[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / clang / lib / Sema / SemaTemplate.cpp
blob59721c8dc664aa9e32583c057f88c24760c2806d
1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //===----------------------------------------------------------------------===//
7 //
8 // This file implements semantic analysis for C++ templates.
9 //===----------------------------------------------------------------------===//
11 #include "TreeTransform.h"
12 #include "clang/AST/ASTConsumer.h"
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/DeclFriend.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/RecursiveASTVisitor.h"
20 #include "clang/AST/TemplateName.h"
21 #include "clang/AST/TypeVisitor.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/DiagnosticSema.h"
24 #include "clang/Basic/LangOptions.h"
25 #include "clang/Basic/PartialDiagnostic.h"
26 #include "clang/Basic/SourceLocation.h"
27 #include "clang/Basic/Stack.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/EnterExpressionEvaluationContext.h"
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/Overload.h"
34 #include "clang/Sema/ParsedTemplate.h"
35 #include "clang/Sema/Scope.h"
36 #include "clang/Sema/SemaInternal.h"
37 #include "clang/Sema/Template.h"
38 #include "clang/Sema/TemplateDeduction.h"
39 #include "llvm/ADT/SmallBitVector.h"
40 #include "llvm/ADT/SmallString.h"
41 #include "llvm/ADT/StringExtras.h"
43 #include <iterator>
44 #include <optional>
45 using namespace clang;
46 using namespace sema;
48 // Exported for use by Parser.
49 SourceRange
50 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
51 unsigned N) {
52 if (!N) return SourceRange();
53 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
56 unsigned Sema::getTemplateDepth(Scope *S) const {
57 unsigned Depth = 0;
59 // Each template parameter scope represents one level of template parameter
60 // depth.
61 for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope;
62 TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) {
63 ++Depth;
66 // Note that there are template parameters with the given depth.
67 auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); };
69 // Look for parameters of an enclosing generic lambda. We don't create a
70 // template parameter scope for these.
71 for (FunctionScopeInfo *FSI : getFunctionScopes()) {
72 if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) {
73 if (!LSI->TemplateParams.empty()) {
74 ParamsAtDepth(LSI->AutoTemplateParameterDepth);
75 break;
77 if (LSI->GLTemplateParameterList) {
78 ParamsAtDepth(LSI->GLTemplateParameterList->getDepth());
79 break;
84 // Look for parameters of an enclosing terse function template. We don't
85 // create a template parameter scope for these either.
86 for (const InventedTemplateParameterInfo &Info :
87 getInventedParameterInfos()) {
88 if (!Info.TemplateParams.empty()) {
89 ParamsAtDepth(Info.AutoTemplateParameterDepth);
90 break;
94 return Depth;
97 /// \brief Determine whether the declaration found is acceptable as the name
98 /// of a template and, if so, return that template declaration. Otherwise,
99 /// returns null.
101 /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent
102 /// is true. In all other cases it will return a TemplateDecl (or null).
103 NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D,
104 bool AllowFunctionTemplates,
105 bool AllowDependent) {
106 D = D->getUnderlyingDecl();
108 if (isa<TemplateDecl>(D)) {
109 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
110 return nullptr;
112 return D;
115 if (const auto *Record = dyn_cast<CXXRecordDecl>(D)) {
116 // C++ [temp.local]p1:
117 // Like normal (non-template) classes, class templates have an
118 // injected-class-name (Clause 9). The injected-class-name
119 // can be used with or without a template-argument-list. When
120 // it is used without a template-argument-list, it is
121 // equivalent to the injected-class-name followed by the
122 // template-parameters of the class template enclosed in
123 // <>. When it is used with a template-argument-list, it
124 // refers to the specified class template specialization,
125 // which could be the current specialization or another
126 // specialization.
127 if (Record->isInjectedClassName()) {
128 Record = cast<CXXRecordDecl>(Record->getDeclContext());
129 if (Record->getDescribedClassTemplate())
130 return Record->getDescribedClassTemplate();
132 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Record))
133 return Spec->getSpecializedTemplate();
136 return nullptr;
139 // 'using Dependent::foo;' can resolve to a template name.
140 // 'using typename Dependent::foo;' cannot (not even if 'foo' is an
141 // injected-class-name).
142 if (AllowDependent && isa<UnresolvedUsingValueDecl>(D))
143 return D;
145 return nullptr;
148 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
149 bool AllowFunctionTemplates,
150 bool AllowDependent) {
151 LookupResult::Filter filter = R.makeFilter();
152 while (filter.hasNext()) {
153 NamedDecl *Orig = filter.next();
154 if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent))
155 filter.erase();
157 filter.done();
160 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
161 bool AllowFunctionTemplates,
162 bool AllowDependent,
163 bool AllowNonTemplateFunctions) {
164 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
165 if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent))
166 return true;
167 if (AllowNonTemplateFunctions &&
168 isa<FunctionDecl>((*I)->getUnderlyingDecl()))
169 return true;
172 return false;
175 TemplateNameKind Sema::isTemplateName(Scope *S,
176 CXXScopeSpec &SS,
177 bool hasTemplateKeyword,
178 const UnqualifiedId &Name,
179 ParsedType ObjectTypePtr,
180 bool EnteringContext,
181 TemplateTy &TemplateResult,
182 bool &MemberOfUnknownSpecialization,
183 bool Disambiguation) {
184 assert(getLangOpts().CPlusPlus && "No template names in C!");
186 DeclarationName TName;
187 MemberOfUnknownSpecialization = false;
189 switch (Name.getKind()) {
190 case UnqualifiedIdKind::IK_Identifier:
191 TName = DeclarationName(Name.Identifier);
192 break;
194 case UnqualifiedIdKind::IK_OperatorFunctionId:
195 TName = Context.DeclarationNames.getCXXOperatorName(
196 Name.OperatorFunctionId.Operator);
197 break;
199 case UnqualifiedIdKind::IK_LiteralOperatorId:
200 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
201 break;
203 default:
204 return TNK_Non_template;
207 QualType ObjectType = ObjectTypePtr.get();
209 AssumedTemplateKind AssumedTemplate;
210 LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName);
211 if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
212 MemberOfUnknownSpecialization, SourceLocation(),
213 &AssumedTemplate,
214 /*AllowTypoCorrection=*/!Disambiguation))
215 return TNK_Non_template;
217 if (AssumedTemplate != AssumedTemplateKind::None) {
218 TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName));
219 // Let the parser know whether we found nothing or found functions; if we
220 // found nothing, we want to more carefully check whether this is actually
221 // a function template name versus some other kind of undeclared identifier.
222 return AssumedTemplate == AssumedTemplateKind::FoundNothing
223 ? TNK_Undeclared_template
224 : TNK_Function_template;
227 if (R.empty())
228 return TNK_Non_template;
230 NamedDecl *D = nullptr;
231 UsingShadowDecl *FoundUsingShadow = dyn_cast<UsingShadowDecl>(*R.begin());
232 if (R.isAmbiguous()) {
233 // If we got an ambiguity involving a non-function template, treat this
234 // as a template name, and pick an arbitrary template for error recovery.
235 bool AnyFunctionTemplates = false;
236 for (NamedDecl *FoundD : R) {
237 if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) {
238 if (isa<FunctionTemplateDecl>(FoundTemplate))
239 AnyFunctionTemplates = true;
240 else {
241 D = FoundTemplate;
242 FoundUsingShadow = dyn_cast<UsingShadowDecl>(FoundD);
243 break;
248 // If we didn't find any templates at all, this isn't a template name.
249 // Leave the ambiguity for a later lookup to diagnose.
250 if (!D && !AnyFunctionTemplates) {
251 R.suppressDiagnostics();
252 return TNK_Non_template;
255 // If the only templates were function templates, filter out the rest.
256 // We'll diagnose the ambiguity later.
257 if (!D)
258 FilterAcceptableTemplateNames(R);
261 // At this point, we have either picked a single template name declaration D
262 // or we have a non-empty set of results R containing either one template name
263 // declaration or a set of function templates.
265 TemplateName Template;
266 TemplateNameKind TemplateKind;
268 unsigned ResultCount = R.end() - R.begin();
269 if (!D && ResultCount > 1) {
270 // We assume that we'll preserve the qualifier from a function
271 // template name in other ways.
272 Template = Context.getOverloadedTemplateName(R.begin(), R.end());
273 TemplateKind = TNK_Function_template;
275 // We'll do this lookup again later.
276 R.suppressDiagnostics();
277 } else {
278 if (!D) {
279 D = getAsTemplateNameDecl(*R.begin());
280 assert(D && "unambiguous result is not a template name");
283 if (isa<UnresolvedUsingValueDecl>(D)) {
284 // We don't yet know whether this is a template-name or not.
285 MemberOfUnknownSpecialization = true;
286 return TNK_Non_template;
289 TemplateDecl *TD = cast<TemplateDecl>(D);
290 Template =
291 FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD);
292 assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD);
293 if (SS.isSet() && !SS.isInvalid()) {
294 NestedNameSpecifier *Qualifier = SS.getScopeRep();
295 Template = Context.getQualifiedTemplateName(Qualifier, hasTemplateKeyword,
296 Template);
299 if (isa<FunctionTemplateDecl>(TD)) {
300 TemplateKind = TNK_Function_template;
302 // We'll do this lookup again later.
303 R.suppressDiagnostics();
304 } else {
305 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
306 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||
307 isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD));
308 TemplateKind =
309 isa<VarTemplateDecl>(TD) ? TNK_Var_template :
310 isa<ConceptDecl>(TD) ? TNK_Concept_template :
311 TNK_Type_template;
315 TemplateResult = TemplateTy::make(Template);
316 return TemplateKind;
319 bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
320 SourceLocation NameLoc, CXXScopeSpec &SS,
321 ParsedTemplateTy *Template /*=nullptr*/) {
322 bool MemberOfUnknownSpecialization = false;
324 // We could use redeclaration lookup here, but we don't need to: the
325 // syntactic form of a deduction guide is enough to identify it even
326 // if we can't look up the template name at all.
327 LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
328 if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(),
329 /*EnteringContext*/ false,
330 MemberOfUnknownSpecialization))
331 return false;
333 if (R.empty()) return false;
334 if (R.isAmbiguous()) {
335 // FIXME: Diagnose an ambiguity if we find at least one template.
336 R.suppressDiagnostics();
337 return false;
340 // We only treat template-names that name type templates as valid deduction
341 // guide names.
342 TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
343 if (!TD || !getAsTypeTemplateDecl(TD))
344 return false;
346 if (Template)
347 *Template = TemplateTy::make(TemplateName(TD));
348 return true;
351 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
352 SourceLocation IILoc,
353 Scope *S,
354 const CXXScopeSpec *SS,
355 TemplateTy &SuggestedTemplate,
356 TemplateNameKind &SuggestedKind) {
357 // We can't recover unless there's a dependent scope specifier preceding the
358 // template name.
359 // FIXME: Typo correction?
360 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
361 computeDeclContext(*SS))
362 return false;
364 // The code is missing a 'template' keyword prior to the dependent template
365 // name.
366 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
367 Diag(IILoc, diag::err_template_kw_missing)
368 << Qualifier << II.getName()
369 << FixItHint::CreateInsertion(IILoc, "template ");
370 SuggestedTemplate
371 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
372 SuggestedKind = TNK_Dependent_template_name;
373 return true;
376 bool Sema::LookupTemplateName(LookupResult &Found,
377 Scope *S, CXXScopeSpec &SS,
378 QualType ObjectType,
379 bool EnteringContext,
380 bool &MemberOfUnknownSpecialization,
381 RequiredTemplateKind RequiredTemplate,
382 AssumedTemplateKind *ATK,
383 bool AllowTypoCorrection) {
384 if (ATK)
385 *ATK = AssumedTemplateKind::None;
387 if (SS.isInvalid())
388 return true;
390 Found.setTemplateNameLookup(true);
392 // Determine where to perform name lookup
393 MemberOfUnknownSpecialization = false;
394 DeclContext *LookupCtx = nullptr;
395 bool IsDependent = false;
396 if (!ObjectType.isNull()) {
397 // This nested-name-specifier occurs in a member access expression, e.g.,
398 // x->B::f, and we are looking into the type of the object.
399 assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist");
400 LookupCtx = computeDeclContext(ObjectType);
401 IsDependent = !LookupCtx && ObjectType->isDependentType();
402 assert((IsDependent || !ObjectType->isIncompleteType() ||
403 !ObjectType->getAs<TagType>() ||
404 ObjectType->castAs<TagType>()->isBeingDefined()) &&
405 "Caller should have completed object type");
407 // Template names cannot appear inside an Objective-C class or object type
408 // or a vector type.
410 // FIXME: This is wrong. For example:
412 // template<typename T> using Vec = T __attribute__((ext_vector_type(4)));
413 // Vec<int> vi;
414 // vi.Vec<int>::~Vec<int>();
416 // ... should be accepted but we will not treat 'Vec' as a template name
417 // here. The right thing to do would be to check if the name is a valid
418 // vector component name, and look up a template name if not. And similarly
419 // for lookups into Objective-C class and object types, where the same
420 // problem can arise.
421 if (ObjectType->isObjCObjectOrInterfaceType() ||
422 ObjectType->isVectorType()) {
423 Found.clear();
424 return false;
426 } else if (SS.isNotEmpty()) {
427 // This nested-name-specifier occurs after another nested-name-specifier,
428 // so long into the context associated with the prior nested-name-specifier.
429 LookupCtx = computeDeclContext(SS, EnteringContext);
430 IsDependent = !LookupCtx && isDependentScopeSpecifier(SS);
432 // The declaration context must be complete.
433 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
434 return true;
437 bool ObjectTypeSearchedInScope = false;
438 bool AllowFunctionTemplatesInLookup = true;
439 if (LookupCtx) {
440 // Perform "qualified" name lookup into the declaration context we
441 // computed, which is either the type of the base of a member access
442 // expression or the declaration context associated with a prior
443 // nested-name-specifier.
