[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / clang / lib / Sema / SemaExprCXX.cpp
blobea286c9709c13ff9b9734ea5a8230dc93486e341
1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Implements semantic analysis for C++ expressions.
11 ///
12 //===----------------------------------------------------------------------===//
14 #include "TreeTransform.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprConcepts.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/AST/Type.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/AlignedAllocation.h"
28 #include "clang/Basic/DiagnosticSema.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Basic/TokenKinds.h"
32 #include "clang/Basic/TypeTraits.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "clang/Sema/DeclSpec.h"
35 #include "clang/Sema/EnterExpressionEvaluationContext.h"
36 #include "clang/Sema/Initialization.h"
37 #include "clang/Sema/Lookup.h"
38 #include "clang/Sema/ParsedTemplate.h"
39 #include "clang/Sema/Scope.h"
40 #include "clang/Sema/ScopeInfo.h"
41 #include "clang/Sema/SemaInternal.h"
42 #include "clang/Sema/SemaLambda.h"
43 #include "clang/Sema/Template.h"
44 #include "clang/Sema/TemplateDeduction.h"
45 #include "llvm/ADT/APInt.h"
46 #include "llvm/ADT/STLExtras.h"
47 #include "llvm/ADT/StringExtras.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/TypeSize.h"
50 #include <optional>
51 using namespace clang;
52 using namespace sema;
54 /// Handle the result of the special case name lookup for inheriting
55 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
56 /// constructor names in member using declarations, even if 'X' is not the
57 /// name of the corresponding type.
58 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
59 SourceLocation NameLoc,
60 IdentifierInfo &Name) {
61 NestedNameSpecifier *NNS = SS.getScopeRep();
63 // Convert the nested-name-specifier into a type.
64 QualType Type;
65 switch (NNS->getKind()) {
66 case NestedNameSpecifier::TypeSpec:
67 case NestedNameSpecifier::TypeSpecWithTemplate:
68 Type = QualType(NNS->getAsType(), 0);
69 break;
71 case NestedNameSpecifier::Identifier:
72 // Strip off the last layer of the nested-name-specifier and build a
73 // typename type for it.
74 assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
75 Type = Context.getDependentNameType(
76 ElaboratedTypeKeyword::None, NNS->getPrefix(), NNS->getAsIdentifier());
77 break;
79 case NestedNameSpecifier::Global:
80 case NestedNameSpecifier::Super:
81 case NestedNameSpecifier::Namespace:
82 case NestedNameSpecifier::NamespaceAlias:
83 llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
86 // This reference to the type is located entirely at the location of the
87 // final identifier in the qualified-id.
88 return CreateParsedType(Type,
89 Context.getTrivialTypeSourceInfo(Type, NameLoc));
92 ParsedType Sema::getConstructorName(IdentifierInfo &II,
93 SourceLocation NameLoc,
94 Scope *S, CXXScopeSpec &SS,
95 bool EnteringContext) {
96 CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
97 assert(CurClass && &II == CurClass->getIdentifier() &&
98 "not a constructor name");
100 // When naming a constructor as a member of a dependent context (eg, in a
101 // friend declaration or an inherited constructor declaration), form an
102 // unresolved "typename" type.
103 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
104 QualType T = Context.getDependentNameType(ElaboratedTypeKeyword::None,
105 SS.getScopeRep(), &II);
106 return ParsedType::make(T);
109 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
110 return ParsedType();
112 // Find the injected-class-name declaration. Note that we make no attempt to
113 // diagnose cases where the injected-class-name is shadowed: the only
114 // declaration that can validly shadow the injected-class-name is a
115 // non-static data member, and if the class contains both a non-static data
116 // member and a constructor then it is ill-formed (we check that in
117 // CheckCompletedCXXClass).
118 CXXRecordDecl *InjectedClassName = nullptr;
119 for (NamedDecl *ND : CurClass->lookup(&II)) {
120 auto *RD = dyn_cast<CXXRecordDecl>(ND);
121 if (RD && RD->isInjectedClassName()) {
122 InjectedClassName = RD;
123 break;
126 if (!InjectedClassName) {
127 if (!CurClass->isInvalidDecl()) {
128 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
129 // properly. Work around it here for now.
130 Diag(SS.getLastQualifierNameLoc(),
131 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
133 return ParsedType();
136 QualType T = Context.getTypeDeclType(InjectedClassName);
137 DiagnoseUseOfDecl(InjectedClassName, NameLoc);
138 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
140 return ParsedType::make(T);
143 ParsedType Sema::getDestructorName(IdentifierInfo &II, SourceLocation NameLoc,
144 Scope *S, CXXScopeSpec &SS,
145 ParsedType ObjectTypePtr,
146 bool EnteringContext) {
147 // Determine where to perform name lookup.
149 // FIXME: This area of the standard is very messy, and the current
150 // wording is rather unclear about which scopes we search for the
151 // destructor name; see core issues 399 and 555. Issue 399 in
152 // particular shows where the current description of destructor name
153 // lookup is completely out of line with existing practice, e.g.,
154 // this appears to be ill-formed:
156 // namespace N {
157 // template <typename T> struct S {
158 // ~S();
159 // };
160 // }
162 // void f(N::S<int>* s) {
163 // s->N::S<int>::~S();
164 // }
166 // See also PR6358 and PR6359.
168 // For now, we accept all the cases in which the name given could plausibly
169 // be interpreted as a correct destructor name, issuing off-by-default
170 // extension diagnostics on the cases that don't strictly conform to the
171 // C++20 rules. This basically means we always consider looking in the
172 // nested-name-specifier prefix, the complete nested-name-specifier, and
173 // the scope, and accept if we find the expected type in any of the three
174 // places.
176 if (SS.isInvalid())
177 return nullptr;
179 // Whether we've failed with a diagnostic already.
180 bool Failed = false;
182 llvm::SmallVector<NamedDecl*, 8> FoundDecls;
183 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
185 // If we have an object type, it's because we are in a
186 // pseudo-destructor-expression or a member access expression, and
187 // we know what type we're looking for.
188 QualType SearchType =
189 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
191 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
192 auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
193 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
194 if (!Type)
195 return false;
197 if (SearchType.isNull() || SearchType->isDependentType())
198 return true;
200 QualType T = Context.getTypeDeclType(Type);
201 return Context.hasSameUnqualifiedType(T, SearchType);
204 unsigned NumAcceptableResults = 0;
205 for (NamedDecl *D : Found) {
206 if (IsAcceptableResult(D))
207 ++NumAcceptableResults;
209 // Don't list a class twice in the lookup failure diagnostic if it's
210 // found by both its injected-class-name and by the name in the enclosing
211 // scope.
212 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
213 if (RD->isInjectedClassName())
214 D = cast<NamedDecl>(RD->getParent());
216 if (FoundDeclSet.insert(D).second)
217 FoundDecls.push_back(D);
220 // As an extension, attempt to "fix" an ambiguity by erasing all non-type
221 // results, and all non-matching results if we have a search type. It's not
222 // clear what the right behavior is if destructor lookup hits an ambiguity,
223 // but other compilers do generally accept at least some kinds of
224 // ambiguity.
225 if (Found.isAmbiguous() && NumAcceptableResults == 1) {
226 Diag(NameLoc, diag::ext_dtor_name_ambiguous);
227 LookupResult::Filter F = Found.makeFilter();
228 while (F.hasNext()) {
229 NamedDecl *D = F.next();
230 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
231 Diag(D->getLocation(), diag::note_destructor_type_here)
232 << Context.getTypeDeclType(TD);
233 else
234 Diag(D->getLocation(), diag::note_destructor_nontype_here);
236 if (!IsAcceptableResult(D))
237 F.erase();
239 F.done();
242 if (Found.isAmbiguous())
243 Failed = true;
245 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
246 if (IsAcceptableResult(Type)) {
247 QualType T = Context.getTypeDeclType(Type);
248 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
249 return CreateParsedType(
250 Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, T),
251 Context.getTrivialTypeSourceInfo(T, NameLoc));
255 return nullptr;
258 bool IsDependent = false;
260 auto LookupInObjectType = [&]() -> ParsedType {
261 if (Failed || SearchType.isNull())
262 return nullptr;
264 IsDependent |= SearchType->isDependentType();
266 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
267 DeclContext *LookupCtx = computeDeclContext(SearchType);
268 if (!LookupCtx)
269 return nullptr;
270 LookupQualifiedName(Found, LookupCtx);
271 return CheckLookupResult(Found);
274 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
275 if (Failed)
276 return nullptr;
278 IsDependent |= isDependentScopeSpecifier(LookupSS);
279 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
280 if (!LookupCtx)
281 return nullptr;
283 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
284 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
285 Failed = true;
286 return nullptr;
288 LookupQualifiedName(Found, LookupCtx);
289 return CheckLookupResult(Found);
292 auto LookupInScope = [&]() -> ParsedType {
293 if (Failed || !S)
294 return nullptr;
296 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
297 LookupName(Found, S);
298 return CheckLookupResult(Found);
301 // C++2a [basic.lookup.qual]p6:
302 // In a qualified-id of the form
304 // nested-name-specifier[opt] type-name :: ~ type-name
306 // the second type-name is looked up in the same scope as the first.
308 // We interpret this as meaning that if you do a dual-scope lookup for the
309 // first name, you also do a dual-scope lookup for the second name, per
310 // C++ [basic.lookup.classref]p4:
312 // If the id-expression in a class member access is a qualified-id of the
313 // form
315 // class-name-or-namespace-name :: ...
317 // the class-name-or-namespace-name following the . or -> is first looked
318 // up in the class of the object expression and the name, if found, is used.
319 // Otherwise, it is looked up in the context of the entire
320 // postfix-expression.
322 // This looks in the same scopes as for an unqualified destructor name:
324 // C++ [basic.lookup.classref]p3:
325 // If the unqualified-id is ~ type-name, the type-name is looked up
326 // in the context of the entire postfix-expression. If the type T
327 // of the object expression is of a class type C, the type-name is
328 // also looked up in the scope of class C. At least one of the
329 // lookups shall find a name that refers to cv T.
331 // FIXME: The intent is unclear here. Should type-name::~type-name look in
332 // the scope anyway if it finds a non-matching name declared in the class?
333 // If both lookups succeed and find a dependent result, which result should
334 // we retain? (Same question for p->~type-name().)
336 if (NestedNameSpecifier *Prefix =
337 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
338 // This is
340 // nested-name-specifier type-name :: ~ type-name
342 // Look for the second type-name in the nested-name-specifier.
343 CXXScopeSpec PrefixSS;
344 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
345 if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
346 return T;
347 } else {
348 // This is one of
350 // type-name :: ~ type-name
351 // ~ type-name
353 // Look in the scope and (if any) the object type.
354 if (ParsedType T = LookupInScope())
355 return T;
356 if (ParsedType T = LookupInObjectType())
357 return T;
360 if (Failed)
361 return nullptr;
363 if (IsDependent) {
364 // We didn't find our type, but that's OK: it's dependent anyway.
366 // FIXME: What if we have no nested-name-specifier?
367 QualType T =
368 CheckTypenameType(ElaboratedTypeKeyword::None, SourceLocation(),
369 SS.getWithLocInContext(Context), II, NameLoc);
370 return ParsedType::make(T);
373 // The remaining cases are all non-standard extensions imitating the behavior
374 // of various other compilers.
375 unsigned NumNonExtensionDecls = FoundDecls.size();
377 if (SS.isSet()) {
378 // For compatibility with older broken C++ rules and existing code,
380 // nested-name-specifier :: ~ type-name
382 // also looks for type-name within the nested-name-specifier.
383 if (ParsedType T = LookupInNestedNameSpec(SS)) {
384 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
385 << SS.getRange()
386 << FixItHint::CreateInsertion(SS.getEndLoc(),
387 ("::" + II.getName()).str());
388 return T;
391 // For compatibility with other compilers and older versions of Clang,
393 // nested-name-specifier type-name :: ~ type-name
395 // also looks for type-name in the scope. Unfortunately, we can't
396 // reasonably apply this fallback for dependent nested-name-specifiers.
397 if (SS.isValid() && SS.getScopeRep()->getPrefix()) {
398 if (ParsedType T = LookupInScope()) {
399 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
400 << FixItHint::CreateRemoval(SS.getRange());
401 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
402 << GetTypeFromParser(T);
403 return T;
408 // We didn't find anything matching; tell the user what we did find (if
409 // anything).
411 // Don't tell the user about declarations we shouldn't have found.
412 FoundDecls.resize(NumNonExtensionDecls);
414 // List types before non-types.
415 std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
416 [](NamedDecl *A, NamedDecl *B) {
417 return isa<TypeDecl>(A->getUnderlyingDecl()) >
418 isa<TypeDecl>(B->getUnderlyingDecl());
421 // Suggest a fixit to properly name the destroyed type.
422 auto MakeFixItHint = [&]{
423 const CXXRecordDecl *Destroyed = nullptr;
424 // FIXME: If we have a scope specifier, suggest its last component?
425 if (!SearchType.isNull())
426 Destroyed = SearchType->getAsCXXRecordDecl();
427 else if (S)
428 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
429 if (Destroyed)
430 return FixItHint::CreateReplacement(SourceRange(NameLoc),
431 Destroyed->getNameAsString());
432 return FixItHint();
435 if (FoundDecls.empty()) {
436 // FIXME: Attempt typo-correction?
437 Diag(NameLoc, diag::err_undeclared_destructor_name)
438 << &II << MakeFixItHint();
439 } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
440 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
441 assert(!SearchType.isNull() &&
442 "should only reject a type result if we have a search type");
443 QualType T = Context.getTypeDeclType(TD);
444 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
445 << T << SearchType << MakeFixItHint();
446 } else {
447 Diag(NameLoc, diag::err_destructor_expr_nontype)
448 << &II << MakeFixItHint();
450 } else {
451 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
452 : diag::err_destructor_expr_mismatch)
453 << &II << SearchType << MakeFixItHint();
456 for (NamedDecl *FoundD : FoundDecls) {
457 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
458 Diag(FoundD->getLocation(), diag::note_destructor_type_here)
459 << Context.getTypeDeclType(TD);
460 else
461 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
462 << FoundD;
465 return nullptr;
468 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
469 ParsedType ObjectType) {
470 if (DS.getTypeSpecType() == DeclSpec::TST_error)
471 return nullptr;
473 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
474 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
475 return nullptr;
478 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
479 "unexpected type in getDestructorType");
480 QualType T = BuildDecltypeType(DS.getRepAsExpr());
482 // If we know the type of the object, check that the correct destructor
483 // type was named now; we can give better diagnostics this way.
484 QualType SearchType = GetTypeFromParser(ObjectType);
485 if (!SearchType.isNull() && !SearchType->isDependentType() &&
486 !Context.hasSameUnqualifiedType(T, SearchType)) {
487 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
488 << T << SearchType;
489 return nullptr;
492 return ParsedType::make(T);
495 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
496 const UnqualifiedId &Name, bool IsUDSuffix) {
497 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId);
498 if (!IsUDSuffix) {
499 // [over.literal] p8
501 // double operator""_Bq(long double); // OK: not a reserved identifier
502 // double operator"" _Bq(long double); // ill-formed, no diagnostic required
503 IdentifierInfo *II = Name.Identifier;
504 ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
505 SourceLocation Loc = Name.getEndLoc();
506 if (!PP.getSourceManager().isInSystemHeader(Loc)) {
507 if (auto Hint = FixItHint::CreateReplacement(
508 Name.getSourceRange(),
509 (StringRef("operator\"\"") + II->getName()).str());
510 isReservedInAllContexts(Status)) {
511 Diag(Loc, diag::warn_reserved_extern_symbol)
512 << II << static_cast<int>(Status) << Hint;
513 } else {
514 Diag(Loc, diag::warn_deprecated_literal_operator_id) << II << Hint;
519 if (!SS.isValid())
520 return false;
522 switch (SS.getScopeRep()->getKind()) {
523 case NestedNameSpecifier::Identifier:
524 case NestedNameSpecifier::TypeSpec:
525 case NestedNameSpecifier::TypeSpecWithTemplate:
526 // Per C++11 [over.literal]p2, literal operators can only be declared at
527 // namespace scope. Therefore, this unqualified-id cannot name anything.
528 // Reject it early, because we have no AST representation for this in the
529 // case where the scope is dependent.
530 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
531 << SS.getScopeRep();
532 return true;
534 case NestedNameSpecifier::Global:
535 case NestedNameSpecifier::Super:
536 case NestedNameSpecifier::Namespace:
537 case NestedNameSpecifier::NamespaceAlias:
538 return false;
541 llvm_unreachable("unknown nested name specifier kind");
544 /// Build a C++ typeid expression with a type operand.
545 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
546 SourceLocation TypeidLoc,
547 TypeSourceInfo *Operand,
548 SourceLocation RParenLoc) {
549 // C++ [expr.typeid]p4:
550 // The top-level cv-qualifiers of the lvalue expression or the type-id
551 // that is the operand of typeid are always ignored.
552 // If the type of the type-id is a class type or a reference to a class
553 // type, the class shall be completely-defined.
554 Qualifiers Quals;
555 QualType T
556 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
557 Quals);
558 if (T->getAs<RecordType>() &&
559 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
560 return ExprError();
562 if (T->isVariablyModifiedType())
563 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
565 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
566 return ExprError();
568 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
569 SourceRange(TypeidLoc, RParenLoc));
572 /// Build a C++ typeid expression with an expression operand.
573 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
574 SourceLocation TypeidLoc,
575 Expr *E,
576 SourceLocation RParenLoc) {
577 bool WasEvaluated = false;
578 if (E && !E->isTypeDependent()) {
579 if (E->hasPlaceholderType()) {
580 ExprResult result = CheckPlaceholderExpr(E);
581 if (result.isInvalid()) return ExprError();
582 E = result.get();
585 QualType T = E->getType();
586 if (const RecordType *RecordT = T->getAs<RecordType>()) {
587 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
588 // C++ [expr.typeid]p3:
589 // [...] If the type of the expression is a class type, the class
590 // shall be completely-defined.
591 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
592 return ExprError();
594 // C++ [expr.typeid]p3:
595 // When typeid is applied to an expression other than an glvalue of a
596 // polymorphic class type [...] [the] expression is an unevaluated
597 // operand. [...]
598 if (RecordD->isPolymorphic() && E->isGLValue()) {
599 if (isUnevaluatedContext()) {
600 // The operand was processed in unevaluated context, switch the
601 // context and recheck the subexpression.
602 ExprResult Result = TransformToPotentiallyEvaluated(E);
603 if (Result.isInvalid())
604 return ExprError();
605 E = Result.get();
608 // We require a vtable to query the type at run time.
609 MarkVTableUsed(TypeidLoc, RecordD);
610 WasEvaluated = true;
614 ExprResult Result = CheckUnevaluatedOperand(E);
615 if (Result.isInvalid())
616 return ExprError();
617 E = Result.get();
619 // C++ [expr.typeid]p4:
620 // [...] If the type of the type-id is a reference to a possibly
621 // cv-qualified type, the result of the typeid expression refers to a
622 // std::type_info object representing the cv-unqualified referenced
623 // type.
624 Qualifiers Quals;
625 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
626 if (!Context.hasSameType(T, UnqualT)) {
627 T = UnqualT;
628 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
632 if (E->getType()->isVariablyModifiedType())
633 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
634 << E->getType());
635 else if (!inTemplateInstantiation() &&
636 E->HasSideEffects(Context, WasEvaluated)) {
637 // The expression operand for typeid is in an unevaluated expression
638 // context, so side effects could result in unintended consequences.
639 Diag(E->getExprLoc(), WasEvaluated
640 ? diag::warn_side_effects_typeid
641 : diag::warn_side_effects_unevaluated_context);
644 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
645 SourceRange(TypeidLoc, RParenLoc));
648 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
649 ExprResult
650 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
651 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
652 // typeid is not supported in OpenCL.
653 if (getLangOpts().OpenCLCPlusPlus) {
654 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
655 << "typeid");
658 // Find the std::type_info type.
659 if (!getStdNamespace())
660 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
662 if (!CXXTypeInfoDecl) {
663 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
664 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
665 LookupQualifiedName(R, getStdNamespace());
666 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
667 // Microsoft's typeinfo doesn't have type_info in std but in the global
668 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
669 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
670 LookupQualifiedName(R, Context.getTranslationUnitDecl());
671 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
673 if (!CXXTypeInfoDecl)
674 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
677 if (!getLangOpts().RTTI) {
678 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
681 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
683 if (isType) {
684 // The operand is a type; handle it as such.
685 TypeSourceInfo *TInfo = nullptr;
686 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
687 &TInfo);
688 if (T.isNull())
689 return ExprError();
691 if (!TInfo)
692 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
694 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
697 // The operand is an expression.
698 ExprResult Result =
699 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
701 if (!getLangOpts().RTTIData && !Result.isInvalid())
702 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
703 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
704 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
705 << (getDiagnostics().getDiagnosticOptions().getFormat() ==
706 DiagnosticOptions::MSVC);
707 return Result;
710 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
711 /// a single GUID.
712 static void
713 getUuidAttrOfType(Sema &SemaRef, QualType QT,
714 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
715 // Optionally remove one level of pointer, reference or array indirection.
716 const Type *Ty = QT.getTypePtr();
717 if (QT->isPointerType() || QT->isReferenceType())
718 Ty = QT->getPointeeType().getTypePtr();
719 else if (QT->isArrayType())
720 Ty = Ty->getBaseElementTypeUnsafe();
722 const auto *TD = Ty->getAsTagDecl();
723 if (!TD)
724 return;
726 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
727 UuidAttrs.insert(Uuid);
728 return;
731 // __uuidof can grab UUIDs from template arguments.
732 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
733 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
734 for (const TemplateArgument &TA : TAL.asArray()) {
735 const UuidAttr *UuidForTA = nullptr;
736 if (TA.getKind() == TemplateArgument::Type)
737 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
738 else if (TA.getKind() == TemplateArgument::Declaration)
739 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
741 if (UuidForTA)
742 UuidAttrs.insert(UuidForTA);
747 /// Build a Microsoft __uuidof expression with a type operand.
748 ExprResult Sema::BuildCXXUuidof(QualType Type,
749 SourceLocation TypeidLoc,
750 TypeSourceInfo *Operand,
751 SourceLocation RParenLoc) {
752 MSGuidDecl *Guid = nullptr;
753 if (!Operand->getType()->isDependentType()) {
754 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
755 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
756 if (UuidAttrs.empty())
757 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
758 if (UuidAttrs.size() > 1)
759 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
760 Guid = UuidAttrs.back()->getGuidDecl();
763 return new (Context)
764 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
767 /// Build a Microsoft __uuidof expression with an expression operand.
768 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
769 Expr *E, SourceLocation RParenLoc) {
770 MSGuidDecl *Guid = nullptr;
771 if (!E->getType()->isDependentType()) {
772 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
773 // A null pointer results in {00000000-0000-0000-0000-000000000000}.
774 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
775 } else {
776 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
777 getUuidAttrOfType(*this, E->getType(), UuidAttrs);
778 if (UuidAttrs.empty())
779 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
780 if (UuidAttrs.size() > 1)
781 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
782 Guid = UuidAttrs.back()->getGuidDecl();
786 return new (Context)
787 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
790 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
791 ExprResult
792 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
793 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
794 QualType GuidType = Context.getMSGuidType();
795 GuidType.addConst();
797 if (isType) {
798 // The operand is a type; handle it as such.
799 TypeSourceInfo *TInfo = nullptr;
800 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
801 &TInfo);
802 if (T.isNull())
803 return ExprError();
805 if (!TInfo)
806 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
808 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
811 // The operand is an expression.
812 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
815 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
816 ExprResult
817 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
818 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
819 "Unknown C++ Boolean value!");
820 return new (Context)
821 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
824 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
825 ExprResult
826 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
827 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
830 /// ActOnCXXThrow - Parse throw expressions.
831 ExprResult
832 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
833 bool IsThrownVarInScope = false;
834 if (Ex) {
835 // C++0x [class.copymove]p31:
836 // When certain criteria are met, an implementation is allowed to omit the
837 // copy/move construction of a class object [...]
839 // - in a throw-expression, when the operand is the name of a
840 // non-volatile automatic object (other than a function or catch-
841 // clause parameter) whose scope does not extend beyond the end of the
842 // innermost enclosing try-block (if there is one), the copy/move
843 // operation from the operand to the exception object (15.1) can be
844 // omitted by constructing the automatic object directly into the
845 // exception object
846 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
847 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
848 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
849 for( ; S; S = S->getParent()) {
850 if (S->isDeclScope(Var)) {
851 IsThrownVarInScope = true;
852 break;
855 // FIXME: Many of the scope checks here seem incorrect.
856 if (S->getFlags() &
857 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
858 Scope::ObjCMethodScope | Scope::TryScope))
859 break;
865 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
868 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
869 bool IsThrownVarInScope) {
870 const llvm::Triple &T = Context.getTargetInfo().getTriple();
871 const bool IsOpenMPGPUTarget =
872 getLangOpts().OpenMPIsTargetDevice && (T.isNVPTX() || T.isAMDGCN());
873 // Don't report an error if 'throw' is used in system headers or in an OpenMP
874 // target region compiled for a GPU architecture.
875 if (!IsOpenMPGPUTarget && !getLangOpts().CXXExceptions &&
876 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
877 // Delay error emission for the OpenMP device code.
878 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
881 // In OpenMP target regions, we replace 'throw' with a trap on GPU targets.
882 if (IsOpenMPGPUTarget)
883 targetDiag(OpLoc, diag::warn_throw_not_valid_on_target) << T.str();
885 // Exceptions aren't allowed in CUDA device code.
886 if (getLangOpts().CUDA)
887 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
888 << "throw" << CurrentCUDATarget();
890 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
891 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
893 if (Ex && !Ex->isTypeDependent()) {
894 // Initialize the exception result. This implicitly weeds out
895 // abstract types or types with inaccessible copy constructors.
897 // C++0x [class.copymove]p31:
898 // When certain criteria are met, an implementation is allowed to omit the
899 // copy/move construction of a class object [...]
901 // - in a throw-expression, when the operand is the name of a
902 // non-volatile automatic object (other than a function or
903 // catch-clause
904 // parameter) whose scope does not extend beyond the end of the
905 // innermost enclosing try-block (if there is one), the copy/move
906 // operation from the operand to the exception object (15.1) can be
907 // omitted by constructing the automatic object directly into the
908 // exception object
909 NamedReturnInfo NRInfo =
910 IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
912 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
913 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
914 return ExprError();
916 InitializedEntity Entity =
917 InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
918 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
919 if (Res.isInvalid())
920 return ExprError();
921 Ex = Res.get();
924 // PPC MMA non-pointer types are not allowed as throw expr types.
925 if (Ex && Context.getTargetInfo().getTriple().isPPC64())
926 CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
928 return new (Context)
929 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
932 static void
933 collectPublicBases(CXXRecordDecl *RD,
934 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
935 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
936 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
937 bool ParentIsPublic) {
938 for (const CXXBaseSpecifier &BS : RD->bases()) {
939 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
940 bool NewSubobject;
941 // Virtual bases constitute the same subobject. Non-virtual bases are
942 // always distinct subobjects.
943 if (BS.isVirtual())
944 NewSubobject = VBases.insert(BaseDecl).second;
945 else
946 NewSubobject = true;
948 if (NewSubobject)
949 ++SubobjectsSeen[BaseDecl];
951 // Only add subobjects which have public access throughout the entire chain.
952 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
953 if (PublicPath)
954 PublicSubobjectsSeen.insert(BaseDecl);
956 // Recurse on to each base subobject.
957 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
958 PublicPath);
962 static void getUnambiguousPublicSubobjects(
963 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
964 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
965 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
966 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
967 SubobjectsSeen[RD] = 1;
968 PublicSubobjectsSeen.insert(RD);
969 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
970 /*ParentIsPublic=*/true);
972 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
973 // Skip ambiguous objects.
974 if (SubobjectsSeen[PublicSubobject] > 1)
975 continue;
977 Objects.push_back(PublicSubobject);
981 /// CheckCXXThrowOperand - Validate the operand of a throw.
982 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
983 QualType ExceptionObjectTy, Expr *E) {
984 // If the type of the exception would be an incomplete type or a pointer
985 // to an incomplete type other than (cv) void the program is ill-formed.
986 QualType Ty = ExceptionObjectTy;
987 bool isPointer = false;
988 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
989 Ty = Ptr->getPointeeType();
990 isPointer = true;
993 // Cannot throw WebAssembly reference type.
994 if (Ty.isWebAssemblyReferenceType()) {
995 Diag(ThrowLoc, diag::err_wasm_reftype_tc) << 0 << E->getSourceRange();
996 return true;
999 // Cannot throw WebAssembly table.
1000 if (isPointer && Ty.isWebAssemblyReferenceType()) {
1001 Diag(ThrowLoc, diag::err_wasm_table_art) << 2 << E->getSourceRange();
1002 return true;
1005 if (!isPointer || !Ty->isVoidType()) {
1006 if (RequireCompleteType(ThrowLoc, Ty,
1007 isPointer ? diag::err_throw_incomplete_ptr
1008 : diag::err_throw_incomplete,
1009 E->getSourceRange()))
1010 return true;
1012 if (!isPointer && Ty->isSizelessType()) {
1013 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
1014 return true;
1017 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
1018 diag::err_throw_abstract_type, E))
1019 return true;
1022 // If the exception has class type, we need additional handling.
1023 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1024 if (!RD)
1025 return false;
1027 // If we are throwing a polymorphic class type or pointer thereof,
1028 // exception handling will make use of the vtable.
1029 MarkVTableUsed(ThrowLoc, RD);
1031 // If a pointer is thrown, the referenced object will not be destroyed.
1032 if (isPointer)
1033 return false;
1035 // If the class has a destructor, we must be able to call it.
1036 if (!RD->hasIrrelevantDestructor()) {
1037 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1038 MarkFunctionReferenced(E->getExprLoc(), Destructor);
1039 CheckDestructorAccess(E->getExprLoc(), Destructor,
1040 PDiag(diag::err_access_dtor_exception) << Ty);
1041 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1042 return true;
1046 // The MSVC ABI creates a list of all types which can catch the exception
1047 // object. This list also references the appropriate copy constructor to call
1048 // if the object is caught by value and has a non-trivial copy constructor.
1049 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1050 // We are only interested in the public, unambiguous bases contained within
1051 // the exception object. Bases which are ambiguous or otherwise
1052 // inaccessible are not catchable types.
1053 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1054 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1056 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1057 // Attempt to lookup the copy constructor. Various pieces of machinery
1058 // will spring into action, like template instantiation, which means this
1059 // cannot be a simple walk of the class's decls. Instead, we must perform
1060 // lookup and overload resolution.
1061 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1062 if (!CD || CD->isDeleted())
1063 continue;
1065 // Mark the constructor referenced as it is used by this throw expression.
1066 MarkFunctionReferenced(E->getExprLoc(), CD);
1068 // Skip this copy constructor if it is trivial, we don't need to record it
1069 // in the catchable type data.
1070 if (CD->isTrivial())
1071 continue;
1073 // The copy constructor is non-trivial, create a mapping from this class
1074 // type to this constructor.
1075 // N.B. The selection of copy constructor is not sensitive to this
1076 // particular throw-site. Lookup will be performed at the catch-site to
1077 // ensure that the copy constructor is, in fact, accessible (via
1078 // friendship or any other means).
1079 Context.addCopyConstructorForExceptionObject(Subobject, CD);
1081 // We don't keep the instantiated default argument expressions around so
1082 // we must rebuild them here.
1083 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1084 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1085 return true;
1090 // Under the Itanium C++ ABI, memory for the exception object is allocated by
1091 // the runtime with no ability for the compiler to request additional
1092 // alignment. Warn if the exception type requires alignment beyond the minimum
1093 // guaranteed by the target C++ runtime.
1094 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1095 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1096 CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1097 if (ExnObjAlign < TypeAlign) {
1098 Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1099 Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1100 << Ty << (unsigned)TypeAlign.getQuantity()
1101 << (unsigned)ExnObjAlign.getQuantity();
1105 return false;
1108 static QualType adjustCVQualifiersForCXXThisWithinLambda(
1109 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1110 DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1112 QualType ClassType = ThisTy->getPointeeType();
1113 LambdaScopeInfo *CurLSI = nullptr;
1114 DeclContext *CurDC = CurSemaContext;
1116 // Iterate through the stack of lambdas starting from the innermost lambda to
1117 // the outermost lambda, checking if '*this' is ever captured by copy - since
1118 // that could change the cv-qualifiers of the '*this' object.
1119 // The object referred to by '*this' starts out with the cv-qualifiers of its
1120 // member function. We then start with the innermost lambda and iterate
1121 // outward checking to see if any lambda performs a by-copy capture of '*this'
1122 // - and if so, any nested lambda must respect the 'constness' of that
1123 // capturing lamdbda's call operator.
1126 // Since the FunctionScopeInfo stack is representative of the lexical
1127 // nesting of the lambda expressions during initial parsing (and is the best
1128 // place for querying information about captures about lambdas that are
1129 // partially processed) and perhaps during instantiation of function templates
1130 // that contain lambda expressions that need to be transformed BUT not
1131 // necessarily during instantiation of a nested generic lambda's function call
1132 // operator (which might even be instantiated at the end of the TU) - at which
1133 // time the DeclContext tree is mature enough to query capture information
1134 // reliably - we use a two pronged approach to walk through all the lexically
1135 // enclosing lambda expressions:
1137 // 1) Climb down the FunctionScopeInfo stack as long as each item represents
1138 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1139 // enclosed by the call-operator of the LSI below it on the stack (while
1140 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
1141 // the stack represents the innermost lambda.
1143 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1144 // represents a lambda's call operator. If it does, we must be instantiating
1145 // a generic lambda's call operator (represented by the Current LSI, and
1146 // should be the only scenario where an inconsistency between the LSI and the
1147 // DeclContext should occur), so climb out the DeclContexts if they
1148 // represent lambdas, while querying the corresponding closure types
1149 // regarding capture information.
1151 // 1) Climb down the function scope info stack.
1152 for (int I = FunctionScopes.size();
1153 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1154 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1155 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1156 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1157 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1159 if (!CurLSI->isCXXThisCaptured())
1160 continue;
1162 auto C = CurLSI->getCXXThisCapture();
1164 if (C.isCopyCapture()) {
1165 if (CurLSI->lambdaCaptureShouldBeConst())
1166 ClassType.addConst();
1167 return ASTCtx.getPointerType(ClassType);
1171 // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
1172 // can happen during instantiation of its nested generic lambda call
1173 // operator); 2. if we're in a lambda scope (lambda body).
1174 if (CurLSI && isLambdaCallOperator(CurDC)) {
1175 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&
1176 "While computing 'this' capture-type for a generic lambda, when we "
1177 "run out of enclosing LSI's, yet the enclosing DC is a "
1178 "lambda-call-operator we must be (i.e. Current LSI) in a generic "
1179 "lambda call oeprator");
1180 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
1182 auto IsThisCaptured =
1183 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1184 IsConst = false;
1185 IsByCopy = false;
1186 for (auto &&C : Closure->captures()) {
1187 if (C.capturesThis()) {
1188 if (C.getCaptureKind() == LCK_StarThis)
1189 IsByCopy = true;
1190 if (Closure->getLambdaCallOperator()->isConst())
1191 IsConst = true;
1192 return true;
1195 return false;
1198 bool IsByCopyCapture = false;
1199 bool IsConstCapture = false;
1200 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1201 while (Closure &&
1202 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1203 if (IsByCopyCapture) {
1204 if (IsConstCapture)
1205 ClassType.addConst();
1206 return ASTCtx.getPointerType(ClassType);
1208 Closure = isLambdaCallOperator(Closure->getParent())
1209 ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1210 : nullptr;
1213 return ASTCtx.getPointerType(ClassType);
1216 QualType Sema::getCurrentThisType() {
1217 DeclContext *DC = getFunctionLevelDeclContext();
1218 QualType ThisTy = CXXThisTypeOverride;
1220 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1221 if (method && method->isImplicitObjectMemberFunction())
1222 ThisTy = method->getThisType().getNonReferenceType();
1225 if (ThisTy.isNull() && isLambdaCallWithImplicitObjectParameter(CurContext) &&
1226 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1228 // This is a lambda call operator that is being instantiated as a default
1229 // initializer. DC must point to the enclosing class type, so we can recover
1230 // the 'this' type from it.
1231 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1232 // There are no cv-qualifiers for 'this' within default initializers,
1233 // per [expr.prim.general]p4.
1234 ThisTy = Context.getPointerType(ClassTy);
1237 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1238 // might need to be adjusted if the lambda or any of its enclosing lambda's
1239 // captures '*this' by copy.
1240 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1241 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1242 CurContext, Context);
1243 return ThisTy;
1246 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1247 Decl *ContextDecl,
1248 Qualifiers CXXThisTypeQuals,
1249 bool Enabled)
1250 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1252 if (!Enabled || !ContextDecl)
1253 return;
1255 CXXRecordDecl *Record = nullptr;
1256 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1257 Record = Template->getTemplatedDecl();
1258 else
1259 Record = cast<CXXRecordDecl>(ContextDecl);
1261 QualType T = S.Context.getRecordType(Record);
1262 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1264 S.CXXThisTypeOverride =
1265 S.Context.getLangOpts().HLSL ? T : S.Context.getPointerType(T);
1267 this->Enabled = true;
1271 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1272 if (Enabled) {
1273 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1277 static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1278 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
1279 assert(!LSI->isCXXThisCaptured());
1280 // [=, this] {}; // until C++20: Error: this when = is the default
1281 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1282 !Sema.getLangOpts().CPlusPlus20)
1283 return;
1284 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1285 << FixItHint::CreateInsertion(
1286 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1289 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1290 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1291 const bool ByCopy) {
1292 // We don't need to capture this in an unevaluated context.
