME: Can we hold onto this body and just transform it to potentially
9216 // evaluated when we're asked to define the function rather than rebuilding
9217 // it? Either that, or we should only build the bits of the body that we
9218 // need (the expressions, not the statements).
9221 return ExceptSpec;
9224 void Sema::CheckDelayedMemberExceptionSpecs() {
9225 decltype(DelayedOverridingExceptionSpecChecks) Overriding;
9226 decltype(DelayedEquivalentExceptionSpecChecks) Equivalent;
9228 std::swap(Overriding, DelayedOverridingExceptionSpecChecks);
9229 std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks);
9231 // Perform any deferred checking of exception specifications for virtual
9232 // destructors.
9233 for (auto &Check : Overriding)
9234 CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
9236 // Perform any deferred checking of exception specifications for befriended
9237 // special members.
9238 for (auto &Check : Equivalent)
9239 CheckEquivalentExceptionSpec(Check.second, Check.first);
9242 namespace {
9243 /// CRTP base class for visiting operations performed by a special member
9244 /// function (or inherited constructor).
9245 template<typename Derived>
9246 struct SpecialMemberVisitor {
9247 Sema &S;
9248 CXXMethodDecl *MD;
9249 Sema::CXXSpecialMember CSM;
9250 Sema::InheritedConstructorInfo *ICI;
9252 // Properties of the special member, computed for convenience.
9253 bool IsConstructor = false, IsAssignment = false, ConstArg = false;
9255 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
9256 Sema::InheritedConstructorInfo *ICI)
9257 : S(S), MD(MD), CSM(CSM), ICI(ICI) {
9258 switch (CSM) {
9259 case Sema::CXXDefaultConstructor:
9260 case Sema::CXXCopyConstructor:
9261 case Sema::CXXMoveConstructor:
9262 IsConstructor = true;
9263 break;
9264 case Sema::CXXCopyAssignment:
9265 case Sema::CXXMoveAssignment:
9266 IsAssignment = true;
9267 break;
9268 case Sema::CXXDestructor:
9269 break;
9270 case Sema::CXXInvalid:
9271 llvm_unreachable("invalid special member kind");
9274 if (MD->getNumExplicitParams()) {
9275 if (const ReferenceType *RT =
9276 MD->getNonObjectParameter(0)->getType()->getAs<ReferenceType>())
9277 ConstArg = RT->getPointeeType().isConstQualified();
9281 Derived &getDerived() { return static_cast<Derived&>(*this); }
9283 /// Is this a "move" special member?
9284 bool isMove() const {
9285 return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment;
9288 /// Look up the corresponding special member in the given class.
9289 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class,
9290 unsigned Quals, bool IsMutable) {
9291 return lookupCallFromSpecialMember(S, Class, CSM, Quals,
9292 ConstArg && !IsMutable);
9295 /// Look up the constructor for the specified base class to see if it's
9296 /// overridden due to this being an inherited constructor.
9297 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) {
9298 if (!ICI)
9299 return {};
9300 assert(CSM == Sema::CXXDefaultConstructor);
9301 auto *BaseCtor =
9302 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor();
9303 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first)
9304 return MD;
9305 return {};
9308 /// A base or member subobject.
9309 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
9311 /// Get the location to use for a subobject in diagnostics.
9312 static SourceLocation getSubobjectLoc(Subobject Subobj) {
9313 // FIXME: For an indirect virtual base, the direct base leading to
9314 // the indirect virtual base would be a more useful choice.
9315 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>())
9316 return B->getBaseTypeLoc();
9317 else
9318 return Subobj.get<FieldDecl*>()->getLocation();
9321 enum BasesToVisit {
9322 /// Visit all non-virtual (direct) bases.
9323 VisitNonVirtualBases,
9324 /// Visit all direct bases, virtual or not.
9325 VisitDirectBases,
9326 /// Visit all non-virtual bases, and all virtual bases if the class
9327 /// is not abstract.
9328 VisitPotentiallyConstructedBases,
9329 /// Visit all direct or virtual bases.
9330 VisitAllBases
9333 // Visit the bases and members of the class.
9334 bool visit(BasesToVisit Bases) {
9335 CXXRecordDecl *RD = MD->getParent();
9337 if (Bases == VisitPotentiallyConstructedBases)
9338 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases;
9340 for (auto &B : RD->bases())
9341 if ((Bases == VisitDirectBases || !B.isVirtual()) &&
9342 getDerived().visitBase(&B))
9343 return true;
9345 if (Bases == VisitAllBases)
9346 for (auto &B : RD->vbases())
9347 if (getDerived().visitBase(&B))
9348 return true;
9350 for (auto *F : RD->fields())
9351 if (!F->isInvalidDecl() && !F->isUnnamedBitfield() &&
9352 getDerived().visitField(F))
9353 return true;
9355 return false;
9360 namespace {
9361 struct SpecialMemberDeletionInfo
9362 : SpecialMemberVisitor<SpecialMemberDeletionInfo> {
9363 bool Diagnose;
9365 SourceLocation Loc;
9367 bool AllFieldsAreConst;
9369 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
9370 Sema::CXXSpecialMember CSM,
9371 Sema::InheritedConstructorInfo *ICI, bool Diagnose)
9372 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose),
9373 Loc(MD->getLocation()), AllFieldsAreConst(true) {}
9375 bool inUnion() const { return MD->getParent()->isUnion(); }
9377 Sema::CXXSpecialMember getEffectiveCSM() {
9378 return ICI ? Sema::CXXInvalid : CSM;
9381 bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType);
9383 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); }
9384 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); }
9386 bool shouldDeleteForBase(CXXBaseSpecifier *Base);
9387 bool shouldDeleteForField(FieldDecl *FD);
9388 bool shouldDeleteForAllConstMembers();
9390 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
9391 unsigned Quals);
9392 bool shouldDeleteForSubobjectCall(Subobject Subobj,
9393 Sema::SpecialMemberOverloadResult SMOR,
9394 bool IsDtorCallInCtor);
9396 bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
9400 /// Is the given special member inaccessible when used on the given
9401 /// sub-object.
9402 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
9403 CXXMethodDecl *target) {
9404 /// If we're operating on a base class, the object type is the
9405 /// type of this special member.
9406 QualType objectTy;
9407 AccessSpecifier access = target->getAccess();
9408 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
9409 objectTy = S.Context.getTypeDeclType(MD->getParent());
9410 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
9412 // If we're operating on a field, the object type is the type of the field.
9413 } else {
9414 objectTy = S.Context.getTypeDeclType(target->getParent());
9417 return S.isMemberAccessibleForDeletion(
9418 target->getParent(), DeclAccessPair::make(target, access), objectTy);
9421 /// Check whether we should delete a special member due to the implicit
9422 /// definition containing a call to a special member of a subobject.
9423 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
9424 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR,
9425 bool IsDtorCallInCtor) {
9426 CXXMethodDecl *Decl = SMOR.getMethod();
9427 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
9429 int DiagKind = -1;
9431 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
9432 DiagKind = !Decl ? 0 : 1;
9433 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
9434 DiagKind = 2;
9435 else if (!isAccessible(Subobj, Decl))
9436 DiagKind = 3;
9437 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
9438 !Decl->isTrivial()) {
9439 // A member of a union must have a trivial corresponding special member.
9440 // As a weird special case, a destructor call from a union's constructor
9441 // must be accessible and non-deleted, but need not be trivial. Such a
9442 // destructor is never actually called, but is semantically checked as
9443 // if it were.
9444 if (CSM == Sema::CXXDefaultConstructor) {
9445 // [class.default.ctor]p2:
9446 // A defaulted default constructor for class X is defined as deleted if
9447 // - X is a union that has a variant member with a non-trivial default
9448 // constructor and no variant member of X has a default member
9449 // initializer
9450 const auto *RD = cast<CXXRecordDecl>(Field->getParent());
9451 if (!RD->hasInClassInitializer())
9452 DiagKind = 4;
9453 } else {
9454 DiagKind = 4;
9458 if (DiagKind == -1)
9459 return false;
9461 if (Diagnose) {
9462 if (Field) {
9463 S.Diag(Field->getLocation(),
9464 diag::note_deleted_special_member_class_subobject)
9465 << getEffectiveCSM() << MD->getParent() << /*IsField*/true
9466 << Field << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/false;
9467 } else {
9468 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
9469 S.Diag(Base->getBeginLoc(),
9470 diag::note_deleted_special_member_class_subobject)
9471 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false
9472 << Base->getType() << DiagKind << IsDtorCallInCtor
9473 << /*IsObjCPtr*/false;
9476 if (DiagKind == 1)
9477 S.NoteDeletedFunction(Decl);
9478 // FIXME: Explain inaccessibility if DiagKind == 3.
9481 return true;
9484 /// Check whether we should delete a special member function due to having a
9485 /// direct or virtual base class or non-static data member of class type M.
9486 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
9487 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
9488 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
9489 bool IsMutable = Field && Field->isMutable();
9491 // C++11 [class.ctor]p5:
9492 // -- any direct or virtual base class, or non-static data member with no
9493 // brace-or-equal-initializer, has class type M (or array thereof) and
9494 // either M has no default constructor or overload resolution as applied
9495 // to M's default constructor results in an ambiguity or in a function
9496 // that is deleted or inaccessible
9497 // C++11 [class.copy]p11, C++11 [class.copy]p23:
9498 // -- a direct or virtual base class B that cannot be copied/moved because
9499 // overload resolution, as applied to B's corresponding special member,
9500 // results in an ambiguity or a function that is deleted or inaccessible
9501 // from the defaulted special member
9502 // C++11 [class.dtor]p5:
9503 // -- any direct or virtual base class [...] has a type with a destructor
9504 // that is deleted or inaccessible
9505 if (!(CSM == Sema::CXXDefaultConstructor &&
9506 Field && Field->hasInClassInitializer()) &&
9507 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
9508 false))
9509 return true;
9511 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
9512 // -- any direct or virtual base class or non-static data member has a
9513 // type with a destructor that is deleted or inaccessible
9514 if (IsConstructor) {
9515 Sema::SpecialMemberOverloadResult SMOR =
9516 S.LookupSpecialMember(Class, Sema::CXXDestructor,
9517 false, false, false, false, false);
9518 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
9519 return true;
9522 return false;
9525 bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember(
9526 FieldDecl *FD, QualType FieldType) {
9527 // The defaulted special functions are defined as deleted if this is a variant
9528 // member with a non-trivial ownership type, e.g., ObjC __strong or __weak
9529 // type under ARC.
9530 if (!FieldType.hasNonTrivialObjCLifetime())
9531 return false;
9533 // Don't make the defaulted default constructor defined as deleted if the
9534 // member has an in-class initializer.
9535 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer())
9536 return false;
9538 if (Diagnose) {
9539 auto *ParentClass = cast<CXXRecordDecl>(FD->getParent());
9540 S.Diag(FD->getLocation(),
9541 diag::note_deleted_special_member_class_subobject)
9542 << getEffectiveCSM() << ParentClass << /*IsField*/true
9543 << FD << 4 << /*IsDtorCallInCtor*/false << /*IsObjCPtr*/true;
9546 return true;
9549 /// Check whether we should delete a special member function due to the class
9550 /// having a particular direct or virtual base class.
9551 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
9552 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
9553 // If program is correct, BaseClass cannot be null, but if it is, the error
9554 // must be reported elsewhere.
9555 if (!BaseClass)
9556 return false;
9557 // If we have an inheriting constructor, check whether we're calling an
9558 // inherited constructor instead of a default constructor.
9559 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
9560 if (auto *BaseCtor = SMOR.getMethod()) {
9561 // Note that we do not check access along this path; other than that,
9562 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false);
9563 // FIXME: Check that the base has a usable destructor! Sink this into
9564 // shouldDeleteForClassSubobject.
9565 if (BaseCtor->isDeleted() && Diagnose) {
9566 S.Diag(Base->getBeginLoc(),
9567 diag::note_deleted_special_member_class_subobject)
9568 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false
9569 << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false
9570 << /*IsObjCPtr*/false;
9571 S.NoteDeletedFunction(BaseCtor);
9573 return BaseCtor->isDeleted();
9575 return shouldDeleteForClassSubobject(BaseClass, Base, 0);
9578 /// Check whether we should delete a special member function due to the class
9579 /// having a particular non-static data member.
9580 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
9581 QualType FieldType = S.Context.getBaseElementType(FD->getType());
9582 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
9584 if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType))
9585 return true;
9587 if (CSM == Sema::CXXDefaultConstructor) {
9588 // For a default constructor, all references must be initialized in-class
9589 // and, if a union, it must have a non-const member.
9590 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
9591 if (Diagnose)
9592 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
9593 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0;
9594 return true;
9596 // C++11 [class.ctor]p5 (modified by DR2394): any non-variant non-static
9597 // data member of const-qualified type (or array thereof) with no
9598 // brace-or-equal-initializer is not const-default-constructible.
9599 if (!inUnion() && FieldType.isConstQualified() &&
9600 !FD->hasInClassInitializer() &&
9601 (!FieldRecord || !FieldRecord->allowConstDefaultInit())) {
9602 if (Diagnose)
9603 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
9604 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1;
9605 return true;
9608 if (inUnion() && !FieldType.isConstQualified())
9609 AllFieldsAreConst = false;
9610 } else if (CSM == Sema::CXXCopyConstructor) {
9611 // For a copy constructor, data members must not be of rvalue reference
9612 // type.
9613 if (FieldType->isRValueReferenceType()) {
9614 if (Diagnose)
9615 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
9616 << MD->getParent() << FD << FieldType;
9617 return true;
9619 } else if (IsAssignment) {
9620 // For an assignment operator, data members must not be of reference type.
9621 if (FieldType->isReferenceType()) {
9622 if (Diagnose)
9623 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
9624 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0;
9625 return true;
9627 if (!FieldRecord && FieldType.isConstQualified()) {
9628 // C++11 [class.copy]p23:
9629 // -- a non-static data member of const non-class type (or array thereof)
9630 if (Diagnose)
9631 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
9632 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1;
9633 return true;
9637 if (FieldRecord) {
9638 // Some additional restrictions exist on the variant members.
9639 if (!inUnion() && FieldRecord->isUnion() &&
9640 FieldRecord->isAnonymousStructOrUnion()) {
9641 bool AllVariantFieldsAreConst = true;
9643 // FIXME: Handle anonymous unions declared within anonymous unions.
9644 for (auto *UI : FieldRecord->fields()) {
9645 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
9647 if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType))
9648 return true;
9650 if (!UnionFieldType.isConstQualified())
9651 AllVariantFieldsAreConst = false;
9653 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
9654 if (UnionFieldRecord &&
9655 shouldDeleteForClassSubobject(UnionFieldRecord, UI,
9656 UnionFieldType.getCVRQualifiers()))
9657 return true;
9660 // At least one member in each anonymous union must be non-const
9661 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
9662 !FieldRecord->field_empty()) {
9663 if (Diagnose)
9664 S.Diag(FieldRecord->getLocation(),
9665 diag::note_deleted_default_ctor_all_const)
9666 << !!ICI << MD->getParent() << /*anonymous union*/1;
9667 return true;
9670 // Don't check the implicit member of the anonymous union type.
9671 // This is technically non-conformant but supported, and we have a
9672 // diagnostic for this elsewhere.
9673 return false;
9676 if (shouldDeleteForClassSubobject(FieldRecord, FD,
9677 FieldType.getCVRQualifiers()))
9678 return true;
9681 return false;
9684 /// C++11 [class.ctor] p5:
9685 /// A defaulted default constructor for a class X is defined as deleted if
9686 /// X is a union and all of its variant members are of const-qualified type.
9687 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
9688 // This is a silly definition, because it gives an empty union a deleted
9689 // default constructor. Don't do that.
9690 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) {
9691 bool AnyFields = false;
9692 for (auto *F : MD->getParent()->fields())
9693 if ((AnyFields = !F->isUnnamedBitfield()))
9694 break;
9695 if (!AnyFields)
9696 return false;
9697 if (Diagnose)
9698 S.Diag(MD->getParent()->getLocation(),
9699 diag::note_deleted_default_ctor_all_const)
9700 << !!ICI << MD->getParent() << /*not anonymous union*/0;
9701 return true;
9703 return false;
9706 /// Determine whether a defaulted special member function should be defined as
9707 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
9708 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
9709 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
9710 InheritedConstructorInfo *ICI,
9711 bool Diagnose) {
9712 if (MD->isInvalidDecl())
9713 return false;
9714 CXXRecordDecl *RD = MD->getParent();
9715 assert(!RD->isDependentType() && "do deletion after instantiation");
9716 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
9717 return false;
9719 // C++11 [expr.lambda.prim]p19:
9720 // The closure type associated with a lambda-expression has a
9721 // deleted (8.4.3) default constructor and a deleted copy
9722 // assignment operator.
9723 // C++2a adds back these operators if the lambda has no lambda-capture.
9724 if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() &&
9725 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
9726 if (Diagnose)
9727 Diag(RD->getLocation(), diag::note_lambda_decl);
9728 return true;
9731 // For an anonymous struct or union, the copy and assignment special members
9732 // will never be used, so skip the check. For an anonymous union declared at
9733 // namespace scope, the constructor and destructor are used.
9734 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
9735 RD->isAnonymousStructOrUnion())
9736 return false;
9738 // C++11 [class.copy]p7, p18:
9739 // If the class definition declares a move constructor or move assignment
9740 // operator, an implicitly declared copy constructor or copy assignment
9741 // operator is defined as deleted.
9742 if (MD->isImplicit() &&
9743 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
9744 CXXMethodDecl *UserDeclaredMove = nullptr;
9746 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the
9747 // deletion of the corresponding copy operation, not both copy operations.
9748 // MSVC 2015 has adopted the standards conforming behavior.
9749 bool DeletesOnlyMatchingCopy =
9750 getLangOpts().MSVCCompat &&
9751 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015);
9753 if (RD->hasUserDeclaredMoveConstructor() &&
9754 (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) {
9755 if (!Diagnose) return true;
9757 // Find any user-declared move constructor.
9758 for (auto *I : RD->ctors()) {
9759 if (I->isMoveConstructor()) {
9760 UserDeclaredMove = I;
9761 break;
9764 assert(UserDeclaredMove);
9765 } else if (RD->hasUserDeclaredMoveAssignment() &&
9766 (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) {
9767 if (!Diagnose) return true;
9769 // Find any user-declared move assignment operator.
9770 for (auto *I : RD->methods()) {
9771 if (I->isMoveAssignmentOperator()) {
9772 UserDeclaredMove = I;
9773 break;
9776 assert(UserDeclaredMove);
9779 if (UserDeclaredMove) {
9780 Diag(UserDeclaredMove->getLocation(),
9781 diag::note_deleted_copy_user_declared_move)
9782 << (CSM == CXXCopyAssignment) << RD
9783 << UserDeclaredMove->isMoveAssignmentOperator();
9784 return true;
9788 // Do access control from the special member function
9789 ContextRAII MethodContext(*this, MD);
9791 // C++11 [class.dtor]p5:
9792 // -- for a virtual destructor, lookup of the non-array deallocation function
9793 // results in an ambiguity or in a function that is deleted or inaccessible
9794 if (CSM == CXXDestructor && MD->isVirtual()) {
9795 FunctionDecl *OperatorDelete = nullptr;
9796 DeclarationName Name =
9797 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
9798 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
9799 OperatorDelete, /*Diagnose*/false)) {
9800 if (Diagnose)
9801 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
9802 return true;
9806 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose);
9808 // Per DR1611, do not consider virtual bases of constructors of abstract
9809 // classes, since we are not going to construct them.
9810 // Per DR1658, do not consider virtual bases of destructors of abstract
9811 // classes either.
9812 // Per DR2180, for assignment operators we only assign (and thus only
9813 // consider) direct bases.
9814 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases
9815 : SMI.VisitPotentiallyConstructedBases))
9816 return true;
9818 if (SMI.shouldDeleteForAllConstMembers())
9819 return true;
9821 if (getLangOpts().CUDA) {
9822 // We should delete the special member in CUDA mode if target inference
9823 // failed.
9824 // For inherited constructors (non-null ICI), CSM may be passed so that MD
9825 // is treated as certain special member, which may not reflect what special
9826 // member MD really is. However inferCUDATargetForImplicitSpecialMember
9827 // expects CSM to match MD, therefore recalculate CSM.
9828 assert(ICI || CSM == getSpecialMember(MD));
9829 auto RealCSM = CSM;
9830 if (ICI)
9831 RealCSM = getSpecialMember(MD);
9833 return inferCUDATargetForImplicitSpecialMember(RD, RealCSM, MD,
9834 SMI.ConstArg, Diagnose);
9837 return false;
9840 void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) {
9841 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD);
9842 assert(DFK && "not a defaultable function");
9843 assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted");
9845 if (DFK.isSpecialMember()) {
9846 ShouldDeleteSpecialMember(cast<CXXMethodDecl>(FD), DFK.asSpecialMember(),
9847 nullptr, /*Diagnose=*/true);
9848 } else {
9849 DefaultedComparisonAnalyzer(
9850 *this, cast<CXXRecordDecl>(FD->getLexicalDeclContext()), FD,
9851 DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted)
9852 .visit();
9856 /// Perform lookup for a special member of the specified kind, and determine
9857 /// whether it is trivial. If the triviality can be determined without the
9858 /// lookup, skip it. This is intended for use when determining whether a
9859 /// special member of a containing object is trivial, and thus does not ever
9860 /// perform overload resolution for default constructors.
9862 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the
9863 /// member that was most likely to be intended to be trivial, if any.
9865 /// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to
9866 /// determine whether the special member is trivial.
9867 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
9868 Sema::CXXSpecialMember CSM, unsigned Quals,
9869 bool ConstRHS,
9870 Sema::TrivialABIHandling TAH,
9871 CXXMethodDecl **Selected) {
9872 if (Selected)
9873 *Selected = nullptr;
9875 switch (CSM) {
9876 case Sema::CXXInvalid:
9877 llvm_unreachable("not a special member");
9879 case Sema::CXXDefaultConstructor:
9880 // C++11 [class.ctor]p5:
9881 // A default constructor is trivial if:
9882 // - all the [direct subobjects] have trivial default constructors
9884 // Note, no overload resolution is performed in this case.
9885 if (RD->hasTrivialDefaultConstructor())
9886 return true;
9888 if (Selected) {
9889 // If there's a default constructor which could have been trivial, dig it
9890 // out. Otherwise, if there's any user-provided default constructor, point
9891 // to that as an example of why there's not a trivial one.
9892 CXXConstructorDecl *DefCtor = nullptr;
9893 if (RD->needsImplicitDefaultConstructor())
9894 S.DeclareImplicitDefaultConstructor(RD);
9895 for (auto *CI : RD->ctors()) {
9896 if (!CI->isDefaultConstructor())
9897 continue;
9898 DefCtor = CI;
9899 if (!DefCtor->isUserProvided())
9900 break;
9903 *Selected = DefCtor;
9906 return false;
9908 case Sema::CXXDestructor:
9909 // C++11 [class.dtor]p5:
9910 // A destructor is trivial if:
9911 // - all the direct [subobjects] have trivial destructors
9912 if (RD->hasTrivialDestructor() ||
9913 (TAH == Sema::TAH_ConsiderTrivialABI &&
9914 RD->hasTrivialDestructorForCall()))
9915 return true;
9917 if (Selected) {
9918 if (RD->needsImplicitDestructor())
9919 S.DeclareImplicitDestructor(RD);
9920 *Selected = RD->getDestructor();
9923 return false;
9925 case Sema::CXXCopyConstructor:
9926 // C++11 [class.copy]p12:
9927 // A copy constructor is trivial if:
9928 // - the constructor selected to copy each direct [subobject] is trivial
9929 if (RD->hasTrivialCopyConstructor() ||
9930 (TAH == Sema::TAH_ConsiderTrivialABI &&
9931 RD->hasTrivialCopyConstructorForCall())) {
9932 if (Quals == Qualifiers::Const)
9933 // We must either select the trivial copy constructor or reach an
9934 // ambiguity; no need to actually perform overload resolution.
9935 return true;
9936 } else if (!Selected) {
9937 return false;
9939 // In C++98, we are not supposed to perform overload resolution here, but we
9940 // treat that as a language defect, as suggested on cxx-abi-dev, to treat
9941 // cases like B as having a non-trivial copy constructor:
9942 // struct A { template<typename T> A(T&); };
9943 // struct B { mutable A a; };
9944 goto NeedOverloadResolution;
9946 case Sema::CXXCopyAssignment:
9947 // C++11 [class.copy]p25:
9948 // A copy assignment operator is trivial if:
9949 // - the assignment operator selected to copy each direct [subobject] is
9950 // trivial
9951 if (RD->hasTrivialCopyAssignment()) {
9952 if (Quals == Qualifiers::Const)
9953 return true;
9954 } else if (!Selected) {
9955 return false;
9957 // In C++98, we are not supposed to perform overload resolution here, but we
9958 // treat that as a language defect.
9959 goto NeedOverloadResolution;
9961 case Sema::CXXMoveConstructor:
9962 case Sema::CXXMoveAssignment:
9963 NeedOverloadResolution:
9964 Sema::SpecialMemberOverloadResult SMOR =
9965 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
9967 // The standard doesn't describe how to behave if the lookup is ambiguous.
9968 // We treat it as not making the member non-trivial, just like the standard
9969 // mandates for the default constructor. This should rarely matter, because
9970 // the member will also be deleted.
9971 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
9972 return true;
9974 if (!SMOR.getMethod()) {
9975 assert(SMOR.getKind() ==
9976 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
9977 return false;
9980 // We deliberately don't check if we found a deleted special member. We're
9981 // not supposed to!
9982 if (Selected)
9983 *Selected = SMOR.getMethod();
9985 if (TAH == Sema::TAH_ConsiderTrivialABI &&
9986 (CSM == Sema::CXXCopyConstructor || CSM == Sema::CXXMoveConstructor))
9987 return SMOR.getMethod()->isTrivialForCall();
9988 return SMOR.getMethod()->isTrivial();
9991 llvm_unreachable("unknown special method kind");
9994 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
9995 for (auto *CI : RD->ctors())
9996 if (!CI->isImplicit())
9997 return CI;
9999 // Look for constructor templates.
10000 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
10001 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
10002 if (CXXConstructorDecl *CD =
10003 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
10004 return CD;
10007 return nullptr;
10010 /// The kind of subobject we are checking for triviality. The values of this
10011 /// enumeration are used in diagnostics.
10012 enum TrivialSubobjectKind {
10013 /// The subobject is a base class.
10014 TSK_BaseClass,
10015 /// The subobject is a non-static data member.
10016 TSK_Field,
10017 /// The object is actually the complete object.
10018 TSK_CompleteObject
10021 /// Check whether the special member selected for a given type would be trivial.
10022 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
10023 QualType SubType, bool ConstRHS,
10024 Sema::CXXSpecialMember CSM,
10025 TrivialSubobjectKind Kind,
10026 Sema::TrivialABIHandling TAH, bool Diagnose) {
10027 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
10028 if (!SubRD)
10029 return true;
10031 CXXMethodDecl *Selected;
10032 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
10033 ConstRHS, TAH, Diagnose ? &Selected : nullptr))
10034 return true;
10036 if (Diagnose) {
10037 if (ConstRHS)
10038 SubType.addConst();
10040 if (!Selected && CSM == Sema::CXXDefaultConstructor) {
10041 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
10042 << Kind << SubType.getUnqualifiedType();
10043 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
10044 S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
10045 } else if (!Selected)
10046 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
10047 << Kind << SubType.getUnqualifiedType() << CSM << SubType;
10048 else if (Selected->isUserProvided()) {
10049 if (Kind == TSK_CompleteObject)
10050 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
10051 << Kind << SubType.getUnqualifiedType() << CSM;
10052 else {
10053 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
10054 << Kind << SubType.getUnqualifiedType() << CSM;
10055 S.Diag(Selected->getLocation(), diag::note_declared_at);
10057 } else {
10058 if (Kind != TSK_CompleteObject)
10059 S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
10060 << Kind << SubType.getUnqualifiedType() << CSM;
10062 // Explain why the defaulted or deleted special member isn't trivial.
10063 S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI,
10064 Diagnose);
10068 return false;
10071 /// Check whether the members of a class type allow a special member to be
10072 /// trivial.
10073 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
10074 Sema::CXXSpecialMember CSM,
10075 bool ConstArg,
10076 Sema::TrivialABIHandling TAH,
10077 bool Diagnose) {
10078 for (const auto *FI : RD->fields()) {
10079 if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
10080 continue;
10082 QualType FieldType = S.Context.getBaseElementType(FI->getType());
10084 // Pretend anonymous struct or union members are members of this class.
10085 if (FI->isAnonymousStructOrUnion()) {
10086 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
10087 CSM, ConstArg, TAH, Diagnose))
10088 return false;
10089 continue;
10092 // C++11 [class.ctor]p5:
10093 // A default constructor is trivial if [...]
10094 // -- no non-static data member of its class has a
10095 // brace-or-equal-initializer
10096 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
10097 if (Diagnose)
10098 S.Diag(FI->getLocation(), diag::note_nontrivial_default_member_init)
10099 << FI;
10100 return false;
10103 // Objective C ARC 4.3.5:
10104 // [...] nontrivally ownership-qualified types are [...] not trivially
10105 // default constructible, copy constructible, move constructible, copy
10106 // assignable, move assignable, or destructible [...]
10107 if (FieldType.hasNonTrivialObjCLifetime()) {
10108 if (Diagnose)
10109 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
10110 << RD << FieldType.getObjCLifetime();
10111 return false;
10114 bool ConstRHS = ConstArg && !FI->isMutable();
10115 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
10116 CSM, TSK_Field, TAH, Diagnose))
10117 return false;
10120 return true;
10123 /// Diagnose why the specified class does not have a trivial special member of
10124 /// the given kind.
10125 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
10126 QualType Ty = Context.getRecordType(RD);
10128 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
10129 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
10130 TSK_CompleteObject, TAH_IgnoreTrivialABI,
10131 /*Diagnose*/true);
10134 /// Determine whether a defaulted or deleted special member function is trivial,
10135 /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
10136 /// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
10137 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
10138 TrivialABIHandling TAH, bool Diagnose) {
10139 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
10141 CXXRecordDecl *RD = MD->getParent();
10143 bool ConstArg = false;
10145 // C++11 [class.copy]p12, p25: [DR1593]
10146 // A [special member] is trivial if [...] its parameter-type-list is
10147 // equivalent to the parameter-type-list of an implicit declaration [...]
10148 switch (CSM) {
10149 case CXXDefaultConstructor:
10150 case CXXDestructor:
10151 // Trivial default constructors and destructors cannot have parameters.
10152 break;
10154 case CXXCopyConstructor:
10155 case CXXCopyAssignment: {
10156 const ParmVarDecl *Param0 = MD->getNonObjectParameter(0);
10157 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
10159 // When ClangABICompat14 is true, CXX copy constructors will only be trivial
10160 // if they are not user-provided and their parameter-type-list is equivalent
10161 // to the parameter-type-list of an implicit declaration. This maintains the
10162 // behavior before dr2171 was implemented.
10164 // Otherwise, if ClangABICompat14 is false, All copy constructors can be
10165 // trivial, if they are not user-provided, regardless of the qualifiers on
10166 // the reference type.
10167 const bool ClangABICompat14 = Context.getLangOpts().getClangABICompat() <=
10168 LangOptions::ClangABI::Ver14;
10169 if (!RT ||
10170 ((RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) &&
10171 ClangABICompat14)) {
10172 if (Diagnose)
10173 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
10174 << Param0->getSourceRange() << Param0->getType()
10175 << Context.getLValueReferenceType(
10176 Context.getRecordType(RD).withConst());
10177 return false;
10180 ConstArg = RT->getPointeeType().isConstQualified();
10181 break;
10184 case CXXMoveConstructor:
10185 case CXXMoveAssignment: {
10186 // Trivial move operations always have non-cv-qualified parameters.
10187 const ParmVarDecl *Param0 = MD->getNonObjectParameter(0);
10188 const RValueReferenceType *RT =
10189 Param0->getType()->getAs<RValueReferenceType>();
10190 if (!RT || RT->getPointeeType().getCVRQualifiers()) {
10191 if (Diagnose)
10192 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
10193 << Param0->getSourceRange() << Param0->getType()
10194 << Context.getRValueReferenceType(Context.getRecordType(RD));
10195 return false;
10197 break;
10200 case CXXInvalid:
10201 llvm_unreachable("not a special member");
10204 if (MD->getMinRequiredArguments() < MD->getNumParams()) {
10205 if (Diagnose)
10206 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
10207 diag::note_nontrivial_default_arg)
10208 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
10209 return false;
10211 if (MD->isVariadic()) {
10212 if (Diagnose)
10213 Diag(MD->getLocation(), diag::note_nontrivial_variadic);
10214 return false;
10217 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
10218 // A copy/move [constructor or assignment operator] is trivial if
10219 // -- the [member] selected to copy/move each direct base class subobject
10220 // is trivial
10222 // C++11 [class.copy]p12, C++11 [class.copy]p25:
10223 // A [default constructor or destructor] is trivial if
10224 // -- all the direct base classes have trivial [default constructors or
10225 // destructors]
10226 for (const auto &BI : RD->bases())
10227 if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(),
10228 ConstArg, CSM, TSK_BaseClass, TAH, Diagnose))
10229 return false;
10231 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
10232 // A copy/move [constructor or assignment operator] for a class X is
10233 // trivial if
10234 // -- for each non-static data member of X that is of class type (or array
10235 // thereof), the constructor selected to copy/move that member is
10236 // trivial
10238 // C++11 [class.copy]p12, C++11 [class.copy]p25:
10239 // A [default constructor or destructor] is trivial if
10240 // -- for all of the non-static data members of its class that are of class
10241 // type (or array thereof), each such class has a trivial [default
10242 // constructor or destructor]
10243 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose))
10244 return false;
10246 // C++11 [class.dtor]p5:
10247 // A destructor is trivial if [...]
10248 // -- the destructor is not virtual
10249 if (CSM == CXXDestructor && MD->isVirtual()) {
10250 if (Diagnose)
10251 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
10252 return false;
10255 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
10256 // A [special member] for class X is trivial if [...]
10257 // -- class X has no virtual functions and no virtual base classes
10258 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
10259 if (!Diagnose)
10260 return false;
10262 if (RD->getNumVBases()) {
10263 // Check for virtual bases. We already know that the corresponding
10264 // member in all bases is trivial, so vbases must all be direct.
10265 CXXBaseSpecifier &BS = *RD->vbases_begin();
10266 assert(BS.isVirtual());
10267 Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1;
10268 return false;
10271 // Must have a virtual method.
10272 for (const auto *MI : RD->methods()) {
10273 if (MI->isVirtual()) {
10274 SourceLocation MLoc = MI->getBeginLoc();
10275 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
10276 return false;
10280 llvm_unreachable("dynamic class with no vbases and no virtual functions");
10283 // Looks like it's trivial!
10284 return true;
10287 namespace {
10288 struct FindHiddenVirtualMethod {
10289 Sema *S;
10290 CXXMethodDecl *Method;
10291 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
10292 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
10294 private:
10295 /// Check whether any most overridden method from MD in Methods
10296 static bool CheckMostOverridenMethods(
10297 const CXXMethodDecl *MD,
10298 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) {
10299 if (MD->size_overridden_methods() == 0)
10300 return Methods.count(MD->getCanonicalDecl());
10301 for (const CXXMethodDecl *O : MD->overridden_methods())
10302 if (CheckMostOverridenMethods(O, Methods))
10303 return true;
10304 return false;
10307 public:
10308 /// Member lookup function that determines whether a given C++
10309 /// method overloads virtual methods in a base class without overriding any,
10310 /// to be used with CXXRecordDecl::lookupInBases().
10311 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
10312 RecordDecl *BaseRecord =
10313 Specifier->getType()->castAs<RecordType>()->getDecl();
10315 DeclarationName Name = Method->getDeclName();
10316 assert(Name.getNameKind() == DeclarationName::Identifier);
10318 bool foundSameNameMethod = false;
10319 SmallVector<CXXMethodDecl *, 8> overloadedMethods;
10320 for (Path.Decls = BaseRecord->lookup(Name).begin();
10321 Path.Decls != DeclContext::lookup_iterator(); ++Path.Decls) {
10322 NamedDecl *D = *Path.Decls;
10323 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
10324 MD = MD->getCanonicalDecl();
10325 foundSameNameMethod = true;
10326 // Interested only in hidden virtual methods.
10327 if (!MD->isVirtual())
10328 continue;
10329 // If the method we are checking overrides a method from its base
10330 // don't warn about the other overloaded methods. Clang deviates from
10331 // GCC by only diagnosing overloads of inherited virtual functions that
10332 // do not override any other virtual functions in the base. GCC's
10333 // -Woverloaded-virtual diagnoses any derived function hiding a virtual
10334 // function from a base class. These cases may be better served by a
10335 // warning (not specific to virtual functions) on call sites when the
10336 // call would select a different function from the base class, were it
10337 // visible.
10338 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
10339 if (!S->IsOverload(Method, MD, false))
10340 return true;
10341 // Collect the overload only if its hidden.
10342 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods))
10343 overloadedMethods.push_back(MD);
10347 if (foundSameNameMethod)
10348 OverloadedMethods.append(overloadedMethods.begin(),
10349 overloadedMethods.end());
10350 return foundSameNameMethod;
10353 } // end anonymous namespace
10355 /// Add the most overridden methods from MD to Methods
10356 static void AddMostOverridenMethods(const CXXMethodDecl *MD,
10357 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
10358 if (MD->size_overridden_methods() == 0)
10359 Methods.insert(MD->getCanonicalDecl());
10360 else
10361 for (const CXXMethodDecl *O : MD->overridden_methods())
10362 AddMostOverridenMethods(O, Methods);
10365 /// Check if a method overloads virtual methods in a base class without
10366 /// overriding any.
10367 void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
10368 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
10369 if (!MD->getDeclName().isIdentifier())
10370 return;
10372 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
10373 /*bool RecordPaths=*/false,
10374 /*bool DetectVirtual=*/false);
10375 FindHiddenVirtualMethod FHVM;
10376 FHVM.Method = MD;
10377 FHVM.S = this;
10379 // Keep the base methods that were overridden or introduced in the subclass
10380 // by 'using' in a set. A base method not in this set is hidden.
10381 CXXRecordDecl *DC = MD->getParent();
10382 DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
10383 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
10384 NamedDecl *ND = *I;
10385 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
10386 ND = shad->getTargetDecl();
10387 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
10388 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods);
10391 if (DC->lookupInBases(FHVM, Paths))
10392 OverloadedMethods = FHVM.OverloadedMethods;
10395 void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
10396 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
10397 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
10398 CXXMethodDecl *overloadedMD = OverloadedMethods[i];
10399 PartialDiagnostic PD = PDiag(
10400 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
10401 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
10402 Diag(overloadedMD->getLocation(), PD);
10406 /// Diagnose methods which overload virtual methods in a base class
10407 /// without overriding any.
10408 void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
10409 if (MD->isInvalidDecl())
10410 return;
10412 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
10413 return;
10415 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
10416 FindHiddenVirtualMethods(MD, OverloadedMethods);
10417 if (!OverloadedMethods.empty()) {
10418 Diag(MD->getLocation(), diag::warn_overloaded_virtual)
10419 << MD << (OverloadedMethods.size() > 1);
10421 NoteHiddenVirtualMethods(MD, OverloadedMethods);
10425 void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) {
10426 auto PrintDiagAndRemoveAttr = [&](unsigned N) {
10427 // No diagnostics if this is a template instantiation.
10428 if (!isTemplateInstantiation(RD.getTemplateSpecializationKind())) {
10429 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(),
10430 diag::ext_cannot_use_trivial_abi) << &RD;
10431 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(),
10432 diag::note_cannot_use_trivial_abi_reason) << &RD << N;
10434 RD.dropAttr<TrivialABIAttr>();
10437 // Ill-formed if the copy and move constructors are deleted.
10438 auto HasNonDeletedCopyOrMoveConstructor = [&]() {
10439 // If the type is dependent, then assume it might have
10440 // implicit copy or move ctor because we won't know yet at this point.
10441 if (RD.isDependentType())
10442 return true;
10443 if (RD.needsImplicitCopyConstructor() &&
10444 !RD.defaultedCopyConstructorIsDeleted())
10445 return true;
10446 if (RD.needsImplicitMoveConstructor() &&
10447 !RD.defaultedMoveConstructorIsDeleted())
10448 return true;
10449 for (const CXXConstructorDecl *CD : RD.ctors())
10450 if (CD->isCopyOrMoveConstructor() && !CD->isDeleted())
10451 return true;
10452 return false;
10455 if (!HasNonDeletedCopyOrMoveConstructor()) {
10456 PrintDiagAndRemoveAttr(0);
10457 return;
10460 // Ill-formed if the struct has virtual functions.
10461 if (RD.isPolymorphic()) {
10462 PrintDiagAndRemoveAttr(1);
10463 return;
10466 for (const auto &B : RD.bases()) {
10467 // Ill-formed if the base class is non-trivial for the purpose of calls or a
10468 // virtual base.
10469 if (!B.getType()->isDependentType() &&
10470 !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) {
10471 PrintDiagAndRemoveAttr(2);
10472 return;
10475 if (B.isVirtual()) {
10476 PrintDiagAndRemoveAttr(3);
10477 return;
10481 for (const auto *FD : RD.fields()) {
10482 // Ill-formed if the field is an ObjectiveC pointer or of a type that is
10483 // non-trivial for the purpose of calls.
10484 QualType FT = FD->getType();
10485 if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) {
10486 PrintDiagAndRemoveAttr(4);
10487 return;
10490 if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>())
10491 if (!RT->isDependentType() &&
10492 !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) {
10493 PrintDiagAndRemoveAttr(5);
10494 return;
10499 void Sema::ActOnFinishCXXMemberSpecification(
10500 Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac,
10501 SourceLocation RBrac, const ParsedAttributesView &AttrList) {
10502 if (!TagDecl)
10503 return;
10505 AdjustDeclIfTemplate(TagDecl);
10507 for (const ParsedAttr &AL : AttrList) {
10508 if (AL.getKind() != ParsedAttr::AT_Visibility)
10509 continue;
10510 AL.setInvalid();
10511 Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL;
10514 ActOnFields(S, RLoc, TagDecl,
10515 llvm::ArrayRef(
10516 // strict aliasing violation!
10517 reinterpret_cast<Decl **>(FieldCollector->getCurFields()),
10518 FieldCollector->getCurNumFields()),
10519 LBrac, RBrac, AttrList);
10521 CheckCompletedCXXClass(S, cast<CXXRecordDecl>(TagDecl));
10524 /// Find the equality comparison functions that should be implicitly declared
10525 /// in a given class definition, per C++2a [class.compare.default]p3.
10526 static void findImplicitlyDeclaredEqualityComparisons(
10527 ASTContext &Ctx, CXXRecordDecl *RD,
10528 llvm::SmallVectorImpl<FunctionDecl *> &Spaceships) {
10529 DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(OO_EqualEqual);
10530 if (!RD->lookup(EqEq).empty())
10531 // Member operator== explicitly declared: no implicit operator==s.
10532 return;
10534 // Traverse friends looking for an '==' or a '<=>'.
10535 for (FriendDecl *Friend : RD->friends()) {
10536 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Friend->getFriendDecl());
10537 if (!FD) continue;
10539 if (FD->getOverloadedOperator() == OO_EqualEqual) {
10540 // Friend operator== explicitly declared: no implicit operator==s.
10541 Spaceships.clear();
10542 return;
10545 if (FD->getOverloadedOperator() == OO_Spaceship &&
10546 FD->isExplicitlyDefaulted())
10547 Spaceships.push_back(FD);
10550 // Look for members named 'operator<=>'.
10551 DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(OO_Spaceship);
10552 for (NamedDecl *ND : RD->lookup(Cmp)) {
10553 // Note that we could find a non-function here (either a function template
10554 // or a using-declaration). Neither case results in an implicit
10555 // 'operator=='.