444 LookupQualifiedName(Found, LookupCtx);
446 // FIXME: The C++ standard does not clearly specify what happens in the
447 // case where the object type is dependent, and implementations vary. In
448 // Clang, we treat a name after a . or -> as a template-name if lookup
449 // finds a non-dependent member or member of the current instantiation that
450 // is a type template, or finds no such members and lookup in the context
451 // of the postfix-expression finds a type template. In the latter case, the
452 // name is nonetheless dependent, and we may resolve it to a member of an
453 // unknown specialization when we come to instantiate the template.
454 IsDependent |= Found.wasNotFoundInCurrentInstantiation();
457 if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) {
458 // C++ [basic.lookup.classref]p1:
459 // In a class member access expression (5.2.5), if the . or -> token is
460 // immediately followed by an identifier followed by a <, the
461 // identifier must be looked up to determine whether the < is the
462 // beginning of a template argument list (14.2) or a less-than operator.
463 // The identifier is first looked up in the class of the object
464 // expression. If the identifier is not found, it is then looked up in
465 // the context of the entire postfix-expression and shall name a class
466 // template.
467 if (S)
468 LookupName(Found, S);
470 if (!ObjectType.isNull()) {
471 // FIXME: We should filter out all non-type templates here, particularly
472 // variable templates and concepts. But the exclusion of alias templates
473 // and template template parameters is a wording defect.
474 AllowFunctionTemplatesInLookup = false;
475 ObjectTypeSearchedInScope = true;
478 IsDependent |= Found.wasNotFoundInCurrentInstantiation();
481 if (Found.isAmbiguous())
482 return false;
484 if (ATK && SS.isEmpty() && ObjectType.isNull() &&
485 !RequiredTemplate.hasTemplateKeyword()) {
486 // C++2a [temp.names]p2:
487 // A name is also considered to refer to a template if it is an
488 // unqualified-id followed by a < and name lookup finds either one or more
489 // functions or finds nothing.
491 // To keep our behavior consistent, we apply the "finds nothing" part in
492 // all language modes, and diagnose the empty lookup in ActOnCallExpr if we
493 // successfully form a call to an undeclared template-id.
494 bool AllFunctions =
495 getLangOpts().CPlusPlus20 && llvm::all_of(Found, [](NamedDecl *ND) {
496 return isa<FunctionDecl>(ND->getUnderlyingDecl());
498 if (AllFunctions || (Found.empty() && !IsDependent)) {
499 // If lookup found any functions, or if this is a name that can only be
500 // used for a function, then strongly assume this is a function
501 // template-id.
502 *ATK = (Found.empty() && Found.getLookupName().isIdentifier())
503 ? AssumedTemplateKind::FoundNothing
504 : AssumedTemplateKind::FoundFunctions;
505 Found.clear();
506 return false;
510 if (Found.empty() && !IsDependent && AllowTypoCorrection) {
511 // If we did not find any names, and this is not a disambiguation, attempt
512 // to correct any typos.
513 DeclarationName Name = Found.getLookupName();
514 Found.clear();
515 // Simple filter callback that, for keywords, only accepts the C++ *_cast
516 DefaultFilterCCC FilterCCC{};
517 FilterCCC.WantTypeSpecifiers = false;
518 FilterCCC.WantExpressionKeywords = false;
519 FilterCCC.WantRemainingKeywords = false;
520 FilterCCC.WantCXXNamedCasts = true;
521 if (TypoCorrection Corrected =
522 CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S,
523 &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) {
524 if (auto *ND = Corrected.getFoundDecl())
525 Found.addDecl(ND);
526 FilterAcceptableTemplateNames(Found);
527 if (Found.isAmbiguous()) {
528 Found.clear();
529 } else if (!Found.empty()) {
530 Found.setLookupName(Corrected.getCorrection());
531 if (LookupCtx) {
532 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
533 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
534 Name.getAsString() == CorrectedStr;
535 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
536 << Name << LookupCtx << DroppedSpecifier
537 << SS.getRange());
538 } else {
539 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
545 NamedDecl *ExampleLookupResult =
546 Found.empty() ? nullptr : Found.getRepresentativeDecl();
547 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
548 if (Found.empty()) {
549 if (IsDependent) {
550 MemberOfUnknownSpecialization = true;
551 return false;
554 // If a 'template' keyword was used, a lookup that finds only non-template
555 // names is an error.
556 if (ExampleLookupResult && RequiredTemplate) {
557 Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template)
558 << Found.getLookupName() << SS.getRange()
559 << RequiredTemplate.hasTemplateKeyword()
560 << RequiredTemplate.getTemplateKeywordLoc();
561 Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(),
562 diag::note_template_kw_refers_to_non_template)
563 << Found.getLookupName();
564 return true;
567 return false;
570 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
571 !getLangOpts().CPlusPlus11) {
572 // C++03 [basic.lookup.classref]p1:
573 // [...] If the lookup in the class of the object expression finds a
574 // template, the name is also looked up in the context of the entire
575 // postfix-expression and [...]
577 // Note: C++11 does not perform this second lookup.
578 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
579 LookupOrdinaryName);
580 FoundOuter.setTemplateNameLookup(true);
581 LookupName(FoundOuter, S);
582 // FIXME: We silently accept an ambiguous lookup here, in violation of
583 // [basic.lookup]/1.
584 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
586 NamedDecl *OuterTemplate;
587 if (FoundOuter.empty()) {
588 // - if the name is not found, the name found in the class of the
589 // object expression is used, otherwise
590 } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() ||
591 !(OuterTemplate =
592 getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) {
593 // - if the name is found in the context of the entire
594 // postfix-expression and does not name a class template, the name
595 // found in the class of the object expression is used, otherwise
596 FoundOuter.clear();
597 } else if (!Found.isSuppressingAmbiguousDiagnostics()) {
598 // - if the name found is a class template, it must refer to the same
599 // entity as the one found in the class of the object expression,
600 // otherwise the program is ill-formed.
601 if (!Found.isSingleResult() ||
602 getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() !=
603 OuterTemplate->getCanonicalDecl()) {
604 Diag(Found.getNameLoc(),
605 diag::ext_nested_name_member_ref_lookup_ambiguous)
606 << Found.getLookupName()
607 << ObjectType;
608 Diag(Found.getRepresentativeDecl()->getLocation(),
609 diag::note_ambig_member_ref_object_type)
610 << ObjectType;
611 Diag(FoundOuter.getFoundDecl()->getLocation(),
612 diag::note_ambig_member_ref_scope);
614 // Recover by taking the template that we found in the object
615 // expression's type.
620 return false;
623 void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
624 SourceLocation Less,
625 SourceLocation Greater) {
626 if (TemplateName.isInvalid())
627 return;
629 DeclarationNameInfo NameInfo;
630 CXXScopeSpec SS;
631 LookupNameKind LookupKind;
633 DeclContext *LookupCtx = nullptr;
634 NamedDecl *Found = nullptr;
635 bool MissingTemplateKeyword = false;
637 // Figure out what name we looked up.
638 if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) {
639 NameInfo = DRE->getNameInfo();
640 SS.Adopt(DRE->getQualifierLoc());
641 LookupKind = LookupOrdinaryName;
642 Found = DRE->getFoundDecl();
643 } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) {
644 NameInfo = ME->getMemberNameInfo();
645 SS.Adopt(ME->getQualifierLoc());
646 LookupKind = LookupMemberName;
647 LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl();
648 Found = ME->getMemberDecl();
649 } else if (auto *DSDRE =
650 dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) {
651 NameInfo = DSDRE->getNameInfo();
652 SS.Adopt(DSDRE->getQualifierLoc());
653 MissingTemplateKeyword = true;
654 } else if (auto *DSME =
655 dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) {
656 NameInfo = DSME->getMemberNameInfo();
657 SS.Adopt(DSME->getQualifierLoc());
658 MissingTemplateKeyword = true;
659 } else {
660 llvm_unreachable("unexpected kind of potential template name");
663 // If this is a dependent-scope lookup, diagnose that the 'template' keyword
664 // was missing.
665 if (MissingTemplateKeyword) {
666 Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing)
667 << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater);
668 return;
671 // Try to correct the name by looking for templates and C++ named casts.
672 struct TemplateCandidateFilter : CorrectionCandidateCallback {
673 Sema &S;
674 TemplateCandidateFilter(Sema &S) : S(S) {
675 WantTypeSpecifiers = false;
676 WantExpressionKeywords = false;
677 WantRemainingKeywords = false;
678 WantCXXNamedCasts = true;
680 bool ValidateCandidate(const TypoCorrection &Candidate) override {
681 if (auto *ND = Candidate.getCorrectionDecl())
682 return S.getAsTemplateNameDecl(ND);
683 return Candidate.isKeyword();
686 std::unique_ptr<CorrectionCandidateCallback> clone() override {
687 return std::make_unique<TemplateCandidateFilter>(*this);
691 DeclarationName Name = NameInfo.getName();
692 TemplateCandidateFilter CCC(*this);
693 if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC,
694 CTK_ErrorRecovery, LookupCtx)) {
695 auto *ND = Corrected.getFoundDecl();
696 if (ND)
697 ND = getAsTemplateNameDecl(ND);
698 if (ND || Corrected.isKeyword()) {
699 if (LookupCtx) {
700 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
701 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
702 Name.getAsString() == CorrectedStr;
703 diagnoseTypo(Corrected,
704 PDiag(diag::err_non_template_in_member_template_id_suggest)
705 << Name << LookupCtx << DroppedSpecifier
706 << SS.getRange(), false);
707 } else {
708 diagnoseTypo(Corrected,
709 PDiag(diag::err_non_template_in_template_id_suggest)
710 << Name, false);
712 if (Found)
713 Diag(Found->getLocation(),
714 diag::note_non_template_in_template_id_found);
715 return;
719 Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id)
720 << Name << SourceRange(Less, Greater);
721 if (Found)
722 Diag(Found->getLocation(), diag::note_non_template_in_template_id_found);
725 /// ActOnDependentIdExpression - Handle a dependent id-expression that
726 /// was just parsed. This is only possible with an explicit scope
727 /// specifier naming a dependent type.
728 ExprResult
729 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
730 SourceLocation TemplateKWLoc,
731 const DeclarationNameInfo &NameInfo,
732 bool isAddressOfOperand,
733 const TemplateArgumentListInfo *TemplateArgs) {
734 DeclContext *DC = getFunctionLevelDeclContext();
736 // C++11 [expr.prim.general]p12:
737 // An id-expression that denotes a non-static data member or non-static
738 // member function of a class can only be used:
739 // (...)
740 // - if that id-expression denotes a non-static data member and it
741 // appears in an unevaluated operand.
743 // If this might be the case, form a DependentScopeDeclRefExpr instead of a
744 // CXXDependentScopeMemberExpr. The former can instantiate to either
745 // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
746 // always a MemberExpr.
747 bool MightBeCxx11UnevalField =
748 getLangOpts().CPlusPlus11 && isUnevaluatedContext();
750 // Check if the nested name specifier is an enum type.
751 bool IsEnum = false;
752 if (NestedNameSpecifier *NNS = SS.getScopeRep())
753 IsEnum = isa_and_nonnull<EnumType>(NNS->getAsType());
755 if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum &&
756 isa<CXXMethodDecl>(DC) &&
757 cast<CXXMethodDecl>(DC)->isImplicitObjectMemberFunction()) {
758 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType().getNonReferenceType();
760 // Since the 'this' expression is synthesized, we don't need to
761 // perform the double-lookup check.
762 NamedDecl *FirstQualifierInScope = nullptr;
764 return CXXDependentScopeMemberExpr::Create(
765 Context, /*This=*/nullptr, ThisType,
766 /*IsArrow=*/!Context.getLangOpts().HLSL,
767 /*Op=*/SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
768 FirstQualifierInScope, NameInfo, TemplateArgs);
771 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
774 ExprResult
775 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
776 SourceLocation TemplateKWLoc,
777 const DeclarationNameInfo &NameInfo,
778 const TemplateArgumentListInfo *TemplateArgs) {
779 // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc
780 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
781 if (!QualifierLoc)
782 return ExprError();
784 return DependentScopeDeclRefExpr::Create(
785 Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs);
789 /// Determine whether we would be unable to instantiate this template (because
790 /// it either has no definition, or is in the process of being instantiated).
791 bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
792 NamedDecl *Instantiation,
793 bool InstantiatedFromMember,
794 const NamedDecl *Pattern,
795 const NamedDecl *PatternDef,
796 TemplateSpecializationKind TSK,
797 bool Complain /*= true*/) {
798 assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||
799 isa<VarDecl>(Instantiation));
801 bool IsEntityBeingDefined = false;
802 if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
803 IsEntityBeingDefined = TD->isBeingDefined();
805 if (PatternDef && !IsEntityBeingDefined) {
806 NamedDecl *SuggestedDef = nullptr;
807 if (!hasReachableDefinition(const_cast<NamedDecl *>(PatternDef),
808 &SuggestedDef,
809 /*OnlyNeedComplete*/ false)) {
810 // If we're allowed to diagnose this and recover, do so.
811 bool Recover = Complain && !isSFINAEContext();
812 if (Complain)
813 diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
814 Sema::MissingImportKind::Definition, Recover);
815 return !Recover;
817 return false;
820 if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
821 return true;
823 std::optional<unsigned> Note;
824 QualType InstantiationTy;
825 if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
826 InstantiationTy = Context.getTypeDeclType(TD);
827 if (PatternDef) {
828 Diag(PointOfInstantiation,
829 diag::err_template_instantiate_within_definition)
830 << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
831 << InstantiationTy;
832 // Not much point in noting the template declaration here, since
833 // we're lexically inside it.