1293 if (isUnevaluatedContext() && !Explicit)
1294 return true;
1296 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
1298 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1299 ? *FunctionScopeIndexToStopAt
1300 : FunctionScopes.size() - 1;
1302 // Check that we can capture the *enclosing object* (referred to by '*this')
1303 // by the capturing-entity/closure (lambda/block/etc) at
1304 // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1306 // Note: The *enclosing object* can only be captured by-value by a
1307 // closure that is a lambda, using the explicit notation:
1308 // [*this] { ... }.
1309 // Every other capture of the *enclosing object* results in its by-reference
1310 // capture.
1312 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1313 // stack), we can capture the *enclosing object* only if:
1314 // - 'L' has an explicit byref or byval capture of the *enclosing object*
1315 // - or, 'L' has an implicit capture.
1316 // AND
1317 // -- there is no enclosing closure
1318 // -- or, there is some enclosing closure 'E' that has already captured the
1319 // *enclosing object*, and every intervening closure (if any) between 'E'
1320 // and 'L' can implicitly capture the *enclosing object*.
1321 // -- or, every enclosing closure can implicitly capture the
1322 // *enclosing object*
1325 unsigned NumCapturingClosures = 0;
1326 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1327 if (CapturingScopeInfo *CSI =
1328 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1329 if (CSI->CXXThisCaptureIndex != 0) {
1330 // 'this' is already being captured; there isn't anything more to do.
1331 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1332 break;
1334 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1335 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1336 // This context can't implicitly capture 'this'; fail out.
1337 if (BuildAndDiagnose) {
1338 LSI->CallOperator->setInvalidDecl();
1339 Diag(Loc, diag::err_this_capture)
1340 << (Explicit && idx == MaxFunctionScopesIndex);
1341 if (!Explicit)
1342 buildLambdaThisCaptureFixit(*this, LSI);
1344 return true;
1346 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1347 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1348 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1349 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1350 (Explicit && idx == MaxFunctionScopesIndex)) {
1351 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1352 // iteration through can be an explicit capture, all enclosing closures,
1353 // if any, must perform implicit captures.
1355 // This closure can capture 'this'; continue looking upwards.
1356 NumCapturingClosures++;
1357 continue;
1359 // This context can't implicitly capture 'this'; fail out.
1360 if (BuildAndDiagnose) {
1361 LSI->CallOperator->setInvalidDecl();
1362 Diag(Loc, diag::err_this_capture)
1363 << (Explicit && idx == MaxFunctionScopesIndex);
1365 if (!Explicit)
1366 buildLambdaThisCaptureFixit(*this, LSI);
1367 return true;
1369 break;
1371 if (!BuildAndDiagnose) return false;
1373 // If we got here, then the closure at MaxFunctionScopesIndex on the
1374 // FunctionScopes stack, can capture the *enclosing object*, so capture it
1375 // (including implicit by-reference captures in any enclosing closures).
1377 // In the loop below, respect the ByCopy flag only for the closure requesting
1378 // the capture (i.e. first iteration through the loop below). Ignore it for
1379 // all enclosing closure's up to NumCapturingClosures (since they must be
1380 // implicitly capturing the *enclosing object* by reference (see loop
1381 // above)).
1382 assert((!ByCopy ||
1383 isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
1384 "Only a lambda can capture the enclosing object (referred to by "
1385 "*this) by copy");
1386 QualType ThisTy = getCurrentThisType();
1387 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1388 --idx, --NumCapturingClosures) {
1389 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1391 // The type of the corresponding data member (not a 'this' pointer if 'by
1392 // copy').
1393 QualType CaptureType = ByCopy ? ThisTy->getPointeeType() : ThisTy;
1395 bool isNested = NumCapturingClosures > 1;
1396 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1398 return false;
1401 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1402 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1403 /// is a non-lvalue expression whose value is the address of the object for
1404 /// which the function is called.
1405 QualType ThisTy = getCurrentThisType();
1407 if (ThisTy.isNull()) {
1408 DeclContext *DC = getFunctionLevelDeclContext();
1410 if (const auto *Method = dyn_cast<CXXMethodDecl>(DC);
1411 Method && Method->isExplicitObjectMemberFunction()) {
1412 return Diag(Loc, diag::err_invalid_this_use) << 1;
1415 if (isLambdaCallWithExplicitObjectParameter(CurContext))
1416 return Diag(Loc, diag::err_invalid_this_use) << 1;
1418 return Diag(Loc, diag::err_invalid_this_use) << 0;
1421 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1424 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1425 bool IsImplicit) {
1426 auto *This = CXXThisExpr::Create(Context, Loc, Type, IsImplicit);
1427 MarkThisReferenced(This);
1428 return This;
1431 void Sema::MarkThisReferenced(CXXThisExpr *This) {
1432 CheckCXXThisCapture(This->getExprLoc());
1435 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1436 // If we're outside the body of a member function, then we'll have a specified
1437 // type for 'this'.
1438 if (CXXThisTypeOverride.isNull())
1439 return false;
1441 // Determine whether we're looking into a class that's currently being
1442 // defined.
1443 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1444 return Class && Class->isBeingDefined();
1447 /// Parse construction of a specified type.
1448 /// Can be interpreted either as function-style casting ("int(x)")
1449 /// or class type construction ("ClassType(x,y,z)")
1450 /// or creation of a value-initialized type ("int()").
1451 ExprResult
1452 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1453 SourceLocation LParenOrBraceLoc,
1454 MultiExprArg exprs,
1455 SourceLocation RParenOrBraceLoc,
1456 bool ListInitialization) {
1457 if (!TypeRep)
1458 return ExprError();
1460 TypeSourceInfo *TInfo;
1461 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1462 if (!TInfo)
1463 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1465 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1466 RParenOrBraceLoc, ListInitialization);
1467 // Avoid creating a non-type-dependent expression that contains typos.
1468 // Non-type-dependent expressions are liable to be discarded without
1469 // checking for embedded typos.
1470 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1471 !Result.get()->isTypeDependent())
1472 Result = CorrectDelayedTyposInExpr(Result.get());
1473 else if (Result.isInvalid())
1474 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(),
1475 RParenOrBraceLoc, exprs, Ty);
1476 return Result;
1479 ExprResult
1480 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1481 SourceLocation LParenOrBraceLoc,
1482 MultiExprArg Exprs,
1483 SourceLocation RParenOrBraceLoc,
1484 bool ListInitialization) {
1485 QualType Ty = TInfo->getType();
1486 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1488 assert((!ListInitialization || Exprs.size() == 1) &&
1489 "List initialization must have exactly one expression.");
1490 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1492 InitializedEntity Entity =
1493 InitializedEntity::InitializeTemporary(Context, TInfo);
1494 InitializationKind Kind =
1495 Exprs.size()
1496 ? ListInitialization
1497 ? InitializationKind::CreateDirectList(
1498 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1499 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1500 RParenOrBraceLoc)
1501 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1502 RParenOrBraceLoc);
1504 // C++17 [expr.type.conv]p1:
1505 // If the type is a placeholder for a deduced class type, [...perform class
1506 // template argument deduction...]
1507 // C++23:
1508 // Otherwise, if the type contains a placeholder type, it is replaced by the
1509 // type determined by placeholder type deduction.
1510 DeducedType *Deduced = Ty->getContainedDeducedType();
1511 if (Deduced && !Deduced->isDeduced() &&
1512 isa<DeducedTemplateSpecializationType>(Deduced)) {
1513 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1514 Kind, Exprs);
1515 if (Ty.isNull())
1516 return ExprError();
1517 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1518 } else if (Deduced && !Deduced->isDeduced()) {
1519 MultiExprArg Inits = Exprs;
1520 if (ListInitialization) {
1521 auto *ILE = cast<InitListExpr>(Exprs[0]);
1522 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
1525 if (Inits.empty())
1526 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression)
1527 << Ty << FullRange);
1528 if (Inits.size() > 1) {
1529 Expr *FirstBad = Inits[1];
1530 return ExprError(Diag(FirstBad->getBeginLoc(),
1531 diag::err_auto_expr_init_multiple_expressions)
1532 << Ty << FullRange);
1534 if (getLangOpts().CPlusPlus23) {
1535 if (Ty->getAs<AutoType>())
1536 Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange;
1538 Expr *Deduce = Inits[0];
1539 if (isa<InitListExpr>(Deduce))
1540 return ExprError(
1541 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
1542 << ListInitialization << Ty << FullRange);
1543 QualType DeducedType;
1544 TemplateDeductionInfo Info(Deduce->getExprLoc());
1545 TemplateDeductionResult Result =
1546 DeduceAutoType(TInfo->getTypeLoc(), Deduce, DeducedType, Info);
1547 if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed)
1548 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure)
1549 << Ty << Deduce->getType() << FullRange
1550 << Deduce->getSourceRange());
1551 if (DeducedType.isNull()) {
1552 assert(Result == TDK_AlreadyDiagnosed);
1553 return ExprError();
1556 Ty = DeducedType;
1557 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1560 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs))
1561 return CXXUnresolvedConstructExpr::Create(
1562 Context, Ty.getNonReferenceType(), TInfo, LParenOrBraceLoc, Exprs,
1563 RParenOrBraceLoc, ListInitialization);
1565 // C++ [expr.type.conv]p1:
1566 // If the expression list is a parenthesized single expression, the type
1567 // conversion expression is equivalent (in definedness, and if defined in
1568 // meaning) to the corresponding cast expression.
1569 if (Exprs.size() == 1 && !ListInitialization &&
1570 !isa<InitListExpr>(Exprs[0])) {
1571 Expr *Arg = Exprs[0];
1572 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1573 RParenOrBraceLoc);
1576 // For an expression of the form T(), T shall not be an array type.
1577 QualType ElemTy = Ty;
1578 if (Ty->isArrayType()) {
1579 if (!ListInitialization)
1580 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1581 << FullRange);
1582 ElemTy = Context.getBaseElementType(Ty);
1585 // Only construct objects with object types.
1586 // The standard doesn't explicitly forbid function types here, but that's an
1587 // obvious oversight, as there's no way to dynamically construct a function
1588 // in general.
1589 if (Ty->isFunctionType())
1590 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1591 << Ty << FullRange);
1593 // C++17 [expr.type.conv]p2:
1594 // If the type is cv void and the initializer is (), the expression is a
1595 // prvalue of the specified type that performs no initialization.
1596 if (!Ty->isVoidType() &&
1597 RequireCompleteType(TyBeginLoc, ElemTy,
1598 diag::err_invalid_incomplete_type_use, FullRange))
1599 return ExprError();
1601 // Otherwise, the expression is a prvalue of the specified type whose
1602 // result object is direct-initialized (11.6) with the initializer.
1603 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1604 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1606 if (Result.isInvalid())
1607 return Result;
1609 Expr *Inner = Result.get();
1610 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1611 Inner = BTE->getSubExpr();
1612 if (auto *CE = dyn_cast<ConstantExpr>(Inner);
1613 CE && CE->isImmediateInvocation())
1614 Inner = CE->getSubExpr();
1615 if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1616 !isa<CXXScalarValueInitExpr>(Inner)) {
1617 // If we created a CXXTemporaryObjectExpr, that node also represents the
1618 // functional cast. Otherwise, create an explicit cast to represent
1619 // the syntactic form of a functional-style cast that was used here.
1621 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1622 // would give a more consistent AST representation than using a
1623 // CXXTemporaryObjectExpr. It's also weird that the functional cast
1624 // is sometimes handled by initialization and sometimes not.
1625 QualType ResultType = Result.get()->getType();
1626 SourceRange Locs = ListInitialization
1627 ? SourceRange()
1628 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1629 Result = CXXFunctionalCastExpr::Create(
1630 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1631 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
1632 Locs.getBegin(), Locs.getEnd());
1635 return Result;
1638 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1639 // [CUDA] Ignore this function, if we can't call it.
1640 const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
1641 if (getLangOpts().CUDA) {
1642 auto CallPreference = IdentifyCUDAPreference(Caller, Method);
1643 // If it's not callable at all, it's not the right function.
1644 if (CallPreference < CFP_WrongSide)
1645 return false;
1646 if (CallPreference == CFP_WrongSide) {
1647 // Maybe. We have to check if there are better alternatives.
1648 DeclContext::lookup_result R =
1649 Method->getDeclContext()->lookup(Method->getDeclName());
1650 for (const auto *D : R) {
1651 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1652 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide)
1653 return false;
1656 // We've found no better variants.
1660 SmallVector<const FunctionDecl*, 4> PreventedBy;
1661 bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1663 if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1664 return Result;
1666 // In case of CUDA, return true if none of the 1-argument deallocator
1667 // functions are actually callable.
1668 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1669 assert(FD->getNumParams() == 1 &&
1670 "Only single-operand functions should be in PreventedBy");
1671 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1675 /// Determine whether the given function is a non-placement
1676 /// deallocation function.
1677 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1678 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1679 return S.isUsualDeallocationFunction(Method);
1681 if (FD->getOverloadedOperator() != OO_Delete &&
1682 FD->getOverloadedOperator() != OO_Array_Delete)
1683 return false;
1685 unsigned UsualParams = 1;
1687 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1688 S.Context.hasSameUnqualifiedType(
1689 FD->getParamDecl(UsualParams)->getType(),
1690 S.Context.getSizeType()))
1691 ++UsualParams;
1693 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1694 S.Context.hasSameUnqualifiedType(
1695 FD->getParamDecl(UsualParams)->getType(),
1696 S.Context.getTypeDeclType(S.getStdAlignValT())))
1697 ++UsualParams;
1699 return UsualParams == FD->getNumParams();
1702 namespace {
1703 struct UsualDeallocFnInfo {
1704 UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1705 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1706 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1707 Destroying(false), HasSizeT(false), HasAlignValT(false),
1708 CUDAPref(Sema::CFP_Native) {
1709 // A function template declaration is never a usual deallocation function.
1710 if (!FD)
1711 return;
1712 unsigned NumBaseParams = 1;
1713 if (FD->isDestroyingOperatorDelete()) {
1714 Destroying = true;
1715 ++NumBaseParams;
1718 if (NumBaseParams < FD->getNumParams() &&
1719 S.Context.hasSameUnqualifiedType(
1720 FD->getParamDecl(NumBaseParams)->getType(),
1721 S.Context.getSizeType())) {
1722 ++NumBaseParams;
1723 HasSizeT = true;
1726 if (NumBaseParams < FD->getNumParams() &&
1727 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1728 ++NumBaseParams;
1729 HasAlignValT = true;
1732 // In CUDA, determine how much we'd like / dislike to call this.
1733 if (S.getLangOpts().CUDA)
1734 CUDAPref = S.IdentifyCUDAPreference(
1735 S.getCurFunctionDecl(/*AllowLambda=*/true), FD);
1738 explicit operator bool() const { return FD; }
1740 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1741 bool WantAlign) const {
1742 // C++ P0722:
1743 // A destroying operator delete is preferred over a non-destroying
1744 // operator delete.
1745 if (Destroying != Other.Destroying)
1746 return Destroying;
1748 // C++17 [expr.delete]p10:
1749 // If the type has new-extended alignment, a function with a parameter
1750 // of type std::align_val_t is preferred; otherwise a function without
1751 // such a parameter is preferred
1752 if (HasAlignValT != Other.HasAlignValT)
1753 return HasAlignValT == WantAlign;
1755 if (HasSizeT != Other.HasSizeT)
1756 return HasSizeT == WantSize;
1758 // Use CUDA call preference as a tiebreaker.
1759 return CUDAPref > Other.CUDAPref;
1762 DeclAccessPair Found;
1763 FunctionDecl *FD;
1764 bool Destroying, HasSizeT, HasAlignValT;
1765 Sema::CUDAFunctionPreference CUDAPref;
1769 /// Determine whether a type has new-extended alignment. This may be called when
1770 /// the type is incomplete (for a delete-expression with an incomplete pointee
1771 /// type), in which case it will conservatively return false if the alignment is
1772 /// not known.
1773 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1774 return S.getLangOpts().AlignedAllocation &&
1775 S.getASTContext().getTypeAlignIfKnown(AllocType) >
1776 S.getASTContext().getTargetInfo().getNewAlign();
1779 /// Select the correct "usual" deallocation function to use from a selection of
1780 /// deallocation functions (either global or class-scope).
1781 static UsualDeallocFnInfo resolveDeallocationOverload(
1782 Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1783 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1784 UsualDeallocFnInfo Best;
1786 for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1787 UsualDeallocFnInfo Info(S, I.getPair());
1788 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1789 Info.CUDAPref == Sema::CFP_Never)
1790 continue;
1792 if (!Best) {
1793 Best = Info;
1794 if (BestFns)
1795 BestFns->push_back(Info);
1796 continue;
1799 if (Best.isBetterThan(Info, WantSize, WantAlign))
1800 continue;
1802 // If more than one preferred function is found, all non-preferred
1803 // functions are eliminated from further consideration.
1804 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1805 BestFns->clear();
1807 Best = Info;
1808 if (BestFns)
1809 BestFns->push_back(Info);
1812 return Best;
1815 /// Determine whether a given type is a class for which 'delete[]' would call
1816 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1817 /// we need to store the array size (even if the type is
1818 /// trivially-destructible).
1819 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1820 QualType allocType) {
1821 const RecordType *record =
1822 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1823 if (!record) return false;
1825 // Try to find an operator delete[] in class scope.
1827 DeclarationName deleteName =
1828 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1829 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1830 S.LookupQualifiedName(ops, record->getDecl());
1832 // We're just doing this for information.
1833 ops.suppressDiagnostics();
1835 // Very likely: there's no operator delete[].
1836 if (ops.empty()) return false;
1838 // If it's ambiguous, it should be illegal to call operator delete[]
1839 // on this thing, so it doesn't matter if we allocate extra space or not.
1840 if (ops.isAmbiguous()) return false;
1842 // C++17 [expr.delete]p10:
1843 // If the deallocation functions have class scope, the one without a
1844 // parameter of type std::size_t is selected.
1845 auto Best = resolveDeallocationOverload(
1846 S, ops, /*WantSize*/false,
1847 /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1848 return Best && Best.HasSizeT;
1851 /// Parsed a C++ 'new' expression (C++ 5.3.4).
1853 /// E.g.:
1854 /// @code new (memory) int[size][4] @endcode
1855 /// or
1856 /// @code ::new Foo(23, "hello") @endcode
1858 /// \param StartLoc The first location of the expression.
1859 /// \param UseGlobal True if 'new' was prefixed with '::'.
1860 /// \param PlacementLParen Opening paren of the placement arguments.
1861 /// \param PlacementArgs Placement new arguments.
1862 /// \param PlacementRParen Closing paren of the placement arguments.
1863 /// \param TypeIdParens If the type is in parens, the source range.
1864 /// \param D The type to be allocated, as well as array dimensions.
1865 /// \param Initializer The initializing expression or initializer-list, or null
1866 /// if there is none.
1867 ExprResult
1868 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1869 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1870 SourceLocation PlacementRParen, SourceRange TypeIdParens,
1871 Declarator &D, Expr *Initializer) {
1872 std::optional<Expr *> ArraySize;
1873 // If the specified type is an array, unwrap it and save the expression.
1874 if (D.getNumTypeObjects() > 0 &&
1875 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1876 DeclaratorChunk &Chunk = D.getTypeObject(0);
1877 if (D.getDeclSpec().hasAutoTypeSpec())
1878 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1879 << D.getSourceRange());
1880 if (Chunk.Arr.hasStatic)
1881 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1882 << D.getSourceRange());
1883 if (!Chunk.Arr.NumElts && !Initializer)
1884 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1885 << D.getSourceRange());
1887 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1888 D.DropFirstTypeObject();
1891 // Every dimension shall be of constant size.
1892 if (ArraySize) {
1893 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1894 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1895 break;
1897 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1898 if (Expr *NumElts = (Expr *)Array.NumElts) {
1899 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1900 // FIXME: GCC permits constant folding here. We should either do so consistently
1901 // or not do so at all, rather than changing behavior in C++14 onwards.
1902 if (getLangOpts().CPlusPlus14) {
1903 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1904 // shall be a converted constant expression (5.19) of type std::size_t
1905 // and shall evaluate to a strictly positive value.
1906 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
1907 Array.NumElts
1908 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1909 CCEK_ArrayBound)
1910 .get();
1911 } else {
1912 Array.NumElts =
1913 VerifyIntegerConstantExpression(
1914 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold)
1915 .get();
1917 if (!Array.NumElts)
1918 return ExprError();
1924 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1925 QualType AllocType = TInfo->getType();
1926 if (D.isInvalidType())
1927 return ExprError();
1929 SourceRange DirectInitRange;
1930 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1931 DirectInitRange = List->getSourceRange();
1933 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1934 PlacementLParen, PlacementArgs, PlacementRParen,
1935 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1936 Initializer);
1939 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1940 Expr *Init) {
1941 if (!Init)
1942 return true;
1943 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1944 return PLE->getNumExprs() == 0;
1945 if (isa<ImplicitValueInitExpr>(Init))
1946 return true;
1947 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1948 return !CCE->isListInitialization() &&
1949 CCE->getConstructor()->isDefaultConstructor();
1950 else if (Style == CXXNewExpr::ListInit) {
1951 assert(isa<InitListExpr>(Init) &&
1952 "Shouldn't create list CXXConstructExprs for arrays.");
1953 return true;
1955 return false;
1958 bool
1959 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1960 if (!getLangOpts().AlignedAllocationUnavailable)
1961 return false;
1962 if (FD.isDefined())
1963 return false;
1964 std::optional<unsigned> AlignmentParam;
1965 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) &&
1966 AlignmentParam)
1967 return true;
1968 return false;
1971 // Emit a diagnostic if an aligned allocation/deallocation function that is not
1972 // implemented in the standard library is selected.
1973 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1974 SourceLocation Loc) {
1975 if (isUnavailableAlignedAllocationFunction(FD)) {
1976 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1977 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1978 getASTContext().getTargetInfo().getPlatformName());
1979 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS());
1981 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1982 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1983 Diag(Loc, diag::err_aligned_allocation_unavailable)
1984 << IsDelete << FD.getType().getAsString() << OSName
1985 << OSVersion.getAsString() << OSVersion.empty();
1986 Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1990 ExprResult Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1991 SourceLocation PlacementLParen,
1992 MultiExprArg PlacementArgs,
1993 SourceLocation PlacementRParen,
1994 SourceRange TypeIdParens, QualType AllocType,
1995 TypeSourceInfo *AllocTypeInfo,
1996 std::optional<Expr *> ArraySize,
1997 SourceRange DirectInitRange, Expr *Initializer) {
1998 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1999 SourceLocation StartLoc = Range.getBegin();
2001 CXXNewExpr::InitializationStyle initStyle;
2002 if (DirectInitRange.isValid()) {
2003 assert(Initializer && "Have parens but no initializer.");
2004 initStyle = CXXNewExpr::CallInit;
2005 } else if (Initializer && isa<InitListExpr>(Initializer))
2006 initStyle = CXXNewExpr::ListInit;
2007 else {
2008 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
2009 isa<CXXConstructExpr>(Initializer)) &&
2010 "Initializer expression that cannot have been implicitly created.");
2011 initStyle = CXXNewExpr::NoInit;
2014 MultiExprArg Exprs(&Initializer, Initializer ? 1 : 0);
2015 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
2016 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
2017 Exprs = MultiExprArg(List->getExprs(), List->getNumExprs());
2020 // C++11 [expr.new]p15:
2021 // A new-expression that creates an object of type T initializes that
2022 // object as follows:
2023 InitializationKind Kind
2024 // - If the new-initializer is omitted, the object is default-
2025 // initialized (8.5); if no initialization is performed,
2026 // the object has indeterminate value
2027 = initStyle == CXXNewExpr::NoInit
2028 ? InitializationKind::CreateDefault(TypeRange.getBegin())
2029 // - Otherwise, the new-initializer is interpreted according to
2030 // the
2031 // initialization rules of 8.5 for direct-initialization.
2032 : initStyle == CXXNewExpr::ListInit
2033 ? InitializationKind::CreateDirectList(
2034 TypeRange.getBegin(), Initializer->getBeginLoc(),
2035 Initializer->getEndLoc())
2036 : InitializationKind::CreateDirect(TypeRange.getBegin(),
2037 DirectInitRange.getBegin(),
2038 DirectInitRange.getEnd());
2040 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
2041 auto *Deduced = AllocType->getContainedDeducedType();
2042 if (Deduced && !Deduced->isDeduced() &&
2043 isa<DeducedTemplateSpecializationType>(Deduced)) {
2044 if (ArraySize)
2045 return ExprError(
2046 Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
2047 diag::err_deduced_class_template_compound_type)
2048 << /*array*/ 2
2049 << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
2051 InitializedEntity Entity
2052 = InitializedEntity::InitializeNew(StartLoc, AllocType);
2053 AllocType = DeduceTemplateSpecializationFromInitializer(
2054 AllocTypeInfo, Entity, Kind, Exprs);
2055 if (AllocType.isNull())
2056 return ExprError();
2057 } else if (Deduced && !Deduced->isDeduced()) {
2058 MultiExprArg Inits = Exprs;
2059 bool Braced = (initStyle == CXXNewExpr::ListInit);
2060 if (Braced) {
2061 auto *ILE = cast<InitListExpr>(Exprs[0]);
2062 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
2065 if (initStyle == CXXNewExpr::NoInit || Inits.empty())
2066 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
2067 << AllocType << TypeRange);
2068 if (Inits.size() > 1) {
2069 Expr *FirstBad = Inits[1];
2070 return ExprError(Diag(FirstBad->getBeginLoc(),
2071 diag::err_auto_new_ctor_multiple_expressions)
2072 << AllocType << TypeRange);
2074 if (Braced && !getLangOpts().CPlusPlus17)
2075 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
2076 << AllocType << TypeRange;
2077 Expr *Deduce = Inits[0];
2078 if (isa<InitListExpr>(Deduce))
2079 return ExprError(
2080 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
2081 << Braced << AllocType << TypeRange);
2082 QualType DeducedType;
2083 TemplateDeductionInfo Info(Deduce->getExprLoc());
2084 TemplateDeductionResult Result =
2085 DeduceAutoType(AllocTypeInfo->getTypeLoc(), Deduce, DeducedType, Info);
2086 if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed)
2087 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
2088 << AllocType << Deduce->getType() << TypeRange
2089 << Deduce->getSourceRange());
2090 if (DeducedType.isNull()) {
2091 assert(Result == TDK_AlreadyDiagnosed);
2092 return ExprError();
2094 AllocType = DeducedType;
2097 // Per C++0x [expr.new]p5, the type being constructed may be a
2098 // typedef of an array type.
2099 if (!ArraySize) {
2100 if (const ConstantArrayType *Array
2101 = Context.getAsConstantArrayType(AllocType)) {
2102 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
2103 Context.getSizeType(),
2104 TypeRange.getEnd());
2105 AllocType = Array->getElementType();
2109 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
2110 return ExprError();
2112 if (ArraySize && !checkArrayElementAlignment(AllocType, TypeRange.getBegin()))
2113 return ExprError();
2115 // In ARC, infer 'retaining' for the allocated
2116 if (getLangOpts().ObjCAutoRefCount &&
2117 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2118 AllocType->isObjCLifetimeType()) {
2119 AllocType = Context.getLifetimeQualifiedType(AllocType,
2120 AllocType->getObjCARCImplicitLifetime());
2123 QualType ResultType = Context.getPointerType(AllocType);
2125 if (ArraySize && *ArraySize &&
2126 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
2127 ExprResult result = CheckPlaceholderExpr(*ArraySize);
2128 if (result.isInvalid()) return ExprError();
2129 ArraySize = result.get();
2131 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
2132 // integral or enumeration type with a non-negative value."
2133 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
2134 // enumeration type, or a class type for which a single non-explicit
2135 // conversion function to integral or unscoped enumeration type exists.
2136 // C++1y [expr.new]p6: The expression [...] is implicitly converted to
2137 // std::size_t.
2138 std::optional<uint64_t> KnownArraySize;
2139 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
2140 ExprResult ConvertedSize;
2141 if (getLangOpts().CPlusPlus14) {
2142 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
2144 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
2145 AA_Converting);
2147 if (!ConvertedSize.isInvalid() &&
2148 (*ArraySize)->getType()->getAs<RecordType>())
2149 // Diagnose the compatibility of this conversion.
2150 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
2151 << (*ArraySize)->getType() << 0 << "'size_t'";
2152 } else {
2153 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
2154 protected:
2155 Expr *ArraySize;
2157 public:
2158 SizeConvertDiagnoser(Expr *ArraySize)
2159 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
2160 ArraySize(ArraySize) {}
2162 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
2163 QualType T) override {
2164 return S.Diag(Loc, diag::err_array_size_not_integral)
2165 << S.getLangOpts().CPlusPlus11 << T;
2168 SemaDiagnosticBuilder diagnoseIncomplete(
2169 Sema &S, SourceLocation Loc, QualType T) override {
2170 return S.Diag(Loc, diag::err_array_size_incomplete_type)
2171 << T << ArraySize->getSourceRange();
2174 SemaDiagnosticBuilder diagnoseExplicitConv(
2175 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
2176 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
2179 SemaDiagnosticBuilder noteExplicitConv(
2180 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2181 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2182 << ConvTy->isEnumeralType() << ConvTy;
2185 SemaDiagnosticBuilder diagnoseAmbiguous(
2186 Sema &S, SourceLocation Loc, QualType T) override {
2187 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
2190 SemaDiagnosticBuilder noteAmbiguous(
2191 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2192 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2193 << ConvTy->isEnumeralType() << ConvTy;
2196 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2197 QualType T,
2198 QualType ConvTy) override {
2199 return S.Diag(Loc,
2200 S.getLangOpts().CPlusPlus11
2201 ? diag::warn_cxx98_compat_array_size_conversion
2202 : diag::ext_array_size_conversion)
2203 << T << ConvTy->isEnumeralType() << ConvTy;
2205 } SizeDiagnoser(*ArraySize);
2207 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
2208 SizeDiagnoser);
2210 if (ConvertedSize.isInvalid())
2211 return ExprError();
2213 ArraySize = ConvertedSize.get();
2214 QualType SizeType = (*ArraySize)->getType();
2216 if (!SizeType->isIntegralOrUnscopedEnumerationType())
2217 return ExprError();
2219 // C++98 [expr.new]p7:
2220 // The expression in a direct-new-declarator shall have integral type
2221 // with a non-negative value.
2223 // Let's see if this is a constant < 0. If so, we reject it out of hand,
2224 // per CWG1464. Otherwise, if it's not a constant, we must have an
2225 // unparenthesized array type.
2227 // We've already performed any required implicit conversion to integer or
2228 // unscoped enumeration type.
2229 // FIXME: Per CWG1464, we are required to check the value prior to
2230 // converting to size_t. This will never find a negative array size in
2231 // C++14 onwards, because Value is always unsigned here!
2232 if (std::optional<llvm::APSInt> Value =
2233 (*ArraySize)->getIntegerConstantExpr(Context)) {
2234 if (Value->isSigned() && Value->isNegative()) {
2235 return ExprError(Diag((*ArraySize)->getBeginLoc(),
2236 diag::err_typecheck_negative_array_size)
2237 << (*ArraySize)->getSourceRange());
2240 if (!AllocType->isDependentType()) {
2241 unsigned ActiveSizeBits =
2242 ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value);
2243 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2244 return ExprError(
2245 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2246 << toString(*Value, 10) << (*ArraySize)->getSourceRange());
2249 KnownArraySize = Value->getZExtValue();
2250 } else if (TypeIdParens.isValid()) {
2251 // Can't have dynamic array size when the type-id is in parentheses.
2252 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2253 << (*ArraySize)->getSourceRange()
2254 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2255 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2257 TypeIdParens = SourceRange();
2260 // Note that we do *not* convert the argument in any way. It can
2261 // be signed, larger than size_t, whatever.
2264 FunctionDecl *OperatorNew = nullptr;
2265 FunctionDecl *OperatorDelete = nullptr;
2266 unsigned Alignment =
2267 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2268 unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2269 bool PassAlignment = getLangOpts().AlignedAllocation &&
2270 Alignment > NewAlignment;
2272 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2273 if (!AllocType->isDependentType() &&
2274 !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2275 FindAllocationFunctions(
2276 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2277 AllocType, ArraySize.has_value(), PassAlignment, PlacementArgs,
2278 OperatorNew, OperatorDelete))
2279 return ExprError();
2281 // If this is an array allocation, compute whether the usual array
2282 // deallocation function for the type has a size_t parameter.
2283 bool UsualArrayDeleteWantsSize = false;
2284 if (ArraySize && !AllocType->isDependentType())
2285 UsualArrayDeleteWantsSize =
2286 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2288 SmallVector<Expr *, 8> AllPlaceArgs;
2289 if (OperatorNew) {
2290 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2291 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2292 : VariadicDoesNotApply;
2294 // We've already converted the placement args, just fill in any default
2295 // arguments. Skip the first parameter because we don't have a corresponding
2296 // argument. Skip the second parameter too if we're passing in the
2297 // alignment; we've already filled it in.
2298 unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
2299 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2300 NumImplicitArgs, PlacementArgs, AllPlaceArgs,
2301 CallType))
2302 return ExprError();
2304 if (!AllPlaceArgs.empty())
2305 PlacementArgs = AllPlaceArgs;
2307 // We would like to perform some checking on the given `operator new` call,
2308 // but the PlacementArgs does not contain the implicit arguments,
2309 // namely allocation size and maybe allocation alignment,
2310 // so we need to conjure them.
2312 QualType SizeTy = Context.getSizeType();
2313 unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2315 llvm::APInt SingleEltSize(
2316 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity());
2318 // How many bytes do we want to allocate here?
2319 std::optional<llvm::APInt> AllocationSize;
2320 if (!ArraySize && !AllocType->isDependentType()) {
2321 // For non-array operator new, we only want to allocate one element.
2322 AllocationSize = SingleEltSize;
2323 } else if (KnownArraySize && !AllocType->isDependentType()) {
2324 // For array operator new, only deal with static array size case.
2325 bool Overflow;
2326 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
2327 .umul_ov(SingleEltSize, Overflow);
2328 (void)Overflow;
2329 assert(
2330 !Overflow &&
2331 "Expected that all the overflows would have been handled already.");
2334 IntegerLiteral AllocationSizeLiteral(
2335 Context, AllocationSize.value_or(llvm::APInt::getZero(SizeTyWidth)),
2336 SizeTy, SourceLocation());
2337 // Otherwise, if we failed to constant-fold the allocation size, we'll
2338 // just give up and pass-in something opaque, that isn't a null pointer.
2339 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue,
2340 OK_Ordinary, /*SourceExpr=*/nullptr);
2342 // Let's synthesize the alignment argument in case we will need it.
2343 // Since we *really* want to allocate these on stack, this is slightly ugly
2344 // because there might not be a `std::align_val_t` type.
2345 EnumDecl *StdAlignValT = getStdAlignValT();
2346 QualType AlignValT =
2347 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
2348 IntegerLiteral AlignmentLiteral(
2349 Context,
2350 llvm::APInt(Context.getTypeSize(SizeTy),
2351 Alignment / Context.getCharWidth()),
2352 SizeTy, SourceLocation());
2353 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
2354 CK_IntegralCast, &AlignmentLiteral,
2355 VK_PRValue, FPOptionsOverride());
2357 // Adjust placement args by prepending conjured size and alignment exprs.
2358 llvm::SmallVector<Expr *, 8> CallArgs;
2359 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size());
2360 CallArgs.emplace_back(AllocationSize
2361 ? static_cast<Expr *>(&AllocationSizeLiteral)
2362 : &OpaqueAllocationSize);
2363 if (PassAlignment)
2364 CallArgs.emplace_back(&DesiredAlignment);
2365 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end());
2367 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);
2369 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs,
2370 /*IsMemberFunction=*/false, StartLoc, Range, CallType);
2372 // Warn if the type is over-aligned and is being allocated by (unaligned)
2373 // global operator new.
2374 if (PlacementArgs.empty() && !PassAlignment &&
2375 (OperatorNew->isImplicit() ||
2376 (OperatorNew->getBeginLoc().isValid() &&
2377 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2378 if (Alignment > NewAlignment)
2379 Diag(StartLoc, diag::warn_overaligned_type)
2380 << AllocType
2381 << unsigned(Alignment / Context.getCharWidth())
2382 << unsigned(NewAlignment / Context.getCharWidth());
2386 // Array 'new' can't have any initializers except empty parentheses.
2387 // Initializer lists are also allowed, in C++11. Rely on the parser for the
2388 // dialect distinction.
2389 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2390 SourceRange InitRange(Exprs.front()->getBeginLoc(),
2391 Exprs.back()->getEndLoc());
2392 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2393 return ExprError();
2396 // If we can perform the initialization, and we've not already done so,
2397 // do it now.
2398 if (!AllocType->isDependentType() &&
2399 !Expr::hasAnyTypeDependentArguments(Exprs)) {
2400 // The type we initialize is the complete type, including the array bound.
2401 QualType InitType;
2402 if (KnownArraySize)
2403 InitType = Context.getConstantArrayType(
2404 AllocType,
2405 llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2406 *KnownArraySize),
2407 *ArraySize, ArraySizeModifier::Normal, 0);
2408 else if (ArraySize)
2409 InitType = Context.getIncompleteArrayType(AllocType,
2410 ArraySizeModifier::Normal, 0);
2411 else
2412 InitType = AllocType;
2414 InitializedEntity Entity
2415 = InitializedEntity::InitializeNew(StartLoc, InitType);
2416 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
2417 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, Exprs);
2418 if (FullInit.isInvalid())
2419 return ExprError();
2421 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2422 // we don't want the initialized object to be destructed.