10556 if (auto *FD = dyn_cast<FunctionDecl>(ND))
10557 if (FD->isExplicitlyDefaulted())
10558 Spaceships.push_back(FD);
10562 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
10563 /// special functions, such as the default constructor, copy
10564 /// constructor, or destructor, to the given C++ class (C++
10565 /// [special]p1). This routine can only be executed just before the
10566 /// definition of the class is complete.
10567 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
10568 // Don't add implicit special members to templated classes.
10569 // FIXME: This means unqualified lookups for 'operator=' within a class
10570 // template don't work properly.
10571 if (!ClassDecl->isDependentType()) {
10572 if (ClassDecl->needsImplicitDefaultConstructor()) {
10573 ++getASTContext().NumImplicitDefaultConstructors;
10575 if (ClassDecl->hasInheritedConstructor())
10576 DeclareImplicitDefaultConstructor(ClassDecl);
10579 if (ClassDecl->needsImplicitCopyConstructor()) {
10580 ++getASTContext().NumImplicitCopyConstructors;
10582 // If the properties or semantics of the copy constructor couldn't be
10583 // determined while the class was being declared, force a declaration
10584 // of it now.
10585 if (ClassDecl->needsOverloadResolutionForCopyConstructor() ||
10586 ClassDecl->hasInheritedConstructor())
10587 DeclareImplicitCopyConstructor(ClassDecl);
10588 // For the MS ABI we need to know whether the copy ctor is deleted. A
10589 // prerequisite for deleting the implicit copy ctor is that the class has
10590 // a move ctor or move assignment that is either user-declared or whose
10591 // semantics are inherited from a subobject. FIXME: We should provide a
10592 // more direct way for CodeGen to ask whether the constructor was deleted.
10593 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
10594 (ClassDecl->hasUserDeclaredMoveConstructor() ||
10595 ClassDecl->needsOverloadResolutionForMoveConstructor() ||
10596 ClassDecl->hasUserDeclaredMoveAssignment() ||
10597 ClassDecl->needsOverloadResolutionForMoveAssignment()))
10598 DeclareImplicitCopyConstructor(ClassDecl);
10601 if (getLangOpts().CPlusPlus11 &&
10602 ClassDecl->needsImplicitMoveConstructor()) {
10603 ++getASTContext().NumImplicitMoveConstructors;
10605 if (ClassDecl->needsOverloadResolutionForMoveConstructor() ||
10606 ClassDecl->hasInheritedConstructor())
10607 DeclareImplicitMoveConstructor(ClassDecl);
10610 if (ClassDecl->needsImplicitCopyAssignment()) {
10611 ++getASTContext().NumImplicitCopyAssignmentOperators;
10613 // If we have a dynamic class, then the copy assignment operator may be
10614 // virtual, so we have to declare it immediately. This ensures that, e.g.,
10615 // it shows up in the right place in the vtable and that we diagnose
10616 // problems with the implicit exception specification.
10617 if (ClassDecl->isDynamicClass() ||
10618 ClassDecl->needsOverloadResolutionForCopyAssignment() ||
10619 ClassDecl->hasInheritedAssignment())
10620 DeclareImplicitCopyAssignment(ClassDecl);
10623 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
10624 ++getASTContext().NumImplicitMoveAssignmentOperators;
10626 // Likewise for the move assignment operator.
10627 if (ClassDecl->isDynamicClass() ||
10628 ClassDecl->needsOverloadResolutionForMoveAssignment() ||
10629 ClassDecl->hasInheritedAssignment())
10630 DeclareImplicitMoveAssignment(ClassDecl);
10633 if (ClassDecl->needsImplicitDestructor()) {
10634 ++getASTContext().NumImplicitDestructors;
10636 // If we have a dynamic class, then the destructor may be virtual, so we
10637 // have to declare the destructor immediately. This ensures that, e.g., it
10638 // shows up in the right place in the vtable and that we diagnose problems
10639 // with the implicit exception specification.
10640 if (ClassDecl->isDynamicClass() ||
10641 ClassDecl->needsOverloadResolutionForDestructor())
10642 DeclareImplicitDestructor(ClassDecl);
10646 // C++2a [class.compare.default]p3:
10647 // If the member-specification does not explicitly declare any member or
10648 // friend named operator==, an == operator function is declared implicitly
10649 // for each defaulted three-way comparison operator function defined in
10650 // the member-specification
10651 // FIXME: Consider doing this lazily.
10652 // We do this during the initial parse for a class template, not during
10653 // instantiation, so that we can handle unqualified lookups for 'operator=='
10654 // when parsing the template.
10655 if (getLangOpts().CPlusPlus20 && !inTemplateInstantiation()) {
10656 llvm::SmallVector<FunctionDecl *, 4> DefaultedSpaceships;
10657 findImplicitlyDeclaredEqualityComparisons(Context, ClassDecl,
10658 DefaultedSpaceships);
10659 for (auto *FD : DefaultedSpaceships)
10660 DeclareImplicitEqualityComparison(ClassDecl, FD);
10664 unsigned
10665 Sema::ActOnReenterTemplateScope(Decl *D,
10666 llvm::function_ref<Scope *()> EnterScope) {
10667 if (!D)
10668 return 0;
10669 AdjustDeclIfTemplate(D);
10671 // In order to get name lookup right, reenter template scopes in order from
10672 // outermost to innermost.
10673 SmallVector<TemplateParameterList *, 4> ParameterLists;
10674 DeclContext *LookupDC = dyn_cast<DeclContext>(D);
10676 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
10677 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
10678 ParameterLists.push_back(DD->getTemplateParameterList(i));
10680 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10681 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
10682 ParameterLists.push_back(FTD->getTemplateParameters());
10683 } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
10684 LookupDC = VD->getDeclContext();
10686 if (VarTemplateDecl *VTD = VD->getDescribedVarTemplate())
10687 ParameterLists.push_back(VTD->getTemplateParameters());
10688 else if (auto *PSD = dyn_cast<VarTemplatePartialSpecializationDecl>(D))
10689 ParameterLists.push_back(PSD->getTemplateParameters());
10691 } else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
10692 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
10693 ParameterLists.push_back(TD->getTemplateParameterList(i));
10695 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
10696 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
10697 ParameterLists.push_back(CTD->getTemplateParameters());
10698 else if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
10699 ParameterLists.push_back(PSD->getTemplateParameters());
10702 // FIXME: Alias declarations and concepts.
10704 unsigned Count = 0;
10705 Scope *InnermostTemplateScope = nullptr;
10706 for (TemplateParameterList *Params : ParameterLists) {
10707 // Ignore explicit specializations; they don't contribute to the template
10708 // depth.
10709 if (Params->size() == 0)
10710 continue;
10712 InnermostTemplateScope = EnterScope();
10713 for (NamedDecl *Param : *Params) {
10714 if (Param->getDeclName()) {
10715 InnermostTemplateScope->AddDecl(Param);
10716 IdResolver.AddDecl(Param);
10719 ++Count;
10722 // Associate the new template scopes with the corresponding entities.
10723 if (InnermostTemplateScope) {
10724 assert(LookupDC && "no enclosing DeclContext for template lookup");
10725 EnterTemplatedContext(InnermostTemplateScope, LookupDC);
10728 return Count;
10731 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
10732 if (!RecordD) return;
10733 AdjustDeclIfTemplate(RecordD);
10734 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
10735 PushDeclContext(S, Record);
10738 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
10739 if (!RecordD) return;
10740 PopDeclContext();
10743 /// This is used to implement the constant expression evaluation part of the
10744 /// attribute enable_if extension. There is nothing in standard C++ which would
10745 /// require reentering parameters.
10746 void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
10747 if (!Param)
10748 return;
10750 S->AddDecl(Param);
10751 if (Param->getDeclName())
10752 IdResolver.AddDecl(Param);
10755 /// ActOnStartDelayedCXXMethodDeclaration - We have completed
10756 /// parsing a top-level (non-nested) C++ class, and we are now
10757 /// parsing those parts of the given Method declaration that could
10758 /// not be parsed earlier (C++ [class.mem]p2), such as default
10759 /// arguments. This action should enter the scope of the given
10760 /// Method declaration as if we had just parsed the qualified method
10761 /// name. However, it should not bring the parameters into scope;
10762 /// that will be performed by ActOnDelayedCXXMethodParameter.
10763 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
10766 /// ActOnDelayedCXXMethodParameter - We've already started a delayed
10767 /// C++ method declaration. We're (re-)introducing the given
10768 /// function parameter into scope for use in parsing later parts of
10769 /// the method declaration. For example, we could see an
10770 /// ActOnParamDefaultArgument event for this parameter.
10771 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
10772 if (!ParamD)
10773 return;
10775 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
10777 S->AddDecl(Param);
10778 if (Param->getDeclName())
10779 IdResolver.AddDecl(Param);
10782 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished
10783 /// processing the delayed method declaration for Method. The method
10784 /// declaration is now considered finished. There may be a separate
10785 /// ActOnStartOfFunctionDef action later (not necessarily
10786 /// immediately!) for this method, if it was also defined inside the
10787 /// class body.
10788 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
10789 if (!MethodD)
10790 return;
10792 AdjustDeclIfTemplate(MethodD);
10794 FunctionDecl *Method = cast<FunctionDecl>(MethodD);
10796 // Now that we have our default arguments, check the constructor
10797 // again. It could produce additional diagnostics or affect whether
10798 // the class has implicitly-declared destructors, among other
10799 // things.
10800 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
10801 CheckConstructor(Constructor);
10803 // Check the default arguments, which we may have added.
10804 if (!Method->isInvalidDecl())
10805 CheckCXXDefaultArguments(Method);
10808 // Emit the given diagnostic for each non-address-space qualifier.
10809 // Common part of CheckConstructorDeclarator and CheckDestructorDeclarator.
10810 static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) {
10811 const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10812 if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) {
10813 bool DiagOccured = false;
10814 FTI.MethodQualifiers->forEachQualifier(
10815 [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName,
10816 SourceLocation SL) {
10817 // This diagnostic should be emitted on any qualifier except an addr
10818 // space qualifier. However, forEachQualifier currently doesn't visit
10819 // addr space qualifiers, so there's no way to write this condition
10820 // right now; we just diagnose on everything.
10821 S.Diag(SL, DiagID) << QualName << SourceRange(SL);
10822 DiagOccured = true;
10824 if (DiagOccured)
10825 D.setInvalidType();
10829 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check
10830 /// the well-formedness of the constructor declarator @p D with type @p
10831 /// R. If there are any errors in the declarator, this routine will
10832 /// emit diagnostics and set the invalid bit to true. In any case, the type
10833 /// will be updated to reflect a well-formed type for the constructor and
10834 /// returned.
10835 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
10836 StorageClass &SC) {
10837 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
10839 // C++ [class.ctor]p3:
10840 // A constructor shall not be virtual (10.3) or static (9.4). A
10841 // constructor can be invoked for a const, volatile or const
10842 // volatile object. A constructor shall not be declared const,
10843 // volatile, or const volatile (9.3.2).
10844 if (isVirtual) {
10845 if (!D.isInvalidType())
10846 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
10847 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
10848 << SourceRange(D.getIdentifierLoc());
10849 D.setInvalidType();
10851 if (SC == SC_Static) {
10852 if (!D.isInvalidType())
10853 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
10854 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10855 << SourceRange(D.getIdentifierLoc());
10856 D.setInvalidType();
10857 SC = SC_None;
10860 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
10861 diagnoseIgnoredQualifiers(
10862 diag::err_constructor_return_type, TypeQuals, SourceLocation(),
10863 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
10864 D.getDeclSpec().getRestrictSpecLoc(),
10865 D.getDeclSpec().getAtomicSpecLoc());
10866 D.setInvalidType();
10869 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor);
10871 // C++0x [class.ctor]p4:
10872 // A constructor shall not be declared with a ref-qualifier.
10873 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10874 if (FTI.hasRefQualifier()) {
10875 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
10876 << FTI.RefQualifierIsLValueRef
10877 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
10878 D.setInvalidType();
10881 // Rebuild the function type "R" without any type qualifiers (in
10882 // case any of the errors above fired) and with "void" as the
10883 // return type, since constructors don't have return types.
10884 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>();
10885 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
10886 return R;
10888 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
10889 EPI.TypeQuals = Qualifiers();
10890 EPI.RefQualifier = RQ_None;
10892 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
10895 /// CheckConstructor - Checks a fully-formed constructor for
10896 /// well-formedness, issuing any diagnostics required. Returns true if
10897 /// the constructor declarator is invalid.
10898 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
10899 CXXRecordDecl *ClassDecl
10900 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
10901 if (!ClassDecl)
10902 return Constructor->setInvalidDecl();
10904 // C++ [class.copy]p3:
10905 // A declaration of a constructor for a class X is ill-formed if
10906 // its first parameter is of type (optionally cv-qualified) X and
10907 // either there are no other parameters or else all other
10908 // parameters have default arguments.
10909 if (!Constructor->isInvalidDecl() &&
10910 Constructor->hasOneParamOrDefaultArgs() &&
10911 Constructor->getTemplateSpecializationKind() !=
10912 TSK_ImplicitInstantiation) {
10913 QualType ParamType = Constructor->getParamDecl(0)->getType();
10914 QualType ClassTy = Context.getTagDeclType(ClassDecl);
10915 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
10916 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
10917 const char *ConstRef
10918 = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
10919 : " const &";
10920 Diag(ParamLoc, diag::err_constructor_byvalue_arg)
10921 << FixItHint::CreateInsertion(ParamLoc, ConstRef);
10923 // FIXME: Rather that making the constructor invalid, we should endeavor
10924 // to fix the type.
10925 Constructor->setInvalidDecl();
10930 /// CheckDestructor - Checks a fully-formed destructor definition for
10931 /// well-formedness, issuing any diagnostics required. Returns true
10932 /// on error.
10933 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
10934 CXXRecordDecl *RD = Destructor->getParent();
10936 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
10937 SourceLocation Loc;
10939 if (!Destructor->isImplicit())
10940 Loc = Destructor->getLocation();
10941 else
10942 Loc = RD->getLocation();
10944 // If we have a virtual destructor, look up the deallocation function
10945 if (FunctionDecl *OperatorDelete =
10946 FindDeallocationFunctionForDestructor(Loc, RD)) {
10947 Expr *ThisArg = nullptr;
10949 // If the notional 'delete this' expression requires a non-trivial
10950 // conversion from 'this' to the type of a destroying operator delete's
10951 // first parameter, perform that conversion now.
10952 if (OperatorDelete->isDestroyingOperatorDelete()) {
10953 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
10954 if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) {
10955 // C++ [class.dtor]p13:
10956 // ... as if for the expression 'delete this' appearing in a
10957 // non-virtual destructor of the destructor's class.
10958 ContextRAII SwitchContext(*this, Destructor);
10959 ExprResult This =
10960 ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation());
10961 assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?");
10962 This = PerformImplicitConversion(This.get(), ParamType, AA_Passing);
10963 if (This.isInvalid()) {
10964 // FIXME: Register this as a context note so that it comes out
10965 // in the right order.
10966 Diag(Loc, diag::note_implicit_delete_this_in_destructor_here);
10967 return true;
10969 ThisArg = This.get();
10973 DiagnoseUseOfDecl(OperatorDelete, Loc);
10974 MarkFunctionReferenced(Loc, OperatorDelete);
10975 Destructor->setOperatorDelete(OperatorDelete, ThisArg);
10979 return false;
10982 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check
10983 /// the well-formednes of the destructor declarator @p D with type @p
10984 /// R. If there are any errors in the declarator, this routine will
10985 /// emit diagnostics and set the declarator to invalid. Even if this happens,
10986 /// will be updated to reflect a well-formed type for the destructor and
10987 /// returned.
10988 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
10989 StorageClass& SC) {
10990 // C++ [class.dtor]p1:
10991 // [...] A typedef-name that names a class is a class-name
10992 // (7.1.3); however, a typedef-name that names a class shall not
10993 // be used as the identifier in the declarator for a destructor
10994 // declaration.
10995 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
10996 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
10997 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name)
10998 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
10999 else if (const TemplateSpecializationType *TST =
11000 DeclaratorType->getAs<TemplateSpecializationType>())
11001 if (TST->isTypeAlias())
11002 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name)
11003 << DeclaratorType << 1;
11005 // C++ [class.dtor]p2:
11006 // A destructor is used to destroy objects of its class type. A
11007 // destructor takes no parameters, and no return type can be
11008 // specified for it (not even void). The address of a destructor
11009 // shall not be taken. A destructor shall not be static. A
11010 // destructor can be invoked for a const, volatile or const
11011 // volatile object. A destructor shall not be declared const,
11012 // volatile or const volatile (9.3.2).
11013 if (SC == SC_Static) {
11014 if (!D.isInvalidType())
11015 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
11016 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
11017 << SourceRange(D.getIdentifierLoc())
11018 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
11020 SC = SC_None;
11022 if (!D.isInvalidType()) {
11023 // Destructors don't have return types, but the parser will
11024 // happily parse something like:
11026 // class X {
11027 // float ~X();
11028 // };
11030 // The return type will be eliminated later.
11031 if (D.getDeclSpec().hasTypeSpecifier())
11032 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
11033 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
11034 << SourceRange(D.getIdentifierLoc());
11035 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
11036 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
11037 SourceLocation(),
11038 D.getDeclSpec().getConstSpecLoc(),
11039 D.getDeclSpec().getVolatileSpecLoc(),
11040 D.getDeclSpec().getRestrictSpecLoc(),
11041 D.getDeclSpec().getAtomicSpecLoc());
11042 D.setInvalidType();
11046 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor);
11048 // C++0x [class.dtor]p2:
11049 // A destructor shall not be declared with a ref-qualifier.
11050 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
11051 if (FTI.hasRefQualifier()) {
11052 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
11053 << FTI.RefQualifierIsLValueRef
11054 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
11055 D.setInvalidType();
11058 // Make sure we don't have any parameters.
11059 if (FTIHasNonVoidParameters(FTI)) {
11060 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
11062 // Delete the parameters.
11063 FTI.freeParams();
11064 D.setInvalidType();
11067 // Make sure the destructor isn't variadic.
11068 if (FTI.isVariadic) {
11069 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
11070 D.setInvalidType();
11073 // Rebuild the function type "R" without any type qualifiers or
11074 // parameters (in case any of the errors above fired) and with
11075 // "void" as the return type, since destructors don't have return
11076 // types.
11077 if (!D.isInvalidType())
11078 return R;
11080 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>();
11081 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
11082 EPI.Variadic = false;
11083 EPI.TypeQuals = Qualifiers();
11084 EPI.RefQualifier = RQ_None;
11085 return Context.getFunctionType(Context.VoidTy, std::nullopt, EPI);
11088 static void extendLeft(SourceRange &R, SourceRange Before) {
11089 if (Before.isInvalid())
11090 return;
11091 R.setBegin(Before.getBegin());
11092 if (R.getEnd().isInvalid())
11093 R.setEnd(Before.getEnd());
11096 static void extendRight(SourceRange &R, SourceRange After) {
11097 if (After.isInvalid())
11098 return;
11099 if (R.getBegin().isInvalid())
11100 R.setBegin(After.getBegin());
11101 R.setEnd(After.getEnd());
11104 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the
11105 /// well-formednes of the conversion function declarator @p D with
11106 /// type @p R. If there are any errors in the declarator, this routine
11107 /// will emit diagnostics and return true. Otherwise, it will return
11108 /// false. Either way, the type @p R will be updated to reflect a
11109 /// well-formed type for the conversion operator.
11110 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
11111 StorageClass& SC) {
11112 // C++ [class.conv.fct]p1:
11113 // Neither parameter types nor return type can be specified. The
11114 // type of a conversion function (8.3.5) is "function taking no
11115 // parameter returning conversion-type-id."
11116 if (SC == SC_Static) {
11117 if (!D.isInvalidType())
11118 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
11119 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
11120 << D.getName().getSourceRange();
11121 D.setInvalidType();
11122 SC = SC_None;
11125 TypeSourceInfo *ConvTSI = nullptr;
11126 QualType ConvType =
11127 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI);
11129 const DeclSpec &DS = D.getDeclSpec();
11130 if (DS.hasTypeSpecifier() && !D.isInvalidType()) {
11131 // Conversion functions don't have return types, but the parser will
11132 // happily parse something like:
11134 // class X {
11135 // float operator bool();
11136 // };
11138 // The return type will be changed later anyway.
11139 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
11140 << SourceRange(DS.getTypeSpecTypeLoc())
11141 << SourceRange(D.getIdentifierLoc());
11142 D.setInvalidType();
11143 } else if (DS.getTypeQualifiers() && !D.isInvalidType()) {
11144 // It's also plausible that the user writes type qualifiers in the wrong
11145 // place, such as:
11146 // struct S { const operator int(); };
11147 // FIXME: we could provide a fixit to move the qualifiers onto the
11148 // conversion type.
11149 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
11150 << SourceRange(D.getIdentifierLoc()) << 0;
11151 D.setInvalidType();
11153 const auto *Proto = R->castAs<FunctionProtoType>();
11154 // Make sure we don't have any parameters.
11155 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
11156 unsigned NumParam = Proto->getNumParams();
11158 // [C++2b]
11159 // A conversion function shall have no non-object parameters.
11160 if (NumParam == 1) {
11161 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
11162 if (const auto *First =
11163 dyn_cast_if_present<ParmVarDecl>(FTI.Params[0].Param);
11164 First && First->isExplicitObjectParameter())
11165 NumParam--;
11168 if (NumParam != 0) {
11169 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
11170 // Delete the parameters.
11171 FTI.freeParams();
11172 D.setInvalidType();
11173 } else if (Proto->isVariadic()) {
11174 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
11175 D.setInvalidType();
11178 // Diagnose "&operator bool()" and other such nonsense. This
11179 // is actually a gcc extension which we don't support.
11180 if (Proto->getReturnType() != ConvType) {
11181 bool NeedsTypedef = false;
11182 SourceRange Before, After;
11184 // Walk the chunks and extract information on them for our diagnostic.
11185 bool PastFunctionChunk = false;
11186 for (auto &Chunk : D.type_objects()) {
11187 switch (Chunk.Kind) {
11188 case DeclaratorChunk::Function:
11189 if (!PastFunctionChunk) {
11190 if (Chunk.Fun.HasTrailingReturnType) {
11191 TypeSourceInfo *TRT = nullptr;
11192 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT);
11193 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange());
11195 PastFunctionChunk = true;
11196 break;
11198 [[fallthrough]];
11199 case DeclaratorChunk::Array:
11200 NeedsTypedef = true;
11201 extendRight(After, Chunk.getSourceRange());
11202 break;
11204 case DeclaratorChunk::Pointer:
11205 case DeclaratorChunk::BlockPointer:
11206 case DeclaratorChunk::Reference:
11207 case DeclaratorChunk::MemberPointer:
11208 case DeclaratorChunk::Pipe:
11209 extendLeft(Before, Chunk.getSourceRange());
11210 break;
11212 case DeclaratorChunk::Paren:
11213 extendLeft(Before, Chunk.Loc);
11214 extendRight(After, Chunk.EndLoc);
11215 break;
11219 SourceLocation Loc = Before.isValid() ? Before.getBegin() :
11220 After.isValid() ? After.getBegin() :
11221 D.getIdentifierLoc();
11222 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl);
11223 DB << Before << After;
11225 if (!NeedsTypedef) {
11226 DB << /*don't need a typedef*/0;
11228 // If we can provide a correct fix-it hint, do so.
11229 if (After.isInvalid() && ConvTSI) {
11230 SourceLocation InsertLoc =
11231 getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc());
11232 DB << FixItHint::CreateInsertion(InsertLoc, " ")
11233 << FixItHint::CreateInsertionFromRange(
11234 InsertLoc, CharSourceRange::getTokenRange(Before))
11235 << FixItHint::CreateRemoval(Before);
11237 } else if (!Proto->getReturnType()->isDependentType()) {
11238 DB << /*typedef*/1 << Proto->getReturnType();
11239 } else if (getLangOpts().CPlusPlus11) {
11240 DB << /*alias template*/2 << Proto->getReturnType();
11241 } else {
11242 DB << /*might not be fixable*/3;
11245 // Recover by incorporating the other type chunks into the result type.
11246 // Note, this does *not* change the name of the function. This is compatible
11247 // with the GCC extension:
11248 // struct S { &operator int(); } s;
11249 // int &r = s.operator int(); // ok in GCC
11250 // S::operator int&() {} // error in GCC, function name is 'operator int'.
11251 ConvType = Proto->getReturnType();
11254 // C++ [class.conv.fct]p4:
11255 // The conversion-type-id shall not represent a function type nor
11256 // an array type.
11257 if (ConvType->isArrayType()) {
11258 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
11259 ConvType = Context.getPointerType(ConvType);
11260 D.setInvalidType();
11261 } else if (ConvType->isFunctionType()) {
11262 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
11263 ConvType = Context.getPointerType(ConvType);
11264 D.setInvalidType();
11267 // Rebuild the function type "R" without any parameters (in case any
11268 // of the errors above fired) and with the conversion type as the
11269 // return type.
11270 if (D.isInvalidType())
11271 R = Context.getFunctionType(ConvType, std::nullopt,
11272 Proto->getExtProtoInfo());
11274 // C++0x explicit conversion operators.
11275 if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus20)
11276 Diag(DS.getExplicitSpecLoc(),
11277 getLangOpts().CPlusPlus11
11278 ? diag::warn_cxx98_compat_explicit_conversion_functions
11279 : diag::ext_explicit_conversion_functions)
11280 << SourceRange(DS.getExplicitSpecRange());
11283 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
11284 /// the declaration of the given C++ conversion function. This routine
11285 /// is responsible for recording the conversion function in the C++
11286 /// class, if possible.
11287 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
11288 assert(Conversion && "Expected to receive a conversion function declaration");
11290 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
11292 // Make sure we aren't redeclaring the conversion function.
11293 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
11294 // C++ [class.conv.fct]p1:
11295 // [...] A conversion function is never used to convert a
11296 // (possibly cv-qualified) object to the (possibly cv-qualified)
11297 // same object type (or a reference to it), to a (possibly
11298 // cv-qualified) base class of that type (or a reference to it),
11299 // or to (possibly cv-qualified) void.
11300 QualType ClassType
11301 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
11302 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
11303 ConvType = ConvTypeRef->getPointeeType();
11304 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
11305 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
11306 /* Suppress diagnostics for instantiations. */;
11307 else if (Conversion->size_overridden_methods() != 0)
11308 /* Suppress diagnostics for overriding virtual function in a base class. */;
11309 else if (ConvType->isRecordType()) {
11310 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
11311 if (ConvType == ClassType)
11312 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
11313 << ClassType;
11314 else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType))
11315 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
11316 << ClassType << ConvType;
11317 } else if (ConvType->isVoidType()) {
11318 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
11319 << ClassType << ConvType;
11322 if (FunctionTemplateDecl *ConversionTemplate
11323 = Conversion->getDescribedFunctionTemplate())
11324 return ConversionTemplate;
11326 return Conversion;
11329 void Sema::CheckExplicitObjectMemberFunction(DeclContext *DC, Declarator &D,
11330 DeclarationName Name, QualType R) {
11331 CheckExplicitObjectMemberFunction(D, Name, R, false, DC);
11334 void Sema::CheckExplicitObjectLambda(Declarator &D) {
11335 CheckExplicitObjectMemberFunction(D, {}, {}, true);
11338 void Sema::CheckExplicitObjectMemberFunction(Declarator &D,
11339 DeclarationName Name, QualType R,
11340 bool IsLambda, DeclContext *DC) {
11341 if (!D.isFunctionDeclarator())
11342 return;
11344 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
11345 if (FTI.NumParams == 0)
11346 return;
11347 ParmVarDecl *ExplicitObjectParam = nullptr;
11348 for (unsigned Idx = 0; Idx < FTI.NumParams; Idx++) {
11349 const auto &ParamInfo = FTI.Params[Idx];
11350 if (!ParamInfo.Param)
11351 continue;
11352 ParmVarDecl *Param = cast<ParmVarDecl>(ParamInfo.Param);
11353 if (!Param->isExplicitObjectParameter())
11354 continue;
11355 if (Idx == 0) {
11356 ExplicitObjectParam = Param;
11357 continue;
11358 } else {
11359 Diag(Param->getLocation(),
11360 diag::err_explicit_object_parameter_must_be_first)
11361 << IsLambda << Param->getSourceRange();
11364 if (!ExplicitObjectParam)
11365 return;
11367 if (ExplicitObjectParam->hasDefaultArg()) {
11368 Diag(ExplicitObjectParam->getLocation(),
11369 diag::err_explicit_object_default_arg)
11370 << ExplicitObjectParam->getSourceRange();
11373 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static) {
11374 Diag(ExplicitObjectParam->getBeginLoc(),
11375 diag::err_explicit_object_parameter_nonmember)
11376 << D.getSourceRange() << /*static=*/0 << IsLambda;
11377 D.setInvalidType();
11380 if (D.getDeclSpec().isVirtualSpecified()) {
11381 Diag(ExplicitObjectParam->getBeginLoc(),
11382 diag::err_explicit_object_parameter_nonmember)
11383 << D.getSourceRange() << /*virtual=*/1 << IsLambda;
11384 D.setInvalidType();
11387 if (IsLambda && FTI.hasMutableQualifier()) {
11388 Diag(ExplicitObjectParam->getBeginLoc(),
11389 diag::err_explicit_object_parameter_mutable)
11390 << D.getSourceRange();
11393 if (IsLambda)
11394 return;
11396 if (!DC || !DC->isRecord()) {
11397 Diag(ExplicitObjectParam->getLocation(),
11398 diag::err_explicit_object_parameter_nonmember)
11399 << D.getSourceRange() << /*non-member=*/2 << IsLambda;
11400 D.setInvalidType();
11401 return;
11404 // CWG2674: constructors and destructors cannot have explicit parameters.
11405 if (Name.getNameKind() == DeclarationName::CXXConstructorName ||
11406 Name.getNameKind() == DeclarationName::CXXDestructorName) {
11407 Diag(ExplicitObjectParam->getBeginLoc(),
11408 diag::err_explicit_object_parameter_constructor)
11409 << (Name.getNameKind() == DeclarationName::CXXDestructorName)
11410 << D.getSourceRange();
11411 D.setInvalidType();
11415 namespace {
11416 /// Utility class to accumulate and print a diagnostic listing the invalid
11417 /// specifier(s) on a declaration.
11418 struct BadSpecifierDiagnoser {
11419 BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID)
11420 : S(S), Diagnostic(S.Diag(Loc, DiagID)) {}
11421 ~BadSpecifierDiagnoser() {
11422 Diagnostic << Specifiers;
11425 template<typename T> void check(SourceLocation SpecLoc, T Spec) {
11426 return check(SpecLoc, DeclSpec::getSpecifierName(Spec));
11428 void check(SourceLocation SpecLoc, DeclSpec::TST Spec) {
11429 return check(SpecLoc,
11430 DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy()));
11432 void check(SourceLocation SpecLoc, const char *Spec) {
11433 if (SpecLoc.isInvalid()) return;
11434 Diagnostic << SourceRange(SpecLoc, SpecLoc);
11435 if (!Specifiers.empty()) Specifiers += " ";
11436 Specifiers += Spec;
11439 Sema &S;
11440 Sema::SemaDiagnosticBuilder Diagnostic;
11441 std::string Specifiers;
11445 /// Check the validity of a declarator that we parsed for a deduction-guide.
11446 /// These aren't actually declarators in the grammar, so we need to check that
11447 /// the user didn't specify any pieces that are not part of the deduction-guide
11448 /// grammar. Return true on invalid deduction-guide.
11449 bool Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
11450 StorageClass &SC) {
11451 TemplateName GuidedTemplate = D.getName().TemplateName.get().get();
11452 TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl();
11453 assert(GuidedTemplateDecl && "missing template decl for deduction guide");
11455 // C++ [temp.deduct.guide]p3:
11456 // A deduction-gide shall be declared in the same scope as the
11457 // corresponding class template.
11458 if (!CurContext->getRedeclContext()->Equals(
11459 GuidedTemplateDecl->getDeclContext()->getRedeclContext())) {
11460 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope)
11461 << GuidedTemplateDecl;
11462 Diag(GuidedTemplateDecl->getLocation(), diag::note_template_decl_here);
11465 auto &DS = D.getMutableDeclSpec();
11466 // We leave 'friend' and 'virtual' to be rejected in the normal way.
11467 if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() ||
11468 DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() ||
11469 DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) {
11470 BadSpecifierDiagnoser Diagnoser(
11471 *this, D.getIdentifierLoc(),
11472 diag::err_deduction_guide_invalid_specifier);
11474 Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec());
11475 DS.ClearStorageClassSpecs();
11476 SC = SC_None;
11478 // 'explicit' is permitted.
11479 Diagnoser.check(DS.getInlineSpecLoc(), "inline");
11480 Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn");
11481 Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr");
11482 DS.ClearConstexprSpec();
11484 Diagnoser.check(DS.getConstSpecLoc(), "const");
11485 Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict");
11486 Diagnoser.check(DS.getVolatileSpecLoc(), "volatile");
11487 Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic");
11488 Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned");
11489 DS.ClearTypeQualifiers();
11491 Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex());
11492 Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign());
11493 Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth());
11494 Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType());
11495 DS.ClearTypeSpecType();
11498 if (D.isInvalidType())
11499 return true;
11501 // Check the declarator is simple enough.
11502 bool FoundFunction = false;
11503 for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) {
11504 if (Chunk.Kind == DeclaratorChunk::Paren)
11505 continue;
11506 if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) {
11507 Diag(D.getDeclSpec().getBeginLoc(),
11508 diag::err_deduction_guide_with_complex_decl)
11509 << D.getSourceRange();
11510 break;
11512 if (!Chunk.Fun.hasTrailingReturnType())
11513 return Diag(D.getName().getBeginLoc(),
11514 diag::err_deduction_guide_no_trailing_return_type);
11516 // Check that the return type is written as a specialization of
11517 // the template specified as the deduction-guide's name.
11518 // The template name may not be qualified. [temp.deduct.guide]
11519 ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType();
11520 TypeSourceInfo *TSI = nullptr;
11521 QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI);
11522 assert(TSI && "deduction guide has valid type but invalid return type?");
11523 bool AcceptableReturnType = false;
11524 bool MightInstantiateToSpecialization = false;
11525 if (auto RetTST =
11526 TSI->getTypeLoc().getAsAdjusted<TemplateSpecializationTypeLoc>()) {
11527 TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName();
11528 bool TemplateMatches =
11529 Context.hasSameTemplateName(SpecifiedName, GuidedTemplate);
11530 auto TKind = SpecifiedName.getKind();
11531 // A Using TemplateName can't actually be valid (either it's qualified, or
11532 // we're in the wrong scope). But we have diagnosed these problems
11533 // already.
11534 bool SimplyWritten = TKind == TemplateName::Template ||
11535 TKind == TemplateName::UsingTemplate;
11536 if (SimplyWritten && TemplateMatches)
11537 AcceptableReturnType = true;
11538 else {
11539 // This could still instantiate to the right type, unless we know it
11540 // names the wrong class template.
11541 auto *TD = SpecifiedName.getAsTemplateDecl();
11542 MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) &&
11543 !TemplateMatches);
11545 } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) {
11546 MightInstantiateToSpecialization = true;
11549 if (!AcceptableReturnType)
11550 return Diag(TSI->getTypeLoc().getBeginLoc(),
11551 diag::err_deduction_guide_bad_trailing_return_type)
11552 << GuidedTemplate << TSI->getType()
11553 << MightInstantiateToSpecialization
11554 << TSI->getTypeLoc().getSourceRange();
11556 // Keep going to check that we don't have any inner declarator pieces (we
11557 // could still have a function returning a pointer to a function).
11558 FoundFunction = true;
11561 if (D.isFunctionDefinition())
11562 // we can still create a valid deduction guide here.
11563 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function);
11564 return false;
11567 //===----------------------------------------------------------------------===//
11568 // Namespace Handling
11569 //===----------------------------------------------------------------------===//
11571 /// Diagnose a mismatch in 'inline' qualifiers when a namespace is
11572 /// reopened.
11573 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
11574 SourceLocation Loc,
11575 IdentifierInfo *II, bool *IsInline,
11576 NamespaceDecl *PrevNS) {
11577 assert(*IsInline != PrevNS->isInline());
11579 // 'inline' must appear on the original definition, but not necessarily
11580 // on all extension definitions, so the note should point to the first
11581 // definition to avoid confusion.
11582 PrevNS = PrevNS->getFirstDecl();
11584 if (PrevNS->isInline())
11585 // The user probably just forgot the 'inline', so suggest that it
11586 // be added back.
11587 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
11588 << FixItHint::CreateInsertion(KeywordLoc, "inline ");
11589 else
11590 S.Diag(Loc, diag::err_inline_namespace_mismatch);
11592 S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
11593 *IsInline = PrevNS->isInline();
11596 /// ActOnStartNamespaceDef - This is called at the start of a namespace
11597 /// definition.
11598 Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
11599 SourceLocation InlineLoc,
11600 SourceLocation NamespaceLoc,
11601 SourceLocation IdentLoc, IdentifierInfo *II,
11602 SourceLocation LBrace,
11603 const ParsedAttributesView &AttrList,
11604 UsingDirectiveDecl *&UD, bool IsNested) {
11605 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
11606 // For anonymous namespace, take the location of the left brace.
11607 SourceLocation Loc = II ? IdentLoc : LBrace;
11608 bool IsInline = InlineLoc.isValid();
11609 bool IsInvalid = false;
11610 bool IsStd = false;
11611 bool AddToKnown = false;
11612 Scope *DeclRegionScope = NamespcScope->getParent();
11614 NamespaceDecl *PrevNS = nullptr;
11615 if (II) {
11616 // C++ [namespace.std]p7:
11617 // A translation unit shall not declare namespace std to be an inline
11618 // namespace (9.8.2).
11620 // Precondition: the std namespace is in the file scope and is declared to
11621 // be inline
11622 auto DiagnoseInlineStdNS = [&]() {
11623 assert(IsInline && II->isStr("std") &&
11624 CurContext->getRedeclContext()->isTranslationUnit() &&
11625 "Precondition of DiagnoseInlineStdNS not met");
11626 Diag(InlineLoc, diag::err_inline_namespace_std)
11627 << SourceRange(InlineLoc, InlineLoc.getLocWithOffset(6));
11628 IsInline = false;
11630 // C++ [namespace.def]p2:
11631 // The identifier in an original-namespace-definition shall not
11632 // have been previously defined in the declarative region in
11633 // which the original-namespace-definition appears. The
11634 // identifier in an original-namespace-definition is the name of
11635 // the namespace. Subsequently in that declarative region, it is
11636 // treated as an original-namespace-name.
11638 // Since namespace names are unique in their scope, and we don't
11639 // look through using directives, just look for any ordinary names
11640 // as if by qualified name lookup.
11641 LookupResult R(*this, II, IdentLoc, LookupOrdinaryName,
11642 ForExternalRedeclaration);
11643 LookupQualifiedName(R, CurContext->getRedeclContext());
11644 NamedDecl *PrevDecl =
11645 R.isSingleResult() ? R.getRepresentativeDecl() : nullptr;
11646 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
11648 if (PrevNS) {
11649 // This is an extended namespace definition.
11650 if (IsInline && II->isStr("std") &&
11651 CurContext->getRedeclContext()->isTranslationUnit())
11652 DiagnoseInlineStdNS();
11653 else if (IsInline != PrevNS->isInline())
11654 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
11655 &IsInline, PrevNS);
11656 } else if (PrevDecl) {
11657 // This is an invalid name redefinition.
11658 Diag(Loc, diag::err_redefinition_different_kind)
11659 << II;
11660 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11661 IsInvalid = true;
11662 // Continue on to push Namespc as current DeclContext and return it.
11663 } else if (II->isStr("std") &&
11664 CurContext->getRedeclContext()->isTranslationUnit()) {
11665 if (IsInline)
11666 DiagnoseInlineStdNS();
11667 // This is the first "real" definition of the namespace "std", so update
11668 // our cache of the "std" namespace to point at this definition.
11669 PrevNS = getStdNamespace();
11670 IsStd = true;
11671 AddToKnown = !IsInline;
11672 } else {
11673 // We've seen this namespace for the first time.
11674 AddToKnown = !IsInline;
11676 } else {
11677 // Anonymous namespaces.
11679 // Determine whether the parent already has an anonymous namespace.
11680 DeclContext *Parent = CurContext->getRedeclContext();
11681 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
11682 PrevNS = TU->getAnonymousNamespace();
11683 } else {
11684 NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
11685 PrevNS = ND->getAnonymousNamespace();
11688 if (PrevNS && IsInline != PrevNS->isInline())
11689 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
11690 &IsInline, PrevNS);
11693 NamespaceDecl *Namespc = NamespaceDecl::Create(
11694 Context, CurContext, IsInline, StartLoc, Loc, II, PrevNS, IsNested);
11695 if (IsInvalid)
11696 Namespc->setInvalidDecl();
11698 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
11699 AddPragmaAttributes(DeclRegionScope, Namespc);
11701 // FIXME: Should we be merging attributes?
11702 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
11703 PushNamespaceVisibilityAttr(Attr, Loc);
11705 if (IsStd)
11706 StdNamespace = Namespc;
11707 if (AddToKnown)
11708 KnownNamespaces[Namespc] = false;
11710 if (II) {
11711 PushOnScopeChains(Namespc, DeclRegionScope);
11712 } else {
11713 // Link the anonymous namespace into its parent.
11714 DeclContext *Parent = CurContext->getRedeclContext();
11715 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
11716 TU->setAnonymousNamespace(Namespc);
11717 } else {
11718 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
11721 CurContext->addDecl(Namespc);
11723 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition
11724 // behaves as if it were replaced by
11725 // namespace unique { /* empty body */ }
11726 // using namespace unique;
11727 // namespace unique { namespace-body }
11728 // where all occurrences of 'unique' in a translation unit are
11729 // replaced by the same identifier and this identifier differs
11730 // from all other identifiers in the entire program.
11732 // We just create the namespace with an empty name and then add an
11733 // implicit using declaration, just like the standard suggests.
11735 // CodeGen enforces the "universally unique" aspect by giving all
11736 // declarations semantically contained within an anonymous
11737 // namespace internal linkage.
11739 if (!PrevNS) {
11740 UD = UsingDirectiveDecl::Create(Context, Parent,
11741 /* 'using' */ LBrace,
11742 /* 'namespace' */ SourceLocation(),
11743 /* qualifier */ NestedNameSpecifierLoc(),
11744 /* identifier */ SourceLocation(),
11745 Namespc,
11746 /* Ancestor */ Parent);
11747 UD->setImplicit();
11748 Parent->addDecl(UD);
11752 ActOnDocumentableDecl(Namespc);
11754 // Although we could have an invalid decl (i.e. the namespace name is a
11755 // redefinition), push it as current DeclContext and try to continue parsing.
11756 // FIXME: We should be able to push Namespc here, so that the each DeclContext
11757 // for the namespace has the declarations that showed up in that particular
11758 // namespace definition.
11759 PushDeclContext(NamespcScope, Namespc);
11760 return Namespc;
11763 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl
11764 /// is a namespace alias, returns the namespace it points to.
11765 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
11766 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
11767 return AD->getNamespace();
11768 return dyn_cast_or_null<NamespaceDecl>(D);
11771 /// ActOnFinishNamespaceDef - This callback is called after a namespace is
11772 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
11773 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
11774 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
11775 assert(Namespc && "Invalid parameter, expected NamespaceDecl");
11776 Namespc->setRBraceLoc(RBrace);
11777 PopDeclContext();
11778 if (Namespc->hasAttr<VisibilityAttr>())
11779 PopPragmaVisibility(true, RBrace);
11780 // If this namespace contains an export-declaration, export it now.