834 Instantiation->setInvalidDecl();
835 } else if (InstantiatedFromMember) {
836 if (isa<FunctionDecl>(Instantiation)) {
837 Diag(PointOfInstantiation,
838 diag::err_explicit_instantiation_undefined_member)
839 << /*member function*/ 1 << Instantiation->getDeclName()
840 << Instantiation->getDeclContext();
841 Note = diag::note_explicit_instantiation_here;
842 } else {
843 assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!");
844 Diag(PointOfInstantiation,
845 diag::err_implicit_instantiate_member_undefined)
846 << InstantiationTy;
847 Note = diag::note_member_declared_at;
849 } else {
850 if (isa<FunctionDecl>(Instantiation)) {
851 Diag(PointOfInstantiation,
852 diag::err_explicit_instantiation_undefined_func_template)
853 << Pattern;
854 Note = diag::note_explicit_instantiation_here;
855 } else if (isa<TagDecl>(Instantiation)) {
856 Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
857 << (TSK != TSK_ImplicitInstantiation)
858 << InstantiationTy;
859 Note = diag::note_template_decl_here;
860 } else {
861 assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!");
862 if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
863 Diag(PointOfInstantiation,
864 diag::err_explicit_instantiation_undefined_var_template)
865 << Instantiation;
866 Instantiation->setInvalidDecl();
867 } else
868 Diag(PointOfInstantiation,
869 diag::err_explicit_instantiation_undefined_member)
870 << /*static data member*/ 2 << Instantiation->getDeclName()
871 << Instantiation->getDeclContext();
872 Note = diag::note_explicit_instantiation_here;
875 if (Note) // Diagnostics were emitted.
876 Diag(Pattern->getLocation(), *Note);
878 // In general, Instantiation isn't marked invalid to get more than one
879 // error for multiple undefined instantiations. But the code that does
880 // explicit declaration -> explicit definition conversion can't handle
881 // invalid declarations, so mark as invalid in that case.
882 if (TSK == TSK_ExplicitInstantiationDeclaration)
883 Instantiation->setInvalidDecl();
884 return true;
887 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
888 /// that the template parameter 'PrevDecl' is being shadowed by a new
889 /// declaration at location Loc. Returns true to indicate that this is
890 /// an error, and false otherwise.
891 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
892 assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
894 // C++ [temp.local]p4:
895 // A template-parameter shall not be redeclared within its
896 // scope (including nested scopes).
898 // Make this a warning when MSVC compatibility is requested.
899 unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow
900 : diag::err_template_param_shadow;
901 Diag(Loc, DiagId) << cast<NamedDecl>(PrevDecl)->getDeclName();
902 Diag(PrevDecl->getLocation(), diag::note_template_param_here);
905 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
906 /// the parameter D to reference the templated declaration and return a pointer
907 /// to the template declaration. Otherwise, do nothing to D and return null.
908 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
909 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
910 D = Temp->getTemplatedDecl();
911 return Temp;
913 return nullptr;
916 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
917 SourceLocation EllipsisLoc) const {
918 assert(Kind == Template &&
919 "Only template template arguments can be pack expansions here");
920 assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
921 "Template template argument pack expansion without packs");
922 ParsedTemplateArgument Result(*this);
923 Result.EllipsisLoc = EllipsisLoc;
924 return Result;
927 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
928 const ParsedTemplateArgument &Arg) {
930 switch (Arg.getKind()) {
931 case ParsedTemplateArgument::Type: {
932 TypeSourceInfo *DI;
933 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
934 if (!DI)
935 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
936 return TemplateArgumentLoc(TemplateArgument(T), DI);
939 case ParsedTemplateArgument::NonType: {
940 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
941 return TemplateArgumentLoc(TemplateArgument(E), E);
944 case ParsedTemplateArgument::Template: {
945 TemplateName Template = Arg.getAsTemplate().get();
946 TemplateArgument TArg;
947 if (Arg.getEllipsisLoc().isValid())
948 TArg = TemplateArgument(Template, std::optional<unsigned int>());
949 else
950 TArg = Template;
951 return TemplateArgumentLoc(
952 SemaRef.Context, TArg,
953 Arg.getScopeSpec().getWithLocInContext(SemaRef.Context),
954 Arg.getLocation(), Arg.getEllipsisLoc());
958 llvm_unreachable("Unhandled parsed template argument");
961 /// Translates template arguments as provided by the parser
962 /// into template arguments used by semantic analysis.
963 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
964 TemplateArgumentListInfo &TemplateArgs) {
965 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
966 TemplateArgs.addArgument(translateTemplateArgument(*this,
967 TemplateArgsIn[I]));
970 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
971 SourceLocation Loc,
972 IdentifierInfo *Name) {
973 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
974 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
975 if (PrevDecl && PrevDecl->isTemplateParameter())
976 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
979 /// Convert a parsed type into a parsed template argument. This is mostly
980 /// trivial, except that we may have parsed a C++17 deduced class template
981 /// specialization type, in which case we should form a template template
982 /// argument instead of a type template argument.
983 ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) {
984 TypeSourceInfo *TInfo;
985 QualType T = GetTypeFromParser(ParsedType.get(), &TInfo);
986 if (T.isNull())
987 return ParsedTemplateArgument();
988 assert(TInfo && "template argument with no location");
990 // If we might have formed a deduced template specialization type, convert
991 // it to a template template argument.
992 if (getLangOpts().CPlusPlus17) {
993 TypeLoc TL = TInfo->getTypeLoc();
994 SourceLocation EllipsisLoc;
995 if (auto PET = TL.getAs<PackExpansionTypeLoc>()) {
996 EllipsisLoc = PET.getEllipsisLoc();
997 TL = PET.getPatternLoc();
1000 CXXScopeSpec SS;
1001 if (auto ET = TL.getAs<ElaboratedTypeLoc>()) {
1002 SS.Adopt(ET.getQualifierLoc());
1003 TL = ET.getNamedTypeLoc();
1006 if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) {
1007 TemplateName Name = DTST.getTypePtr()->getTemplateName();
1008 if (SS.isSet())
1009 Name = Context.getQualifiedTemplateName(SS.getScopeRep(),
1010 /*HasTemplateKeyword=*/false,
1011 Name);
1012 ParsedTemplateArgument Result(SS, TemplateTy::make(Name),
1013 DTST.getTemplateNameLoc());
1014 if (EllipsisLoc.isValid())
1015 Result = Result.getTemplatePackExpansion(EllipsisLoc);
1016 return Result;
1020 // This is a normal type template argument. Note, if the type template
1021 // argument is an injected-class-name for a template, it has a dual nature
1022 // and can be used as either a type or a template. We handle that in
1023 // convertTypeTemplateArgumentToTemplate.
1024 return ParsedTemplateArgument(ParsedTemplateArgument::Type,
1025 ParsedType.get().getAsOpaquePtr(),
1026 TInfo->getTypeLoc().getBeginLoc());
1029 /// ActOnTypeParameter - Called when a C++ template type parameter
1030 /// (e.g., "typename T") has been parsed. Typename specifies whether
1031 /// the keyword "typename" was used to declare the type parameter
1032 /// (otherwise, "class" was used), and KeyLoc is the location of the
1033 /// "class" or "typename" keyword. ParamName is the name of the
1034 /// parameter (NULL indicates an unnamed template parameter) and
1035 /// ParamNameLoc is the location of the parameter name (if any).
1036 /// If the type parameter has a default argument, it will be added
1037 /// later via ActOnTypeParameterDefault.
1038 NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
1039 SourceLocation EllipsisLoc,
1040 SourceLocation KeyLoc,
1041 IdentifierInfo *ParamName,
1042 SourceLocation ParamNameLoc,
1043 unsigned Depth, unsigned Position,
1044 SourceLocation EqualLoc,
1045 ParsedType DefaultArg,
1046 bool HasTypeConstraint) {
1047 assert(S->isTemplateParamScope() &&
1048 "Template type parameter not in template parameter scope!");
1050 bool IsParameterPack = EllipsisLoc.isValid();
1051 TemplateTypeParmDecl *Param
1052 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1053 KeyLoc, ParamNameLoc, Depth, Position,
1054 ParamName, Typename, IsParameterPack,
1055 HasTypeConstraint);
1056 Param->setAccess(AS_public);
1058 if (Param->isParameterPack())
1059 if (auto *LSI = getEnclosingLambda())
1060 LSI->LocalPacks.push_back(Param);
1062 if (ParamName) {
1063 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
1065 // Add the template parameter into the current scope.
1066 S->AddDecl(Param);
1067 IdResolver.AddDecl(Param);
1070 // C++0x [temp.param]p9:
1071 // A default template-argument may be specified for any kind of
1072 // template-parameter that is not a template parameter pack.
1073 if (DefaultArg && IsParameterPack) {
1074 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1075 DefaultArg = nullptr;
1078 // Handle the default argument, if provided.
1079 if (DefaultArg) {
1080 TypeSourceInfo *DefaultTInfo;
1081 GetTypeFromParser(DefaultArg, &DefaultTInfo);
1083 assert(DefaultTInfo && "expected source information for type");
1085 // Check for unexpanded parameter packs.
1086 if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo,
1087 UPPC_DefaultArgument))
1088 return Param;
1090 // Check the template argument itself.
1091 if (CheckTemplateArgument(DefaultTInfo)) {
1092 Param->setInvalidDecl();
1093 return Param;
1096 Param->setDefaultArgument(DefaultTInfo);
1099 return Param;
1102 /// Convert the parser's template argument list representation into our form.
1103 static TemplateArgumentListInfo
1104 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
1105 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
1106 TemplateId.RAngleLoc);
1107 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
1108 TemplateId.NumArgs);
1109 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
1110 return TemplateArgs;
1113 bool Sema::CheckTypeConstraint(TemplateIdAnnotation *TypeConstr) {
1115 TemplateName TN = TypeConstr->Template.get();
1116 ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl());
1118 // C++2a [temp.param]p4:
1119 // [...] The concept designated by a type-constraint shall be a type
1120 // concept ([temp.concept]).
1121 if (!CD->isTypeConcept()) {
1122 Diag(TypeConstr->TemplateNameLoc,
1123 diag::err_type_constraint_non_type_concept);
1124 return true;
1127 bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid();
1129 if (!WereArgsSpecified &&
1130 CD->getTemplateParameters()->getMinRequiredArguments() > 1) {
1131 Diag(TypeConstr->TemplateNameLoc,
1132 diag::err_type_constraint_missing_arguments)
1133 << CD;
1134 return true;
1136 return false;
1139 bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS,
1140 TemplateIdAnnotation *TypeConstr,
1141 TemplateTypeParmDecl *ConstrainedParameter,
1142 SourceLocation EllipsisLoc) {
1143 return BuildTypeConstraint(SS, TypeConstr, ConstrainedParameter, EllipsisLoc,
1144 false);
1147 bool Sema::BuildTypeConstraint(const CXXScopeSpec &SS,
1148 TemplateIdAnnotation *TypeConstr,
1149 TemplateTypeParmDecl *ConstrainedParameter,
1150 SourceLocation EllipsisLoc,
1151 bool AllowUnexpandedPack) {
1153 if (CheckTypeConstraint(TypeConstr))
1154 return true;
1156 TemplateName TN = TypeConstr->Template.get();
1157 ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl());
1159 DeclarationNameInfo ConceptName(DeclarationName(TypeConstr->Name),
1160 TypeConstr->TemplateNameLoc);
1162 TemplateArgumentListInfo TemplateArgs;
1163 if (TypeConstr->LAngleLoc.isValid()) {
1164 TemplateArgs =
1165 makeTemplateArgumentListInfo(*this, *TypeConstr);
1167 if (EllipsisLoc.isInvalid() && !AllowUnexpandedPack) {
1168 for (TemplateArgumentLoc Arg : TemplateArgs.arguments()) {
1169 if (DiagnoseUnexpandedParameterPack(Arg, UPPC_TypeConstraint))
1170 return true;
1174 return AttachTypeConstraint(
1175 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(),
1176 ConceptName, CD,
1177 TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr,
1178 ConstrainedParameter, EllipsisLoc);
1181 template<typename ArgumentLocAppender>
1182 static ExprResult formImmediatelyDeclaredConstraint(
1183 Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo,
1184 ConceptDecl *NamedConcept, SourceLocation LAngleLoc,
1185 SourceLocation RAngleLoc, QualType ConstrainedType,
1186 SourceLocation ParamNameLoc, ArgumentLocAppender Appender,
1187 SourceLocation EllipsisLoc) {
1189 TemplateArgumentListInfo ConstraintArgs;
1190 ConstraintArgs.addArgument(
1191 S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType),
1192 /*NTTPType=*/QualType(), ParamNameLoc));
1194 ConstraintArgs.setRAngleLoc(RAngleLoc);
1195 ConstraintArgs.setLAngleLoc(LAngleLoc);
1196 Appender(ConstraintArgs);
1198 // C++2a [temp.param]p4:
1199 // [...] This constraint-expression E is called the immediately-declared
1200 // constraint of T. [...]
1201 CXXScopeSpec SS;
1202 SS.Adopt(NS);
1203 ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId(
1204 SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo,
1205 /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs);
1206 if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid())
1207 return ImmediatelyDeclaredConstraint;
1209 // C++2a [temp.param]p4:
1210 // [...] If T is not a pack, then E is E', otherwise E is (E' && ...).
1212 // We have the following case:
1214 // template<typename T> concept C1 = true;
1215 // template<C1... T> struct s1;
1217 // The constraint: (C1<T> && ...)
1219 // Note that the type of C1<T> is known to be 'bool', so we don't need to do
1220 // any unqualified lookups for 'operator&&' here.
1221 return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/nullptr,
1222 /*LParenLoc=*/SourceLocation(),
1223 ImmediatelyDeclaredConstraint.get(), BO_LAnd,
1224 EllipsisLoc, /*RHS=*/nullptr,
1225 /*RParenLoc=*/SourceLocation(),
1226 /*NumExpansions=*/std::nullopt);
1229 /// Attach a type-constraint to a template parameter.
1230 /// \returns true if an error occurred. This can happen if the
1231 /// immediately-declared constraint could not be formed (e.g. incorrect number
1232 /// of arguments for the named concept).
1233 bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS,
1234 DeclarationNameInfo NameInfo,
1235 ConceptDecl *NamedConcept,
1236 const TemplateArgumentListInfo *TemplateArgs,
1237 TemplateTypeParmDecl *ConstrainedParameter,
1238 SourceLocation EllipsisLoc) {
1239 // C++2a [temp.param]p4:
1240 // [...] If Q is of the form C<A1, ..., An>, then let E' be
1241 // C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...]