2423 // FIXME: We should not create these in the first place.
2424 if (CXXBindTemporaryExpr *Binder =
2425 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2426 FullInit = Binder->getSubExpr();
2428 Initializer = FullInit.get();
2430 // FIXME: If we have a KnownArraySize, check that the array bound of the
2431 // initializer is no greater than that constant value.
2433 if (ArraySize && !*ArraySize) {
2434 auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2435 if (CAT) {
2436 // FIXME: Track that the array size was inferred rather than explicitly
2437 // specified.
2438 ArraySize = IntegerLiteral::Create(
2439 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2440 } else {
2441 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2442 << Initializer->getSourceRange();
2447 // Mark the new and delete operators as referenced.
2448 if (OperatorNew) {
2449 if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2450 return ExprError();
2451 MarkFunctionReferenced(StartLoc, OperatorNew);
2453 if (OperatorDelete) {
2454 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2455 return ExprError();
2456 MarkFunctionReferenced(StartLoc, OperatorDelete);
2459 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2460 PassAlignment, UsualArrayDeleteWantsSize,
2461 PlacementArgs, TypeIdParens, ArraySize, initStyle,
2462 Initializer, ResultType, AllocTypeInfo, Range,
2463 DirectInitRange);
2466 /// Checks that a type is suitable as the allocated type
2467 /// in a new-expression.
2468 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2469 SourceRange R) {
2470 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2471 // abstract class type or array thereof.
2472 if (AllocType->isFunctionType())
2473 return Diag(Loc, diag::err_bad_new_type)
2474 << AllocType << 0 << R;
2475 else if (AllocType->isReferenceType())
2476 return Diag(Loc, diag::err_bad_new_type)
2477 << AllocType << 1 << R;
2478 else if (!AllocType->isDependentType() &&
2479 RequireCompleteSizedType(
2480 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
2481 return true;
2482 else if (RequireNonAbstractType(Loc, AllocType,
2483 diag::err_allocation_of_abstract_type))
2484 return true;
2485 else if (AllocType->isVariablyModifiedType())
2486 return Diag(Loc, diag::err_variably_modified_new_type)
2487 << AllocType;
2488 else if (AllocType.getAddressSpace() != LangAS::Default &&
2489 !getLangOpts().OpenCLCPlusPlus)
2490 return Diag(Loc, diag::err_address_space_qualified_new)
2491 << AllocType.getUnqualifiedType()
2492 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2493 else if (getLangOpts().ObjCAutoRefCount) {
2494 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2495 QualType BaseAllocType = Context.getBaseElementType(AT);
2496 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2497 BaseAllocType->isObjCLifetimeType())
2498 return Diag(Loc, diag::err_arc_new_array_without_ownership)
2499 << BaseAllocType;
2503 return false;
2506 static bool resolveAllocationOverload(
2507 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2508 bool &PassAlignment, FunctionDecl *&Operator,
2509 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2510 OverloadCandidateSet Candidates(R.getNameLoc(),
2511 OverloadCandidateSet::CSK_Normal);
2512 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2513 Alloc != AllocEnd; ++Alloc) {
2514 // Even member operator new/delete are implicitly treated as
2515 // static, so don't use AddMemberCandidate.
2516 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2518 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2519 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2520 /*ExplicitTemplateArgs=*/nullptr, Args,
2521 Candidates,
2522 /*SuppressUserConversions=*/false);
2523 continue;
2526 FunctionDecl *Fn = cast<FunctionDecl>(D);
2527 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2528 /*SuppressUserConversions=*/false);
2531 // Do the resolution.
2532 OverloadCandidateSet::iterator Best;
2533 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2534 case OR_Success: {
2535 // Got one!
2536 FunctionDecl *FnDecl = Best->Function;
2537 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2538 Best->FoundDecl) == Sema::AR_inaccessible)
2539 return true;
2541 Operator = FnDecl;
2542 return false;
2545 case OR_No_Viable_Function:
2546 // C++17 [expr.new]p13:
2547 // If no matching function is found and the allocated object type has
2548 // new-extended alignment, the alignment argument is removed from the
2549 // argument list, and overload resolution is performed again.
2550 if (PassAlignment) {
2551 PassAlignment = false;
2552 AlignArg = Args[1];
2553 Args.erase(Args.begin() + 1);
2554 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2555 Operator, &Candidates, AlignArg,
2556 Diagnose);
2559 // MSVC will fall back on trying to find a matching global operator new
2560 // if operator new[] cannot be found. Also, MSVC will leak by not
2561 // generating a call to operator delete or operator delete[], but we
2562 // will not replicate that bug.
2563 // FIXME: Find out how this interacts with the std::align_val_t fallback
2564 // once MSVC implements it.
2565 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2566 S.Context.getLangOpts().MSVCCompat) {
2567 R.clear();
2568 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2569 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2570 // FIXME: This will give bad diagnostics pointing at the wrong functions.
2571 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2572 Operator, /*Candidates=*/nullptr,
2573 /*AlignArg=*/nullptr, Diagnose);
2576 if (Diagnose) {
2577 // If this is an allocation of the form 'new (p) X' for some object
2578 // pointer p (or an expression that will decay to such a pointer),
2579 // diagnose the missing inclusion of <new>.
2580 if (!R.isClassLookup() && Args.size() == 2 &&
2581 (Args[1]->getType()->isObjectPointerType() ||
2582 Args[1]->getType()->isArrayType())) {
2583 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new)
2584 << R.getLookupName() << Range;
2585 // Listing the candidates is unlikely to be useful; skip it.
2586 return true;
2589 // Finish checking all candidates before we note any. This checking can
2590 // produce additional diagnostics so can't be interleaved with our
2591 // emission of notes.
2593 // For an aligned allocation, separately check the aligned and unaligned
2594 // candidates with their respective argument lists.
2595 SmallVector<OverloadCandidate*, 32> Cands;
2596 SmallVector<OverloadCandidate*, 32> AlignedCands;
2597 llvm::SmallVector<Expr*, 4> AlignedArgs;
2598 if (AlignedCandidates) {
2599 auto IsAligned = [](OverloadCandidate &C) {
2600 return C.Function->getNumParams() > 1 &&
2601 C.Function->getParamDecl(1)->getType()->isAlignValT();
2603 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2605 AlignedArgs.reserve(Args.size() + 1);
2606 AlignedArgs.push_back(Args[0]);
2607 AlignedArgs.push_back(AlignArg);
2608 AlignedArgs.append(Args.begin() + 1, Args.end());
2609 AlignedCands = AlignedCandidates->CompleteCandidates(
2610 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned);
2612 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2613 R.getNameLoc(), IsUnaligned);
2614 } else {
2615 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2616 R.getNameLoc());
2619 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2620 << R.getLookupName() << Range;
2621 if (AlignedCandidates)
2622 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "",
2623 R.getNameLoc());
2624 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc());
2626 return true;
2628 case OR_Ambiguous:
2629 if (Diagnose) {
2630 Candidates.NoteCandidates(
2631 PartialDiagnosticAt(R.getNameLoc(),
2632 S.PDiag(diag::err_ovl_ambiguous_call)
2633 << R.getLookupName() << Range),
2634 S, OCD_AmbiguousCandidates, Args);
2636 return true;
2638 case OR_Deleted: {
2639 if (Diagnose) {
2640 Candidates.NoteCandidates(
2641 PartialDiagnosticAt(R.getNameLoc(),
2642 S.PDiag(diag::err_ovl_deleted_call)
2643 << R.getLookupName() << Range),
2644 S, OCD_AllCandidates, Args);
2646 return true;
2649 llvm_unreachable("Unreachable, bad result from BestViableFunction");
2652 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2653 AllocationFunctionScope NewScope,
2654 AllocationFunctionScope DeleteScope,
2655 QualType AllocType, bool IsArray,
2656 bool &PassAlignment, MultiExprArg PlaceArgs,
2657 FunctionDecl *&OperatorNew,
2658 FunctionDecl *&OperatorDelete,
2659 bool Diagnose) {
2660 // --- Choosing an allocation function ---
2661 // C++ 5.3.4p8 - 14 & 18
2662 // 1) If looking in AFS_Global scope for allocation functions, only look in
2663 // the global scope. Else, if AFS_Class, only look in the scope of the
2664 // allocated class. If AFS_Both, look in both.
2665 // 2) If an array size is given, look for operator new[], else look for
2666 // operator new.
2667 // 3) The first argument is always size_t. Append the arguments from the
2668 // placement form.
2670 SmallVector<Expr*, 8> AllocArgs;
2671 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2673 // We don't care about the actual value of these arguments.
2674 // FIXME: Should the Sema create the expression and embed it in the syntax
2675 // tree? Or should the consumer just recalculate the value?
2676 // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2677 QualType SizeTy = Context.getSizeType();
2678 unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2679 IntegerLiteral Size(Context, llvm::APInt::getZero(SizeTyWidth), SizeTy,
2680 SourceLocation());
2681 AllocArgs.push_back(&Size);
2683 QualType AlignValT = Context.VoidTy;
2684 if (PassAlignment) {
2685 DeclareGlobalNewDelete();
2686 AlignValT = Context.getTypeDeclType(getStdAlignValT());
2688 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2689 if (PassAlignment)
2690 AllocArgs.push_back(&Align);
2692 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2694 // C++ [expr.new]p8:
2695 // If the allocated type is a non-array type, the allocation
2696 // function's name is operator new and the deallocation function's
2697 // name is operator delete. If the allocated type is an array
2698 // type, the allocation function's name is operator new[] and the
2699 // deallocation function's name is operator delete[].
2700 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2701 IsArray ? OO_Array_New : OO_New);
2703 QualType AllocElemType = Context.getBaseElementType(AllocType);
2705 // Find the allocation function.
2707 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2709 // C++1z [expr.new]p9:
2710 // If the new-expression begins with a unary :: operator, the allocation
2711 // function's name is looked up in the global scope. Otherwise, if the
2712 // allocated type is a class type T or array thereof, the allocation
2713 // function's name is looked up in the scope of T.
2714 if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2715 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2717 // We can see ambiguity here if the allocation function is found in
2718 // multiple base classes.
2719 if (R.isAmbiguous())
2720 return true;
2722 // If this lookup fails to find the name, or if the allocated type is not
2723 // a class type, the allocation function's name is looked up in the
2724 // global scope.
2725 if (R.empty()) {
2726 if (NewScope == AFS_Class)
2727 return true;
2729 LookupQualifiedName(R, Context.getTranslationUnitDecl());
2732 if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2733 if (PlaceArgs.empty()) {
2734 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2735 } else {
2736 Diag(StartLoc, diag::err_openclcxx_placement_new);
2738 return true;
2741 assert(!R.empty() && "implicitly declared allocation functions not found");
2742 assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
2744 // We do our own custom access checks below.
2745 R.suppressDiagnostics();
2747 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2748 OperatorNew, /*Candidates=*/nullptr,
2749 /*AlignArg=*/nullptr, Diagnose))
2750 return true;
2753 // We don't need an operator delete if we're running under -fno-exceptions.
2754 if (!getLangOpts().Exceptions) {
2755 OperatorDelete = nullptr;
2756 return false;
2759 // Note, the name of OperatorNew might have been changed from array to
2760 // non-array by resolveAllocationOverload.
2761 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2762 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2763 ? OO_Array_Delete
2764 : OO_Delete);
2766 // C++ [expr.new]p19:
2768 // If the new-expression begins with a unary :: operator, the
2769 // deallocation function's name is looked up in the global
2770 // scope. Otherwise, if the allocated type is a class type T or an
2771 // array thereof, the deallocation function's name is looked up in
2772 // the scope of T. If this lookup fails to find the name, or if
2773 // the allocated type is not a class type or array thereof, the
2774 // deallocation function's name is looked up in the global scope.
2775 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2776 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2777 auto *RD =
2778 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2779 LookupQualifiedName(FoundDelete, RD);
2781 if (FoundDelete.isAmbiguous())
2782 return true; // FIXME: clean up expressions?
2784 // Filter out any destroying operator deletes. We can't possibly call such a
2785 // function in this context, because we're handling the case where the object
2786 // was not successfully constructed.
2787 // FIXME: This is not covered by the language rules yet.
2789 LookupResult::Filter Filter = FoundDelete.makeFilter();
2790 while (Filter.hasNext()) {
2791 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl());
2792 if (FD && FD->isDestroyingOperatorDelete())
2793 Filter.erase();
2795 Filter.done();
2798 bool FoundGlobalDelete = FoundDelete.empty();
2799 if (FoundDelete.empty()) {
2800 FoundDelete.clear(LookupOrdinaryName);
2802 if (DeleteScope == AFS_Class)
2803 return true;
2805 DeclareGlobalNewDelete();
2806 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2809 FoundDelete.suppressDiagnostics();
2811 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2813 // Whether we're looking for a placement operator delete is dictated
2814 // by whether we selected a placement operator new, not by whether
2815 // we had explicit placement arguments. This matters for things like
2816 // struct A { void *operator new(size_t, int = 0); ... };
2817 // A *a = new A()
2819 // We don't have any definition for what a "placement allocation function"
2820 // is, but we assume it's any allocation function whose
2821 // parameter-declaration-clause is anything other than (size_t).
2823 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2824 // This affects whether an exception from the constructor of an overaligned
2825 // type uses the sized or non-sized form of aligned operator delete.
2826 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2827 OperatorNew->isVariadic();
2829 if (isPlacementNew) {
2830 // C++ [expr.new]p20:
2831 // A declaration of a placement deallocation function matches the
2832 // declaration of a placement allocation function if it has the
2833 // same number of parameters and, after parameter transformations
2834 // (8.3.5), all parameter types except the first are
2835 // identical. [...]
2837 // To perform this comparison, we compute the function type that
2838 // the deallocation function should have, and use that type both
2839 // for template argument deduction and for comparison purposes.
2840 QualType ExpectedFunctionType;
2842 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2844 SmallVector<QualType, 4> ArgTypes;
2845 ArgTypes.push_back(Context.VoidPtrTy);
2846 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2847 ArgTypes.push_back(Proto->getParamType(I));
2849 FunctionProtoType::ExtProtoInfo EPI;
2850 // FIXME: This is not part of the standard's rule.
2851 EPI.Variadic = Proto->isVariadic();
2853 ExpectedFunctionType
2854 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2857 for (LookupResult::iterator D = FoundDelete.begin(),
2858 DEnd = FoundDelete.end();
2859 D != DEnd; ++D) {
2860 FunctionDecl *Fn = nullptr;
2861 if (FunctionTemplateDecl *FnTmpl =
2862 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2863 // Perform template argument deduction to try to match the
2864 // expected function type.
2865 TemplateDeductionInfo Info(StartLoc);
2866 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2867 Info))
2868 continue;
2869 } else
2870 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2872 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2873 ExpectedFunctionType,
2874 /*AdjustExcpetionSpec*/true),
2875 ExpectedFunctionType))
2876 Matches.push_back(std::make_pair(D.getPair(), Fn));
2879 if (getLangOpts().CUDA)
2880 EraseUnwantedCUDAMatches(getCurFunctionDecl(/*AllowLambda=*/true),
2881 Matches);
2882 } else {
2883 // C++1y [expr.new]p22:
2884 // For a non-placement allocation function, the normal deallocation
2885 // function lookup is used
2887 // Per [expr.delete]p10, this lookup prefers a member operator delete
2888 // without a size_t argument, but prefers a non-member operator delete
2889 // with a size_t where possible (which it always is in this case).
2890 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2891 UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2892 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2893 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2894 &BestDeallocFns);
2895 if (Selected)
2896 Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2897 else {
2898 // If we failed to select an operator, all remaining functions are viable
2899 // but ambiguous.
2900 for (auto Fn : BestDeallocFns)
2901 Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2905 // C++ [expr.new]p20:
2906 // [...] If the lookup finds a single matching deallocation
2907 // function, that function will be called; otherwise, no
2908 // deallocation function will be called.
2909 if (Matches.size() == 1) {
2910 OperatorDelete = Matches[0].second;
2912 // C++1z [expr.new]p23:
2913 // If the lookup finds a usual deallocation function (3.7.4.2)
2914 // with a parameter of type std::size_t and that function, considered
2915 // as a placement deallocation function, would have been
2916 // selected as a match for the allocation function, the program
2917 // is ill-formed.
2918 if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2919 isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2920 UsualDeallocFnInfo Info(*this,
2921 DeclAccessPair::make(OperatorDelete, AS_public));
2922 // Core issue, per mail to core reflector, 2016-10-09:
2923 // If this is a member operator delete, and there is a corresponding
2924 // non-sized member operator delete, this isn't /really/ a sized
2925 // deallocation function, it just happens to have a size_t parameter.
2926 bool IsSizedDelete = Info.HasSizeT;
2927 if (IsSizedDelete && !FoundGlobalDelete) {
2928 auto NonSizedDelete =
2929 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2930 /*WantAlign*/Info.HasAlignValT);
2931 if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2932 NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2933 IsSizedDelete = false;
2936 if (IsSizedDelete) {
2937 SourceRange R = PlaceArgs.empty()
2938 ? SourceRange()
2939 : SourceRange(PlaceArgs.front()->getBeginLoc(),
2940 PlaceArgs.back()->getEndLoc());
2941 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2942 if (!OperatorDelete->isImplicit())
2943 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2944 << DeleteName;
2948 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2949 Matches[0].first);
2950 } else if (!Matches.empty()) {
2951 // We found multiple suitable operators. Per [expr.new]p20, that means we
2952 // call no 'operator delete' function, but we should at least warn the user.
2953 // FIXME: Suppress this warning if the construction cannot throw.
2954 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2955 << DeleteName << AllocElemType;
2957 for (auto &Match : Matches)
2958 Diag(Match.second->getLocation(),
2959 diag::note_member_declared_here) << DeleteName;
2962 return false;
2965 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
2966 /// delete. These are:
2967 /// @code
2968 /// // C++03:
2969 /// void* operator new(std::size_t) throw(std::bad_alloc);
2970 /// void* operator new[](std::size_t) throw(std::bad_alloc);
2971 /// void operator delete(void *) throw();
2972 /// void operator delete[](void *) throw();
2973 /// // C++11:
2974 /// void* operator new(std::size_t);
2975 /// void* operator new[](std::size_t);
2976 /// void operator delete(void *) noexcept;
2977 /// void operator delete[](void *) noexcept;
2978 /// // C++1y:
2979 /// void* operator new(std::size_t);
2980 /// void* operator new[](std::size_t);
2981 /// void operator delete(void *) noexcept;
2982 /// void operator delete[](void *) noexcept;
2983 /// void operator delete(void *, std::size_t) noexcept;
2984 /// void operator delete[](void *, std::size_t) noexcept;
2985 /// @endcode
2986 /// Note that the placement and nothrow forms of new are *not* implicitly
2987 /// declared. Their use requires including \<new\>.
2988 void Sema::DeclareGlobalNewDelete() {
2989 if (GlobalNewDeleteDeclared)
2990 return;
2992 // The implicitly declared new and delete operators
2993 // are not supported in OpenCL.
2994 if (getLangOpts().OpenCLCPlusPlus)
2995 return;
2997 // C++ [basic.stc.dynamic.general]p2:
2998 // The library provides default definitions for the global allocation
2999 // and deallocation functions. Some global allocation and deallocation
3000 // functions are replaceable ([new.delete]); these are attached to the
3001 // global module ([module.unit]).
3002 if (getLangOpts().CPlusPlusModules && getCurrentModule())
3003 PushGlobalModuleFragment(SourceLocation());
3005 // C++ [basic.std.dynamic]p2:
3006 // [...] The following allocation and deallocation functions (18.4) are
3007 // implicitly declared in global scope in each translation unit of a
3008 // program
3010 // C++03:
3011 // void* operator new(std::size_t) throw(std::bad_alloc);
3012 // void* operator new[](std::size_t) throw(std::bad_alloc);
3013 // void operator delete(void*) throw();
3014 // void operator delete[](void*) throw();
3015 // C++11:
3016 // void* operator new(std::size_t);
3017 // void* operator new[](std::size_t);
3018 // void operator delete(void*) noexcept;
3019 // void operator delete[](void*) noexcept;
3020 // C++1y:
3021 // void* operator new(std::size_t);
3022 // void* operator new[](std::size_t);
3023 // void operator delete(void*) noexcept;
3024 // void operator delete[](void*) noexcept;
3025 // void operator delete(void*, std::size_t) noexcept;
3026 // void operator delete[](void*, std::size_t) noexcept;
3028 // These implicit declarations introduce only the function names operator
3029 // new, operator new[], operator delete, operator delete[].
3031 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
3032 // "std" or "bad_alloc" as necessary to form the exception specification.
3033 // However, we do not make these implicit declarations visible to name
3034 // lookup.
3035 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
3036 // The "std::bad_alloc" class has not yet been declared, so build it
3037 // implicitly.
3038 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
3039 getOrCreateStdNamespace(),
3040 SourceLocation(), SourceLocation(),
3041 &PP.getIdentifierTable().get("bad_alloc"),
3042 nullptr);
3043 getStdBadAlloc()->setImplicit(true);
3045 // The implicitly declared "std::bad_alloc" should live in global module
3046 // fragment.
3047 if (TheGlobalModuleFragment) {
3048 getStdBadAlloc()->setModuleOwnershipKind(
3049 Decl::ModuleOwnershipKind::ReachableWhenImported);
3050 getStdBadAlloc()->setLocalOwningModule(TheGlobalModuleFragment);
3053 if (!StdAlignValT && getLangOpts().AlignedAllocation) {
3054 // The "std::align_val_t" enum class has not yet been declared, so build it
3055 // implicitly.
3056 auto *AlignValT = EnumDecl::Create(
3057 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
3058 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
3060 // The implicitly declared "std::align_val_t" should live in global module
3061 // fragment.
3062 if (TheGlobalModuleFragment) {
3063 AlignValT->setModuleOwnershipKind(
3064 Decl::ModuleOwnershipKind::ReachableWhenImported);
3065 AlignValT->setLocalOwningModule(TheGlobalModuleFragment);
3068 AlignValT->setIntegerType(Context.getSizeType());
3069 AlignValT->setPromotionType(Context.getSizeType());
3070 AlignValT->setImplicit(true);
3072 StdAlignValT = AlignValT;
3075 GlobalNewDeleteDeclared = true;
3077 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
3078 QualType SizeT = Context.getSizeType();
3080 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
3081 QualType Return, QualType Param) {
3082 llvm::SmallVector<QualType, 3> Params;
3083 Params.push_back(Param);
3085 // Create up to four variants of the function (sized/aligned).
3086 bool HasSizedVariant = getLangOpts().SizedDeallocation &&
3087 (Kind == OO_Delete || Kind == OO_Array_Delete);
3088 bool HasAlignedVariant = getLangOpts().AlignedAllocation;
3090 int NumSizeVariants = (HasSizedVariant ? 2 : 1);
3091 int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
3092 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
3093 if (Sized)
3094 Params.push_back(SizeT);
3096 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
3097 if (Aligned)
3098 Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
3100 DeclareGlobalAllocationFunction(
3101 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
3103 if (Aligned)
3104 Params.pop_back();
3109 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
3110 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
3111 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
3112 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
3114 if (getLangOpts().CPlusPlusModules && getCurrentModule())
3115 PopGlobalModuleFragment();
3118 /// DeclareGlobalAllocationFunction - Declares a single implicit global
3119 /// allocation function if it doesn't already exist.
3120 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
3121 QualType Return,
3122 ArrayRef<QualType> Params) {
3123 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
3125 // Check if this function is already declared.
3126 DeclContext::lookup_result R = GlobalCtx->lookup(Name);
3127 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
3128 Alloc != AllocEnd; ++Alloc) {
3129 // Only look at non-template functions, as it is the predefined,
3130 // non-templated allocation function we are trying to declare here.
3131 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
3132 if (Func->getNumParams() == Params.size()) {
3133 llvm::SmallVector<QualType, 3> FuncParams;
3134 for (auto *P : Func->parameters())
3135 FuncParams.push_back(
3136 Context.getCanonicalType(P->getType().getUnqualifiedType()));
3137 if (llvm::ArrayRef(FuncParams) == Params) {
3138 // Make the function visible to name lookup, even if we found it in
3139 // an unimported module. It either is an implicitly-declared global
3140 // allocation function, or is suppressing that function.
3141 Func->setVisibleDespiteOwningModule();
3142 return;
3148 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
3149 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
3151 QualType BadAllocType;
3152 bool HasBadAllocExceptionSpec
3153 = (Name.getCXXOverloadedOperator() == OO_New ||
3154 Name.getCXXOverloadedOperator() == OO_Array_New);
3155 if (HasBadAllocExceptionSpec) {
3156 if (!getLangOpts().CPlusPlus11) {
3157 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
3158 assert(StdBadAlloc && "Must have std::bad_alloc declared");
3159 EPI.ExceptionSpec.Type = EST_Dynamic;
3160 EPI.ExceptionSpec.Exceptions = llvm::ArrayRef(BadAllocType);
3162 if (getLangOpts().NewInfallible) {
3163 EPI.ExceptionSpec.Type = EST_DynamicNone;
3165 } else {
3166 EPI.ExceptionSpec =
3167 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
3170 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
3171 QualType FnType = Context.getFunctionType(Return, Params, EPI);
3172 FunctionDecl *Alloc = FunctionDecl::Create(
3173 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType,
3174 /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false,
3175 true);
3176 Alloc->setImplicit();
3177 // Global allocation functions should always be visible.
3178 Alloc->setVisibleDespiteOwningModule();
3180 if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible &&
3181 !getLangOpts().CheckNew)
3182 Alloc->addAttr(
3183 ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation()));
3185 // C++ [basic.stc.dynamic.general]p2:
3186 // The library provides default definitions for the global allocation
3187 // and deallocation functions. Some global allocation and deallocation
3188 // functions are replaceable ([new.delete]); these are attached to the
3189 // global module ([module.unit]).
3191 // In the language wording, these functions are attched to the global
3192 // module all the time. But in the implementation, the global module
3193 // is only meaningful when we're in a module unit. So here we attach
3194 // these allocation functions to global module conditionally.
3195 if (TheGlobalModuleFragment) {
3196 Alloc->setModuleOwnershipKind(
3197 Decl::ModuleOwnershipKind::ReachableWhenImported);
3198 Alloc->setLocalOwningModule(TheGlobalModuleFragment);
3201 Alloc->addAttr(VisibilityAttr::CreateImplicit(
3202 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
3203 ? VisibilityAttr::Hidden
3204 : VisibilityAttr::Default));
3206 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
3207 for (QualType T : Params) {
3208 ParamDecls.push_back(ParmVarDecl::Create(
3209 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
3210 /*TInfo=*/nullptr, SC_None, nullptr));
3211 ParamDecls.back()->setImplicit();
3213 Alloc->setParams(ParamDecls);
3214 if (ExtraAttr)
3215 Alloc->addAttr(ExtraAttr);
3216 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc);
3217 Context.getTranslationUnitDecl()->addDecl(Alloc);
3218 IdResolver.tryAddTopLevelDecl(Alloc, Name);
3221 if (!LangOpts.CUDA)
3222 CreateAllocationFunctionDecl(nullptr);
3223 else {
3224 // Host and device get their own declaration so each can be
3225 // defined or re-declared independently.
3226 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
3227 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
3231 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
3232 bool CanProvideSize,
3233 bool Overaligned,
3234 DeclarationName Name) {
3235 DeclareGlobalNewDelete();
3237 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
3238 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
3240 // FIXME: It's possible for this to result in ambiguity, through a
3241 // user-declared variadic operator delete or the enable_if attribute. We
3242 // should probably not consider those cases to be usual deallocation
3243 // functions. But for now we just make an arbitrary choice in that case.
3244 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
3245 Overaligned);
3246 assert(Result.FD && "operator delete missing from global scope?");
3247 return Result.FD;
3250 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
3251 CXXRecordDecl *RD) {
3252 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3254 FunctionDecl *OperatorDelete = nullptr;
3255 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3256 return nullptr;
3257 if (OperatorDelete)
3258 return OperatorDelete;
3260 // If there's no class-specific operator delete, look up the global
3261 // non-array delete.
3262 return FindUsualDeallocationFunction(
3263 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
3264 Name);
3267 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
3268 DeclarationName Name,
3269 FunctionDecl *&Operator, bool Diagnose,
3270 bool WantSize, bool WantAligned) {
3271 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
3272 // Try to find operator delete/operator delete[] in class scope.
3273 LookupQualifiedName(Found, RD);
3275 if (Found.isAmbiguous())
3276 return true;
3278 Found.suppressDiagnostics();
3280 bool Overaligned =
3281 WantAligned || hasNewExtendedAlignment(*this, Context.getRecordType(RD));
3283 // C++17 [expr.delete]p10:
3284 // If the deallocation functions have class scope, the one without a
3285 // parameter of type std::size_t is selected.
3286 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
3287 resolveDeallocationOverload(*this, Found, /*WantSize*/ WantSize,
3288 /*WantAlign*/ Overaligned, &Matches);
3290 // If we could find an overload, use it.
3291 if (Matches.size() == 1) {
3292 Operator = cast<CXXMethodDecl>(Matches[0].FD);
3294 // FIXME: DiagnoseUseOfDecl?
3295 if (Operator->isDeleted()) {
3296 if (Diagnose) {
3297 Diag(StartLoc, diag::err_deleted_function_use);
3298 NoteDeletedFunction(Operator);
3300 return true;
3303 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
3304 Matches[0].Found, Diagnose) == AR_inaccessible)
3305 return true;
3307 return false;
3310 // We found multiple suitable operators; complain about the ambiguity.
3311 // FIXME: The standard doesn't say to do this; it appears that the intent
3312 // is that this should never happen.
3313 if (!Matches.empty()) {
3314 if (Diagnose) {
3315 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
3316 << Name << RD;
3317 for (auto &Match : Matches)
3318 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
3320 return true;
3323 // We did find operator delete/operator delete[] declarations, but
3324 // none of them were suitable.
3325 if (!Found.empty()) {
3326 if (Diagnose) {
3327 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
3328 << Name << RD;
3330 for (NamedDecl *D : Found)
3331 Diag(D->getUnderlyingDecl()->getLocation(),
3332 diag::note_member_declared_here) << Name;
3334 return true;
3337 Operator = nullptr;
3338 return false;
3341 namespace {
3342 /// Checks whether delete-expression, and new-expression used for
3343 /// initializing deletee have the same array form.
3344 class MismatchingNewDeleteDetector {
3345 public:
3346 enum MismatchResult {
3347 /// Indicates that there is no mismatch or a mismatch cannot be proven.
3348 NoMismatch,
3349 /// Indicates that variable is initialized with mismatching form of \a new.
3350 VarInitMismatches,
3351 /// Indicates that member is initialized with mismatching form of \a new.
3352 MemberInitMismatches,
3353 /// Indicates that 1 or more constructors' definitions could not been
3354 /// analyzed, and they will be checked again at the end of translation unit.
3355 AnalyzeLater
3358 /// \param EndOfTU True, if this is the final analysis at the end of
3359 /// translation unit. False, if this is the initial analysis at the point
3360 /// delete-expression was encountered.
3361 explicit MismatchingNewDeleteDetector(bool EndOfTU)
3362 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
3363 HasUndefinedConstructors(false) {}
3365 /// Checks whether pointee of a delete-expression is initialized with
3366 /// matching form of new-expression.
3368 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
3369 /// point where delete-expression is encountered, then a warning will be
3370 /// issued immediately. If return value is \c AnalyzeLater at the point where
3371 /// delete-expression is seen, then member will be analyzed at the end of
3372 /// translation unit. \c AnalyzeLater is returned iff at least one constructor
3373 /// couldn't be analyzed. If at least one constructor initializes the member
3374 /// with matching type of new, the return value is \c NoMismatch.
3375 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3376 /// Analyzes a class member.
3377 /// \param Field Class member to analyze.
3378 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3379 /// for deleting the \p Field.
3380 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3381 FieldDecl *Field;
3382 /// List of mismatching new-expressions used for initialization of the pointee
3383 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3384 /// Indicates whether delete-expression was in array form.
3385 bool IsArrayForm;
3387 private:
3388 const bool EndOfTU;
3389 /// Indicates that there is at least one constructor without body.
3390 bool HasUndefinedConstructors;
3391 /// Returns \c CXXNewExpr from given initialization expression.
3392 /// \param E Expression used for initializing pointee in delete-expression.
3393 /// E can be a single-element \c InitListExpr consisting of new-expression.
3394 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3395 /// Returns whether member is initialized with mismatching form of
3396 /// \c new either by the member initializer or in-class initialization.
3398 /// If bodies of all constructors are not visible at the end of translation
3399 /// unit or at least one constructor initializes member with the matching
3400 /// form of \c new, mismatch cannot be proven, and this function will return
3401 /// \c NoMismatch.
3402 MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3403 /// Returns whether variable is initialized with mismatching form of
3404 /// \c new.
3406 /// If variable is initialized with matching form of \c new or variable is not
3407 /// initialized with a \c new expression, this function will return true.
3408 /// If variable is initialized with mismatching form of \c new, returns false.
3409 /// \param D Variable to analyze.
3410 bool hasMatchingVarInit(const DeclRefExpr *D);
3411 /// Checks whether the constructor initializes pointee with mismatching
3412 /// form of \c new.
3414 /// Returns true, if member is initialized with matching form of \c new in
3415 /// member initializer list. Returns false, if member is initialized with the
3416 /// matching form of \c new in this constructor's initializer or given
3417 /// constructor isn't defined at the point where delete-expression is seen, or
3418 /// member isn't initialized by the constructor.
3419 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3420 /// Checks whether member is initialized with matching form of
3421 /// \c new in member initializer list.
3422 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3423 /// Checks whether member is initialized with mismatching form of \c new by
3424 /// in-class initializer.
3425 MismatchResult analyzeInClassInitializer();
3429 MismatchingNewDeleteDetector::MismatchResult
3430 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3431 NewExprs.clear();
3432 assert(DE && "Expected delete-expression");
3433 IsArrayForm = DE->isArrayForm();
3434 const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3435 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3436 return analyzeMemberExpr(ME);
3437 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3438 if (!hasMatchingVarInit(D))
3439 return VarInitMismatches;
3441 return NoMismatch;
3444 const CXXNewExpr *
3445 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3446 assert(E != nullptr && "Expected a valid initializer expression");
3447 E = E->IgnoreParenImpCasts();
3448 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3449 if (ILE->getNumInits() == 1)
3450 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3453 return dyn_cast_or_null<const CXXNewExpr>(E);
3456 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3457 const CXXCtorInitializer *CI) {
3458 const CXXNewExpr *NE = nullptr;
3459 if (Field == CI->getMember() &&
3460 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3461 if (NE->isArray() == IsArrayForm)
3462 return true;
3463 else
3464 NewExprs.push_back(NE);
3466 return false;
3469 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3470 const CXXConstructorDecl *CD) {
3471 if (CD->isImplicit())
3472 return false;
3473 const FunctionDecl *Definition = CD;
3474 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3475 HasUndefinedConstructors = true;
3476 return EndOfTU;
3478 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3479 if (hasMatchingNewInCtorInit(CI))
3480 return true;
3482 return false;
3485 MismatchingNewDeleteDetector::MismatchResult
3486 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3487 assert(Field != nullptr && "This should be called only for members");
3488 const Expr *InitExpr = Field->getInClassInitializer();
3489 if (!InitExpr)
3490 return EndOfTU ? NoMismatch : AnalyzeLater;
3491 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3492 if (NE->isArray() != IsArrayForm) {
3493 NewExprs.push_back(NE);
3494 return MemberInitMismatches;
3497 return NoMismatch;
3500 MismatchingNewDeleteDetector::MismatchResult
3501 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3502 bool DeleteWasArrayForm) {
3503 assert(Field != nullptr && "Analysis requires a valid class member.");
3504 this->Field = Field;
3505 IsArrayForm = DeleteWasArrayForm;
3506 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3507 for (const auto *CD : RD->ctors()) {
3508 if (hasMatchingNewInCtor(CD))
3509 return NoMismatch;
3511 if (HasUndefinedConstructors)
3512 return EndOfTU ? NoMismatch : AnalyzeLater;
3513 if (!NewExprs.empty())
3514 return MemberInitMismatches;
3515 return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3516 : NoMismatch;
3519 MismatchingNewDeleteDetector::MismatchResult
3520 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3521 assert(ME != nullptr && "Expected a member expression");
3522 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3523 return analyzeField(F, IsArrayForm);
3524 return NoMismatch;
3527 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3528 const CXXNewExpr *NE = nullptr;
3529 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3530 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3531 NE->isArray() != IsArrayForm) {
3532 NewExprs.push_back(NE);
3535 return NewExprs.empty();
3538 static void
3539 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3540 const MismatchingNewDeleteDetector &Detector) {
3541 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3542 FixItHint H;
3543 if (!Detector.IsArrayForm)
3544 H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3545 else {
3546 SourceLocation RSquare = Lexer::findLocationAfterToken(
3547 DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3548 SemaRef.getLangOpts(), true);
3549 if (RSquare.isValid())
3550 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3552 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3553 << Detector.IsArrayForm << H;
3555 for (const auto *NE : Detector.NewExprs)
3556 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3557 << Detector.IsArrayForm;
3560 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3561 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3562 return;
3563 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3564 switch (Detector.analyzeDeleteExpr(DE)) {
3565 case MismatchingNewDeleteDetector::VarInitMismatches:
3566 case MismatchingNewDeleteDetector::MemberInitMismatches: {
3567 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3568 break;
3570 case MismatchingNewDeleteDetector::AnalyzeLater: {
3571 DeleteExprs[Detector.Field].push_back(
3572 std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3573 break;
3575 case MismatchingNewDeleteDetector::NoMismatch:
3576 break;
3580 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3581 bool DeleteWasArrayForm) {
3582 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3583 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3584 case MismatchingNewDeleteDetector::VarInitMismatches:
3585 llvm_unreachable("This analysis should have been done for class members.");
3586 case MismatchingNewDeleteDetector::AnalyzeLater:
3587 llvm_unreachable("Analysis cannot be postponed any point beyond end of "
3588 "translation unit.");
3589 case MismatchingNewDeleteDetector::MemberInitMismatches:
3590 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3591 break;
3592 case MismatchingNewDeleteDetector::NoMismatch:
3593 break;
3597 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3598 /// @code ::delete ptr; @endcode
3599 /// or
3600 /// @code delete [] ptr; @endcode
3601 ExprResult
3602 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3603 bool ArrayForm, Expr *ExE) {
3604 // C++ [expr.delete]p1:
3605 // The operand shall have a pointer type, or a class type having a single
3606 // non-explicit conversion function to a pointer type. The result has type
3607 // void.