11781 if (DeferredExportedNamespaces.erase(Namespc))
11782 Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
11785 CXXRecordDecl *Sema::getStdBadAlloc() const {
11786 return cast_or_null<CXXRecordDecl>(
11787 StdBadAlloc.get(Context.getExternalSource()));
11790 EnumDecl *Sema::getStdAlignValT() const {
11791 return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource()));
11794 NamespaceDecl *Sema::getStdNamespace() const {
11795 return cast_or_null<NamespaceDecl>(
11796 StdNamespace.get(Context.getExternalSource()));
11798 namespace {
11800 enum UnsupportedSTLSelect {
11801 USS_InvalidMember,
11802 USS_MissingMember,
11803 USS_NonTrivial,
11804 USS_Other
11807 struct InvalidSTLDiagnoser {
11808 Sema &S;
11809 SourceLocation Loc;
11810 QualType TyForDiags;
11812 QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "",
11813 const VarDecl *VD = nullptr) {
11815 auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported)
11816 << TyForDiags << ((int)Sel);
11817 if (Sel == USS_InvalidMember || Sel == USS_MissingMember) {
11818 assert(!Name.empty());
11819 D << Name;
11822 if (Sel == USS_InvalidMember) {
11823 S.Diag(VD->getLocation(), diag::note_var_declared_here)
11824 << VD << VD->getSourceRange();
11826 return QualType();
11829 } // namespace
11831 QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind,
11832 SourceLocation Loc,
11833 ComparisonCategoryUsage Usage) {
11834 assert(getLangOpts().CPlusPlus &&
11835 "Looking for comparison category type outside of C++.");
11837 // Use an elaborated type for diagnostics which has a name containing the
11838 // prepended 'std' namespace but not any inline namespace names.
11839 auto TyForDiags = [&](ComparisonCategoryInfo *Info) {
11840 auto *NNS =
11841 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace());
11842 return Context.getElaboratedType(ElaboratedTypeKeyword::None, NNS,
11843 Info->getType());
11846 // Check if we've already successfully checked the comparison category type
11847 // before. If so, skip checking it again.
11848 ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind);
11849 if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) {
11850 // The only thing we need to check is that the type has a reachable
11851 // definition in the current context.
11852 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type))
11853 return QualType();
11855 return Info->getType();
11858 // If lookup failed
11859 if (!Info) {
11860 std::string NameForDiags = "std::";
11861 NameForDiags += ComparisonCategories::getCategoryString(Kind);
11862 Diag(Loc, diag::err_implied_comparison_category_type_not_found)
11863 << NameForDiags << (int)Usage;
11864 return QualType();
11867 assert(Info->Kind == Kind);
11868 assert(Info->Record);
11870 // Update the Record decl in case we encountered a forward declaration on our
11871 // first pass. FIXME: This is a bit of a hack.
11872 if (Info->Record->hasDefinition())
11873 Info->Record = Info->Record->getDefinition();
11875 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type))
11876 return QualType();
11878 InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)};
11880 if (!Info->Record->isTriviallyCopyable())
11881 return UnsupportedSTLError(USS_NonTrivial);
11883 for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) {
11884 CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl();
11885 // Tolerate empty base classes.
11886 if (Base->isEmpty())
11887 continue;
11888 // Reject STL implementations which have at least one non-empty base.
11889 return UnsupportedSTLError();
11892 // Check that the STL has implemented the types using a single integer field.
11893 // This expectation allows better codegen for builtin operators. We require:
11894 // (1) The class has exactly one field.
11895 // (2) The field is an integral or enumeration type.
11896 auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end();
11897 if (std::distance(FIt, FEnd) != 1 ||
11898 !FIt->getType()->isIntegralOrEnumerationType()) {
11899 return UnsupportedSTLError();
11902 // Build each of the require values and store them in Info.
11903 for (ComparisonCategoryResult CCR :
11904 ComparisonCategories::getPossibleResultsForType(Kind)) {
11905 StringRef MemName = ComparisonCategories::getResultString(CCR);
11906 ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR);
11908 if (!ValInfo)
11909 return UnsupportedSTLError(USS_MissingMember, MemName);
11911 VarDecl *VD = ValInfo->VD;
11912 assert(VD && "should not be null!");
11914 // Attempt to diagnose reasons why the STL definition of this type
11915 // might be foobar, including it failing to be a constant expression.
11916 // TODO Handle more ways the lookup or result can be invalid.
11917 if (!VD->isStaticDataMember() ||
11918 !VD->isUsableInConstantExpressions(Context))
11919 return UnsupportedSTLError(USS_InvalidMember, MemName, VD);
11921 // Attempt to evaluate the var decl as a constant expression and extract
11922 // the value of its first field as a ICE. If this fails, the STL
11923 // implementation is not supported.
11924 if (!ValInfo->hasValidIntValue())
11925 return UnsupportedSTLError();
11927 MarkVariableReferenced(Loc, VD);
11930 // We've successfully built the required types and expressions. Update
11931 // the cache and return the newly cached value.
11932 FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true;
11933 return Info->getType();
11936 /// Retrieve the special "std" namespace, which may require us to
11937 /// implicitly define the namespace.
11938 NamespaceDecl *Sema::getOrCreateStdNamespace() {
11939 if (!StdNamespace) {
11940 // The "std" namespace has not yet been defined, so build one implicitly.
11941 StdNamespace = NamespaceDecl::Create(
11942 Context, Context.getTranslationUnitDecl(),
11943 /*Inline=*/false, SourceLocation(), SourceLocation(),
11944 &PP.getIdentifierTable().get("std"),
11945 /*PrevDecl=*/nullptr, /*Nested=*/false);
11946 getStdNamespace()->setImplicit(true);
11947 // We want the created NamespaceDecl to be available for redeclaration
11948 // lookups, but not for regular name lookups.
11949 Context.getTranslationUnitDecl()->addDecl(getStdNamespace());
11950 getStdNamespace()->clearIdentifierNamespace();
11953 return getStdNamespace();
11956 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
11957 assert(getLangOpts().CPlusPlus &&
11958 "Looking for std::initializer_list outside of C++.");
11960 // We're looking for implicit instantiations of
11961 // template <typename E> class std::initializer_list.
11963 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
11964 return false;
11966 ClassTemplateDecl *Template = nullptr;
11967 const TemplateArgument *Arguments = nullptr;
11969 if (const RecordType *RT = Ty->getAs<RecordType>()) {
11971 ClassTemplateSpecializationDecl *Specialization =
11972 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
11973 if (!Specialization)
11974 return false;
11976 Template = Specialization->getSpecializedTemplate();
11977 Arguments = Specialization->getTemplateArgs().data();
11978 } else if (const TemplateSpecializationType *TST =
11979 Ty->getAs<TemplateSpecializationType>()) {
11980 Template = dyn_cast_or_null<ClassTemplateDecl>(
11981 TST->getTemplateName().getAsTemplateDecl());
11982 Arguments = TST->template_arguments().begin();
11984 if (!Template)
11985 return false;
11987 if (!StdInitializerList) {
11988 // Haven't recognized std::initializer_list yet, maybe this is it.
11989 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
11990 if (TemplateClass->getIdentifier() !=
11991 &PP.getIdentifierTable().get("initializer_list") ||
11992 !getStdNamespace()->InEnclosingNamespaceSetOf(
11993 TemplateClass->getDeclContext()))
11994 return false;
11995 // This is a template called std::initializer_list, but is it the right
11996 // template?
11997 TemplateParameterList *Params = Template->getTemplateParameters();
11998 if (Params->getMinRequiredArguments() != 1)
11999 return false;
12000 if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
12001 return false;
12003 // It's the right template.
12004 StdInitializerList = Template;
12007 if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl())
12008 return false;
12010 // This is an instance of std::initializer_list. Find the argument type.
12011 if (Element)
12012 *Element = Arguments[0].getAsType();
12013 return true;
12016 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
12017 NamespaceDecl *Std = S.getStdNamespace();
12018 if (!Std) {
12019 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
12020 return nullptr;
12023 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
12024 Loc, Sema::LookupOrdinaryName);
12025 if (!S.LookupQualifiedName(Result, Std)) {
12026 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
12027 return nullptr;
12029 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
12030 if (!Template) {
12031 Result.suppressDiagnostics();
12032 // We found something weird. Complain about the first thing we found.
12033 NamedDecl *Found = *Result.begin();
12034 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
12035 return nullptr;
12038 // We found some template called std::initializer_list. Now verify that it's
12039 // correct.
12040 TemplateParameterList *Params = Template->getTemplateParameters();
12041 if (Params->getMinRequiredArguments() != 1 ||
12042 !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
12043 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
12044 return nullptr;
12047 return Template;
12050 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
12051 if (!StdInitializerList) {
12052 StdInitializerList = LookupStdInitializerList(*this, Loc);
12053 if (!StdInitializerList)
12054 return QualType();
12057 TemplateArgumentListInfo Args(Loc, Loc);
12058 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
12059 Context.getTrivialTypeSourceInfo(Element,
12060 Loc)));
12061 return Context.getElaboratedType(
12062 ElaboratedTypeKeyword::None,
12063 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace()),
12064 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
12067 bool Sema::isInitListConstructor(const FunctionDecl *Ctor) {
12068 // C++ [dcl.init.list]p2:
12069 // A constructor is an initializer-list constructor if its first parameter
12070 // is of type std::initializer_list<E> or reference to possibly cv-qualified
12071 // std::initializer_list<E> for some type E, and either there are no other
12072 // parameters or else all other parameters have default arguments.
12073 if (!Ctor->hasOneParamOrDefaultArgs())
12074 return false;
12076 QualType ArgType = Ctor->getParamDecl(0)->getType();
12077 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
12078 ArgType = RT->getPointeeType().getUnqualifiedType();
12080 return isStdInitializerList(ArgType, nullptr);
12083 /// Determine whether a using statement is in a context where it will be
12084 /// apply in all contexts.
12085 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
12086 switch (CurContext->getDeclKind()) {
12087 case Decl::TranslationUnit:
12088 return true;
12089 case Decl::LinkageSpec:
12090 return IsUsingDirectiveInToplevelContext(CurContext->getParent());
12091 default:
12092 return false;
12096 namespace {
12098 // Callback to only accept typo corrections that are namespaces.
12099 class NamespaceValidatorCCC final : public CorrectionCandidateCallback {
12100 public:
12101 bool ValidateCandidate(const TypoCorrection &candidate) override {
12102 if (NamedDecl *ND = candidate.getCorrectionDecl())
12103 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
12104 return false;
12107 std::unique_ptr<CorrectionCandidateCallback> clone() override {
12108 return std::make_unique<NamespaceValidatorCCC>(*this);
12114 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
12115 CXXScopeSpec &SS,
12116 SourceLocation IdentLoc,
12117 IdentifierInfo *Ident) {
12118 R.clear();
12119 NamespaceValidatorCCC CCC{};
12120 if (TypoCorrection Corrected =
12121 S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC,
12122 Sema::CTK_ErrorRecovery)) {
12123 if (DeclContext *DC = S.computeDeclContext(SS, false)) {
12124 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
12125 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
12126 Ident->getName().equals(CorrectedStr);
12127 S.diagnoseTypo(Corrected,
12128 S.PDiag(diag::err_using_directive_member_suggest)
12129 << Ident << DC << DroppedSpecifier << SS.getRange(),
12130 S.PDiag(diag::note_namespace_defined_here));
12131 } else {
12132 S.diagnoseTypo(Corrected,
12133 S.PDiag(diag::err_using_directive_suggest) << Ident,
12134 S.PDiag(diag::note_namespace_defined_here));
12136 R.addDecl(Corrected.getFoundDecl());
12137 return true;
12139 return false;
12142 Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc,
12143 SourceLocation NamespcLoc, CXXScopeSpec &SS,
12144 SourceLocation IdentLoc,
12145 IdentifierInfo *NamespcName,
12146 const ParsedAttributesView &AttrList) {
12147 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
12148 assert(NamespcName && "Invalid NamespcName.");
12149 assert(IdentLoc.isValid() && "Invalid NamespceName location.");
12151 // This can only happen along a recovery path.
12152 while (S->isTemplateParamScope())
12153 S = S->getParent();
12154 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
12156 UsingDirectiveDecl *UDir = nullptr;
12157 NestedNameSpecifier *Qualifier = nullptr;
12158 if (SS.isSet())
12159 Qualifier = SS.getScopeRep();
12161 // Lookup namespace name.
12162 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
12163 LookupParsedName(R, S, &SS);
12164 if (R.isAmbiguous())
12165 return nullptr;
12167 if (R.empty()) {
12168 R.clear();
12169 // Allow "using namespace std;" or "using namespace ::std;" even if
12170 // "std" hasn't been defined yet, for GCC compatibility.
12171 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
12172 NamespcName->isStr("std")) {
12173 Diag(IdentLoc, diag::ext_using_undefined_std);
12174 R.addDecl(getOrCreateStdNamespace());
12175 R.resolveKind();
12177 // Otherwise, attempt typo correction.
12178 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
12181 if (!R.empty()) {
12182 NamedDecl *Named = R.getRepresentativeDecl();
12183 NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>();
12184 assert(NS && "expected namespace decl");
12186 // The use of a nested name specifier may trigger deprecation warnings.
12187 DiagnoseUseOfDecl(Named, IdentLoc);
12189 // C++ [namespace.udir]p1:
12190 // A using-directive specifies that the names in the nominated
12191 // namespace can be used in the scope in which the
12192 // using-directive appears after the using-directive. During
12193 // unqualified name lookup (3.4.1), the names appear as if they
12194 // were declared in the nearest enclosing namespace which
12195 // contains both the using-directive and the nominated
12196 // namespace. [Note: in this context, "contains" means "contains
12197 // directly or indirectly". ]
12199 // Find enclosing context containing both using-directive and
12200 // nominated namespace.
12201 DeclContext *CommonAncestor = NS;
12202 while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
12203 CommonAncestor = CommonAncestor->getParent();
12205 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
12206 SS.getWithLocInContext(Context),
12207 IdentLoc, Named, CommonAncestor);
12209 if (IsUsingDirectiveInToplevelContext(CurContext) &&
12210 !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
12211 Diag(IdentLoc, diag::warn_using_directive_in_header);
12214 PushUsingDirective(S, UDir);
12215 } else {
12216 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
12219 if (UDir)
12220 ProcessDeclAttributeList(S, UDir, AttrList);
12222 return UDir;
12225 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
12226 // If the scope has an associated entity and the using directive is at
12227 // namespace or translation unit scope, add the UsingDirectiveDecl into
12228 // its lookup structure so qualified name lookup can find it.
12229 DeclContext *Ctx = S->getEntity();
12230 if (Ctx && !Ctx->isFunctionOrMethod())
12231 Ctx->addDecl(UDir);
12232 else
12233 // Otherwise, it is at block scope. The using-directives will affect lookup
12234 // only to the end of the scope.
12235 S->PushUsingDirective(UDir);
12238 Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS,
12239 SourceLocation UsingLoc,
12240 SourceLocation TypenameLoc, CXXScopeSpec &SS,
12241 UnqualifiedId &Name,
12242 SourceLocation EllipsisLoc,
12243 const ParsedAttributesView &AttrList) {
12244 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
12246 if (SS.isEmpty()) {
12247 Diag(Name.getBeginLoc(), diag::err_using_requires_qualname);
12248 return nullptr;
12251 switch (Name.getKind()) {
12252 case UnqualifiedIdKind::IK_ImplicitSelfParam:
12253 case UnqualifiedIdKind::IK_Identifier:
12254 case UnqualifiedIdKind::IK_OperatorFunctionId:
12255 case UnqualifiedIdKind::IK_LiteralOperatorId:
12256 case UnqualifiedIdKind::IK_ConversionFunctionId:
12257 break;
12259 case UnqualifiedIdKind::IK_ConstructorName:
12260 case UnqualifiedIdKind::IK_ConstructorTemplateId:
12261 // C++11 inheriting constructors.
12262 Diag(Name.getBeginLoc(),
12263 getLangOpts().CPlusPlus11
12264 ? diag::warn_cxx98_compat_using_decl_constructor
12265 : diag::err_using_decl_constructor)
12266 << SS.getRange();
12268 if (getLangOpts().CPlusPlus11) break;
12270 return nullptr;
12272 case UnqualifiedIdKind::IK_DestructorName:
12273 Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange();
12274 return nullptr;
12276 case UnqualifiedIdKind::IK_TemplateId:
12277 Diag(Name.getBeginLoc(), diag::err_using_decl_template_id)
12278 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
12279 return nullptr;
12281 case UnqualifiedIdKind::IK_DeductionGuideName:
12282 llvm_unreachable("cannot parse qualified deduction guide name");
12285 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
12286 DeclarationName TargetName = TargetNameInfo.getName();
12287 if (!TargetName)
12288 return nullptr;
12290 // Warn about access declarations.
12291 if (UsingLoc.isInvalid()) {
12292 Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11
12293 ? diag::err_access_decl
12294 : diag::warn_access_decl_deprecated)
12295 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
12298 if (EllipsisLoc.isInvalid()) {
12299 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
12300 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
12301 return nullptr;
12302 } else {
12303 if (!SS.getScopeRep()->containsUnexpandedParameterPack() &&
12304 !TargetNameInfo.containsUnexpandedParameterPack()) {
12305 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
12306 << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc());
12307 EllipsisLoc = SourceLocation();
12311 NamedDecl *UD =
12312 BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc,
12313 SS, TargetNameInfo, EllipsisLoc, AttrList,
12314 /*IsInstantiation*/ false,
12315 AttrList.hasAttribute(ParsedAttr::AT_UsingIfExists));
12316 if (UD)
12317 PushOnScopeChains(UD, S, /*AddToContext*/ false);
12319 return UD;
12322 Decl *Sema::ActOnUsingEnumDeclaration(Scope *S, AccessSpecifier AS,
12323 SourceLocation UsingLoc,
12324 SourceLocation EnumLoc,
12325 SourceLocation IdentLoc,
12326 IdentifierInfo &II, CXXScopeSpec *SS) {
12327 assert(!SS->isInvalid() && "ScopeSpec is invalid");
12328 TypeSourceInfo *TSI = nullptr;
12329 QualType EnumTy = GetTypeFromParser(
12330 getTypeName(II, IdentLoc, S, SS, /*isClassName=*/false,
12331 /*HasTrailingDot=*/false,
12332 /*ObjectType=*/nullptr, /*IsCtorOrDtorName=*/false,
12333 /*WantNontrivialTypeSourceInfo=*/true),
12334 &TSI);
12335 if (EnumTy.isNull()) {
12336 Diag(IdentLoc, SS && isDependentScopeSpecifier(*SS)
12337 ? diag::err_using_enum_is_dependent
12338 : diag::err_unknown_typename)
12339 << II.getName()
12340 << SourceRange(SS ? SS->getBeginLoc() : IdentLoc, IdentLoc);
12341 return nullptr;
12344 auto *Enum = dyn_cast_if_present<EnumDecl>(EnumTy->getAsTagDecl());
12345 if (!Enum) {
12346 Diag(IdentLoc, diag::err_using_enum_not_enum) << EnumTy;
12347 return nullptr;
12350 if (auto *Def = Enum->getDefinition())
12351 Enum = Def;
12353 if (TSI == nullptr)
12354 TSI = Context.getTrivialTypeSourceInfo(EnumTy, IdentLoc);
12356 auto *UD =
12357 BuildUsingEnumDeclaration(S, AS, UsingLoc, EnumLoc, IdentLoc, TSI, Enum);
12359 if (UD)
12360 PushOnScopeChains(UD, S, /*AddToContext*/ false);
12362 return UD;
12365 /// Determine whether a using declaration considers the given
12366 /// declarations as "equivalent", e.g., if they are redeclarations of
12367 /// the same entity or are both typedefs of the same type.
12368 static bool
12369 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) {
12370 if (D1->getCanonicalDecl() == D2->getCanonicalDecl())
12371 return true;
12373 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
12374 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2))
12375 return Context.hasSameType(TD1->getUnderlyingType(),
12376 TD2->getUnderlyingType());
12378 // Two using_if_exists using-declarations are equivalent if both are
12379 // unresolved.
12380 if (isa<UnresolvedUsingIfExistsDecl>(D1) &&
12381 isa<UnresolvedUsingIfExistsDecl>(D2))
12382 return true;
12384 return false;
12388 /// Determines whether to create a using shadow decl for a particular
12389 /// decl, given the set of decls existing prior to this using lookup.
12390 bool Sema::CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Orig,
12391 const LookupResult &Previous,
12392 UsingShadowDecl *&PrevShadow) {
12393 // Diagnose finding a decl which is not from a base class of the
12394 // current class. We do this now because there are cases where this
12395 // function will silently decide not to build a shadow decl, which
12396 // will pre-empt further diagnostics.
12398 // We don't need to do this in C++11 because we do the check once on
12399 // the qualifier.
12401 // FIXME: diagnose the following if we care enough:
12402 // struct A { int foo; };
12403 // struct B : A { using A::foo; };
12404 // template <class T> struct C : A {};
12405 // template <class T> struct D : C<T> { using B::foo; } // <---
12406 // This is invalid (during instantiation) in C++03 because B::foo
12407 // resolves to the using decl in B, which is not a base class of D<T>.
12408 // We can't diagnose it immediately because C<T> is an unknown
12409 // specialization. The UsingShadowDecl in D<T> then points directly
12410 // to A::foo, which will look well-formed when we instantiate.
12411 // The right solution is to not collapse the shadow-decl chain.
12412 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord())
12413 if (auto *Using = dyn_cast<UsingDecl>(BUD)) {
12414 DeclContext *OrigDC = Orig->getDeclContext();
12416 // Handle enums and anonymous structs.
12417 if (isa<EnumDecl>(OrigDC))
12418 OrigDC = OrigDC->getParent();
12419 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
12420 while (OrigRec->isAnonymousStructOrUnion())
12421 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
12423 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
12424 if (OrigDC == CurContext) {
12425 Diag(Using->getLocation(),
12426 diag::err_using_decl_nested_name_specifier_is_current_class)
12427 << Using->getQualifierLoc().getSourceRange();
12428 Diag(Orig->getLocation(), diag::note_using_decl_target);
12429 Using->setInvalidDecl();
12430 return true;
12433 Diag(Using->getQualifierLoc().getBeginLoc(),
12434 diag::err_using_decl_nested_name_specifier_is_not_base_class)
12435 << Using->getQualifier() << cast<CXXRecordDecl>(CurContext)
12436 << Using->getQualifierLoc().getSourceRange();
12437 Diag(Orig->getLocation(), diag::note_using_decl_target);
12438 Using->setInvalidDecl();
12439 return true;
12443 if (Previous.empty()) return false;
12445 NamedDecl *Target = Orig;
12446 if (isa<UsingShadowDecl>(Target))
12447 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
12449 // If the target happens to be one of the previous declarations, we
12450 // don't have a conflict.
12452 // FIXME: but we might be increasing its access, in which case we
12453 // should redeclare it.
12454 NamedDecl *NonTag = nullptr, *Tag = nullptr;
12455 bool FoundEquivalentDecl = false;
12456 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
12457 I != E; ++I) {
12458 NamedDecl *D = (*I)->getUnderlyingDecl();
12459 // We can have UsingDecls in our Previous results because we use the same
12460 // LookupResult for checking whether the UsingDecl itself is a valid
12461 // redeclaration.
12462 if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D) || isa<UsingEnumDecl>(D))
12463 continue;
12465 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
12466 // C++ [class.mem]p19:
12467 // If T is the name of a class, then [every named member other than
12468 // a non-static data member] shall have a name different from T
12469 if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) &&
12470 !isa<IndirectFieldDecl>(Target) &&
12471 !isa<UnresolvedUsingValueDecl>(Target) &&
12472 DiagnoseClassNameShadow(
12473 CurContext,
12474 DeclarationNameInfo(BUD->getDeclName(), BUD->getLocation())))
12475 return true;
12478 if (IsEquivalentForUsingDecl(Context, D, Target)) {
12479 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I))
12480 PrevShadow = Shadow;
12481 FoundEquivalentDecl = true;
12482 } else if (isEquivalentInternalLinkageDeclaration(D, Target)) {
12483 // We don't conflict with an existing using shadow decl of an equivalent
12484 // declaration, but we're not a redeclaration of it.
12485 FoundEquivalentDecl = true;
12488 if (isVisible(D))
12489 (isa<TagDecl>(D) ? Tag : NonTag) = D;
12492 if (FoundEquivalentDecl)
12493 return false;
12495 // Always emit a diagnostic for a mismatch between an unresolved
12496 // using_if_exists and a resolved using declaration in either direction.
12497 if (isa<UnresolvedUsingIfExistsDecl>(Target) !=
12498 (isa_and_nonnull<UnresolvedUsingIfExistsDecl>(NonTag))) {
12499 if (!NonTag && !Tag)
12500 return false;
12501 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
12502 Diag(Target->getLocation(), diag::note_using_decl_target);
12503 Diag((NonTag ? NonTag : Tag)->getLocation(),
12504 diag::note_using_decl_conflict);
12505 BUD->setInvalidDecl();
12506 return true;
12509 if (FunctionDecl *FD = Target->getAsFunction()) {
12510 NamedDecl *OldDecl = nullptr;
12511 switch (CheckOverload(nullptr, FD, Previous, OldDecl,
12512 /*IsForUsingDecl*/ true)) {
12513 case Ovl_Overload:
12514 return false;
12516 case Ovl_NonFunction:
12517 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
12518 break;
12520 // We found a decl with the exact signature.
12521 case Ovl_Match:
12522 // If we're in a record, we want to hide the target, so we
12523 // return true (without a diagnostic) to tell the caller not to
12524 // build a shadow decl.
12525 if (CurContext->isRecord())
12526 return true;
12528 // If we're not in a record, this is an error.
12529 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
12530 break;
12533 Diag(Target->getLocation(), diag::note_using_decl_target);
12534 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
12535 BUD->setInvalidDecl();
12536 return true;
12539 // Target is not a function.
12541 if (isa<TagDecl>(Target)) {
12542 // No conflict between a tag and a non-tag.
12543 if (!Tag) return false;
12545 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
12546 Diag(Target->getLocation(), diag::note_using_decl_target);
12547 Diag(Tag->getLocation(), diag::note_using_decl_conflict);
12548 BUD->setInvalidDecl();
12549 return true;
12552 // No conflict between a tag and a non-tag.
12553 if (!NonTag) return false;
12555 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
12556 Diag(Target->getLocation(), diag::note_using_decl_target);
12557 Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
12558 BUD->setInvalidDecl();
12559 return true;
12562 /// Determine whether a direct base class is a virtual base class.
12563 static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) {
12564 if (!Derived->getNumVBases())
12565 return false;
12566 for (auto &B : Derived->bases())
12567 if (B.getType()->getAsCXXRecordDecl() == Base)
12568 return B.isVirtual();
12569 llvm_unreachable("not a direct base class");
12572 /// Builds a shadow declaration corresponding to a 'using' declaration.
12573 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD,
12574 NamedDecl *Orig,
12575 UsingShadowDecl *PrevDecl) {
12576 // If we resolved to another shadow declaration, just coalesce them.
12577 NamedDecl *Target = Orig;
12578 if (isa<UsingShadowDecl>(Target)) {
12579 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
12580 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
12583 NamedDecl *NonTemplateTarget = Target;
12584 if (auto *TargetTD = dyn_cast<TemplateDecl>(Target))
12585 NonTemplateTarget = TargetTD->getTemplatedDecl();
12587 UsingShadowDecl *Shadow;
12588 if (NonTemplateTarget && isa<CXXConstructorDecl>(NonTemplateTarget)) {
12589 UsingDecl *Using = cast<UsingDecl>(BUD);
12590 bool IsVirtualBase =
12591 isVirtualDirectBase(cast<CXXRecordDecl>(CurContext),
12592 Using->getQualifier()->getAsRecordDecl());
12593 Shadow = ConstructorUsingShadowDecl::Create(
12594 Context, CurContext, Using->getLocation(), Using, Orig, IsVirtualBase);
12595 } else {
12596 Shadow = UsingShadowDecl::Create(Context, CurContext, BUD->getLocation(),
12597 Target->getDeclName(), BUD, Target);
12599 BUD->addShadowDecl(Shadow);
12601 Shadow->setAccess(BUD->getAccess());
12602 if (Orig->isInvalidDecl() || BUD->isInvalidDecl())
12603 Shadow->setInvalidDecl();
12605 Shadow->setPreviousDecl(PrevDecl);
12607 if (S)
12608 PushOnScopeChains(Shadow, S);
12609 else
12610 CurContext->addDecl(Shadow);
12613 return Shadow;
12616 /// Hides a using shadow declaration. This is required by the current
12617 /// using-decl implementation when a resolvable using declaration in a
12618 /// class is followed by a declaration which would hide or override
12619 /// one or more of the using decl's targets; for example:
12621 /// struct Base { void foo(int); };
12622 /// struct Derived : Base {
12623 /// using Base::foo;
12624 /// void foo(int);
12625 /// };
12627 /// The governing language is C++03 [namespace.udecl]p12:
12629 /// When a using-declaration brings names from a base class into a
12630 /// derived class scope, member functions in the derived class
12631 /// override and/or hide member functions with the same name and
12632 /// parameter types in a base class (rather than conflicting).
12634 /// There are two ways to implement this:
12635 /// (1) optimistically create shadow decls when they're not hidden
12636 /// by existing declarations, or
12637 /// (2) don't create any shadow decls (or at least don't make them
12638 /// visible) until we've fully parsed/instantiated the class.
12639 /// The problem with (1) is that we might have to retroactively remove
12640 /// a shadow decl, which requires several O(n) operations because the
12641 /// decl structures are (very reasonably) not designed for removal.
12642 /// (2) avoids this but is very fiddly and phase-dependent.
12643 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
12644 if (Shadow->getDeclName().getNameKind() ==
12645 DeclarationName::CXXConversionFunctionName)
12646 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
12648 // Remove it from the DeclContext...
12649 Shadow->getDeclContext()->removeDecl(Shadow);
12651 // ...and the scope, if applicable...
12652 if (S) {
12653 S->RemoveDecl(Shadow);
12654 IdResolver.RemoveDecl(Shadow);
12657 // ...and the using decl.
12658 Shadow->getIntroducer()->removeShadowDecl(Shadow);
12660 // TODO: complain somehow if Shadow was used. It shouldn't
12661 // be possible for this to happen, because...?
12664 /// Find the base specifier for a base class with the given type.
12665 static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived,
12666 QualType DesiredBase,
12667 bool &AnyDependentBases) {
12668 // Check whether the named type is a direct base class.
12669 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified()
12670 .getUnqualifiedType();
12671 for (auto &Base : Derived->bases()) {
12672 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified();
12673 if (CanonicalDesiredBase == BaseType)
12674 return &Base;
12675 if (BaseType->isDependentType())
12676 AnyDependentBases = true;
12678 return nullptr;
12681 namespace {
12682 class UsingValidatorCCC final : public CorrectionCandidateCallback {
12683 public:
12684 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation,
12685 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf)
12686 : HasTypenameKeyword(HasTypenameKeyword),
12687 IsInstantiation(IsInstantiation), OldNNS(NNS),
12688 RequireMemberOf(RequireMemberOf) {}
12690 bool ValidateCandidate(const TypoCorrection &Candidate) override {
12691 NamedDecl *ND = Candidate.getCorrectionDecl();
12693 // Keywords are not valid here.
12694 if (!ND || isa<NamespaceDecl>(ND))
12695 return false;
12697 // Completely unqualified names are invalid for a 'using' declaration.
12698 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
12699 return false;
12701 // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would
12702 // reject.
12704 if (RequireMemberOf) {
12705 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
12706 if (FoundRecord && FoundRecord->isInjectedClassName()) {
12707 // No-one ever wants a using-declaration to name an injected-class-name
12708 // of a base class, unless they're declaring an inheriting constructor.
12709 ASTContext &Ctx = ND->getASTContext();
12710 if (!Ctx.getLangOpts().CPlusPlus11)
12711 return false;
12712 QualType FoundType = Ctx.getRecordType(FoundRecord);
12714 // Check that the injected-class-name is named as a member of its own
12715 // type; we don't want to suggest 'using Derived::Base;', since that
12716 // means something else.
12717 NestedNameSpecifier *Specifier =
12718 Candidate.WillReplaceSpecifier()
12719 ? Candidate.getCorrectionSpecifier()
12720 : OldNNS;
12721 if (!Specifier->getAsType() ||
12722 !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType))
12723 return false;
12725 // Check that this inheriting constructor declaration actually names a
12726 // direct base class of the current class.
12727 bool AnyDependentBases = false;
12728 if (!findDirectBaseWithType(RequireMemberOf,
12729 Ctx.getRecordType(FoundRecord),
12730 AnyDependentBases) &&
12731 !AnyDependentBases)
12732 return false;
12733 } else {
12734 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext());
12735 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD))
12736 return false;
12738 // FIXME: Check that the base class member is accessible?
12740 } else {
12741 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
12742 if (FoundRecord && FoundRecord->isInjectedClassName())
12743 return false;
12746 if (isa<TypeDecl>(ND))
12747 return HasTypenameKeyword || !IsInstantiation;
12749 return !HasTypenameKeyword;
12752 std::unique_ptr<CorrectionCandidateCallback> clone() override {
12753 return std::make_unique<UsingValidatorCCC>(*this);
12756 private:
12757 bool HasTypenameKeyword;
12758 bool IsInstantiation;
12759 NestedNameSpecifier *OldNNS;
12760 CXXRecordDecl *RequireMemberOf;
12762 } // end anonymous namespace
12764 /// Remove decls we can't actually see from a lookup being used to declare
12765 /// shadow using decls.
12767 /// \param S - The scope of the potential shadow decl
12768 /// \param Previous - The lookup of a potential shadow decl's name.
12769 void Sema::FilterUsingLookup(Scope *S, LookupResult &Previous) {
12770 // It is really dumb that we have to do this.
12771 LookupResult::Filter F = Previous.makeFilter();
12772 while (F.hasNext()) {
12773 NamedDecl *D = F.next();
12774 if (!isDeclInScope(D, CurContext, S))
12775 F.erase();
12776 // If we found a local extern declaration that's not ordinarily visible,
12777 // and this declaration is being added to a non-block scope, ignore it.
12778 // We're only checking for scope conflicts here, not also for violations
12779 // of the linkage rules.
12780 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() &&
12781 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary))
12782 F.erase();
12784 F.done();
12787 /// Builds a using declaration.
12789 /// \param IsInstantiation - Whether this call arises from an
12790 /// instantiation of an unresolved using declaration. We treat
12791 /// the lookup differently for these declarations.
12792 NamedDecl *Sema::BuildUsingDeclaration(
12793 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc,
12794 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS,
12795 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc,
12796 const ParsedAttributesView &AttrList, bool IsInstantiation,
12797 bool IsUsingIfExists) {
12798 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
12799 SourceLocation IdentLoc = NameInfo.getLoc();
12800 assert(IdentLoc.isValid() && "Invalid TargetName location.");
12802 // FIXME: We ignore attributes for now.
12804 // For an inheriting constructor declaration, the name of the using
12805 // declaration is the name of a constructor in this class, not in the
12806 // base class.
12807 DeclarationNameInfo UsingName = NameInfo;
12808 if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName)
12809 if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext))
12810 UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
12811 Context.getCanonicalType(Context.getRecordType(RD))));
12813 // Do the redeclaration lookup in the current scope.
12814 LookupResult Previous(*this, UsingName, LookupUsingDeclName,
12815 ForVisibleRedeclaration);
12816 Previous.setHideTags(false);
12817 if (S) {
12818 LookupName(Previous, S);
12820 FilterUsingLookup(S, Previous);
12821 } else {
12822 assert(IsInstantiation && "no scope in non-instantiation");
12823 if (CurContext->isRecord())
12824 LookupQualifiedName(Previous, CurContext);
12825 else {
12826 // No redeclaration check is needed here; in non-member contexts we
12827 // diagnosed all possible conflicts with other using-declarations when
12828 // building the template:
12830 // For a dependent non-type using declaration, the only valid case is
12831 // if we instantiate to a single enumerator. We check for conflicts
12832 // between shadow declarations we introduce, and we check in the template
12833 // definition for conflicts between a non-type using declaration and any
12834 // other declaration, which together covers all cases.
12836 // A dependent typename using declaration will never successfully
12837 // instantiate, since it will always name a class member, so we reject
12838 // that in the template definition.
12842 // Check for invalid redeclarations.
12843 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
12844 SS, IdentLoc, Previous))
12845 return nullptr;
12847 // 'using_if_exists' doesn't make sense on an inherited constructor.
12848 if (IsUsingIfExists && UsingName.getName().getNameKind() ==
12849 DeclarationName::CXXConstructorName) {
12850 Diag(UsingLoc, diag::err_using_if_exists_on_ctor);
12851 return nullptr;
12854 DeclContext *LookupContext = computeDeclContext(SS);
12855 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
12856 if (!LookupContext || EllipsisLoc.isValid()) {
12857 NamedDecl *D;
12858 // Dependent scope, or an unexpanded pack
12859 if (!LookupContext && CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword,
12860 SS, NameInfo, IdentLoc))
12861 return nullptr;
12863 if (HasTypenameKeyword) {
12864 // FIXME: not all declaration name kinds are legal here
12865 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
12866 UsingLoc, TypenameLoc,
12867 QualifierLoc,
12868 IdentLoc, NameInfo.getName(),
12869 EllipsisLoc);
12870 } else {
12871 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
12872 QualifierLoc, NameInfo, EllipsisLoc);
12874 D->setAccess(AS);
12875 CurContext->addDecl(D);
12876 ProcessDeclAttributeList(S, D, AttrList);
12877 return D;
12880 auto Build = [&](bool Invalid) {
12881 UsingDecl *UD =
12882 UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
12883 UsingName, HasTypenameKeyword);
12884 UD->setAccess(AS);
12885 CurContext->addDecl(UD);
12886 ProcessDeclAttributeList(S, UD, AttrList);
12887 UD->setInvalidDecl(Invalid);
12888 return UD;
12890 auto BuildInvalid = [&]{ return Build(true); };
12891 auto BuildValid = [&]{ return Build(false); };
12893 if (RequireCompleteDeclContext(SS, LookupContext))
12894 return BuildInvalid();
12896 // Look up the target name.
12897 LookupResult R(*this, NameInfo, LookupOrdinaryName);
12899 // Unlike most lookups, we don't always want to hide tag
12900 // declarations: tag names are visible through the using declaration
12901 // even if hidden by ordinary names, *except* in a dependent context
12902 // where they may be used by two-phase lookup.
12903 if (!IsInstantiation)
12904 R.setHideTags(false);
12906 // For the purposes of this lookup, we have a base object type
12907 // equal to that of the current context.
12908 if (CurContext->isRecord()) {
12909 R.setBaseObjectType(
12910 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
12913 LookupQualifiedName(R, LookupContext);
12915 // Validate the context, now we have a lookup
12916 if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo,
12917 IdentLoc, &R))
12918 return nullptr;
12920 if (R.empty() && IsUsingIfExists)
12921 R.addDecl(UnresolvedUsingIfExistsDecl::Create(Context, CurContext, UsingLoc,
12922 UsingName.getName()),
12923 AS_public);
12925 // Try to correct typos if possible. If constructor name lookup finds no
12926 // results, that means the named class has no explicit constructors, and we
12927 // suppressed declaring implicit ones (probably because it's dependent or
12928 // invalid).
12929 if (R.empty() &&
12930 NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) {
12931 // HACK 2017-01-08: Work around an issue with libstdc++'s detection of
12932 // ::gets. Sometimes it believes that glibc provides a ::gets in cases where
12933 // it does not. The issue was fixed in libstdc++ 6.3 (2016-12-21) and later.
12934 auto *II = NameInfo.getName().getAsIdentifierInfo();
12935 if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") &&
12936 CurContext->isStdNamespace() &&
12937 isa<TranslationUnitDecl>(LookupContext) &&
12938 getSourceManager().isInSystemHeader(UsingLoc))
12939 return nullptr;
12940 UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(),
12941 dyn_cast<CXXRecordDecl>(CurContext));
12942 if (TypoCorrection Corrected =
12943 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
12944 CTK_ErrorRecovery)) {
12945 // We reject candidates where DroppedSpecifier == true, hence the
12946 // literal '0' below.
12947 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
12948 << NameInfo.getName() << LookupContext << 0
12949 << SS.getRange());
12951 // If we picked a correction with no attached Decl we can't do anything
12952 // useful with it, bail out.
12953 NamedDecl *ND = Corrected.getCorrectionDecl();
12954 if (!ND)
12955 return BuildInvalid();
12957 // If we corrected to an inheriting constructor, handle it as one.
12958 auto *RD = dyn_cast<CXXRecordDecl>(ND);
12959 if (RD && RD->isInjectedClassName()) {
12960 // The parent of the injected class name is the class itself.
12961 RD = cast<CXXRecordDecl>(RD->getParent());
12963 // Fix up the information we'll use to build the using declaration.
12964 if (Corrected.WillReplaceSpecifier()) {
12965 NestedNameSpecifierLocBuilder Builder;
12966 Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
12967 QualifierLoc.getSourceRange());
12968 QualifierLoc = Builder.getWithLocInContext(Context);
12971 // In this case, the name we introduce is the name of a derived class
12972 // constructor.
12973 auto *CurClass = cast<CXXRecordDecl>(CurContext);
12974 UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
12975 Context.getCanonicalType(Context.getRecordType(CurClass))));
12976 UsingName.setNamedTypeInfo(nullptr);
12977 for (auto *Ctor : LookupConstructors(RD))
12978 R.addDecl(Ctor);
12979 R.resolveKind();
12980 } else {
12981 // FIXME: Pick up all the declarations if we found an overloaded
12982 // function.
12983 UsingName.setName(ND->getDeclName());
12984 R.addDecl(ND);
12986 } else {
12987 Diag(IdentLoc, diag::err_no_member)
12988 << NameInfo.getName() << LookupContext << SS.getRange();
12989 return BuildInvalid();
12993 if (R.isAmbiguous())
12994 return BuildInvalid();
12996 if (HasTypenameKeyword) {
12997 // If we asked for a typename and got a non-type decl, error out.
12998 if (!R.getAsSingle<TypeDecl>() &&
12999 !R.getAsSingle<UnresolvedUsingIfExistsDecl>()) {
13000 Diag(IdentLoc, diag::err_using_typename_non_type);
13001 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
13002 Diag((*I)->getUnderlyingDecl()->getLocation(),
13003 diag::note_using_decl_target);
13004 return BuildInvalid();
13006 } else {
13007 // If we asked for a non-typename and we got a type, error out,
13008 // but only if this is an instantiation of an unresolved using
13009 // decl. Otherwise just silently find the type name.
13010 if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
13011 Diag(IdentLoc, diag::err_using_dependent_value_is_type);
13012 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
13013 return BuildInvalid();
13017 // C++14 [namespace.udecl]p6:
13018 // A using-declaration shall not name a namespace.
13019 if (R.getAsSingle<NamespaceDecl>()) {
13020 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
13021 << SS.getRange();
13022 return BuildInvalid();
13025 UsingDecl *UD = BuildValid();
13027 // Some additional rules apply to inheriting constructors.
13028 if (UsingName.getName().getNameKind() ==
13029 DeclarationName::CXXConstructorName) {
13030 // Suppress access diagnostics; the access check is instead performed at the
13031 // point of use for an inheriting constructor.
13032 R.suppressDiagnostics();
13033 if (CheckInheritingConstructorUsingDecl(UD))
13034 return UD;
13037 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
13038 UsingShadowDecl *PrevDecl = nullptr;
13039 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl))
13040 BuildUsingShadowDecl(S, UD, *I, PrevDecl);
13043 return UD;
13046 NamedDecl *Sema::BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS,
13047 SourceLocation UsingLoc,
13048 SourceLocation EnumLoc,
13049 SourceLocation NameLoc,
13050 TypeSourceInfo *EnumType,
13051 EnumDecl *ED) {
13052 bool Invalid = false;
13054 if (CurContext->getRedeclContext()->isRecord()) {
13055 /// In class scope, check if this is a duplicate, for better a diagnostic.