1242 const ASTTemplateArgumentListInfo *ArgsAsWritten =
1243 TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context,
1244 *TemplateArgs) : nullptr;
1246 QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0);
1248 ExprResult ImmediatelyDeclaredConstraint =
1249 formImmediatelyDeclaredConstraint(
1250 *this, NS, NameInfo, NamedConcept,
1251 TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(),
1252 TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(),
1253 ParamAsArgument, ConstrainedParameter->getLocation(),
1254 [&] (TemplateArgumentListInfo &ConstraintArgs) {
1255 if (TemplateArgs)
1256 for (const auto &ArgLoc : TemplateArgs->arguments())
1257 ConstraintArgs.addArgument(ArgLoc);
1258 }, EllipsisLoc);
1259 if (ImmediatelyDeclaredConstraint.isInvalid())
1260 return true;
1262 auto *CL = ConceptReference::Create(Context, /*NNS=*/NS,
1263 /*TemplateKWLoc=*/SourceLocation{},
1264 /*ConceptNameInfo=*/NameInfo,
1265 /*FoundDecl=*/NamedConcept,
1266 /*NamedConcept=*/NamedConcept,
1267 /*ArgsWritten=*/ArgsAsWritten);
1268 ConstrainedParameter->setTypeConstraint(CL,
1269 ImmediatelyDeclaredConstraint.get());
1270 return false;
1273 bool Sema::AttachTypeConstraint(AutoTypeLoc TL,
1274 NonTypeTemplateParmDecl *NewConstrainedParm,
1275 NonTypeTemplateParmDecl *OrigConstrainedParm,
1276 SourceLocation EllipsisLoc) {
1277 if (NewConstrainedParm->getType() != TL.getType() ||
1278 TL.getAutoKeyword() != AutoTypeKeyword::Auto) {
1279 Diag(NewConstrainedParm->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1280 diag::err_unsupported_placeholder_constraint)
1281 << NewConstrainedParm->getTypeSourceInfo()
1282 ->getTypeLoc()
1283 .getSourceRange();
1284 return true;
1286 // FIXME: Concepts: This should be the type of the placeholder, but this is
1287 // unclear in the wording right now.
1288 DeclRefExpr *Ref =
1289 BuildDeclRefExpr(OrigConstrainedParm, OrigConstrainedParm->getType(),
1290 VK_PRValue, OrigConstrainedParm->getLocation());
1291 if (!Ref)
1292 return true;
1293 ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint(
1294 *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(),
1295 TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(),
1296 BuildDecltypeType(Ref), OrigConstrainedParm->getLocation(),
1297 [&](TemplateArgumentListInfo &ConstraintArgs) {
1298 for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I)
1299 ConstraintArgs.addArgument(TL.getArgLoc(I));
1301 EllipsisLoc);
1302 if (ImmediatelyDeclaredConstraint.isInvalid() ||
1303 !ImmediatelyDeclaredConstraint.isUsable())
1304 return true;
1306 NewConstrainedParm->setPlaceholderTypeConstraint(
1307 ImmediatelyDeclaredConstraint.get());
1308 return false;
1311 /// Check that the type of a non-type template parameter is
1312 /// well-formed.
1314 /// \returns the (possibly-promoted) parameter type if valid;
1315 /// otherwise, produces a diagnostic and returns a NULL type.
1316 QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
1317 SourceLocation Loc) {
1318 if (TSI->getType()->isUndeducedType()) {
1319 // C++17 [temp.dep.expr]p3:
1320 // An id-expression is type-dependent if it contains
1321 // - an identifier associated by name lookup with a non-type
1322 // template-parameter declared with a type that contains a
1323 // placeholder type (7.1.7.4),
1324 TSI = SubstAutoTypeSourceInfoDependent(TSI);
1327 return CheckNonTypeTemplateParameterType(TSI->getType(), Loc);
1330 /// Require the given type to be a structural type, and diagnose if it is not.
1332 /// \return \c true if an error was produced.
1333 bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) {
1334 if (T->isDependentType())
1335 return false;
1337 if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete))
1338 return true;
1340 if (T->isStructuralType())
1341 return false;
1343 // Structural types are required to be object types or lvalue references.
1344 if (T->isRValueReferenceType()) {
1345 Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T;
1346 return true;
1349 // Don't mention structural types in our diagnostic prior to C++20. Also,
1350 // there's not much more we can say about non-scalar non-class types --
1351 // because we can't see functions or arrays here, those can only be language
1352 // extensions.
1353 if (!getLangOpts().CPlusPlus20 ||
1354 (!T->isScalarType() && !T->isRecordType())) {
1355 Diag(Loc, diag::err_template_nontype_parm_bad_type) << T;
1356 return true;
1359 // Structural types are required to be literal types.
1360 if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal))
1361 return true;
1363 Diag(Loc, diag::err_template_nontype_parm_not_structural) << T;
1365 // Drill down into the reason why the class is non-structural.
1366 while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
1367 // All members are required to be public and non-mutable, and can't be of
1368 // rvalue reference type. Check these conditions first to prefer a "local"
1369 // reason over a more distant one.
1370 for (const FieldDecl *FD : RD->fields()) {
1371 if (FD->getAccess() != AS_public) {
1372 Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0;
1373 return true;
1375 if (FD->isMutable()) {
1376 Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T;
1377 return true;
1379 if (FD->getType()->isRValueReferenceType()) {
1380 Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field)
1381 << T;
1382 return true;
1386 // All bases are required to be public.
1387 for (const auto &BaseSpec : RD->bases()) {
1388 if (BaseSpec.getAccessSpecifier() != AS_public) {
1389 Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public)
1390 << T << 1;
1391 return true;
1395 // All subobjects are required to be of structural types.
1396 SourceLocation SubLoc;
1397 QualType SubType;
1398 int Kind = -1;
1400 for (const FieldDecl *FD : RD->fields()) {
1401 QualType T = Context.getBaseElementType(FD->getType());
1402 if (!T->isStructuralType()) {
1403 SubLoc = FD->getLocation();
1404 SubType = T;
1405 Kind = 0;
1406 break;
1410 if (Kind == -1) {
1411 for (const auto &BaseSpec : RD->bases()) {
1412 QualType T = BaseSpec.getType();
1413 if (!T->isStructuralType()) {
1414 SubLoc = BaseSpec.getBaseTypeLoc();
1415 SubType = T;
1416 Kind = 1;
1417 break;
1422 assert(Kind != -1 && "couldn't find reason why type is not structural");
1423 Diag(SubLoc, diag::note_not_structural_subobject)
1424 << T << Kind << SubType;
1425 T = SubType;
1426 RD = T->getAsCXXRecordDecl();
1429 return true;
1432 QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
1433 SourceLocation Loc) {
1434 // We don't allow variably-modified types as the type of non-type template
1435 // parameters.
1436 if (T->isVariablyModifiedType()) {
1437 Diag(Loc, diag::err_variably_modified_nontype_template_param)
1438 << T;
1439 return QualType();
1442 // C++ [temp.param]p4:
1444 // A non-type template-parameter shall have one of the following
1445 // (optionally cv-qualified) types:
1447 // -- integral or enumeration type,
1448 if (T->isIntegralOrEnumerationType() ||
1449 // -- pointer to object or pointer to function,
1450 T->isPointerType() ||
1451 // -- lvalue reference to object or lvalue reference to function,
1452 T->isLValueReferenceType() ||
1453 // -- pointer to member,
1454 T->isMemberPointerType() ||
1455 // -- std::nullptr_t, or
1456 T->isNullPtrType() ||
1457 // -- a type that contains a placeholder type.
1458 T->isUndeducedType()) {
1459 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
1460 // are ignored when determining its type.
1461 return T.getUnqualifiedType();
1464 // C++ [temp.param]p8:
1466 // A non-type template-parameter of type "array of T" or
1467 // "function returning T" is adjusted to be of type "pointer to
1468 // T" or "pointer to function returning T", respectively.
1469 if (T->isArrayType() || T->isFunctionType())
1470 return Context.getDecayedType(T);
1472 // If T is a dependent type, we can't do the check now, so we
1473 // assume that it is well-formed. Note that stripping off the
1474 // qualifiers here is not really correct if T turns out to be
1475 // an array type, but we'll recompute the type everywhere it's
1476 // used during instantiation, so that should be OK. (Using the
1477 // qualified type is equally wrong.)
1478 if (T->isDependentType())
1479 return T.getUnqualifiedType();
1481 // C++20 [temp.param]p6:
1482 // -- a structural type
1483 if (RequireStructuralType(T, Loc))
1484 return QualType();
1486 if (!getLangOpts().CPlusPlus20) {
1487 // FIXME: Consider allowing structural types as an extension in C++17. (In
1488 // earlier language modes, the template argument evaluation rules are too
1489 // inflexible.)
1490 Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T;
1491 return QualType();
1494 Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T;
1495 return T.getUnqualifiedType();
1498 NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
1499 unsigned Depth,
1500 unsigned Position,
1501 SourceLocation EqualLoc,
1502 Expr *Default) {
1503 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
1505 // Check that we have valid decl-specifiers specified.
1506 auto CheckValidDeclSpecifiers = [this, &D] {
1507 // C++ [temp.param]
1508 // p1
1509 // template-parameter:
1510 // ...
1511 // parameter-declaration
1512 // p2
1513 // ... A storage class shall not be specified in a template-parameter
1514 // declaration.
1515 // [dcl.typedef]p1:
1516 // The typedef specifier [...] shall not be used in the decl-specifier-seq
1517 // of a parameter-declaration
1518 const DeclSpec &DS = D.getDeclSpec();
1519 auto EmitDiag = [this](SourceLocation Loc) {
1520 Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm)
1521 << FixItHint::CreateRemoval(Loc);
1523 if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified)
1524 EmitDiag(DS.getStorageClassSpecLoc());
1526 if (DS.getThreadStorageClassSpec() != TSCS_unspecified)
1527 EmitDiag(DS.getThreadStorageClassSpecLoc());
1529 // [dcl.inline]p1:
1530 // The inline specifier can be applied only to the declaration or
1531 // definition of a variable or function.
1533 if (DS.isInlineSpecified())
1534 EmitDiag(DS.getInlineSpecLoc());
1536 // [dcl.constexpr]p1:
1537 // The constexpr specifier shall be applied only to the definition of a
1538 // variable or variable template or the declaration of a function or
1539 // function template.
1541 if (DS.hasConstexprSpecifier())
1542 EmitDiag(DS.getConstexprSpecLoc());
1544 // [dcl.fct.spec]p1:
1545 // Function-specifiers can be used only in function declarations.
1547 if (DS.isVirtualSpecified())
1548 EmitDiag(DS.getVirtualSpecLoc());
1550 if (DS.hasExplicitSpecifier())
1551 EmitDiag(DS.getExplicitSpecLoc());
1553 if (DS.isNoreturnSpecified())
1554 EmitDiag(DS.getNoreturnSpecLoc());
1557 CheckValidDeclSpecifiers();
1559 if (const auto *T = TInfo->getType()->getContainedDeducedType())
1560 if (isa<AutoType>(T))
1561 Diag(D.getIdentifierLoc(),
1562 diag::warn_cxx14_compat_template_nontype_parm_auto_type)
1563 << QualType(TInfo->getType()->getContainedAutoType(), 0);
1565 assert(S->isTemplateParamScope() &&
1566 "Non-type template parameter not in template parameter scope!");
1567 bool Invalid = false;
1569 QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc());
1570 if (T.isNull()) {
1571 T = Context.IntTy; // Recover with an 'int' type.
1572 Invalid = true;
1575 CheckFunctionOrTemplateParamDeclarator(S, D);
1577 IdentifierInfo *ParamName = D.getIdentifier();
1578 bool IsParameterPack = D.hasEllipsis();
1579 NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create(
1580 Context, Context.getTranslationUnitDecl(), D.getBeginLoc(),
1581 D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack,
1582 TInfo);
1583 Param->setAccess(AS_public);
1585 if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc())
1586 if (TL.isConstrained())
1587 if (AttachTypeConstraint(TL, Param, Param, D.getEllipsisLoc()))
1588 Invalid = true;
1590 if (Invalid)
1591 Param->setInvalidDecl();
1593 if (Param->isParameterPack())
1594 if (auto *LSI = getEnclosingLambda())
1595 LSI->LocalPacks.push_back(Param);
1597 if (ParamName) {
1598 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
1599 ParamName);
1601 // Add the template parameter into the current scope.
1602 S->AddDecl(Param);
1603 IdResolver.AddDecl(Param);
1606 // C++0x [temp.param]p9:
1607 // A default template-argument may be specified for any kind of
1608 // template-parameter that is not a template parameter pack.
1609 if (Default && IsParameterPack) {
1610 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1611 Default = nullptr;
1614 // Check the well-formedness of the default template argument, if provided.
1615 if (Default) {
1616 // Check for unexpanded parameter packs.
1617 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
1618 return Param;
1620 Param->setDefaultArgument(Default);
1623 return Param;
1626 /// ActOnTemplateTemplateParameter - Called when a C++ template template
1627 /// parameter (e.g. T in template <template \<typename> class T> class array)
1628 /// has been parsed. S is the current scope.
1629 NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S,
1630 SourceLocation TmpLoc,
1631 TemplateParameterList *Params,
1632 SourceLocation EllipsisLoc,
1633 IdentifierInfo *Name,
1634 SourceLocation NameLoc,
1635 unsigned Depth,
1636 unsigned Position,
1637 SourceLocation EqualLoc,
1638 ParsedTemplateArgument Default) {
1639 assert(S->isTemplateParamScope() &&
1640 "Template template parameter not in template parameter scope!");
1642 // Construct the parameter object.
1643 bool IsParameterPack = EllipsisLoc.isValid();
1644 TemplateTemplateParmDecl *Param =
1645 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1646 NameLoc.isInvalid()? TmpLoc : NameLoc,
1647 Depth, Position, IsParameterPack,
1648 Name, Params);
1649 Param->setAccess(AS_public);
1651 if (Param->isParameterPack())
1652 if (auto *LSI = getEnclosingLambda())
1653 LSI->LocalPacks.push_back(Param);
1655 // If the template template parameter has a name, then link the identifier
1656 // into the scope and lookup mechanisms.
1657 if (Name) {
1658 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
1660 S->AddDecl(Param);
1661 IdResolver.AddDecl(Param);
1664 if (Params->size() == 0) {
1665 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
1666 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
1667 Param->setInvalidDecl();
1670 // C++0x [temp.param]p9:
1671 // A default template-argument may be specified for any kind of
1672 // template-parameter that is not a template parameter pack.