3609 // DR599 amends "pointer type" to "pointer to object type" in both cases.
3611 ExprResult Ex = ExE;
3612 FunctionDecl *OperatorDelete = nullptr;
3613 bool ArrayFormAsWritten = ArrayForm;
3614 bool UsualArrayDeleteWantsSize = false;
3616 if (!Ex.get()->isTypeDependent()) {
3617 // Perform lvalue-to-rvalue cast, if needed.
3618 Ex = DefaultLvalueConversion(Ex.get());
3619 if (Ex.isInvalid())
3620 return ExprError();
3622 QualType Type = Ex.get()->getType();
3624 class DeleteConverter : public ContextualImplicitConverter {
3625 public:
3626 DeleteConverter() : ContextualImplicitConverter(false, true) {}
3628 bool match(QualType ConvType) override {
3629 // FIXME: If we have an operator T* and an operator void*, we must pick
3630 // the operator T*.
3631 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3632 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3633 return true;
3634 return false;
3637 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3638 QualType T) override {
3639 return S.Diag(Loc, diag::err_delete_operand) << T;
3642 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3643 QualType T) override {
3644 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3647 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3648 QualType T,
3649 QualType ConvTy) override {
3650 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3653 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3654 QualType ConvTy) override {
3655 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3656 << ConvTy;
3659 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3660 QualType T) override {
3661 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3664 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3665 QualType ConvTy) override {
3666 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3667 << ConvTy;
3670 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3671 QualType T,
3672 QualType ConvTy) override {
3673 llvm_unreachable("conversion functions are permitted");
3675 } Converter;
3677 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3678 if (Ex.isInvalid())
3679 return ExprError();
3680 Type = Ex.get()->getType();
3681 if (!Converter.match(Type))
3682 // FIXME: PerformContextualImplicitConversion should return ExprError
3683 // itself in this case.
3684 return ExprError();
3686 QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3687 QualType PointeeElem = Context.getBaseElementType(Pointee);
3689 if (Pointee.getAddressSpace() != LangAS::Default &&
3690 !getLangOpts().OpenCLCPlusPlus)
3691 return Diag(Ex.get()->getBeginLoc(),
3692 diag::err_address_space_qualified_delete)
3693 << Pointee.getUnqualifiedType()
3694 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3696 CXXRecordDecl *PointeeRD = nullptr;
3697 if (Pointee->isVoidType() && !isSFINAEContext()) {
3698 // The C++ standard bans deleting a pointer to a non-object type, which
3699 // effectively bans deletion of "void*". However, most compilers support
3700 // this, so we treat it as a warning unless we're in a SFINAE context.
3701 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3702 << Type << Ex.get()->getSourceRange();
3703 } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
3704 Pointee->isSizelessType()) {
3705 return ExprError(Diag(StartLoc, diag::err_delete_operand)
3706 << Type << Ex.get()->getSourceRange());
3707 } else if (!Pointee->isDependentType()) {
3708 // FIXME: This can result in errors if the definition was imported from a
3709 // module but is hidden.
3710 if (!RequireCompleteType(StartLoc, Pointee,
3711 diag::warn_delete_incomplete, Ex.get())) {
3712 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3713 PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3717 if (Pointee->isArrayType() && !ArrayForm) {
3718 Diag(StartLoc, diag::warn_delete_array_type)
3719 << Type << Ex.get()->getSourceRange()
3720 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3721 ArrayForm = true;
3724 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3725 ArrayForm ? OO_Array_Delete : OO_Delete);
3727 if (PointeeRD) {
3728 if (!UseGlobal &&
3729 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3730 OperatorDelete))
3731 return ExprError();
3733 // If we're allocating an array of records, check whether the
3734 // usual operator delete[] has a size_t parameter.
3735 if (ArrayForm) {
3736 // If the user specifically asked to use the global allocator,
3737 // we'll need to do the lookup into the class.
3738 if (UseGlobal)
3739 UsualArrayDeleteWantsSize =
3740 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3742 // Otherwise, the usual operator delete[] should be the
3743 // function we just found.
3744 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3745 UsualArrayDeleteWantsSize =
3746 UsualDeallocFnInfo(*this,
3747 DeclAccessPair::make(OperatorDelete, AS_public))
3748 .HasSizeT;
3751 if (!PointeeRD->hasIrrelevantDestructor())
3752 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3753 MarkFunctionReferenced(StartLoc,
3754 const_cast<CXXDestructorDecl*>(Dtor));
3755 if (DiagnoseUseOfDecl(Dtor, StartLoc))
3756 return ExprError();
3759 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3760 /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3761 /*WarnOnNonAbstractTypes=*/!ArrayForm,
3762 SourceLocation());
3765 if (!OperatorDelete) {
3766 if (getLangOpts().OpenCLCPlusPlus) {
3767 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3768 return ExprError();
3771 bool IsComplete = isCompleteType(StartLoc, Pointee);
3772 bool CanProvideSize =
3773 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3774 Pointee.isDestructedType());
3775 bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3777 // Look for a global declaration.
3778 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3779 Overaligned, DeleteName);
3782 MarkFunctionReferenced(StartLoc, OperatorDelete);
3784 // Check access and ambiguity of destructor if we're going to call it.
3785 // Note that this is required even for a virtual delete.
3786 bool IsVirtualDelete = false;
3787 if (PointeeRD) {
3788 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3789 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3790 PDiag(diag::err_access_dtor) << PointeeElem);
3791 IsVirtualDelete = Dtor->isVirtual();
3795 DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3797 // Convert the operand to the type of the first parameter of operator
3798 // delete. This is only necessary if we selected a destroying operator
3799 // delete that we are going to call (non-virtually); converting to void*
3800 // is trivial and left to AST consumers to handle.
3801 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3802 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3803 Qualifiers Qs = Pointee.getQualifiers();
3804 if (Qs.hasCVRQualifiers()) {
3805 // Qualifiers are irrelevant to this conversion; we're only looking
3806 // for access and ambiguity.
3807 Qs.removeCVRQualifiers();
3808 QualType Unqual = Context.getPointerType(
3809 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3810 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3812 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3813 if (Ex.isInvalid())
3814 return ExprError();
3818 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3819 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3820 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3821 AnalyzeDeleteExprMismatch(Result);
3822 return Result;
3825 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3826 bool IsDelete,
3827 FunctionDecl *&Operator) {
3829 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3830 IsDelete ? OO_Delete : OO_New);
3832 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3833 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3834 assert(!R.empty() && "implicitly declared allocation functions not found");
3835 assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
3837 // We do our own custom access checks below.
3838 R.suppressDiagnostics();
3840 SmallVector<Expr *, 8> Args(TheCall->arguments());
3841 OverloadCandidateSet Candidates(R.getNameLoc(),
3842 OverloadCandidateSet::CSK_Normal);
3843 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3844 FnOvl != FnOvlEnd; ++FnOvl) {
3845 // Even member operator new/delete are implicitly treated as
3846 // static, so don't use AddMemberCandidate.
3847 NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3849 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3850 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3851 /*ExplicitTemplateArgs=*/nullptr, Args,
3852 Candidates,
3853 /*SuppressUserConversions=*/false);
3854 continue;
3857 FunctionDecl *Fn = cast<FunctionDecl>(D);
3858 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3859 /*SuppressUserConversions=*/false);
3862 SourceRange Range = TheCall->getSourceRange();
3864 // Do the resolution.
3865 OverloadCandidateSet::iterator Best;
3866 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3867 case OR_Success: {
3868 // Got one!
3869 FunctionDecl *FnDecl = Best->Function;
3870 assert(R.getNamingClass() == nullptr &&
3871 "class members should not be considered");
3873 if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3874 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3875 << (IsDelete ? 1 : 0) << Range;
3876 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3877 << R.getLookupName() << FnDecl->getSourceRange();
3878 return true;
3881 Operator = FnDecl;
3882 return false;
3885 case OR_No_Viable_Function:
3886 Candidates.NoteCandidates(
3887 PartialDiagnosticAt(R.getNameLoc(),
3888 S.PDiag(diag::err_ovl_no_viable_function_in_call)
3889 << R.getLookupName() << Range),
3890 S, OCD_AllCandidates, Args);
3891 return true;
3893 case OR_Ambiguous:
3894 Candidates.NoteCandidates(
3895 PartialDiagnosticAt(R.getNameLoc(),
3896 S.PDiag(diag::err_ovl_ambiguous_call)
3897 << R.getLookupName() << Range),
3898 S, OCD_AmbiguousCandidates, Args);
3899 return true;
3901 case OR_Deleted: {
3902 Candidates.NoteCandidates(
3903 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3904 << R.getLookupName() << Range),
3905 S, OCD_AllCandidates, Args);
3906 return true;
3909 llvm_unreachable("Unreachable, bad result from BestViableFunction");
3912 ExprResult
3913 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3914 bool IsDelete) {
3915 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3916 if (!getLangOpts().CPlusPlus) {
3917 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3918 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3919 << "C++";
3920 return ExprError();
3922 // CodeGen assumes it can find the global new and delete to call,
3923 // so ensure that they are declared.
3924 DeclareGlobalNewDelete();
3926 FunctionDecl *OperatorNewOrDelete = nullptr;
3927 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3928 OperatorNewOrDelete))
3929 return ExprError();
3930 assert(OperatorNewOrDelete && "should be found");
3932 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3933 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3935 TheCall->setType(OperatorNewOrDelete->getReturnType());
3936 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3937 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3938 InitializedEntity Entity =
3939 InitializedEntity::InitializeParameter(Context, ParamTy, false);
3940 ExprResult Arg = PerformCopyInitialization(
3941 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3942 if (Arg.isInvalid())
3943 return ExprError();
3944 TheCall->setArg(i, Arg.get());
3946 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3947 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
3948 "Callee expected to be implicit cast to a builtin function pointer");
3949 Callee->setType(OperatorNewOrDelete->getType());
3951 return TheCallResult;
3954 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3955 bool IsDelete, bool CallCanBeVirtual,
3956 bool WarnOnNonAbstractTypes,
3957 SourceLocation DtorLoc) {
3958 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3959 return;
3961 // C++ [expr.delete]p3:
3962 // In the first alternative (delete object), if the static type of the
3963 // object to be deleted is different from its dynamic type, the static
3964 // type shall be a base class of the dynamic type of the object to be
3965 // deleted and the static type shall have a virtual destructor or the
3966 // behavior is undefined.
3968 const CXXRecordDecl *PointeeRD = dtor->getParent();
3969 // Note: a final class cannot be derived from, no issue there
3970 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3971 return;
3973 // If the superclass is in a system header, there's nothing that can be done.
3974 // The `delete` (where we emit the warning) can be in a system header,
3975 // what matters for this warning is where the deleted type is defined.
3976 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3977 return;
3979 QualType ClassType = dtor->getFunctionObjectParameterType();
3980 if (PointeeRD->isAbstract()) {
3981 // If the class is abstract, we warn by default, because we're
3982 // sure the code has undefined behavior.
3983 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3984 << ClassType;
3985 } else if (WarnOnNonAbstractTypes) {
3986 // Otherwise, if this is not an array delete, it's a bit suspect,
3987 // but not necessarily wrong.
3988 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3989 << ClassType;
3991 if (!IsDelete) {
3992 std::string TypeStr;
3993 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3994 Diag(DtorLoc, diag::note_delete_non_virtual)
3995 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3999 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
4000 SourceLocation StmtLoc,
4001 ConditionKind CK) {
4002 ExprResult E =
4003 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
4004 if (E.isInvalid())
4005 return ConditionError();
4006 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
4007 CK == ConditionKind::ConstexprIf);
4010 /// Check the use of the given variable as a C++ condition in an if,
4011 /// while, do-while, or switch statement.
4012 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
4013 SourceLocation StmtLoc,
4014 ConditionKind CK) {
4015 if (ConditionVar->isInvalidDecl())
4016 return ExprError();
4018 QualType T = ConditionVar->getType();
4020 // C++ [stmt.select]p2:
4021 // The declarator shall not specify a function or an array.
4022 if (T->isFunctionType())
4023 return ExprError(Diag(ConditionVar->getLocation(),
4024 diag::err_invalid_use_of_function_type)
4025 << ConditionVar->getSourceRange());
4026 else if (T->isArrayType())
4027 return ExprError(Diag(ConditionVar->getLocation(),
4028 diag::err_invalid_use_of_array_type)
4029 << ConditionVar->getSourceRange());
4031 ExprResult Condition = BuildDeclRefExpr(
4032 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
4033 ConditionVar->getLocation());
4035 switch (CK) {
4036 case ConditionKind::Boolean:
4037 return CheckBooleanCondition(StmtLoc, Condition.get());
4039 case ConditionKind::ConstexprIf:
4040 return CheckBooleanCondition(StmtLoc, Condition.get(), true);
4042 case ConditionKind::Switch:
4043 return CheckSwitchCondition(StmtLoc, Condition.get());
4046 llvm_unreachable("unexpected condition kind");
4049 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
4050 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
4051 // C++11 6.4p4:
4052 // The value of a condition that is an initialized declaration in a statement
4053 // other than a switch statement is the value of the declared variable
4054 // implicitly converted to type bool. If that conversion is ill-formed, the
4055 // program is ill-formed.
4056 // The value of a condition that is an expression is the value of the
4057 // expression, implicitly converted to bool.
4059 // C++23 8.5.2p2
4060 // If the if statement is of the form if constexpr, the value of the condition
4061 // is contextually converted to bool and the converted expression shall be
4062 // a constant expression.
4065 ExprResult E = PerformContextuallyConvertToBool(CondExpr);
4066 if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent())
4067 return E;
4069 // FIXME: Return this value to the caller so they don't need to recompute it.
4070 llvm::APSInt Cond;
4071 E = VerifyIntegerConstantExpression(
4072 E.get(), &Cond,
4073 diag::err_constexpr_if_condition_expression_is_not_constant);
4074 return E;
4077 /// Helper function to determine whether this is the (deprecated) C++
4078 /// conversion from a string literal to a pointer to non-const char or
4079 /// non-const wchar_t (for narrow and wide string literals,
4080 /// respectively).
4081 bool
4082 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
4083 // Look inside the implicit cast, if it exists.
4084 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
4085 From = Cast->getSubExpr();
4087 // A string literal (2.13.4) that is not a wide string literal can
4088 // be converted to an rvalue of type "pointer to char"; a wide
4089 // string literal can be converted to an rvalue of type "pointer
4090 // to wchar_t" (C++ 4.2p2).
4091 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
4092 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
4093 if (const BuiltinType *ToPointeeType
4094 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
4095 // This conversion is considered only when there is an
4096 // explicit appropriate pointer target type (C++ 4.2p2).
4097 if (!ToPtrType->getPointeeType().hasQualifiers()) {
4098 switch (StrLit->getKind()) {
4099 case StringLiteral::UTF8:
4100 case StringLiteral::UTF16:
4101 case StringLiteral::UTF32:
4102 // We don't allow UTF literals to be implicitly converted
4103 break;
4104 case StringLiteral::Ordinary:
4105 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
4106 ToPointeeType->getKind() == BuiltinType::Char_S);
4107 case StringLiteral::Wide:
4108 return Context.typesAreCompatible(Context.getWideCharType(),
4109 QualType(ToPointeeType, 0));
4110 case StringLiteral::Unevaluated:
4111 assert(false && "Unevaluated string literal in expression");
4112 break;
4117 return false;
4120 static ExprResult BuildCXXCastArgument(Sema &S,
4121 SourceLocation CastLoc,
4122 QualType Ty,
4123 CastKind Kind,
4124 CXXMethodDecl *Method,
4125 DeclAccessPair FoundDecl,
4126 bool HadMultipleCandidates,
4127 Expr *From) {
4128 switch (Kind) {
4129 default: llvm_unreachable("Unhandled cast kind!");
4130 case CK_ConstructorConversion: {
4131 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
4132 SmallVector<Expr*, 8> ConstructorArgs;
4134 if (S.RequireNonAbstractType(CastLoc, Ty,
4135 diag::err_allocation_of_abstract_type))
4136 return ExprError();
4138 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc,
4139 ConstructorArgs))
4140 return ExprError();
4142 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
4143 InitializedEntity::InitializeTemporary(Ty));
4144 if (S.DiagnoseUseOfDecl(Method, CastLoc))
4145 return ExprError();
4147 ExprResult Result = S.BuildCXXConstructExpr(
4148 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
4149 ConstructorArgs, HadMultipleCandidates,
4150 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4151 CXXConstructExpr::CK_Complete, SourceRange());
4152 if (Result.isInvalid())
4153 return ExprError();
4155 return S.MaybeBindToTemporary(Result.getAs<Expr>());
4158 case CK_UserDefinedConversion: {
4159 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
4161 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
4162 if (S.DiagnoseUseOfDecl(Method, CastLoc))
4163 return ExprError();
4165 // Create an implicit call expr that calls it.
4166 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
4167 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
4168 HadMultipleCandidates);
4169 if (Result.isInvalid())
4170 return ExprError();
4171 // Record usage of conversion in an implicit cast.
4172 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
4173 CK_UserDefinedConversion, Result.get(),
4174 nullptr, Result.get()->getValueKind(),
4175 S.CurFPFeatureOverrides());
4177 return S.MaybeBindToTemporary(Result.get());
4182 /// PerformImplicitConversion - Perform an implicit conversion of the
4183 /// expression From to the type ToType using the pre-computed implicit
4184 /// conversion sequence ICS. Returns the converted
4185 /// expression. Action is the kind of conversion we're performing,
4186 /// used in the error message.
4187 ExprResult
4188 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4189 const ImplicitConversionSequence &ICS,
4190 AssignmentAction Action,
4191 CheckedConversionKind CCK) {
4192 // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
4193 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
4194 return From;
4196 switch (ICS.getKind()) {
4197 case ImplicitConversionSequence::StandardConversion: {
4198 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
4199 Action, CCK);
4200 if (Res.isInvalid())
4201 return ExprError();
4202 From = Res.get();
4203 break;
4206 case ImplicitConversionSequence::UserDefinedConversion: {
4208 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
4209 CastKind CastKind;
4210 QualType BeforeToType;
4211 assert(FD && "no conversion function for user-defined conversion seq");
4212 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
4213 CastKind = CK_UserDefinedConversion;
4215 // If the user-defined conversion is specified by a conversion function,
4216 // the initial standard conversion sequence converts the source type to
4217 // the implicit object parameter of the conversion function.
4218 BeforeToType = Context.getTagDeclType(Conv->getParent());
4219 } else {
4220 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
4221 CastKind = CK_ConstructorConversion;
4222 // Do no conversion if dealing with ... for the first conversion.
4223 if (!ICS.UserDefined.EllipsisConversion) {
4224 // If the user-defined conversion is specified by a constructor, the
4225 // initial standard conversion sequence converts the source type to
4226 // the type required by the argument of the constructor
4227 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
4230 // Watch out for ellipsis conversion.
4231 if (!ICS.UserDefined.EllipsisConversion) {
4232 ExprResult Res =
4233 PerformImplicitConversion(From, BeforeToType,
4234 ICS.UserDefined.Before, AA_Converting,
4235 CCK);
4236 if (Res.isInvalid())
4237 return ExprError();
4238 From = Res.get();
4241 ExprResult CastArg = BuildCXXCastArgument(
4242 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
4243 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
4244 ICS.UserDefined.HadMultipleCandidates, From);
4246 if (CastArg.isInvalid())
4247 return ExprError();
4249 From = CastArg.get();
4251 // C++ [over.match.oper]p7:
4252 // [...] the second standard conversion sequence of a user-defined
4253 // conversion sequence is not applied.
4254 if (CCK == CCK_ForBuiltinOverloadedOp)
4255 return From;
4257 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
4258 AA_Converting, CCK);
4261 case ImplicitConversionSequence::AmbiguousConversion:
4262 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
4263 PDiag(diag::err_typecheck_ambiguous_condition)
4264 << From->getSourceRange());
4265 return ExprError();
4267 case ImplicitConversionSequence::EllipsisConversion:
4268 case ImplicitConversionSequence::StaticObjectArgumentConversion:
4269 llvm_unreachable("bad conversion");
4271 case ImplicitConversionSequence::BadConversion:
4272 Sema::AssignConvertType ConvTy =
4273 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType());
4274 bool Diagnosed = DiagnoseAssignmentResult(
4275 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(),
4276 ToType, From->getType(), From, Action);
4277 assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
4278 return ExprError();
4281 // Everything went well.
4282 return From;
4285 /// PerformImplicitConversion - Perform an implicit conversion of the
4286 /// expression From to the type ToType by following the standard
4287 /// conversion sequence SCS. Returns the converted
4288 /// expression. Flavor is the context in which we're performing this
4289 /// conversion, for use in error messages.
4290 ExprResult
4291 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4292 const StandardConversionSequence& SCS,
4293 AssignmentAction Action,
4294 CheckedConversionKind CCK) {
4295 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
4297 // Overall FIXME: we are recomputing too many types here and doing far too
4298 // much extra work. What this means is that we need to keep track of more
4299 // information that is computed when we try the implicit conversion initially,
4300 // so that we don't need to recompute anything here.
4301 QualType FromType = From->getType();
4303 if (SCS.CopyConstructor) {
4304 // FIXME: When can ToType be a reference type?
4305 assert(!ToType->isReferenceType());
4306 if (SCS.Second == ICK_Derived_To_Base) {
4307 SmallVector<Expr*, 8> ConstructorArgs;
4308 if (CompleteConstructorCall(
4309 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From,
4310 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs))
4311 return ExprError();
4312 return BuildCXXConstructExpr(
4313 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4314 SCS.FoundCopyConstructor, SCS.CopyConstructor,
4315 ConstructorArgs, /*HadMultipleCandidates*/ false,
4316 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4317 CXXConstructExpr::CK_Complete, SourceRange());
4319 return BuildCXXConstructExpr(
4320 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4321 SCS.FoundCopyConstructor, SCS.CopyConstructor,
4322 From, /*HadMultipleCandidates*/ false,
4323 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4324 CXXConstructExpr::CK_Complete, SourceRange());
4327 // Resolve overloaded function references.
4328 if (Context.hasSameType(FromType, Context.OverloadTy)) {
4329 DeclAccessPair Found;
4330 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
4331 true, Found);
4332 if (!Fn)
4333 return ExprError();
4335 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
4336 return ExprError();
4338 ExprResult Res = FixOverloadedFunctionReference(From, Found, Fn);
4339 if (Res.isInvalid())
4340 return ExprError();
4342 // We might get back another placeholder expression if we resolved to a
4343 // builtin.
4344 Res = CheckPlaceholderExpr(Res.get());
4345 if (Res.isInvalid())
4346 return ExprError();
4348 From = Res.get();
4349 FromType = From->getType();
4352 // If we're converting to an atomic type, first convert to the corresponding
4353 // non-atomic type.
4354 QualType ToAtomicType;
4355 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
4356 ToAtomicType = ToType;
4357 ToType = ToAtomic->getValueType();
4360 QualType InitialFromType = FromType;
4361 // Perform the first implicit conversion.
4362 switch (SCS.First) {
4363 case ICK_Identity:
4364 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
4365 FromType = FromAtomic->getValueType().getUnqualifiedType();
4366 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
4367 From, /*BasePath=*/nullptr, VK_PRValue,
4368 FPOptionsOverride());
4370 break;
4372 case ICK_Lvalue_To_Rvalue: {
4373 assert(From->getObjectKind() != OK_ObjCProperty);
4374 ExprResult FromRes = DefaultLvalueConversion(From);
4375 if (FromRes.isInvalid())
4376 return ExprError();
4378 From = FromRes.get();
4379 FromType = From->getType();
4380 break;
4383 case ICK_Array_To_Pointer:
4384 FromType = Context.getArrayDecayedType(FromType);
4385 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue,
4386 /*BasePath=*/nullptr, CCK)
4387 .get();
4388 break;
4390 case ICK_Function_To_Pointer:
4391 FromType = Context.getPointerType(FromType);
4392 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
4393 VK_PRValue, /*BasePath=*/nullptr, CCK)
4394 .get();
4395 break;
4397 default:
4398 llvm_unreachable("Improper first standard conversion");
4401 // Perform the second implicit conversion
4402 switch (SCS.Second) {
4403 case ICK_Identity:
4404 // C++ [except.spec]p5:
4405 // [For] assignment to and initialization of pointers to functions,
4406 // pointers to member functions, and references to functions: the
4407 // target entity shall allow at least the exceptions allowed by the
4408 // source value in the assignment or initialization.
4409 switch (Action) {
4410 case AA_Assigning:
4411 case AA_Initializing:
4412 // Note, function argument passing and returning are initialization.
4413 case AA_Passing:
4414 case AA_Returning:
4415 case AA_Sending:
4416 case AA_Passing_CFAudited:
4417 if (CheckExceptionSpecCompatibility(From, ToType))
4418 return ExprError();
4419 break;
4421 case AA_Casting:
4422 case AA_Converting:
4423 // Casts and implicit conversions are not initialization, so are not
4424 // checked for exception specification mismatches.
4425 break;
4427 // Nothing else to do.
4428 break;
4430 case ICK_Integral_Promotion:
4431 case ICK_Integral_Conversion:
4432 if (ToType->isBooleanType()) {
4433 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
4434 SCS.Second == ICK_Integral_Promotion &&
4435 "only enums with fixed underlying type can promote to bool");
4436 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue,
4437 /*BasePath=*/nullptr, CCK)
4438 .get();
4439 } else {
4440 From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue,
4441 /*BasePath=*/nullptr, CCK)
4442 .get();
4444 break;
4446 case ICK_Floating_Promotion:
4447 case ICK_Floating_Conversion:
4448 From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue,
4449 /*BasePath=*/nullptr, CCK)
4450 .get();
4451 break;
4453 case ICK_Complex_Promotion:
4454 case ICK_Complex_Conversion: {
4455 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4456 QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4457 CastKind CK;
4458 if (FromEl->isRealFloatingType()) {
4459 if (ToEl->isRealFloatingType())
4460 CK = CK_FloatingComplexCast;
4461 else
4462 CK = CK_FloatingComplexToIntegralComplex;
4463 } else if (ToEl->isRealFloatingType()) {
4464 CK = CK_IntegralComplexToFloatingComplex;
4465 } else {
4466 CK = CK_IntegralComplexCast;
4468 From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr,
4469 CCK)
4470 .get();
4471 break;
4474 case ICK_Floating_Integral:
4475 if (ToType->isRealFloatingType())
4476 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue,
4477 /*BasePath=*/nullptr, CCK)
4478 .get();
4479 else
4480 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue,
4481 /*BasePath=*/nullptr, CCK)
4482 .get();
4483 break;
4485 case ICK_Compatible_Conversion:
4486 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(),
4487 /*BasePath=*/nullptr, CCK).get();
4488 break;
4490 case ICK_Writeback_Conversion:
4491 case ICK_Pointer_Conversion: {
4492 if (SCS.IncompatibleObjC && Action != AA_Casting) {
4493 // Diagnose incompatible Objective-C conversions
4494 if (Action == AA_Initializing || Action == AA_Assigning)
4495 Diag(From->getBeginLoc(),
4496 diag::ext_typecheck_convert_incompatible_pointer)
4497 << ToType << From->getType() << Action << From->getSourceRange()
4498 << 0;
4499 else
4500 Diag(From->getBeginLoc(),
4501 diag::ext_typecheck_convert_incompatible_pointer)
4502 << From->getType() << ToType << Action << From->getSourceRange()
4503 << 0;
4505 if (From->getType()->isObjCObjectPointerType() &&
4506 ToType->isObjCObjectPointerType())
4507 EmitRelatedResultTypeNote(From);
4508 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4509 !CheckObjCARCUnavailableWeakConversion(ToType,
4510 From->getType())) {
4511 if (Action == AA_Initializing)
4512 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4513 else
4514 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4515 << (Action == AA_Casting) << From->getType() << ToType
4516 << From->getSourceRange();
4519 // Defer address space conversion to the third conversion.
4520 QualType FromPteeType = From->getType()->getPointeeType();
4521 QualType ToPteeType = ToType->getPointeeType();
4522 QualType NewToType = ToType;
4523 if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
4524 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
4525 NewToType = Context.removeAddrSpaceQualType(ToPteeType);
4526 NewToType = Context.getAddrSpaceQualType(NewToType,
4527 FromPteeType.getAddressSpace());
4528 if (ToType->isObjCObjectPointerType())
4529 NewToType = Context.getObjCObjectPointerType(NewToType);
4530 else if (ToType->isBlockPointerType())
4531 NewToType = Context.getBlockPointerType(NewToType);
4532 else
4533 NewToType = Context.getPointerType(NewToType);
4536 CastKind Kind;
4537 CXXCastPath BasePath;
4538 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle))
4539 return ExprError();
4541 // Make sure we extend blocks if necessary.
4542 // FIXME: doing this here is really ugly.
4543 if (Kind == CK_BlockPointerToObjCPointerCast) {
4544 ExprResult E = From;
4545 (void) PrepareCastToObjCObjectPointer(E);
4546 From = E.get();
4548 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4549 CheckObjCConversion(SourceRange(), NewToType, From, CCK);
4550 From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK)
4551 .get();
4552 break;
4555 case ICK_Pointer_Member: {
4556 CastKind Kind;
4557 CXXCastPath BasePath;
4558 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4559 return ExprError();
4560 if (CheckExceptionSpecCompatibility(From, ToType))
4561 return ExprError();
4563 // We may not have been able to figure out what this member pointer resolved
4564 // to up until this exact point. Attempt to lock-in it's inheritance model.
4565 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4566 (void)isCompleteType(From->getExprLoc(), From->getType());
4567 (void)isCompleteType(From->getExprLoc(), ToType);
4570 From =
4571 ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get();
4572 break;
4575 case ICK_Boolean_Conversion:
4576 // Perform half-to-boolean conversion via float.
4577 if (From->getType()->isHalfType()) {
4578 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4579 FromType = Context.FloatTy;
4582 From = ImpCastExprToType(From, Context.BoolTy,
4583 ScalarTypeToBooleanCastKind(FromType), VK_PRValue,
4584 /*BasePath=*/nullptr, CCK)
4585 .get();
4586 break;
4588 case ICK_Derived_To_Base: {
4589 CXXCastPath BasePath;
4590 if (CheckDerivedToBaseConversion(
4591 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4592 From->getSourceRange(), &BasePath, CStyle))
4593 return ExprError();
4595 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4596 CK_DerivedToBase, From->getValueKind(),
4597 &BasePath, CCK).get();
4598 break;
4601 case ICK_Vector_Conversion:
4602 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4603 /*BasePath=*/nullptr, CCK)
4604 .get();
4605 break;
4607 case ICK_SVE_Vector_Conversion:
4608 case ICK_RVV_Vector_Conversion:
4609 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4610 /*BasePath=*/nullptr, CCK)
4611 .get();
4612 break;
4614 case ICK_Vector_Splat: {
4615 // Vector splat from any arithmetic type to a vector.
4616 Expr *Elem = prepareVectorSplat(ToType, From).get();
4617 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
4618 /*BasePath=*/nullptr, CCK)
4619 .get();
4620 break;
4623 case ICK_Complex_Real:
4624 // Case 1. x -> _Complex y
4625 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4626 QualType ElType = ToComplex->getElementType();
4627 bool isFloatingComplex = ElType->isRealFloatingType();
4629 // x -> y
4630 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4631 // do nothing
4632 } else if (From->getType()->isRealFloatingType()) {
4633 From = ImpCastExprToType(From, ElType,
4634 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4635 } else {
4636 assert(From->getType()->isIntegerType());
4637 From = ImpCastExprToType(From, ElType,
4638 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4640 // y -> _Complex y
4641 From = ImpCastExprToType(From, ToType,
4642 isFloatingComplex ? CK_FloatingRealToComplex
4643 : CK_IntegralRealToComplex).get();
4645 // Case 2. _Complex x -> y
4646 } else {
4647 auto *FromComplex = From->getType()->castAs<ComplexType>();
4648 QualType ElType = FromComplex->getElementType();
4649 bool isFloatingComplex = ElType->isRealFloatingType();
4651 // _Complex x -> x
4652 From = ImpCastExprToType(From, ElType,
4653 isFloatingComplex ? CK_FloatingComplexToReal
4654 : CK_IntegralComplexToReal,
4655 VK_PRValue, /*BasePath=*/nullptr, CCK)
4656 .get();
4658 // x -> y
4659 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4660 // do nothing
4661 } else if (ToType->isRealFloatingType()) {
4662 From = ImpCastExprToType(From, ToType,
4663 isFloatingComplex ? CK_FloatingCast
4664 : CK_IntegralToFloating,
4665 VK_PRValue, /*BasePath=*/nullptr, CCK)
4666 .get();
4667 } else {
4668 assert(ToType->isIntegerType());
4669 From = ImpCastExprToType(From, ToType,
4670 isFloatingComplex ? CK_FloatingToIntegral
4671 : CK_IntegralCast,
4672 VK_PRValue, /*BasePath=*/nullptr, CCK)
4673 .get();
4676 break;
4678 case ICK_Block_Pointer_Conversion: {
4679 LangAS AddrSpaceL =
4680 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4681 LangAS AddrSpaceR =
4682 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4683 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&
4684 "Invalid cast");
4685 CastKind Kind =
4686 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4687 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4688 VK_PRValue, /*BasePath=*/nullptr, CCK)
4689 .get();
4690 break;
4693 case ICK_TransparentUnionConversion: {
4694 ExprResult FromRes = From;
4695 Sema::AssignConvertType ConvTy =
4696 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4697 if (FromRes.isInvalid())
4698 return ExprError();
4699 From = FromRes.get();
4700 assert ((ConvTy == Sema::Compatible) &&
4701 "Improper transparent union conversion");
4702 (void)ConvTy;
4703 break;
4706 case ICK_Zero_Event_Conversion:
4707 case ICK_Zero_Queue_Conversion:
4708 From = ImpCastExprToType(From, ToType,
4709 CK_ZeroToOCLOpaqueType,
4710 From->getValueKind()).get();
4711 break;
4713 case ICK_Lvalue_To_Rvalue:
4714 case ICK_Array_To_Pointer:
4715 case ICK_Function_To_Pointer:
4716 case ICK_Function_Conversion:
4717 case ICK_Qualification:
4718 case ICK_Num_Conversion_Kinds:
4719 case ICK_C_Only_Conversion:
4720 case ICK_Incompatible_Pointer_Conversion:
4721 llvm_unreachable("Improper second standard conversion");
4724 switch (SCS.Third) {
4725 case ICK_Identity:
4726 // Nothing to do.
4727 break;
4729 case ICK_Function_Conversion:
4730 // If both sides are functions (or pointers/references to them), there could
4731 // be incompatible exception declarations.
4732 if (CheckExceptionSpecCompatibility(From, ToType))
4733 return ExprError();
4735 From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue,
4736 /*BasePath=*/nullptr, CCK)
4737 .get();
4738 break;
4740 case ICK_Qualification: {
4741 ExprValueKind VK = From->getValueKind();
4742 CastKind CK = CK_NoOp;
4744 if (ToType->isReferenceType() &&
4745 ToType->getPointeeType().getAddressSpace() !=
4746 From->getType().getAddressSpace())
4747 CK = CK_AddressSpaceConversion;
4749 if (ToType->isPointerType() &&
4750 ToType->getPointeeType().getAddressSpace() !=
4751 From->getType()->getPointeeType().getAddressSpace())
4752 CK = CK_AddressSpaceConversion;
4754 if (!isCast(CCK) &&
4755 !ToType->getPointeeType().getQualifiers().hasUnaligned() &&
4756 From->getType()->getPointeeType().getQualifiers().hasUnaligned()) {
4757 Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned)
4758 << InitialFromType << ToType;
4761 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4762 /*BasePath=*/nullptr, CCK)
4763 .get();
4765 if (SCS.DeprecatedStringLiteralToCharPtr &&
4766 !getLangOpts().WritableStrings) {
4767 Diag(From->getBeginLoc(),
4768 getLangOpts().CPlusPlus11
4769 ? diag::ext_deprecated_string_literal_conversion
4770 : diag::warn_deprecated_string_literal_conversion)
4771 << ToType.getNonReferenceType();
4774 break;
4777 default:
4778 llvm_unreachable("Improper third standard conversion");
4781 // If this conversion sequence involved a scalar -> atomic conversion, perform
4782 // that conversion now.