13056 DeclarationNameInfo UsingEnumName(ED->getDeclName(), NameLoc);
13057 LookupResult Previous(*this, UsingEnumName, LookupUsingDeclName,
13058 ForVisibleRedeclaration);
13060 LookupName(Previous, S);
13062 for (NamedDecl *D : Previous)
13063 if (UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D))
13064 if (UED->getEnumDecl() == ED) {
13065 Diag(UsingLoc, diag::err_using_enum_decl_redeclaration)
13066 << SourceRange(EnumLoc, NameLoc);
13067 Diag(D->getLocation(), diag::note_using_enum_decl) << 1;
13068 Invalid = true;
13069 break;
13073 if (RequireCompleteEnumDecl(ED, NameLoc))
13074 Invalid = true;
13076 UsingEnumDecl *UD = UsingEnumDecl::Create(Context, CurContext, UsingLoc,
13077 EnumLoc, NameLoc, EnumType);
13078 UD->setAccess(AS);
13079 CurContext->addDecl(UD);
13081 if (Invalid) {
13082 UD->setInvalidDecl();
13083 return UD;
13086 // Create the shadow decls for each enumerator
13087 for (EnumConstantDecl *EC : ED->enumerators()) {
13088 UsingShadowDecl *PrevDecl = nullptr;
13089 DeclarationNameInfo DNI(EC->getDeclName(), EC->getLocation());
13090 LookupResult Previous(*this, DNI, LookupOrdinaryName,
13091 ForVisibleRedeclaration);
13092 LookupName(Previous, S);
13093 FilterUsingLookup(S, Previous);
13095 if (!CheckUsingShadowDecl(UD, EC, Previous, PrevDecl))
13096 BuildUsingShadowDecl(S, UD, EC, PrevDecl);
13099 return UD;
13102 NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
13103 ArrayRef<NamedDecl *> Expansions) {
13104 assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) ||
13105 isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) ||
13106 isa<UsingPackDecl>(InstantiatedFrom));
13108 auto *UPD =
13109 UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions);
13110 UPD->setAccess(InstantiatedFrom->getAccess());
13111 CurContext->addDecl(UPD);
13112 return UPD;
13115 /// Additional checks for a using declaration referring to a constructor name.
13116 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
13117 assert(!UD->hasTypename() && "expecting a constructor name");
13119 const Type *SourceType = UD->getQualifier()->getAsType();
13120 assert(SourceType &&
13121 "Using decl naming constructor doesn't have type in scope spec.");
13122 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
13124 // Check whether the named type is a direct base class.
13125 bool AnyDependentBases = false;
13126 auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0),
13127 AnyDependentBases);
13128 if (!Base && !AnyDependentBases) {
13129 Diag(UD->getUsingLoc(),
13130 diag::err_using_decl_constructor_not_in_direct_base)
13131 << UD->getNameInfo().getSourceRange()
13132 << QualType(SourceType, 0) << TargetClass;
13133 UD->setInvalidDecl();
13134 return true;
13137 if (Base)
13138 Base->setInheritConstructors();
13140 return false;
13143 /// Checks that the given using declaration is not an invalid
13144 /// redeclaration. Note that this is checking only for the using decl
13145 /// itself, not for any ill-formedness among the UsingShadowDecls.
13146 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
13147 bool HasTypenameKeyword,
13148 const CXXScopeSpec &SS,
13149 SourceLocation NameLoc,
13150 const LookupResult &Prev) {
13151 NestedNameSpecifier *Qual = SS.getScopeRep();
13153 // C++03 [namespace.udecl]p8:
13154 // C++0x [namespace.udecl]p10:
13155 // A using-declaration is a declaration and can therefore be used
13156 // repeatedly where (and only where) multiple declarations are
13157 // allowed.
13159 // That's in non-member contexts.
13160 if (!CurContext->getRedeclContext()->isRecord()) {
13161 // A dependent qualifier outside a class can only ever resolve to an
13162 // enumeration type. Therefore it conflicts with any other non-type
13163 // declaration in the same scope.
13164 // FIXME: How should we check for dependent type-type conflicts at block
13165 // scope?
13166 if (Qual->isDependent() && !HasTypenameKeyword) {
13167 for (auto *D : Prev) {
13168 if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) {
13169 bool OldCouldBeEnumerator =
13170 isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D);
13171 Diag(NameLoc,
13172 OldCouldBeEnumerator ? diag::err_redefinition
13173 : diag::err_redefinition_different_kind)
13174 << Prev.getLookupName();
13175 Diag(D->getLocation(), diag::note_previous_definition);
13176 return true;
13180 return false;
13183 const NestedNameSpecifier *CNNS =
13184 Context.getCanonicalNestedNameSpecifier(Qual);
13185 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
13186 NamedDecl *D = *I;
13188 bool DTypename;
13189 NestedNameSpecifier *DQual;
13190 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
13191 DTypename = UD->hasTypename();
13192 DQual = UD->getQualifier();
13193 } else if (UnresolvedUsingValueDecl *UD
13194 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
13195 DTypename = false;
13196 DQual = UD->getQualifier();
13197 } else if (UnresolvedUsingTypenameDecl *UD
13198 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
13199 DTypename = true;
13200 DQual = UD->getQualifier();
13201 } else continue;
13203 // using decls differ if one says 'typename' and the other doesn't.
13204 // FIXME: non-dependent using decls?
13205 if (HasTypenameKeyword != DTypename) continue;
13207 // using decls differ if they name different scopes (but note that
13208 // template instantiation can cause this check to trigger when it
13209 // didn't before instantiation).
13210 if (CNNS != Context.getCanonicalNestedNameSpecifier(DQual))
13211 continue;
13213 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
13214 Diag(D->getLocation(), diag::note_using_decl) << 1;
13215 return true;
13218 return false;
13221 /// Checks that the given nested-name qualifier used in a using decl
13222 /// in the current context is appropriately related to the current
13223 /// scope. If an error is found, diagnoses it and returns true.
13224 /// R is nullptr, if the caller has not (yet) done a lookup, otherwise it's the
13225 /// result of that lookup. UD is likewise nullptr, except when we have an
13226 /// already-populated UsingDecl whose shadow decls contain the same information
13227 /// (i.e. we're instantiating a UsingDecl with non-dependent scope).
13228 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename,
13229 const CXXScopeSpec &SS,
13230 const DeclarationNameInfo &NameInfo,
13231 SourceLocation NameLoc,
13232 const LookupResult *R, const UsingDecl *UD) {
13233 DeclContext *NamedContext = computeDeclContext(SS);
13234 assert(bool(NamedContext) == (R || UD) && !(R && UD) &&
13235 "resolvable context must have exactly one set of decls");
13237 // C++ 20 permits using an enumerator that does not have a class-hierarchy
13238 // relationship.
13239 bool Cxx20Enumerator = false;
13240 if (NamedContext) {
13241 EnumConstantDecl *EC = nullptr;
13242 if (R)
13243 EC = R->getAsSingle<EnumConstantDecl>();
13244 else if (UD && UD->shadow_size() == 1)
13245 EC = dyn_cast<EnumConstantDecl>(UD->shadow_begin()->getTargetDecl());
13246 if (EC)
13247 Cxx20Enumerator = getLangOpts().CPlusPlus20;
13249 if (auto *ED = dyn_cast<EnumDecl>(NamedContext)) {
13250 // C++14 [namespace.udecl]p7:
13251 // A using-declaration shall not name a scoped enumerator.
13252 // C++20 p1099 permits enumerators.
13253 if (EC && R && ED->isScoped())
13254 Diag(SS.getBeginLoc(),
13255 getLangOpts().CPlusPlus20
13256 ? diag::warn_cxx17_compat_using_decl_scoped_enumerator
13257 : diag::ext_using_decl_scoped_enumerator)
13258 << SS.getRange();
13260 // We want to consider the scope of the enumerator
13261 NamedContext = ED->getDeclContext();
13265 if (!CurContext->isRecord()) {
13266 // C++03 [namespace.udecl]p3:
13267 // C++0x [namespace.udecl]p8:
13268 // A using-declaration for a class member shall be a member-declaration.
13269 // C++20 [namespace.udecl]p7
13270 // ... other than an enumerator ...
13272 // If we weren't able to compute a valid scope, it might validly be a
13273 // dependent class or enumeration scope. If we have a 'typename' keyword,
13274 // the scope must resolve to a class type.
13275 if (NamedContext ? !NamedContext->getRedeclContext()->isRecord()
13276 : !HasTypename)
13277 return false; // OK
13279 Diag(NameLoc,
13280 Cxx20Enumerator
13281 ? diag::warn_cxx17_compat_using_decl_class_member_enumerator
13282 : diag::err_using_decl_can_not_refer_to_class_member)
13283 << SS.getRange();
13285 if (Cxx20Enumerator)
13286 return false; // OK
13288 auto *RD = NamedContext
13289 ? cast<CXXRecordDecl>(NamedContext->getRedeclContext())
13290 : nullptr;
13291 if (RD && !RequireCompleteDeclContext(const_cast<CXXScopeSpec &>(SS), RD)) {
13292 // See if there's a helpful fixit
13294 if (!R) {
13295 // We will have already diagnosed the problem on the template
13296 // definition, Maybe we should do so again?
13297 } else if (R->getAsSingle<TypeDecl>()) {
13298 if (getLangOpts().CPlusPlus11) {
13299 // Convert 'using X::Y;' to 'using Y = X::Y;'.
13300 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround)
13301 << 0 // alias declaration
13302 << FixItHint::CreateInsertion(SS.getBeginLoc(),
13303 NameInfo.getName().getAsString() +
13304 " = ");
13305 } else {
13306 // Convert 'using X::Y;' to 'typedef X::Y Y;'.
13307 SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc());
13308 Diag(InsertLoc, diag::note_using_decl_class_member_workaround)
13309 << 1 // typedef declaration
13310 << FixItHint::CreateReplacement(UsingLoc, "typedef")
13311 << FixItHint::CreateInsertion(
13312 InsertLoc, " " + NameInfo.getName().getAsString());
13314 } else if (R->getAsSingle<VarDecl>()) {
13315 // Don't provide a fixit outside C++11 mode; we don't want to suggest
13316 // repeating the type of the static data member here.
13317 FixItHint FixIt;
13318 if (getLangOpts().CPlusPlus11) {
13319 // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
13320 FixIt = FixItHint::CreateReplacement(
13321 UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = ");
13324 Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
13325 << 2 // reference declaration
13326 << FixIt;
13327 } else if (R->getAsSingle<EnumConstantDecl>()) {
13328 // Don't provide a fixit outside C++11 mode; we don't want to suggest
13329 // repeating the type of the enumeration here, and we can't do so if
13330 // the type is anonymous.
13331 FixItHint FixIt;
13332 if (getLangOpts().CPlusPlus11) {
13333 // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
13334 FixIt = FixItHint::CreateReplacement(
13335 UsingLoc,
13336 "constexpr auto " + NameInfo.getName().getAsString() + " = ");
13339 Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
13340 << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable
13341 << FixIt;
13345 return true; // Fail
13348 // If the named context is dependent, we can't decide much.
13349 if (!NamedContext) {
13350 // FIXME: in C++0x, we can diagnose if we can prove that the
13351 // nested-name-specifier does not refer to a base class, which is
13352 // still possible in some cases.
13354 // Otherwise we have to conservatively report that things might be
13355 // okay.
13356 return false;
13359 // The current scope is a record.
13360 if (!NamedContext->isRecord()) {
13361 // Ideally this would point at the last name in the specifier,
13362 // but we don't have that level of source info.
13363 Diag(SS.getBeginLoc(),
13364 Cxx20Enumerator
13365 ? diag::warn_cxx17_compat_using_decl_non_member_enumerator
13366 : diag::err_using_decl_nested_name_specifier_is_not_class)
13367 << SS.getScopeRep() << SS.getRange();
13369 if (Cxx20Enumerator)
13370 return false; // OK
13372 return true;
13375 if (!NamedContext->isDependentContext() &&
13376 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
13377 return true;
13379 if (getLangOpts().CPlusPlus11) {
13380 // C++11 [namespace.udecl]p3:
13381 // In a using-declaration used as a member-declaration, the
13382 // nested-name-specifier shall name a base class of the class
13383 // being defined.
13385 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
13386 cast<CXXRecordDecl>(NamedContext))) {
13388 if (Cxx20Enumerator) {
13389 Diag(NameLoc, diag::warn_cxx17_compat_using_decl_non_member_enumerator)
13390 << SS.getRange();
13391 return false;
13394 if (CurContext == NamedContext) {
13395 Diag(SS.getBeginLoc(),
13396 diag::err_using_decl_nested_name_specifier_is_current_class)
13397 << SS.getRange();
13398 return !getLangOpts().CPlusPlus20;
13401 if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) {
13402 Diag(SS.getBeginLoc(),
13403 diag::err_using_decl_nested_name_specifier_is_not_base_class)
13404 << SS.getScopeRep() << cast<CXXRecordDecl>(CurContext)
13405 << SS.getRange();
13407 return true;
13410 return false;
13413 // C++03 [namespace.udecl]p4:
13414 // A using-declaration used as a member-declaration shall refer
13415 // to a member of a base class of the class being defined [etc.].
13417 // Salient point: SS doesn't have to name a base class as long as
13418 // lookup only finds members from base classes. Therefore we can
13419 // diagnose here only if we can prove that can't happen,
13420 // i.e. if the class hierarchies provably don't intersect.
13422 // TODO: it would be nice if "definitely valid" results were cached
13423 // in the UsingDecl and UsingShadowDecl so that these checks didn't
13424 // need to be repeated.
13426 llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases;
13427 auto Collect = [&Bases](const CXXRecordDecl *Base) {
13428 Bases.insert(Base);
13429 return true;
13432 // Collect all bases. Return false if we find a dependent base.
13433 if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect))
13434 return false;
13436 // Returns true if the base is dependent or is one of the accumulated base
13437 // classes.
13438 auto IsNotBase = [&Bases](const CXXRecordDecl *Base) {
13439 return !Bases.count(Base);
13442 // Return false if the class has a dependent base or if it or one
13443 // of its bases is present in the base set of the current context.
13444 if (Bases.count(cast<CXXRecordDecl>(NamedContext)) ||
13445 !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase))
13446 return false;
13448 Diag(SS.getRange().getBegin(),
13449 diag::err_using_decl_nested_name_specifier_is_not_base_class)
13450 << SS.getScopeRep()
13451 << cast<CXXRecordDecl>(CurContext)
13452 << SS.getRange();
13454 return true;
13457 Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS,
13458 MultiTemplateParamsArg TemplateParamLists,
13459 SourceLocation UsingLoc, UnqualifiedId &Name,
13460 const ParsedAttributesView &AttrList,
13461 TypeResult Type, Decl *DeclFromDeclSpec) {
13462 // Skip up to the relevant declaration scope.
13463 while (S->isTemplateParamScope())
13464 S = S->getParent();
13465 assert((S->getFlags() & Scope::DeclScope) &&
13466 "got alias-declaration outside of declaration scope");
13468 if (Type.isInvalid())
13469 return nullptr;
13471 bool Invalid = false;
13472 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
13473 TypeSourceInfo *TInfo = nullptr;
13474 GetTypeFromParser(Type.get(), &TInfo);
13476 if (DiagnoseClassNameShadow(CurContext, NameInfo))
13477 return nullptr;
13479 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
13480 UPPC_DeclarationType)) {
13481 Invalid = true;
13482 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
13483 TInfo->getTypeLoc().getBeginLoc());
13486 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
13487 TemplateParamLists.size()
13488 ? forRedeclarationInCurContext()
13489 : ForVisibleRedeclaration);
13490 LookupName(Previous, S);
13492 // Warn about shadowing the name of a template parameter.
13493 if (Previous.isSingleResult() &&
13494 Previous.getFoundDecl()->isTemplateParameter()) {
13495 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
13496 Previous.clear();
13499 assert(Name.getKind() == UnqualifiedIdKind::IK_Identifier &&
13500 "name in alias declaration must be an identifier");
13501 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
13502 Name.StartLocation,
13503 Name.Identifier, TInfo);
13505 NewTD->setAccess(AS);
13507 if (Invalid)
13508 NewTD->setInvalidDecl();
13510 ProcessDeclAttributeList(S, NewTD, AttrList);
13511 AddPragmaAttributes(S, NewTD);
13513 CheckTypedefForVariablyModifiedType(S, NewTD);
13514 Invalid |= NewTD->isInvalidDecl();
13516 bool Redeclaration = false;
13518 NamedDecl *NewND;
13519 if (TemplateParamLists.size()) {
13520 TypeAliasTemplateDecl *OldDecl = nullptr;
13521 TemplateParameterList *OldTemplateParams = nullptr;
13523 if (TemplateParamLists.size() != 1) {
13524 Diag(UsingLoc, diag::err_alias_template_extra_headers)
13525 << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
13526 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
13528 TemplateParameterList *TemplateParams = TemplateParamLists[0];
13530 // Check that we can declare a template here.
13531 if (CheckTemplateDeclScope(S, TemplateParams))
13532 return nullptr;
13534 // Only consider previous declarations in the same scope.
13535 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
13536 /*ExplicitInstantiationOrSpecialization*/false);
13537 if (!Previous.empty()) {
13538 Redeclaration = true;
13540 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
13541 if (!OldDecl && !Invalid) {
13542 Diag(UsingLoc, diag::err_redefinition_different_kind)
13543 << Name.Identifier;
13545 NamedDecl *OldD = Previous.getRepresentativeDecl();
13546 if (OldD->getLocation().isValid())
13547 Diag(OldD->getLocation(), diag::note_previous_definition);
13549 Invalid = true;
13552 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
13553 if (TemplateParameterListsAreEqual(TemplateParams,
13554 OldDecl->getTemplateParameters(),
13555 /*Complain=*/true,
13556 TPL_TemplateMatch))
13557 OldTemplateParams =
13558 OldDecl->getMostRecentDecl()->getTemplateParameters();
13559 else
13560 Invalid = true;
13562 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
13563 if (!Invalid &&
13564 !Context.hasSameType(OldTD->getUnderlyingType(),
13565 NewTD->getUnderlyingType())) {
13566 // FIXME: The C++0x standard does not clearly say this is ill-formed,
13567 // but we can't reasonably accept it.
13568 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
13569 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
13570 if (OldTD->getLocation().isValid())
13571 Diag(OldTD->getLocation(), diag::note_previous_definition);
13572 Invalid = true;
13577 // Merge any previous default template arguments into our parameters,
13578 // and check the parameter list.
13579 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
13580 TPC_TypeAliasTemplate))
13581 return nullptr;
13583 TypeAliasTemplateDecl *NewDecl =
13584 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
13585 Name.Identifier, TemplateParams,
13586 NewTD);
13587 NewTD->setDescribedAliasTemplate(NewDecl);
13589 NewDecl->setAccess(AS);
13591 if (Invalid)
13592 NewDecl->setInvalidDecl();
13593 else if (OldDecl) {
13594 NewDecl->setPreviousDecl(OldDecl);
13595 CheckRedeclarationInModule(NewDecl, OldDecl);
13598 NewND = NewDecl;
13599 } else {
13600 if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) {
13601 setTagNameForLinkagePurposes(TD, NewTD);
13602 handleTagNumbering(TD, S);
13604 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
13605 NewND = NewTD;
13608 PushOnScopeChains(NewND, S);
13609 ActOnDocumentableDecl(NewND);
13610 return NewND;
13613 Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc,
13614 SourceLocation AliasLoc,
13615 IdentifierInfo *Alias, CXXScopeSpec &SS,
13616 SourceLocation IdentLoc,
13617 IdentifierInfo *Ident) {
13619 // Lookup the namespace name.
13620 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
13621 LookupParsedName(R, S, &SS);
13623 if (R.isAmbiguous())
13624 return nullptr;
13626 if (R.empty()) {
13627 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
13628 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
13629 return nullptr;
13632 assert(!R.isAmbiguous() && !R.empty());
13633 NamedDecl *ND = R.getRepresentativeDecl();
13635 // Check if we have a previous declaration with the same name.
13636 LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName,
13637 ForVisibleRedeclaration);
13638 LookupName(PrevR, S);
13640 // Check we're not shadowing a template parameter.
13641 if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) {
13642 DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl());
13643 PrevR.clear();
13646 // Filter out any other lookup result from an enclosing scope.
13647 FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false,
13648 /*AllowInlineNamespace*/false);
13650 // Find the previous declaration and check that we can redeclare it.
13651 NamespaceAliasDecl *Prev = nullptr;
13652 if (PrevR.isSingleResult()) {
13653 NamedDecl *PrevDecl = PrevR.getRepresentativeDecl();
13654 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
13655 // We already have an alias with the same name that points to the same
13656 // namespace; check that it matches.
13657 if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) {
13658 Prev = AD;
13659 } else if (isVisible(PrevDecl)) {
13660 Diag(AliasLoc, diag::err_redefinition_different_namespace_alias)
13661 << Alias;
13662 Diag(AD->getLocation(), diag::note_previous_namespace_alias)
13663 << AD->getNamespace();
13664 return nullptr;
13666 } else if (isVisible(PrevDecl)) {
13667 unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl())
13668 ? diag::err_redefinition
13669 : diag::err_redefinition_different_kind;
13670 Diag(AliasLoc, DiagID) << Alias;
13671 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
13672 return nullptr;
13676 // The use of a nested name specifier may trigger deprecation warnings.
13677 DiagnoseUseOfDecl(ND, IdentLoc);
13679 NamespaceAliasDecl *AliasDecl =
13680 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
13681 Alias, SS.getWithLocInContext(Context),
13682 IdentLoc, ND);
13683 if (Prev)
13684 AliasDecl->setPreviousDecl(Prev);
13686 PushOnScopeChains(AliasDecl, S);
13687 return AliasDecl;
13690 namespace {
13691 struct SpecialMemberExceptionSpecInfo
13692 : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> {
13693 SourceLocation Loc;
13694 Sema::ImplicitExceptionSpecification ExceptSpec;
13696 SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD,
13697 Sema::CXXSpecialMember CSM,
13698 Sema::InheritedConstructorInfo *ICI,
13699 SourceLocation Loc)
13700 : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {}
13702 bool visitBase(CXXBaseSpecifier *Base);
13703 bool visitField(FieldDecl *FD);
13705 void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
13706 unsigned Quals);
13708 void visitSubobjectCall(Subobject Subobj,
13709 Sema::SpecialMemberOverloadResult SMOR);
13713 bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) {
13714 auto *RT = Base->getType()->getAs<RecordType>();
13715 if (!RT)
13716 return false;
13718 auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl());
13719 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
13720 if (auto *BaseCtor = SMOR.getMethod()) {
13721 visitSubobjectCall(Base, BaseCtor);
13722 return false;
13725 visitClassSubobject(BaseClass, Base, 0);
13726 return false;
13729 bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) {
13730 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) {
13731 Expr *E = FD->getInClassInitializer();
13732 if (!E)
13733 // FIXME: It's a little wasteful to build and throw away a
13734 // CXXDefaultInitExpr here.
13735 // FIXME: We should have a single context note pointing at Loc, and
13736 // this location should be MD->getLocation() instead, since that's
13737 // the location where we actually use the default init expression.
13738 E = S.BuildCXXDefaultInitExpr(Loc, FD).get();
13739 if (E)
13740 ExceptSpec.CalledExpr(E);
13741 } else if (auto *RT = S.Context.getBaseElementType(FD->getType())
13742 ->getAs<RecordType>()) {
13743 visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD,
13744 FD->getType().getCVRQualifiers());
13746 return false;
13749 void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class,
13750 Subobject Subobj,
13751 unsigned Quals) {
13752 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
13753 bool IsMutable = Field && Field->isMutable();
13754 visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable));
13757 void SpecialMemberExceptionSpecInfo::visitSubobjectCall(
13758 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) {
13759 // Note, if lookup fails, it doesn't matter what exception specification we
13760 // choose because the special member will be deleted.
13761 if (CXXMethodDecl *MD = SMOR.getMethod())
13762 ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD);
13765 bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) {
13766 llvm::APSInt Result;
13767 ExprResult Converted = CheckConvertedConstantExpression(
13768 ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool);
13769 ExplicitSpec.setExpr(Converted.get());
13770 if (Converted.isUsable() && !Converted.get()->isValueDependent()) {
13771 ExplicitSpec.setKind(Result.getBoolValue()
13772 ? ExplicitSpecKind::ResolvedTrue
13773 : ExplicitSpecKind::ResolvedFalse);
13774 return true;
13776 ExplicitSpec.setKind(ExplicitSpecKind::Unresolved);
13777 return false;
13780 ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) {
13781 ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved);
13782 if (!ExplicitExpr->isTypeDependent())
13783 tryResolveExplicitSpecifier(ES);
13784 return ES;
13787 static Sema::ImplicitExceptionSpecification
13788 ComputeDefaultedSpecialMemberExceptionSpec(
13789 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
13790 Sema::InheritedConstructorInfo *ICI) {
13791 ComputingExceptionSpec CES(S, MD, Loc);
13793 CXXRecordDecl *ClassDecl = MD->getParent();
13795 // C++ [except.spec]p14:
13796 // An implicitly declared special member function (Clause 12) shall have an
13797 // exception-specification. [...]
13798 SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation());
13799 if (ClassDecl->isInvalidDecl())
13800 return Info.ExceptSpec;
13802 // FIXME: If this diagnostic fires, we're probably missing a check for
13803 // attempting to resolve an exception specification before it's known
13804 // at a higher level.
13805 if (S.RequireCompleteType(MD->getLocation(),
13806 S.Context.getRecordType(ClassDecl),
13807 diag::err_exception_spec_incomplete_type))
13808 return Info.ExceptSpec;
13810 // C++1z [except.spec]p7:
13811 // [Look for exceptions thrown by] a constructor selected [...] to
13812 // initialize a potentially constructed subobject,
13813 // C++1z [except.spec]p8:
13814 // The exception specification for an implicitly-declared destructor, or a
13815 // destructor without a noexcept-specifier, is potentially-throwing if and
13816 // only if any of the destructors for any of its potentially constructed
13817 // subojects is potentially throwing.
13818 // FIXME: We respect the first rule but ignore the "potentially constructed"
13819 // in the second rule to resolve a core issue (no number yet) that would have
13820 // us reject:
13821 // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; };
13822 // struct B : A {};
13823 // struct C : B { void f(); };
13824 // ... due to giving B::~B() a non-throwing exception specification.
13825 Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases
13826 : Info.VisitAllBases);
13828 return Info.ExceptSpec;
13831 namespace {
13832 /// RAII object to register a special member as being currently declared.
13833 struct DeclaringSpecialMember {
13834 Sema &S;
13835 Sema::SpecialMemberDecl D;
13836 Sema::ContextRAII SavedContext;
13837 bool WasAlreadyBeingDeclared;
13839 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
13840 : S(S), D(RD, CSM), SavedContext(S, RD) {
13841 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second;
13842 if (WasAlreadyBeingDeclared)
13843 // This almost never happens, but if it does, ensure that our cache
13844 // doesn't contain a stale result.
13845 S.SpecialMemberCache.clear();
13846 else {
13847 // Register a note to be produced if we encounter an error while
13848 // declaring the special member.
13849 Sema::CodeSynthesisContext Ctx;
13850 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember;
13851 // FIXME: We don't have a location to use here. Using the class's
13852 // location maintains the fiction that we declare all special members
13853 // with the class, but (1) it's not clear that lying about that helps our
13854 // users understand what's going on, and (2) there may be outer contexts
13855 // on the stack (some of which are relevant) and printing them exposes
13856 // our lies.
13857 Ctx.PointOfInstantiation = RD->getLocation();
13858 Ctx.Entity = RD;
13859 Ctx.SpecialMember = CSM;
13860 S.pushCodeSynthesisContext(Ctx);
13863 ~DeclaringSpecialMember() {
13864 if (!WasAlreadyBeingDeclared) {
13865 S.SpecialMembersBeingDeclared.erase(D);
13866 S.popCodeSynthesisContext();
13870 /// Are we already trying to declare this special member?
13871 bool isAlreadyBeingDeclared() const {
13872 return WasAlreadyBeingDeclared;
13877 void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) {
13878 // Look up any existing declarations, but don't trigger declaration of all
13879 // implicit special members with this name.
13880 DeclarationName Name = FD->getDeclName();
13881 LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName,
13882 ForExternalRedeclaration);
13883 for (auto *D : FD->getParent()->lookup(Name))
13884 if (auto *Acceptable = R.getAcceptableDecl(D))
13885 R.addDecl(Acceptable);
13886 R.resolveKind();
13887 R.suppressDiagnostics();
13889 CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/ false,
13890 FD->isThisDeclarationADefinition());
13893 void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem,
13894 QualType ResultTy,
13895 ArrayRef<QualType> Args) {
13896 // Build an exception specification pointing back at this constructor.
13897 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem);
13899 LangAS AS = getDefaultCXXMethodAddrSpace();
13900 if (AS != LangAS::Default) {
13901 EPI.TypeQuals.addAddressSpace(AS);
13904 auto QT = Context.getFunctionType(ResultTy, Args, EPI);
13905 SpecialMem->setType(QT);
13907 // During template instantiation of implicit special member functions we need
13908 // a reliable TypeSourceInfo for the function prototype in order to allow
13909 // functions to be substituted.
13910 if (inTemplateInstantiation() &&
13911 cast<CXXRecordDecl>(SpecialMem->getParent())->isLambda()) {
13912 TypeSourceInfo *TSI =
13913 Context.getTrivialTypeSourceInfo(SpecialMem->getType());
13914 SpecialMem->setTypeSourceInfo(TSI);
13918 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
13919 CXXRecordDecl *ClassDecl) {
13920 // C++ [class.ctor]p5:
13921 // A default constructor for a class X is a constructor of class X
13922 // that can be called without an argument. If there is no
13923 // user-declared constructor for class X, a default constructor is
13924 // implicitly declared. An implicitly-declared default constructor
13925 // is an inline public member of its class.
13926 assert(ClassDecl->needsImplicitDefaultConstructor() &&
13927 "Should not build implicit default constructor!");
13929 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
13930 if (DSM.isAlreadyBeingDeclared())
13931 return nullptr;
13933 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
13934 CXXDefaultConstructor,
13935 false);
13937 // Create the actual constructor declaration.
13938 CanQualType ClassType
13939 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
13940 SourceLocation ClassLoc = ClassDecl->getLocation();
13941 DeclarationName Name
13942 = Context.DeclarationNames.getCXXConstructorName(ClassType);
13943 DeclarationNameInfo NameInfo(Name, ClassLoc);
13944 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
13945 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(),
13946 /*TInfo=*/nullptr, ExplicitSpecifier(),
13947 getCurFPFeatures().isFPConstrained(),
13948 /*isInline=*/true, /*isImplicitlyDeclared=*/true,
13949 Constexpr ? ConstexprSpecKind::Constexpr
13950 : ConstexprSpecKind::Unspecified);
13951 DefaultCon->setAccess(AS_public);
13952 DefaultCon->setDefaulted();
13954 setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, std::nullopt);
13956 if (getLangOpts().CUDA)
13957 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor,
13958 DefaultCon,
13959 /* ConstRHS */ false,
13960 /* Diagnose */ false);
13962 // We don't need to use SpecialMemberIsTrivial here; triviality for default
13963 // constructors is easy to compute.
13964 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
13966 // Note that we have declared this constructor.
13967 ++getASTContext().NumImplicitDefaultConstructorsDeclared;
13969 Scope *S = getScopeForContext(ClassDecl);
13970 CheckImplicitSpecialMemberDeclaration(S, DefaultCon);
13972 if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
13973 SetDeclDeleted(DefaultCon, ClassLoc);
13975 if (S)
13976 PushOnScopeChains(DefaultCon, S, false);
13977 ClassDecl->addDecl(DefaultCon);
13979 return DefaultCon;
13982 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
13983 CXXConstructorDecl *Constructor) {
13984 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
13985 !Constructor->doesThisDeclarationHaveABody() &&
13986 !Constructor->isDeleted()) &&
13987 "DefineImplicitDefaultConstructor - call it for implicit default ctor");
13988 if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
13989 return;
13991 CXXRecordDecl *ClassDecl = Constructor->getParent();
13992 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
13994 SynthesizedFunctionScope Scope(*this, Constructor);
13996 // The exception specification is needed because we are defining the
13997 // function.
13998 ResolveExceptionSpec(CurrentLocation,
13999 Constructor->getType()->castAs<FunctionProtoType>());
14000 MarkVTableUsed(CurrentLocation, ClassDecl);
14002 // Add a context note for diagnostics produced after this point.
14003 Scope.addContextNote(CurrentLocation);
14005 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) {
14006 Constructor->setInvalidDecl();
14007 return;
14010 SourceLocation Loc = Constructor->getEndLoc().isValid()
14011 ? Constructor->getEndLoc()
14012 : Constructor->getLocation();
14013 Constructor->setBody(new (Context) CompoundStmt(Loc));
14014 Constructor->markUsed(Context);
14016 if (ASTMutationListener *L = getASTMutationListener()) {
14017 L->CompletedImplicitDefinition(Constructor);
14020 DiagnoseUninitializedFields(*this, Constructor);
14023 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
14024 // Perform any delayed checks on exception specifications.
14025 CheckDelayedMemberExceptionSpecs();
14028 /// Find or create the fake constructor we synthesize to model constructing an
14029 /// object of a derived class via a constructor of a base class.
14030 CXXConstructorDecl *
14031 Sema::findInheritingConstructor(SourceLocation Loc,
14032 CXXConstructorDecl *BaseCtor,
14033 ConstructorUsingShadowDecl *Shadow) {
14034 CXXRecordDecl *Derived = Shadow->getParent();
14035 SourceLocation UsingLoc = Shadow->getLocation();
14037 // FIXME: Add a new kind of DeclarationName for an inherited constructor.
14038 // For now we use the name of the base class constructor as a member of the
14039 // derived class to indicate a (fake) inherited constructor name.
14040 DeclarationName Name = BaseCtor->getDeclName();
14042 // Check to see if we already have a fake constructor for this inherited
14043 // constructor call.
14044 for (NamedDecl *Ctor : Derived->lookup(Name))
14045 if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor)
14046 ->getInheritedConstructor()
14047 .getConstructor(),
14048 BaseCtor))
14049 return cast<CXXConstructorDecl>(Ctor);
14051 DeclarationNameInfo NameInfo(Name, UsingLoc);
14052 TypeSourceInfo *TInfo =
14053 Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc);
14054 FunctionProtoTypeLoc ProtoLoc =
14055 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
14057 // Check the inherited constructor is valid and find the list of base classes
14058 // from which it was inherited.
14059 InheritedConstructorInfo ICI(*this, Loc, Shadow);
14061 bool Constexpr =
14062 BaseCtor->isConstexpr() &&
14063 defaultedSpecialMemberIsConstexpr(*this, Derived, CXXDefaultConstructor,
14064 false, BaseCtor, &ICI);
14066 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
14067 Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo,
14068 BaseCtor->getExplicitSpecifier(), getCurFPFeatures().isFPConstrained(),
14069 /*isInline=*/true,
14070 /*isImplicitlyDeclared=*/true,
14071 Constexpr ? BaseCtor->getConstexprKind() : ConstexprSpecKind::Unspecified,
14072 InheritedConstructor(Shadow, BaseCtor),
14073 BaseCtor->getTrailingRequiresClause());
14074 if (Shadow->isInvalidDecl())
14075 DerivedCtor->setInvalidDecl();
14077 // Build an unevaluated exception specification for this fake constructor.
14078 const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>();
14079 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
14080 EPI.ExceptionSpec.Type = EST_Unevaluated;
14081 EPI.ExceptionSpec.SourceDecl = DerivedCtor;
14082 DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(),
14083 FPT->getParamTypes(), EPI));
14085 // Build the parameter declarations.
14086 SmallVector<ParmVarDecl *, 16> ParamDecls;
14087 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) {
14088 TypeSourceInfo *TInfo =
14089 Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc);
14090 ParmVarDecl *PD = ParmVarDecl::Create(
14091 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr,
14092 FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr);
14093 PD->setScopeInfo(0, I);
14094 PD->setImplicit();
14095 // Ensure attributes are propagated onto parameters (this matters for
14096 // format, pass_object_size, ...).
14097 mergeDeclAttributes(PD, BaseCtor->getParamDecl(I));
14098 ParamDecls.push_back(PD);
14099 ProtoLoc.setParam(I, PD);
14102 // Set up the new constructor.
14103 assert(!BaseCtor->isDeleted() && "should not use deleted constructor");
14104 DerivedCtor->setAccess(BaseCtor->getAccess());
14105 DerivedCtor->setParams(ParamDecls);
14106 Derived->addDecl(DerivedCtor);
14108 if (ShouldDeleteSpecialMember(DerivedCtor, CXXDefaultConstructor, &ICI))
14109 SetDeclDeleted(DerivedCtor, UsingLoc);
14111 return DerivedCtor;
14114 void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) {
14115 InheritedConstructorInfo ICI(*this, Ctor->getLocation(),
14116 Ctor->getInheritedConstructor().getShadowDecl());
14117 ShouldDeleteSpecialMember(Ctor, CXXDefaultConstructor, &ICI,
14118 /*Diagnose*/true);
14121 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
14122 CXXConstructorDecl *Constructor) {
14123 CXXRecordDecl *ClassDecl = Constructor->getParent();
14124 assert(Constructor->getInheritedConstructor() &&
14125 !Constructor->doesThisDeclarationHaveABody() &&
14126 !Constructor->isDeleted());
14127 if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
14128 return;
14130 // Initializations are performed "as if by a defaulted default constructor",
14131 // so enter the appropriate scope.
14132 SynthesizedFunctionScope Scope(*this, Constructor);
14134 // The exception specification is needed because we are defining the
14135 // function.
14136 ResolveExceptionSpec(CurrentLocation,
14137 Constructor->getType()->castAs<FunctionProtoType>());
14138 MarkVTableUsed(CurrentLocation, ClassDecl);
14140 // Add a context note for diagnostics produced after this point.
14141 Scope.addContextNote(CurrentLocation);
14143 ConstructorUsingShadowDecl *Shadow =
14144 Constructor->getInheritedConstructor().getShadowDecl();
14145 CXXConstructorDecl *InheritedCtor =
14146 Constructor->getInheritedConstructor().getConstructor();
14148 // [class.inhctor.init]p1:
14149 // initialization proceeds as if a defaulted default constructor is used to
14150 // initialize the D object and each base class subobject from which the
14151 // constructor was inherited
14153 InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow);
14154 CXXRecordDecl *RD = Shadow->getParent();
14155 SourceLocation InitLoc = Shadow->getLocation();
14157 // Build explicit initializers for all base classes from which the
14158 // constructor was inherited.
14159 SmallVector<CXXCtorInitializer*, 8> Inits;
14160 for (bool VBase : {false, true}) {
14161 for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) {
14162 if (B.isVirtual() != VBase)
14163 continue;
14165 auto *BaseRD = B.getType()->getAsCXXRecordDecl();
14166 if (!BaseRD)
14167 continue;
14169 auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor);
14170 if (!BaseCtor.first)
14171 continue;
14173 MarkFunctionReferenced(CurrentLocation, BaseCtor.first);
14174 ExprResult Init = new (Context) CXXInheritedCtorInitExpr(
14175 InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second);
14177 auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc);
14178 Inits.push_back(new (Context) CXXCtorInitializer(
14179 Context, TInfo, VBase, InitLoc, Init.get(), InitLoc,
14180 SourceLocation()));
14184 // We now proceed as if for a defaulted default constructor, with the relevant
14185 // initializers replaced.
14187 if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) {
14188 Constructor->setInvalidDecl();
14189 return;
14192 Constructor->setBody(new (Context) CompoundStmt(InitLoc));
14193 Constructor->markUsed(Context);
14195 if (ASTMutationListener *L = getASTMutationListener()) {
14196 L->CompletedImplicitDefinition(Constructor);
14199 DiagnoseUninitializedFields(*this, Constructor);
14202 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
14203 // C++ [class.dtor]p2:
14204 // If a class has no user-declared destructor, a destructor is
14205 // declared implicitly. An implicitly-declared destructor is an
14206 // inline public member of its class.
14207 assert(ClassDecl->needsImplicitDestructor());
14209 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
14210 if (DSM.isAlreadyBeingDeclared())
14211 return nullptr;
14213 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
14214 CXXDestructor,
14215 false);
14217 // Create the actual destructor declaration.
14218 CanQualType ClassType
14219 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
14220 SourceLocation ClassLoc = ClassDecl->getLocation();
14221 DeclarationName Name
14222 = Context.DeclarationNames.getCXXDestructorName(ClassType);
14223 DeclarationNameInfo NameInfo(Name, ClassLoc);
14224 CXXDestructorDecl *Destructor = CXXDestructorDecl::Create(
14225 Context, ClassDecl, ClassLoc, NameInfo, QualType(), nullptr,
14226 getCurFPFeatures().isFPConstrained(),
14227 /*isInline=*/true,
14228 /*isImplicitlyDeclared=*/true,
14229 Constexpr ? ConstexprSpecKind::Constexpr
14230 : ConstexprSpecKind::Unspecified);
14231 Destructor->setAccess(AS_public);
14232 Destructor->setDefaulted();
14234 setupImplicitSpecialMemberType(Destructor, Context.VoidTy, std::nullopt);
14236 if (getLangOpts().CUDA)
14237 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor,
14238 Destructor,
14239 /* ConstRHS */ false,
14240 /* Diagnose */ false);
14242 // We don't need to use SpecialMemberIsTrivial here; triviality for
14243 // destructors is easy to compute.
14244 Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
14245 Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() ||
14246 ClassDecl->hasTrivialDestructorForCall());
14248 // Note that we have declared this destructor.
14249 ++getASTContext().NumImplicitDestructorsDeclared;
14251 Scope *S = getScopeForContext(ClassDecl);
14252 CheckImplicitSpecialMemberDeclaration(S, Destructor);
14254 // We can't check whether an implicit destructor is deleted before we complete
14255 // the definition of the class, because its validity depends on the alignment
14256 // of the class. We'll check this from ActOnFields once the class is complete.
14257 if (ClassDecl->isCompleteDefinition() &&
14258 ShouldDeleteSpecialMember(Destructor, CXXDestructor))
14259 SetDeclDeleted(Destructor, ClassLoc);
14261 // Introduce this destructor into its scope.
14262 if (S)
14263 PushOnScopeChains(Destructor, S, false);
14264 ClassDecl->addDecl(Destructor);
14266 return Destructor;
14269 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
14270 CXXDestructorDecl *Destructor) {
14271 assert((Destructor->isDefaulted() &&
14272 !Destructor->doesThisDeclarationHaveABody() &&
14273 !Destructor->isDeleted()) &&
14274 "DefineImplicitDestructor - call it for implicit default dtor");
14275 if (Destructor->willHaveBody() || Destructor->isInvalidDecl())
14276 return;
14278 CXXRecordDecl *ClassDecl = Destructor->getParent();
14279 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
14281 SynthesizedFunctionScope Scope(*this, Destructor);
14283 // The exception specification is needed because we are defining the
14284 // function.
14285 ResolveExceptionSpec(CurrentLocation,
14286 Destructor->getType()->castAs<FunctionProtoType>());
14287 MarkVTableUsed(CurrentLocation, ClassDecl);
14289 // Add a context note for diagnostics produced after this point.
14290 Scope.addContextNote(CurrentLocation);
14292 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
14293 Destructor->getParent());
14295 if (CheckDestructor(Destructor)) {
14296 Destructor->setInvalidDecl();
14297 return;
14300 SourceLocation Loc = Destructor->getEndLoc().isValid()
14301 ? Destructor->getEndLoc()
14302 : Destructor->getLocation();
14303 Destructor->setBody(new (Context) CompoundStmt(Loc));
14304 Destructor->markUsed(Context);
14306 if (ASTMutationListener *L = getASTMutationListener()) {
14307 L->CompletedImplicitDefinition(Destructor);
14311 void Sema::CheckCompleteDestructorVariant(SourceLocation CurrentLocation,
14312 CXXDestructorDecl *Destructor) {
14313 if (Destructor->isInvalidDecl())
14314 return;
14316 CXXRecordDecl *ClassDecl = Destructor->getParent();
14317 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() &&
14318 "implicit complete dtors unneeded outside MS ABI");
14319 assert(ClassDecl->getNumVBases() > 0 &&
14320 "complete dtor only exists for classes with vbases");
14322 SynthesizedFunctionScope Scope(*this, Destructor);
14324 // Add a context note for diagnostics produced after this point.