1673 if (IsParameterPack && !Default.isInvalid()) {
1674 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1675 Default = ParsedTemplateArgument();
1678 if (!Default.isInvalid()) {
1679 // Check only that we have a template template argument. We don't want to
1680 // try to check well-formedness now, because our template template parameter
1681 // might have dependent types in its template parameters, which we wouldn't
1682 // be able to match now.
1684 // If none of the template template parameter's template arguments mention
1685 // other template parameters, we could actually perform more checking here.
1686 // However, it isn't worth doing.
1687 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
1688 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
1689 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
1690 << DefaultArg.getSourceRange();
1691 return Param;
1694 // Check for unexpanded parameter packs.
1695 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
1696 DefaultArg.getArgument().getAsTemplate(),
1697 UPPC_DefaultArgument))
1698 return Param;
1700 Param->setDefaultArgument(Context, DefaultArg);
1703 return Param;
1706 namespace {
1707 class ConstraintRefersToContainingTemplateChecker
1708 : public TreeTransform<ConstraintRefersToContainingTemplateChecker> {
1709 bool Result = false;
1710 const FunctionDecl *Friend = nullptr;
1711 unsigned TemplateDepth = 0;
1713 // Check a record-decl that we've seen to see if it is a lexical parent of the
1714 // Friend, likely because it was referred to without its template arguments.
1715 void CheckIfContainingRecord(const CXXRecordDecl *CheckingRD) {
1716 CheckingRD = CheckingRD->getMostRecentDecl();
1718 for (const DeclContext *DC = Friend->getLexicalDeclContext();
1719 DC && !DC->isFileContext(); DC = DC->getParent())
1720 if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
1721 if (CheckingRD == RD->getMostRecentDecl())
1722 Result = true;
1725 void CheckNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) {
1726 assert(D->getDepth() <= TemplateDepth &&
1727 "Nothing should reference a value below the actual template depth, "
1728 "depth is likely wrong");
1729 if (D->getDepth() != TemplateDepth)
1730 Result = true;
1732 // Necessary because the type of the NTTP might be what refers to the parent
1733 // constriant.
1734 TransformType(D->getType());
1737 public:
1738 using inherited = TreeTransform<ConstraintRefersToContainingTemplateChecker>;
1740 ConstraintRefersToContainingTemplateChecker(Sema &SemaRef,
1741 const FunctionDecl *Friend,
1742 unsigned TemplateDepth)
1743 : inherited(SemaRef), Friend(Friend), TemplateDepth(TemplateDepth) {}
1744 bool getResult() const { return Result; }
1746 // This should be the only template parm type that we have to deal with.
1747 // SubstTempalteTypeParmPack, SubstNonTypeTemplateParmPack, and
1748 // FunctionParmPackExpr are all partially substituted, which cannot happen
1749 // with concepts at this point in translation.
1750 using inherited::TransformTemplateTypeParmType;
1751 QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB,
1752 TemplateTypeParmTypeLoc TL, bool) {
1753 assert(TL.getDecl()->getDepth() <= TemplateDepth &&
1754 "Nothing should reference a value below the actual template depth, "
1755 "depth is likely wrong");
1756 if (TL.getDecl()->getDepth() != TemplateDepth)
1757 Result = true;
1758 return inherited::TransformTemplateTypeParmType(
1759 TLB, TL,
1760 /*SuppressObjCLifetime=*/false);
1763 Decl *TransformDecl(SourceLocation Loc, Decl *D) {
1764 if (!D)
1765 return D;
1766 // FIXME : This is possibly an incomplete list, but it is unclear what other
1767 // Decl kinds could be used to refer to the template parameters. This is a
1768 // best guess so far based on examples currently available, but the
1769 // unreachable should catch future instances/cases.
1770 if (auto *TD = dyn_cast<TypedefNameDecl>(D))
1771 TransformType(TD->getUnderlyingType());
1772 else if (auto *NTTPD = dyn_cast<NonTypeTemplateParmDecl>(D))
1773 CheckNonTypeTemplateParmDecl(NTTPD);
1774 else if (auto *VD = dyn_cast<ValueDecl>(D))
1775 TransformType(VD->getType());
1776 else if (auto *TD = dyn_cast<TemplateDecl>(D))
1777 TransformTemplateParameterList(TD->getTemplateParameters());
1778 else if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1779 CheckIfContainingRecord(RD);
1780 else if (isa<NamedDecl>(D)) {
1781 // No direct types to visit here I believe.
1782 } else
1783 llvm_unreachable("Don't know how to handle this declaration type yet");
1784 return D;
1787 } // namespace
1789 bool Sema::ConstraintExpressionDependsOnEnclosingTemplate(
1790 const FunctionDecl *Friend, unsigned TemplateDepth,
1791 const Expr *Constraint) {
1792 assert(Friend->getFriendObjectKind() && "Only works on a friend");
1793 ConstraintRefersToContainingTemplateChecker Checker(*this, Friend,
1794 TemplateDepth);
1795 Checker.TransformExpr(const_cast<Expr *>(Constraint));
1796 return Checker.getResult();
1799 /// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
1800 /// constrained by RequiresClause, that contains the template parameters in
1801 /// Params.
1802 TemplateParameterList *
1803 Sema::ActOnTemplateParameterList(unsigned Depth,
1804 SourceLocation ExportLoc,
1805 SourceLocation TemplateLoc,
1806 SourceLocation LAngleLoc,
1807 ArrayRef<NamedDecl *> Params,
1808 SourceLocation RAngleLoc,
1809 Expr *RequiresClause) {
1810 if (ExportLoc.isValid())
1811 Diag(ExportLoc, diag::warn_template_export_unsupported);
1813 for (NamedDecl *P : Params)
1814 warnOnReservedIdentifier(P);
1816 return TemplateParameterList::Create(
1817 Context, TemplateLoc, LAngleLoc,
1818 llvm::ArrayRef(Params.data(), Params.size()), RAngleLoc, RequiresClause);
1821 static void SetNestedNameSpecifier(Sema &S, TagDecl *T,
1822 const CXXScopeSpec &SS) {
1823 if (SS.isSet())
1824 T->setQualifierInfo(SS.getWithLocInContext(S.Context));
1827 DeclResult Sema::CheckClassTemplate(
1828 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
1829 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
1830 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
1831 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
1832 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
1833 TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) {
1834 assert(TemplateParams && TemplateParams->size() > 0 &&
1835 "No template parameters");
1836 assert(TUK != TUK_Reference && "Can only declare or define class templates");
1837 bool Invalid = false;
1839 // Check that we can declare a template here.
1840 if (CheckTemplateDeclScope(S, TemplateParams))
1841 return true;
1843 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1844 assert(Kind != TTK_Enum && "can't build template of enumerated type");
1846 // There is no such thing as an unnamed class template.
1847 if (!Name) {
1848 Diag(KWLoc, diag::err_template_unnamed_class);
1849 return true;
1852 // Find any previous declaration with this name. For a friend with no
1853 // scope explicitly specified, we only look for tag declarations (per
1854 // C++11 [basic.lookup.elab]p2).
1855 DeclContext *SemanticContext;
1856 LookupResult Previous(*this, Name, NameLoc,
1857 (SS.isEmpty() && TUK == TUK_Friend)
1858 ? LookupTagName : LookupOrdinaryName,
1859 forRedeclarationInCurContext());
1860 if (SS.isNotEmpty() && !SS.isInvalid()) {
1861 SemanticContext = computeDeclContext(SS, true);
1862 if (!SemanticContext) {
1863 // FIXME: Horrible, horrible hack! We can't currently represent this
1864 // in the AST, and historically we have just ignored such friend
1865 // class templates, so don't complain here.
1866 Diag(NameLoc, TUK == TUK_Friend
1867 ? diag::warn_template_qualified_friend_ignored
1868 : diag::err_template_qualified_declarator_no_match)
1869 << SS.getScopeRep() << SS.getRange();
1870 return TUK != TUK_Friend;
1873 if (RequireCompleteDeclContext(SS, SemanticContext))
1874 return true;
1876 // If we're adding a template to a dependent context, we may need to
1877 // rebuilding some of the types used within the template parameter list,
1878 // now that we know what the current instantiation is.
1879 if (SemanticContext->isDependentContext()) {
1880 ContextRAII SavedContext(*this, SemanticContext);
1881 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
1882 Invalid = true;
1883 } else if (TUK != TUK_Friend && TUK != TUK_Reference)
1884 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false);
1886 LookupQualifiedName(Previous, SemanticContext);
1887 } else {
1888 SemanticContext = CurContext;
1890 // C++14 [class.mem]p14:
1891 // If T is the name of a class, then each of the following shall have a
1892 // name different from T:
1893 // -- every member template of class T
1894 if (TUK != TUK_Friend &&
1895 DiagnoseClassNameShadow(SemanticContext,
1896 DeclarationNameInfo(Name, NameLoc)))
1897 return true;
1899 LookupName(Previous, S);
1902 if (Previous.isAmbiguous())
1903 return true;
1905 NamedDecl *PrevDecl = nullptr;
1906 if (Previous.begin() != Previous.end())
1907 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1909 if (PrevDecl && PrevDecl->isTemplateParameter()) {
1910 // Maybe we will complain about the shadowed template parameter.
1911 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1912 // Just pretend that we didn't see the previous declaration.
1913 PrevDecl = nullptr;
1916 // If there is a previous declaration with the same name, check
1917 // whether this is a valid redeclaration.
1918 ClassTemplateDecl *PrevClassTemplate =
1919 dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
1921 // We may have found the injected-class-name of a class template,
1922 // class template partial specialization, or class template specialization.
1923 // In these cases, grab the template that is being defined or specialized.
1924 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
1925 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
1926 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
1927 PrevClassTemplate
1928 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
1929 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
1930 PrevClassTemplate
1931 = cast<ClassTemplateSpecializationDecl>(PrevDecl)
1932 ->getSpecializedTemplate();
1936 if (TUK == TUK_Friend) {
1937 // C++ [namespace.memdef]p3:
1938 // [...] When looking for a prior declaration of a class or a function
1939 // declared as a friend, and when the name of the friend class or
1940 // function is neither a qualified name nor a template-id, scopes outside
1941 // the innermost enclosing namespace scope are not considered.
1942 if (!SS.isSet()) {
1943 DeclContext *OutermostContext = CurContext;
1944 while (!OutermostContext->isFileContext())
1945 OutermostContext = OutermostContext->getLookupParent();
1947 if (PrevDecl &&
1948 (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
1949 OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
1950 SemanticContext = PrevDecl->getDeclContext();
1951 } else {
1952 // Declarations in outer scopes don't matter. However, the outermost
1953 // context we computed is the semantic context for our new
1954 // declaration.
1955 PrevDecl = PrevClassTemplate = nullptr;
1956 SemanticContext = OutermostContext;
1958 // Check that the chosen semantic context doesn't already contain a
1959 // declaration of this name as a non-tag type.
1960 Previous.clear(LookupOrdinaryName);
1961 DeclContext *LookupContext = SemanticContext;
1962 while (LookupContext->isTransparentContext())
1963 LookupContext = LookupContext->getLookupParent();
1964 LookupQualifiedName(Previous, LookupContext);
1966 if (Previous.isAmbiguous())
1967 return true;
1969 if (Previous.begin() != Previous.end())
1970 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1973 } else if (PrevDecl &&
1974 !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
1975 S, SS.isValid()))
1976 PrevDecl = PrevClassTemplate = nullptr;
1978 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
1979 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
1980 if (SS.isEmpty() &&
1981 !(PrevClassTemplate &&
1982 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
1983 SemanticContext->getRedeclContext()))) {
1984 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
1985 Diag(Shadow->getTargetDecl()->getLocation(),
1986 diag::note_using_decl_target);
1987 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) << 0;
1988 // Recover by ignoring the old declaration.
1989 PrevDecl = PrevClassTemplate = nullptr;
1993 if (PrevClassTemplate) {
1994 // Ensure that the template parameter lists are compatible. Skip this check
1995 // for a friend in a dependent context: the template parameter list itself
1996 // could be dependent.
1997 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1998 !TemplateParameterListsAreEqual(
1999 TemplateCompareNewDeclInfo(SemanticContext ? SemanticContext
2000 : CurContext,
2001 CurContext, KWLoc),
2002 TemplateParams, PrevClassTemplate,
2003 PrevClassTemplate->getTemplateParameters(), /*Complain=*/true,
2004 TPL_TemplateMatch))
2005 return true;
2007 // C++ [temp.class]p4:
2008 // In a redeclaration, partial specialization, explicit
2009 // specialization or explicit instantiation of a class template,
2010 // the class-key shall agree in kind with the original class
2011 // template declaration (7.1.5.3).
2012 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
2013 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
2014 TUK == TUK_Definition, KWLoc, Name)) {
2015 Diag(KWLoc, diag::err_use_with_wrong_tag)
2016 << Name
2017 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
2018 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
2019 Kind = PrevRecordDecl->getTagKind();
2022 // Check for redefinition of this class template.
2023 if (TUK == TUK_Definition) {
2024 if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
2025 // If we have a prior definition that is not visible, treat this as
2026 // simply making that previous definition visible.
2027 NamedDecl *Hidden = nullptr;
2028 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
2029 SkipBody->ShouldSkip = true;
2030 SkipBody->Previous = Def;
2031 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
2032 assert(Tmpl && "original definition of a class template is not a "
2033 "class template?");
2034 makeMergedDefinitionVisible(Hidden);
2035 makeMergedDefinitionVisible(Tmpl);
2036 } else {
2037 Diag(NameLoc, diag::err_redefinition) << Name;
2038 Diag(Def->getLocation(), diag::note_previous_definition);
2039 // FIXME: Would it make sense to try to "forget" the previous
2040 // definition, as part of error recovery?
2041 return true;
2045 } else if (PrevDecl) {
2046 // C++ [temp]p5:
2047 // A class template shall not have the same name as any other
2048 // template, class, function, object, enumeration, enumerator,
2049 // namespace, or type in the same scope (3.3), except as specified
2050 // in (14.5.4).
2051 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2052 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2053 return true;
2056 // Check the template parameter list of this declaration, possibly
2057 // merging in the template parameter list from the previous class
2058 // template declaration. Skip this check for a friend in a dependent
2059 // context, because the template parameter list might be dependent.