4783 if (!ToAtomicType.isNull()) {
4784 assert(Context.hasSameType(
4785 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
4786 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4787 VK_PRValue, nullptr, CCK)
4788 .get();
4791 // Materialize a temporary if we're implicitly converting to a reference
4792 // type. This is not required by the C++ rules but is necessary to maintain
4793 // AST invariants.
4794 if (ToType->isReferenceType() && From->isPRValue()) {
4795 ExprResult Res = TemporaryMaterializationConversion(From);
4796 if (Res.isInvalid())
4797 return ExprError();
4798 From = Res.get();
4801 // If this conversion sequence succeeded and involved implicitly converting a
4802 // _Nullable type to a _Nonnull one, complain.
4803 if (!isCast(CCK))
4804 diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4805 From->getBeginLoc());
4807 return From;
4810 /// Check the completeness of a type in a unary type trait.
4812 /// If the particular type trait requires a complete type, tries to complete
4813 /// it. If completing the type fails, a diagnostic is emitted and false
4814 /// returned. If completing the type succeeds or no completion was required,
4815 /// returns true.
4816 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4817 SourceLocation Loc,
4818 QualType ArgTy) {
4819 // C++0x [meta.unary.prop]p3:
4820 // For all of the class templates X declared in this Clause, instantiating
4821 // that template with a template argument that is a class template
4822 // specialization may result in the implicit instantiation of the template
4823 // argument if and only if the semantics of X require that the argument
4824 // must be a complete type.
4825 // We apply this rule to all the type trait expressions used to implement
4826 // these class templates. We also try to follow any GCC documented behavior
4827 // in these expressions to ensure portability of standard libraries.
4828 switch (UTT) {
4829 default: llvm_unreachable("not a UTT");
4830 // is_complete_type somewhat obviously cannot require a complete type.
4831 case UTT_IsCompleteType:
4832 // Fall-through
4834 // These traits are modeled on the type predicates in C++0x
4835 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4836 // requiring a complete type, as whether or not they return true cannot be
4837 // impacted by the completeness of the type.
4838 case UTT_IsVoid:
4839 case UTT_IsIntegral:
4840 case UTT_IsFloatingPoint:
4841 case UTT_IsArray:
4842 case UTT_IsBoundedArray:
4843 case UTT_IsPointer:
4844 case UTT_IsNullPointer:
4845 case UTT_IsReferenceable:
4846 case UTT_IsLvalueReference:
4847 case UTT_IsRvalueReference:
4848 case UTT_IsMemberFunctionPointer:
4849 case UTT_IsMemberObjectPointer:
4850 case UTT_IsEnum:
4851 case UTT_IsScopedEnum:
4852 case UTT_IsUnion:
4853 case UTT_IsClass:
4854 case UTT_IsFunction:
4855 case UTT_IsReference:
4856 case UTT_IsArithmetic:
4857 case UTT_IsFundamental:
4858 case UTT_IsObject:
4859 case UTT_IsScalar:
4860 case UTT_IsCompound:
4861 case UTT_IsMemberPointer:
4862 // Fall-through
4864 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4865 // which requires some of its traits to have the complete type. However,
4866 // the completeness of the type cannot impact these traits' semantics, and
4867 // so they don't require it. This matches the comments on these traits in
4868 // Table 49.
4869 case UTT_IsConst:
4870 case UTT_IsVolatile:
4871 case UTT_IsSigned:
4872 case UTT_IsUnboundedArray:
4873 case UTT_IsUnsigned:
4875 // This type trait always returns false, checking the type is moot.
4876 case UTT_IsInterfaceClass:
4877 return true;
4879 // C++14 [meta.unary.prop]:
4880 // If T is a non-union class type, T shall be a complete type.
4881 case UTT_IsEmpty:
4882 case UTT_IsPolymorphic:
4883 case UTT_IsAbstract:
4884 if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4885 if (!RD->isUnion())
4886 return !S.RequireCompleteType(
4887 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4888 return true;
4890 // C++14 [meta.unary.prop]:
4891 // If T is a class type, T shall be a complete type.
4892 case UTT_IsFinal:
4893 case UTT_IsSealed:
4894 if (ArgTy->getAsCXXRecordDecl())
4895 return !S.RequireCompleteType(
4896 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4897 return true;
4899 // LWG3823: T shall be an array type, a complete type, or cv void.
4900 case UTT_IsAggregate:
4901 if (ArgTy->isArrayType() || ArgTy->isVoidType())
4902 return true;
4904 return !S.RequireCompleteType(
4905 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4907 // C++1z [meta.unary.prop]:
4908 // remove_all_extents_t<T> shall be a complete type or cv void.
4909 case UTT_IsTrivial:
4910 case UTT_IsTriviallyCopyable:
4911 case UTT_IsStandardLayout:
4912 case UTT_IsPOD:
4913 case UTT_IsLiteral:
4914 // By analogy, is_trivially_relocatable and is_trivially_equality_comparable
4915 // impose the same constraints.
4916 case UTT_IsTriviallyRelocatable:
4917 case UTT_IsTriviallyEqualityComparable:
4918 case UTT_CanPassInRegs:
4919 // Per the GCC type traits documentation, T shall be a complete type, cv void,
4920 // or an array of unknown bound. But GCC actually imposes the same constraints
4921 // as above.
4922 case UTT_HasNothrowAssign:
4923 case UTT_HasNothrowMoveAssign:
4924 case UTT_HasNothrowConstructor:
4925 case UTT_HasNothrowCopy:
4926 case UTT_HasTrivialAssign:
4927 case UTT_HasTrivialMoveAssign:
4928 case UTT_HasTrivialDefaultConstructor:
4929 case UTT_HasTrivialMoveConstructor:
4930 case UTT_HasTrivialCopy:
4931 case UTT_HasTrivialDestructor:
4932 case UTT_HasVirtualDestructor:
4933 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4934 [[fallthrough]];
4936 // C++1z [meta.unary.prop]:
4937 // T shall be a complete type, cv void, or an array of unknown bound.
4938 case UTT_IsDestructible:
4939 case UTT_IsNothrowDestructible:
4940 case UTT_IsTriviallyDestructible:
4941 case UTT_HasUniqueObjectRepresentations:
4942 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4943 return true;
4945 return !S.RequireCompleteType(
4946 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4950 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4951 Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4952 bool (CXXRecordDecl::*HasTrivial)() const,
4953 bool (CXXRecordDecl::*HasNonTrivial)() const,
4954 bool (CXXMethodDecl::*IsDesiredOp)() const)
4956 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4957 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4958 return true;
4960 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4961 DeclarationNameInfo NameInfo(Name, KeyLoc);
4962 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4963 if (Self.LookupQualifiedName(Res, RD)) {
4964 bool FoundOperator = false;
4965 Res.suppressDiagnostics();
4966 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4967 Op != OpEnd; ++Op) {
4968 if (isa<FunctionTemplateDecl>(*Op))
4969 continue;
4971 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4972 if((Operator->*IsDesiredOp)()) {
4973 FoundOperator = true;
4974 auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
4975 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4976 if (!CPT || !CPT->isNothrow())
4977 return false;
4980 return FoundOperator;
4982 return false;
4985 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4986 SourceLocation KeyLoc, QualType T) {
4987 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
4989 ASTContext &C = Self.Context;
4990 switch(UTT) {
4991 default: llvm_unreachable("not a UTT");
4992 // Type trait expressions corresponding to the primary type category
4993 // predicates in C++0x [meta.unary.cat].
4994 case UTT_IsVoid:
4995 return T->isVoidType();
4996 case UTT_IsIntegral:
4997 return T->isIntegralType(C);
4998 case UTT_IsFloatingPoint:
4999 return T->isFloatingType();
5000 case UTT_IsArray:
5001 return T->isArrayType();
5002 case UTT_IsBoundedArray:
5003 if (!T->isVariableArrayType()) {
5004 return T->isArrayType() && !T->isIncompleteArrayType();
5007 Self.Diag(KeyLoc, diag::err_vla_unsupported)
5008 << 1 << tok::kw___is_bounded_array;
5009 return false;
5010 case UTT_IsUnboundedArray:
5011 if (!T->isVariableArrayType()) {
5012 return T->isIncompleteArrayType();
5015 Self.Diag(KeyLoc, diag::err_vla_unsupported)
5016 << 1 << tok::kw___is_unbounded_array;
5017 return false;
5018 case UTT_IsPointer:
5019 return T->isAnyPointerType();
5020 case UTT_IsNullPointer:
5021 return T->isNullPtrType();
5022 case UTT_IsLvalueReference:
5023 return T->isLValueReferenceType();
5024 case UTT_IsRvalueReference:
5025 return T->isRValueReferenceType();
5026 case UTT_IsMemberFunctionPointer:
5027 return T->isMemberFunctionPointerType();
5028 case UTT_IsMemberObjectPointer:
5029 return T->isMemberDataPointerType();
5030 case UTT_IsEnum:
5031 return T->isEnumeralType();
5032 case UTT_IsScopedEnum:
5033 return T->isScopedEnumeralType();
5034 case UTT_IsUnion:
5035 return T->isUnionType();
5036 case UTT_IsClass:
5037 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
5038 case UTT_IsFunction:
5039 return T->isFunctionType();
5041 // Type trait expressions which correspond to the convenient composition
5042 // predicates in C++0x [meta.unary.comp].
5043 case UTT_IsReference:
5044 return T->isReferenceType();
5045 case UTT_IsArithmetic:
5046 return T->isArithmeticType() && !T->isEnumeralType();
5047 case UTT_IsFundamental:
5048 return T->isFundamentalType();
5049 case UTT_IsObject:
5050 return T->isObjectType();
5051 case UTT_IsScalar:
5052 // Note: semantic analysis depends on Objective-C lifetime types to be
5053 // considered scalar types. However, such types do not actually behave
5054 // like scalar types at run time (since they may require retain/release
5055 // operations), so we report them as non-scalar.
5056 if (T->isObjCLifetimeType()) {
5057 switch (T.getObjCLifetime()) {
5058 case Qualifiers::OCL_None:
5059 case Qualifiers::OCL_ExplicitNone:
5060 return true;
5062 case Qualifiers::OCL_Strong:
5063 case Qualifiers::OCL_Weak:
5064 case Qualifiers::OCL_Autoreleasing:
5065 return false;
5069 return T->isScalarType();
5070 case UTT_IsCompound:
5071 return T->isCompoundType();
5072 case UTT_IsMemberPointer:
5073 return T->isMemberPointerType();
5075 // Type trait expressions which correspond to the type property predicates
5076 // in C++0x [meta.unary.prop].
5077 case UTT_IsConst:
5078 return T.isConstQualified();
5079 case UTT_IsVolatile:
5080 return T.isVolatileQualified();
5081 case UTT_IsTrivial:
5082 return T.isTrivialType(C);
5083 case UTT_IsTriviallyCopyable:
5084 return T.isTriviallyCopyableType(C);
5085 case UTT_IsStandardLayout:
5086 return T->isStandardLayoutType();
5087 case UTT_IsPOD:
5088 return T.isPODType(C);
5089 case UTT_IsLiteral:
5090 return T->isLiteralType(C);
5091 case UTT_IsEmpty:
5092 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5093 return !RD->isUnion() && RD->isEmpty();
5094 return false;
5095 case UTT_IsPolymorphic:
5096 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5097 return !RD->isUnion() && RD->isPolymorphic();
5098 return false;
5099 case UTT_IsAbstract:
5100 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5101 return !RD->isUnion() && RD->isAbstract();
5102 return false;
5103 case UTT_IsAggregate:
5104 // Report vector extensions and complex types as aggregates because they
5105 // support aggregate initialization. GCC mirrors this behavior for vectors
5106 // but not _Complex.
5107 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
5108 T->isAnyComplexType();
5109 // __is_interface_class only returns true when CL is invoked in /CLR mode and
5110 // even then only when it is used with the 'interface struct ...' syntax
5111 // Clang doesn't support /CLR which makes this type trait moot.
5112 case UTT_IsInterfaceClass:
5113 return false;
5114 case UTT_IsFinal:
5115 case UTT_IsSealed:
5116 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5117 return RD->hasAttr<FinalAttr>();
5118 return false;
5119 case UTT_IsSigned:
5120 // Enum types should always return false.
5121 // Floating points should always return true.
5122 return T->isFloatingType() ||
5123 (T->isSignedIntegerType() && !T->isEnumeralType());
5124 case UTT_IsUnsigned:
5125 // Enum types should always return false.
5126 return T->isUnsignedIntegerType() && !T->isEnumeralType();
5128 // Type trait expressions which query classes regarding their construction,
5129 // destruction, and copying. Rather than being based directly on the
5130 // related type predicates in the standard, they are specified by both
5131 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
5132 // specifications.
5134 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
5135 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5137 // Note that these builtins do not behave as documented in g++: if a class
5138 // has both a trivial and a non-trivial special member of a particular kind,
5139 // they return false! For now, we emulate this behavior.
5140 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
5141 // does not correctly compute triviality in the presence of multiple special
5142 // members of the same kind. Revisit this once the g++ bug is fixed.
5143 case UTT_HasTrivialDefaultConstructor:
5144 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5145 // If __is_pod (type) is true then the trait is true, else if type is
5146 // a cv class or union type (or array thereof) with a trivial default
5147 // constructor ([class.ctor]) then the trait is true, else it is false.
5148 if (T.isPODType(C))
5149 return true;
5150 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5151 return RD->hasTrivialDefaultConstructor() &&
5152 !RD->hasNonTrivialDefaultConstructor();
5153 return false;
5154 case UTT_HasTrivialMoveConstructor:
5155 // This trait is implemented by MSVC 2012 and needed to parse the
5156 // standard library headers. Specifically this is used as the logic
5157 // behind std::is_trivially_move_constructible (20.9.4.3).
5158 if (T.isPODType(C))
5159 return true;
5160 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5161 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
5162 return false;
5163 case UTT_HasTrivialCopy:
5164 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5165 // If __is_pod (type) is true or type is a reference type then
5166 // the trait is true, else if type is a cv class or union type
5167 // with a trivial copy constructor ([class.copy]) then the trait
5168 // is true, else it is false.
5169 if (T.isPODType(C) || T->isReferenceType())
5170 return true;
5171 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5172 return RD->hasTrivialCopyConstructor() &&
5173 !RD->hasNonTrivialCopyConstructor();
5174 return false;
5175 case UTT_HasTrivialMoveAssign:
5176 // This trait is implemented by MSVC 2012 and needed to parse the
5177 // standard library headers. Specifically it is used as the logic
5178 // behind std::is_trivially_move_assignable (20.9.4.3)
5179 if (T.isPODType(C))
5180 return true;
5181 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5182 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
5183 return false;
5184 case UTT_HasTrivialAssign:
5185 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5186 // If type is const qualified or is a reference type then the
5187 // trait is false. Otherwise if __is_pod (type) is true then the
5188 // trait is true, else if type is a cv class or union type with
5189 // a trivial copy assignment ([class.copy]) then the trait is
5190 // true, else it is false.
5191 // Note: the const and reference restrictions are interesting,
5192 // given that const and reference members don't prevent a class
5193 // from having a trivial copy assignment operator (but do cause
5194 // errors if the copy assignment operator is actually used, q.v.
5195 // [class.copy]p12).
5197 if (T.isConstQualified())
5198 return false;
5199 if (T.isPODType(C))
5200 return true;
5201 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5202 return RD->hasTrivialCopyAssignment() &&
5203 !RD->hasNonTrivialCopyAssignment();
5204 return false;
5205 case UTT_IsDestructible:
5206 case UTT_IsTriviallyDestructible:
5207 case UTT_IsNothrowDestructible:
5208 // C++14 [meta.unary.prop]:
5209 // For reference types, is_destructible<T>::value is true.
5210 if (T->isReferenceType())
5211 return true;
5213 // Objective-C++ ARC: autorelease types don't require destruction.
5214 if (T->isObjCLifetimeType() &&
5215 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5216 return true;
5218 // C++14 [meta.unary.prop]:
5219 // For incomplete types and function types, is_destructible<T>::value is
5220 // false.
5221 if (T->isIncompleteType() || T->isFunctionType())
5222 return false;
5224 // A type that requires destruction (via a non-trivial destructor or ARC
5225 // lifetime semantics) is not trivially-destructible.
5226 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
5227 return false;
5229 // C++14 [meta.unary.prop]:
5230 // For object types and given U equal to remove_all_extents_t<T>, if the
5231 // expression std::declval<U&>().~U() is well-formed when treated as an
5232 // unevaluated operand (Clause 5), then is_destructible<T>::value is true
5233 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5234 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
5235 if (!Destructor)
5236 return false;
5237 // C++14 [dcl.fct.def.delete]p2:
5238 // A program that refers to a deleted function implicitly or
5239 // explicitly, other than to declare it, is ill-formed.
5240 if (Destructor->isDeleted())
5241 return false;
5242 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
5243 return false;
5244 if (UTT == UTT_IsNothrowDestructible) {
5245 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
5246 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5247 if (!CPT || !CPT->isNothrow())
5248 return false;
5251 return true;
5253 case UTT_HasTrivialDestructor:
5254 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5255 // If __is_pod (type) is true or type is a reference type
5256 // then the trait is true, else if type is a cv class or union
5257 // type (or array thereof) with a trivial destructor
5258 // ([class.dtor]) then the trait is true, else it is
5259 // false.
5260 if (T.isPODType(C) || T->isReferenceType())
5261 return true;
5263 // Objective-C++ ARC: autorelease types don't require destruction.
5264 if (T->isObjCLifetimeType() &&
5265 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5266 return true;
5268 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5269 return RD->hasTrivialDestructor();
5270 return false;
5271 // TODO: Propagate nothrowness for implicitly declared special members.
5272 case UTT_HasNothrowAssign:
5273 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5274 // If type is const qualified or is a reference type then the
5275 // trait is false. Otherwise if __has_trivial_assign (type)
5276 // is true then the trait is true, else if type is a cv class
5277 // or union type with copy assignment operators that are known
5278 // not to throw an exception then the trait is true, else it is
5279 // false.
5280 if (C.getBaseElementType(T).isConstQualified())
5281 return false;
5282 if (T->isReferenceType())
5283 return false;
5284 if (T.isPODType(C) || T->isObjCLifetimeType())
5285 return true;
5287 if (const RecordType *RT = T->getAs<RecordType>())
5288 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5289 &CXXRecordDecl::hasTrivialCopyAssignment,
5290 &CXXRecordDecl::hasNonTrivialCopyAssignment,
5291 &CXXMethodDecl::isCopyAssignmentOperator);
5292 return false;
5293 case UTT_HasNothrowMoveAssign:
5294 // This trait is implemented by MSVC 2012 and needed to parse the
5295 // standard library headers. Specifically this is used as the logic
5296 // behind std::is_nothrow_move_assignable (20.9.4.3).
5297 if (T.isPODType(C))
5298 return true;
5300 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
5301 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5302 &CXXRecordDecl::hasTrivialMoveAssignment,
5303 &CXXRecordDecl::hasNonTrivialMoveAssignment,
5304 &CXXMethodDecl::isMoveAssignmentOperator);
5305 return false;
5306 case UTT_HasNothrowCopy:
5307 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5308 // If __has_trivial_copy (type) is true then the trait is true, else
5309 // if type is a cv class or union type with copy constructors that are
5310 // known not to throw an exception then the trait is true, else it is
5311 // false.
5312 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
5313 return true;
5314 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
5315 if (RD->hasTrivialCopyConstructor() &&
5316 !RD->hasNonTrivialCopyConstructor())
5317 return true;
5319 bool FoundConstructor = false;
5320 unsigned FoundTQs;
5321 for (const auto *ND : Self.LookupConstructors(RD)) {
5322 // A template constructor is never a copy constructor.
5323 // FIXME: However, it may actually be selected at the actual overload
5324 // resolution point.
5325 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5326 continue;
5327 // UsingDecl itself is not a constructor
5328 if (isa<UsingDecl>(ND))
5329 continue;
5330 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5331 if (Constructor->isCopyConstructor(FoundTQs)) {
5332 FoundConstructor = true;
5333 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5334 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5335 if (!CPT)
5336 return false;
5337 // TODO: check whether evaluating default arguments can throw.
5338 // For now, we'll be conservative and assume that they can throw.
5339 if (!CPT->isNothrow() || CPT->getNumParams() > 1)
5340 return false;
5344 return FoundConstructor;
5346 return false;
5347 case UTT_HasNothrowConstructor:
5348 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5349 // If __has_trivial_constructor (type) is true then the trait is
5350 // true, else if type is a cv class or union type (or array
5351 // thereof) with a default constructor that is known not to
5352 // throw an exception then the trait is true, else it is false.
5353 if (T.isPODType(C) || T->isObjCLifetimeType())
5354 return true;
5355 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5356 if (RD->hasTrivialDefaultConstructor() &&
5357 !RD->hasNonTrivialDefaultConstructor())
5358 return true;
5360 bool FoundConstructor = false;
5361 for (const auto *ND : Self.LookupConstructors(RD)) {
5362 // FIXME: In C++0x, a constructor template can be a default constructor.
5363 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5364 continue;
5365 // UsingDecl itself is not a constructor
5366 if (isa<UsingDecl>(ND))
5367 continue;
5368 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5369 if (Constructor->isDefaultConstructor()) {
5370 FoundConstructor = true;
5371 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5372 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5373 if (!CPT)
5374 return false;
5375 // FIXME: check whether evaluating default arguments can throw.
5376 // For now, we'll be conservative and assume that they can throw.
5377 if (!CPT->isNothrow() || CPT->getNumParams() > 0)
5378 return false;
5381 return FoundConstructor;
5383 return false;
5384 case UTT_HasVirtualDestructor:
5385 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5386 // If type is a class type with a virtual destructor ([class.dtor])
5387 // then the trait is true, else it is false.
5388 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5389 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
5390 return Destructor->isVirtual();
5391 return false;
5393 // These type trait expressions are modeled on the specifications for the
5394 // Embarcadero C++0x type trait functions:
5395 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5396 case UTT_IsCompleteType:
5397 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
5398 // Returns True if and only if T is a complete type at the point of the
5399 // function call.
5400 return !T->isIncompleteType();
5401 case UTT_HasUniqueObjectRepresentations:
5402 return C.hasUniqueObjectRepresentations(T);
5403 case UTT_IsTriviallyRelocatable:
5404 return T.isTriviallyRelocatableType(C);
5405 case UTT_IsReferenceable:
5406 return T.isReferenceable();
5407 case UTT_CanPassInRegs:
5408 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl(); RD && !T.hasQualifiers())
5409 return RD->canPassInRegisters();
5410 Self.Diag(KeyLoc, diag::err_builtin_pass_in_regs_non_class) << T;
5411 return false;
5412 case UTT_IsTriviallyEqualityComparable:
5413 return T.isTriviallyEqualityComparableType(C);
5417 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5418 QualType RhsT, SourceLocation KeyLoc);
5420 static bool EvaluateBooleanTypeTrait(Sema &S, TypeTrait Kind,
5421 SourceLocation KWLoc,
5422 ArrayRef<TypeSourceInfo *> Args,
5423 SourceLocation RParenLoc,
5424 bool IsDependent) {
5425 if (IsDependent)
5426 return false;
5428 if (Kind <= UTT_Last)
5429 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
5431 // Evaluate ReferenceBindsToTemporary and ReferenceConstructsFromTemporary
5432 // alongside the IsConstructible traits to avoid duplication.
5433 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary && Kind != BTT_ReferenceConstructsFromTemporary)
5434 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
5435 Args[1]->getType(), RParenLoc);
5437 switch (Kind) {
5438 case clang::BTT_ReferenceBindsToTemporary:
5439 case clang::BTT_ReferenceConstructsFromTemporary:
5440 case clang::TT_IsConstructible:
5441 case clang::TT_IsNothrowConstructible:
5442 case clang::TT_IsTriviallyConstructible: {
5443 // C++11 [meta.unary.prop]:
5444 // is_trivially_constructible is defined as:
5446 // is_constructible<T, Args...>::value is true and the variable
5447 // definition for is_constructible, as defined below, is known to call
5448 // no operation that is not trivial.
5450 // The predicate condition for a template specialization
5451 // is_constructible<T, Args...> shall be satisfied if and only if the
5452 // following variable definition would be well-formed for some invented
5453 // variable t:
5455 // T t(create<Args>()...);
5456 assert(!Args.empty());
5458 // Precondition: T and all types in the parameter pack Args shall be
5459 // complete types, (possibly cv-qualified) void, or arrays of
5460 // unknown bound.
5461 for (const auto *TSI : Args) {
5462 QualType ArgTy = TSI->getType();
5463 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
5464 continue;
5466 if (S.RequireCompleteType(KWLoc, ArgTy,
5467 diag::err_incomplete_type_used_in_type_trait_expr))
5468 return false;
5471 // Make sure the first argument is not incomplete nor a function type.
5472 QualType T = Args[0]->getType();
5473 if (T->isIncompleteType() || T->isFunctionType())
5474 return false;
5476 // Make sure the first argument is not an abstract type.
5477 CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5478 if (RD && RD->isAbstract())
5479 return false;
5481 llvm::BumpPtrAllocator OpaqueExprAllocator;
5482 SmallVector<Expr *, 2> ArgExprs;
5483 ArgExprs.reserve(Args.size() - 1);
5484 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
5485 QualType ArgTy = Args[I]->getType();
5486 if (ArgTy->isObjectType() || ArgTy->isFunctionType())
5487 ArgTy = S.Context.getRValueReferenceType(ArgTy);
5488 ArgExprs.push_back(
5489 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5490 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
5491 ArgTy.getNonLValueExprType(S.Context),
5492 Expr::getValueKindForType(ArgTy)));
5495 // Perform the initialization in an unevaluated context within a SFINAE
5496 // trap at translation unit scope.
5497 EnterExpressionEvaluationContext Unevaluated(
5498 S, Sema::ExpressionEvaluationContext::Unevaluated);
5499 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5500 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5501 InitializedEntity To(
5502 InitializedEntity::InitializeTemporary(S.Context, Args[0]));
5503 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
5504 RParenLoc));
5505 InitializationSequence Init(S, To, InitKind, ArgExprs);
5506 if (Init.Failed())
5507 return false;
5509 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
5510 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5511 return false;
5513 if (Kind == clang::TT_IsConstructible)
5514 return true;
5516 if (Kind == clang::BTT_ReferenceBindsToTemporary || Kind == clang::BTT_ReferenceConstructsFromTemporary) {
5517 if (!T->isReferenceType())
5518 return false;
5520 if (!Init.isDirectReferenceBinding())
5521 return true;
5523 if (Kind == clang::BTT_ReferenceBindsToTemporary)
5524 return false;
5526 QualType U = Args[1]->getType();
5527 if (U->isReferenceType())
5528 return false;
5530 QualType TPtr = S.Context.getPointerType(S.BuiltinRemoveReference(T, UnaryTransformType::RemoveCVRef, {}));
5531 QualType UPtr = S.Context.getPointerType(S.BuiltinRemoveReference(U, UnaryTransformType::RemoveCVRef, {}));
5532 return EvaluateBinaryTypeTrait(S, TypeTrait::BTT_IsConvertibleTo, UPtr, TPtr, RParenLoc);
5535 if (Kind == clang::TT_IsNothrowConstructible)
5536 return S.canThrow(Result.get()) == CT_Cannot;
5538 if (Kind == clang::TT_IsTriviallyConstructible) {
5539 // Under Objective-C ARC and Weak, if the destination has non-trivial
5540 // Objective-C lifetime, this is a non-trivial construction.
5541 if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5542 return false;
5544 // The initialization succeeded; now make sure there are no non-trivial
5545 // calls.
5546 return !Result.get()->hasNonTrivialCall(S.Context);
5549 llvm_unreachable("unhandled type trait");
5550 return false;
5552 default: llvm_unreachable("not a TT");
5555 return false;
5558 namespace {
5559 void DiagnoseBuiltinDeprecation(Sema& S, TypeTrait Kind,
5560 SourceLocation KWLoc) {
5561 TypeTrait Replacement;
5562 switch (Kind) {
5563 case UTT_HasNothrowAssign:
5564 case UTT_HasNothrowMoveAssign:
5565 Replacement = BTT_IsNothrowAssignable;
5566 break;
5567 case UTT_HasNothrowCopy:
5568 case UTT_HasNothrowConstructor:
5569 Replacement = TT_IsNothrowConstructible;
5570 break;
5571 case UTT_HasTrivialAssign:
5572 case UTT_HasTrivialMoveAssign:
5573 Replacement = BTT_IsTriviallyAssignable;
5574 break;
5575 case UTT_HasTrivialCopy:
5576 Replacement = UTT_IsTriviallyCopyable;
5577 break;
5578 case UTT_HasTrivialDefaultConstructor:
5579 case UTT_HasTrivialMoveConstructor:
5580 Replacement = TT_IsTriviallyConstructible;
5581 break;
5582 case UTT_HasTrivialDestructor:
5583 Replacement = UTT_IsTriviallyDestructible;
5584 break;
5585 default:
5586 return;
5588 S.Diag(KWLoc, diag::warn_deprecated_builtin)
5589 << getTraitSpelling(Kind) << getTraitSpelling(Replacement);
5593 bool Sema::CheckTypeTraitArity(unsigned Arity, SourceLocation Loc, size_t N) {
5594 if (Arity && N != Arity) {
5595 Diag(Loc, diag::err_type_trait_arity)
5596 << Arity << 0 << (Arity > 1) << (int)N << SourceRange(Loc);
5597 return false;
5600 if (!Arity && N == 0) {
5601 Diag(Loc, diag::err_type_trait_arity)
5602 << 1 << 1 << 1 << (int)N << SourceRange(Loc);
5603 return false;
5605 return true;
5608 enum class TypeTraitReturnType {
5609 Bool,
5612 static TypeTraitReturnType GetReturnType(TypeTrait Kind) {
5613 return TypeTraitReturnType::Bool;
5616 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5617 ArrayRef<TypeSourceInfo *> Args,
5618 SourceLocation RParenLoc) {
5619 if (!CheckTypeTraitArity(getTypeTraitArity(Kind), KWLoc, Args.size()))
5620 return ExprError();
5622 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5623 *this, Kind, KWLoc, Args[0]->getType()))
5624 return ExprError();
5626 DiagnoseBuiltinDeprecation(*this, Kind, KWLoc);
5628 bool Dependent = false;
5629 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5630 if (Args[I]->getType()->isDependentType()) {
5631 Dependent = true;
5632 break;
5636 switch (GetReturnType(Kind)) {
5637 case TypeTraitReturnType::Bool: {
5638 bool Result = EvaluateBooleanTypeTrait(*this, Kind, KWLoc, Args, RParenLoc,
5639 Dependent);
5640 return TypeTraitExpr::Create(Context, Context.getLogicalOperationType(),
5641 KWLoc, Kind, Args, RParenLoc, Result);
5644 llvm_unreachable("unhandled type trait return type");
5647 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5648 ArrayRef<ParsedType> Args,
5649 SourceLocation RParenLoc) {
5650 SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5651 ConvertedArgs.reserve(Args.size());
5653 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5654 TypeSourceInfo *TInfo;
5655 QualType T = GetTypeFromParser(Args[I], &TInfo);
5656 if (!TInfo)
5657 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5659 ConvertedArgs.push_back(TInfo);
5662 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5665 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5666 QualType RhsT, SourceLocation KeyLoc) {
5667 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
5668 "Cannot evaluate traits of dependent types");
5670 switch(BTT) {
5671 case BTT_IsBaseOf: {
5672 // C++0x [meta.rel]p2
5673 // Base is a base class of Derived without regard to cv-qualifiers or
5674 // Base and Derived are not unions and name the same class type without
5675 // regard to cv-qualifiers.
5677 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5678 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5679 if (!rhsRecord || !lhsRecord) {
5680 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5681 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5682 if (!LHSObjTy || !RHSObjTy)
5683 return false;
5685 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5686 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5687 if (!BaseInterface || !DerivedInterface)
5688 return false;
5690 if (Self.RequireCompleteType(
5691 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5692 return false;
5694 return BaseInterface->isSuperClassOf(DerivedInterface);
5697 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
5698 == (lhsRecord == rhsRecord));
5700 // Unions are never base classes, and never have base classes.
5701 // It doesn't matter if they are complete or not. See PR#41843
5702 if (lhsRecord && lhsRecord->getDecl()->isUnion())
5703 return false;
5704 if (rhsRecord && rhsRecord->getDecl()->isUnion())
5705 return false;
5707 if (lhsRecord == rhsRecord)
5708 return true;
5710 // C++0x [meta.rel]p2:
5711 // If Base and Derived are class types and are different types
5712 // (ignoring possible cv-qualifiers) then Derived shall be a
5713 // complete type.
5714 if (Self.RequireCompleteType(KeyLoc, RhsT,
5715 diag::err_incomplete_type_used_in_type_trait_expr))
5716 return false;
5718 return cast<CXXRecordDecl>(rhsRecord->getDecl())
5719 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5721 case BTT_IsSame:
5722 return Self.Context.hasSameType(LhsT, RhsT);
5723 case BTT_TypeCompatible: {
5724 // GCC ignores cv-qualifiers on arrays for this builtin.
5725 Qualifiers LhsQuals, RhsQuals;
5726 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5727 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5728 return Self.Context.typesAreCompatible(Lhs, Rhs);
5730 case BTT_IsConvertible:
5731 case BTT_IsConvertibleTo: {
5732 // C++0x [meta.rel]p4:
5733 // Given the following function prototype:
5735 // template <class T>
5736 // typename add_rvalue_reference<T>::type create();
5738 // the predicate condition for a template specialization
5739 // is_convertible<From, To> shall be satisfied if and only if
5740 // the return expression in the following code would be
5741 // well-formed, including any implicit conversions to the return
5742 // type of the function:
5744 // To test() {
5745 // return create<From>();
5746 // }
5748 // Access checking is performed as if in a context unrelated to To and
5749 // From. Only the validity of the immediate context of the expression
5750 // of the return-statement (including conversions to the return type)
5751 // is considered.
5753 // We model the initialization as a copy-initialization of a temporary
5754 // of the appropriate type, which for this expression is identical to the
5755 // return statement (since NRVO doesn't apply).
5757 // Functions aren't allowed to return function or array types.
5758 if (RhsT->isFunctionType() || RhsT->isArrayType())
5759 return false;
5761 // A return statement in a void function must have void type.
5762 if (RhsT->isVoidType())
5763 return LhsT->isVoidType();
5765 // A function definition requires a complete, non-abstract return type.
5766 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5767 return false;
5769 // Compute the result of add_rvalue_reference.
5770 if (LhsT->isObjectType() || LhsT->isFunctionType())
5771 LhsT = Self.Context.getRValueReferenceType(LhsT);
5773 // Build a fake source and destination for initialization.
5774 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5775 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5776 Expr::getValueKindForType(LhsT));
5777 Expr *FromPtr = &From;
5778 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5779 SourceLocation()));
5781 // Perform the initialization in an unevaluated context within a SFINAE
5782 // trap at translation unit scope.
5783 EnterExpressionEvaluationContext Unevaluated(
5784 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5785 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5786 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5787 InitializationSequence Init(Self, To, Kind, FromPtr);
5788 if (Init.Failed())
5789 return false;
5791 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5792 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5795 case BTT_IsAssignable:
5796 case BTT_IsNothrowAssignable:
5797 case BTT_IsTriviallyAssignable: {
5798 // C++11 [meta.unary.prop]p3:
5799 // is_trivially_assignable is defined as:
5800 // is_assignable<T, U>::value is true and the assignment, as defined by
5801 // is_assignable, is known to call no operation that is not trivial
5803 // is_assignable is defined as:
5804 // The expression declval<T>() = declval<U>() is well-formed when
5805 // treated as an unevaluated operand (Clause 5).
5807 // For both, T and U shall be complete types, (possibly cv-qualified)
5808 // void, or arrays of unknown bound.
5809 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5810 Self.RequireCompleteType(KeyLoc, LhsT,
5811 diag::err_incomplete_type_used_in_type_trait_expr))
5812 return false;
5813 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5814 Self.RequireCompleteType(KeyLoc, RhsT,
5815 diag::err_incomplete_type_used_in_type_trait_expr))
5816 return false;
5818 // cv void is never assignable.
5819 if (LhsT->isVoidType() || RhsT->isVoidType())
5820 return false;
5822 // Build expressions that emulate the effect of declval<T>() and
5823 // declval<U>().
5824 if (LhsT->isObjectType() || LhsT->isFunctionType())
5825 LhsT = Self.Context.getRValueReferenceType(LhsT);
5826 if (RhsT->isObjectType() || RhsT->isFunctionType())
5827 RhsT = Self.Context.getRValueReferenceType(RhsT);
5828 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5829 Expr::getValueKindForType(LhsT));
5830 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5831 Expr::getValueKindForType(RhsT));
5833 // Attempt the assignment in an unevaluated context within a SFINAE
5834 // trap at translation unit scope.
5835 EnterExpressionEvaluationContext Unevaluated(
5836 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5837 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5838 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5839 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5840 &Rhs);
5841 if (Result.isInvalid())
5842 return false;
5844 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
5845 Self.CheckUnusedVolatileAssignment(Result.get());
5847 if (SFINAE.hasErrorOccurred())
5848 return false;
5850 if (BTT == BTT_IsAssignable)
5851 return true;
5853 if (BTT == BTT_IsNothrowAssignable)
5854 return Self.canThrow(Result.get()) == CT_Cannot;
5856 if (BTT == BTT_IsTriviallyAssignable) {
5857 // Under Objective-C ARC and Weak, if the destination has non-trivial
5858 // Objective-C lifetime, this is a non-trivial assignment.