14325 Scope.addContextNote(CurrentLocation);
14327 MarkVirtualBaseDestructorsReferenced(Destructor->getLocation(), ClassDecl);
14330 /// Perform any semantic analysis which needs to be delayed until all
14331 /// pending class member declarations have been parsed.
14332 void Sema::ActOnFinishCXXMemberDecls() {
14333 // If the context is an invalid C++ class, just suppress these checks.
14334 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
14335 if (Record->isInvalidDecl()) {
14336 DelayedOverridingExceptionSpecChecks.clear();
14337 DelayedEquivalentExceptionSpecChecks.clear();
14338 return;
14340 checkForMultipleExportedDefaultConstructors(*this, Record);
14344 void Sema::ActOnFinishCXXNonNestedClass() {
14345 referenceDLLExportedClassMethods();
14347 if (!DelayedDllExportMemberFunctions.empty()) {
14348 SmallVector<CXXMethodDecl*, 4> WorkList;
14349 std::swap(DelayedDllExportMemberFunctions, WorkList);
14350 for (CXXMethodDecl *M : WorkList) {
14351 DefineDefaultedFunction(*this, M, M->getLocation());
14353 // Pass the method to the consumer to get emitted. This is not necessary
14354 // for explicit instantiation definitions, as they will get emitted
14355 // anyway.
14356 if (M->getParent()->getTemplateSpecializationKind() !=
14357 TSK_ExplicitInstantiationDefinition)
14358 ActOnFinishInlineFunctionDef(M);
14363 void Sema::referenceDLLExportedClassMethods() {
14364 if (!DelayedDllExportClasses.empty()) {
14365 // Calling ReferenceDllExportedMembers might cause the current function to
14366 // be called again, so use a local copy of DelayedDllExportClasses.
14367 SmallVector<CXXRecordDecl *, 4> WorkList;
14368 std::swap(DelayedDllExportClasses, WorkList);
14369 for (CXXRecordDecl *Class : WorkList)
14370 ReferenceDllExportedMembers(*this, Class);
14374 void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) {
14375 assert(getLangOpts().CPlusPlus11 &&
14376 "adjusting dtor exception specs was introduced in c++11");
14378 if (Destructor->isDependentContext())
14379 return;
14381 // C++11 [class.dtor]p3:
14382 // A declaration of a destructor that does not have an exception-
14383 // specification is implicitly considered to have the same exception-
14384 // specification as an implicit declaration.
14385 const auto *DtorType = Destructor->getType()->castAs<FunctionProtoType>();
14386 if (DtorType->hasExceptionSpec())
14387 return;
14389 // Replace the destructor's type, building off the existing one. Fortunately,
14390 // the only thing of interest in the destructor type is its extended info.
14391 // The return and arguments are fixed.
14392 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
14393 EPI.ExceptionSpec.Type = EST_Unevaluated;
14394 EPI.ExceptionSpec.SourceDecl = Destructor;
14395 Destructor->setType(
14396 Context.getFunctionType(Context.VoidTy, std::nullopt, EPI));
14398 // FIXME: If the destructor has a body that could throw, and the newly created
14399 // spec doesn't allow exceptions, we should emit a warning, because this
14400 // change in behavior can break conforming C++03 programs at runtime.
14401 // However, we don't have a body or an exception specification yet, so it
14402 // needs to be done somewhere else.
14405 namespace {
14406 /// An abstract base class for all helper classes used in building the
14407 // copy/move operators. These classes serve as factory functions and help us
14408 // avoid using the same Expr* in the AST twice.
14409 class ExprBuilder {
14410 ExprBuilder(const ExprBuilder&) = delete;
14411 ExprBuilder &operator=(const ExprBuilder&) = delete;
14413 protected:
14414 static Expr *assertNotNull(Expr *E) {
14415 assert(E && "Expression construction must not fail.");
14416 return E;
14419 public:
14420 ExprBuilder() {}
14421 virtual ~ExprBuilder() {}
14423 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
14426 class RefBuilder: public ExprBuilder {
14427 VarDecl *Var;
14428 QualType VarType;
14430 public:
14431 Expr *build(Sema &S, SourceLocation Loc) const override {
14432 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc));
14435 RefBuilder(VarDecl *Var, QualType VarType)
14436 : Var(Var), VarType(VarType) {}
14439 class ThisBuilder: public ExprBuilder {
14440 public:
14441 Expr *build(Sema &S, SourceLocation Loc) const override {
14442 return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>());
14446 class CastBuilder: public ExprBuilder {
14447 const ExprBuilder &Builder;
14448 QualType Type;
14449 ExprValueKind Kind;
14450 const CXXCastPath &Path;
14452 public:
14453 Expr *build(Sema &S, SourceLocation Loc) const override {
14454 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
14455 CK_UncheckedDerivedToBase, Kind,
14456 &Path).get());
14459 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
14460 const CXXCastPath &Path)
14461 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
14464 class DerefBuilder: public ExprBuilder {
14465 const ExprBuilder &Builder;
14467 public:
14468 Expr *build(Sema &S, SourceLocation Loc) const override {
14469 return assertNotNull(
14470 S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get());
14473 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
14476 class MemberBuilder: public ExprBuilder {
14477 const ExprBuilder &Builder;
14478 QualType Type;
14479 CXXScopeSpec SS;
14480 bool IsArrow;
14481 LookupResult &MemberLookup;
14483 public:
14484 Expr *build(Sema &S, SourceLocation Loc) const override {
14485 return assertNotNull(S.BuildMemberReferenceExpr(
14486 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(),
14487 nullptr, MemberLookup, nullptr, nullptr).get());
14490 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
14491 LookupResult &MemberLookup)
14492 : Builder(Builder), Type(Type), IsArrow(IsArrow),
14493 MemberLookup(MemberLookup) {}
14496 class MoveCastBuilder: public ExprBuilder {
14497 const ExprBuilder &Builder;
14499 public:
14500 Expr *build(Sema &S, SourceLocation Loc) const override {
14501 return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
14504 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
14507 class LvalueConvBuilder: public ExprBuilder {
14508 const ExprBuilder &Builder;
14510 public:
14511 Expr *build(Sema &S, SourceLocation Loc) const override {
14512 return assertNotNull(
14513 S.DefaultLvalueConversion(Builder.build(S, Loc)).get());
14516 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
14519 class SubscriptBuilder: public ExprBuilder {
14520 const ExprBuilder &Base;
14521 const ExprBuilder &Index;
14523 public:
14524 Expr *build(Sema &S, SourceLocation Loc) const override {
14525 return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
14526 Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get());
14529 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
14530 : Base(Base), Index(Index) {}
14533 } // end anonymous namespace
14535 /// When generating a defaulted copy or move assignment operator, if a field
14536 /// should be copied with __builtin_memcpy rather than via explicit assignments,
14537 /// do so. This optimization only applies for arrays of scalars, and for arrays
14538 /// of class type where the selected copy/move-assignment operator is trivial.
14539 static StmtResult
14540 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
14541 const ExprBuilder &ToB, const ExprBuilder &FromB) {
14542 // Compute the size of the memory buffer to be copied.
14543 QualType SizeType = S.Context.getSizeType();
14544 llvm::APInt Size(S.Context.getTypeSize(SizeType),
14545 S.Context.getTypeSizeInChars(T).getQuantity());
14547 // Take the address of the field references for "from" and "to". We
14548 // directly construct UnaryOperators here because semantic analysis
14549 // does not permit us to take the address of an xvalue.
14550 Expr *From = FromB.build(S, Loc);
14551 From = UnaryOperator::Create(
14552 S.Context, From, UO_AddrOf, S.Context.getPointerType(From->getType()),
14553 VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides());
14554 Expr *To = ToB.build(S, Loc);
14555 To = UnaryOperator::Create(
14556 S.Context, To, UO_AddrOf, S.Context.getPointerType(To->getType()),
14557 VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides());
14559 const Type *E = T->getBaseElementTypeUnsafe();
14560 bool NeedsCollectableMemCpy =
14561 E->isRecordType() &&
14562 E->castAs<RecordType>()->getDecl()->hasObjectMember();
14564 // Create a reference to the __builtin_objc_memmove_collectable function
14565 StringRef MemCpyName = NeedsCollectableMemCpy ?
14566 "__builtin_objc_memmove_collectable" :
14567 "__builtin_memcpy";
14568 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
14569 Sema::LookupOrdinaryName);
14570 S.LookupName(R, S.TUScope, true);
14572 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
14573 if (!MemCpy)
14574 // Something went horribly wrong earlier, and we will have complained
14575 // about it.
14576 return StmtError();
14578 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
14579 VK_PRValue, Loc, nullptr);
14580 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
14582 Expr *CallArgs[] = {
14583 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
14585 ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(),
14586 Loc, CallArgs, Loc);
14588 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
14589 return Call.getAs<Stmt>();
14592 /// Builds a statement that copies/moves the given entity from \p From to
14593 /// \c To.
14595 /// This routine is used to copy/move the members of a class with an
14596 /// implicitly-declared copy/move assignment operator. When the entities being
14597 /// copied are arrays, this routine builds for loops to copy them.
14599 /// \param S The Sema object used for type-checking.
14601 /// \param Loc The location where the implicit copy/move is being generated.
14603 /// \param T The type of the expressions being copied/moved. Both expressions
14604 /// must have this type.
14606 /// \param To The expression we are copying/moving to.
14608 /// \param From The expression we are copying/moving from.
14610 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
14611 /// Otherwise, it's a non-static member subobject.
14613 /// \param Copying Whether we're copying or moving.
14615 /// \param Depth Internal parameter recording the depth of the recursion.
14617 /// \returns A statement or a loop that copies the expressions, or StmtResult(0)
14618 /// if a memcpy should be used instead.
14619 static StmtResult
14620 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
14621 const ExprBuilder &To, const ExprBuilder &From,
14622 bool CopyingBaseSubobject, bool Copying,
14623 unsigned Depth = 0) {
14624 // C++11 [class.copy]p28:
14625 // Each subobject is assigned in the manner appropriate to its type:
14627 // - if the subobject is of class type, as if by a call to operator= with
14628 // the subobject as the object expression and the corresponding
14629 // subobject of x as a single function argument (as if by explicit
14630 // qualification; that is, ignoring any possible virtual overriding
14631 // functions in more derived classes);
14633 // C++03 [class.copy]p13:
14634 // - if the subobject is of class type, the copy assignment operator for
14635 // the class is used (as if by explicit qualification; that is,
14636 // ignoring any possible virtual overriding functions in more derived
14637 // classes);
14638 if (const RecordType *RecordTy = T->getAs<RecordType>()) {
14639 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
14641 // Look for operator=.
14642 DeclarationName Name
14643 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
14644 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
14645 S.LookupQualifiedName(OpLookup, ClassDecl, false);
14647 // Prior to C++11, filter out any result that isn't a copy/move-assignment
14648 // operator.
14649 if (!S.getLangOpts().CPlusPlus11) {
14650 LookupResult::Filter F = OpLookup.makeFilter();
14651 while (F.hasNext()) {
14652 NamedDecl *D = F.next();
14653 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
14654 if (Method->isCopyAssignmentOperator() ||
14655 (!Copying && Method->isMoveAssignmentOperator()))
14656 continue;
14658 F.erase();
14660 F.done();
14663 // Suppress the protected check (C++ [class.protected]) for each of the
14664 // assignment operators we found. This strange dance is required when
14665 // we're assigning via a base classes's copy-assignment operator. To
14666 // ensure that we're getting the right base class subobject (without
14667 // ambiguities), we need to cast "this" to that subobject type; to
14668 // ensure that we don't go through the virtual call mechanism, we need
14669 // to qualify the operator= name with the base class (see below). However,
14670 // this means that if the base class has a protected copy assignment
14671 // operator, the protected member access check will fail. So, we
14672 // rewrite "protected" access to "public" access in this case, since we
14673 // know by construction that we're calling from a derived class.
14674 if (CopyingBaseSubobject) {
14675 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
14676 L != LEnd; ++L) {
14677 if (L.getAccess() == AS_protected)
14678 L.setAccess(AS_public);
14682 // Create the nested-name-specifier that will be used to qualify the
14683 // reference to operator=; this is required to suppress the virtual
14684 // call mechanism.
14685 CXXScopeSpec SS;
14686 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
14687 SS.MakeTrivial(S.Context,
14688 NestedNameSpecifier::Create(S.Context, nullptr, false,
14689 CanonicalT),
14690 Loc);
14692 // Create the reference to operator=.
14693 ExprResult OpEqualRef
14694 = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false,
14695 SS, /*TemplateKWLoc=*/SourceLocation(),
14696 /*FirstQualifierInScope=*/nullptr,
14697 OpLookup,
14698 /*TemplateArgs=*/nullptr, /*S*/nullptr,
14699 /*SuppressQualifierCheck=*/true);
14700 if (OpEqualRef.isInvalid())
14701 return StmtError();
14703 // Build the call to the assignment operator.
14705 Expr *FromInst = From.build(S, Loc);
14706 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr,
14707 OpEqualRef.getAs<Expr>(),
14708 Loc, FromInst, Loc);
14709 if (Call.isInvalid())
14710 return StmtError();
14712 // If we built a call to a trivial 'operator=' while copying an array,
14713 // bail out. We'll replace the whole shebang with a memcpy.
14714 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
14715 if (CE && CE->getMethodDecl()->isTrivial() && Depth)
14716 return StmtResult((Stmt*)nullptr);
14718 // Convert to an expression-statement, and clean up any produced
14719 // temporaries.
14720 return S.ActOnExprStmt(Call);
14723 // - if the subobject is of scalar type, the built-in assignment
14724 // operator is used.
14725 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
14726 if (!ArrayTy) {
14727 ExprResult Assignment = S.CreateBuiltinBinOp(
14728 Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
14729 if (Assignment.isInvalid())
14730 return StmtError();
14731 return S.ActOnExprStmt(Assignment);
14734 // - if the subobject is an array, each element is assigned, in the
14735 // manner appropriate to the element type;
14737 // Construct a loop over the array bounds, e.g.,
14739 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
14741 // that will copy each of the array elements.
14742 QualType SizeType = S.Context.getSizeType();
14744 // Create the iteration variable.
14745 IdentifierInfo *IterationVarName = nullptr;
14747 SmallString<8> Str;
14748 llvm::raw_svector_ostream OS(Str);
14749 OS << "__i" << Depth;
14750 IterationVarName = &S.Context.Idents.get(OS.str());
14752 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
14753 IterationVarName, SizeType,
14754 S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
14755 SC_None);
14757 // Initialize the iteration variable to zero.
14758 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
14759 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
14761 // Creates a reference to the iteration variable.
14762 RefBuilder IterationVarRef(IterationVar, SizeType);
14763 LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
14765 // Create the DeclStmt that holds the iteration variable.
14766 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
14768 // Subscript the "from" and "to" expressions with the iteration variable.
14769 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
14770 MoveCastBuilder FromIndexMove(FromIndexCopy);
14771 const ExprBuilder *FromIndex;
14772 if (Copying)
14773 FromIndex = &FromIndexCopy;
14774 else
14775 FromIndex = &FromIndexMove;
14777 SubscriptBuilder ToIndex(To, IterationVarRefRVal);
14779 // Build the copy/move for an individual element of the array.
14780 StmtResult Copy =
14781 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
14782 ToIndex, *FromIndex, CopyingBaseSubobject,
14783 Copying, Depth + 1);
14784 // Bail out if copying fails or if we determined that we should use memcpy.
14785 if (Copy.isInvalid() || !Copy.get())
14786 return Copy;
14788 // Create the comparison against the array bound.
14789 llvm::APInt Upper
14790 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
14791 Expr *Comparison = BinaryOperator::Create(
14792 S.Context, IterationVarRefRVal.build(S, Loc),
14793 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), BO_NE,
14794 S.Context.BoolTy, VK_PRValue, OK_Ordinary, Loc,
14795 S.CurFPFeatureOverrides());
14797 // Create the pre-increment of the iteration variable. We can determine
14798 // whether the increment will overflow based on the value of the array
14799 // bound.
14800 Expr *Increment = UnaryOperator::Create(
14801 S.Context, IterationVarRef.build(S, Loc), UO_PreInc, SizeType, VK_LValue,
14802 OK_Ordinary, Loc, Upper.isMaxValue(), S.CurFPFeatureOverrides());
14804 // Construct the loop that copies all elements of this array.
14805 return S.ActOnForStmt(
14806 Loc, Loc, InitStmt,
14807 S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean),
14808 S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get());
14811 static StmtResult
14812 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
14813 const ExprBuilder &To, const ExprBuilder &From,
14814 bool CopyingBaseSubobject, bool Copying) {
14815 // Maybe we should use a memcpy?
14816 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
14817 T.isTriviallyCopyableType(S.Context))
14818 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
14820 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
14821 CopyingBaseSubobject,
14822 Copying, 0));
14824 // If we ended up picking a trivial assignment operator for an array of a
14825 // non-trivially-copyable class type, just emit a memcpy.
14826 if (!Result.isInvalid() && !Result.get())
14827 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
14829 return Result;
14832 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
14833 // Note: The following rules are largely analoguous to the copy
14834 // constructor rules. Note that virtual bases are not taken into account
14835 // for determining the argument type of the operator. Note also that
14836 // operators taking an object instead of a reference are allowed.
14837 assert(ClassDecl->needsImplicitCopyAssignment());
14839 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
14840 if (DSM.isAlreadyBeingDeclared())
14841 return nullptr;
14843 QualType ArgType = Context.getTypeDeclType(ClassDecl);
14844 ArgType = Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr,
14845 ArgType, nullptr);
14846 LangAS AS = getDefaultCXXMethodAddrSpace();
14847 if (AS != LangAS::Default)
14848 ArgType = Context.getAddrSpaceQualType(ArgType, AS);
14849 QualType RetType = Context.getLValueReferenceType(ArgType);
14850 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
14851 if (Const)
14852 ArgType = ArgType.withConst();
14854 ArgType = Context.getLValueReferenceType(ArgType);
14856 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
14857 CXXCopyAssignment,
14858 Const);
14860 // An implicitly-declared copy assignment operator is an inline public
14861 // member of its class.
14862 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
14863 SourceLocation ClassLoc = ClassDecl->getLocation();
14864 DeclarationNameInfo NameInfo(Name, ClassLoc);
14865 CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create(
14866 Context, ClassDecl, ClassLoc, NameInfo, QualType(),
14867 /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
14868 getCurFPFeatures().isFPConstrained(),
14869 /*isInline=*/true,
14870 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified,
14871 SourceLocation());
14872 CopyAssignment->setAccess(AS_public);
14873 CopyAssignment->setDefaulted();
14874 CopyAssignment->setImplicit();
14876 setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType);
14878 if (getLangOpts().CUDA)
14879 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment,
14880 CopyAssignment,
14881 /* ConstRHS */ Const,
14882 /* Diagnose */ false);
14884 // Add the parameter to the operator.
14885 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
14886 ClassLoc, ClassLoc,
14887 /*Id=*/nullptr, ArgType,
14888 /*TInfo=*/nullptr, SC_None,
14889 nullptr);
14890 CopyAssignment->setParams(FromParam);
14892 CopyAssignment->setTrivial(
14893 ClassDecl->needsOverloadResolutionForCopyAssignment()
14894 ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
14895 : ClassDecl->hasTrivialCopyAssignment());
14897 // Note that we have added this copy-assignment operator.
14898 ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared;
14900 Scope *S = getScopeForContext(ClassDecl);
14901 CheckImplicitSpecialMemberDeclaration(S, CopyAssignment);
14903 if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment)) {
14904 ClassDecl->setImplicitCopyAssignmentIsDeleted();
14905 SetDeclDeleted(CopyAssignment, ClassLoc);
14908 if (S)
14909 PushOnScopeChains(CopyAssignment, S, false);
14910 ClassDecl->addDecl(CopyAssignment);
14912 return CopyAssignment;
14915 /// Diagnose an implicit copy operation for a class which is odr-used, but
14916 /// which is deprecated because the class has a user-declared copy constructor,
14917 /// copy assignment operator, or destructor.
14918 static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) {
14919 assert(CopyOp->isImplicit());
14921 CXXRecordDecl *RD = CopyOp->getParent();
14922 CXXMethodDecl *UserDeclaredOperation = nullptr;
14924 if (RD->hasUserDeclaredDestructor()) {
14925 UserDeclaredOperation = RD->getDestructor();
14926 } else if (!isa<CXXConstructorDecl>(CopyOp) &&
14927 RD->hasUserDeclaredCopyConstructor()) {
14928 // Find any user-declared copy constructor.
14929 for (auto *I : RD->ctors()) {
14930 if (I->isCopyConstructor()) {
14931 UserDeclaredOperation = I;
14932 break;
14935 assert(UserDeclaredOperation);
14936 } else if (isa<CXXConstructorDecl>(CopyOp) &&
14937 RD->hasUserDeclaredCopyAssignment()) {
14938 // Find any user-declared move assignment operator.
14939 for (auto *I : RD->methods()) {
14940 if (I->isCopyAssignmentOperator()) {
14941 UserDeclaredOperation = I;
14942 break;
14945 assert(UserDeclaredOperation);
14948 if (UserDeclaredOperation) {
14949 bool UDOIsUserProvided = UserDeclaredOperation->isUserProvided();
14950 bool UDOIsDestructor = isa<CXXDestructorDecl>(UserDeclaredOperation);
14951 bool IsCopyAssignment = !isa<CXXConstructorDecl>(CopyOp);
14952 unsigned DiagID =
14953 (UDOIsUserProvided && UDOIsDestructor)
14954 ? diag::warn_deprecated_copy_with_user_provided_dtor
14955 : (UDOIsUserProvided && !UDOIsDestructor)
14956 ? diag::warn_deprecated_copy_with_user_provided_copy
14957 : (!UDOIsUserProvided && UDOIsDestructor)
14958 ? diag::warn_deprecated_copy_with_dtor
14959 : diag::warn_deprecated_copy;
14960 S.Diag(UserDeclaredOperation->getLocation(), DiagID)
14961 << RD << IsCopyAssignment;
14965 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
14966 CXXMethodDecl *CopyAssignOperator) {
14967 assert((CopyAssignOperator->isDefaulted() &&
14968 CopyAssignOperator->isOverloadedOperator() &&
14969 CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
14970 !CopyAssignOperator->doesThisDeclarationHaveABody() &&
14971 !CopyAssignOperator->isDeleted()) &&
14972 "DefineImplicitCopyAssignment called for wrong function");
14973 if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl())
14974 return;
14976 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
14977 if (ClassDecl->isInvalidDecl()) {
14978 CopyAssignOperator->setInvalidDecl();
14979 return;
14982 SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
14984 // The exception specification is needed because we are defining the
14985 // function.
14986 ResolveExceptionSpec(CurrentLocation,
14987 CopyAssignOperator->getType()->castAs<FunctionProtoType>());
14989 // Add a context note for diagnostics produced after this point.
14990 Scope.addContextNote(CurrentLocation);
14992 // C++11 [class.copy]p18:
14993 // The [definition of an implicitly declared copy assignment operator] is
14994 // deprecated if the class has a user-declared copy constructor or a
14995 // user-declared destructor.
14996 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
14997 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator);
14999 // C++0x [class.copy]p30:
15000 // The implicitly-defined or explicitly-defaulted copy assignment operator
15001 // for a non-union class X performs memberwise copy assignment of its
15002 // subobjects. The direct base classes of X are assigned first, in the
15003 // order of their declaration in the base-specifier-list, and then the
15004 // immediate non-static data members of X are assigned, in the order in
15005 // which they were declared in the class definition.
15007 // The statements that form the synthesized function body.
15008 SmallVector<Stmt*, 8> Statements;
15010 // The parameter for the "other" object, which we are copying from.
15011 ParmVarDecl *Other = CopyAssignOperator->getNonObjectParameter(0);
15012 Qualifiers OtherQuals = Other->getType().getQualifiers();
15013 QualType OtherRefType = Other->getType();
15014 if (OtherRefType->isLValueReferenceType()) {
15015 OtherRefType = OtherRefType->getPointeeType();
15016 OtherQuals = OtherRefType.getQualifiers();
15019 // Our location for everything implicitly-generated.
15020 SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid()
15021 ? CopyAssignOperator->getEndLoc()
15022 : CopyAssignOperator->getLocation();
15024 // Builds a DeclRefExpr for the "other" object.
15025 RefBuilder OtherRef(Other, OtherRefType);
15027 // Builds the function object parameter.
15028 std::optional<ThisBuilder> This;
15029 std::optional<DerefBuilder> DerefThis;
15030 std::optional<RefBuilder> ExplicitObject;
15031 bool IsArrow = false;
15032 QualType ObjectType;
15033 if (CopyAssignOperator->isExplicitObjectMemberFunction()) {
15034 ObjectType = CopyAssignOperator->getParamDecl(0)->getType();
15035 if (ObjectType->isReferenceType())
15036 ObjectType = ObjectType->getPointeeType();
15037 ExplicitObject.emplace(CopyAssignOperator->getParamDecl(0), ObjectType);
15038 } else {
15039 ObjectType = getCurrentThisType();
15040 This.emplace();
15041 DerefThis.emplace(*This);
15042 IsArrow = !LangOpts.HLSL;
15044 ExprBuilder &ObjectParameter =
15045 ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject)
15046 : static_cast<ExprBuilder &>(*This);
15048 // Assign base classes.
15049 bool Invalid = false;
15050 for (auto &Base : ClassDecl->bases()) {
15051 // Form the assignment:
15052 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
15053 QualType BaseType = Base.getType().getUnqualifiedType();
15054 if (!BaseType->isRecordType()) {
15055 Invalid = true;
15056 continue;
15059 CXXCastPath BasePath;
15060 BasePath.push_back(&Base);
15062 // Construct the "from" expression, which is an implicit cast to the
15063 // appropriately-qualified base type.
15064 CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
15065 VK_LValue, BasePath);
15067 // Dereference "this".
15068 CastBuilder To(
15069 ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject)
15070 : static_cast<ExprBuilder &>(*DerefThis),
15071 Context.getQualifiedType(BaseType, ObjectType.getQualifiers()),
15072 VK_LValue, BasePath);
15074 // Build the copy.
15075 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
15076 To, From,
15077 /*CopyingBaseSubobject=*/true,
15078 /*Copying=*/true);
15079 if (Copy.isInvalid()) {
15080 CopyAssignOperator->setInvalidDecl();
15081 return;
15084 // Success! Record the copy.
15085 Statements.push_back(Copy.getAs<Expr>());
15088 // Assign non-static members.
15089 for (auto *Field : ClassDecl->fields()) {
15090 // FIXME: We should form some kind of AST representation for the implied
15091 // memcpy in a union copy operation.
15092 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
15093 continue;
15095 if (Field->isInvalidDecl()) {
15096 Invalid = true;
15097 continue;
15100 // Check for members of reference type; we can't copy those.
15101 if (Field->getType()->isReferenceType()) {
15102 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
15103 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
15104 Diag(Field->getLocation(), diag::note_declared_at);
15105 Invalid = true;
15106 continue;
15109 // Check for members of const-qualified, non-class type.
15110 QualType BaseType = Context.getBaseElementType(Field->getType());
15111 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
15112 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
15113 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
15114 Diag(Field->getLocation(), diag::note_declared_at);
15115 Invalid = true;
15116 continue;
15119 // Suppress assigning zero-width bitfields.
15120 if (Field->isZeroLengthBitField(Context))
15121 continue;
15123 QualType FieldType = Field->getType().getNonReferenceType();
15124 if (FieldType->isIncompleteArrayType()) {
15125 assert(ClassDecl->hasFlexibleArrayMember() &&
15126 "Incomplete array type is not valid");
15127 continue;
15130 // Build references to the field in the object we're copying from and to.
15131 CXXScopeSpec SS; // Intentionally empty
15132 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
15133 LookupMemberName);
15134 MemberLookup.addDecl(Field);
15135 MemberLookup.resolveKind();
15137 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
15138 MemberBuilder To(ObjectParameter, ObjectType, IsArrow, MemberLookup);
15139 // Build the copy of this field.
15140 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
15141 To, From,
15142 /*CopyingBaseSubobject=*/false,
15143 /*Copying=*/true);
15144 if (Copy.isInvalid()) {
15145 CopyAssignOperator->setInvalidDecl();
15146 return;
15149 // Success! Record the copy.
15150 Statements.push_back(Copy.getAs<Stmt>());
15153 if (!Invalid) {
15154 // Add a "return *this;"
15155 Expr *ThisExpr =
15156 (ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject)
15157 : LangOpts.HLSL ? static_cast<ExprBuilder &>(*This)
15158 : static_cast<ExprBuilder &>(*DerefThis))
15159 .build(*this, Loc);
15160 StmtResult Return = BuildReturnStmt(Loc, ThisExpr);
15161 if (Return.isInvalid())
15162 Invalid = true;
15163 else
15164 Statements.push_back(Return.getAs<Stmt>());
15167 if (Invalid) {
15168 CopyAssignOperator->setInvalidDecl();
15169 return;
15172 StmtResult Body;
15174 CompoundScopeRAII CompoundScope(*this);
15175 Body = ActOnCompoundStmt(Loc, Loc, Statements,
15176 /*isStmtExpr=*/false);
15177 assert(!Body.isInvalid() && "Compound statement creation cannot fail");
15179 CopyAssignOperator->setBody(Body.getAs<Stmt>());
15180 CopyAssignOperator->markUsed(Context);
15182 if (ASTMutationListener *L = getASTMutationListener()) {
15183 L->CompletedImplicitDefinition(CopyAssignOperator);
15187 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
15188 assert(ClassDecl->needsImplicitMoveAssignment());
15190 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
15191 if (DSM.isAlreadyBeingDeclared())
15192 return nullptr;
15194 // Note: The following rules are largely analoguous to the move
15195 // constructor rules.
15197 QualType ArgType = Context.getTypeDeclType(ClassDecl);
15198 ArgType = Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr,
15199 ArgType, nullptr);
15200 LangAS AS = getDefaultCXXMethodAddrSpace();
15201 if (AS != LangAS::Default)
15202 ArgType = Context.getAddrSpaceQualType(ArgType, AS);
15203 QualType RetType = Context.getLValueReferenceType(ArgType);
15204 ArgType = Context.getRValueReferenceType(ArgType);
15206 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
15207 CXXMoveAssignment,
15208 false);
15210 // An implicitly-declared move assignment operator is an inline public
15211 // member of its class.
15212 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
15213 SourceLocation ClassLoc = ClassDecl->getLocation();
15214 DeclarationNameInfo NameInfo(Name, ClassLoc);
15215 CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create(
15216 Context, ClassDecl, ClassLoc, NameInfo, QualType(),
15217 /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
15218 getCurFPFeatures().isFPConstrained(),
15219 /*isInline=*/true,
15220 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified,
15221 SourceLocation());
15222 MoveAssignment->setAccess(AS_public);
15223 MoveAssignment->setDefaulted();
15224 MoveAssignment->setImplicit();
15226 setupImplicitSpecialMemberType(MoveAssignment, RetType, ArgType);
15228 if (getLangOpts().CUDA)
15229 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment,
15230 MoveAssignment,
15231 /* ConstRHS */ false,
15232 /* Diagnose */ false);
15234 // Add the parameter to the operator.
15235 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
15236 ClassLoc, ClassLoc,
15237 /*Id=*/nullptr, ArgType,
15238 /*TInfo=*/nullptr, SC_None,
15239 nullptr);
15240 MoveAssignment->setParams(FromParam);
15242 MoveAssignment->setTrivial(
15243 ClassDecl->needsOverloadResolutionForMoveAssignment()
15244 ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
15245 : ClassDecl->hasTrivialMoveAssignment());
15247 // Note that we have added this copy-assignment operator.
15248 ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared;
15250 Scope *S = getScopeForContext(ClassDecl);
15251 CheckImplicitSpecialMemberDeclaration(S, MoveAssignment);
15253 if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
15254 ClassDecl->setImplicitMoveAssignmentIsDeleted();
15255 SetDeclDeleted(MoveAssignment, ClassLoc);
15258 if (S)
15259 PushOnScopeChains(MoveAssignment, S, false);
15260 ClassDecl->addDecl(MoveAssignment);
15262 return MoveAssignment;
15265 /// Check if we're implicitly defining a move assignment operator for a class
15266 /// with virtual bases. Such a move assignment might move-assign the virtual
15267 /// base multiple times.
15268 static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class,
15269 SourceLocation CurrentLocation) {
15270 assert(!Class->isDependentContext() && "should not define dependent move");
15272 // Only a virtual base could get implicitly move-assigned multiple times.
15273 // Only a non-trivial move assignment can observe this. We only want to
15274 // diagnose if we implicitly define an assignment operator that assigns
15275 // two base classes, both of which move-assign the same virtual base.
15276 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() ||
15277 Class->getNumBases() < 2)
15278 return;
15280 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist;
15281 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap;
15282 VBaseMap VBases;
15284 for (auto &BI : Class->bases()) {
15285 Worklist.push_back(&BI);
15286 while (!Worklist.empty()) {
15287 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val();
15288 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
15290 // If the base has no non-trivial move assignment operators,
15291 // we don't care about moves from it.
15292 if (!Base->hasNonTrivialMoveAssignment())
15293 continue;
15295 // If there's nothing virtual here, skip it.
15296 if (!BaseSpec->isVirtual() && !Base->getNumVBases())
15297 continue;
15299 // If we're not actually going to call a move assignment for this base,
15300 // or the selected move assignment is trivial, skip it.
15301 Sema::SpecialMemberOverloadResult SMOR =
15302 S.LookupSpecialMember(Base, Sema::CXXMoveAssignment,
15303 /*ConstArg*/false, /*VolatileArg*/false,
15304 /*RValueThis*/true, /*ConstThis*/false,
15305 /*VolatileThis*/false);
15306 if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() ||
15307 !SMOR.getMethod()->isMoveAssignmentOperator())
15308 continue;
15310 if (BaseSpec->isVirtual()) {
15311 // We're going to move-assign this virtual base, and its move
15312 // assignment operator is not trivial. If this can happen for
15313 // multiple distinct direct bases of Class, diagnose it. (If it
15314 // only happens in one base, we'll diagnose it when synthesizing
15315 // that base class's move assignment operator.)
15316 CXXBaseSpecifier *&Existing =
15317 VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI))
15318 .first->second;
15319 if (Existing && Existing != &BI) {
15320 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times)
15321 << Class << Base;
15322 S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here)
15323 << (Base->getCanonicalDecl() ==
15324 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl())
15325 << Base << Existing->getType() << Existing->getSourceRange();
15326 S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here)
15327 << (Base->getCanonicalDecl() ==
15328 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl())
15329 << Base << BI.getType() << BaseSpec->getSourceRange();
15331 // Only diagnose each vbase once.
15332 Existing = nullptr;
15334 } else {
15335 // Only walk over bases that have defaulted move assignment operators.
15336 // We assume that any user-provided move assignment operator handles
15337 // the multiple-moves-of-vbase case itself somehow.
15338 if (!SMOR.getMethod()->isDefaulted())
15339 continue;
15341 // We're going to move the base classes of Base. Add them to the list.
15342 llvm::append_range(Worklist, llvm::make_pointer_range(Base->bases()));
15348 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
15349 CXXMethodDecl *MoveAssignOperator) {
15350 assert((MoveAssignOperator->isDefaulted() &&
15351 MoveAssignOperator->isOverloadedOperator() &&
15352 MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
15353 !MoveAssignOperator->doesThisDeclarationHaveABody() &&
15354 !MoveAssignOperator->isDeleted()) &&
15355 "DefineImplicitMoveAssignment called for wrong function");
15356 if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl())
15357 return;
15359 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
15360 if (ClassDecl->isInvalidDecl()) {
15361 MoveAssignOperator->setInvalidDecl();
15362 return;
15365 // C++0x [class.copy]p28:
15366 // The implicitly-defined or move assignment operator for a non-union class
15367 // X performs memberwise move assignment of its subobjects. The direct base
15368 // classes of X are assigned first, in the order of their declaration in the
15369 // base-specifier-list, and then the immediate non-static data members of X
15370 // are assigned, in the order in which they were declared in the class
15371 // definition.
15373 // Issue a warning if our implicit move assignment operator will move
15374 // from a virtual base more than once.
15375 checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation);
15377 SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
15379 // The exception specification is needed because we are defining the
15380 // function.
15381 ResolveExceptionSpec(CurrentLocation,
15382 MoveAssignOperator->getType()->castAs<FunctionProtoType>());
15384 // Add a context note for diagnostics produced after this point.
15385 Scope.addContextNote(CurrentLocation);
15387 // The statements that form the synthesized function body.
15388 SmallVector<Stmt*, 8> Statements;
15390 // The parameter for the "other" object, which we are move from.
15391 ParmVarDecl *Other = MoveAssignOperator->getNonObjectParameter(0);
15392 QualType OtherRefType =
15393 Other->getType()->castAs<RValueReferenceType>()->getPointeeType();
15395 // Our location for everything implicitly-generated.
15396 SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid()
15397 ? MoveAssignOperator->getEndLoc()
15398 : MoveAssignOperator->getLocation();
15400 // Builds a reference to the "other" object.
15401 RefBuilder OtherRef(Other, OtherRefType);
15402 // Cast to rvalue.
15403 MoveCastBuilder MoveOther(OtherRef);
15405 // Builds the function object parameter.
15406 std::optional<ThisBuilder> This;
15407 std::optional<DerefBuilder> DerefThis;
15408 std::optional<RefBuilder> ExplicitObject;
15409 QualType ObjectType;
15410 if (MoveAssignOperator->isExplicitObjectMemberFunction()) {
15411 ObjectType = MoveAssignOperator->getParamDecl(0)->getType();
15412 if (ObjectType->isReferenceType())
15413 ObjectType = ObjectType->getPointeeType();
15414 ExplicitObject.emplace(MoveAssignOperator->getParamDecl(0), ObjectType);
15415 } else {
15416 ObjectType = getCurrentThisType();
15417 This.emplace();
15418 DerefThis.emplace(*This);
15420 ExprBuilder &ObjectParameter =
15421 ExplicitObject ? *ExplicitObject : static_cast<ExprBuilder &>(*This);
15423 // Assign base classes.
15424 bool Invalid = false;
15425 for (auto &Base : ClassDecl->bases()) {
15426 // C++11 [class.copy]p28:
15427 // It is unspecified whether subobjects representing virtual base classes
15428 // are assigned more than once by the implicitly-defined copy assignment
15429 // operator.
15430 // FIXME: Do not assign to a vbase that will be assigned by some other base
15431 // class. For a move-assignment, this can result in the vbase being moved
15432 // multiple times.
15434 // Form the assignment:
15435 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
15436 QualType BaseType = Base.getType().getUnqualifiedType();
15437 if (!BaseType->isRecordType()) {
15438 Invalid = true;
15439 continue;
15442 CXXCastPath BasePath;
15443 BasePath.push_back(&Base);
15445 // Construct the "from" expression, which is an implicit cast to the
15446 // appropriately-qualified base type.
15447 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
15449 // Implicitly cast "this" to the appropriately-qualified base type.
15450 // Dereference "this".
15451 CastBuilder To(
15452 ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject)
15453 : static_cast<ExprBuilder &>(*DerefThis),
15454 Context.getQualifiedType(BaseType, ObjectType.getQualifiers()),
15455 VK_LValue, BasePath);
15457 // Build the move.
15458 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
15459 To, From,
15460 /*CopyingBaseSubobject=*/true,
15461 /*Copying=*/false);
15462 if (Move.isInvalid()) {
15463 MoveAssignOperator->setInvalidDecl();
15464 return;
15467 // Success! Record the move.
15468 Statements.push_back(Move.getAs<Expr>());
15471 // Assign non-static members.
15472 for (auto *Field : ClassDecl->fields()) {
15473 // FIXME: We should form some kind of AST representation for the implied
15474 // memcpy in a union copy operation.
15475 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
15476 continue;
15478 if (Field->isInvalidDecl()) {
15479 Invalid = true;
15480 continue;
15483 // Check for members of reference type; we can't move those.
15484 if (Field->getType()->isReferenceType()) {
15485 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
15486 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
15487 Diag(Field->getLocation(), diag::note_declared_at);
15488 Invalid = true;
15489 continue;
15492 // Check for members of const-qualified, non-class type.
15493 QualType BaseType = Context.getBaseElementType(Field->getType());
15494 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
15495 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
15496 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
15497 Diag(Field->getLocation(), diag::note_declared_at);
15498 Invalid = true;
15499 continue;
15502 // Suppress assigning zero-width bitfields.
15503 if (Field->isZeroLengthBitField(Context))
15504 continue;
15506 QualType FieldType = Field->getType().getNonReferenceType();
15507 if (FieldType->isIncompleteArrayType()) {
15508 assert(ClassDecl->hasFlexibleArrayMember() &&
15509 "Incomplete array type is not valid");
15510 continue;
15513 // Build references to the field in the object we're copying from and to.
15514 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
15515 LookupMemberName);
15516 MemberLookup.addDecl(Field);
15517 MemberLookup.resolveKind();
15518 MemberBuilder From(MoveOther, OtherRefType,
15519 /*IsArrow=*/false, MemberLookup);
15520 MemberBuilder To(ObjectParameter, ObjectType, /*IsArrow=*/!ExplicitObject,
15521 MemberLookup);
15523 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue
15524 "Member reference with rvalue base must be rvalue except for reference "
15525 "members, which aren't allowed for move assignment.");
15527 // Build the move of this field.
15528 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
15529 To, From,
15530 /*CopyingBaseSubobject=*/false,
15531 /*Copying=*/false);
15532 if (Move.isInvalid()) {
15533 MoveAssignOperator->setInvalidDecl();
15534 return;
15537 // Success! Record the copy.
15538 Statements.push_back(Move.getAs<Stmt>());
15541 if (!Invalid) {
15542 // Add a "return *this;"
15543 Expr *ThisExpr =
15544 (ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject)
15545 : static_cast<ExprBuilder &>(*DerefThis))
15546 .build(*this, Loc);
15548 StmtResult Return = BuildReturnStmt(Loc, ThisExpr);
15549 if (Return.isInvalid())
15550 Invalid = true;
15551 else
15552 Statements.push_back(Return.getAs<Stmt>());
15555 if (Invalid) {
15556 MoveAssignOperator->setInvalidDecl();
15557 return;
15560 StmtResult Body;
15562 CompoundScopeRAII CompoundScope(*this);
15563 Body = ActOnCompoundStmt(Loc, Loc, Statements,
15564 /*isStmtExpr=*/false);
15565 assert(!Body.isInvalid() && "Compound statement creation cannot fail");
15567 MoveAssignOperator->setBody(Body.getAs<Stmt>());
15568 MoveAssignOperator->markUsed(Context);
15570 if (ASTMutationListener *L = getASTMutationListener()) {
15571 L->CompletedImplicitDefinition(MoveAssignOperator);
15575 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
15576 CXXRecordDecl *ClassDecl) {
15577 // C++ [class.copy]p4:
15578 // If the class definition does not explicitly declare a copy
15579 // constructor, one is declared implicitly.
15580 assert(ClassDecl->needsImplicitCopyConstructor());
15582 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
15583 if (DSM.isAlreadyBeingDeclared())
15584 return nullptr;
15586 QualType ClassType = Context.getTypeDeclType(ClassDecl);
15587 QualType ArgType = ClassType;
15588 ArgType = Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr,
15589 ArgType, nullptr);
15590 bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
15591 if (Const)
15592 ArgType = ArgType.withConst();
15594 LangAS AS = getDefaultCXXMethodAddrSpace();
15595 if (AS != LangAS::Default)
15596 ArgType = Context.getAddrSpaceQualType(ArgType, AS);
15598 ArgType = Context.getLValueReferenceType(ArgType);
15600 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
15601 CXXCopyConstructor,
15602 Const);
15604 DeclarationName Name
15605 = Context.DeclarationNames.getCXXConstructorName(
15606 Context.getCanonicalType(ClassType));
15607 SourceLocation ClassLoc = ClassDecl->getLocation();
15608 DeclarationNameInfo NameInfo(Name, ClassLoc);
15610 // An implicitly-declared copy constructor is an inline public
15611 // member of its class.