2060 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
2061 CheckTemplateParameterList(
2062 TemplateParams,
2063 PrevClassTemplate
2064 ? PrevClassTemplate->getMostRecentDecl()->getTemplateParameters()
2065 : nullptr,
2066 (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
2067 SemanticContext->isDependentContext())
2068 ? TPC_ClassTemplateMember
2069 : TUK == TUK_Friend ? TPC_FriendClassTemplate : TPC_ClassTemplate,
2070 SkipBody))
2071 Invalid = true;
2073 if (SS.isSet()) {
2074 // If the name of the template was qualified, we must be defining the
2075 // template out-of-line.
2076 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
2077 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
2078 : diag::err_member_decl_does_not_match)
2079 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
2080 Invalid = true;
2084 // If this is a templated friend in a dependent context we should not put it
2085 // on the redecl chain. In some cases, the templated friend can be the most
2086 // recent declaration tricking the template instantiator to make substitutions
2087 // there.
2088 // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
2089 bool ShouldAddRedecl
2090 = !(TUK == TUK_Friend && CurContext->isDependentContext());
2092 CXXRecordDecl *NewClass =
2093 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
2094 PrevClassTemplate && ShouldAddRedecl ?
2095 PrevClassTemplate->getTemplatedDecl() : nullptr,
2096 /*DelayTypeCreation=*/true);
2097 SetNestedNameSpecifier(*this, NewClass, SS);
2098 if (NumOuterTemplateParamLists > 0)
2099 NewClass->setTemplateParameterListsInfo(
2100 Context,
2101 llvm::ArrayRef(OuterTemplateParamLists, NumOuterTemplateParamLists));
2103 // Add alignment attributes if necessary; these attributes are checked when
2104 // the ASTContext lays out the structure.
2105 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
2106 AddAlignmentAttributesForRecord(NewClass);
2107 AddMsStructLayoutForRecord(NewClass);
2110 ClassTemplateDecl *NewTemplate
2111 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
2112 DeclarationName(Name), TemplateParams,
2113 NewClass);
2115 if (ShouldAddRedecl)
2116 NewTemplate->setPreviousDecl(PrevClassTemplate);
2118 NewClass->setDescribedClassTemplate(NewTemplate);
2120 if (ModulePrivateLoc.isValid())
2121 NewTemplate->setModulePrivate();
2123 // Build the type for the class template declaration now.
2124 QualType T = NewTemplate->getInjectedClassNameSpecialization();
2125 T = Context.getInjectedClassNameType(NewClass, T);
2126 assert(T->isDependentType() && "Class template type is not dependent?");
2127 (void)T;
2129 // If we are providing an explicit specialization of a member that is a
2130 // class template, make a note of that.
2131 if (PrevClassTemplate &&
2132 PrevClassTemplate->getInstantiatedFromMemberTemplate())
2133 PrevClassTemplate->setMemberSpecialization();
2135 // Set the access specifier.
2136 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
2137 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
2139 // Set the lexical context of these templates
2140 NewClass->setLexicalDeclContext(CurContext);
2141 NewTemplate->setLexicalDeclContext(CurContext);
2143 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
2144 NewClass->startDefinition();
2146 ProcessDeclAttributeList(S, NewClass, Attr);
2148 if (PrevClassTemplate)
2149 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
2151 AddPushedVisibilityAttribute(NewClass);
2152 inferGslOwnerPointerAttribute(NewClass);
2154 if (TUK != TUK_Friend) {
2155 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
2156 Scope *Outer = S;
2157 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
2158 Outer = Outer->getParent();
2159 PushOnScopeChains(NewTemplate, Outer);
2160 } else {
2161 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
2162 NewTemplate->setAccess(PrevClassTemplate->getAccess());
2163 NewClass->setAccess(PrevClassTemplate->getAccess());
2166 NewTemplate->setObjectOfFriendDecl();
2168 // Friend templates are visible in fairly strange ways.
2169 if (!CurContext->isDependentContext()) {
2170 DeclContext *DC = SemanticContext->getRedeclContext();
2171 DC->makeDeclVisibleInContext(NewTemplate);
2172 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
2173 PushOnScopeChains(NewTemplate, EnclosingScope,
2174 /* AddToContext = */ false);
2177 FriendDecl *Friend = FriendDecl::Create(
2178 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
2179 Friend->setAccess(AS_public);
2180 CurContext->addDecl(Friend);
2183 if (PrevClassTemplate)
2184 CheckRedeclarationInModule(NewTemplate, PrevClassTemplate);
2186 if (Invalid) {
2187 NewTemplate->setInvalidDecl();
2188 NewClass->setInvalidDecl();
2191 ActOnDocumentableDecl(NewTemplate);
2193 if (SkipBody && SkipBody->ShouldSkip)
2194 return SkipBody->Previous;
2196 return NewTemplate;
2199 namespace {
2200 /// Tree transform to "extract" a transformed type from a class template's
2201 /// constructor to a deduction guide.
2202 class ExtractTypeForDeductionGuide
2203 : public TreeTransform<ExtractTypeForDeductionGuide> {
2204 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs;
2206 public:
2207 typedef TreeTransform<ExtractTypeForDeductionGuide> Base;
2208 ExtractTypeForDeductionGuide(
2209 Sema &SemaRef,
2210 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs)
2211 : Base(SemaRef), MaterializedTypedefs(MaterializedTypedefs) {}
2213 TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); }
2215 QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) {
2216 ASTContext &Context = SemaRef.getASTContext();
2217 TypedefNameDecl *OrigDecl = TL.getTypedefNameDecl();
2218 TypedefNameDecl *Decl = OrigDecl;
2219 // Transform the underlying type of the typedef and clone the Decl only if
2220 // the typedef has a dependent context.
2221 if (OrigDecl->getDeclContext()->isDependentContext()) {
2222 TypeLocBuilder InnerTLB;
2223 QualType Transformed =
2224 TransformType(InnerTLB, OrigDecl->getTypeSourceInfo()->getTypeLoc());
2225 TypeSourceInfo *TSI = InnerTLB.getTypeSourceInfo(Context, Transformed);
2226 if (isa<TypeAliasDecl>(OrigDecl))
2227 Decl = TypeAliasDecl::Create(
2228 Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(),
2229 OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI);
2230 else {
2231 assert(isa<TypedefDecl>(OrigDecl) && "Not a Type alias or typedef");
2232 Decl = TypedefDecl::Create(
2233 Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(),
2234 OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI);
2236 MaterializedTypedefs.push_back(Decl);
2239 QualType TDTy = Context.getTypedefType(Decl);
2240 TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(TDTy);
2241 TypedefTL.setNameLoc(TL.getNameLoc());
2243 return TDTy;
2247 /// Transform to convert portions of a constructor declaration into the
2248 /// corresponding deduction guide, per C++1z [over.match.class.deduct]p1.
2249 struct ConvertConstructorToDeductionGuideTransform {
2250 ConvertConstructorToDeductionGuideTransform(Sema &S,
2251 ClassTemplateDecl *Template)
2252 : SemaRef(S), Template(Template) {}
2254 Sema &SemaRef;
2255 ClassTemplateDecl *Template;
2256 ClassTemplateDecl *NestedPattern = nullptr;
2258 DeclContext *DC = Template->getDeclContext();
2259 CXXRecordDecl *Primary = Template->getTemplatedDecl();
2260 DeclarationName DeductionGuideName =
2261 SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template);
2263 QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary);
2265 // Index adjustment to apply to convert depth-1 template parameters into
2266 // depth-0 template parameters.
2267 unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size();
2269 /// Transform a constructor declaration into a deduction guide.
2270 NamedDecl *transformConstructor(FunctionTemplateDecl *FTD,
2271 CXXConstructorDecl *CD) {
2272 SmallVector<TemplateArgument, 16> SubstArgs;
2274 LocalInstantiationScope Scope(SemaRef);
2276 // C++ [over.match.class.deduct]p1:
2277 // -- For each constructor of the class template designated by the
2278 // template-name, a function template with the following properties:
2280 // -- The template parameters are the template parameters of the class
2281 // template followed by the template parameters (including default
2282 // template arguments) of the constructor, if any.
2283 TemplateParameterList *TemplateParams = Template->getTemplateParameters();
2284 if (FTD) {
2285 TemplateParameterList *InnerParams = FTD->getTemplateParameters();
2286 SmallVector<NamedDecl *, 16> AllParams;
2287 AllParams.reserve(TemplateParams->size() + InnerParams->size());
2288 AllParams.insert(AllParams.begin(),
2289 TemplateParams->begin(), TemplateParams->end());
2290 SubstArgs.reserve(InnerParams->size());
2292 // Later template parameters could refer to earlier ones, so build up
2293 // a list of substituted template arguments as we go.
2294 for (NamedDecl *Param : *InnerParams) {
2295 MultiLevelTemplateArgumentList Args;
2296 Args.setKind(TemplateSubstitutionKind::Rewrite);
2297 Args.addOuterTemplateArguments(SubstArgs);
2298 Args.addOuterRetainedLevel();
2299 NamedDecl *NewParam = transformTemplateParameter(Param, Args);
2300 if (!NewParam)
2301 return nullptr;
2302 AllParams.push_back(NewParam);
2303 SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument(
2304 SemaRef.Context.getInjectedTemplateArg(NewParam)));
2307 // Substitute new template parameters into requires-clause if present.
2308 Expr *RequiresClause = nullptr;
2309 if (Expr *InnerRC = InnerParams->getRequiresClause()) {
2310 MultiLevelTemplateArgumentList Args;
2311 Args.setKind(TemplateSubstitutionKind::Rewrite);
2312 Args.addOuterTemplateArguments(SubstArgs);
2313 Args.addOuterRetainedLevel();
2314 ExprResult E = SemaRef.SubstExpr(InnerRC, Args);
2315 if (E.isInvalid())
2316 return nullptr;
2317 RequiresClause = E.getAs<Expr>();
2320 TemplateParams = TemplateParameterList::Create(
2321 SemaRef.Context, InnerParams->getTemplateLoc(),
2322 InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(),
2323 RequiresClause);
2326 // If we built a new template-parameter-list, track that we need to
2327 // substitute references to the old parameters into references to the
2328 // new ones.
2329 MultiLevelTemplateArgumentList Args;
2330 Args.setKind(TemplateSubstitutionKind::Rewrite);
2331 if (FTD) {
2332 Args.addOuterTemplateArguments(SubstArgs);
2333 Args.addOuterRetainedLevel();
2336 if (NestedPattern)
2337 Args.addOuterRetainedLevels(NestedPattern->getTemplateDepth());
2339 FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc()
2340 .getAsAdjusted<FunctionProtoTypeLoc>();
2341 assert(FPTL && "no prototype for constructor declaration");
2343 // Transform the type of the function, adjusting the return type and
2344 // replacing references to the old parameters with references to the
2345 // new ones.
2346 TypeLocBuilder TLB;
2347 SmallVector<ParmVarDecl*, 8> Params;
2348 SmallVector<TypedefNameDecl *, 4> MaterializedTypedefs;
2349 QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args,
2350 MaterializedTypedefs);
2351 if (NewType.isNull())
2352 return nullptr;
2353 TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType);
2355 return buildDeductionGuide(TemplateParams, CD, CD->getExplicitSpecifier(),
2356 NewTInfo, CD->getBeginLoc(), CD->getLocation(),
2357 CD->getEndLoc(), MaterializedTypedefs);
2360 /// Build a deduction guide with the specified parameter types.
2361 NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) {
2362 SourceLocation Loc = Template->getLocation();
2364 // Build the requested type.
2365 FunctionProtoType::ExtProtoInfo EPI;
2366 EPI.HasTrailingReturn = true;
2367 QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc,
2368 DeductionGuideName, EPI);
2369 TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc);
2371 FunctionProtoTypeLoc FPTL =
2372 TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
2374 // Build the parameters, needed during deduction / substitution.
2375 SmallVector<ParmVarDecl*, 4> Params;
2376 for (auto T : ParamTypes) {
2377 ParmVarDecl *NewParam = ParmVarDecl::Create(
2378 SemaRef.Context, DC, Loc, Loc, nullptr, T,
2379 SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr);
2380 NewParam->setScopeInfo(0, Params.size());
2381 FPTL.setParam(Params.size(), NewParam);
2382 Params.push_back(NewParam);
2385 return buildDeductionGuide(Template->getTemplateParameters(), nullptr,
2386 ExplicitSpecifier(), TSI, Loc, Loc, Loc);
2389 private:
2390 /// Transform a constructor template parameter into a deduction guide template
2391 /// parameter, rebuilding any internal references to earlier parameters and
2392 /// renumbering as we go.
2393 NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam,
2394 MultiLevelTemplateArgumentList &Args) {
2395 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) {
2396 // TemplateTypeParmDecl's index cannot be changed after creation, so
2397 // substitute it directly.
2398 auto *NewTTP = TemplateTypeParmDecl::Create(
2399 SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(),
2400 /*Depth*/ 0, Depth1IndexAdjustment + TTP->getIndex(),
2401 TTP->getIdentifier(), TTP->wasDeclaredWithTypename(),
2402 TTP->isParameterPack(), TTP->hasTypeConstraint(),
2403 TTP->isExpandedParameterPack()
2404 ? std::optional<unsigned>(TTP->getNumExpansionParameters())
2405 : std::nullopt);
2406 if (const auto *TC = TTP->getTypeConstraint())
2407 SemaRef.SubstTypeConstraint(NewTTP, TC, Args,
2408 /*EvaluateConstraint*/ true);
2409 if (TTP->hasDefaultArgument()) {
2410 TypeSourceInfo *InstantiatedDefaultArg =
2411 SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args,
2412 TTP->getDefaultArgumentLoc(), TTP->getDeclName());
2413 if (InstantiatedDefaultArg)
2414 NewTTP->setDefaultArgument(InstantiatedDefaultArg);
2416 SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam,
2417 NewTTP);
2418 return NewTTP;
2421 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam))
2422 return transformTemplateParameterImpl(TTP, Args);
2424 return transformTemplateParameterImpl(
2425 cast<NonTypeTemplateParmDecl>(TemplateParam), Args);
2427 template<typename TemplateParmDecl>
2428 TemplateParmDecl *
2429 transformTemplateParameterImpl(TemplateParmDecl *OldParam,
2430 MultiLevelTemplateArgumentList &Args) {
2431 // Ask the template instantiator to do the heavy lifting for us, then adjust
2432 // the index of the parameter once it's done.