5859 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5860 return false;
5862 return !Result.get()->hasNonTrivialCall(Self.Context);
5865 llvm_unreachable("unhandled type trait");
5866 return false;
5868 default: llvm_unreachable("not a BTT");
5870 llvm_unreachable("Unknown type trait or not implemented");
5873 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5874 SourceLocation KWLoc,
5875 ParsedType Ty,
5876 Expr* DimExpr,
5877 SourceLocation RParen) {
5878 TypeSourceInfo *TSInfo;
5879 QualType T = GetTypeFromParser(Ty, &TSInfo);
5880 if (!TSInfo)
5881 TSInfo = Context.getTrivialTypeSourceInfo(T);
5883 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5886 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5887 QualType T, Expr *DimExpr,
5888 SourceLocation KeyLoc) {
5889 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5891 switch(ATT) {
5892 case ATT_ArrayRank:
5893 if (T->isArrayType()) {
5894 unsigned Dim = 0;
5895 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5896 ++Dim;
5897 T = AT->getElementType();
5899 return Dim;
5901 return 0;
5903 case ATT_ArrayExtent: {
5904 llvm::APSInt Value;
5905 uint64_t Dim;
5906 if (Self.VerifyIntegerConstantExpression(
5907 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer)
5908 .isInvalid())
5909 return 0;
5910 if (Value.isSigned() && Value.isNegative()) {
5911 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5912 << DimExpr->getSourceRange();
5913 return 0;
5915 Dim = Value.getLimitedValue();
5917 if (T->isArrayType()) {
5918 unsigned D = 0;
5919 bool Matched = false;
5920 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5921 if (Dim == D) {
5922 Matched = true;
5923 break;
5925 ++D;
5926 T = AT->getElementType();
5929 if (Matched && T->isArrayType()) {
5930 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5931 return CAT->getSize().getLimitedValue();
5934 return 0;
5937 llvm_unreachable("Unknown type trait or not implemented");
5940 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5941 SourceLocation KWLoc,
5942 TypeSourceInfo *TSInfo,
5943 Expr* DimExpr,
5944 SourceLocation RParen) {
5945 QualType T = TSInfo->getType();
5947 // FIXME: This should likely be tracked as an APInt to remove any host
5948 // assumptions about the width of size_t on the target.
5949 uint64_t Value = 0;
5950 if (!T->isDependentType())
5951 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5953 // While the specification for these traits from the Embarcadero C++
5954 // compiler's documentation says the return type is 'unsigned int', Clang
5955 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5956 // compiler, there is no difference. On several other platforms this is an
5957 // important distinction.
5958 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5959 RParen, Context.getSizeType());
5962 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
5963 SourceLocation KWLoc,
5964 Expr *Queried,
5965 SourceLocation RParen) {
5966 // If error parsing the expression, ignore.
5967 if (!Queried)
5968 return ExprError();
5970 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5972 return Result;
5975 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
5976 switch (ET) {
5977 case ET_IsLValueExpr: return E->isLValue();
5978 case ET_IsRValueExpr:
5979 return E->isPRValue();
5981 llvm_unreachable("Expression trait not covered by switch");
5984 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5985 SourceLocation KWLoc,
5986 Expr *Queried,
5987 SourceLocation RParen) {
5988 if (Queried->isTypeDependent()) {
5989 // Delay type-checking for type-dependent expressions.
5990 } else if (Queried->hasPlaceholderType()) {
5991 ExprResult PE = CheckPlaceholderExpr(Queried);
5992 if (PE.isInvalid()) return ExprError();
5993 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5996 bool Value = EvaluateExpressionTrait(ET, Queried);
5998 return new (Context)
5999 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
6002 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
6003 ExprValueKind &VK,
6004 SourceLocation Loc,
6005 bool isIndirect) {
6006 assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() &&
6007 "placeholders should have been weeded out by now");
6009 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
6010 // temporary materialization conversion otherwise.
6011 if (isIndirect)
6012 LHS = DefaultLvalueConversion(LHS.get());
6013 else if (LHS.get()->isPRValue())
6014 LHS = TemporaryMaterializationConversion(LHS.get());
6015 if (LHS.isInvalid())
6016 return QualType();
6018 // The RHS always undergoes lvalue conversions.
6019 RHS = DefaultLvalueConversion(RHS.get());
6020 if (RHS.isInvalid()) return QualType();
6022 const char *OpSpelling = isIndirect ? "->*" : ".*";
6023 // C++ 5.5p2
6024 // The binary operator .* [p3: ->*] binds its second operand, which shall
6025 // be of type "pointer to member of T" (where T is a completely-defined
6026 // class type) [...]
6027 QualType RHSType = RHS.get()->getType();
6028 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
6029 if (!MemPtr) {
6030 Diag(Loc, diag::err_bad_memptr_rhs)
6031 << OpSpelling << RHSType << RHS.get()->getSourceRange();
6032 return QualType();
6035 QualType Class(MemPtr->getClass(), 0);
6037 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
6038 // member pointer points must be completely-defined. However, there is no
6039 // reason for this semantic distinction, and the rule is not enforced by
6040 // other compilers. Therefore, we do not check this property, as it is
6041 // likely to be considered a defect.
6043 // C++ 5.5p2
6044 // [...] to its first operand, which shall be of class T or of a class of
6045 // which T is an unambiguous and accessible base class. [p3: a pointer to
6046 // such a class]
6047 QualType LHSType = LHS.get()->getType();
6048 if (isIndirect) {
6049 if (const PointerType *Ptr = LHSType->getAs<PointerType>())
6050 LHSType = Ptr->getPointeeType();
6051 else {
6052 Diag(Loc, diag::err_bad_memptr_lhs)
6053 << OpSpelling << 1 << LHSType
6054 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
6055 return QualType();
6059 if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
6060 // If we want to check the hierarchy, we need a complete type.
6061 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
6062 OpSpelling, (int)isIndirect)) {
6063 return QualType();
6066 if (!IsDerivedFrom(Loc, LHSType, Class)) {
6067 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
6068 << (int)isIndirect << LHS.get()->getType();
6069 return QualType();
6072 CXXCastPath BasePath;
6073 if (CheckDerivedToBaseConversion(
6074 LHSType, Class, Loc,
6075 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
6076 &BasePath))
6077 return QualType();
6079 // Cast LHS to type of use.
6080 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
6081 if (isIndirect)
6082 UseType = Context.getPointerType(UseType);
6083 ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind();
6084 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
6085 &BasePath);
6088 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
6089 // Diagnose use of pointer-to-member type which when used as
6090 // the functional cast in a pointer-to-member expression.
6091 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
6092 return QualType();
6095 // C++ 5.5p2
6096 // The result is an object or a function of the type specified by the
6097 // second operand.
6098 // The cv qualifiers are the union of those in the pointer and the left side,
6099 // in accordance with 5.5p5 and 5.2.5.
6100 QualType Result = MemPtr->getPointeeType();
6101 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
6103 // C++0x [expr.mptr.oper]p6:
6104 // In a .* expression whose object expression is an rvalue, the program is
6105 // ill-formed if the second operand is a pointer to member function with
6106 // ref-qualifier &. In a ->* expression or in a .* expression whose object
6107 // expression is an lvalue, the program is ill-formed if the second operand
6108 // is a pointer to member function with ref-qualifier &&.
6109 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
6110 switch (Proto->getRefQualifier()) {
6111 case RQ_None:
6112 // Do nothing
6113 break;
6115 case RQ_LValue:
6116 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
6117 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
6118 // is (exactly) 'const'.
6119 if (Proto->isConst() && !Proto->isVolatile())
6120 Diag(Loc, getLangOpts().CPlusPlus20
6121 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
6122 : diag::ext_pointer_to_const_ref_member_on_rvalue);
6123 else
6124 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
6125 << RHSType << 1 << LHS.get()->getSourceRange();
6127 break;
6129 case RQ_RValue:
6130 if (isIndirect || !LHS.get()->Classify(Context).isRValue())
6131 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
6132 << RHSType << 0 << LHS.get()->getSourceRange();
6133 break;
6137 // C++ [expr.mptr.oper]p6:
6138 // The result of a .* expression whose second operand is a pointer
6139 // to a data member is of the same value category as its
6140 // first operand. The result of a .* expression whose second
6141 // operand is a pointer to a member function is a prvalue. The
6142 // result of an ->* expression is an lvalue if its second operand
6143 // is a pointer to data member and a prvalue otherwise.
6144 if (Result->isFunctionType()) {
6145 VK = VK_PRValue;
6146 return Context.BoundMemberTy;
6147 } else if (isIndirect) {
6148 VK = VK_LValue;
6149 } else {
6150 VK = LHS.get()->getValueKind();
6153 return Result;
6156 /// Try to convert a type to another according to C++11 5.16p3.
6158 /// This is part of the parameter validation for the ? operator. If either
6159 /// value operand is a class type, the two operands are attempted to be
6160 /// converted to each other. This function does the conversion in one direction.
6161 /// It returns true if the program is ill-formed and has already been diagnosed
6162 /// as such.
6163 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
6164 SourceLocation QuestionLoc,
6165 bool &HaveConversion,
6166 QualType &ToType) {
6167 HaveConversion = false;
6168 ToType = To->getType();
6170 InitializationKind Kind =
6171 InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
6172 // C++11 5.16p3
6173 // The process for determining whether an operand expression E1 of type T1
6174 // can be converted to match an operand expression E2 of type T2 is defined
6175 // as follows:
6176 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
6177 // implicitly converted to type "lvalue reference to T2", subject to the
6178 // constraint that in the conversion the reference must bind directly to
6179 // an lvalue.
6180 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
6181 // implicitly converted to the type "rvalue reference to R2", subject to
6182 // the constraint that the reference must bind directly.
6183 if (To->isGLValue()) {
6184 QualType T = Self.Context.getReferenceQualifiedType(To);
6185 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6187 InitializationSequence InitSeq(Self, Entity, Kind, From);
6188 if (InitSeq.isDirectReferenceBinding()) {
6189 ToType = T;
6190 HaveConversion = true;
6191 return false;
6194 if (InitSeq.isAmbiguous())
6195 return InitSeq.Diagnose(Self, Entity, Kind, From);
6198 // -- If E2 is an rvalue, or if the conversion above cannot be done:
6199 // -- if E1 and E2 have class type, and the underlying class types are
6200 // the same or one is a base class of the other:
6201 QualType FTy = From->getType();
6202 QualType TTy = To->getType();
6203 const RecordType *FRec = FTy->getAs<RecordType>();
6204 const RecordType *TRec = TTy->getAs<RecordType>();
6205 bool FDerivedFromT = FRec && TRec && FRec != TRec &&
6206 Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
6207 if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
6208 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
6209 // E1 can be converted to match E2 if the class of T2 is the
6210 // same type as, or a base class of, the class of T1, and
6211 // [cv2 > cv1].
6212 if (FRec == TRec || FDerivedFromT) {
6213 if (TTy.isAtLeastAsQualifiedAs(FTy)) {
6214 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
6215 InitializationSequence InitSeq(Self, Entity, Kind, From);
6216 if (InitSeq) {
6217 HaveConversion = true;
6218 return false;
6221 if (InitSeq.isAmbiguous())
6222 return InitSeq.Diagnose(Self, Entity, Kind, From);
6226 return false;
6229 // -- Otherwise: E1 can be converted to match E2 if E1 can be
6230 // implicitly converted to the type that expression E2 would have
6231 // if E2 were converted to an rvalue (or the type it has, if E2 is
6232 // an rvalue).
6234 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
6235 // to the array-to-pointer or function-to-pointer conversions.
6236 TTy = TTy.getNonLValueExprType(Self.Context);
6238 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
6239 InitializationSequence InitSeq(Self, Entity, Kind, From);
6240 HaveConversion = !InitSeq.Failed();
6241 ToType = TTy;
6242 if (InitSeq.isAmbiguous())
6243 return InitSeq.Diagnose(Self, Entity, Kind, From);
6245 return false;
6248 /// Try to find a common type for two according to C++0x 5.16p5.
6250 /// This is part of the parameter validation for the ? operator. If either
6251 /// value operand is a class type, overload resolution is used to find a
6252 /// conversion to a common type.
6253 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
6254 SourceLocation QuestionLoc) {
6255 Expr *Args[2] = { LHS.get(), RHS.get() };
6256 OverloadCandidateSet CandidateSet(QuestionLoc,
6257 OverloadCandidateSet::CSK_Operator);
6258 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
6259 CandidateSet);
6261 OverloadCandidateSet::iterator Best;
6262 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
6263 case OR_Success: {
6264 // We found a match. Perform the conversions on the arguments and move on.
6265 ExprResult LHSRes = Self.PerformImplicitConversion(
6266 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
6267 Sema::AA_Converting);
6268 if (LHSRes.isInvalid())
6269 break;
6270 LHS = LHSRes;
6272 ExprResult RHSRes = Self.PerformImplicitConversion(
6273 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
6274 Sema::AA_Converting);
6275 if (RHSRes.isInvalid())
6276 break;
6277 RHS = RHSRes;
6278 if (Best->Function)
6279 Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
6280 return false;
6283 case OR_No_Viable_Function:
6285 // Emit a better diagnostic if one of the expressions is a null pointer
6286 // constant and the other is a pointer type. In this case, the user most
6287 // likely forgot to take the address of the other expression.
6288 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6289 return true;
6291 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6292 << LHS.get()->getType() << RHS.get()->getType()
6293 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6294 return true;
6296 case OR_Ambiguous:
6297 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
6298 << LHS.get()->getType() << RHS.get()->getType()
6299 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6300 // FIXME: Print the possible common types by printing the return types of
6301 // the viable candidates.
6302 break;
6304 case OR_Deleted:
6305 llvm_unreachable("Conditional operator has only built-in overloads");
6307 return true;
6310 /// Perform an "extended" implicit conversion as returned by
6311 /// TryClassUnification.
6312 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
6313 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6314 InitializationKind Kind =
6315 InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
6316 Expr *Arg = E.get();
6317 InitializationSequence InitSeq(Self, Entity, Kind, Arg);
6318 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
6319 if (Result.isInvalid())
6320 return true;
6322 E = Result;
6323 return false;
6326 // Check the condition operand of ?: to see if it is valid for the GCC
6327 // extension.
6328 static bool isValidVectorForConditionalCondition(ASTContext &Ctx,
6329 QualType CondTy) {
6330 if (!CondTy->isVectorType() && !CondTy->isExtVectorType())
6331 return false;
6332 const QualType EltTy =
6333 cast<VectorType>(CondTy.getCanonicalType())->getElementType();
6334 assert(!EltTy->isEnumeralType() && "Vectors cant be enum types");
6335 return EltTy->isIntegralType(Ctx);
6338 static bool isValidSizelessVectorForConditionalCondition(ASTContext &Ctx,
6339 QualType CondTy) {
6340 if (!CondTy->isSveVLSBuiltinType())
6341 return false;
6342 const QualType EltTy =
6343 cast<BuiltinType>(CondTy.getCanonicalType())->getSveEltType(Ctx);
6344 assert(!EltTy->isEnumeralType() && "Vectors cant be enum types");
6345 return EltTy->isIntegralType(Ctx);
6348 QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
6349 ExprResult &RHS,
6350 SourceLocation QuestionLoc) {
6351 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6352 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6354 QualType CondType = Cond.get()->getType();
6355 const auto *CondVT = CondType->castAs<VectorType>();
6356 QualType CondElementTy = CondVT->getElementType();
6357 unsigned CondElementCount = CondVT->getNumElements();
6358 QualType LHSType = LHS.get()->getType();
6359 const auto *LHSVT = LHSType->getAs<VectorType>();
6360 QualType RHSType = RHS.get()->getType();
6361 const auto *RHSVT = RHSType->getAs<VectorType>();
6363 QualType ResultType;
6366 if (LHSVT && RHSVT) {
6367 if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) {
6368 Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch)
6369 << /*isExtVector*/ isa<ExtVectorType>(CondVT);
6370 return {};
6373 // If both are vector types, they must be the same type.
6374 if (!Context.hasSameType(LHSType, RHSType)) {
6375 Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6376 << LHSType << RHSType;
6377 return {};
6379 ResultType = Context.getCommonSugaredType(LHSType, RHSType);
6380 } else if (LHSVT || RHSVT) {
6381 ResultType = CheckVectorOperands(
6382 LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true,
6383 /*AllowBoolConversions*/ false,
6384 /*AllowBoolOperation*/ true,
6385 /*ReportInvalid*/ true);
6386 if (ResultType.isNull())
6387 return {};
6388 } else {
6389 // Both are scalar.
6390 LHSType = LHSType.getUnqualifiedType();
6391 RHSType = RHSType.getUnqualifiedType();
6392 QualType ResultElementTy =
6393 Context.hasSameType(LHSType, RHSType)
6394 ? Context.getCommonSugaredType(LHSType, RHSType)
6395 : UsualArithmeticConversions(LHS, RHS, QuestionLoc,
6396 ACK_Conditional);
6398 if (ResultElementTy->isEnumeralType()) {
6399 Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6400 << ResultElementTy;
6401 return {};
6403 if (CondType->isExtVectorType())
6404 ResultType =
6405 Context.getExtVectorType(ResultElementTy, CondVT->getNumElements());
6406 else
6407 ResultType = Context.getVectorType(
6408 ResultElementTy, CondVT->getNumElements(), VectorKind::Generic);
6410 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6411 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6414 assert(!ResultType.isNull() && ResultType->isVectorType() &&
6415 (!CondType->isExtVectorType() || ResultType->isExtVectorType()) &&
6416 "Result should have been a vector type");
6417 auto *ResultVectorTy = ResultType->castAs<VectorType>();
6418 QualType ResultElementTy = ResultVectorTy->getElementType();
6419 unsigned ResultElementCount = ResultVectorTy->getNumElements();
6421 if (ResultElementCount != CondElementCount) {
6422 Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType
6423 << ResultType;
6424 return {};
6427 if (Context.getTypeSize(ResultElementTy) !=
6428 Context.getTypeSize(CondElementTy)) {
6429 Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType
6430 << ResultType;
6431 return {};
6434 return ResultType;
6437 QualType Sema::CheckSizelessVectorConditionalTypes(ExprResult &Cond,
6438 ExprResult &LHS,
6439 ExprResult &RHS,
6440 SourceLocation QuestionLoc) {
6441 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6442 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6444 QualType CondType = Cond.get()->getType();
6445 const auto *CondBT = CondType->castAs<BuiltinType>();
6446 QualType CondElementTy = CondBT->getSveEltType(Context);
6447 llvm::ElementCount CondElementCount =
6448 Context.getBuiltinVectorTypeInfo(CondBT).EC;
6450 QualType LHSType = LHS.get()->getType();
6451 const auto *LHSBT =
6452 LHSType->isSveVLSBuiltinType() ? LHSType->getAs<BuiltinType>() : nullptr;
6453 QualType RHSType = RHS.get()->getType();
6454 const auto *RHSBT =
6455 RHSType->isSveVLSBuiltinType() ? RHSType->getAs<BuiltinType>() : nullptr;
6457 QualType ResultType;
6459 if (LHSBT && RHSBT) {
6460 // If both are sizeless vector types, they must be the same type.
6461 if (!Context.hasSameType(LHSType, RHSType)) {
6462 Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6463 << LHSType << RHSType;
6464 return QualType();
6466 ResultType = LHSType;
6467 } else if (LHSBT || RHSBT) {
6468 ResultType = CheckSizelessVectorOperands(
6469 LHS, RHS, QuestionLoc, /*IsCompAssign*/ false, ACK_Conditional);
6470 if (ResultType.isNull())
6471 return QualType();
6472 } else {
6473 // Both are scalar so splat
6474 QualType ResultElementTy;
6475 LHSType = LHSType.getCanonicalType().getUnqualifiedType();
6476 RHSType = RHSType.getCanonicalType().getUnqualifiedType();
6478 if (Context.hasSameType(LHSType, RHSType))
6479 ResultElementTy = LHSType;
6480 else
6481 ResultElementTy =
6482 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6484 if (ResultElementTy->isEnumeralType()) {
6485 Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6486 << ResultElementTy;
6487 return QualType();
6490 ResultType = Context.getScalableVectorType(
6491 ResultElementTy, CondElementCount.getKnownMinValue());
6493 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6494 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6497 assert(!ResultType.isNull() && ResultType->isSveVLSBuiltinType() &&
6498 "Result should have been a vector type");
6499 auto *ResultBuiltinTy = ResultType->castAs<BuiltinType>();
6500 QualType ResultElementTy = ResultBuiltinTy->getSveEltType(Context);
6501 llvm::ElementCount ResultElementCount =
6502 Context.getBuiltinVectorTypeInfo(ResultBuiltinTy).EC;
6504 if (ResultElementCount != CondElementCount) {
6505 Diag(QuestionLoc, diag::err_conditional_vector_size)
6506 << CondType << ResultType;
6507 return QualType();
6510 if (Context.getTypeSize(ResultElementTy) !=
6511 Context.getTypeSize(CondElementTy)) {
6512 Diag(QuestionLoc, diag::err_conditional_vector_element_size)
6513 << CondType << ResultType;
6514 return QualType();
6517 return ResultType;
6520 /// Check the operands of ?: under C++ semantics.
6522 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
6523 /// extension. In this case, LHS == Cond. (But they're not aliases.)
6525 /// This function also implements GCC's vector extension and the
6526 /// OpenCL/ext_vector_type extension for conditionals. The vector extensions
6527 /// permit the use of a?b:c where the type of a is that of a integer vector with
6528 /// the same number of elements and size as the vectors of b and c. If one of
6529 /// either b or c is a scalar it is implicitly converted to match the type of
6530 /// the vector. Otherwise the expression is ill-formed. If both b and c are
6531 /// scalars, then b and c are checked and converted to the type of a if
6532 /// possible.
6534 /// The expressions are evaluated differently for GCC's and OpenCL's extensions.
6535 /// For the GCC extension, the ?: operator is evaluated as
6536 /// (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
6537 /// For the OpenCL extensions, the ?: operator is evaluated as
6538 /// (most-significant-bit-set(a[0]) ? b[0] : c[0], .. ,
6539 /// most-significant-bit-set(a[n]) ? b[n] : c[n]).
6540 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
6541 ExprResult &RHS, ExprValueKind &VK,
6542 ExprObjectKind &OK,
6543 SourceLocation QuestionLoc) {
6544 // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface
6545 // pointers.
6547 // Assume r-value.
6548 VK = VK_PRValue;
6549 OK = OK_Ordinary;
6550 bool IsVectorConditional =
6551 isValidVectorForConditionalCondition(Context, Cond.get()->getType());
6553 bool IsSizelessVectorConditional =
6554 isValidSizelessVectorForConditionalCondition(Context,
6555 Cond.get()->getType());
6557 // C++11 [expr.cond]p1
6558 // The first expression is contextually converted to bool.
6559 if (!Cond.get()->isTypeDependent()) {
6560 ExprResult CondRes = IsVectorConditional || IsSizelessVectorConditional
6561 ? DefaultFunctionArrayLvalueConversion(Cond.get())
6562 : CheckCXXBooleanCondition(Cond.get());
6563 if (CondRes.isInvalid())
6564 return QualType();
6565 Cond = CondRes;
6566 } else {
6567 // To implement C++, the first expression typically doesn't alter the result
6568 // type of the conditional, however the GCC compatible vector extension
6569 // changes the result type to be that of the conditional. Since we cannot
6570 // know if this is a vector extension here, delay the conversion of the
6571 // LHS/RHS below until later.
6572 return Context.DependentTy;
6576 // Either of the arguments dependent?
6577 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
6578 return Context.DependentTy;
6580 // C++11 [expr.cond]p2
6581 // If either the second or the third operand has type (cv) void, ...
6582 QualType LTy = LHS.get()->getType();
6583 QualType RTy = RHS.get()->getType();
6584 bool LVoid = LTy->isVoidType();
6585 bool RVoid = RTy->isVoidType();
6586 if (LVoid || RVoid) {
6587 // ... one of the following shall hold:
6588 // -- The second or the third operand (but not both) is a (possibly
6589 // parenthesized) throw-expression; the result is of the type
6590 // and value category of the other.
6591 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
6592 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
6594 // Void expressions aren't legal in the vector-conditional expressions.
6595 if (IsVectorConditional) {
6596 SourceRange DiagLoc =
6597 LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange();
6598 bool IsThrow = LVoid ? LThrow : RThrow;
6599 Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void)
6600 << DiagLoc << IsThrow;
6601 return QualType();
6604 if (LThrow != RThrow) {
6605 Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
6606 VK = NonThrow->getValueKind();
6607 // DR (no number yet): the result is a bit-field if the
6608 // non-throw-expression operand is a bit-field.
6609 OK = NonThrow->getObjectKind();
6610 return NonThrow->getType();
6613 // -- Both the second and third operands have type void; the result is of
6614 // type void and is a prvalue.
6615 if (LVoid && RVoid)
6616 return Context.getCommonSugaredType(LTy, RTy);
6618 // Neither holds, error.
6619 Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
6620 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
6621 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6622 return QualType();
6625 // Neither is void.
6626 if (IsVectorConditional)
6627 return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6629 if (IsSizelessVectorConditional)
6630 return CheckSizelessVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6632 // WebAssembly tables are not allowed as conditional LHS or RHS.
6633 if (LTy->isWebAssemblyTableType() || RTy->isWebAssemblyTableType()) {
6634 Diag(QuestionLoc, diag::err_wasm_table_conditional_expression)
6635 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6636 return QualType();
6639 // C++11 [expr.cond]p3
6640 // Otherwise, if the second and third operand have different types, and
6641 // either has (cv) class type [...] an attempt is made to convert each of
6642 // those operands to the type of the other.
6643 if (!Context.hasSameType(LTy, RTy) &&
6644 (LTy->isRecordType() || RTy->isRecordType())) {
6645 // These return true if a single direction is already ambiguous.
6646 QualType L2RType, R2LType;
6647 bool HaveL2R, HaveR2L;
6648 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
6649 return QualType();
6650 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
6651 return QualType();
6653 // If both can be converted, [...] the program is ill-formed.
6654 if (HaveL2R && HaveR2L) {
6655 Diag(QuestionLoc, diag::err_conditional_ambiguous)
6656 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6657 return QualType();
6660 // If exactly one conversion is possible, that conversion is applied to
6661 // the chosen operand and the converted operands are used in place of the
6662 // original operands for the remainder of this section.
6663 if (HaveL2R) {
6664 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
6665 return QualType();
6666 LTy = LHS.get()->getType();
6667 } else if (HaveR2L) {
6668 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
6669 return QualType();
6670 RTy = RHS.get()->getType();
6674 // C++11 [expr.cond]p3
6675 // if both are glvalues of the same value category and the same type except
6676 // for cv-qualification, an attempt is made to convert each of those
6677 // operands to the type of the other.
6678 // FIXME:
6679 // Resolving a defect in P0012R1: we extend this to cover all cases where
6680 // one of the operands is reference-compatible with the other, in order
6681 // to support conditionals between functions differing in noexcept. This
6682 // will similarly cover difference in array bounds after P0388R4.
6683 // FIXME: If LTy and RTy have a composite pointer type, should we convert to
6684 // that instead?
6685 ExprValueKind LVK = LHS.get()->getValueKind();
6686 ExprValueKind RVK = RHS.get()->getValueKind();
6687 if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) {
6688 // DerivedToBase was already handled by the class-specific case above.
6689 // FIXME: Should we allow ObjC conversions here?
6690 const ReferenceConversions AllowedConversions =
6691 ReferenceConversions::Qualification |
6692 ReferenceConversions::NestedQualification |
6693 ReferenceConversions::Function;
6695 ReferenceConversions RefConv;
6696 if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) ==
6697 Ref_Compatible &&
6698 !(RefConv & ~AllowedConversions) &&
6699 // [...] subject to the constraint that the reference must bind
6700 // directly [...]
6701 !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) {
6702 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
6703 RTy = RHS.get()->getType();
6704 } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) ==
6705 Ref_Compatible &&
6706 !(RefConv & ~AllowedConversions) &&
6707 !LHS.get()->refersToBitField() &&
6708 !LHS.get()->refersToVectorElement()) {
6709 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
6710 LTy = LHS.get()->getType();
6714 // C++11 [expr.cond]p4
6715 // If the second and third operands are glvalues of the same value
6716 // category and have the same type, the result is of that type and
6717 // value category and it is a bit-field if the second or the third
6718 // operand is a bit-field, or if both are bit-fields.
6719 // We only extend this to bitfields, not to the crazy other kinds of
6720 // l-values.
6721 bool Same = Context.hasSameType(LTy, RTy);
6722 if (Same && LVK == RVK && LVK != VK_PRValue &&
6723 LHS.get()->isOrdinaryOrBitFieldObject() &&
6724 RHS.get()->isOrdinaryOrBitFieldObject()) {
6725 VK = LHS.get()->getValueKind();
6726 if (LHS.get()->getObjectKind() == OK_BitField ||
6727 RHS.get()->getObjectKind() == OK_BitField)
6728 OK = OK_BitField;
6729 return Context.getCommonSugaredType(LTy, RTy);
6732 // C++11 [expr.cond]p5
6733 // Otherwise, the result is a prvalue. If the second and third operands
6734 // do not have the same type, and either has (cv) class type, ...
6735 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
6736 // ... overload resolution is used to determine the conversions (if any)
6737 // to be applied to the operands. If the overload resolution fails, the
6738 // program is ill-formed.
6739 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
6740 return QualType();
6743 // C++11 [expr.cond]p6
6744 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
6745 // conversions are performed on the second and third operands.
6746 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6747 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6748 if (LHS.isInvalid() || RHS.isInvalid())
6749 return QualType();
6750 LTy = LHS.get()->getType();
6751 RTy = RHS.get()->getType();
6753 // After those conversions, one of the following shall hold:
6754 // -- The second and third operands have the same type; the result
6755 // is of that type. If the operands have class type, the result
6756 // is a prvalue temporary of the result type, which is
6757 // copy-initialized from either the second operand or the third
6758 // operand depending on the value of the first operand.
6759 if (Context.hasSameType(LTy, RTy)) {
6760 if (LTy->isRecordType()) {
6761 // The operands have class type. Make a temporary copy.
6762 ExprResult LHSCopy = PerformCopyInitialization(
6763 InitializedEntity::InitializeTemporary(LTy), SourceLocation(), LHS);
6764 if (LHSCopy.isInvalid())
6765 return QualType();
6767 ExprResult RHSCopy = PerformCopyInitialization(
6768 InitializedEntity::InitializeTemporary(RTy), SourceLocation(), RHS);
6769 if (RHSCopy.isInvalid())
6770 return QualType();
6772 LHS = LHSCopy;
6773 RHS = RHSCopy;
6775 return Context.getCommonSugaredType(LTy, RTy);
6778 // Extension: conditional operator involving vector types.
6779 if (LTy->isVectorType() || RTy->isVectorType())
6780 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
6781 /*AllowBothBool*/ true,
6782 /*AllowBoolConversions*/ false,
6783 /*AllowBoolOperation*/ false,
6784 /*ReportInvalid*/ true);
6786 // -- The second and third operands have arithmetic or enumeration type;
6787 // the usual arithmetic conversions are performed to bring them to a
6788 // common type, and the result is of that type.
6789 if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
6790 QualType ResTy =
6791 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6792 if (LHS.isInvalid() || RHS.isInvalid())
6793 return QualType();
6794 if (ResTy.isNull()) {
6795 Diag(QuestionLoc,
6796 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
6797 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6798 return QualType();
6801 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
6802 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
6804 return ResTy;
6807 // -- The second and third operands have pointer type, or one has pointer
6808 // type and the other is a null pointer constant, or both are null
6809 // pointer constants, at least one of which is non-integral; pointer
6810 // conversions and qualification conversions are performed to bring them
6811 // to their composite pointer type. The result is of the composite
6812 // pointer type.
6813 // -- The second and third operands have pointer to member type, or one has
6814 // pointer to member type and the other is a null pointer constant;
6815 // pointer to member conversions and qualification conversions are
6816 // performed to bring them to a common type, whose cv-qualification
6817 // shall match the cv-qualification of either the second or the third
6818 // operand. The result is of the common type.
6819 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
6820 if (!Composite.isNull())
6821 return Composite;
6823 // Similarly, attempt to find composite type of two objective-c pointers.
6824 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
6825 if (LHS.isInvalid() || RHS.isInvalid())
6826 return QualType();
6827 if (!Composite.isNull())
6828 return Composite;
6830 // Check if we are using a null with a non-pointer type.
6831 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6832 return QualType();
6834 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6835 << LHS.get()->getType() << RHS.get()->getType()
6836 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6837 return QualType();
6840 /// Find a merged pointer type and convert the two expressions to it.
6842 /// This finds the composite pointer type for \p E1 and \p E2 according to
6843 /// C++2a [expr.type]p3. It converts both expressions to this type and returns
6844 /// it. It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs
6845 /// is \c true).
6847 /// \param Loc The location of the operator requiring these two expressions to
6848 /// be converted to the composite pointer type.
6850 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
6851 QualType Sema::FindCompositePointerType(SourceLocation Loc,
6852 Expr *&E1, Expr *&E2,
6853 bool ConvertArgs) {
6854 assert(getLangOpts().CPlusPlus && "This function assumes C++");
6856 // C++1z [expr]p14:
6857 // The composite pointer type of two operands p1 and p2 having types T1
6858 // and T2
6859 QualType T1 = E1->getType(), T2 = E2->getType();
6861 // where at least one is a pointer or pointer to member type or
6862 // std::nullptr_t is:
6863 bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
6864 T1->isNullPtrType();
6865 bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
6866 T2->isNullPtrType();
6867 if (!T1IsPointerLike && !T2IsPointerLike)
6868 return QualType();
6870 // - if both p1 and p2 are null pointer constants, std::nullptr_t;
6871 // This can't actually happen, following the standard, but we also use this
6872 // to implement the end of [expr.conv], which hits this case.
6874 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
6875 if (T1IsPointerLike &&
6876 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6877 if (ConvertArgs)
6878 E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
6879 ? CK_NullToMemberPointer
6880 : CK_NullToPointer).get();
6881 return T1;
6883 if (T2IsPointerLike &&
6884 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6885 if (ConvertArgs)
6886 E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
6887 ? CK_NullToMemberPointer
6888 : CK_NullToPointer).get();
6889 return T2;
6892 // Now both have to be pointers or member pointers.
6893 if (!T1IsPointerLike || !T2IsPointerLike)
6894 return QualType();
6895 assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&
6896 "nullptr_t should be a null pointer constant");
6898 struct Step {
6899 enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K;
6900 // Qualifiers to apply under the step kind.
6901 Qualifiers Quals;
6902 /// The class for a pointer-to-member; a constant array type with a bound
6903 /// (if any) for an array.
6904 const Type *ClassOrBound;
6906 Step(Kind K, const Type *ClassOrBound = nullptr)
6907 : K(K), ClassOrBound(ClassOrBound) {}
6908 QualType rebuild(ASTContext &Ctx, QualType T) const {
6909 T = Ctx.getQualifiedType(T, Quals);
6910 switch (K) {
6911 case Pointer:
6912 return Ctx.getPointerType(T);
6913 case MemberPointer:
6914 return Ctx.getMemberPointerType(T, ClassOrBound);
6915 case ObjCPointer:
6916 return Ctx.getObjCObjectPointerType(T);
6917 case Array:
6918 if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound))
6919 return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr,
6920 ArraySizeModifier::Normal, 0);
6921 else
6922 return Ctx.getIncompleteArrayType(T, ArraySizeModifier::Normal, 0);
6924 llvm_unreachable("unknown step kind");
6928 SmallVector<Step, 8> Steps;
6930 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6931 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6932 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
6933 // respectively;
6934 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
6935 // to member of C2 of type cv2 U2" for some non-function type U, where
6936 // C1 is reference-related to C2 or C2 is reference-related to C1, the
6937 // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2,
6938 // respectively;
6939 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
6940 // T2;
6942 // Dismantle T1 and T2 to simultaneously determine whether they are similar
6943 // and to prepare to form the cv-combined type if so.
6944 QualType Composite1 = T1;
6945 QualType Composite2 = T2;
6946 unsigned NeedConstBefore = 0;
6947 while (true) {
6948 assert(!Composite1.isNull() && !Composite2.isNull());
6950 Qualifiers Q1, Q2;
6951 Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1);
6952 Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2);
6954 // Top-level qualifiers are ignored. Merge at all lower levels.
6955 if (!Steps.empty()) {
6956 // Find the qualifier union: (approximately) the unique minimal set of
6957 // qualifiers that is compatible with both types.
6958 Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() |
6959 Q2.getCVRUQualifiers());
6961 // Under one level of pointer or pointer-to-member, we can change to an
6962 // unambiguous compatible address space.
6963 if (Q1.getAddressSpace() == Q2.getAddressSpace()) {
6964 Quals.setAddressSpace(Q1.getAddressSpace());
6965 } else if (Steps.size() == 1) {
6966 bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2);
6967 bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1);
6968 if (MaybeQ1 == MaybeQ2) {
6969 // Exception for ptr size address spaces. Should be able to choose
6970 // either address space during comparison.
6971 if (isPtrSizeAddressSpace(Q1.getAddressSpace()) ||
6972 isPtrSizeAddressSpace(Q2.getAddressSpace()))
6973 MaybeQ1 = true;
6974 else
6975 return QualType(); // No unique best address space.
6977 Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace()
6978 : Q2.getAddressSpace());
6979 } else {
6980 return QualType();
6983 // FIXME: In C, we merge __strong and none to __strong at the top level.