15612 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
15613 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
15614 ExplicitSpecifier(), getCurFPFeatures().isFPConstrained(),
15615 /*isInline=*/true,
15616 /*isImplicitlyDeclared=*/true,
15617 Constexpr ? ConstexprSpecKind::Constexpr
15618 : ConstexprSpecKind::Unspecified);
15619 CopyConstructor->setAccess(AS_public);
15620 CopyConstructor->setDefaulted();
15622 setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType);
15624 if (getLangOpts().CUDA)
15625 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor,
15626 CopyConstructor,
15627 /* ConstRHS */ Const,
15628 /* Diagnose */ false);
15630 // During template instantiation of special member functions we need a
15631 // reliable TypeSourceInfo for the parameter types in order to allow functions
15632 // to be substituted.
15633 TypeSourceInfo *TSI = nullptr;
15634 if (inTemplateInstantiation() && ClassDecl->isLambda())
15635 TSI = Context.getTrivialTypeSourceInfo(ArgType);
15637 // Add the parameter to the constructor.
15638 ParmVarDecl *FromParam =
15639 ParmVarDecl::Create(Context, CopyConstructor, ClassLoc, ClassLoc,
15640 /*IdentifierInfo=*/nullptr, ArgType,
15641 /*TInfo=*/TSI, SC_None, nullptr);
15642 CopyConstructor->setParams(FromParam);
15644 CopyConstructor->setTrivial(
15645 ClassDecl->needsOverloadResolutionForCopyConstructor()
15646 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
15647 : ClassDecl->hasTrivialCopyConstructor());
15649 CopyConstructor->setTrivialForCall(
15650 ClassDecl->hasAttr<TrivialABIAttr>() ||
15651 (ClassDecl->needsOverloadResolutionForCopyConstructor()
15652 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor,
15653 TAH_ConsiderTrivialABI)
15654 : ClassDecl->hasTrivialCopyConstructorForCall()));
15656 // Note that we have declared this constructor.
15657 ++getASTContext().NumImplicitCopyConstructorsDeclared;
15659 Scope *S = getScopeForContext(ClassDecl);
15660 CheckImplicitSpecialMemberDeclaration(S, CopyConstructor);
15662 if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) {
15663 ClassDecl->setImplicitCopyConstructorIsDeleted();
15664 SetDeclDeleted(CopyConstructor, ClassLoc);
15667 if (S)
15668 PushOnScopeChains(CopyConstructor, S, false);
15669 ClassDecl->addDecl(CopyConstructor);
15671 return CopyConstructor;
15674 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
15675 CXXConstructorDecl *CopyConstructor) {
15676 assert((CopyConstructor->isDefaulted() &&
15677 CopyConstructor->isCopyConstructor() &&
15678 !CopyConstructor->doesThisDeclarationHaveABody() &&
15679 !CopyConstructor->isDeleted()) &&
15680 "DefineImplicitCopyConstructor - call it for implicit copy ctor");
15681 if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl())
15682 return;
15684 CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
15685 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
15687 SynthesizedFunctionScope Scope(*this, CopyConstructor);
15689 // The exception specification is needed because we are defining the
15690 // function.
15691 ResolveExceptionSpec(CurrentLocation,
15692 CopyConstructor->getType()->castAs<FunctionProtoType>());
15693 MarkVTableUsed(CurrentLocation, ClassDecl);
15695 // Add a context note for diagnostics produced after this point.
15696 Scope.addContextNote(CurrentLocation);
15698 // C++11 [class.copy]p7:
15699 // The [definition of an implicitly declared copy constructor] is
15700 // deprecated if the class has a user-declared copy assignment operator
15701 // or a user-declared destructor.
15702 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
15703 diagnoseDeprecatedCopyOperation(*this, CopyConstructor);
15705 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) {
15706 CopyConstructor->setInvalidDecl();
15707 } else {
15708 SourceLocation Loc = CopyConstructor->getEndLoc().isValid()
15709 ? CopyConstructor->getEndLoc()
15710 : CopyConstructor->getLocation();
15711 Sema::CompoundScopeRAII CompoundScope(*this);
15712 CopyConstructor->setBody(
15713 ActOnCompoundStmt(Loc, Loc, std::nullopt, /*isStmtExpr=*/false)
15714 .getAs<Stmt>());
15715 CopyConstructor->markUsed(Context);
15718 if (ASTMutationListener *L = getASTMutationListener()) {
15719 L->CompletedImplicitDefinition(CopyConstructor);
15723 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
15724 CXXRecordDecl *ClassDecl) {
15725 assert(ClassDecl->needsImplicitMoveConstructor());
15727 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
15728 if (DSM.isAlreadyBeingDeclared())
15729 return nullptr;
15731 QualType ClassType = Context.getTypeDeclType(ClassDecl);
15733 QualType ArgType = ClassType;
15734 ArgType = Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr,
15735 ArgType, nullptr);
15736 LangAS AS = getDefaultCXXMethodAddrSpace();
15737 if (AS != LangAS::Default)
15738 ArgType = Context.getAddrSpaceQualType(ClassType, AS);
15739 ArgType = Context.getRValueReferenceType(ArgType);
15741 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
15742 CXXMoveConstructor,
15743 false);
15745 DeclarationName Name
15746 = Context.DeclarationNames.getCXXConstructorName(
15747 Context.getCanonicalType(ClassType));
15748 SourceLocation ClassLoc = ClassDecl->getLocation();
15749 DeclarationNameInfo NameInfo(Name, ClassLoc);
15751 // C++11 [class.copy]p11:
15752 // An implicitly-declared copy/move constructor is an inline public
15753 // member of its class.
15754 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
15755 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
15756 ExplicitSpecifier(), getCurFPFeatures().isFPConstrained(),
15757 /*isInline=*/true,
15758 /*isImplicitlyDeclared=*/true,
15759 Constexpr ? ConstexprSpecKind::Constexpr
15760 : ConstexprSpecKind::Unspecified);
15761 MoveConstructor->setAccess(AS_public);
15762 MoveConstructor->setDefaulted();
15764 setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType);
15766 if (getLangOpts().CUDA)
15767 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor,
15768 MoveConstructor,
15769 /* ConstRHS */ false,
15770 /* Diagnose */ false);
15772 // Add the parameter to the constructor.
15773 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
15774 ClassLoc, ClassLoc,
15775 /*IdentifierInfo=*/nullptr,
15776 ArgType, /*TInfo=*/nullptr,
15777 SC_None, nullptr);
15778 MoveConstructor->setParams(FromParam);
15780 MoveConstructor->setTrivial(
15781 ClassDecl->needsOverloadResolutionForMoveConstructor()
15782 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
15783 : ClassDecl->hasTrivialMoveConstructor());
15785 MoveConstructor->setTrivialForCall(
15786 ClassDecl->hasAttr<TrivialABIAttr>() ||
15787 (ClassDecl->needsOverloadResolutionForMoveConstructor()
15788 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor,
15789 TAH_ConsiderTrivialABI)
15790 : ClassDecl->hasTrivialMoveConstructorForCall()));
15792 // Note that we have declared this constructor.
15793 ++getASTContext().NumImplicitMoveConstructorsDeclared;
15795 Scope *S = getScopeForContext(ClassDecl);
15796 CheckImplicitSpecialMemberDeclaration(S, MoveConstructor);
15798 if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
15799 ClassDecl->setImplicitMoveConstructorIsDeleted();
15800 SetDeclDeleted(MoveConstructor, ClassLoc);
15803 if (S)
15804 PushOnScopeChains(MoveConstructor, S, false);
15805 ClassDecl->addDecl(MoveConstructor);
15807 return MoveConstructor;
15810 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
15811 CXXConstructorDecl *MoveConstructor) {
15812 assert((MoveConstructor->isDefaulted() &&
15813 MoveConstructor->isMoveConstructor() &&
15814 !MoveConstructor->doesThisDeclarationHaveABody() &&
15815 !MoveConstructor->isDeleted()) &&
15816 "DefineImplicitMoveConstructor - call it for implicit move ctor");
15817 if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl())
15818 return;
15820 CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
15821 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
15823 SynthesizedFunctionScope Scope(*this, MoveConstructor);
15825 // The exception specification is needed because we are defining the
15826 // function.
15827 ResolveExceptionSpec(CurrentLocation,
15828 MoveConstructor->getType()->castAs<FunctionProtoType>());
15829 MarkVTableUsed(CurrentLocation, ClassDecl);
15831 // Add a context note for diagnostics produced after this point.
15832 Scope.addContextNote(CurrentLocation);
15834 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) {
15835 MoveConstructor->setInvalidDecl();
15836 } else {
15837 SourceLocation Loc = MoveConstructor->getEndLoc().isValid()
15838 ? MoveConstructor->getEndLoc()
15839 : MoveConstructor->getLocation();
15840 Sema::CompoundScopeRAII CompoundScope(*this);
15841 MoveConstructor->setBody(
15842 ActOnCompoundStmt(Loc, Loc, std::nullopt, /*isStmtExpr=*/false)
15843 .getAs<Stmt>());
15844 MoveConstructor->markUsed(Context);
15847 if (ASTMutationListener *L = getASTMutationListener()) {
15848 L->CompletedImplicitDefinition(MoveConstructor);
15852 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
15853 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
15856 void Sema::DefineImplicitLambdaToFunctionPointerConversion(
15857 SourceLocation CurrentLocation,
15858 CXXConversionDecl *Conv) {
15859 SynthesizedFunctionScope Scope(*this, Conv);
15860 assert(!Conv->getReturnType()->isUndeducedType());
15862 QualType ConvRT = Conv->getType()->castAs<FunctionType>()->getReturnType();
15863 CallingConv CC =
15864 ConvRT->getPointeeType()->castAs<FunctionType>()->getCallConv();
15866 CXXRecordDecl *Lambda = Conv->getParent();
15867 FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
15868 FunctionDecl *Invoker =
15869 CallOp->hasCXXExplicitFunctionObjectParameter() || CallOp->isStatic()
15870 ? CallOp
15871 : Lambda->getLambdaStaticInvoker(CC);
15873 if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) {
15874 CallOp = InstantiateFunctionDeclaration(
15875 CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation);
15876 if (!CallOp)
15877 return;
15879 if (CallOp != Invoker) {
15880 Invoker = InstantiateFunctionDeclaration(
15881 Invoker->getDescribedFunctionTemplate(), TemplateArgs,
15882 CurrentLocation);
15883 if (!Invoker)
15884 return;
15888 if (CallOp->isInvalidDecl())
15889 return;
15891 // Mark the call operator referenced (and add to pending instantiations
15892 // if necessary).
15893 // For both the conversion and static-invoker template specializations
15894 // we construct their body's in this function, so no need to add them
15895 // to the PendingInstantiations.
15896 MarkFunctionReferenced(CurrentLocation, CallOp);
15898 if (Invoker != CallOp) {
15899 // Fill in the __invoke function with a dummy implementation. IR generation
15900 // will fill in the actual details. Update its type in case it contained
15901 // an 'auto'.
15902 Invoker->markUsed(Context);
15903 Invoker->setReferenced();
15904 Invoker->setType(Conv->getReturnType()->getPointeeType());
15905 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
15908 // Construct the body of the conversion function { return __invoke; }.
15909 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(), VK_LValue,
15910 Conv->getLocation());
15911 assert(FunctionRef && "Can't refer to __invoke function?");
15912 Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get();
15913 Conv->setBody(CompoundStmt::Create(Context, Return, FPOptionsOverride(),
15914 Conv->getLocation(), Conv->getLocation()));
15915 Conv->markUsed(Context);
15916 Conv->setReferenced();
15918 if (ASTMutationListener *L = getASTMutationListener()) {
15919 L->CompletedImplicitDefinition(Conv);
15920 if (Invoker != CallOp)
15921 L->CompletedImplicitDefinition(Invoker);
15925 void Sema::DefineImplicitLambdaToBlockPointerConversion(
15926 SourceLocation CurrentLocation, CXXConversionDecl *Conv) {
15927 assert(!Conv->getParent()->isGenericLambda());
15929 SynthesizedFunctionScope Scope(*this, Conv);
15931 // Copy-initialize the lambda object as needed to capture it.
15932 Expr *This = ActOnCXXThis(CurrentLocation).get();
15933 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get();
15935 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
15936 Conv->getLocation(),
15937 Conv, DerefThis);
15939 // If we're not under ARC, make sure we still get the _Block_copy/autorelease
15940 // behavior. Note that only the general conversion function does this
15941 // (since it's unusable otherwise); in the case where we inline the
15942 // block literal, it has block literal lifetime semantics.
15943 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
15944 BuildBlock = ImplicitCastExpr::Create(
15945 Context, BuildBlock.get()->getType(), CK_CopyAndAutoreleaseBlockObject,
15946 BuildBlock.get(), nullptr, VK_PRValue, FPOptionsOverride());
15948 if (BuildBlock.isInvalid()) {
15949 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
15950 Conv->setInvalidDecl();
15951 return;
15954 // Create the return statement that returns the block from the conversion
15955 // function.
15956 StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get());
15957 if (Return.isInvalid()) {
15958 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
15959 Conv->setInvalidDecl();
15960 return;
15963 // Set the body of the conversion function.
15964 Stmt *ReturnS = Return.get();
15965 Conv->setBody(CompoundStmt::Create(Context, ReturnS, FPOptionsOverride(),
15966 Conv->getLocation(), Conv->getLocation()));
15967 Conv->markUsed(Context);
15969 // We're done; notify the mutation listener, if any.
15970 if (ASTMutationListener *L = getASTMutationListener()) {
15971 L->CompletedImplicitDefinition(Conv);
15975 /// Determine whether the given list arguments contains exactly one
15976 /// "real" (non-default) argument.
15977 static bool hasOneRealArgument(MultiExprArg Args) {
15978 switch (Args.size()) {
15979 case 0:
15980 return false;
15982 default:
15983 if (!Args[1]->isDefaultArgument())
15984 return false;
15986 [[fallthrough]];
15987 case 1:
15988 return !Args[0]->isDefaultArgument();
15991 return false;
15994 ExprResult
15995 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
15996 NamedDecl *FoundDecl,
15997 CXXConstructorDecl *Constructor,
15998 MultiExprArg ExprArgs,
15999 bool HadMultipleCandidates,
16000 bool IsListInitialization,
16001 bool IsStdInitListInitialization,
16002 bool RequiresZeroInit,
16003 unsigned ConstructKind,
16004 SourceRange ParenRange) {
16005 bool Elidable = false;
16007 // C++0x [class.copy]p34:
16008 // When certain criteria are met, an implementation is allowed to
16009 // omit the copy/move construction of a class object, even if the
16010 // copy/move constructor and/or destructor for the object have
16011 // side effects. [...]
16012 // - when a temporary class object that has not been bound to a
16013 // reference (12.2) would be copied/moved to a class object
16014 // with the same cv-unqualified type, the copy/move operation
16015 // can be omitted by constructing the temporary object
16016 // directly into the target of the omitted copy/move
16017 if (ConstructKind == CXXConstructExpr::CK_Complete && Constructor &&
16018 // FIXME: Converting constructors should also be accepted.
16019 // But to fix this, the logic that digs down into a CXXConstructExpr
16020 // to find the source object needs to handle it.
16021 // Right now it assumes the source object is passed directly as the
16022 // first argument.
16023 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
16024 Expr *SubExpr = ExprArgs[0];
16025 // FIXME: Per above, this is also incorrect if we want to accept
16026 // converting constructors, as isTemporaryObject will
16027 // reject temporaries with different type from the
16028 // CXXRecord itself.
16029 Elidable = SubExpr->isTemporaryObject(
16030 Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
16033 return BuildCXXConstructExpr(ConstructLoc, DeclInitType,
16034 FoundDecl, Constructor,
16035 Elidable, ExprArgs, HadMultipleCandidates,
16036 IsListInitialization,
16037 IsStdInitListInitialization, RequiresZeroInit,
16038 ConstructKind, ParenRange);
16041 ExprResult
16042 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
16043 NamedDecl *FoundDecl,
16044 CXXConstructorDecl *Constructor,
16045 bool Elidable,
16046 MultiExprArg ExprArgs,
16047 bool HadMultipleCandidates,
16048 bool IsListInitialization,
16049 bool IsStdInitListInitialization,
16050 bool RequiresZeroInit,
16051 unsigned ConstructKind,
16052 SourceRange ParenRange) {
16053 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) {
16054 Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow);
16055 // The only way to get here is if we did overlaod resolution to find the
16056 // shadow decl, so we don't need to worry about re-checking the trailing
16057 // requires clause.
16058 if (DiagnoseUseOfOverloadedDecl(Constructor, ConstructLoc))
16059 return ExprError();
16062 return BuildCXXConstructExpr(
16063 ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs,
16064 HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization,
16065 RequiresZeroInit, ConstructKind, ParenRange);
16068 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
16069 /// including handling of its default argument expressions.
16070 ExprResult
16071 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
16072 CXXConstructorDecl *Constructor,
16073 bool Elidable,
16074 MultiExprArg ExprArgs,
16075 bool HadMultipleCandidates,
16076 bool IsListInitialization,
16077 bool IsStdInitListInitialization,
16078 bool RequiresZeroInit,
16079 unsigned ConstructKind,
16080 SourceRange ParenRange) {
16081 assert(declaresSameEntity(
16082 Constructor->getParent(),
16083 DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&
16084 "given constructor for wrong type");
16085 MarkFunctionReferenced(ConstructLoc, Constructor);
16086 if (getLangOpts().CUDA && !CheckCUDACall(ConstructLoc, Constructor))
16087 return ExprError();
16089 return CheckForImmediateInvocation(
16090 CXXConstructExpr::Create(
16091 Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs,
16092 HadMultipleCandidates, IsListInitialization,
16093 IsStdInitListInitialization, RequiresZeroInit,
16094 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
16095 ParenRange),
16096 Constructor);
16099 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
16100 if (VD->isInvalidDecl()) return;
16101 // If initializing the variable failed, don't also diagnose problems with
16102 // the destructor, they're likely related.
16103 if (VD->getInit() && VD->getInit()->containsErrors())
16104 return;
16106 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
16107 if (ClassDecl->isInvalidDecl()) return;
16108 if (ClassDecl->hasIrrelevantDestructor()) return;
16109 if (ClassDecl->isDependentContext()) return;
16111 if (VD->isNoDestroy(getASTContext()))
16112 return;
16114 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
16115 // The result of `LookupDestructor` might be nullptr if the destructor is
16116 // invalid, in which case it is marked as `IneligibleOrNotSelected` and
16117 // will not be selected by `CXXRecordDecl::getDestructor()`.
16118 if (!Destructor)
16119 return;
16120 // If this is an array, we'll require the destructor during initialization, so
16121 // we can skip over this. We still want to emit exit-time destructor warnings
16122 // though.
16123 if (!VD->getType()->isArrayType()) {
16124 MarkFunctionReferenced(VD->getLocation(), Destructor);
16125 CheckDestructorAccess(VD->getLocation(), Destructor,
16126 PDiag(diag::err_access_dtor_var)
16127 << VD->getDeclName() << VD->getType());
16128 DiagnoseUseOfDecl(Destructor, VD->getLocation());
16131 if (Destructor->isTrivial()) return;
16133 // If the destructor is constexpr, check whether the variable has constant
16134 // destruction now.
16135 if (Destructor->isConstexpr()) {
16136 bool HasConstantInit = false;
16137 if (VD->getInit() && !VD->getInit()->isValueDependent())
16138 HasConstantInit = VD->evaluateValue();
16139 SmallVector<PartialDiagnosticAt, 8> Notes;
16140 if (!VD->evaluateDestruction(Notes) && VD->isConstexpr() &&
16141 HasConstantInit) {
16142 Diag(VD->getLocation(),
16143 diag::err_constexpr_var_requires_const_destruction) << VD;
16144 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
16145 Diag(Notes[I].first, Notes[I].second);
16149 if (!VD->hasGlobalStorage() || !VD->needsDestruction(Context))
16150 return;
16152 // Emit warning for non-trivial dtor in global scope (a real global,
16153 // class-static, function-static).
16154 Diag(VD->getLocation(), diag::warn_exit_time_destructor);
16156 // TODO: this should be re-enabled for static locals by !CXAAtExit
16157 if (!VD->isStaticLocal())
16158 Diag(VD->getLocation(), diag::warn_global_destructor);
16161 /// Given a constructor and the set of arguments provided for the
16162 /// constructor, convert the arguments and add any required default arguments
16163 /// to form a proper call to this constructor.
16165 /// \returns true if an error occurred, false otherwise.
16166 bool Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
16167 QualType DeclInitType, MultiExprArg ArgsPtr,
16168 SourceLocation Loc,
16169 SmallVectorImpl<Expr *> &ConvertedArgs,
16170 bool AllowExplicit,
16171 bool IsListInitialization) {
16172 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
16173 unsigned NumArgs = ArgsPtr.size();
16174 Expr **Args = ArgsPtr.data();
16176 const auto *Proto = Constructor->getType()->castAs<FunctionProtoType>();
16177 unsigned NumParams = Proto->getNumParams();
16179 // If too few arguments are available, we'll fill in the rest with defaults.
16180 if (NumArgs < NumParams)
16181 ConvertedArgs.reserve(NumParams);
16182 else
16183 ConvertedArgs.reserve(NumArgs);
16185 VariadicCallType CallType =
16186 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
16187 SmallVector<Expr *, 8> AllArgs;
16188 bool Invalid = GatherArgumentsForCall(
16189 Loc, Constructor, Proto, 0, llvm::ArrayRef(Args, NumArgs), AllArgs,
16190 CallType, AllowExplicit, IsListInitialization);
16191 ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
16193 DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
16195 CheckConstructorCall(Constructor, DeclInitType,
16196 llvm::ArrayRef(AllArgs.data(), AllArgs.size()), Proto,
16197 Loc);
16199 return Invalid;
16202 static inline bool
16203 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
16204 const FunctionDecl *FnDecl) {
16205 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
16206 if (isa<NamespaceDecl>(DC)) {
16207 return SemaRef.Diag(FnDecl->getLocation(),
16208 diag::err_operator_new_delete_declared_in_namespace)
16209 << FnDecl->getDeclName();
16212 if (isa<TranslationUnitDecl>(DC) &&
16213 FnDecl->getStorageClass() == SC_Static) {
16214 return SemaRef.Diag(FnDecl->getLocation(),
16215 diag::err_operator_new_delete_declared_static)
16216 << FnDecl->getDeclName();
16219 return false;
16222 static CanQualType RemoveAddressSpaceFromPtr(Sema &SemaRef,
16223 const PointerType *PtrTy) {
16224 auto &Ctx = SemaRef.Context;
16225 Qualifiers PtrQuals = PtrTy->getPointeeType().getQualifiers();
16226 PtrQuals.removeAddressSpace();
16227 return Ctx.getPointerType(Ctx.getCanonicalType(Ctx.getQualifiedType(
16228 PtrTy->getPointeeType().getUnqualifiedType(), PtrQuals)));
16231 static inline bool
16232 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
16233 CanQualType ExpectedResultType,
16234 CanQualType ExpectedFirstParamType,
16235 unsigned DependentParamTypeDiag,
16236 unsigned InvalidParamTypeDiag) {
16237 QualType ResultType =
16238 FnDecl->getType()->castAs<FunctionType>()->getReturnType();
16240 if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
16241 // The operator is valid on any address space for OpenCL.
16242 // Drop address space from actual and expected result types.
16243 if (const auto *PtrTy = ResultType->getAs<PointerType>())
16244 ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
16246 if (auto ExpectedPtrTy = ExpectedResultType->getAs<PointerType>())
16247 ExpectedResultType = RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy);
16250 // Check that the result type is what we expect.
16251 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) {
16252 // Reject even if the type is dependent; an operator delete function is
16253 // required to have a non-dependent result type.
16254 return SemaRef.Diag(
16255 FnDecl->getLocation(),
16256 ResultType->isDependentType()
16257 ? diag::err_operator_new_delete_dependent_result_type
16258 : diag::err_operator_new_delete_invalid_result_type)
16259 << FnDecl->getDeclName() << ExpectedResultType;
16262 // A function template must have at least 2 parameters.
16263 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
16264 return SemaRef.Diag(FnDecl->getLocation(),
16265 diag::err_operator_new_delete_template_too_few_parameters)
16266 << FnDecl->getDeclName();
16268 // The function decl must have at least 1 parameter.
16269 if (FnDecl->getNumParams() == 0)
16270 return SemaRef.Diag(FnDecl->getLocation(),
16271 diag::err_operator_new_delete_too_few_parameters)
16272 << FnDecl->getDeclName();
16274 QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
16275 if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
16276 // The operator is valid on any address space for OpenCL.
16277 // Drop address space from actual and expected first parameter types.
16278 if (const auto *PtrTy =
16279 FnDecl->getParamDecl(0)->getType()->getAs<PointerType>())
16280 FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
16282 if (auto ExpectedPtrTy = ExpectedFirstParamType->getAs<PointerType>())
16283 ExpectedFirstParamType =
16284 RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy);
16287 // Check that the first parameter type is what we expect.
16288 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
16289 ExpectedFirstParamType) {
16290 // The first parameter type is not allowed to be dependent. As a tentative
16291 // DR resolution, we allow a dependent parameter type if it is the right
16292 // type anyway, to allow destroying operator delete in class templates.
16293 return SemaRef.Diag(FnDecl->getLocation(), FirstParamType->isDependentType()
16294 ? DependentParamTypeDiag
16295 : InvalidParamTypeDiag)
16296 << FnDecl->getDeclName() << ExpectedFirstParamType;
16299 return false;
16302 static bool
16303 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
16304 // C++ [basic.stc.dynamic.allocation]p1:
16305 // A program is ill-formed if an allocation function is declared in a
16306 // namespace scope other than global scope or declared static in global
16307 // scope.
16308 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
16309 return true;
16311 CanQualType SizeTy =
16312 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
16314 // C++ [basic.stc.dynamic.allocation]p1:
16315 // The return type shall be void*. The first parameter shall have type
16316 // std::size_t.
16317 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
16318 SizeTy,
16319 diag::err_operator_new_dependent_param_type,
16320 diag::err_operator_new_param_type))
16321 return true;
16323 // C++ [basic.stc.dynamic.allocation]p1:
16324 // The first parameter shall not have an associated default argument.
16325 if (FnDecl->getParamDecl(0)->hasDefaultArg())
16326 return SemaRef.Diag(FnDecl->getLocation(),
16327 diag::err_operator_new_default_arg)
16328 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
16330 return false;
16333 static bool
16334 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
16335 // C++ [basic.stc.dynamic.deallocation]p1:
16336 // A program is ill-formed if deallocation functions are declared in a
16337 // namespace scope other than global scope or declared static in global
16338 // scope.
16339 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
16340 return true;
16342 auto *MD = dyn_cast<CXXMethodDecl>(FnDecl);
16344 // C++ P0722:
16345 // Within a class C, the first parameter of a destroying operator delete
16346 // shall be of type C *. The first parameter of any other deallocation
16347 // function shall be of type void *.
16348 CanQualType ExpectedFirstParamType =
16349 MD && MD->isDestroyingOperatorDelete()
16350 ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType(
16351 SemaRef.Context.getRecordType(MD->getParent())))
16352 : SemaRef.Context.VoidPtrTy;
16354 // C++ [basic.stc.dynamic.deallocation]p2:
16355 // Each deallocation function shall return void
16356 if (CheckOperatorNewDeleteTypes(
16357 SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType,
16358 diag::err_operator_delete_dependent_param_type,
16359 diag::err_operator_delete_param_type))
16360 return true;
16362 // C++ P0722:
16363 // A destroying operator delete shall be a usual deallocation function.
16364 if (MD && !MD->getParent()->isDependentContext() &&
16365 MD->isDestroyingOperatorDelete() &&
16366 !SemaRef.isUsualDeallocationFunction(MD)) {
16367 SemaRef.Diag(MD->getLocation(),
16368 diag::err_destroying_operator_delete_not_usual);
16369 return true;
16372 return false;
16375 /// CheckOverloadedOperatorDeclaration - Check whether the declaration
16376 /// of this overloaded operator is well-formed. If so, returns false;
16377 /// otherwise, emits appropriate diagnostics and returns true.
16378 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
16379 assert(FnDecl && FnDecl->isOverloadedOperator() &&
16380 "Expected an overloaded operator declaration");
16382 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
16384 // C++ [over.oper]p5:
16385 // The allocation and deallocation functions, operator new,
16386 // operator new[], operator delete and operator delete[], are
16387 // described completely in 3.7.3. The attributes and restrictions
16388 // found in the rest of this subclause do not apply to them unless
16389 // explicitly stated in 3.7.3.
16390 if (Op == OO_Delete || Op == OO_Array_Delete)
16391 return CheckOperatorDeleteDeclaration(*this, FnDecl);
16393 if (Op == OO_New || Op == OO_Array_New)
16394 return CheckOperatorNewDeclaration(*this, FnDecl);
16396 // C++ [over.oper]p7:
16397 // An operator function shall either be a member function or
16398 // be a non-member function and have at least one parameter
16399 // whose type is a class, a reference to a class, an enumeration,
16400 // or a reference to an enumeration.
16401 // Note: Before C++23, a member function could not be static. The only member
16402 // function allowed to be static is the call operator function.
16403 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
16404 if (MethodDecl->isStatic()) {
16405 if (Op == OO_Call || Op == OO_Subscript)
16406 Diag(FnDecl->getLocation(),
16407 (LangOpts.CPlusPlus23
16408 ? diag::warn_cxx20_compat_operator_overload_static
16409 : diag::ext_operator_overload_static))
16410 << FnDecl;
16411 else
16412 return Diag(FnDecl->getLocation(), diag::err_operator_overload_static)
16413 << FnDecl;
16415 } else {
16416 bool ClassOrEnumParam = false;
16417 for (auto *Param : FnDecl->parameters()) {
16418 QualType ParamType = Param->getType().getNonReferenceType();
16419 if (ParamType->isDependentType() || ParamType->isRecordType() ||
16420 ParamType->isEnumeralType()) {
16421 ClassOrEnumParam = true;
16422 break;
16426 if (!ClassOrEnumParam)
16427 return Diag(FnDecl->getLocation(),
16428 diag::err_operator_overload_needs_class_or_enum)
16429 << FnDecl->getDeclName();
16432 // C++ [over.oper]p8:
16433 // An operator function cannot have default arguments (8.3.6),
16434 // except where explicitly stated below.
16436 // Only the function-call operator (C++ [over.call]p1) and the subscript
16437 // operator (CWG2507) allow default arguments.
16438 if (Op != OO_Call) {
16439 ParmVarDecl *FirstDefaultedParam = nullptr;
16440 for (auto *Param : FnDecl->parameters()) {
16441 if (Param->hasDefaultArg()) {
16442 FirstDefaultedParam = Param;
16443 break;
16446 if (FirstDefaultedParam) {
16447 if (Op == OO_Subscript) {
16448 Diag(FnDecl->getLocation(), LangOpts.CPlusPlus23
16449 ? diag::ext_subscript_overload
16450 : diag::error_subscript_overload)
16451 << FnDecl->getDeclName() << 1
16452 << FirstDefaultedParam->getDefaultArgRange();
16453 } else {
16454 return Diag(FirstDefaultedParam->getLocation(),
16455 diag::err_operator_overload_default_arg)
16456 << FnDecl->getDeclName()
16457 << FirstDefaultedParam->getDefaultArgRange();
16462 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
16463 { false, false, false }
16464 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
16465 , { Unary, Binary, MemberOnly }
16466 #include "clang/Basic/OperatorKinds.def"
16469 bool CanBeUnaryOperator = OperatorUses[Op][0];
16470 bool CanBeBinaryOperator = OperatorUses[Op][1];
16471 bool MustBeMemberOperator = OperatorUses[Op][2];
16473 // C++ [over.oper]p8:
16474 // [...] Operator functions cannot have more or fewer parameters
16475 // than the number required for the corresponding operator, as
16476 // described in the rest of this subclause.
16477 unsigned NumParams = FnDecl->getNumParams() +
16478 (isa<CXXMethodDecl>(FnDecl) &&
16479 !FnDecl->hasCXXExplicitFunctionObjectParameter()
16481 : 0);
16482 if (Op != OO_Call && Op != OO_Subscript &&
16483 ((NumParams == 1 && !CanBeUnaryOperator) ||
16484 (NumParams == 2 && !CanBeBinaryOperator) || (NumParams < 1) ||
16485 (NumParams > 2))) {
16486 // We have the wrong number of parameters.
16487 unsigned ErrorKind;
16488 if (CanBeUnaryOperator && CanBeBinaryOperator) {
16489 ErrorKind = 2; // 2 -> unary or binary.
16490 } else if (CanBeUnaryOperator) {
16491 ErrorKind = 0; // 0 -> unary
16492 } else {
16493 assert(CanBeBinaryOperator &&
16494 "All non-call overloaded operators are unary or binary!");
16495 ErrorKind = 1; // 1 -> binary
16497 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
16498 << FnDecl->getDeclName() << NumParams << ErrorKind;
16501 if (Op == OO_Subscript && NumParams != 2) {
16502 Diag(FnDecl->getLocation(), LangOpts.CPlusPlus23
16503 ? diag::ext_subscript_overload
16504 : diag::error_subscript_overload)
16505 << FnDecl->getDeclName() << (NumParams == 1 ? 0 : 2);
16508 // Overloaded operators other than operator() and operator[] cannot be
16509 // variadic.
16510 if (Op != OO_Call &&
16511 FnDecl->getType()->castAs<FunctionProtoType>()->isVariadic()) {
16512 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
16513 << FnDecl->getDeclName();
16516 // Some operators must be member functions.
16517 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
16518 return Diag(FnDecl->getLocation(),
16519 diag::err_operator_overload_must_be_member)
16520 << FnDecl->getDeclName();
16523 // C++ [over.inc]p1:
16524 // The user-defined function called operator++ implements the
16525 // prefix and postfix ++ operator. If this function is a member
16526 // function with no parameters, or a non-member function with one
16527 // parameter of class or enumeration type, it defines the prefix
16528 // increment operator ++ for objects of that type. If the function
16529 // is a member function with one parameter (which shall be of type
16530 // int) or a non-member function with two parameters (the second
16531 // of which shall be of type int), it defines the postfix
16532 // increment operator ++ for objects of that type.
16533 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
16534 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
16535 QualType ParamType = LastParam->getType();
16537 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) &&
16538 !ParamType->isDependentType())
16539 return Diag(LastParam->getLocation(),
16540 diag::err_operator_overload_post_incdec_must_be_int)
16541 << LastParam->getType() << (Op == OO_MinusMinus);
16544 return false;
16547 static bool
16548 checkLiteralOperatorTemplateParameterList(Sema &SemaRef,
16549 FunctionTemplateDecl *TpDecl) {
16550 TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters();
16552 // Must have one or two template parameters.
16553 if (TemplateParams->size() == 1) {
16554 NonTypeTemplateParmDecl *PmDecl =
16555 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0));
16557 // The template parameter must be a char parameter pack.
16558 if (PmDecl && PmDecl->isTemplateParameterPack() &&
16559 SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy))
16560 return false;
16562 // C++20 [over.literal]p5:
16563 // A string literal operator template is a literal operator template
16564 // whose template-parameter-list comprises a single non-type
16565 // template-parameter of class type.
16567 // As a DR resolution, we also allow placeholders for deduced class
16568 // template specializations.
16569 if (SemaRef.getLangOpts().CPlusPlus20 && PmDecl &&
16570 !PmDecl->isTemplateParameterPack() &&
16571 (PmDecl->getType()->isRecordType() ||
16572 PmDecl->getType()->getAs<DeducedTemplateSpecializationType>()))
16573 return false;
16574 } else if (TemplateParams->size() == 2) {
16575 TemplateTypeParmDecl *PmType =
16576 dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0));
16577 NonTypeTemplateParmDecl *PmArgs =
16578 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1));
16580 // The second template parameter must be a parameter pack with the
16581 // first template parameter as its type.
16582 if (PmType && PmArgs && !PmType->isTemplateParameterPack() &&
16583 PmArgs->isTemplateParameterPack()) {
16584 const TemplateTypeParmType *TArgs =
16585 PmArgs->getType()->getAs<TemplateTypeParmType>();
16586 if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
16587 TArgs->getIndex() == PmType->getIndex()) {
16588 if (!SemaRef.inTemplateInstantiation())
16589 SemaRef.Diag(TpDecl->getLocation(),
16590 diag::ext_string_literal_operator_template);
16591 return false;
16596 SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(),
16597 diag::err_literal_operator_template)
16598 << TpDecl->getTemplateParameters()->getSourceRange();
16599 return true;
16602 /// CheckLiteralOperatorDeclaration - Check whether the declaration
16603 /// of this literal operator function is well-formed. If so, returns
16604 /// false; otherwise, emits appropriate diagnostics and returns true.
16605 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
16606 if (isa<CXXMethodDecl>(FnDecl)) {
16607 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
16608 << FnDecl->getDeclName();
16609 return true;
16612 if (FnDecl->isExternC()) {
16613 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
16614 if (const LinkageSpecDecl *LSD =
16615 FnDecl->getDeclContext()->getExternCContext())
16616 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
16617 return true;
16620 // This might be the definition of a literal operator template.
16621 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
16623 // This might be a specialization of a literal operator template.
16624 if (!TpDecl)
16625 TpDecl = FnDecl->getPrimaryTemplate();
16627 // template <char...> type operator "" name() and
16628 // template <class T, T...> type operator "" name() are the only valid
16629 // template signatures, and the only valid signatures with no parameters.
16631 // C++20 also allows template <SomeClass T> type operator "" name().
16632 if (TpDecl) {
16633 if (FnDecl->param_size() != 0) {
16634 Diag(FnDecl->getLocation(),
16635 diag::err_literal_operator_template_with_params);
16636 return true;
16639 if (checkLiteralOperatorTemplateParameterList(*this, TpDecl))
16640 return true;
16642 } else if (FnDecl->param_size() == 1) {
16643 const ParmVarDecl *Param = FnDecl->getParamDecl(0);
16645 QualType ParamType = Param->getType().getUnqualifiedType();
16647 // Only unsigned long long int, long double, any character type, and const
16648 // char * are allowed as the only parameters.
16649 if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
16650 ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) ||
16651 Context.hasSameType(ParamType, Context.CharTy) ||
16652 Context.hasSameType(ParamType, Context.WideCharTy) ||
16653 Context.hasSameType(ParamType, Context.Char8Ty) ||
16654 Context.hasSameType(ParamType, Context.Char16Ty) ||
16655 Context.hasSameType(ParamType, Context.Char32Ty)) {
16656 } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) {
16657 QualType InnerType = Ptr->getPointeeType();
16659 // Pointer parameter must be a const char *.
16660 if (!(Context.hasSameType(InnerType.getUnqualifiedType(),
16661 Context.CharTy) &&
16662 InnerType.isConstQualified() && !InnerType.isVolatileQualified())) {
16663 Diag(Param->getSourceRange().getBegin(),
16664 diag::err_literal_operator_param)
16665 << ParamType << "'const char *'" << Param->getSourceRange();
16666 return true;
16669 } else if (ParamType->isRealFloatingType()) {
16670 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
16671 << ParamType << Context.LongDoubleTy << Param->getSourceRange();
16672 return true;
16674 } else if (ParamType->isIntegerType()) {
16675 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
16676 << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange();
16677 return true;
16679 } else {
16680 Diag(Param->getSourceRange().getBegin(),
16681 diag::err_literal_operator_invalid_param)
16682 << ParamType << Param->getSourceRange();
16683 return true;
16686 } else if (FnDecl->param_size() == 2) {
16687 FunctionDecl::param_iterator Param = FnDecl->param_begin();
16689 // First, verify that the first parameter is correct.
16691 QualType FirstParamType = (*Param)->getType().getUnqualifiedType();
16693 // Two parameter function must have a pointer to const as a
16694 // first parameter; let's strip those qualifiers.
16695 const PointerType *PT = FirstParamType->getAs<PointerType>();
16697 if (!PT) {
16698 Diag((*Param)->getSourceRange().getBegin(),
16699 diag::err_literal_operator_param)
16700 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
16701 return true;
16704 QualType PointeeType = PT->getPointeeType();
16705 // First parameter must be const
16706 if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) {
16707 Diag((*Param)->getSourceRange().getBegin(),
16708 diag::err_literal_operator_param)
16709 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
16710 return true;
16713 QualType InnerType = PointeeType.getUnqualifiedType();
16714 // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and
16715 // const char32_t* are allowed as the first parameter to a two-parameter
16716 // function
16717 if (!(Context.hasSameType(InnerType, Context.CharTy) ||
16718 Context.hasSameType(InnerType, Context.WideCharTy) ||
16719 Context.hasSameType(InnerType, Context.Char8Ty) ||
16720 Context.hasSameType(InnerType, Context.Char16Ty) ||
16721 Context.hasSameType(InnerType, Context.Char32Ty))) {
16722 Diag((*Param)->getSourceRange().getBegin(),
16723 diag::err_literal_operator_param)
16724 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
16725 return true;
16728 // Move on to the second and final parameter.
16729 ++Param;
16731 // The second parameter must be a std::size_t.
16732 QualType SecondParamType = (*Param)->getType().getUnqualifiedType();
16733 if (!Context.hasSameType(SecondParamType, Context.getSizeType())) {
16734 Diag((*Param)->getSourceRange().getBegin(),
16735 diag::err_literal_operator_param)
16736 << SecondParamType << Context.getSizeType()
16737 << (*Param)->getSourceRange();
16738 return true;
16740 } else {
16741 Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count);
16742 return true;
16745 // Parameters are good.
16747 // A parameter-declaration-clause containing a default argument is not
16748 // equivalent to any of the permitted forms.
16749 for (auto *Param : FnDecl->parameters()) {
16750 if (Param->hasDefaultArg()) {
16751 Diag(Param->getDefaultArgRange().getBegin(),
16752 diag::err_literal_operator_default_argument)
16753 << Param->getDefaultArgRange();
16754 break;
16758 const IdentifierInfo *II = FnDecl->getDeclName().getCXXLiteralIdentifier();
16759 ReservedLiteralSuffixIdStatus Status = II->isReservedLiteralSuffixId();
16760 if (Status != ReservedLiteralSuffixIdStatus::NotReserved &&
16761 !getSourceManager().isInSystemHeader(FnDecl->getLocation())) {
16762 // C++23 [usrlit.suffix]p1:
16763 // Literal suffix identifiers that do not start with an underscore are
16764 // reserved for future standardization. Literal suffix identifiers that
16765 // contain a double underscore __ are reserved for use by C++
16766 // implementations.
16767 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
16768 << static_cast<int>(Status)
16769 << StringLiteralParser::isValidUDSuffix(getLangOpts(), II->getName());
16772 return false;
16775 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++
16776 /// linkage specification, including the language and (if present)
16777 /// the '{'. ExternLoc is the location of the 'extern', Lang is the
16778 /// language string literal. LBraceLoc, if valid, provides the location of
16779 /// the '{' brace. Otherwise, this linkage specification does not
16780 /// have any braces.
16781 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
16782 Expr *LangStr,
16783 SourceLocation LBraceLoc) {
16784 StringLiteral *Lit = cast<StringLiteral>(LangStr);
16785 assert(Lit->isUnevaluated() && "Unexpected string literal kind");
16787 StringRef Lang = Lit->getString();
16788 LinkageSpecLanguageIDs Language;
16789 if (Lang == "C")
16790 Language = LinkageSpecLanguageIDs::C;
16791 else if (Lang == "C++")
16792 Language = LinkageSpecLanguageIDs::CXX;
16793 else {
16794 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown)
16795 << LangStr->getSourceRange();
16796 return nullptr;
16799 // FIXME: Add all the various semantics of linkage specifications
16801 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc,
16802 LangStr->getExprLoc(), Language,
16803 LBraceLoc.isValid());
16805 /// C++ [module.unit]p7.2.3
16806 /// - Otherwise, if the declaration
16807 /// - ...