2433 auto *NewParam =
2434 cast<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args));
2435 assert(NewParam->getDepth() == 0 && "unexpected template param depth");
2436 NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment);
2437 return NewParam;
2440 QualType transformFunctionProtoType(
2441 TypeLocBuilder &TLB, FunctionProtoTypeLoc TL,
2442 SmallVectorImpl<ParmVarDecl *> &Params,
2443 MultiLevelTemplateArgumentList &Args,
2444 SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
2445 SmallVector<QualType, 4> ParamTypes;
2446 const FunctionProtoType *T = TL.getTypePtr();
2448 MultiLevelTemplateArgumentList OuterInstantiationArgs;
2449 if (NestedPattern)
2450 OuterInstantiationArgs = SemaRef.getTemplateInstantiationArgs(Template);
2452 // -- The types of the function parameters are those of the constructor.
2453 for (auto *OldParam : TL.getParams()) {
2454 ParmVarDecl *NewParam =
2455 transformFunctionTypeParam(OldParam, Args, MaterializedTypedefs);
2456 if (NestedPattern && NewParam)
2457 NewParam = transformFunctionTypeParam(NewParam, OuterInstantiationArgs,
2458 MaterializedTypedefs);
2459 if (!NewParam)
2460 return QualType();
2461 ParamTypes.push_back(NewParam->getType());
2462 Params.push_back(NewParam);
2465 // -- The return type is the class template specialization designated by
2466 // the template-name and template arguments corresponding to the
2467 // template parameters obtained from the class template.
2469 // We use the injected-class-name type of the primary template instead.
2470 // This has the convenient property that it is different from any type that
2471 // the user can write in a deduction-guide (because they cannot enter the
2472 // context of the template), so implicit deduction guides can never collide
2473 // with explicit ones.
2474 QualType ReturnType = DeducedType;
2475 TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation());
2477 // Resolving a wording defect, we also inherit the variadicness of the
2478 // constructor.
2479 FunctionProtoType::ExtProtoInfo EPI;
2480 EPI.Variadic = T->isVariadic();
2481 EPI.HasTrailingReturn = true;
2483 QualType Result = SemaRef.BuildFunctionType(
2484 ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI);
2485 if (Result.isNull())
2486 return QualType();
2488 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
2489 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
2490 NewTL.setLParenLoc(TL.getLParenLoc());
2491 NewTL.setRParenLoc(TL.getRParenLoc());
2492 NewTL.setExceptionSpecRange(SourceRange());
2493 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
2494 for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I)
2495 NewTL.setParam(I, Params[I]);
2497 return Result;
2500 ParmVarDecl *transformFunctionTypeParam(
2501 ParmVarDecl *OldParam, MultiLevelTemplateArgumentList &Args,
2502 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
2503 TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo();
2504 TypeSourceInfo *NewDI;
2505 if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) {
2506 // Expand out the one and only element in each inner pack.
2507 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0);
2508 NewDI =
2509 SemaRef.SubstType(PackTL.getPatternLoc(), Args,
2510 OldParam->getLocation(), OldParam->getDeclName());
2511 if (!NewDI) return nullptr;
2512 NewDI =
2513 SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(),
2514 PackTL.getTypePtr()->getNumExpansions());
2515 } else
2516 NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(),
2517 OldParam->getDeclName());
2518 if (!NewDI)
2519 return nullptr;
2521 // Extract the type. This (for instance) replaces references to typedef
2522 // members of the current instantiations with the definitions of those
2523 // typedefs, avoiding triggering instantiation of the deduced type during
2524 // deduction.
2525 NewDI = ExtractTypeForDeductionGuide(SemaRef, MaterializedTypedefs)
2526 .transform(NewDI);
2528 // Resolving a wording defect, we also inherit default arguments from the
2529 // constructor.
2530 ExprResult NewDefArg;
2531 if (OldParam->hasDefaultArg()) {
2532 // We don't care what the value is (we won't use it); just create a
2533 // placeholder to indicate there is a default argument.
2534 QualType ParamTy = NewDI->getType();
2535 NewDefArg = new (SemaRef.Context)
2536 OpaqueValueExpr(OldParam->getDefaultArg()->getBeginLoc(),
2537 ParamTy.getNonLValueExprType(SemaRef.Context),
2538 ParamTy->isLValueReferenceType() ? VK_LValue
2539 : ParamTy->isRValueReferenceType() ? VK_XValue
2540 : VK_PRValue);
2543 ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC,
2544 OldParam->getInnerLocStart(),
2545 OldParam->getLocation(),
2546 OldParam->getIdentifier(),
2547 NewDI->getType(),
2548 NewDI,
2549 OldParam->getStorageClass(),
2550 NewDefArg.get());
2551 NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(),
2552 OldParam->getFunctionScopeIndex());
2553 SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam);
2554 return NewParam;
2557 FunctionTemplateDecl *buildDeductionGuide(
2558 TemplateParameterList *TemplateParams, CXXConstructorDecl *Ctor,
2559 ExplicitSpecifier ES, TypeSourceInfo *TInfo, SourceLocation LocStart,
2560 SourceLocation Loc, SourceLocation LocEnd,
2561 llvm::ArrayRef<TypedefNameDecl *> MaterializedTypedefs = {}) {
2562 DeclarationNameInfo Name(DeductionGuideName, Loc);
2563 ArrayRef<ParmVarDecl *> Params =
2564 TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams();
2566 // Build the implicit deduction guide template.
2567 auto *Guide =
2568 CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name,
2569 TInfo->getType(), TInfo, LocEnd, Ctor);
2570 Guide->setImplicit();
2571 Guide->setParams(Params);
2573 for (auto *Param : Params)
2574 Param->setDeclContext(Guide);
2575 for (auto *TD : MaterializedTypedefs)
2576 TD->setDeclContext(Guide);
2578 auto *GuideTemplate = FunctionTemplateDecl::Create(
2579 SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide);
2580 GuideTemplate->setImplicit();
2581 Guide->setDescribedFunctionTemplate(GuideTemplate);
2583 if (isa<CXXRecordDecl>(DC)) {
2584 Guide->setAccess(AS_public);
2585 GuideTemplate->setAccess(AS_public);
2588 DC->addDecl(GuideTemplate);
2589 return GuideTemplate;
2594 FunctionTemplateDecl *Sema::DeclareImplicitDeductionGuideFromInitList(
2595 TemplateDecl *Template, MutableArrayRef<QualType> ParamTypes,
2596 SourceLocation Loc) {
2597 if (CXXRecordDecl *DefRecord =
2598 cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) {
2599 if (TemplateDecl *DescribedTemplate =
2600 DefRecord->getDescribedClassTemplate())
2601 Template = DescribedTemplate;
2604 DeclContext *DC = Template->getDeclContext();
2605 if (DC->isDependentContext())
2606 return nullptr;
2608 ConvertConstructorToDeductionGuideTransform Transform(
2609 *this, cast<ClassTemplateDecl>(Template));
2610 if (!isCompleteType(Loc, Transform.DeducedType))
2611 return nullptr;
2613 // In case we were expanding a pack when we attempted to declare deduction
2614 // guides, turn off pack expansion for everything we're about to do.
2615 ArgumentPackSubstitutionIndexRAII SubstIndex(*this,
2616 /*NewSubstitutionIndex=*/-1);
2617 // Create a template instantiation record to track the "instantiation" of
2618 // constructors into deduction guides.
2619 InstantiatingTemplate BuildingDeductionGuides(
2620 *this, Loc, Template,
2621 Sema::InstantiatingTemplate::BuildingDeductionGuidesTag{});
2622 if (BuildingDeductionGuides.isInvalid())
2623 return nullptr;
2625 return cast<FunctionTemplateDecl>(
2626 Transform.buildSimpleDeductionGuide(ParamTypes));
2629 void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template,
2630 SourceLocation Loc) {
2631 if (CXXRecordDecl *DefRecord =
2632 cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) {
2633 if (TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate())
2634 Template = DescribedTemplate;
2637 DeclContext *DC = Template->getDeclContext();
2638 if (DC->isDependentContext())
2639 return;
2641 ConvertConstructorToDeductionGuideTransform Transform(
2642 *this, cast<ClassTemplateDecl>(Template));
2643 if (!isCompleteType(Loc, Transform.DeducedType))
2644 return;
2646 // Check whether we've already declared deduction guides for this template.
2647 // FIXME: Consider storing a flag on the template to indicate this.
2648 auto Existing = DC->lookup(Transform.DeductionGuideName);
2649 for (auto *D : Existing)
2650 if (D->isImplicit())
2651 return;
2653 // In case we were expanding a pack when we attempted to declare deduction
2654 // guides, turn off pack expansion for everything we're about to do.
2655 ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
2656 // Create a template instantiation record to track the "instantiation" of
2657 // constructors into deduction guides.
2658 InstantiatingTemplate BuildingDeductionGuides(
2659 *this, Loc, Template,
2660 Sema::InstantiatingTemplate::BuildingDeductionGuidesTag{});
2661 if (BuildingDeductionGuides.isInvalid())
2662 return;
2664 // If the template is nested, then we need to use the original
2665 // pattern to iterate over the constructors.
2666 ClassTemplateDecl *Pattern = Transform.Template;
2667 while (Pattern->getInstantiatedFromMemberTemplate()) {
2668 if (Pattern->isMemberSpecialization())
2669 break;
2670 Pattern = Pattern->getInstantiatedFromMemberTemplate();
2671 Transform.NestedPattern = Pattern;
2674 // Convert declared constructors into deduction guide templates.
2675 // FIXME: Skip constructors for which deduction must necessarily fail (those
2676 // for which some class template parameter without a default argument never
2677 // appears in a deduced context).
2678 ContextRAII SavedContext(*this, Pattern->getTemplatedDecl());
2679 llvm::SmallPtrSet<NamedDecl *, 8> ProcessedCtors;
2680 bool AddedAny = false;
2681 for (NamedDecl *D : LookupConstructors(Pattern->getTemplatedDecl())) {
2682 D = D->getUnderlyingDecl();
2683 if (D->isInvalidDecl() || D->isImplicit())
2684 continue;
2686 D = cast<NamedDecl>(D->getCanonicalDecl());
2688 // Within C++20 modules, we may have multiple same constructors in
2689 // multiple same RecordDecls. And it doesn't make sense to create
2690 // duplicated deduction guides for the duplicated constructors.
2691 if (ProcessedCtors.count(D))
2692 continue;
2694 auto *FTD = dyn_cast<FunctionTemplateDecl>(D);
2695 auto *CD =
2696 dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D);
2697 // Class-scope explicit specializations (MS extension) do not result in
2698 // deduction guides.
2699 if (!CD || (!FTD && CD->isFunctionTemplateSpecialization()))
2700 continue;
2702 // Cannot make a deduction guide when unparsed arguments are present.
2703 if (llvm::any_of(CD->parameters(), [](ParmVarDecl *P) {
2704 return !P || P->hasUnparsedDefaultArg();
2706 continue;
2708 ProcessedCtors.insert(D);
2709 Transform.transformConstructor(FTD, CD);
2710 AddedAny = true;
2713 // C++17 [over.match.class.deduct]
2714 // -- If C is not defined or does not declare any constructors, an
2715 // additional function template derived as above from a hypothetical
2716 // constructor C().
2717 if (!AddedAny)
2718 Transform.buildSimpleDeductionGuide(std::nullopt);
2720 // -- An additional function template derived as above from a hypothetical
2721 // constructor C(C), called the copy deduction candidate.
2722 cast<CXXDeductionGuideDecl>(
2723 cast<FunctionTemplateDecl>(
2724 Transform.buildSimpleDeductionGuide(Transform.DeducedType))
2725 ->getTemplatedDecl())
2726 ->setDeductionCandidateKind(DeductionCandidate::Copy);
2728 SavedContext.pop();
2731 /// Diagnose the presence of a default template argument on a
2732 /// template parameter, which is ill-formed in certain contexts.
2734 /// \returns true if the default template argument should be dropped.
2735 static bool DiagnoseDefaultTemplateArgument(Sema &S,
2736 Sema::TemplateParamListContext TPC,
2737 SourceLocation ParamLoc,
2738 SourceRange DefArgRange) {
2739 switch (TPC) {
2740 case Sema::TPC_ClassTemplate:
2741 case Sema::TPC_VarTemplate:
2742 case Sema::TPC_TypeAliasTemplate:
2743 return false;
2745 case Sema::TPC_FunctionTemplate:
2746 case Sema::TPC_FriendFunctionTemplateDefinition:
2747 // C++ [temp.param]p9:
2748 // A default template-argument shall not be specified in a
2749 // function template declaration or a function template
2750 // definition [...]
2751 // If a friend function template declaration specifies a default
2752 // template-argument, that declaration shall be a definition and shall be
2753 // the only declaration of the function template in the translation unit.
2754 // (C++98/03 doesn't have this wording; see DR226).
2755 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
2756 diag::warn_cxx98_compat_template_parameter_default_in_function_template
2757 : diag::ext_template_parameter_default_in_function_template)
2758 << DefArgRange;
2759 return false;
2761 case Sema::TPC_ClassTemplateMember:
2762 // C++0x [temp.param]p9:
2763 // A default template-argument shall not be specified in the
2764 // template-parameter-lists of the definition of a member of a
2765 // class template that appears outside of the member's class.
2766 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
2767 << DefArgRange;
2768 return true;
2770 case Sema::TPC_FriendClassTemplate:
2771 case Sema::TPC_FriendFunctionTemplate:
2772 // C++ [temp.param]p9:
2773 // A default template-argument shall not be specified in a
2774 // friend template declaration.
2775 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
2776 << DefArgRange;
2777 return true;
2779 // FIXME: C++0x [temp.param]p9 allows default template-arguments
2780 // for friend function templates if there is only a single
2781 // declaration (and it is a definition). Strange!