6984 if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr())
6985 Quals.setObjCGCAttr(Q1.getObjCGCAttr());
6986 else if (T1->isVoidPointerType() || T2->isVoidPointerType())
6987 assert(Steps.size() == 1);
6988 else
6989 return QualType();
6991 // Mismatched lifetime qualifiers never compatibly include each other.
6992 if (Q1.getObjCLifetime() == Q2.getObjCLifetime())
6993 Quals.setObjCLifetime(Q1.getObjCLifetime());
6994 else if (T1->isVoidPointerType() || T2->isVoidPointerType())
6995 assert(Steps.size() == 1);
6996 else
6997 return QualType();
6999 Steps.back().Quals = Quals;
7000 if (Q1 != Quals || Q2 != Quals)
7001 NeedConstBefore = Steps.size() - 1;
7004 // FIXME: Can we unify the following with UnwrapSimilarTypes?
7006 const ArrayType *Arr1, *Arr2;
7007 if ((Arr1 = Context.getAsArrayType(Composite1)) &&
7008 (Arr2 = Context.getAsArrayType(Composite2))) {
7009 auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1);
7010 auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2);
7011 if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) {
7012 Composite1 = Arr1->getElementType();
7013 Composite2 = Arr2->getElementType();
7014 Steps.emplace_back(Step::Array, CAT1);
7015 continue;
7017 bool IAT1 = isa<IncompleteArrayType>(Arr1);
7018 bool IAT2 = isa<IncompleteArrayType>(Arr2);
7019 if ((IAT1 && IAT2) ||
7020 (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) &&
7021 ((bool)CAT1 != (bool)CAT2) &&
7022 (Steps.empty() || Steps.back().K != Step::Array))) {
7023 // In C++20 onwards, we can unify an array of N T with an array of
7024 // a different or unknown bound. But we can't form an array whose
7025 // element type is an array of unknown bound by doing so.
7026 Composite1 = Arr1->getElementType();
7027 Composite2 = Arr2->getElementType();
7028 Steps.emplace_back(Step::Array);
7029 if (CAT1 || CAT2)
7030 NeedConstBefore = Steps.size();
7031 continue;
7035 const PointerType *Ptr1, *Ptr2;
7036 if ((Ptr1 = Composite1->getAs<PointerType>()) &&
7037 (Ptr2 = Composite2->getAs<PointerType>())) {
7038 Composite1 = Ptr1->getPointeeType();
7039 Composite2 = Ptr2->getPointeeType();
7040 Steps.emplace_back(Step::Pointer);
7041 continue;
7044 const ObjCObjectPointerType *ObjPtr1, *ObjPtr2;
7045 if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) &&
7046 (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) {
7047 Composite1 = ObjPtr1->getPointeeType();
7048 Composite2 = ObjPtr2->getPointeeType();
7049 Steps.emplace_back(Step::ObjCPointer);
7050 continue;
7053 const MemberPointerType *MemPtr1, *MemPtr2;
7054 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
7055 (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
7056 Composite1 = MemPtr1->getPointeeType();
7057 Composite2 = MemPtr2->getPointeeType();
7059 // At the top level, we can perform a base-to-derived pointer-to-member
7060 // conversion:
7062 // - [...] where C1 is reference-related to C2 or C2 is
7063 // reference-related to C1
7065 // (Note that the only kinds of reference-relatedness in scope here are
7066 // "same type or derived from".) At any other level, the class must
7067 // exactly match.
7068 const Type *Class = nullptr;
7069 QualType Cls1(MemPtr1->getClass(), 0);
7070 QualType Cls2(MemPtr2->getClass(), 0);
7071 if (Context.hasSameType(Cls1, Cls2))
7072 Class = MemPtr1->getClass();
7073 else if (Steps.empty())
7074 Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() :
7075 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr;
7076 if (!Class)
7077 return QualType();
7079 Steps.emplace_back(Step::MemberPointer, Class);
7080 continue;
7083 // Special case: at the top level, we can decompose an Objective-C pointer
7084 // and a 'cv void *'. Unify the qualifiers.
7085 if (Steps.empty() && ((Composite1->isVoidPointerType() &&
7086 Composite2->isObjCObjectPointerType()) ||
7087 (Composite1->isObjCObjectPointerType() &&
7088 Composite2->isVoidPointerType()))) {
7089 Composite1 = Composite1->getPointeeType();
7090 Composite2 = Composite2->getPointeeType();
7091 Steps.emplace_back(Step::Pointer);
7092 continue;
7095 // FIXME: block pointer types?
7097 // Cannot unwrap any more types.
7098 break;
7101 // - if T1 or T2 is "pointer to noexcept function" and the other type is
7102 // "pointer to function", where the function types are otherwise the same,
7103 // "pointer to function";
7104 // - if T1 or T2 is "pointer to member of C1 of type function", the other
7105 // type is "pointer to member of C2 of type noexcept function", and C1
7106 // is reference-related to C2 or C2 is reference-related to C1, where
7107 // the function types are otherwise the same, "pointer to member of C2 of
7108 // type function" or "pointer to member of C1 of type function",
7109 // respectively;
7111 // We also support 'noreturn' here, so as a Clang extension we generalize the
7112 // above to:
7114 // - [Clang] If T1 and T2 are both of type "pointer to function" or
7115 // "pointer to member function" and the pointee types can be unified
7116 // by a function pointer conversion, that conversion is applied
7117 // before checking the following rules.
7119 // We've already unwrapped down to the function types, and we want to merge
7120 // rather than just convert, so do this ourselves rather than calling
7121 // IsFunctionConversion.
7123 // FIXME: In order to match the standard wording as closely as possible, we
7124 // currently only do this under a single level of pointers. Ideally, we would
7125 // allow this in general, and set NeedConstBefore to the relevant depth on
7126 // the side(s) where we changed anything. If we permit that, we should also
7127 // consider this conversion when determining type similarity and model it as
7128 // a qualification conversion.
7129 if (Steps.size() == 1) {
7130 if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
7131 if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
7132 FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
7133 FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
7135 // The result is noreturn if both operands are.
7136 bool Noreturn =
7137 EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
7138 EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
7139 EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
7141 // The result is nothrow if both operands are.
7142 SmallVector<QualType, 8> ExceptionTypeStorage;
7143 EPI1.ExceptionSpec = EPI2.ExceptionSpec = Context.mergeExceptionSpecs(
7144 EPI1.ExceptionSpec, EPI2.ExceptionSpec, ExceptionTypeStorage,
7145 getLangOpts().CPlusPlus17);
7147 Composite1 = Context.getFunctionType(FPT1->getReturnType(),
7148 FPT1->getParamTypes(), EPI1);
7149 Composite2 = Context.getFunctionType(FPT2->getReturnType(),
7150 FPT2->getParamTypes(), EPI2);
7155 // There are some more conversions we can perform under exactly one pointer.
7156 if (Steps.size() == 1 && Steps.front().K == Step::Pointer &&
7157 !Context.hasSameType(Composite1, Composite2)) {
7158 // - if T1 or T2 is "pointer to cv1 void" and the other type is
7159 // "pointer to cv2 T", where T is an object type or void,
7160 // "pointer to cv12 void", where cv12 is the union of cv1 and cv2;
7161 if (Composite1->isVoidType() && Composite2->isObjectType())
7162 Composite2 = Composite1;
7163 else if (Composite2->isVoidType() && Composite1->isObjectType())
7164 Composite1 = Composite2;
7165 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
7166 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
7167 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and
7168 // T1, respectively;
7170 // The "similar type" handling covers all of this except for the "T1 is a
7171 // base class of T2" case in the definition of reference-related.
7172 else if (IsDerivedFrom(Loc, Composite1, Composite2))
7173 Composite1 = Composite2;
7174 else if (IsDerivedFrom(Loc, Composite2, Composite1))
7175 Composite2 = Composite1;
7178 // At this point, either the inner types are the same or we have failed to
7179 // find a composite pointer type.
7180 if (!Context.hasSameType(Composite1, Composite2))
7181 return QualType();
7183 // Per C++ [conv.qual]p3, add 'const' to every level before the last
7184 // differing qualifier.
7185 for (unsigned I = 0; I != NeedConstBefore; ++I)
7186 Steps[I].Quals.addConst();
7188 // Rebuild the composite type.
7189 QualType Composite = Context.getCommonSugaredType(Composite1, Composite2);
7190 for (auto &S : llvm::reverse(Steps))
7191 Composite = S.rebuild(Context, Composite);
7193 if (ConvertArgs) {
7194 // Convert the expressions to the composite pointer type.
7195 InitializedEntity Entity =
7196 InitializedEntity::InitializeTemporary(Composite);
7197 InitializationKind Kind =
7198 InitializationKind::CreateCopy(Loc, SourceLocation());
7200 InitializationSequence E1ToC(*this, Entity, Kind, E1);
7201 if (!E1ToC)
7202 return QualType();
7204 InitializationSequence E2ToC(*this, Entity, Kind, E2);
7205 if (!E2ToC)
7206 return QualType();
7208 // FIXME: Let the caller know if these fail to avoid duplicate diagnostics.
7209 ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1);
7210 if (E1Result.isInvalid())
7211 return QualType();
7212 E1 = E1Result.get();
7214 ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2);
7215 if (E2Result.isInvalid())
7216 return QualType();
7217 E2 = E2Result.get();
7220 return Composite;
7223 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
7224 if (!E)
7225 return ExprError();
7227 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
7229 // If the result is a glvalue, we shouldn't bind it.
7230 if (E->isGLValue())
7231 return E;
7233 // In ARC, calls that return a retainable type can return retained,
7234 // in which case we have to insert a consuming cast.
7235 if (getLangOpts().ObjCAutoRefCount &&
7236 E->getType()->isObjCRetainableType()) {
7238 bool ReturnsRetained;
7240 // For actual calls, we compute this by examining the type of the
7241 // called value.
7242 if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
7243 Expr *Callee = Call->getCallee()->IgnoreParens();
7244 QualType T = Callee->getType();
7246 if (T == Context.BoundMemberTy) {
7247 // Handle pointer-to-members.
7248 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
7249 T = BinOp->getRHS()->getType();
7250 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
7251 T = Mem->getMemberDecl()->getType();
7254 if (const PointerType *Ptr = T->getAs<PointerType>())
7255 T = Ptr->getPointeeType();
7256 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
7257 T = Ptr->getPointeeType();
7258 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
7259 T = MemPtr->getPointeeType();
7261 auto *FTy = T->castAs<FunctionType>();
7262 ReturnsRetained = FTy->getExtInfo().getProducesResult();
7264 // ActOnStmtExpr arranges things so that StmtExprs of retainable
7265 // type always produce a +1 object.
7266 } else if (isa<StmtExpr>(E)) {
7267 ReturnsRetained = true;
7269 // We hit this case with the lambda conversion-to-block optimization;
7270 // we don't want any extra casts here.
7271 } else if (isa<CastExpr>(E) &&
7272 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
7273 return E;
7275 // For message sends and property references, we try to find an
7276 // actual method. FIXME: we should infer retention by selector in
7277 // cases where we don't have an actual method.
7278 } else {
7279 ObjCMethodDecl *D = nullptr;
7280 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
7281 D = Send->getMethodDecl();
7282 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
7283 D = BoxedExpr->getBoxingMethod();
7284 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
7285 // Don't do reclaims if we're using the zero-element array
7286 // constant.
7287 if (ArrayLit->getNumElements() == 0 &&
7288 Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7289 return E;
7291 D = ArrayLit->getArrayWithObjectsMethod();
7292 } else if (ObjCDictionaryLiteral *DictLit
7293 = dyn_cast<ObjCDictionaryLiteral>(E)) {
7294 // Don't do reclaims if we're using the zero-element dictionary
7295 // constant.
7296 if (DictLit->getNumElements() == 0 &&
7297 Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7298 return E;
7300 D = DictLit->getDictWithObjectsMethod();
7303 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
7305 // Don't do reclaims on performSelector calls; despite their
7306 // return type, the invoked method doesn't necessarily actually
7307 // return an object.
7308 if (!ReturnsRetained &&
7309 D && D->getMethodFamily() == OMF_performSelector)
7310 return E;
7313 // Don't reclaim an object of Class type.
7314 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
7315 return E;
7317 Cleanup.setExprNeedsCleanups(true);
7319 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
7320 : CK_ARCReclaimReturnedObject);
7321 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
7322 VK_PRValue, FPOptionsOverride());
7325 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
7326 Cleanup.setExprNeedsCleanups(true);
7328 if (!getLangOpts().CPlusPlus)
7329 return E;
7331 // Search for the base element type (cf. ASTContext::getBaseElementType) with
7332 // a fast path for the common case that the type is directly a RecordType.
7333 const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
7334 const RecordType *RT = nullptr;
7335 while (!RT) {
7336 switch (T->getTypeClass()) {
7337 case Type::Record:
7338 RT = cast<RecordType>(T);
7339 break;
7340 case Type::ConstantArray:
7341 case Type::IncompleteArray:
7342 case Type::VariableArray:
7343 case Type::DependentSizedArray:
7344 T = cast<ArrayType>(T)->getElementType().getTypePtr();
7345 break;
7346 default:
7347 return E;
7351 // That should be enough to guarantee that this type is complete, if we're
7352 // not processing a decltype expression.
7353 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
7354 if (RD->isInvalidDecl() || RD->isDependentContext())
7355 return E;
7357 bool IsDecltype = ExprEvalContexts.back().ExprContext ==
7358 ExpressionEvaluationContextRecord::EK_Decltype;
7359 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
7361 if (Destructor) {
7362 MarkFunctionReferenced(E->getExprLoc(), Destructor);
7363 CheckDestructorAccess(E->getExprLoc(), Destructor,
7364 PDiag(diag::err_access_dtor_temp)
7365 << E->getType());
7366 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
7367 return ExprError();
7369 // If destructor is trivial, we can avoid the extra copy.
7370 if (Destructor->isTrivial())
7371 return E;
7373 // We need a cleanup, but we don't need to remember the temporary.
7374 Cleanup.setExprNeedsCleanups(true);
7377 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
7378 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
7380 if (IsDecltype)
7381 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
7383 return Bind;
7386 ExprResult
7387 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
7388 if (SubExpr.isInvalid())
7389 return ExprError();
7391 return MaybeCreateExprWithCleanups(SubExpr.get());
7394 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
7395 assert(SubExpr && "subexpression can't be null!");
7397 CleanupVarDeclMarking();
7399 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
7400 assert(ExprCleanupObjects.size() >= FirstCleanup);
7401 assert(Cleanup.exprNeedsCleanups() ||
7402 ExprCleanupObjects.size() == FirstCleanup);
7403 if (!Cleanup.exprNeedsCleanups())
7404 return SubExpr;
7406 auto Cleanups = llvm::ArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
7407 ExprCleanupObjects.size() - FirstCleanup);
7409 auto *E = ExprWithCleanups::Create(
7410 Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
7411 DiscardCleanupsInEvaluationContext();
7413 return E;
7416 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
7417 assert(SubStmt && "sub-statement can't be null!");
7419 CleanupVarDeclMarking();
7421 if (!Cleanup.exprNeedsCleanups())
7422 return SubStmt;
7424 // FIXME: In order to attach the temporaries, wrap the statement into
7425 // a StmtExpr; currently this is only used for asm statements.
7426 // This is hacky, either create a new CXXStmtWithTemporaries statement or
7427 // a new AsmStmtWithTemporaries.
7428 CompoundStmt *CompStmt =
7429 CompoundStmt::Create(Context, SubStmt, FPOptionsOverride(),
7430 SourceLocation(), SourceLocation());
7431 Expr *E = new (Context)
7432 StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(),
7433 /*FIXME TemplateDepth=*/0);
7434 return MaybeCreateExprWithCleanups(E);
7437 /// Process the expression contained within a decltype. For such expressions,
7438 /// certain semantic checks on temporaries are delayed until this point, and
7439 /// are omitted for the 'topmost' call in the decltype expression. If the
7440 /// topmost call bound a temporary, strip that temporary off the expression.
7441 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
7442 assert(ExprEvalContexts.back().ExprContext ==
7443 ExpressionEvaluationContextRecord::EK_Decltype &&
7444 "not in a decltype expression");
7446 ExprResult Result = CheckPlaceholderExpr(E);
7447 if (Result.isInvalid())
7448 return ExprError();
7449 E = Result.get();
7451 // C++11 [expr.call]p11:
7452 // If a function call is a prvalue of object type,
7453 // -- if the function call is either
7454 // -- the operand of a decltype-specifier, or
7455 // -- the right operand of a comma operator that is the operand of a
7456 // decltype-specifier,
7457 // a temporary object is not introduced for the prvalue.
7459 // Recursively rebuild ParenExprs and comma expressions to strip out the
7460 // outermost CXXBindTemporaryExpr, if any.
7461 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
7462 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
7463 if (SubExpr.isInvalid())
7464 return ExprError();
7465 if (SubExpr.get() == PE->getSubExpr())
7466 return E;
7467 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
7469 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7470 if (BO->getOpcode() == BO_Comma) {
7471 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
7472 if (RHS.isInvalid())
7473 return ExprError();
7474 if (RHS.get() == BO->getRHS())
7475 return E;
7476 return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma,
7477 BO->getType(), BO->getValueKind(),
7478 BO->getObjectKind(), BO->getOperatorLoc(),
7479 BO->getFPFeatures());
7483 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
7484 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
7485 : nullptr;
7486 if (TopCall)
7487 E = TopCall;
7488 else
7489 TopBind = nullptr;
7491 // Disable the special decltype handling now.
7492 ExprEvalContexts.back().ExprContext =
7493 ExpressionEvaluationContextRecord::EK_Other;
7495 Result = CheckUnevaluatedOperand(E);
7496 if (Result.isInvalid())
7497 return ExprError();
7498 E = Result.get();
7500 // In MS mode, don't perform any extra checking of call return types within a
7501 // decltype expression.
7502 if (getLangOpts().MSVCCompat)
7503 return E;
7505 // Perform the semantic checks we delayed until this point.
7506 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
7507 I != N; ++I) {
7508 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
7509 if (Call == TopCall)
7510 continue;
7512 if (CheckCallReturnType(Call->getCallReturnType(Context),
7513 Call->getBeginLoc(), Call, Call->getDirectCallee()))
7514 return ExprError();
7517 // Now all relevant types are complete, check the destructors are accessible
7518 // and non-deleted, and annotate them on the temporaries.
7519 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
7520 I != N; ++I) {
7521 CXXBindTemporaryExpr *Bind =
7522 ExprEvalContexts.back().DelayedDecltypeBinds[I];
7523 if (Bind == TopBind)
7524 continue;
7526 CXXTemporary *Temp = Bind->getTemporary();
7528 CXXRecordDecl *RD =
7529 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7530 CXXDestructorDecl *Destructor = LookupDestructor(RD);
7531 Temp->setDestructor(Destructor);
7533 MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
7534 CheckDestructorAccess(Bind->getExprLoc(), Destructor,
7535 PDiag(diag::err_access_dtor_temp)
7536 << Bind->getType());
7537 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
7538 return ExprError();
7540 // We need a cleanup, but we don't need to remember the temporary.
7541 Cleanup.setExprNeedsCleanups(true);
7544 // Possibly strip off the top CXXBindTemporaryExpr.
7545 return E;
7548 /// Note a set of 'operator->' functions that were used for a member access.
7549 static void noteOperatorArrows(Sema &S,
7550 ArrayRef<FunctionDecl *> OperatorArrows) {
7551 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
7552 // FIXME: Make this configurable?
7553 unsigned Limit = 9;
7554 if (OperatorArrows.size() > Limit) {
7555 // Produce Limit-1 normal notes and one 'skipping' note.
7556 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
7557 SkipCount = OperatorArrows.size() - (Limit - 1);
7560 for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
7561 if (I == SkipStart) {
7562 S.Diag(OperatorArrows[I]->getLocation(),
7563 diag::note_operator_arrows_suppressed)
7564 << SkipCount;
7565 I += SkipCount;
7566 } else {
7567 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
7568 << OperatorArrows[I]->getCallResultType();
7569 ++I;
7574 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
7575 SourceLocation OpLoc,
7576 tok::TokenKind OpKind,
7577 ParsedType &ObjectType,
7578 bool &MayBePseudoDestructor) {
7579 // Since this might be a postfix expression, get rid of ParenListExprs.
7580 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
7581 if (Result.isInvalid()) return ExprError();
7582 Base = Result.get();
7584 Result = CheckPlaceholderExpr(Base);
7585 if (Result.isInvalid()) return ExprError();
7586 Base = Result.get();
7588 QualType BaseType = Base->getType();
7589 MayBePseudoDestructor = false;
7590 if (BaseType->isDependentType()) {
7591 // If we have a pointer to a dependent type and are using the -> operator,
7592 // the object type is the type that the pointer points to. We might still
7593 // have enough information about that type to do something useful.
7594 if (OpKind == tok::arrow)
7595 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
7596 BaseType = Ptr->getPointeeType();
7598 ObjectType = ParsedType::make(BaseType);
7599 MayBePseudoDestructor = true;
7600 return Base;
7603 // C++ [over.match.oper]p8:
7604 // [...] When operator->returns, the operator-> is applied to the value
7605 // returned, with the original second operand.
7606 if (OpKind == tok::arrow) {
7607 QualType StartingType = BaseType;
7608 bool NoArrowOperatorFound = false;
7609 bool FirstIteration = true;
7610 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
7611 // The set of types we've considered so far.
7612 llvm::SmallPtrSet<CanQualType,8> CTypes;
7613 SmallVector<FunctionDecl*, 8> OperatorArrows;
7614 CTypes.insert(Context.getCanonicalType(BaseType));
7616 while (BaseType->isRecordType()) {
7617 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
7618 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
7619 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
7620 noteOperatorArrows(*this, OperatorArrows);
7621 Diag(OpLoc, diag::note_operator_arrow_depth)
7622 << getLangOpts().ArrowDepth;
7623 return ExprError();
7626 Result = BuildOverloadedArrowExpr(
7627 S, Base, OpLoc,
7628 // When in a template specialization and on the first loop iteration,
7629 // potentially give the default diagnostic (with the fixit in a
7630 // separate note) instead of having the error reported back to here
7631 // and giving a diagnostic with a fixit attached to the error itself.
7632 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
7633 ? nullptr
7634 : &NoArrowOperatorFound);
7635 if (Result.isInvalid()) {
7636 if (NoArrowOperatorFound) {
7637 if (FirstIteration) {
7638 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7639 << BaseType << 1 << Base->getSourceRange()
7640 << FixItHint::CreateReplacement(OpLoc, ".");
7641 OpKind = tok::period;
7642 break;
7644 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
7645 << BaseType << Base->getSourceRange();
7646 CallExpr *CE = dyn_cast<CallExpr>(Base);
7647 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
7648 Diag(CD->getBeginLoc(),
7649 diag::note_member_reference_arrow_from_operator_arrow);
7652 return ExprError();
7654 Base = Result.get();
7655 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
7656 OperatorArrows.push_back(OpCall->getDirectCallee());
7657 BaseType = Base->getType();
7658 CanQualType CBaseType = Context.getCanonicalType(BaseType);
7659 if (!CTypes.insert(CBaseType).second) {
7660 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
7661 noteOperatorArrows(*this, OperatorArrows);
7662 return ExprError();
7664 FirstIteration = false;
7667 if (OpKind == tok::arrow) {
7668 if (BaseType->isPointerType())
7669 BaseType = BaseType->getPointeeType();
7670 else if (auto *AT = Context.getAsArrayType(BaseType))
7671 BaseType = AT->getElementType();
7675 // Objective-C properties allow "." access on Objective-C pointer types,
7676 // so adjust the base type to the object type itself.
7677 if (BaseType->isObjCObjectPointerType())
7678 BaseType = BaseType->getPointeeType();
7680 // C++ [basic.lookup.classref]p2:
7681 // [...] If the type of the object expression is of pointer to scalar
7682 // type, the unqualified-id is looked up in the context of the complete
7683 // postfix-expression.
7685 // This also indicates that we could be parsing a pseudo-destructor-name.
7686 // Note that Objective-C class and object types can be pseudo-destructor
7687 // expressions or normal member (ivar or property) access expressions, and
7688 // it's legal for the type to be incomplete if this is a pseudo-destructor
7689 // call. We'll do more incomplete-type checks later in the lookup process,
7690 // so just skip this check for ObjC types.
7691 if (!BaseType->isRecordType()) {
7692 ObjectType = ParsedType::make(BaseType);
7693 MayBePseudoDestructor = true;
7694 return Base;
7697 // The object type must be complete (or dependent), or
7698 // C++11 [expr.prim.general]p3:
7699 // Unlike the object expression in other contexts, *this is not required to
7700 // be of complete type for purposes of class member access (5.2.5) outside
7701 // the member function body.
7702 if (!BaseType->isDependentType() &&
7703 !isThisOutsideMemberFunctionBody(BaseType) &&
7704 RequireCompleteType(OpLoc, BaseType,
7705 diag::err_incomplete_member_access)) {
7706 return CreateRecoveryExpr(Base->getBeginLoc(), Base->getEndLoc(), {Base});
7709 // C++ [basic.lookup.classref]p2:
7710 // If the id-expression in a class member access (5.2.5) is an
7711 // unqualified-id, and the type of the object expression is of a class
7712 // type C (or of pointer to a class type C), the unqualified-id is looked
7713 // up in the scope of class C. [...]
7714 ObjectType = ParsedType::make(BaseType);
7715 return Base;
7718 static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base,
7719 tok::TokenKind &OpKind, SourceLocation OpLoc) {
7720 if (Base->hasPlaceholderType()) {
7721 ExprResult result = S.CheckPlaceholderExpr(Base);
7722 if (result.isInvalid()) return true;
7723 Base = result.get();
7725 ObjectType = Base->getType();
7727 // C++ [expr.pseudo]p2:
7728 // The left-hand side of the dot operator shall be of scalar type. The
7729 // left-hand side of the arrow operator shall be of pointer to scalar type.
7730 // This scalar type is the object type.
7731 // Note that this is rather different from the normal handling for the
7732 // arrow operator.
7733 if (OpKind == tok::arrow) {
7734 // The operator requires a prvalue, so perform lvalue conversions.
7735 // Only do this if we might plausibly end with a pointer, as otherwise
7736 // this was likely to be intended to be a '.'.
7737 if (ObjectType->isPointerType() || ObjectType->isArrayType() ||
7738 ObjectType->isFunctionType()) {
7739 ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base);
7740 if (BaseResult.isInvalid())
7741 return true;
7742 Base = BaseResult.get();
7743 ObjectType = Base->getType();
7746 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
7747 ObjectType = Ptr->getPointeeType();
7748 } else if (!Base->isTypeDependent()) {
7749 // The user wrote "p->" when they probably meant "p."; fix it.
7750 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7751 << ObjectType << true
7752 << FixItHint::CreateReplacement(OpLoc, ".");
7753 if (S.isSFINAEContext())
7754 return true;
7756 OpKind = tok::period;
7760 return false;
7763 /// Check if it's ok to try and recover dot pseudo destructor calls on
7764 /// pointer objects.
7765 static bool
7766 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
7767 QualType DestructedType) {
7768 // If this is a record type, check if its destructor is callable.
7769 if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
7770 if (RD->hasDefinition())
7771 if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
7772 return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
7773 return false;
7776 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
7777 return DestructedType->isDependentType() || DestructedType->isScalarType() ||
7778 DestructedType->isVectorType();
7781 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
7782 SourceLocation OpLoc,
7783 tok::TokenKind OpKind,
7784 const CXXScopeSpec &SS,
7785 TypeSourceInfo *ScopeTypeInfo,
7786 SourceLocation CCLoc,
7787 SourceLocation TildeLoc,
7788 PseudoDestructorTypeStorage Destructed) {
7789 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
7791 QualType ObjectType;
7792 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7793 return ExprError();
7795 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
7796 !ObjectType->isVectorType()) {
7797 if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
7798 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
7799 else {
7800 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
7801 << ObjectType << Base->getSourceRange();
7802 return ExprError();
7806 // C++ [expr.pseudo]p2:
7807 // [...] The cv-unqualified versions of the object type and of the type
7808 // designated by the pseudo-destructor-name shall be the same type.
7809 if (DestructedTypeInfo) {
7810 QualType DestructedType = DestructedTypeInfo->getType();
7811 SourceLocation DestructedTypeStart =
7812 DestructedTypeInfo->getTypeLoc().getBeginLoc();
7813 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
7814 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
7815 // Detect dot pseudo destructor calls on pointer objects, e.g.:
7816 // Foo *foo;
7817 // foo.~Foo();
7818 if (OpKind == tok::period && ObjectType->isPointerType() &&
7819 Context.hasSameUnqualifiedType(DestructedType,
7820 ObjectType->getPointeeType())) {
7821 auto Diagnostic =
7822 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7823 << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
7825 // Issue a fixit only when the destructor is valid.
7826 if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
7827 *this, DestructedType))
7828 Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
7830 // Recover by setting the object type to the destructed type and the
7831 // operator to '->'.
7832 ObjectType = DestructedType;
7833 OpKind = tok::arrow;
7834 } else {
7835 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
7836 << ObjectType << DestructedType << Base->getSourceRange()
7837 << DestructedTypeInfo->getTypeLoc().getSourceRange();
7839 // Recover by setting the destructed type to the object type.
7840 DestructedType = ObjectType;
7841 DestructedTypeInfo =
7842 Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
7843 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7845 } else if (DestructedType.getObjCLifetime() !=
7846 ObjectType.getObjCLifetime()) {
7848 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
7849 // Okay: just pretend that the user provided the correctly-qualified
7850 // type.
7851 } else {
7852 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
7853 << ObjectType << DestructedType << Base->getSourceRange()
7854 << DestructedTypeInfo->getTypeLoc().getSourceRange();
7857 // Recover by setting the destructed type to the object type.
7858 DestructedType = ObjectType;
7859 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
7860 DestructedTypeStart);
7861 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7866 // C++ [expr.pseudo]p2:
7867 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
7868 // form
7870 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
7872 // shall designate the same scalar type.
7873 if (ScopeTypeInfo) {
7874 QualType ScopeType = ScopeTypeInfo->getType();
7875 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
7876 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
7878 Diag(ScopeTypeInfo->getTypeLoc().getSourceRange().getBegin(),
7879 diag::err_pseudo_dtor_type_mismatch)
7880 << ObjectType << ScopeType << Base->getSourceRange()
7881 << ScopeTypeInfo->getTypeLoc().getSourceRange();
7883 ScopeType = QualType();
7884 ScopeTypeInfo = nullptr;
7888 Expr *Result
7889 = new (Context) CXXPseudoDestructorExpr(Context, Base,
7890 OpKind == tok::arrow, OpLoc,
7891 SS.getWithLocInContext(Context),
7892 ScopeTypeInfo,
7893 CCLoc,
7894 TildeLoc,
7895 Destructed);
7897 return Result;
7900 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7901 SourceLocation OpLoc,
7902 tok::TokenKind OpKind,
7903 CXXScopeSpec &SS,
7904 UnqualifiedId &FirstTypeName,
7905 SourceLocation CCLoc,
7906 SourceLocation TildeLoc,
7907 UnqualifiedId &SecondTypeName) {
7908 assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7909 FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7910 "Invalid first type name in pseudo-destructor");
7911 assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7912 SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7913 "Invalid second type name in pseudo-destructor");
7915 QualType ObjectType;
7916 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7917 return ExprError();
7919 // Compute the object type that we should use for name lookup purposes. Only
7920 // record types and dependent types matter.
7921 ParsedType ObjectTypePtrForLookup;
7922 if (!SS.isSet()) {
7923 if (ObjectType->isRecordType())
7924 ObjectTypePtrForLookup = ParsedType::make(ObjectType);
7925 else if (ObjectType->isDependentType())
7926 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
7929 // Convert the name of the type being destructed (following the ~) into a
7930 // type (with source-location information).
7931 QualType DestructedType;
7932 TypeSourceInfo *DestructedTypeInfo = nullptr;
7933 PseudoDestructorTypeStorage Destructed;
7934 if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7935 ParsedType T = getTypeName(*SecondTypeName.Identifier,
7936 SecondTypeName.StartLocation,
7937 S, &SS, true, false, ObjectTypePtrForLookup,
7938 /*IsCtorOrDtorName*/true);
7939 if (!T &&
7940 ((SS.isSet() && !computeDeclContext(SS, false)) ||
7941 (!SS.isSet() && ObjectType->isDependentType()))) {
7942 // The name of the type being destroyed is a dependent name, and we
7943 // couldn't find anything useful in scope. Just store the identifier and
7944 // it's location, and we'll perform (qualified) name lookup again at
7945 // template instantiation time.
7946 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
7947 SecondTypeName.StartLocation);
7948 } else if (!T) {
7949 Diag(SecondTypeName.StartLocation,
7950 diag::err_pseudo_dtor_destructor_non_type)
7951 << SecondTypeName.Identifier << ObjectType;
7952 if (isSFINAEContext())
7953 return ExprError();
7955 // Recover by assuming we had the right type all along.
7956 DestructedType = ObjectType;
7957 } else
7958 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
7959 } else {
7960 // Resolve the template-id to a type.
7961 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
7962 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7963 TemplateId->NumArgs);
7964 TypeResult T = ActOnTemplateIdType(S,
7966 TemplateId->TemplateKWLoc,
7967 TemplateId->Template,
7968 TemplateId->Name,
7969 TemplateId->TemplateNameLoc,
7970 TemplateId->LAngleLoc,
7971 TemplateArgsPtr,
7972 TemplateId->RAngleLoc,
7973 /*IsCtorOrDtorName*/true);
7974 if (T.isInvalid() || !T.get()) {
7975 // Recover by assuming we had the right type all along.
7976 DestructedType = ObjectType;
7977 } else
7978 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
7981 // If we've performed some kind of recovery, (re-)build the type source
7982 // information.
7983 if (!DestructedType.isNull()) {
7984 if (!DestructedTypeInfo)
7985 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
7986 SecondTypeName.StartLocation);
7987 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7990 // Convert the name of the scope type (the type prior to '::') into a type.
7991 TypeSourceInfo *ScopeTypeInfo = nullptr;
7992 QualType ScopeType;
7993 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7994 FirstTypeName.Identifier) {
7995 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7996 ParsedType T = getTypeName(*FirstTypeName.Identifier,
7997 FirstTypeName.StartLocation,
7998 S, &SS, true, false, ObjectTypePtrForLookup,
7999 /*IsCtorOrDtorName*/true);
8000 if (!T) {
8001 Diag(FirstTypeName.StartLocation,
8002 diag::err_pseudo_dtor_destructor_non_type)
8003 << FirstTypeName.Identifier << ObjectType;
8005 if (isSFINAEContext())
8006 return ExprError();
8008 // Just drop this type. It's unnecessary anyway.
8009 ScopeType = QualType();
8010 } else
8011 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
8012 } else {
8013 // Resolve the template-id to a type.
8014 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
8015 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
8016 TemplateId->NumArgs);
8017 TypeResult T = ActOnTemplateIdType(S,
8019 TemplateId->TemplateKWLoc,
8020 TemplateId->Template,
8021 TemplateId->Name,
8022 TemplateId->TemplateNameLoc,
8023 TemplateId->LAngleLoc,
8024 TemplateArgsPtr,
8025 TemplateId->RAngleLoc,
8026 /*IsCtorOrDtorName*/true);
8027 if (T.isInvalid() || !T.get()) {
8028 // Recover by dropping this type.
8029 ScopeType = QualType();
8030 } else
8031 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
8035 if (!ScopeType.isNull() && !ScopeTypeInfo)
8036 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
8037 FirstTypeName.StartLocation);
8040 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
8041 ScopeTypeInfo, CCLoc, TildeLoc,
8042 Destructed);
8045 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
8046 SourceLocation OpLoc,
8047 tok::TokenKind OpKind,
8048 SourceLocation TildeLoc,
8049 const DeclSpec& DS) {
8050 QualType ObjectType;
8051 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
8052 return ExprError();
8054 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
8055 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
8056 return true;
8059 QualType T = BuildDecltypeType(DS.getRepAsExpr(), /*AsUnevaluated=*/false);
8061 TypeLocBuilder TLB;
8062 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
8063 DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
8064 DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd());
8065 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
8066 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
8068 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
8069 nullptr, SourceLocation(), TildeLoc,
8070 Destructed);
8073 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
8074 SourceLocation RParen) {
8075 // If the operand is an unresolved lookup expression, the expression is ill-
8076 // formed per [over.over]p1, because overloaded function names cannot be used
8077 // without arguments except in explicit contexts.
8078 ExprResult R = CheckPlaceholderExpr(Operand);
8079 if (R.isInvalid())
8080 return R;
8082 R = CheckUnevaluatedOperand(R.get());
8083 if (R.isInvalid())
8084 return ExprError();
8086 Operand = R.get();
8088 if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() &&
8089 Operand->HasSideEffects(Context, false)) {
8090 // The expression operand for noexcept is in an unevaluated expression
8091 // context, so side effects could result in unintended consequences.