16808 /// - ...
16809 /// - appears within a linkage-specification,
16810 /// it is attached to the global module.
16812 /// If the declaration is already in global module fragment, we don't
16813 /// need to attach it again.
16814 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview()) {
16815 Module *GlobalModule = PushImplicitGlobalModuleFragment(
16816 ExternLoc, /*IsExported=*/D->isInExportDeclContext());
16817 D->setLocalOwningModule(GlobalModule);
16820 CurContext->addDecl(D);
16821 PushDeclContext(S, D);
16822 return D;
16825 /// ActOnFinishLinkageSpecification - Complete the definition of
16826 /// the C++ linkage specification LinkageSpec. If RBraceLoc is
16827 /// valid, it's the position of the closing '}' brace in a linkage
16828 /// specification that uses braces.
16829 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
16830 Decl *LinkageSpec,
16831 SourceLocation RBraceLoc) {
16832 if (RBraceLoc.isValid()) {
16833 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
16834 LSDecl->setRBraceLoc(RBraceLoc);
16837 // If the current module doesn't has Parent, it implies that the
16838 // LinkageSpec isn't in the module created by itself. So we don't
16839 // need to pop it.
16840 if (getLangOpts().CPlusPlusModules && getCurrentModule() &&
16841 getCurrentModule()->isImplicitGlobalModule() &&
16842 getCurrentModule()->Parent)
16843 PopImplicitGlobalModuleFragment();
16845 PopDeclContext();
16846 return LinkageSpec;
16849 Decl *Sema::ActOnEmptyDeclaration(Scope *S,
16850 const ParsedAttributesView &AttrList,
16851 SourceLocation SemiLoc) {
16852 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
16853 // Attribute declarations appertain to empty declaration so we handle
16854 // them here.
16855 ProcessDeclAttributeList(S, ED, AttrList);
16857 CurContext->addDecl(ED);
16858 return ED;
16861 /// Perform semantic analysis for the variable declaration that
16862 /// occurs within a C++ catch clause, returning the newly-created
16863 /// variable.
16864 VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
16865 TypeSourceInfo *TInfo,
16866 SourceLocation StartLoc,
16867 SourceLocation Loc,
16868 IdentifierInfo *Name) {
16869 bool Invalid = false;
16870 QualType ExDeclType = TInfo->getType();
16872 // Arrays and functions decay.
16873 if (ExDeclType->isArrayType())
16874 ExDeclType = Context.getArrayDecayedType(ExDeclType);
16875 else if (ExDeclType->isFunctionType())
16876 ExDeclType = Context.getPointerType(ExDeclType);
16878 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
16879 // The exception-declaration shall not denote a pointer or reference to an
16880 // incomplete type, other than [cv] void*.
16881 // N2844 forbids rvalue references.
16882 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
16883 Diag(Loc, diag::err_catch_rvalue_ref);
16884 Invalid = true;
16887 if (ExDeclType->isVariablyModifiedType()) {
16888 Diag(Loc, diag::err_catch_variably_modified) << ExDeclType;
16889 Invalid = true;
16892 QualType BaseType = ExDeclType;
16893 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
16894 unsigned DK = diag::err_catch_incomplete;
16895 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
16896 BaseType = Ptr->getPointeeType();
16897 Mode = 1;
16898 DK = diag::err_catch_incomplete_ptr;
16899 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
16900 // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
16901 BaseType = Ref->getPointeeType();
16902 Mode = 2;
16903 DK = diag::err_catch_incomplete_ref;
16905 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
16906 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
16907 Invalid = true;
16909 if (!Invalid && BaseType.isWebAssemblyReferenceType()) {
16910 Diag(Loc, diag::err_wasm_reftype_tc) << 1;
16911 Invalid = true;
16914 if (!Invalid && Mode != 1 && BaseType->isSizelessType()) {
16915 Diag(Loc, diag::err_catch_sizeless) << (Mode == 2 ? 1 : 0) << BaseType;
16916 Invalid = true;
16919 if (!Invalid && !ExDeclType->isDependentType() &&
16920 RequireNonAbstractType(Loc, ExDeclType,
16921 diag::err_abstract_type_in_decl,
16922 AbstractVariableType))
16923 Invalid = true;
16925 // Only the non-fragile NeXT runtime currently supports C++ catches
16926 // of ObjC types, and no runtime supports catching ObjC types by value.
16927 if (!Invalid && getLangOpts().ObjC) {
16928 QualType T = ExDeclType;
16929 if (const ReferenceType *RT = T->getAs<ReferenceType>())
16930 T = RT->getPointeeType();
16932 if (T->isObjCObjectType()) {
16933 Diag(Loc, diag::err_objc_object_catch);
16934 Invalid = true;
16935 } else if (T->isObjCObjectPointerType()) {
16936 // FIXME: should this be a test for macosx-fragile specifically?
16937 if (getLangOpts().ObjCRuntime.isFragile())
16938 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
16942 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
16943 ExDeclType, TInfo, SC_None);
16944 ExDecl->setExceptionVariable(true);
16946 // In ARC, infer 'retaining' for variables of retainable type.
16947 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
16948 Invalid = true;
16950 if (!Invalid && !ExDeclType->isDependentType()) {
16951 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
16952 // Insulate this from anything else we might currently be parsing.
16953 EnterExpressionEvaluationContext scope(
16954 *this, ExpressionEvaluationContext::PotentiallyEvaluated);
16956 // C++ [except.handle]p16:
16957 // The object declared in an exception-declaration or, if the
16958 // exception-declaration does not specify a name, a temporary (12.2) is
16959 // copy-initialized (8.5) from the exception object. [...]
16960 // The object is destroyed when the handler exits, after the destruction
16961 // of any automatic objects initialized within the handler.
16963 // We just pretend to initialize the object with itself, then make sure
16964 // it can be destroyed later.
16965 QualType initType = Context.getExceptionObjectType(ExDeclType);
16967 InitializedEntity entity =
16968 InitializedEntity::InitializeVariable(ExDecl);
16969 InitializationKind initKind =
16970 InitializationKind::CreateCopy(Loc, SourceLocation());
16972 Expr *opaqueValue =
16973 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
16974 InitializationSequence sequence(*this, entity, initKind, opaqueValue);
16975 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
16976 if (result.isInvalid())
16977 Invalid = true;
16978 else {
16979 // If the constructor used was non-trivial, set this as the
16980 // "initializer".
16981 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>();
16982 if (!construct->getConstructor()->isTrivial()) {
16983 Expr *init = MaybeCreateExprWithCleanups(construct);
16984 ExDecl->setInit(init);
16987 // And make sure it's destructable.
16988 FinalizeVarWithDestructor(ExDecl, recordType);
16993 if (Invalid)
16994 ExDecl->setInvalidDecl();
16996 return ExDecl;
16999 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
17000 /// handler.
17001 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
17002 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
17003 bool Invalid = D.isInvalidType();
17005 // Check for unexpanded parameter packs.
17006 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
17007 UPPC_ExceptionType)) {
17008 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
17009 D.getIdentifierLoc());
17010 Invalid = true;
17013 IdentifierInfo *II = D.getIdentifier();
17014 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
17015 LookupOrdinaryName,
17016 ForVisibleRedeclaration)) {
17017 // The scope should be freshly made just for us. There is just no way
17018 // it contains any previous declaration, except for function parameters in
17019 // a function-try-block's catch statement.
17020 assert(!S->isDeclScope(PrevDecl));
17021 if (isDeclInScope(PrevDecl, CurContext, S)) {
17022 Diag(D.getIdentifierLoc(), diag::err_redefinition)
17023 << D.getIdentifier();
17024 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
17025 Invalid = true;
17026 } else if (PrevDecl->isTemplateParameter())
17027 // Maybe we will complain about the shadowed template parameter.
17028 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
17031 if (D.getCXXScopeSpec().isSet() && !Invalid) {
17032 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
17033 << D.getCXXScopeSpec().getRange();
17034 Invalid = true;
17037 VarDecl *ExDecl = BuildExceptionDeclaration(
17038 S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier());
17039 if (Invalid)
17040 ExDecl->setInvalidDecl();
17042 // Add the exception declaration into this scope.
17043 if (II)
17044 PushOnScopeChains(ExDecl, S);
17045 else
17046 CurContext->addDecl(ExDecl);
17048 ProcessDeclAttributes(S, ExDecl, D);
17049 return ExDecl;
17052 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
17053 Expr *AssertExpr,
17054 Expr *AssertMessageExpr,
17055 SourceLocation RParenLoc) {
17056 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
17057 return nullptr;
17059 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
17060 AssertMessageExpr, RParenLoc, false);
17063 static void WriteCharTypePrefix(BuiltinType::Kind BTK, llvm::raw_ostream &OS) {
17064 switch (BTK) {
17065 case BuiltinType::Char_S:
17066 case BuiltinType::Char_U:
17067 break;
17068 case BuiltinType::Char8:
17069 OS << "u8";
17070 break;
17071 case BuiltinType::Char16:
17072 OS << 'u';
17073 break;
17074 case BuiltinType::Char32:
17075 OS << 'U';
17076 break;
17077 case BuiltinType::WChar_S:
17078 case BuiltinType::WChar_U:
17079 OS << 'L';
17080 break;
17081 default:
17082 llvm_unreachable("Non-character type");
17086 /// Convert character's value, interpreted as a code unit, to a string.
17087 /// The value needs to be zero-extended to 32-bits.
17088 /// FIXME: This assumes Unicode literal encodings
17089 static void WriteCharValueForDiagnostic(uint32_t Value, const BuiltinType *BTy,
17090 unsigned TyWidth,
17091 SmallVectorImpl<char> &Str) {
17092 char Arr[UNI_MAX_UTF8_BYTES_PER_CODE_POINT];
17093 char *Ptr = Arr;
17094 BuiltinType::Kind K = BTy->getKind();
17095 llvm::raw_svector_ostream OS(Str);
17097 // This should catch Char_S, Char_U, Char8, and use of escaped characters in
17098 // other types.
17099 if (K == BuiltinType::Char_S || K == BuiltinType::Char_U ||
17100 K == BuiltinType::Char8 || Value <= 0x7F) {
17101 StringRef Escaped = escapeCStyle<EscapeChar::Single>(Value);
17102 if (!Escaped.empty())
17103 EscapeStringForDiagnostic(Escaped, Str);
17104 else
17105 OS << static_cast<char>(Value);
17106 return;
17109 switch (K) {
17110 case BuiltinType::Char16:
17111 case BuiltinType::Char32:
17112 case BuiltinType::WChar_S:
17113 case BuiltinType::WChar_U: {
17114 if (llvm::ConvertCodePointToUTF8(Value, Ptr))
17115 EscapeStringForDiagnostic(StringRef(Arr, Ptr - Arr), Str);
17116 else
17117 OS << "\\x"
17118 << llvm::format_hex_no_prefix(Value, TyWidth / 4, /*Upper=*/true);
17119 break;
17121 default:
17122 llvm_unreachable("Non-character type is passed");
17126 /// Convert \V to a string we can present to the user in a diagnostic
17127 /// \T is the type of the expression that has been evaluated into \V
17128 static bool ConvertAPValueToString(const APValue &V, QualType T,
17129 SmallVectorImpl<char> &Str,
17130 ASTContext &Context) {
17131 if (!V.hasValue())
17132 return false;
17134 switch (V.getKind()) {
17135 case APValue::ValueKind::Int:
17136 if (T->isBooleanType()) {
17137 // Bools are reduced to ints during evaluation, but for
17138 // diagnostic purposes we want to print them as
17139 // true or false.
17140 int64_t BoolValue = V.getInt().getExtValue();
17141 assert((BoolValue == 0 || BoolValue == 1) &&
17142 "Bool type, but value is not 0 or 1");
17143 llvm::raw_svector_ostream OS(Str);
17144 OS << (BoolValue ? "true" : "false");
17145 } else {
17146 llvm::raw_svector_ostream OS(Str);
17147 // Same is true for chars.
17148 // We want to print the character representation for textual types
17149 const auto *BTy = T->getAs<BuiltinType>();
17150 if (BTy) {
17151 switch (BTy->getKind()) {
17152 case BuiltinType::Char_S:
17153 case BuiltinType::Char_U:
17154 case BuiltinType::Char8:
17155 case BuiltinType::Char16:
17156 case BuiltinType::Char32:
17157 case BuiltinType::WChar_S:
17158 case BuiltinType::WChar_U: {
17159 unsigned TyWidth = Context.getIntWidth(T);
17160 assert(8 <= TyWidth && TyWidth <= 32 && "Unexpected integer width");
17161 uint32_t CodeUnit = static_cast<uint32_t>(V.getInt().getZExtValue());
17162 WriteCharTypePrefix(BTy->getKind(), OS);
17163 OS << '\'';
17164 WriteCharValueForDiagnostic(CodeUnit, BTy, TyWidth, Str);
17165 OS << "' (0x"
17166 << llvm::format_hex_no_prefix(CodeUnit, /*Width=*/2,
17167 /*Upper=*/true)
17168 << ", " << V.getInt() << ')';
17169 return true;
17171 default:
17172 break;
17175 V.getInt().toString(Str);
17178 break;
17180 case APValue::ValueKind::Float:
17181 V.getFloat().toString(Str);
17182 break;
17184 case APValue::ValueKind::LValue:
17185 if (V.isNullPointer()) {
17186 llvm::raw_svector_ostream OS(Str);
17187 OS << "nullptr";
17188 } else
17189 return false;
17190 break;
17192 case APValue::ValueKind::ComplexFloat: {
17193 llvm::raw_svector_ostream OS(Str);
17194 OS << '(';
17195 V.getComplexFloatReal().toString(Str);
17196 OS << " + ";
17197 V.getComplexFloatImag().toString(Str);
17198 OS << "i)";
17199 } break;
17201 case APValue::ValueKind::ComplexInt: {
17202 llvm::raw_svector_ostream OS(Str);
17203 OS << '(';
17204 V.getComplexIntReal().toString(Str);
17205 OS << " + ";
17206 V.getComplexIntImag().toString(Str);
17207 OS << "i)";
17208 } break;
17210 default:
17211 return false;
17214 return true;
17217 /// Some Expression types are not useful to print notes about,
17218 /// e.g. literals and values that have already been expanded
17219 /// before such as int-valued template parameters.
17220 static bool UsefulToPrintExpr(const Expr *E) {
17221 E = E->IgnoreParenImpCasts();
17222 // Literals are pretty easy for humans to understand.
17223 if (isa<IntegerLiteral, FloatingLiteral, CharacterLiteral, CXXBoolLiteralExpr,
17224 CXXNullPtrLiteralExpr, FixedPointLiteral, ImaginaryLiteral>(E))
17225 return false;
17227 // These have been substituted from template parameters
17228 // and appear as literals in the static assert error.
17229 if (isa<SubstNonTypeTemplateParmExpr>(E))
17230 return false;
17232 // -5 is also simple to understand.
17233 if (const auto *UnaryOp = dyn_cast<UnaryOperator>(E))
17234 return UsefulToPrintExpr(UnaryOp->getSubExpr());
17236 // Ignore nested binary operators. This could be a FIXME for improvements
17237 // to the diagnostics in the future.
17238 if (isa<BinaryOperator>(E))
17239 return false;
17241 return true;
17244 /// Try to print more useful information about a failed static_assert
17245 /// with expression \E
17246 void Sema::DiagnoseStaticAssertDetails(const Expr *E) {
17247 if (const auto *Op = dyn_cast<BinaryOperator>(E);
17248 Op && Op->getOpcode() != BO_LOr) {
17249 const Expr *LHS = Op->getLHS()->IgnoreParenImpCasts();
17250 const Expr *RHS = Op->getRHS()->IgnoreParenImpCasts();
17252 // Ignore comparisons of boolean expressions with a boolean literal.
17253 if ((isa<CXXBoolLiteralExpr>(LHS) && RHS->getType()->isBooleanType()) ||
17254 (isa<CXXBoolLiteralExpr>(RHS) && LHS->getType()->isBooleanType()))
17255 return;
17257 // Don't print obvious expressions.
17258 if (!UsefulToPrintExpr(LHS) && !UsefulToPrintExpr(RHS))
17259 return;
17261 struct {
17262 const clang::Expr *Cond;
17263 Expr::EvalResult Result;
17264 SmallString<12> ValueString;
17265 bool Print;
17266 } DiagSide[2] = {{LHS, Expr::EvalResult(), {}, false},
17267 {RHS, Expr::EvalResult(), {}, false}};
17268 for (unsigned I = 0; I < 2; I++) {
17269 const Expr *Side = DiagSide[I].Cond;
17271 Side->EvaluateAsRValue(DiagSide[I].Result, Context, true);
17273 DiagSide[I].Print =
17274 ConvertAPValueToString(DiagSide[I].Result.Val, Side->getType(),
17275 DiagSide[I].ValueString, Context);
17277 if (DiagSide[0].Print && DiagSide[1].Print) {
17278 Diag(Op->getExprLoc(), diag::note_expr_evaluates_to)
17279 << DiagSide[0].ValueString << Op->getOpcodeStr()
17280 << DiagSide[1].ValueString << Op->getSourceRange();
17285 bool Sema::EvaluateStaticAssertMessageAsString(Expr *Message,
17286 std::string &Result,
17287 ASTContext &Ctx,
17288 bool ErrorOnInvalidMessage) {
17289 assert(Message);
17290 assert(!Message->isTypeDependent() && !Message->isValueDependent() &&
17291 "can't evaluate a dependant static assert message");
17293 if (const auto *SL = dyn_cast<StringLiteral>(Message)) {
17294 assert(SL->isUnevaluated() && "expected an unevaluated string");
17295 Result.assign(SL->getString().begin(), SL->getString().end());
17296 return true;
17299 SourceLocation Loc = Message->getBeginLoc();
17300 QualType T = Message->getType().getNonReferenceType();
17301 auto *RD = T->getAsCXXRecordDecl();
17302 if (!RD) {
17303 Diag(Loc, diag::err_static_assert_invalid_message);
17304 return false;
17307 auto FindMember = [&](StringRef Member, bool &Empty,
17308 bool Diag = false) -> std::optional<LookupResult> {
17309 QualType ObjectType = Message->getType();
17310 Expr::Classification ObjectClassification =
17311 Message->Classify(getASTContext());
17313 DeclarationName DN = PP.getIdentifierInfo(Member);
17314 LookupResult MemberLookup(*this, DN, Loc, Sema::LookupMemberName);
17315 LookupQualifiedName(MemberLookup, RD);
17316 Empty = MemberLookup.empty();
17317 OverloadCandidateSet Candidates(MemberLookup.getNameLoc(),
17318 OverloadCandidateSet::CSK_Normal);
17319 for (NamedDecl *D : MemberLookup) {
17320 AddMethodCandidate(DeclAccessPair::make(D, D->getAccess()), ObjectType,
17321 ObjectClassification, /*Args=*/{}, Candidates);
17323 OverloadCandidateSet::iterator Best;
17324 switch (Candidates.BestViableFunction(*this, Loc, Best)) {
17325 case OR_Success:
17326 return std::move(MemberLookup);
17327 default:
17328 if (Diag)
17329 Candidates.NoteCandidates(
17330 PartialDiagnosticAt(
17331 Loc, PDiag(diag::err_static_assert_invalid_mem_fn_ret_ty)
17332 << (Member == "data")),
17333 *this, OCD_AllCandidates, /*Args=*/{});
17335 return std::nullopt;
17338 bool SizeNotFound, DataNotFound;
17339 std::optional<LookupResult> SizeMember = FindMember("size", SizeNotFound);
17340 std::optional<LookupResult> DataMember = FindMember("data", DataNotFound);
17341 if (SizeNotFound || DataNotFound) {
17342 Diag(Loc, diag::err_static_assert_missing_member_function)
17343 << ((SizeNotFound && DataNotFound) ? 2
17344 : SizeNotFound ? 0
17345 : 1);
17346 return false;
17349 if (!SizeMember || !DataMember) {
17350 if (!SizeMember)
17351 FindMember("size", SizeNotFound, /*Diag=*/true);
17352 if (!DataMember)
17353 FindMember("data", DataNotFound, /*Diag=*/true);
17354 return false;
17357 auto BuildExpr = [&](LookupResult &LR) {
17358 ExprResult Res = BuildMemberReferenceExpr(
17359 Message, Message->getType(), Message->getBeginLoc(), false,
17360 CXXScopeSpec(), SourceLocation(), nullptr, LR, nullptr, nullptr);
17361 if (Res.isInvalid())
17362 return ExprError();
17363 Res = BuildCallExpr(nullptr, Res.get(), Loc, std::nullopt, Loc, nullptr,
17364 false, true);
17365 if (Res.isInvalid())
17366 return ExprError();
17367 if (Res.get()->isTypeDependent() || Res.get()->isValueDependent())
17368 return ExprError();
17369 return TemporaryMaterializationConversion(Res.get());
17372 ExprResult SizeE = BuildExpr(*SizeMember);
17373 ExprResult DataE = BuildExpr(*DataMember);
17375 QualType SizeT = Context.getSizeType();
17376 QualType ConstCharPtr =
17377 Context.getPointerType(Context.getConstType(Context.CharTy));
17379 ExprResult EvaluatedSize =
17380 SizeE.isInvalid() ? ExprError()
17381 : BuildConvertedConstantExpression(
17382 SizeE.get(), SizeT, CCEK_StaticAssertMessageSize);
17383 if (EvaluatedSize.isInvalid()) {
17384 Diag(Loc, diag::err_static_assert_invalid_mem_fn_ret_ty) << /*size*/ 0;
17385 return false;
17388 ExprResult EvaluatedData =
17389 DataE.isInvalid()
17390 ? ExprError()
17391 : BuildConvertedConstantExpression(DataE.get(), ConstCharPtr,
17392 CCEK_StaticAssertMessageData);
17393 if (EvaluatedData.isInvalid()) {
17394 Diag(Loc, diag::err_static_assert_invalid_mem_fn_ret_ty) << /*data*/ 1;
17395 return false;
17398 if (!ErrorOnInvalidMessage &&
17399 Diags.isIgnored(diag::warn_static_assert_message_constexpr, Loc))
17400 return true;
17402 Expr::EvalResult Status;
17403 SmallVector<PartialDiagnosticAt, 8> Notes;
17404 Status.Diag = &Notes;
17405 if (!Message->EvaluateCharRangeAsString(Result, EvaluatedSize.get(),
17406 EvaluatedData.get(), Ctx, Status) ||
17407 !Notes.empty()) {
17408 Diag(Message->getBeginLoc(),
17409 ErrorOnInvalidMessage ? diag::err_static_assert_message_constexpr
17410 : diag::warn_static_assert_message_constexpr);
17411 for (const auto &Note : Notes)
17412 Diag(Note.first, Note.second);
17413 return !ErrorOnInvalidMessage;
17415 return true;
17418 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
17419 Expr *AssertExpr, Expr *AssertMessage,
17420 SourceLocation RParenLoc,
17421 bool Failed) {
17422 assert(AssertExpr != nullptr && "Expected non-null condition");
17423 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
17424 (!AssertMessage || (!AssertMessage->isTypeDependent() &&
17425 !AssertMessage->isValueDependent())) &&
17426 !Failed) {
17427 // In a static_assert-declaration, the constant-expression shall be a
17428 // constant expression that can be contextually converted to bool.
17429 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
17430 if (Converted.isInvalid())
17431 Failed = true;
17433 ExprResult FullAssertExpr =
17434 ActOnFinishFullExpr(Converted.get(), StaticAssertLoc,
17435 /*DiscardedValue*/ false,
17436 /*IsConstexpr*/ true);
17437 if (FullAssertExpr.isInvalid())
17438 Failed = true;
17439 else
17440 AssertExpr = FullAssertExpr.get();
17442 llvm::APSInt Cond;
17443 Expr *BaseExpr = AssertExpr;
17444 AllowFoldKind FoldKind = NoFold;
17446 if (!getLangOpts().CPlusPlus) {
17447 // In C mode, allow folding as an extension for better compatibility with
17448 // C++ in terms of expressions like static_assert("test") or
17449 // static_assert(nullptr).
17450 FoldKind = AllowFold;
17453 if (!Failed && VerifyIntegerConstantExpression(
17454 BaseExpr, &Cond,
17455 diag::err_static_assert_expression_is_not_constant,
17456 FoldKind).isInvalid())
17457 Failed = true;
17459 // If the static_assert passes, only verify that
17460 // the message is grammatically valid without evaluating it.
17461 if (!Failed && AssertMessage && Cond.getBoolValue()) {
17462 std::string Str;
17463 EvaluateStaticAssertMessageAsString(AssertMessage, Str, Context,
17464 /*ErrorOnInvalidMessage=*/false);
17467 // CWG2518
17468 // [dcl.pre]/p10 If [...] the expression is evaluated in the context of a
17469 // template definition, the declaration has no effect.
17470 bool InTemplateDefinition =
17471 getLangOpts().CPlusPlus && CurContext->isDependentContext();
17473 if (!Failed && !Cond && !InTemplateDefinition) {
17474 SmallString<256> MsgBuffer;
17475 llvm::raw_svector_ostream Msg(MsgBuffer);
17476 bool HasMessage = AssertMessage;
17477 if (AssertMessage) {
17478 std::string Str;
17479 HasMessage =
17480 EvaluateStaticAssertMessageAsString(
17481 AssertMessage, Str, Context, /*ErrorOnInvalidMessage=*/true) ||
17482 !Str.empty();
17483 Msg << Str;
17485 Expr *InnerCond = nullptr;
17486 std::string InnerCondDescription;
17487 std::tie(InnerCond, InnerCondDescription) =
17488 findFailedBooleanCondition(Converted.get());
17489 if (InnerCond && isa<ConceptSpecializationExpr>(InnerCond)) {
17490 // Drill down into concept specialization expressions to see why they
17491 // weren't satisfied.
17492 Diag(AssertExpr->getBeginLoc(), diag::err_static_assert_failed)
17493 << !HasMessage << Msg.str() << AssertExpr->getSourceRange();
17494 ConstraintSatisfaction Satisfaction;
17495 if (!CheckConstraintSatisfaction(InnerCond, Satisfaction))
17496 DiagnoseUnsatisfiedConstraint(Satisfaction);
17497 } else if (InnerCond && !isa<CXXBoolLiteralExpr>(InnerCond)
17498 && !isa<IntegerLiteral>(InnerCond)) {
17499 Diag(InnerCond->getBeginLoc(),
17500 diag::err_static_assert_requirement_failed)
17501 << InnerCondDescription << !HasMessage << Msg.str()
17502 << InnerCond->getSourceRange();
17503 DiagnoseStaticAssertDetails(InnerCond);
17504 } else {
17505 Diag(AssertExpr->getBeginLoc(), diag::err_static_assert_failed)
17506 << !HasMessage << Msg.str() << AssertExpr->getSourceRange();
17507 PrintContextStack();
17509 Failed = true;
17511 } else {
17512 ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc,
17513 /*DiscardedValue*/false,
17514 /*IsConstexpr*/true);
17515 if (FullAssertExpr.isInvalid())
17516 Failed = true;
17517 else
17518 AssertExpr = FullAssertExpr.get();
17521 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
17522 AssertExpr, AssertMessage, RParenLoc,
17523 Failed);
17525 CurContext->addDecl(Decl);
17526 return Decl;
17529 /// Perform semantic analysis of the given friend type declaration.
17531 /// \returns A friend declaration that.
17532 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
17533 SourceLocation FriendLoc,
17534 TypeSourceInfo *TSInfo) {
17535 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
17537 QualType T = TSInfo->getType();
17538 SourceRange TypeRange = TSInfo->getTypeLoc().getSourceRange();
17540 // C++03 [class.friend]p2:
17541 // An elaborated-type-specifier shall be used in a friend declaration
17542 // for a class.*
17544 // * The class-key of the elaborated-type-specifier is required.
17545 if (!CodeSynthesisContexts.empty()) {
17546 // Do not complain about the form of friend template types during any kind
17547 // of code synthesis. For template instantiation, we will have complained
17548 // when the template was defined.
17549 } else {
17550 if (!T->isElaboratedTypeSpecifier()) {
17551 // If we evaluated the type to a record type, suggest putting
17552 // a tag in front.
17553 if (const RecordType *RT = T->getAs<RecordType>()) {
17554 RecordDecl *RD = RT->getDecl();
17556 SmallString<16> InsertionText(" ");
17557 InsertionText += RD->getKindName();
17559 Diag(TypeRange.getBegin(),
17560 getLangOpts().CPlusPlus11 ?
17561 diag::warn_cxx98_compat_unelaborated_friend_type :
17562 diag::ext_unelaborated_friend_type)
17563 << (unsigned) RD->getTagKind()
17564 << T
17565 << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc),
17566 InsertionText);
17567 } else {
17568 Diag(FriendLoc,
17569 getLangOpts().CPlusPlus11 ?
17570 diag::warn_cxx98_compat_nonclass_type_friend :
17571 diag::ext_nonclass_type_friend)
17572 << T
17573 << TypeRange;
17575 } else if (T->getAs<EnumType>()) {
17576 Diag(FriendLoc,
17577 getLangOpts().CPlusPlus11 ?
17578 diag::warn_cxx98_compat_enum_friend :
17579 diag::ext_enum_friend)
17580 << T
17581 << TypeRange;
17584 // C++11 [class.friend]p3:
17585 // A friend declaration that does not declare a function shall have one
17586 // of the following forms:
17587 // friend elaborated-type-specifier ;
17588 // friend simple-type-specifier ;
17589 // friend typename-specifier ;
17590 if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
17591 Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
17594 // If the type specifier in a friend declaration designates a (possibly
17595 // cv-qualified) class type, that class is declared as a friend; otherwise,
17596 // the friend declaration is ignored.
17597 return FriendDecl::Create(Context, CurContext,
17598 TSInfo->getTypeLoc().getBeginLoc(), TSInfo,
17599 FriendLoc);
17602 /// Handle a friend tag declaration where the scope specifier was
17603 /// templated.
17604 DeclResult Sema::ActOnTemplatedFriendTag(
17605 Scope *S, SourceLocation FriendLoc, unsigned TagSpec, SourceLocation TagLoc,
17606 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
17607 const ParsedAttributesView &Attr, MultiTemplateParamsArg TempParamLists) {
17608 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
17610 bool IsMemberSpecialization = false;
17611 bool Invalid = false;
17613 if (TemplateParameterList *TemplateParams =
17614 MatchTemplateParametersToScopeSpecifier(
17615 TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true,
17616 IsMemberSpecialization, Invalid)) {
17617 if (TemplateParams->size() > 0) {
17618 // This is a declaration of a class template.
17619 if (Invalid)
17620 return true;
17622 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name,
17623 NameLoc, Attr, TemplateParams, AS_public,
17624 /*ModulePrivateLoc=*/SourceLocation(),
17625 FriendLoc, TempParamLists.size() - 1,
17626 TempParamLists.data()).get();
17627 } else {
17628 // The "template<>" header is extraneous.
17629 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
17630 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
17631 IsMemberSpecialization = true;
17635 if (Invalid) return true;
17637 bool isAllExplicitSpecializations = true;
17638 for (unsigned I = TempParamLists.size(); I-- > 0; ) {
17639 if (TempParamLists[I]->size()) {
17640 isAllExplicitSpecializations = false;
17641 break;
17645 // FIXME: don't ignore attributes.
17647 // If it's explicit specializations all the way down, just forget
17648 // about the template header and build an appropriate non-templated
17649 // friend. TODO: for source fidelity, remember the headers.
17650 if (isAllExplicitSpecializations) {
17651 if (SS.isEmpty()) {
17652 bool Owned = false;
17653 bool IsDependent = false;
17654 return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc, Attr,
17655 AS_public,
17656 /*ModulePrivateLoc=*/SourceLocation(),
17657 MultiTemplateParamsArg(), Owned, IsDependent,
17658 /*ScopedEnumKWLoc=*/SourceLocation(),
17659 /*ScopedEnumUsesClassTag=*/false,
17660 /*UnderlyingType=*/TypeResult(),
17661 /*IsTypeSpecifier=*/false,
17662 /*IsTemplateParamOrArg=*/false, /*OOK=*/OOK_Outside);
17665 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
17666 ElaboratedTypeKeyword Keyword
17667 = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
17668 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
17669 *Name, NameLoc);
17670 if (T.isNull())
17671 return true;
17673 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
17674 if (isa<DependentNameType>(T)) {
17675 DependentNameTypeLoc TL =
17676 TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
17677 TL.setElaboratedKeywordLoc(TagLoc);
17678 TL.setQualifierLoc(QualifierLoc);
17679 TL.setNameLoc(NameLoc);
17680 } else {
17681 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
17682 TL.setElaboratedKeywordLoc(TagLoc);
17683 TL.setQualifierLoc(QualifierLoc);
17684 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
17687 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
17688 TSI, FriendLoc, TempParamLists);
17689 Friend->setAccess(AS_public);
17690 CurContext->addDecl(Friend);
17691 return Friend;
17694 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
17698 // Handle the case of a templated-scope friend class. e.g.
17699 // template <class T> class A<T>::B;
17700 // FIXME: we don't support these right now.
17701 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported)
17702 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext);
17703 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
17704 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
17705 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
17706 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
17707 TL.setElaboratedKeywordLoc(TagLoc);
17708 TL.setQualifierLoc(SS.getWithLocInContext(Context));
17709 TL.setNameLoc(NameLoc);
17711 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
17712 TSI, FriendLoc, TempParamLists);
17713 Friend->setAccess(AS_public);
17714 Friend->setUnsupportedFriend(true);
17715 CurContext->addDecl(Friend);
17716 return Friend;
17719 /// Handle a friend type declaration. This works in tandem with
17720 /// ActOnTag.
17722 /// Notes on friend class templates:
17724 /// We generally treat friend class declarations as if they were
17725 /// declaring a class. So, for example, the elaborated type specifier
17726 /// in a friend declaration is required to obey the restrictions of a
17727 /// class-head (i.e. no typedefs in the scope chain), template
17728 /// parameters are required to match up with simple template-ids, &c.
17729 /// However, unlike when declaring a template specialization, it's
17730 /// okay to refer to a template specialization without an empty
17731 /// template parameter declaration, e.g.
17732 /// friend class A<T>::B<unsigned>;
17733 /// We permit this as a special case; if there are any template
17734 /// parameters present at all, require proper matching, i.e.
17735 /// template <> template \<class T> friend class A<int>::B;
17736 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
17737 MultiTemplateParamsArg TempParams) {
17738 SourceLocation Loc = DS.getBeginLoc();
17740 assert(DS.isFriendSpecified());
17741 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
17743 // C++ [class.friend]p3:
17744 // A friend declaration that does not declare a function shall have one of
17745 // the following forms:
17746 // friend elaborated-type-specifier ;
17747 // friend simple-type-specifier ;
17748 // friend typename-specifier ;
17750 // Any declaration with a type qualifier does not have that form. (It's
17751 // legal to specify a qualified type as a friend, you just can't write the
17752 // keywords.)
17753 if (DS.getTypeQualifiers()) {
17754 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
17755 Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const";
17756 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
17757 Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile";
17758 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
17759 Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict";
17760 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
17761 Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic";
17762 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
17763 Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned";
17766 // Try to convert the decl specifier to a type. This works for
17767 // friend templates because ActOnTag never produces a ClassTemplateDecl
17768 // for a TUK_Friend.
17769 Declarator TheDeclarator(DS, ParsedAttributesView::none(),
17770 DeclaratorContext::Member);
17771 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
17772 QualType T = TSI->getType();
17773 if (TheDeclarator.isInvalidType())
17774 return nullptr;
17776 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
17777 return nullptr;
17779 // This is definitely an error in C++98. It's probably meant to
17780 // be forbidden in C++0x, too, but the specification is just
17781 // poorly written.
17783 // The problem is with declarations like the following:
17784 // template <T> friend A<T>::foo;
17785 // where deciding whether a class C is a friend or not now hinges
17786 // on whether there exists an instantiation of A that causes
17787 // 'foo' to equal C. There are restrictions on class-heads
17788 // (which we declare (by fiat) elaborated friend declarations to
17789 // be) that makes this tractable.
17791 // FIXME: handle "template <> friend class A<T>;", which
17792 // is possibly well-formed? Who even knows?
17793 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
17794 Diag(Loc, diag::err_tagless_friend_type_template)
17795 << DS.getSourceRange();
17796 return nullptr;
17799 // C++98 [class.friend]p1: A friend of a class is a function
17800 // or class that is not a member of the class . . .
17801 // This is fixed in DR77, which just barely didn't make the C++03
17802 // deadline. It's also a very silly restriction that seriously
17803 // affects inner classes and which nobody else seems to implement;
17804 // thus we never diagnose it, not even in -pedantic.
17806 // But note that we could warn about it: it's always useless to
17807 // friend one of your own members (it's not, however, worthless to
17808 // friend a member of an arbitrary specialization of your template).
17810 Decl *D;
17811 if (!TempParams.empty())
17812 D = FriendTemplateDecl::Create(Context, CurContext, Loc,
17813 TempParams,
17814 TSI,
17815 DS.getFriendSpecLoc());
17816 else
17817 D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
17819 if (!D)
17820 return nullptr;
17822 D->setAccess(AS_public);
17823 CurContext->addDecl(D);
17825 return D;
17828 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
17829 MultiTemplateParamsArg TemplateParams) {
17830 const DeclSpec &DS = D.getDeclSpec();
17832 assert(DS.isFriendSpecified());
17833 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
17835 SourceLocation Loc = D.getIdentifierLoc();
17836 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
17838 // C++ [class.friend]p1
17839 // A friend of a class is a function or class....
17840 // Note that this sees through typedefs, which is intended.
17841 // It *doesn't* see through dependent types, which is correct
17842 // according to [temp.arg.type]p3:
17843 // If a declaration acquires a function type through a
17844 // type dependent on a template-parameter and this causes
17845 // a declaration that does not use the syntactic form of a
17846 // function declarator to have a function type, the program
17847 // is ill-formed.
17848 if (!TInfo->getType()->isFunctionType()) {
17849 Diag(Loc, diag::err_unexpected_friend);
17851 // It might be worthwhile to try to recover by creating an
17852 // appropriate declaration.
17853 return nullptr;
17856 // C++ [namespace.memdef]p3
17857 // - If a friend declaration in a non-local class first declares a
17858 // class or function, the friend class or function is a member
17859 // of the innermost enclosing namespace.
17860 // - The name of the friend is not found by simple name lookup
17861 // until a matching declaration is provided in that namespace
17862 // scope (either before or after the class declaration granting
17863 // friendship).
17864 // - If a friend function is called, its name may be found by the
17865 // name lookup that considers functions from namespaces and
17866 // classes associated with the types of the function arguments.
17867 // - When looking for a prior declaration of a class or a function
17868 // declared as a friend, scopes outside the innermost enclosing
17869 // namespace scope are not considered.
17871 CXXScopeSpec &SS = D.getCXXScopeSpec();
17872 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
17873 assert(NameInfo.getName());
17875 // Check for unexpanded parameter packs.
17876 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
17877 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
17878 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
17879 return nullptr;
17881 // The context we found the declaration in, or in which we should
17882 // create the declaration.
17883 DeclContext *DC;
17884 Scope *DCScope = S;
17885 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
17886 ForExternalRedeclaration);
17888 // There are five cases here.
17889 // - There's no scope specifier and we're in a local class. Only look
17890 // for functions declared in the immediately-enclosing block scope.
17891 // We recover from invalid scope qualifiers as if they just weren't there.
17892 FunctionDecl *FunctionContainingLocalClass = nullptr;
17893 if ((SS.isInvalid() || !SS.isSet()) &&
17894 (FunctionContainingLocalClass =
17895 cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
17896 // C++11 [class.friend]p11:
17897 // If a friend declaration appears in a local class and the name
17898 // specified is an unqualified name, a prior declaration is
17899 // looked up without considering scopes that are outside the
17900 // innermost enclosing non-class scope. For a friend function
17901 // declaration, if there is no prior declaration, the program is
17902 // ill-formed.
17904 // Find the innermost enclosing non-class scope. This is the block
17905 // scope containing the local class definition (or for a nested class,
17906 // the outer local class).
17907 DCScope = S->getFnParent();
17909 // Look up the function name in the scope.
17910 Previous.clear(LookupLocalFriendName);
17911 LookupName(Previous, S, /*AllowBuiltinCreation*/false);
17913 if (!Previous.empty()) {
17914 // All possible previous declarations must have the same context:
17915 // either they were declared at block scope or they are members of
17916 // one of the enclosing local classes.
17917 DC = Previous.getRepresentativeDecl()->getDeclContext();
17918 } else {
17919 // This is ill-formed, but provide the context that we would have
17920 // declared the function in, if we were permitted to, for error recovery.
17921 DC = FunctionContainingLocalClass;
17923 adjustContextForLocalExternDecl(DC);
17925 // C++ [class.friend]p6:
17926 // A function can be defined in a friend declaration of a class if and
17927 // only if the class is a non-local class (9.8), the function name is
17928 // unqualified, and the function has namespace scope.
17929 if (D.isFunctionDefinition()) {
17930 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
17933 // - There's no scope specifier, in which case we just go to the
17934 // appropriate scope and look for a function or function template
17935 // there as appropriate.
17936 } else if (SS.isInvalid() || !SS.isSet()) {
17937 // C++11 [namespace.memdef]p3:
17938 // If the name in a friend declaration is neither qualified nor
17939 // a template-id and the declaration is a function or an
17940 // elaborated-type-specifier, the lookup to determine whether
17941 // the entity has been previously declared shall not consider
17942 // any scopes outside the innermost enclosing namespace.
17943 bool isTemplateId =
17944 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId;
17946 // Find the appropriate context according to the above.
17947 DC = CurContext;
17949 // Skip class contexts. If someone can cite chapter and verse
17950 // for this behavior, that would be nice --- it's what GCC and
17951 // EDG do, and it seems like a reasonable intent, but the spec
17952 // really only says that checks for unqualified existing
17953 // declarations should stop at the nearest enclosing namespace,
17954 // not that they should only consider the nearest enclosing
17955 // namespace.
17956 while (DC->isRecord())
17957 DC = DC->getParent();
17959 DeclContext *LookupDC = DC->getNonTransparentContext();
17960 while (true) {
17961 LookupQualifiedName(Previous, LookupDC);
17963 if (!Previous.empty()) {
17964 DC = LookupDC;
17965 break;
17968 if (isTemplateId) {
17969 if (isa<TranslationUnitDecl>(LookupDC)) break;
17970 } else {
17971 if (LookupDC->isFileContext()) break;
17973 LookupDC = LookupDC->getParent();
17976 DCScope = getScopeForDeclContext(S, DC);
17978 // - There's a non-dependent scope specifier, in which case we
17979 // compute it and do a previous lookup there for a function
17980 // or function template.
17981 } else if (!SS.getScopeRep()->isDependent()) {
17982 DC = computeDeclContext(SS);
17983 if (!DC) return nullptr;
17985 if (RequireCompleteDeclContext(SS, DC)) return nullptr;
17987 LookupQualifiedName(Previous, DC);
17989 // C++ [class.friend]p1: A friend of a class is a function or
17990 // class that is not a member of the class . . .
17991 if (DC->Equals(CurContext))
17992 Diag(DS.getFriendSpecLoc(),
17993 getLangOpts().CPlusPlus11 ?
17994 diag::warn_cxx98_compat_friend_is_member :
17995 diag::err_friend_is_member);
17997 if (D.isFunctionDefinition()) {
17998 // C++ [class.friend]p6:
17999 // A function can be defined in a friend declaration of a class if and
18000 // only if the class is a non-local class (9.8), the function name is
18001 // unqualified, and the function has namespace scope.
18003 // FIXME: We should only do this if the scope specifier names the
18004 // innermost enclosing namespace; otherwise the fixit changes the
18005 // meaning of the code.