8092 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
8095 CanThrowResult CanThrow = canThrow(Operand);
8096 return new (Context)
8097 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
8100 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
8101 Expr *Operand, SourceLocation RParen) {
8102 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
8105 static void MaybeDecrementCount(
8106 Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
8107 DeclRefExpr *LHS = nullptr;
8108 bool IsCompoundAssign = false;
8109 bool isIncrementDecrementUnaryOp = false;
8110 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
8111 if (BO->getLHS()->getType()->isDependentType() ||
8112 BO->getRHS()->getType()->isDependentType()) {
8113 if (BO->getOpcode() != BO_Assign)
8114 return;
8115 } else if (!BO->isAssignmentOp())
8116 return;
8117 else
8118 IsCompoundAssign = BO->isCompoundAssignmentOp();
8119 LHS = dyn_cast<DeclRefExpr>(BO->getLHS());
8120 } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) {
8121 if (COCE->getOperator() != OO_Equal)
8122 return;
8123 LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0));
8124 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
8125 if (!UO->isIncrementDecrementOp())
8126 return;
8127 isIncrementDecrementUnaryOp = true;
8128 LHS = dyn_cast<DeclRefExpr>(UO->getSubExpr());
8130 if (!LHS)
8131 return;
8132 VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl());
8133 if (!VD)
8134 return;
8135 // Don't decrement RefsMinusAssignments if volatile variable with compound
8136 // assignment (+=, ...) or increment/decrement unary operator to avoid
8137 // potential unused-but-set-variable warning.
8138 if ((IsCompoundAssign || isIncrementDecrementUnaryOp) &&
8139 VD->getType().isVolatileQualified())
8140 return;
8141 auto iter = RefsMinusAssignments.find(VD);
8142 if (iter == RefsMinusAssignments.end())
8143 return;
8144 iter->getSecond()--;
8147 /// Perform the conversions required for an expression used in a
8148 /// context that ignores the result.
8149 ExprResult Sema::IgnoredValueConversions(Expr *E) {
8150 MaybeDecrementCount(E, RefsMinusAssignments);
8152 if (E->hasPlaceholderType()) {
8153 ExprResult result = CheckPlaceholderExpr(E);
8154 if (result.isInvalid()) return E;
8155 E = result.get();
8158 // C99 6.3.2.1:
8159 // [Except in specific positions,] an lvalue that does not have
8160 // array type is converted to the value stored in the
8161 // designated object (and is no longer an lvalue).
8162 if (E->isPRValue()) {
8163 // In C, function designators (i.e. expressions of function type)
8164 // are r-values, but we still want to do function-to-pointer decay
8165 // on them. This is both technically correct and convenient for
8166 // some clients.
8167 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
8168 return DefaultFunctionArrayConversion(E);
8170 return E;
8173 if (getLangOpts().CPlusPlus) {
8174 // The C++11 standard defines the notion of a discarded-value expression;
8175 // normally, we don't need to do anything to handle it, but if it is a
8176 // volatile lvalue with a special form, we perform an lvalue-to-rvalue
8177 // conversion.
8178 if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) {
8179 ExprResult Res = DefaultLvalueConversion(E);
8180 if (Res.isInvalid())
8181 return E;
8182 E = Res.get();
8183 } else {
8184 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8185 // it occurs as a discarded-value expression.
8186 CheckUnusedVolatileAssignment(E);
8189 // C++1z:
8190 // If the expression is a prvalue after this optional conversion, the
8191 // temporary materialization conversion is applied.
8193 // We skip this step: IR generation is able to synthesize the storage for
8194 // itself in the aggregate case, and adding the extra node to the AST is
8195 // just clutter.
8196 // FIXME: We don't emit lifetime markers for the temporaries due to this.
8197 // FIXME: Do any other AST consumers care about this?
8198 return E;
8201 // GCC seems to also exclude expressions of incomplete enum type.
8202 if (const EnumType *T = E->getType()->getAs<EnumType>()) {
8203 if (!T->getDecl()->isComplete()) {
8204 // FIXME: stupid workaround for a codegen bug!
8205 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
8206 return E;
8210 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
8211 if (Res.isInvalid())
8212 return E;
8213 E = Res.get();
8215 if (!E->getType()->isVoidType())
8216 RequireCompleteType(E->getExprLoc(), E->getType(),
8217 diag::err_incomplete_type);
8218 return E;
8221 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) {
8222 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8223 // it occurs as an unevaluated operand.
8224 CheckUnusedVolatileAssignment(E);
8226 return E;
8229 // If we can unambiguously determine whether Var can never be used
8230 // in a constant expression, return true.
8231 // - if the variable and its initializer are non-dependent, then
8232 // we can unambiguously check if the variable is a constant expression.
8233 // - if the initializer is not value dependent - we can determine whether
8234 // it can be used to initialize a constant expression. If Init can not
8235 // be used to initialize a constant expression we conclude that Var can
8236 // never be a constant expression.
8237 // - FXIME: if the initializer is dependent, we can still do some analysis and
8238 // identify certain cases unambiguously as non-const by using a Visitor:
8239 // - such as those that involve odr-use of a ParmVarDecl, involve a new
8240 // delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
8241 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
8242 ASTContext &Context) {
8243 if (isa<ParmVarDecl>(Var)) return true;
8244 const VarDecl *DefVD = nullptr;
8246 // If there is no initializer - this can not be a constant expression.
8247 const Expr *Init = Var->getAnyInitializer(DefVD);
8248 if (!Init)
8249 return true;
8250 assert(DefVD);
8251 if (DefVD->isWeak())
8252 return false;
8254 if (Var->getType()->isDependentType() || Init->isValueDependent()) {
8255 // FIXME: Teach the constant evaluator to deal with the non-dependent parts
8256 // of value-dependent expressions, and use it here to determine whether the
8257 // initializer is a potential constant expression.
8258 return false;
8261 return !Var->isUsableInConstantExpressions(Context);
8264 /// Check if the current lambda has any potential captures
8265 /// that must be captured by any of its enclosing lambdas that are ready to
8266 /// capture. If there is a lambda that can capture a nested
8267 /// potential-capture, go ahead and do so. Also, check to see if any
8268 /// variables are uncaptureable or do not involve an odr-use so do not
8269 /// need to be captured.
8271 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
8272 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
8274 assert(!S.isUnevaluatedContext());
8275 assert(S.CurContext->isDependentContext());
8276 #ifndef NDEBUG
8277 DeclContext *DC = S.CurContext;
8278 while (DC && isa<CapturedDecl>(DC))
8279 DC = DC->getParent();
8280 assert(
8281 CurrentLSI->CallOperator == DC &&
8282 "The current call operator must be synchronized with Sema's CurContext");
8283 #endif // NDEBUG
8285 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
8287 // All the potentially captureable variables in the current nested
8288 // lambda (within a generic outer lambda), must be captured by an
8289 // outer lambda that is enclosed within a non-dependent context.
8290 CurrentLSI->visitPotentialCaptures([&](ValueDecl *Var, Expr *VarExpr) {
8291 // If the variable is clearly identified as non-odr-used and the full
8292 // expression is not instantiation dependent, only then do we not
8293 // need to check enclosing lambda's for speculative captures.
8294 // For e.g.:
8295 // Even though 'x' is not odr-used, it should be captured.
8296 // int test() {
8297 // const int x = 10;
8298 // auto L = [=](auto a) {
8299 // (void) +x + a;
8300 // };
8301 // }
8302 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
8303 !IsFullExprInstantiationDependent)
8304 return;
8306 VarDecl *UnderlyingVar = Var->getPotentiallyDecomposedVarDecl();
8307 if (!UnderlyingVar)
8308 return;
8310 // If we have a capture-capable lambda for the variable, go ahead and
8311 // capture the variable in that lambda (and all its enclosing lambdas).
8312 if (const std::optional<unsigned> Index =
8313 getStackIndexOfNearestEnclosingCaptureCapableLambda(
8314 S.FunctionScopes, Var, S))
8315 S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), *Index);
8316 const bool IsVarNeverAConstantExpression =
8317 VariableCanNeverBeAConstantExpression(UnderlyingVar, S.Context);
8318 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
8319 // This full expression is not instantiation dependent or the variable
8320 // can not be used in a constant expression - which means
8321 // this variable must be odr-used here, so diagnose a
8322 // capture violation early, if the variable is un-captureable.
8323 // This is purely for diagnosing errors early. Otherwise, this
8324 // error would get diagnosed when the lambda becomes capture ready.
8325 QualType CaptureType, DeclRefType;
8326 SourceLocation ExprLoc = VarExpr->getExprLoc();
8327 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8328 /*EllipsisLoc*/ SourceLocation(),
8329 /*BuildAndDiagnose*/false, CaptureType,
8330 DeclRefType, nullptr)) {
8331 // We will never be able to capture this variable, and we need
8332 // to be able to in any and all instantiations, so diagnose it.
8333 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8334 /*EllipsisLoc*/ SourceLocation(),
8335 /*BuildAndDiagnose*/true, CaptureType,
8336 DeclRefType, nullptr);
8341 // Check if 'this' needs to be captured.
8342 if (CurrentLSI->hasPotentialThisCapture()) {
8343 // If we have a capture-capable lambda for 'this', go ahead and capture
8344 // 'this' in that lambda (and all its enclosing lambdas).
8345 if (const std::optional<unsigned> Index =
8346 getStackIndexOfNearestEnclosingCaptureCapableLambda(
8347 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
8348 const unsigned FunctionScopeIndexOfCapturableLambda = *Index;
8349 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
8350 /*Explicit*/ false, /*BuildAndDiagnose*/ true,
8351 &FunctionScopeIndexOfCapturableLambda);
8355 // Reset all the potential captures at the end of each full-expression.
8356 CurrentLSI->clearPotentialCaptures();
8359 static ExprResult attemptRecovery(Sema &SemaRef,
8360 const TypoCorrectionConsumer &Consumer,
8361 const TypoCorrection &TC) {
8362 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
8363 Consumer.getLookupResult().getLookupKind());
8364 const CXXScopeSpec *SS = Consumer.getSS();
8365 CXXScopeSpec NewSS;
8367 // Use an approprate CXXScopeSpec for building the expr.
8368 if (auto *NNS = TC.getCorrectionSpecifier())
8369 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
8370 else if (SS && !TC.WillReplaceSpecifier())
8371 NewSS = *SS;
8373 if (auto *ND = TC.getFoundDecl()) {
8374 R.setLookupName(ND->getDeclName());
8375 R.addDecl(ND);
8376 if (ND->isCXXClassMember()) {
8377 // Figure out the correct naming class to add to the LookupResult.
8378 CXXRecordDecl *Record = nullptr;
8379 if (auto *NNS = TC.getCorrectionSpecifier())
8380 Record = NNS->getAsType()->getAsCXXRecordDecl();
8381 if (!Record)
8382 Record =
8383 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
8384 if (Record)
8385 R.setNamingClass(Record);
8387 // Detect and handle the case where the decl might be an implicit
8388 // member.
8389 bool MightBeImplicitMember;
8390 if (!Consumer.isAddressOfOperand())
8391 MightBeImplicitMember = true;
8392 else if (!NewSS.isEmpty())
8393 MightBeImplicitMember = false;
8394 else if (R.isOverloadedResult())
8395 MightBeImplicitMember = false;
8396 else if (R.isUnresolvableResult())
8397 MightBeImplicitMember = true;
8398 else
8399 MightBeImplicitMember = isa<FieldDecl>(ND) ||
8400 isa<IndirectFieldDecl>(ND) ||
8401 isa<MSPropertyDecl>(ND);
8403 if (MightBeImplicitMember)
8404 return SemaRef.BuildPossibleImplicitMemberExpr(
8405 NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
8406 /*TemplateArgs*/ nullptr, /*S*/ nullptr);
8407 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
8408 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
8409 Ivar->getIdentifier());
8413 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
8414 /*AcceptInvalidDecl*/ true);
8417 namespace {
8418 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
8419 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
8421 public:
8422 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
8423 : TypoExprs(TypoExprs) {}
8424 bool VisitTypoExpr(TypoExpr *TE) {
8425 TypoExprs.insert(TE);
8426 return true;
8430 class TransformTypos : public TreeTransform<TransformTypos> {
8431 typedef TreeTransform<TransformTypos> BaseTransform;
8433 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
8434 // process of being initialized.
8435 llvm::function_ref<ExprResult(Expr *)> ExprFilter;
8436 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
8437 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
8438 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
8440 /// Emit diagnostics for all of the TypoExprs encountered.
8442 /// If the TypoExprs were successfully corrected, then the diagnostics should
8443 /// suggest the corrections. Otherwise the diagnostics will not suggest
8444 /// anything (having been passed an empty TypoCorrection).
8446 /// If we've failed to correct due to ambiguous corrections, we need to
8447 /// be sure to pass empty corrections and replacements. Otherwise it's
8448 /// possible that the Consumer has a TypoCorrection that failed to ambiguity
8449 /// and we don't want to report those diagnostics.
8450 void EmitAllDiagnostics(bool IsAmbiguous) {
8451 for (TypoExpr *TE : TypoExprs) {
8452 auto &State = SemaRef.getTypoExprState(TE);
8453 if (State.DiagHandler) {
8454 TypoCorrection TC = IsAmbiguous
8455 ? TypoCorrection() : State.Consumer->getCurrentCorrection();
8456 ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE];
8458 // Extract the NamedDecl from the transformed TypoExpr and add it to the
8459 // TypoCorrection, replacing the existing decls. This ensures the right
8460 // NamedDecl is used in diagnostics e.g. in the case where overload
8461 // resolution was used to select one from several possible decls that
8462 // had been stored in the TypoCorrection.
8463 if (auto *ND = getDeclFromExpr(
8464 Replacement.isInvalid() ? nullptr : Replacement.get()))
8465 TC.setCorrectionDecl(ND);
8467 State.DiagHandler(TC);
8469 SemaRef.clearDelayedTypo(TE);
8473 /// Try to advance the typo correction state of the first unfinished TypoExpr.
8474 /// We allow advancement of the correction stream by removing it from the
8475 /// TransformCache which allows `TransformTypoExpr` to advance during the
8476 /// next transformation attempt.
8478 /// Any substitution attempts for the previous TypoExprs (which must have been
8479 /// finished) will need to be retried since it's possible that they will now
8480 /// be invalid given the latest advancement.
8482 /// We need to be sure that we're making progress - it's possible that the
8483 /// tree is so malformed that the transform never makes it to the
8484 /// `TransformTypoExpr`.
8486 /// Returns true if there are any untried correction combinations.
8487 bool CheckAndAdvanceTypoExprCorrectionStreams() {
8488 for (auto *TE : TypoExprs) {
8489 auto &State = SemaRef.getTypoExprState(TE);
8490 TransformCache.erase(TE);
8491 if (!State.Consumer->hasMadeAnyCorrectionProgress())
8492 return false;
8493 if (!State.Consumer->finished())
8494 return true;
8495 State.Consumer->resetCorrectionStream();
8497 return false;
8500 NamedDecl *getDeclFromExpr(Expr *E) {
8501 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
8502 E = OverloadResolution[OE];
8504 if (!E)
8505 return nullptr;
8506 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
8507 return DRE->getFoundDecl();
8508 if (auto *ME = dyn_cast<MemberExpr>(E))
8509 return ME->getFoundDecl();
8510 // FIXME: Add any other expr types that could be seen by the delayed typo
8511 // correction TreeTransform for which the corresponding TypoCorrection could
8512 // contain multiple decls.
8513 return nullptr;
8516 ExprResult TryTransform(Expr *E) {
8517 Sema::SFINAETrap Trap(SemaRef);
8518 ExprResult Res = TransformExpr(E);
8519 if (Trap.hasErrorOccurred() || Res.isInvalid())
8520 return ExprError();
8522 return ExprFilter(Res.get());
8525 // Since correcting typos may intoduce new TypoExprs, this function
8526 // checks for new TypoExprs and recurses if it finds any. Note that it will
8527 // only succeed if it is able to correct all typos in the given expression.
8528 ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) {
8529 if (Res.isInvalid()) {
8530 return Res;
8532 // Check to see if any new TypoExprs were created. If so, we need to recurse
8533 // to check their validity.
8534 Expr *FixedExpr = Res.get();
8536 auto SavedTypoExprs = std::move(TypoExprs);
8537 auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs);
8538 TypoExprs.clear();
8539 AmbiguousTypoExprs.clear();
8541 FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr);
8542 if (!TypoExprs.empty()) {
8543 // Recurse to handle newly created TypoExprs. If we're not able to
8544 // handle them, discard these TypoExprs.
8545 ExprResult RecurResult =
8546 RecursiveTransformLoop(FixedExpr, IsAmbiguous);
8547 if (RecurResult.isInvalid()) {
8548 Res = ExprError();
8549 // Recursive corrections didn't work, wipe them away and don't add
8550 // them to the TypoExprs set. Remove them from Sema's TypoExpr list
8551 // since we don't want to clear them twice. Note: it's possible the
8552 // TypoExprs were created recursively and thus won't be in our
8553 // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`.
8554 auto &SemaTypoExprs = SemaRef.TypoExprs;
8555 for (auto *TE : TypoExprs) {
8556 TransformCache.erase(TE);
8557 SemaRef.clearDelayedTypo(TE);
8559 auto SI = find(SemaTypoExprs, TE);
8560 if (SI != SemaTypoExprs.end()) {
8561 SemaTypoExprs.erase(SI);
8564 } else {
8565 // TypoExpr is valid: add newly created TypoExprs since we were
8566 // able to correct them.
8567 Res = RecurResult;
8568 SavedTypoExprs.set_union(TypoExprs);
8572 TypoExprs = std::move(SavedTypoExprs);
8573 AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs);
8575 return Res;
8578 // Try to transform the given expression, looping through the correction
8579 // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`.
8581 // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to
8582 // true and this method immediately will return an `ExprError`.
8583 ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) {
8584 ExprResult Res;
8585 auto SavedTypoExprs = std::move(SemaRef.TypoExprs);
8586 SemaRef.TypoExprs.clear();
8588 while (true) {
8589 Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8591 // Recursion encountered an ambiguous correction. This means that our
8592 // correction itself is ambiguous, so stop now.
8593 if (IsAmbiguous)
8594 break;
8596 // If the transform is still valid after checking for any new typos,
8597 // it's good to go.
8598 if (!Res.isInvalid())
8599 break;
8601 // The transform was invalid, see if we have any TypoExprs with untried
8602 // correction candidates.
8603 if (!CheckAndAdvanceTypoExprCorrectionStreams())
8604 break;
8607 // If we found a valid result, double check to make sure it's not ambiguous.
8608 if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) {
8609 auto SavedTransformCache =
8610 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache);
8612 // Ensure none of the TypoExprs have multiple typo correction candidates
8613 // with the same edit length that pass all the checks and filters.
8614 while (!AmbiguousTypoExprs.empty()) {
8615 auto TE = AmbiguousTypoExprs.back();
8617 // TryTransform itself can create new Typos, adding them to the TypoExpr map
8618 // and invalidating our TypoExprState, so always fetch it instead of storing.
8619 SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition();
8621 TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection();
8622 TypoCorrection Next;
8623 do {
8624 // Fetch the next correction by erasing the typo from the cache and calling
8625 // `TryTransform` which will iterate through corrections in
8626 // `TransformTypoExpr`.
8627 TransformCache.erase(TE);
8628 ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8630 if (!AmbigRes.isInvalid() || IsAmbiguous) {
8631 SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream();
8632 SavedTransformCache.erase(TE);
8633 Res = ExprError();
8634 IsAmbiguous = true;
8635 break;
8637 } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) &&
8638 Next.getEditDistance(false) == TC.getEditDistance(false));
8640 if (IsAmbiguous)
8641 break;
8643 AmbiguousTypoExprs.remove(TE);
8644 SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition();
8645 TransformCache[TE] = SavedTransformCache[TE];
8647 TransformCache = std::move(SavedTransformCache);
8650 // Wipe away any newly created TypoExprs that we don't know about. Since we
8651 // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only
8652 // possible if a `TypoExpr` is created during a transformation but then
8653 // fails before we can discover it.
8654 auto &SemaTypoExprs = SemaRef.TypoExprs;
8655 for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) {
8656 auto TE = *Iterator;
8657 auto FI = find(TypoExprs, TE);
8658 if (FI != TypoExprs.end()) {
8659 Iterator++;
8660 continue;
8662 SemaRef.clearDelayedTypo(TE);
8663 Iterator = SemaTypoExprs.erase(Iterator);
8665 SemaRef.TypoExprs = std::move(SavedTypoExprs);
8667 return Res;
8670 public:
8671 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
8672 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
8674 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
8675 MultiExprArg Args,
8676 SourceLocation RParenLoc,
8677 Expr *ExecConfig = nullptr) {
8678 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
8679 RParenLoc, ExecConfig);
8680 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
8681 if (Result.isUsable()) {
8682 Expr *ResultCall = Result.get();
8683 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
8684 ResultCall = BE->getSubExpr();
8685 if (auto *CE = dyn_cast<CallExpr>(ResultCall))
8686 OverloadResolution[OE] = CE->getCallee();
8689 return Result;
8692 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
8694 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
8696 ExprResult Transform(Expr *E) {
8697 bool IsAmbiguous = false;
8698 ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous);
8700 if (!Res.isUsable())
8701 FindTypoExprs(TypoExprs).TraverseStmt(E);
8703 EmitAllDiagnostics(IsAmbiguous);
8705 return Res;
8708 ExprResult TransformTypoExpr(TypoExpr *E) {
8709 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
8710 // cached transformation result if there is one and the TypoExpr isn't the
8711 // first one that was encountered.
8712 auto &CacheEntry = TransformCache[E];
8713 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
8714 return CacheEntry;
8717 auto &State = SemaRef.getTypoExprState(E);
8718 assert(State.Consumer && "Cannot transform a cleared TypoExpr");
8720 // For the first TypoExpr and an uncached TypoExpr, find the next likely
8721 // typo correction and return it.
8722 while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
8723 if (InitDecl && TC.getFoundDecl() == InitDecl)
8724 continue;
8725 // FIXME: If we would typo-correct to an invalid declaration, it's
8726 // probably best to just suppress all errors from this typo correction.
8727 ExprResult NE = State.RecoveryHandler ?
8728 State.RecoveryHandler(SemaRef, E, TC) :
8729 attemptRecovery(SemaRef, *State.Consumer, TC);
8730 if (!NE.isInvalid()) {
8731 // Check whether there may be a second viable correction with the same
8732 // edit distance; if so, remember this TypoExpr may have an ambiguous
8733 // correction so it can be more thoroughly vetted later.
8734 TypoCorrection Next;
8735 if ((Next = State.Consumer->peekNextCorrection()) &&
8736 Next.getEditDistance(false) == TC.getEditDistance(false)) {
8737 AmbiguousTypoExprs.insert(E);
8738 } else {
8739 AmbiguousTypoExprs.remove(E);
8741 assert(!NE.isUnset() &&
8742 "Typo was transformed into a valid-but-null ExprResult");
8743 return CacheEntry = NE;
8746 return CacheEntry = ExprError();
8751 ExprResult
8752 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
8753 bool RecoverUncorrectedTypos,
8754 llvm::function_ref<ExprResult(Expr *)> Filter) {
8755 // If the current evaluation context indicates there are uncorrected typos
8756 // and the current expression isn't guaranteed to not have typos, try to
8757 // resolve any TypoExpr nodes that might be in the expression.
8758 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
8759 (E->isTypeDependent() || E->isValueDependent() ||
8760 E->isInstantiationDependent())) {
8761 auto TyposResolved = DelayedTypos.size();
8762 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
8763 TyposResolved -= DelayedTypos.size();
8764 if (Result.isInvalid() || Result.get() != E) {
8765 ExprEvalContexts.back().NumTypos -= TyposResolved;
8766 if (Result.isInvalid() && RecoverUncorrectedTypos) {
8767 struct TyposReplace : TreeTransform<TyposReplace> {
8768 TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {}
8769 ExprResult TransformTypoExpr(clang::TypoExpr *E) {
8770 return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(),
8771 E->getEndLoc(), {});
8773 } TT(*this);
8774 return TT.TransformExpr(E);
8776 return Result;
8778 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
8780 return E;
8783 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
8784 bool DiscardedValue, bool IsConstexpr,
8785 bool IsTemplateArgument) {
8786 ExprResult FullExpr = FE;
8788 if (!FullExpr.get())
8789 return ExprError();
8791 if (!IsTemplateArgument && DiagnoseUnexpandedParameterPack(FullExpr.get()))
8792 return ExprError();
8794 if (DiscardedValue) {
8795 // Top-level expressions default to 'id' when we're in a debugger.
8796 if (getLangOpts().DebuggerCastResultToId &&
8797 FullExpr.get()->getType() == Context.UnknownAnyTy) {
8798 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
8799 if (FullExpr.isInvalid())
8800 return ExprError();
8803 FullExpr = CheckPlaceholderExpr(FullExpr.get());
8804 if (FullExpr.isInvalid())
8805 return ExprError();
8807 FullExpr = IgnoredValueConversions(FullExpr.get());
8808 if (FullExpr.isInvalid())
8809 return ExprError();
8811 DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr);
8814 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr,
8815 /*RecoverUncorrectedTypos=*/true);
8816 if (FullExpr.isInvalid())
8817 return ExprError();
8819 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
8821 // At the end of this full expression (which could be a deeply nested
8822 // lambda), if there is a potential capture within the nested lambda,
8823 // have the outer capture-able lambda try and capture it.
8824 // Consider the following code:
8825 // void f(int, int);
8826 // void f(const int&, double);
8827 // void foo() {
8828 // const int x = 10, y = 20;
8829 // auto L = [=](auto a) {
8830 // auto M = [=](auto b) {
8831 // f(x, b); <-- requires x to be captured by L and M
8832 // f(y, a); <-- requires y to be captured by L, but not all Ms
8833 // };
8834 // };
8835 // }
8837 // FIXME: Also consider what happens for something like this that involves
8838 // the gnu-extension statement-expressions or even lambda-init-captures:
8839 // void f() {
8840 // const int n = 0;
8841 // auto L = [&](auto a) {
8842 // +n + ({ 0; a; });
8843 // };
8844 // }
8846 // Here, we see +n, and then the full-expression 0; ends, so we don't
8847 // capture n (and instead remove it from our list of potential captures),
8848 // and then the full-expression +n + ({ 0; }); ends, but it's too late
8849 // for us to see that we need to capture n after all.
8851 LambdaScopeInfo *const CurrentLSI =
8852 getCurLambda(/*IgnoreCapturedRegions=*/true);
8853 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
8854 // even if CurContext is not a lambda call operator. Refer to that Bug Report
8855 // for an example of the code that might cause this asynchrony.
8856 // By ensuring we are in the context of a lambda's call operator
8857 // we can fix the bug (we only need to check whether we need to capture
8858 // if we are within a lambda's body); but per the comments in that
8859 // PR, a proper fix would entail :
8860 // "Alternative suggestion:
8861 // - Add to Sema an integer holding the smallest (outermost) scope
8862 // index that we are *lexically* within, and save/restore/set to
8863 // FunctionScopes.size() in InstantiatingTemplate's
8864 // constructor/destructor.
8865 // - Teach the handful of places that iterate over FunctionScopes to
8866 // stop at the outermost enclosing lexical scope."
8867 DeclContext *DC = CurContext;
8868 while (DC && isa<CapturedDecl>(DC))
8869 DC = DC->getParent();
8870 const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
8871 if (IsInLambdaDeclContext && CurrentLSI &&
8872 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
8873 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
8874 *this);
8875 return MaybeCreateExprWithCleanups(FullExpr);
8878 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
8879 if (!FullStmt) return StmtError();
8881 return MaybeCreateStmtWithCleanups(FullStmt);
8884 Sema::IfExistsResult
8885 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
8886 CXXScopeSpec &SS,
8887 const DeclarationNameInfo &TargetNameInfo) {
8888 DeclarationName TargetName = TargetNameInfo.getName();
8889 if (!TargetName)
8890 return IER_DoesNotExist;
8892 // If the name itself is dependent, then the result is dependent.
8893 if (TargetName.isDependentName())
8894 return IER_Dependent;
8896 // Do the redeclaration lookup in the current scope.
8897 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
8898 Sema::NotForRedeclaration);
8899 LookupParsedName(R, S, &SS);
8900 R.suppressDiagnostics();
8902 switch (R.getResultKind()) {
8903 case LookupResult::Found:
8904 case LookupResult::FoundOverloaded:
8905 case LookupResult::FoundUnresolvedValue:
8906 case LookupResult::Ambiguous:
8907 return IER_Exists;
8909 case LookupResult::NotFound:
8910 return IER_DoesNotExist;
8912 case LookupResult::NotFoundInCurrentInstantiation:
8913 return IER_Dependent;
8916 llvm_unreachable("Invalid LookupResult Kind!");
8919 Sema::IfExistsResult
8920 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
8921 bool IsIfExists, CXXScopeSpec &SS,
8922 UnqualifiedId &Name) {
8923 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
8925 // Check for an unexpanded parameter pack.
8926 auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
8927 if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
8928 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
8929 return IER_Error;
8931 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
8934 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) {
8935 return BuildExprRequirement(E, /*IsSimple=*/true,
8936 /*NoexceptLoc=*/SourceLocation(),
8937 /*ReturnTypeRequirement=*/{});
8940 concepts::Requirement *
8941 Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS,
8942 SourceLocation NameLoc, IdentifierInfo *TypeName,
8943 TemplateIdAnnotation *TemplateId) {
8944 assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) &&
8945 "Exactly one of TypeName and TemplateId must be specified.");
8946 TypeSourceInfo *TSI = nullptr;
8947 if (TypeName) {
8948 QualType T =
8949 CheckTypenameType(ElaboratedTypeKeyword::Typename, TypenameKWLoc,
8950 SS.getWithLocInContext(Context), *TypeName, NameLoc,
8951 &TSI, /*DeducedTSTContext=*/false);
8952 if (T.isNull())
8953 return nullptr;
8954 } else {
8955 ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(),
8956 TemplateId->NumArgs);
8957 TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS,
8958 TemplateId->TemplateKWLoc,
8959 TemplateId->Template, TemplateId->Name,
8960 TemplateId->TemplateNameLoc,
8961 TemplateId->LAngleLoc, ArgsPtr,
8962 TemplateId->RAngleLoc);
8963 if (T.isInvalid())
8964 return nullptr;
8965 if (GetTypeFromParser(T.get(), &TSI).isNull())
8966 return nullptr;
8968 return BuildTypeRequirement(TSI);
8971 concepts::Requirement *
8972 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) {
8973 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc,
8974 /*ReturnTypeRequirement=*/{});
8977 concepts::Requirement *
8978 Sema::ActOnCompoundRequirement(
8979 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
8980 TemplateIdAnnotation *TypeConstraint, unsigned Depth) {
8981 // C++2a [expr.prim.req.compound] p1.3.3
8982 // [..] the expression is deduced against an invented function template
8983 // F [...] F is a void function template with a single type template
8984 // parameter T declared with the constrained-parameter. Form a new
8985 // cv-qualifier-seq cv by taking the union of const and volatile specifiers
8986 // around the constrained-parameter. F has a single parameter whose
8987 // type-specifier is cv T followed by the abstract-declarator. [...]
8989 // The cv part is done in the calling function - we get the concept with
8990 // arguments and the abstract declarator with the correct CV qualification and
8991 // have to synthesize T and the single parameter of F.
8992 auto &II = Context.Idents.get("expr-type");
8993 auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext,
8994 SourceLocation(),
8995 SourceLocation(), Depth,
8996 /*Index=*/0, &II,
8997 /*Typename=*/true,
8998 /*ParameterPack=*/false,
8999 /*HasTypeConstraint=*/true);
9001 if (BuildTypeConstraint(SS, TypeConstraint, TParam,
9002 /*EllipsisLoc=*/SourceLocation(),
9003 /*AllowUnexpandedPack=*/true))
9004 // Just produce a requirement with no type requirements.
9005 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {});
9007 auto *TPL = TemplateParameterList::Create(Context, SourceLocation(),
9008 SourceLocation(),
9009 ArrayRef<NamedDecl *>(TParam),
9010 SourceLocation(),
9011 /*RequiresClause=*/nullptr);
9012 return BuildExprRequirement(
9013 E, /*IsSimple=*/false, NoexceptLoc,
9014 concepts::ExprRequirement::ReturnTypeRequirement(TPL));
9017 concepts::ExprRequirement *
9018 Sema::BuildExprRequirement(
9019 Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
9020 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
9021 auto Status = concepts::ExprRequirement::SS_Satisfied;
9022 ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr;
9023 if (E->isInstantiationDependent() || E->getType()->isPlaceholderType() ||
9024 ReturnTypeRequirement.isDependent())
9025 Status = concepts::ExprRequirement::SS_Dependent;
9026 else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can)
9027 Status = concepts::ExprRequirement::SS_NoexceptNotMet;
9028 else if (ReturnTypeRequirement.isSubstitutionFailure())
9029 Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure;
9030 else if (ReturnTypeRequirement.isTypeConstraint()) {
9031 // C++2a [expr.prim.req]p1.3.3
9032 // The immediately-declared constraint ([temp]) of decltype((E)) shall
9033 // be satisfied.
9034 TemplateParameterList *TPL =
9035 ReturnTypeRequirement.getTypeConstraintTemplateParameterList();
9036 QualType MatchedType =
9037 Context.getReferenceQualifiedType(E).getCanonicalType();
9038 llvm::SmallVector<TemplateArgument, 1> Args;
9039 Args.push_back(TemplateArgument(MatchedType));
9041 auto *Param = cast<TemplateTypeParmDecl>(TPL->getParam(0));
9043 TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args);
9044 MultiLevelTemplateArgumentList MLTAL(Param, TAL.asArray(),
9045 /*Final=*/false);
9046 MLTAL.addOuterRetainedLevels(TPL->getDepth());
9047 const TypeConstraint *TC = Param->getTypeConstraint();
9048 assert(TC && "Type Constraint cannot be null here");
9049 auto *IDC = TC->getImmediatelyDeclaredConstraint();
9050 assert(IDC && "ImmediatelyDeclaredConstraint can't be null here.");
9051 ExprResult Constraint = SubstExpr(IDC, MLTAL);
9052 if (Constraint.isInvalid()) {
9053 return new (Context) concepts::ExprRequirement(
9054 concepts::createSubstDiagAt(*this, IDC->getExprLoc(),
9055 [&](llvm::raw_ostream &OS) {
9056 IDC->printPretty(OS, /*Helper=*/nullptr,
9057 getPrintingPolicy());
9059 IsSimple, NoexceptLoc, ReturnTypeRequirement);
9061 SubstitutedConstraintExpr =
9062 cast<ConceptSpecializationExpr>(Constraint.get());
9063 if (!SubstitutedConstraintExpr->isSatisfied())
9064 Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied;
9066 return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc,
9067 ReturnTypeRequirement, Status,
9068 SubstitutedConstraintExpr);
9071 concepts::ExprRequirement *
9072 Sema::BuildExprRequirement(
9073 concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic,
9074 bool IsSimple, SourceLocation NoexceptLoc,
9075 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
9076 return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic,
9077 IsSimple, NoexceptLoc,
9078 ReturnTypeRequirement);
9081 concepts::TypeRequirement *
9082 Sema::BuildTypeRequirement(TypeSourceInfo *Type) {
9083 return new (Context) concepts::TypeRequirement(Type);
9086 concepts::TypeRequirement *
9087 Sema::BuildTypeRequirement(
9088 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
9089 return new (Context) concepts::TypeRequirement(SubstDiag);
9092 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) {
9093 return BuildNestedRequirement(Constraint);
9096 concepts::NestedRequirement *
9097 Sema::BuildNestedRequirement(Expr *Constraint) {
9098 ConstraintSatisfaction Satisfaction;
9099 if (!Constraint->isInstantiationDependent() &&
9100 CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{},
9101 Constraint->getSourceRange(), Satisfaction))
9102 return nullptr;
9103 return new (Context) concepts::NestedRequirement(Context, Constraint,
9104 Satisfaction);
9107 concepts::NestedRequirement *
9108 Sema::BuildNestedRequirement(StringRef InvalidConstraintEntity,
9109 const ASTConstraintSatisfaction &Satisfaction) {
9110 return new (Context) concepts::NestedRequirement(
9111 InvalidConstraintEntity,
9112 ASTConstraintSatisfaction::Rebuild(Context, Satisfaction));
9115 RequiresExprBodyDecl *
9116 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
9117 ArrayRef<ParmVarDecl *> LocalParameters,
9118 Scope *BodyScope) {
9119 assert(BodyScope);
9121 RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext,
9122 RequiresKWLoc);
9124 PushDeclContext(BodyScope, Body);
9126 for (ParmVarDecl *Param : LocalParameters) {
9127 if (Param->hasDefaultArg())
9128 // C++2a [expr.prim.req] p4
9129 // [...] A local parameter of a requires-expression shall not have a
9130 // default argument. [...]
9131 Diag(Param->getDefaultArgRange().getBegin(),
9132 diag::err_requires_expr_local_parameter_default_argument);
9133 // Ignore default argument and move on
9135 Param->setDeclContext(Body);
9136 // If this has an identifier, add it to the scope stack.
9137 if (Param->getIdentifier()) {
9138 CheckShadow(BodyScope, Param);
9139 PushOnScopeChains(Param, BodyScope);
9142 return Body;
9145 void Sema::ActOnFinishRequiresExpr() {
9146 assert(CurContext && "DeclContext imbalance!");
9147 CurContext = CurContext->getLexicalParent();
9148 assert(CurContext && "Popped translation unit!");
9151 ExprResult Sema::ActOnRequiresExpr(
9152 SourceLocation RequiresKWLoc, RequiresExprBodyDecl *Body,
9153 SourceLocation LParenLoc, ArrayRef<ParmVarDecl *> LocalParameters,
9154 SourceLocation RParenLoc, ArrayRef<concepts::Requirement *> Requirements,
9155 SourceLocation ClosingBraceLoc) {
9156 auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LParenLoc,
9157 LocalParameters, RParenLoc, Requirements,
9158 ClosingBraceLoc);
9159 if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE))
9160 return ExprError();
9161 return RE;