18006 SemaDiagnosticBuilder DB
18007 = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
18009 DB << SS.getScopeRep();
18010 if (DC->isFileContext())
18011 DB << FixItHint::CreateRemoval(SS.getRange());
18012 SS.clear();
18015 // - There's a scope specifier that does not match any template
18016 // parameter lists, in which case we use some arbitrary context,
18017 // create a method or method template, and wait for instantiation.
18018 // - There's a scope specifier that does match some template
18019 // parameter lists, which we don't handle right now.
18020 } else {
18021 if (D.isFunctionDefinition()) {
18022 // C++ [class.friend]p6:
18023 // A function can be defined in a friend declaration of a class if and
18024 // only if the class is a non-local class (9.8), the function name is
18025 // unqualified, and the function has namespace scope.
18026 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
18027 << SS.getScopeRep();
18030 DC = CurContext;
18031 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
18034 if (!DC->isRecord()) {
18035 int DiagArg = -1;
18036 switch (D.getName().getKind()) {
18037 case UnqualifiedIdKind::IK_ConstructorTemplateId:
18038 case UnqualifiedIdKind::IK_ConstructorName:
18039 DiagArg = 0;
18040 break;
18041 case UnqualifiedIdKind::IK_DestructorName:
18042 DiagArg = 1;
18043 break;
18044 case UnqualifiedIdKind::IK_ConversionFunctionId:
18045 DiagArg = 2;
18046 break;
18047 case UnqualifiedIdKind::IK_DeductionGuideName:
18048 DiagArg = 3;
18049 break;
18050 case UnqualifiedIdKind::IK_Identifier:
18051 case UnqualifiedIdKind::IK_ImplicitSelfParam:
18052 case UnqualifiedIdKind::IK_LiteralOperatorId:
18053 case UnqualifiedIdKind::IK_OperatorFunctionId:
18054 case UnqualifiedIdKind::IK_TemplateId:
18055 break;
18057 // This implies that it has to be an operator or function.
18058 if (DiagArg >= 0) {
18059 Diag(Loc, diag::err_introducing_special_friend) << DiagArg;
18060 return nullptr;
18064 // FIXME: This is an egregious hack to cope with cases where the scope stack
18065 // does not contain the declaration context, i.e., in an out-of-line
18066 // definition of a class.
18067 Scope FakeDCScope(S, Scope::DeclScope, Diags);
18068 if (!DCScope) {
18069 FakeDCScope.setEntity(DC);
18070 DCScope = &FakeDCScope;
18073 bool AddToScope = true;
18074 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
18075 TemplateParams, AddToScope);
18076 if (!ND) return nullptr;
18078 assert(ND->getLexicalDeclContext() == CurContext);
18080 // If we performed typo correction, we might have added a scope specifier
18081 // and changed the decl context.
18082 DC = ND->getDeclContext();
18084 // Add the function declaration to the appropriate lookup tables,
18085 // adjusting the redeclarations list as necessary. We don't
18086 // want to do this yet if the friending class is dependent.
18088 // Also update the scope-based lookup if the target context's
18089 // lookup context is in lexical scope.
18090 if (!CurContext->isDependentContext()) {
18091 DC = DC->getRedeclContext();
18092 DC->makeDeclVisibleInContext(ND);
18093 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
18094 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
18097 FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
18098 D.getIdentifierLoc(), ND,
18099 DS.getFriendSpecLoc());
18100 FrD->setAccess(AS_public);
18101 CurContext->addDecl(FrD);
18103 if (ND->isInvalidDecl()) {
18104 FrD->setInvalidDecl();
18105 } else {
18106 if (DC->isRecord()) CheckFriendAccess(ND);
18108 FunctionDecl *FD;
18109 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
18110 FD = FTD->getTemplatedDecl();
18111 else
18112 FD = cast<FunctionDecl>(ND);
18114 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
18115 // default argument expression, that declaration shall be a definition
18116 // and shall be the only declaration of the function or function
18117 // template in the translation unit.
18118 if (functionDeclHasDefaultArgument(FD)) {
18119 // We can't look at FD->getPreviousDecl() because it may not have been set
18120 // if we're in a dependent context. If the function is known to be a
18121 // redeclaration, we will have narrowed Previous down to the right decl.
18122 if (D.isRedeclaration()) {
18123 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
18124 Diag(Previous.getRepresentativeDecl()->getLocation(),
18125 diag::note_previous_declaration);
18126 } else if (!D.isFunctionDefinition())
18127 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
18130 // Mark templated-scope function declarations as unsupported.
18131 if (FD->getNumTemplateParameterLists() && SS.isValid()) {
18132 Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported)
18133 << SS.getScopeRep() << SS.getRange()
18134 << cast<CXXRecordDecl>(CurContext);
18135 FrD->setUnsupportedFriend(true);
18139 warnOnReservedIdentifier(ND);
18141 return ND;
18144 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
18145 AdjustDeclIfTemplate(Dcl);
18147 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
18148 if (!Fn) {
18149 Diag(DelLoc, diag::err_deleted_non_function);
18150 return;
18153 // Deleted function does not have a body.
18154 Fn->setWillHaveBody(false);
18156 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
18157 // Don't consider the implicit declaration we generate for explicit
18158 // specializations. FIXME: Do not generate these implicit declarations.
18159 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization ||
18160 Prev->getPreviousDecl()) &&
18161 !Prev->isDefined()) {
18162 Diag(DelLoc, diag::err_deleted_decl_not_first);
18163 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(),
18164 Prev->isImplicit() ? diag::note_previous_implicit_declaration
18165 : diag::note_previous_declaration);
18166 // We can't recover from this; the declaration might have already
18167 // been used.
18168 Fn->setInvalidDecl();
18169 return;
18172 // To maintain the invariant that functions are only deleted on their first
18173 // declaration, mark the implicitly-instantiated declaration of the
18174 // explicitly-specialized function as deleted instead of marking the
18175 // instantiated redeclaration.
18176 Fn = Fn->getCanonicalDecl();
18179 // dllimport/dllexport cannot be deleted.
18180 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) {
18181 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr;
18182 Fn->setInvalidDecl();
18185 // C++11 [basic.start.main]p3:
18186 // A program that defines main as deleted [...] is ill-formed.
18187 if (Fn->isMain())
18188 Diag(DelLoc, diag::err_deleted_main);
18190 // C++11 [dcl.fct.def.delete]p4:
18191 // A deleted function is implicitly inline.
18192 Fn->setImplicitlyInline();
18193 Fn->setDeletedAsWritten();
18196 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
18197 if (!Dcl || Dcl->isInvalidDecl())
18198 return;
18200 auto *FD = dyn_cast<FunctionDecl>(Dcl);
18201 if (!FD) {
18202 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Dcl)) {
18203 if (getDefaultedFunctionKind(FTD->getTemplatedDecl()).isComparison()) {
18204 Diag(DefaultLoc, diag::err_defaulted_comparison_template);
18205 return;
18209 Diag(DefaultLoc, diag::err_default_special_members)
18210 << getLangOpts().CPlusPlus20;
18211 return;
18214 // Reject if this can't possibly be a defaultable function.
18215 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD);
18216 if (!DefKind &&
18217 // A dependent function that doesn't locally look defaultable can
18218 // still instantiate to a defaultable function if it's a constructor
18219 // or assignment operator.
18220 (!FD->isDependentContext() ||
18221 (!isa<CXXConstructorDecl>(FD) &&
18222 FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) {
18223 Diag(DefaultLoc, diag::err_default_special_members)
18224 << getLangOpts().CPlusPlus20;
18225 return;
18228 // Issue compatibility warning. We already warned if the operator is
18229 // 'operator<=>' when parsing the '<=>' token.
18230 if (DefKind.isComparison() &&
18231 DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) {
18232 Diag(DefaultLoc, getLangOpts().CPlusPlus20
18233 ? diag::warn_cxx17_compat_defaulted_comparison
18234 : diag::ext_defaulted_comparison);
18237 FD->setDefaulted();
18238 FD->setExplicitlyDefaulted();
18239 FD->setDefaultLoc(DefaultLoc);
18241 // Defer checking functions that are defaulted in a dependent context.
18242 if (FD->isDependentContext())
18243 return;
18245 // Unset that we will have a body for this function. We might not,
18246 // if it turns out to be trivial, and we don't need this marking now
18247 // that we've marked it as defaulted.
18248 FD->setWillHaveBody(false);
18250 if (DefKind.isComparison()) {
18251 // If this comparison's defaulting occurs within the definition of its
18252 // lexical class context, we have to do the checking when complete.
18253 if (auto const *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext()))
18254 if (!RD->isCompleteDefinition())
18255 return;
18258 // If this member fn was defaulted on its first declaration, we will have
18259 // already performed the checking in CheckCompletedCXXClass. Such a
18260 // declaration doesn't trigger an implicit definition.
18261 if (isa<CXXMethodDecl>(FD)) {
18262 const FunctionDecl *Primary = FD;
18263 if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
18264 // Ask the template instantiation pattern that actually had the
18265 // '= default' on it.
18266 Primary = Pattern;
18267 if (Primary->getCanonicalDecl()->isDefaulted())
18268 return;
18271 if (DefKind.isComparison()) {
18272 if (CheckExplicitlyDefaultedComparison(nullptr, FD, DefKind.asComparison()))
18273 FD->setInvalidDecl();
18274 else
18275 DefineDefaultedComparison(DefaultLoc, FD, DefKind.asComparison());
18276 } else {
18277 auto *MD = cast<CXXMethodDecl>(FD);
18279 if (CheckExplicitlyDefaultedSpecialMember(MD, DefKind.asSpecialMember(),
18280 DefaultLoc))
18281 MD->setInvalidDecl();
18282 else
18283 DefineDefaultedFunction(*this, MD, DefaultLoc);
18287 static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
18288 for (Stmt *SubStmt : S->children()) {
18289 if (!SubStmt)
18290 continue;
18291 if (isa<ReturnStmt>(SubStmt))
18292 Self.Diag(SubStmt->getBeginLoc(),
18293 diag::err_return_in_constructor_handler);
18294 if (!isa<Expr>(SubStmt))
18295 SearchForReturnInStmt(Self, SubStmt);
18299 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
18300 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
18301 CXXCatchStmt *Handler = TryBlock->getHandler(I);
18302 SearchForReturnInStmt(*this, Handler);
18306 void Sema::SetFunctionBodyKind(Decl *D, SourceLocation Loc,
18307 FnBodyKind BodyKind) {
18308 switch (BodyKind) {
18309 case FnBodyKind::Delete:
18310 SetDeclDeleted(D, Loc);
18311 break;
18312 case FnBodyKind::Default:
18313 SetDeclDefaulted(D, Loc);
18314 break;
18315 case FnBodyKind::Other:
18316 llvm_unreachable(
18317 "Parsed function body should be '= delete;' or '= default;'");
18321 bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
18322 const CXXMethodDecl *Old) {
18323 const auto *NewFT = New->getType()->castAs<FunctionProtoType>();
18324 const auto *OldFT = Old->getType()->castAs<FunctionProtoType>();
18326 if (OldFT->hasExtParameterInfos()) {
18327 for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I)
18328 // A parameter of the overriding method should be annotated with noescape
18329 // if the corresponding parameter of the overridden method is annotated.
18330 if (OldFT->getExtParameterInfo(I).isNoEscape() &&
18331 !NewFT->getExtParameterInfo(I).isNoEscape()) {
18332 Diag(New->getParamDecl(I)->getLocation(),
18333 diag::warn_overriding_method_missing_noescape);
18334 Diag(Old->getParamDecl(I)->getLocation(),
18335 diag::note_overridden_marked_noescape);
18339 // SME attributes must match when overriding a function declaration.
18340 if (IsInvalidSMECallConversion(
18341 Old->getType(), New->getType(),
18342 AArch64SMECallConversionKind::MayAddPreservesZA)) {
18343 Diag(New->getLocation(), diag::err_conflicting_overriding_attributes)
18344 << New << New->getType() << Old->getType();
18345 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
18346 return true;
18349 // Virtual overrides must have the same code_seg.
18350 const auto *OldCSA = Old->getAttr<CodeSegAttr>();
18351 const auto *NewCSA = New->getAttr<CodeSegAttr>();
18352 if ((NewCSA || OldCSA) &&
18353 (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) {
18354 Diag(New->getLocation(), diag::err_mismatched_code_seg_override);
18355 Diag(Old->getLocation(), diag::note_previous_declaration);
18356 return true;
18359 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
18361 // If the calling conventions match, everything is fine
18362 if (NewCC == OldCC)
18363 return false;
18365 // If the calling conventions mismatch because the new function is static,
18366 // suppress the calling convention mismatch error; the error about static
18367 // function override (err_static_overrides_virtual from
18368 // Sema::CheckFunctionDeclaration) is more clear.
18369 if (New->getStorageClass() == SC_Static)
18370 return false;
18372 Diag(New->getLocation(),
18373 diag::err_conflicting_overriding_cc_attributes)
18374 << New->getDeclName() << New->getType() << Old->getType();
18375 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
18376 return true;
18379 bool Sema::CheckExplicitObjectOverride(CXXMethodDecl *New,
18380 const CXXMethodDecl *Old) {
18381 // CWG2553
18382 // A virtual function shall not be an explicit object member function.
18383 if (!New->isExplicitObjectMemberFunction())
18384 return true;
18385 Diag(New->getParamDecl(0)->getBeginLoc(),
18386 diag::err_explicit_object_parameter_nonmember)
18387 << New->getSourceRange() << /*virtual*/ 1 << /*IsLambda*/ false;
18388 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
18389 New->setInvalidDecl();
18390 return false;
18393 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
18394 const CXXMethodDecl *Old) {
18395 QualType NewTy = New->getType()->castAs<FunctionType>()->getReturnType();
18396 QualType OldTy = Old->getType()->castAs<FunctionType>()->getReturnType();
18398 if (Context.hasSameType(NewTy, OldTy) ||
18399 NewTy->isDependentType() || OldTy->isDependentType())
18400 return false;
18402 // Check if the return types are covariant
18403 QualType NewClassTy, OldClassTy;
18405 /// Both types must be pointers or references to classes.
18406 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
18407 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
18408 NewClassTy = NewPT->getPointeeType();
18409 OldClassTy = OldPT->getPointeeType();
18411 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
18412 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
18413 if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
18414 NewClassTy = NewRT->getPointeeType();
18415 OldClassTy = OldRT->getPointeeType();
18420 // The return types aren't either both pointers or references to a class type.
18421 if (NewClassTy.isNull()) {
18422 Diag(New->getLocation(),
18423 diag::err_different_return_type_for_overriding_virtual_function)
18424 << New->getDeclName() << NewTy << OldTy
18425 << New->getReturnTypeSourceRange();
18426 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
18427 << Old->getReturnTypeSourceRange();
18429 return true;
18432 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
18433 // C++14 [class.virtual]p8:
18434 // If the class type in the covariant return type of D::f differs from
18435 // that of B::f, the class type in the return type of D::f shall be
18436 // complete at the point of declaration of D::f or shall be the class
18437 // type D.
18438 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
18439 if (!RT->isBeingDefined() &&
18440 RequireCompleteType(New->getLocation(), NewClassTy,
18441 diag::err_covariant_return_incomplete,
18442 New->getDeclName()))
18443 return true;
18446 // Check if the new class derives from the old class.
18447 if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) {
18448 Diag(New->getLocation(), diag::err_covariant_return_not_derived)
18449 << New->getDeclName() << NewTy << OldTy
18450 << New->getReturnTypeSourceRange();
18451 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
18452 << Old->getReturnTypeSourceRange();
18453 return true;
18456 // Check if we the conversion from derived to base is valid.
18457 if (CheckDerivedToBaseConversion(
18458 NewClassTy, OldClassTy,
18459 diag::err_covariant_return_inaccessible_base,
18460 diag::err_covariant_return_ambiguous_derived_to_base_conv,
18461 New->getLocation(), New->getReturnTypeSourceRange(),
18462 New->getDeclName(), nullptr)) {
18463 // FIXME: this note won't trigger for delayed access control
18464 // diagnostics, and it's impossible to get an undelayed error
18465 // here from access control during the original parse because
18466 // the ParsingDeclSpec/ParsingDeclarator are still in scope.
18467 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
18468 << Old->getReturnTypeSourceRange();
18469 return true;
18473 // The qualifiers of the return types must be the same.
18474 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
18475 Diag(New->getLocation(),
18476 diag::err_covariant_return_type_different_qualifications)
18477 << New->getDeclName() << NewTy << OldTy
18478 << New->getReturnTypeSourceRange();
18479 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
18480 << Old->getReturnTypeSourceRange();
18481 return true;
18485 // The new class type must have the same or less qualifiers as the old type.
18486 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
18487 Diag(New->getLocation(),
18488 diag::err_covariant_return_type_class_type_more_qualified)
18489 << New->getDeclName() << NewTy << OldTy
18490 << New->getReturnTypeSourceRange();
18491 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
18492 << Old->getReturnTypeSourceRange();
18493 return true;
18496 return false;
18499 /// Mark the given method pure.
18501 /// \param Method the method to be marked pure.
18503 /// \param InitRange the source range that covers the "0" initializer.
18504 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
18505 SourceLocation EndLoc = InitRange.getEnd();
18506 if (EndLoc.isValid())
18507 Method->setRangeEnd(EndLoc);
18509 if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
18510 Method->setPure();
18511 return false;
18514 if (!Method->isInvalidDecl())
18515 Diag(Method->getLocation(), diag::err_non_virtual_pure)
18516 << Method->getDeclName() << InitRange;
18517 return true;
18520 void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) {
18521 if (D->getFriendObjectKind())
18522 Diag(D->getLocation(), diag::err_pure_friend);
18523 else if (auto *M = dyn_cast<CXXMethodDecl>(D))
18524 CheckPureMethod(M, ZeroLoc);
18525 else
18526 Diag(D->getLocation(), diag::err_illegal_initializer);
18529 /// Determine whether the given declaration is a global variable or
18530 /// static data member.
18531 static bool isNonlocalVariable(const Decl *D) {
18532 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
18533 return Var->hasGlobalStorage();
18535 return false;
18538 /// Invoked when we are about to parse an initializer for the declaration
18539 /// 'Dcl'.
18541 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
18542 /// static data member of class X, names should be looked up in the scope of
18543 /// class X. If the declaration had a scope specifier, a scope will have
18544 /// been created and passed in for this purpose. Otherwise, S will be null.
18545 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
18546 // If there is no declaration, there was an error parsing it.
18547 if (!D || D->isInvalidDecl())
18548 return;
18550 // We will always have a nested name specifier here, but this declaration
18551 // might not be out of line if the specifier names the current namespace:
18552 // extern int n;
18553 // int ::n = 0;
18554 if (S && D->isOutOfLine())
18555 EnterDeclaratorContext(S, D->getDeclContext());
18557 // If we are parsing the initializer for a static data member, push a
18558 // new expression evaluation context that is associated with this static
18559 // data member.
18560 if (isNonlocalVariable(D))
18561 PushExpressionEvaluationContext(
18562 ExpressionEvaluationContext::PotentiallyEvaluated, D);
18565 /// Invoked after we are finished parsing an initializer for the declaration D.
18566 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
18567 // If there is no declaration, there was an error parsing it.
18568 if (!D || D->isInvalidDecl())
18569 return;
18571 if (isNonlocalVariable(D))
18572 PopExpressionEvaluationContext();
18574 if (S && D->isOutOfLine())
18575 ExitDeclaratorContext(S);
18578 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
18579 /// C++ if/switch/while/for statement.
18580 /// e.g: "if (int x = f()) {...}"
18581 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
18582 // C++ 6.4p2:
18583 // The declarator shall not specify a function or an array.
18584 // The type-specifier-seq shall not contain typedef and shall not declare a
18585 // new class or enumeration.
18586 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
18587 "Parser allowed 'typedef' as storage class of condition decl.");
18589 Decl *Dcl = ActOnDeclarator(S, D);
18590 if (!Dcl)
18591 return true;
18593 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
18594 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
18595 << D.getSourceRange();
18596 return true;
18599 return Dcl;
18602 void Sema::LoadExternalVTableUses() {
18603 if (!ExternalSource)
18604 return;
18606 SmallVector<ExternalVTableUse, 4> VTables;
18607 ExternalSource->ReadUsedVTables(VTables);
18608 SmallVector<VTableUse, 4> NewUses;
18609 for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
18610 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
18611 = VTablesUsed.find(VTables[I].Record);
18612 // Even if a definition wasn't required before, it may be required now.
18613 if (Pos != VTablesUsed.end()) {
18614 if (!Pos->second && VTables[I].DefinitionRequired)
18615 Pos->second = true;
18616 continue;
18619 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
18620 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
18623 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
18626 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
18627 bool DefinitionRequired) {
18628 // Ignore any vtable uses in unevaluated operands or for classes that do
18629 // not have a vtable.
18630 if (!Class->isDynamicClass() || Class->isDependentContext() ||
18631 CurContext->isDependentContext() || isUnevaluatedContext())
18632 return;
18633 // Do not mark as used if compiling for the device outside of the target
18634 // region.
18635 if (TUKind != TU_Prefix && LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice &&
18636 !isInOpenMPDeclareTargetContext() &&
18637 !isInOpenMPTargetExecutionDirective()) {
18638 if (!DefinitionRequired)
18639 MarkVirtualMembersReferenced(Loc, Class);
18640 return;
18643 // Try to insert this class into the map.
18644 LoadExternalVTableUses();
18645 Class = Class->getCanonicalDecl();
18646 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
18647 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
18648 if (!Pos.second) {
18649 // If we already had an entry, check to see if we are promoting this vtable
18650 // to require a definition. If so, we need to reappend to the VTableUses
18651 // list, since we may have already processed the first entry.
18652 if (DefinitionRequired && !Pos.first->second) {
18653 Pos.first->second = true;
18654 } else {
18655 // Otherwise, we can early exit.
18656 return;
18658 } else {
18659 // The Microsoft ABI requires that we perform the destructor body
18660 // checks (i.e. operator delete() lookup) when the vtable is marked used, as
18661 // the deleting destructor is emitted with the vtable, not with the
18662 // destructor definition as in the Itanium ABI.
18663 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
18664 CXXDestructorDecl *DD = Class->getDestructor();
18665 if (DD && DD->isVirtual() && !DD->isDeleted()) {
18666 if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) {
18667 // If this is an out-of-line declaration, marking it referenced will
18668 // not do anything. Manually call CheckDestructor to look up operator
18669 // delete().
18670 ContextRAII SavedContext(*this, DD);
18671 CheckDestructor(DD);
18672 } else {
18673 MarkFunctionReferenced(Loc, Class->getDestructor());
18679 // Local classes need to have their virtual members marked
18680 // immediately. For all other classes, we mark their virtual members
18681 // at the end of the translation unit.
18682 if (Class->isLocalClass())
18683 MarkVirtualMembersReferenced(Loc, Class->getDefinition());
18684 else
18685 VTableUses.push_back(std::make_pair(Class, Loc));
18688 bool Sema::DefineUsedVTables() {
18689 LoadExternalVTableUses();
18690 if (VTableUses.empty())
18691 return false;
18693 // Note: The VTableUses vector could grow as a result of marking
18694 // the members of a class as "used", so we check the size each
18695 // time through the loop and prefer indices (which are stable) to
18696 // iterators (which are not).
18697 bool DefinedAnything = false;
18698 for (unsigned I = 0; I != VTableUses.size(); ++I) {
18699 CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
18700 if (!Class)
18701 continue;
18702 TemplateSpecializationKind ClassTSK =
18703 Class->getTemplateSpecializationKind();
18705 SourceLocation Loc = VTableUses[I].second;
18707 bool DefineVTable = true;
18709 // If this class has a key function, but that key function is
18710 // defined in another translation unit, we don't need to emit the
18711 // vtable even though we're using it.
18712 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
18713 if (KeyFunction && !KeyFunction->hasBody()) {
18714 // The key function is in another translation unit.
18715 DefineVTable = false;
18716 TemplateSpecializationKind TSK =
18717 KeyFunction->getTemplateSpecializationKind();
18718 assert(TSK != TSK_ExplicitInstantiationDefinition &&
18719 TSK != TSK_ImplicitInstantiation &&
18720 "Instantiations don't have key functions");
18721 (void)TSK;
18722 } else if (!KeyFunction) {
18723 // If we have a class with no key function that is the subject
18724 // of an explicit instantiation declaration, suppress the
18725 // vtable; it will live with the explicit instantiation
18726 // definition.
18727 bool IsExplicitInstantiationDeclaration =
18728 ClassTSK == TSK_ExplicitInstantiationDeclaration;
18729 for (auto *R : Class->redecls()) {
18730 TemplateSpecializationKind TSK
18731 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind();
18732 if (TSK == TSK_ExplicitInstantiationDeclaration)
18733 IsExplicitInstantiationDeclaration = true;
18734 else if (TSK == TSK_ExplicitInstantiationDefinition) {
18735 IsExplicitInstantiationDeclaration = false;
18736 break;
18740 if (IsExplicitInstantiationDeclaration)
18741 DefineVTable = false;
18744 // The exception specifications for all virtual members may be needed even
18745 // if we are not providing an authoritative form of the vtable in this TU.
18746 // We may choose to emit it available_externally anyway.
18747 if (!DefineVTable) {
18748 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
18749 continue;
18752 // Mark all of the virtual members of this class as referenced, so
18753 // that we can build a vtable. Then, tell the AST consumer that a
18754 // vtable for this class is required.
18755 DefinedAnything = true;
18756 MarkVirtualMembersReferenced(Loc, Class);
18757 CXXRecordDecl *Canonical = Class->getCanonicalDecl();
18758 if (VTablesUsed[Canonical])
18759 Consumer.HandleVTable(Class);
18761 // Warn if we're emitting a weak vtable. The vtable will be weak if there is
18762 // no key function or the key function is inlined. Don't warn in C++ ABIs
18763 // that lack key functions, since the user won't be able to make one.
18764 if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() &&
18765 Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation &&
18766 ClassTSK != TSK_ExplicitInstantiationDefinition) {
18767 const FunctionDecl *KeyFunctionDef = nullptr;
18768 if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) &&
18769 KeyFunctionDef->isInlined()))
18770 Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
18773 VTableUses.clear();
18775 return DefinedAnything;
18778 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
18779 const CXXRecordDecl *RD) {
18780 for (const auto *I : RD->methods())
18781 if (I->isVirtual() && !I->isPure())
18782 ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>());
18785 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
18786 const CXXRecordDecl *RD,
18787 bool ConstexprOnly) {
18788 // Mark all functions which will appear in RD's vtable as used.
18789 CXXFinalOverriderMap FinalOverriders;
18790 RD->getFinalOverriders(FinalOverriders);
18791 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
18792 E = FinalOverriders.end();
18793 I != E; ++I) {
18794 for (OverridingMethods::const_iterator OI = I->second.begin(),
18795 OE = I->second.end();
18796 OI != OE; ++OI) {
18797 assert(OI->second.size() > 0 && "no final overrider");
18798 CXXMethodDecl *Overrider = OI->second.front().Method;
18800 // C++ [basic.def.odr]p2:
18801 // [...] A virtual member function is used if it is not pure. [...]
18802 if (!Overrider->isPure() && (!ConstexprOnly || Overrider->isConstexpr()))
18803 MarkFunctionReferenced(Loc, Overrider);
18807 // Only classes that have virtual bases need a VTT.
18808 if (RD->getNumVBases() == 0)
18809 return;
18811 for (const auto &I : RD->bases()) {
18812 const auto *Base =
18813 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
18814 if (Base->getNumVBases() == 0)
18815 continue;
18816 MarkVirtualMembersReferenced(Loc, Base);
18820 /// SetIvarInitializers - This routine builds initialization ASTs for the
18821 /// Objective-C implementation whose ivars need be initialized.
18822 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
18823 if (!getLangOpts().CPlusPlus)
18824 return;
18825 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
18826 SmallVector<ObjCIvarDecl*, 8> ivars;
18827 CollectIvarsToConstructOrDestruct(OID, ivars);
18828 if (ivars.empty())
18829 return;
18830 SmallVector<CXXCtorInitializer*, 32> AllToInit;
18831 for (unsigned i = 0; i < ivars.size(); i++) {
18832 FieldDecl *Field = ivars[i];
18833 if (Field->isInvalidDecl())
18834 continue;
18836 CXXCtorInitializer *Member;
18837 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
18838 InitializationKind InitKind =
18839 InitializationKind::CreateDefault(ObjCImplementation->getLocation());
18841 InitializationSequence InitSeq(*this, InitEntity, InitKind, std::nullopt);
18842 ExprResult MemberInit =
18843 InitSeq.Perform(*this, InitEntity, InitKind, std::nullopt);
18844 MemberInit = MaybeCreateExprWithCleanups(MemberInit);
18845 // Note, MemberInit could actually come back empty if no initialization
18846 // is required (e.g., because it would call a trivial default constructor)
18847 if (!MemberInit.get() || MemberInit.isInvalid())
18848 continue;
18850 Member =
18851 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
18852 SourceLocation(),
18853 MemberInit.getAs<Expr>(),
18854 SourceLocation());
18855 AllToInit.push_back(Member);
18857 // Be sure that the destructor is accessible and is marked as referenced.
18858 if (const RecordType *RecordTy =
18859 Context.getBaseElementType(Field->getType())
18860 ->getAs<RecordType>()) {
18861 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
18862 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
18863 MarkFunctionReferenced(Field->getLocation(), Destructor);
18864 CheckDestructorAccess(Field->getLocation(), Destructor,
18865 PDiag(diag::err_access_dtor_ivar)
18866 << Context.getBaseElementType(Field->getType()));
18870 ObjCImplementation->setIvarInitializers(Context,
18871 AllToInit.data(), AllToInit.size());
18875 static
18876 void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
18877 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid,
18878 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid,
18879 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current,
18880 Sema &S) {
18881 if (Ctor->isInvalidDecl())
18882 return;
18884 CXXConstructorDecl *Target = Ctor->getTargetConstructor();
18886 // Target may not be determinable yet, for instance if this is a dependent
18887 // call in an uninstantiated template.
18888 if (Target) {
18889 const FunctionDecl *FNTarget = nullptr;
18890 (void)Target->hasBody(FNTarget);
18891 Target = const_cast<CXXConstructorDecl*>(
18892 cast_or_null<CXXConstructorDecl>(FNTarget));
18895 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
18896 // Avoid dereferencing a null pointer here.
18897 *TCanonical = Target? Target->getCanonicalDecl() : nullptr;
18899 if (!Current.insert(Canonical).second)
18900 return;
18902 // We know that beyond here, we aren't chaining into a cycle.
18903 if (!Target || !Target->isDelegatingConstructor() ||
18904 Target->isInvalidDecl() || Valid.count(TCanonical)) {
18905 Valid.insert(Current.begin(), Current.end());
18906 Current.clear();
18907 // We've hit a cycle.
18908 } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
18909 Current.count(TCanonical)) {
18910 // If we haven't diagnosed this cycle yet, do so now.
18911 if (!Invalid.count(TCanonical)) {
18912 S.Diag((*Ctor->init_begin())->getSourceLocation(),
18913 diag::warn_delegating_ctor_cycle)
18914 << Ctor;
18916 // Don't add a note for a function delegating directly to itself.
18917 if (TCanonical != Canonical)
18918 S.Diag(Target->getLocation(), diag::note_it_delegates_to);
18920 CXXConstructorDecl *C = Target;
18921 while (C->getCanonicalDecl() != Canonical) {
18922 const FunctionDecl *FNTarget = nullptr;
18923 (void)C->getTargetConstructor()->hasBody(FNTarget);
18924 assert(FNTarget && "Ctor cycle through bodiless function");
18926 C = const_cast<CXXConstructorDecl*>(
18927 cast<CXXConstructorDecl>(FNTarget));
18928 S.Diag(C->getLocation(), diag::note_which_delegates_to);
18932 Invalid.insert(Current.begin(), Current.end());
18933 Current.clear();
18934 } else {
18935 DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
18940 void Sema::CheckDelegatingCtorCycles() {
18941 llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
18943 for (DelegatingCtorDeclsType::iterator
18944 I = DelegatingCtorDecls.begin(ExternalSource.get()),
18945 E = DelegatingCtorDecls.end();
18946 I != E; ++I)
18947 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
18949 for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
18950 (*CI)->setInvalidDecl();
18953 namespace {
18954 /// AST visitor that finds references to the 'this' expression.
18955 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
18956 Sema &S;
18958 public:
18959 explicit FindCXXThisExpr(Sema &S) : S(S) { }
18961 bool VisitCXXThisExpr(CXXThisExpr *E) {
18962 S.Diag(E->getLocation(), diag::err_this_static_member_func)
18963 << E->isImplicit();
18964 return false;
18969 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
18970 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
18971 if (!TSInfo)
18972 return false;
18974 TypeLoc TL = TSInfo->getTypeLoc();
18975 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
18976 if (!ProtoTL)
18977 return false;
18979 // C++11 [expr.prim.general]p3:
18980 // [The expression this] shall not appear before the optional
18981 // cv-qualifier-seq and it shall not appear within the declaration of a
18982 // static member function (although its type and value category are defined
18983 // within a static member function as they are within a non-static member
18984 // function). [ Note: this is because declaration matching does not occur
18985 // until the complete declarator is known. - end note ]
18986 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
18987 FindCXXThisExpr Finder(*this);
18989 // If the return type came after the cv-qualifier-seq, check it now.
18990 if (Proto->hasTrailingReturn() &&
18991 !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc()))
18992 return true;
18994 // Check the exception specification.
18995 if (checkThisInStaticMemberFunctionExceptionSpec(Method))
18996 return true;
18998 // Check the trailing requires clause
18999 if (Expr *E = Method->getTrailingRequiresClause())
19000 if (!Finder.TraverseStmt(E))
19001 return true;
19003 return checkThisInStaticMemberFunctionAttributes(Method);
19006 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
19007 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
19008 if (!TSInfo)
19009 return false;
19011 TypeLoc TL = TSInfo->getTypeLoc();
19012 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
19013 if (!ProtoTL)
19014 return false;
19016 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
19017 FindCXXThisExpr Finder(*this);
19019 switch (Proto->getExceptionSpecType()) {
19020 case EST_Unparsed:
19021 case EST_Uninstantiated:
19022 case EST_Unevaluated:
19023 case EST_BasicNoexcept:
19024 case EST_NoThrow:
19025 case EST_DynamicNone:
19026 case EST_MSAny:
19027 case EST_None:
19028 break;
19030 case EST_DependentNoexcept:
19031 case EST_NoexceptFalse:
19032 case EST_NoexceptTrue:
19033 if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
19034 return true;
19035 [[fallthrough]];
19037 case EST_Dynamic:
19038 for (const auto &E : Proto->exceptions()) {
19039 if (!Finder.TraverseType(E))
19040 return true;
19042 break;
19045 return false;
19048 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
19049 FindCXXThisExpr Finder(*this);
19051 // Check attributes.
19052 for (const auto *A : Method->attrs()) {
19053 // FIXME: This should be emitted by tblgen.
19054 Expr *Arg = nullptr;
19055 ArrayRef<Expr *> Args;
19056 if (const auto *G = dyn_cast<GuardedByAttr>(A))
19057 Arg = G->getArg();
19058 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A))
19059 Arg = G->getArg();
19060 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A))
19061 Args = llvm::ArrayRef(AA->args_begin(), AA->args_size());
19062 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A))
19063 Args = llvm::ArrayRef(AB->args_begin(), AB->args_size());
19064 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) {
19065 Arg = ETLF->getSuccessValue();
19066 Args = llvm::ArrayRef(ETLF->args_begin(), ETLF->args_size());
19067 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) {
19068 Arg = STLF->getSuccessValue();
19069 Args = llvm::ArrayRef(STLF->args_begin(), STLF->args_size());
19070 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A))
19071 Arg = LR->getArg();
19072 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A))
19073 Args = llvm::ArrayRef(LE->args_begin(), LE->args_size());
19074 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A))
19075 Args = llvm::ArrayRef(RC->args_begin(), RC->args_size());
19076 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A))
19077 Args = llvm::ArrayRef(AC->args_begin(), AC->args_size());
19078 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A))
19079 Args = llvm::ArrayRef(AC->args_begin(), AC->args_size());
19080 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A))
19081 Args = llvm::ArrayRef(RC->args_begin(), RC->args_size());
19083 if (Arg && !Finder.TraverseStmt(Arg))
19084 return true;
19086 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
19087 if (!Finder.TraverseStmt(Args[I]))
19088 return true;
19092 return false;
19095 void Sema::checkExceptionSpecification(
19096 bool IsTopLevel, ExceptionSpecificationType EST,
19097 ArrayRef<ParsedType> DynamicExceptions,
19098 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr,
19099 SmallVectorImpl<QualType> &Exceptions,
19100 FunctionProtoType::ExceptionSpecInfo &ESI) {
19101 Exceptions.clear();
19102 ESI.Type = EST;
19103 if (EST == EST_Dynamic) {
19104 Exceptions.reserve(DynamicExceptions.size());
19105 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
19106 // FIXME: Preserve type source info.
19107 QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
19109 if (IsTopLevel) {
19110 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
19111 collectUnexpandedParameterPacks(ET, Unexpanded);
19112 if (!Unexpanded.empty()) {
19113 DiagnoseUnexpandedParameterPacks(
19114 DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType,
19115 Unexpanded);
19116 continue;
19120 // Check that the type is valid for an exception spec, and
19121 // drop it if not.
19122 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
19123 Exceptions.push_back(ET);
19125 ESI.Exceptions = Exceptions;
19126 return;
19129 if (isComputedNoexcept(EST)) {
19130 assert((NoexceptExpr->isTypeDependent() ||
19131 NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
19132 Context.BoolTy) &&
19133 "Parser should have made sure that the expression is boolean");
19134 if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
19135 ESI.Type = EST_BasicNoexcept;
19136 return;
19139 ESI.NoexceptExpr = NoexceptExpr;
19140 return;
19144 void Sema::actOnDelayedExceptionSpecification(Decl *MethodD,
19145 ExceptionSpecificationType EST,
19146 SourceRange SpecificationRange,
19147 ArrayRef<ParsedType> DynamicExceptions,
19148 ArrayRef<SourceRange> DynamicExceptionRanges,
19149 Expr *NoexceptExpr) {
19150 if (!MethodD)
19151 return;
19153 // Dig out the method we're referring to.
19154 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD))
19155 MethodD = FunTmpl->getTemplatedDecl();
19157 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD);
19158 if (!Method)
19159 return;
19161 // Check the exception specification.
19162 llvm::SmallVector<QualType, 4> Exceptions;
19163 FunctionProtoType::ExceptionSpecInfo ESI;
19164 checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions,
19165 DynamicExceptionRanges, NoexceptExpr, Exceptions,
19166 ESI);
19168 // Update the exception specification on the function type.
19169 Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true);
19171 if (Method->isStatic())
19172 checkThisInStaticMemberFunctionExceptionSpec(Method);
19174 if (Method->isVirtual()) {
19175 // Check overrides, which we previously had to delay.
19176 for (const CXXMethodDecl *O : Method->overridden_methods())
19177 CheckOverridingFunctionExceptionSpec(Method, O);
19181 /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
19183 MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
19184 SourceLocation DeclStart, Declarator &D,
19185 Expr *BitWidth,
19186 InClassInitStyle InitStyle,
19187 AccessSpecifier AS,
19188 const ParsedAttr &MSPropertyAttr) {
19189 IdentifierInfo *II = D.getIdentifier();
19190 if (!II) {
19191 Diag(DeclStart, diag::err_anonymous_property);
19192 return nullptr;
19194 SourceLocation Loc = D.getIdentifierLoc();
19196 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
19197 QualType T = TInfo->getType();
19198 if (getLangOpts().CPlusPlus) {
19199 CheckExtraCXXDefaultArguments(D);
19201 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
19202 UPPC_DataMemberType)) {
19203 D.setInvalidType();
19204 T = Context.IntTy;
19205 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
19209 DiagnoseFunctionSpecifiers(D.getDeclSpec());
19211 if (D.getDeclSpec().isInlineSpecified())
19212 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
19213 << getLangOpts().CPlusPlus17;
19214 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
19215 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
19216 diag::err_invalid_thread)
19217 << DeclSpec::getSpecifierName(TSCS);
19219 // Check to see if this name was declared as a member previously
19220 NamedDecl *PrevDecl = nullptr;
19221 LookupResult Previous(*this, II, Loc, LookupMemberName,
19222 ForVisibleRedeclaration);
19223 LookupName(Previous, S);
19224 switch (Previous.getResultKind()) {
19225 case LookupResult::Found:
19226 case LookupResult::FoundUnresolvedValue:
19227 PrevDecl = Previous.getAsSingle<NamedDecl>();
19228 break;
19230 case LookupResult::FoundOverloaded:
19231 PrevDecl = Previous.getRepresentativeDecl();
19232 break;
19234 case LookupResult::NotFound:
19235 case LookupResult::NotFoundInCurrentInstantiation:
19236 case LookupResult::Ambiguous:
19237 break;
19240 if (PrevDecl && PrevDecl->isTemplateParameter()) {
19241 // Maybe we will complain about the shadowed template parameter.
19242 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
19243 // Just pretend that we didn't see the previous declaration.
19244 PrevDecl = nullptr;
19247 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
19248 PrevDecl = nullptr;
19250 SourceLocation TSSL = D.getBeginLoc();
19251 MSPropertyDecl *NewPD =
19252 MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL,
19253 MSPropertyAttr.getPropertyDataGetter(),
19254 MSPropertyAttr.getPropertyDataSetter());
19255 ProcessDeclAttributes(TUScope, NewPD, D);
19256 NewPD->setAccess(AS);
19258 if (NewPD->isInvalidDecl())
19259 Record->setInvalidDecl();
19261 if (D.getDeclSpec().isModulePrivateSpecified())
19262 NewPD->setModulePrivate();
19264 if (NewPD->isInvalidDecl() && PrevDecl) {
19265 // Don't introduce NewFD into scope; there's already something
19266 // with the same name in the same scope.
19267 } else if (II) {
19268 PushOnScopeChains(NewPD, S);
19269 } else
19270 Record->addDecl(NewPD);
19272 return NewPD;
19275 void Sema::ActOnStartFunctionDeclarationDeclarator(
19276 Declarator &Declarator, unsigned TemplateParameterDepth) {
19277 auto &Info = InventedParameterInfos.emplace_back();
19278 TemplateParameterList *ExplicitParams = nullptr;
19279 ArrayRef<TemplateParameterList *> ExplicitLists =
19280 Declarator.getTemplateParameterLists();
19281 if (!ExplicitLists.empty()) {
19282 bool IsMemberSpecialization, IsInvalid;
19283 ExplicitParams = MatchTemplateParametersToScopeSpecifier(
19284 Declarator.getBeginLoc(), Declarator.getIdentifierLoc(),
19285 Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr,
19286 ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, IsInvalid,
19287 /*SuppressDiagnostic=*/true);
19289 if (ExplicitParams) {
19290 Info.AutoTemplateParameterDepth = ExplicitParams->getDepth();
19291 llvm::append_range(Info.TemplateParams, *ExplicitParams);
19292 Info.NumExplicitTemplateParams = ExplicitParams->size();
19293 } else {
19294 Info.AutoTemplateParameterDepth = TemplateParameterDepth;
19295 Info.NumExplicitTemplateParams = 0;
19299 void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) {
19300 auto &FSI = InventedParameterInfos.back();
19301 if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) {
19302 if (FSI.NumExplicitTemplateParams != 0) {
19303 TemplateParameterList *ExplicitParams =
19304 Declarator.getTemplateParameterLists().back();
19305 Declarator.setInventedTemplateParameterList(
19306 TemplateParameterList::Create(
19307 Context, ExplicitParams->getTemplateLoc(),
19308 ExplicitParams->getLAngleLoc(), FSI.TemplateParams,
19309 ExplicitParams->getRAngleLoc(),
19310 ExplicitParams->getRequiresClause()));
19311 } else {
19312 Declarator.setInventedTemplateParameterList(
19313 TemplateParameterList::Create(
19314 Context, SourceLocation(), SourceLocation(), FSI.TemplateParams,
19315 SourceLocation(), /*RequiresClause=*/nullptr));
19318 InventedParameterInfos.pop_back();