2784 llvm_unreachable("Invalid TemplateParamListContext!");
2787 /// Check for unexpanded parameter packs within the template parameters
2788 /// of a template template parameter, recursively.
2789 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
2790 TemplateTemplateParmDecl *TTP) {
2791 // A template template parameter which is a parameter pack is also a pack
2792 // expansion.
2793 if (TTP->isParameterPack())
2794 return false;
2796 TemplateParameterList *Params = TTP->getTemplateParameters();
2797 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
2798 NamedDecl *P = Params->getParam(I);
2799 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) {
2800 if (!TTP->isParameterPack())
2801 if (const TypeConstraint *TC = TTP->getTypeConstraint())
2802 if (TC->hasExplicitTemplateArgs())
2803 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
2804 if (S.DiagnoseUnexpandedParameterPack(ArgLoc,
2805 Sema::UPPC_TypeConstraint))
2806 return true;
2807 continue;
2810 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
2811 if (!NTTP->isParameterPack() &&
2812 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
2813 NTTP->getTypeSourceInfo(),
2814 Sema::UPPC_NonTypeTemplateParameterType))
2815 return true;
2817 continue;
2820 if (TemplateTemplateParmDecl *InnerTTP
2821 = dyn_cast<TemplateTemplateParmDecl>(P))
2822 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
2823 return true;
2826 return false;
2829 /// Checks the validity of a template parameter list, possibly
2830 /// considering the template parameter list from a previous
2831 /// declaration.
2833 /// If an "old" template parameter list is provided, it must be
2834 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
2835 /// template parameter list.
2837 /// \param NewParams Template parameter list for a new template
2838 /// declaration. This template parameter list will be updated with any
2839 /// default arguments that are carried through from the previous
2840 /// template parameter list.
2842 /// \param OldParams If provided, template parameter list from a
2843 /// previous declaration of the same template. Default template
2844 /// arguments will be merged from the old template parameter list to
2845 /// the new template parameter list.
2847 /// \param TPC Describes the context in which we are checking the given
2848 /// template parameter list.
2850 /// \param SkipBody If we might have already made a prior merged definition
2851 /// of this template visible, the corresponding body-skipping information.
2852 /// Default argument redefinition is not an error when skipping such a body,
2853 /// because (under the ODR) we can assume the default arguments are the same
2854 /// as the prior merged definition.
2856 /// \returns true if an error occurred, false otherwise.
2857 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
2858 TemplateParameterList *OldParams,
2859 TemplateParamListContext TPC,
2860 SkipBodyInfo *SkipBody) {
2861 bool Invalid = false;
2863 // C++ [temp.param]p10:
2864 // The set of default template-arguments available for use with a
2865 // template declaration or definition is obtained by merging the
2866 // default arguments from the definition (if in scope) and all
2867 // declarations in scope in the same way default function
2868 // arguments are (8.3.6).
2869 bool SawDefaultArgument = false;
2870 SourceLocation PreviousDefaultArgLoc;
2872 // Dummy initialization to avoid warnings.
2873 TemplateParameterList::iterator OldParam = NewParams->end();
2874 if (OldParams)
2875 OldParam = OldParams->begin();
2877 bool RemoveDefaultArguments = false;
2878 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2879 NewParamEnd = NewParams->end();
2880 NewParam != NewParamEnd; ++NewParam) {
2881 // Whether we've seen a duplicate default argument in the same translation
2882 // unit.
2883 bool RedundantDefaultArg = false;
2884 // Whether we've found inconsis inconsitent default arguments in different
2885 // translation unit.
2886 bool InconsistentDefaultArg = false;
2887 // The name of the module which contains the inconsistent default argument.
2888 std::string PrevModuleName;
2890 SourceLocation OldDefaultLoc;
2891 SourceLocation NewDefaultLoc;
2893 // Variable used to diagnose missing default arguments
2894 bool MissingDefaultArg = false;
2896 // Variable used to diagnose non-final parameter packs
2897 bool SawParameterPack = false;
2899 if (TemplateTypeParmDecl *NewTypeParm
2900 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
2901 // Check the presence of a default argument here.
2902 if (NewTypeParm->hasDefaultArgument() &&
2903 DiagnoseDefaultTemplateArgument(*this, TPC,
2904 NewTypeParm->getLocation(),
2905 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
2906 .getSourceRange()))
2907 NewTypeParm->removeDefaultArgument();
2909 // Merge default arguments for template type parameters.
2910 TemplateTypeParmDecl *OldTypeParm
2911 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
2912 if (NewTypeParm->isParameterPack()) {
2913 assert(!NewTypeParm->hasDefaultArgument() &&
2914 "Parameter packs can't have a default argument!");
2915 SawParameterPack = true;
2916 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
2917 NewTypeParm->hasDefaultArgument() &&
2918 (!SkipBody || !SkipBody->ShouldSkip)) {
2919 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
2920 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
2921 SawDefaultArgument = true;
2923 if (!OldTypeParm->getOwningModule())
2924 RedundantDefaultArg = true;
2925 else if (!getASTContext().isSameDefaultTemplateArgument(OldTypeParm,
2926 NewTypeParm)) {
2927 InconsistentDefaultArg = true;
2928 PrevModuleName =
2929 OldTypeParm->getImportedOwningModule()->getFullModuleName();
2931 PreviousDefaultArgLoc = NewDefaultLoc;
2932 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
2933 // Merge the default argument from the old declaration to the
2934 // new declaration.
2935 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
2936 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
2937 } else if (NewTypeParm->hasDefaultArgument()) {
2938 SawDefaultArgument = true;
2939 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
2940 } else if (SawDefaultArgument)
2941 MissingDefaultArg = true;
2942 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
2943 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
2944 // Check for unexpanded parameter packs.
2945 if (!NewNonTypeParm->isParameterPack() &&
2946 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
2947 NewNonTypeParm->getTypeSourceInfo(),
2948 UPPC_NonTypeTemplateParameterType)) {
2949 Invalid = true;
2950 continue;
2953 // Check the presence of a default argument here.
2954 if (NewNonTypeParm->hasDefaultArgument() &&
2955 DiagnoseDefaultTemplateArgument(*this, TPC,
2956 NewNonTypeParm->getLocation(),
2957 NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
2958 NewNonTypeParm->removeDefaultArgument();
2961 // Merge default arguments for non-type template parameters
2962 NonTypeTemplateParmDecl *OldNonTypeParm
2963 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
2964 if (NewNonTypeParm->isParameterPack()) {
2965 assert(!NewNonTypeParm->hasDefaultArgument() &&
2966 "Parameter packs can't have a default argument!");
2967 if (!NewNonTypeParm->isPackExpansion())
2968 SawParameterPack = true;
2969 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
2970 NewNonTypeParm->hasDefaultArgument() &&
2971 (!SkipBody || !SkipBody->ShouldSkip)) {
2972 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
2973 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
2974 SawDefaultArgument = true;
2975 if (!OldNonTypeParm->getOwningModule())
2976 RedundantDefaultArg = true;
2977 else if (!getASTContext().isSameDefaultTemplateArgument(
2978 OldNonTypeParm, NewNonTypeParm)) {
2979 InconsistentDefaultArg = true;
2980 PrevModuleName =
2981 OldNonTypeParm->getImportedOwningModule()->getFullModuleName();
2983 PreviousDefaultArgLoc = NewDefaultLoc;
2984 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
2985 // Merge the default argument from the old declaration to the
2986 // new declaration.
2987 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
2988 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
2989 } else if (NewNonTypeParm->hasDefaultArgument()) {
2990 SawDefaultArgument = true;
2991 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
2992 } else if (SawDefaultArgument)
2993 MissingDefaultArg = true;
2994 } else {
2995 TemplateTemplateParmDecl *NewTemplateParm
2996 = cast<TemplateTemplateParmDecl>(*NewParam);
2998 // Check for unexpanded parameter packs, recursively.
2999 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
3000 Invalid = true;
3001 continue;
3004 // Check the presence of a default argument here.
3005 if (NewTemplateParm->hasDefaultArgument() &&
3006 DiagnoseDefaultTemplateArgument(*this, TPC,
3007 NewTemplateParm->getLocation(),
3008 NewTemplateParm->getDefaultArgument().getSourceRange()))
3009 NewTemplateParm->removeDefaultArgument();
3011 // Merge default arguments for template template parameters
3012 TemplateTemplateParmDecl *OldTemplateParm
3013 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
3014 if (NewTemplateParm->isParameterPack()) {
3015 assert(!NewTemplateParm->hasDefaultArgument() &&
3016 "Parameter packs can't have a default argument!");
3017 if (!NewTemplateParm->isPackExpansion())
3018 SawParameterPack = true;
3019 } else if (OldTemplateParm &&
3020 hasVisibleDefaultArgument(OldTemplateParm) &&
3021 NewTemplateParm->hasDefaultArgument() &&
3022 (!SkipBody || !SkipBody->ShouldSkip)) {
3023 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
3024 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
3025 SawDefaultArgument = true;
3026 if (!OldTemplateParm->getOwningModule())
3027 RedundantDefaultArg = true;
3028 else if (!getASTContext().isSameDefaultTemplateArgument(
3029 OldTemplateParm, NewTemplateParm)) {
3030 InconsistentDefaultArg = true;
3031 PrevModuleName =
3032 OldTemplateParm->getImportedOwningModule()->getFullModuleName();
3034 PreviousDefaultArgLoc = NewDefaultLoc;
3035 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
3036 // Merge the default argument from the old declaration to the
3037 // new declaration.
3038 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
3039 PreviousDefaultArgLoc
3040 = OldTemplateParm->getDefaultArgument().getLocation();
3041 } else if (NewTemplateParm->hasDefaultArgument()) {
3042 SawDefaultArgument = true;
3043 PreviousDefaultArgLoc
3044 = NewTemplateParm->getDefaultArgument().getLocation();
3045 } else if (SawDefaultArgument)
3046 MissingDefaultArg = true;
3049 // C++11 [temp.param]p11:
3050 // If a template parameter of a primary class template or alias template
3051 // is a template parameter pack, it shall be the last template parameter.
3052 if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
3053 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
3054 TPC == TPC_TypeAliasTemplate)) {
3055 Diag((*NewParam)->getLocation(),
3056 diag::err_template_param_pack_must_be_last_template_parameter);
3057 Invalid = true;
3060 // [basic.def.odr]/13:
3061 // There can be more than one definition of a
3062 // ...
3063 // default template argument
3064 // ...
3065 // in a program provided that each definition appears in a different
3066 // translation unit and the definitions satisfy the [same-meaning
3067 // criteria of the ODR].
3069 // Simply, the design of modules allows the definition of template default
3070 // argument to be repeated across translation unit. Note that the ODR is
3071 // checked elsewhere. But it is still not allowed to repeat template default
3072 // argument in the same translation unit.
3073 if (RedundantDefaultArg) {
3074 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
3075 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
3076 Invalid = true;
3077 } else if (InconsistentDefaultArg) {
3078 // We could only diagnose about the case that the OldParam is imported.
3079 // The case NewParam is imported should be handled in ASTReader.
3080 Diag(NewDefaultLoc,
3081 diag::err_template_param_default_arg_inconsistent_redefinition);
3082 Diag(OldDefaultLoc,
3083 diag::note_template_param_prev_default_arg_in_other_module)
3084 << PrevModuleName;
3085 Invalid = true;
3086 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
3087 // C++ [temp.param]p11:
3088 // If a template-parameter of a class template has a default
3089 // template-argument, each subsequent template-parameter shall either
3090 // have a default template-argument supplied or be a template parameter
3091 // pack.
3092 Diag((*NewParam)->getLocation(),
3093 diag::err_template_param_default_arg_missing);
3094 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
3095 Invalid = true;
3096 RemoveDefaultArguments = true;
3099 // If we have an old template parameter list that we're merging
3100 // in, move on to the next parameter.
3101 if (OldParams)
3102 ++OldParam;
3105 // We were missing some default arguments at the end of the list, so remove
3106 // all of the default arguments.
3107 if (RemoveDefaultArguments) {
3108 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
3109 NewParamEnd = NewParams->end();
3110 NewParam != NewParamEnd; ++NewParam) {
3111 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
3112 TTP->removeDefaultArgument();
3113 else if (NonTypeTemplateParmDecl *NTTP
3114 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
3115 NTTP->removeDefaultArgument();
3116 else
3117 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
3121 return Invalid;
3124 namespace {
3126 /// A class which looks for a use of a certain level of template
3127 /// parameter.
3128 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
3129 typedef RecursiveASTVisitor<DependencyChecker> super;
3131 unsigned Depth;
3133 // Whether we're looking for a use of a template parameter that makes the
3134 // overall construct type-dependent / a dependent type. This is strictly
3135 // best-effort for now; we may fail to match at all for a dependent type
3136 // in some cases if this is set.
3137 bool IgnoreNonTypeDependent;
3139 bool Match;
3140 SourceLocation MatchLoc;
3142 DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent)
3143 : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent),
3144 Match(false) {}
3146 DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
3147 : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {
3148 NamedDecl *ND = Params->getParam(0);
3149 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
3150 Depth = PD->getDepth();
3151 } else if (NonTypeTemplateParmDecl *PD =
3152 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
3153 Depth = PD->getDepth();
3154 } else {
3155 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
3159 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
3160 if (ParmDepth >= Depth) {
3161 Match = true;
3162 MatchLoc = Loc;
3163 return true;
3165 return false;
3168 bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) {
3169 // Prune out non-type-dependent expressions if requested. This can
3170 // sometimes result in us failing to find a template parameter reference
3171 // (if a value-dependent expression creates a dependent type), but this
3172 // mode is best-effort only.
3173 if (auto *E = dyn_cast_or_null<Expr>(S))
3174 if (IgnoreNonTypeDependent && !E->isTypeDependent())
3175 return true;
3176 return super::TraverseStmt(S, Q);
3179 bool TraverseTypeLoc(TypeLoc TL) {
3180 if (IgnoreNonTypeDependent && !TL.isNull() &&
3181 !TL.getType()->isDependentType())
3182 return true;
3183 return super::TraverseTypeLoc(TL);
3186 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
3187 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
3190 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
3191 // For a best-effort search, keep looking until we find a location.
3192 return IgnoreNonTypeDependent || !Matches(T->getDepth());
3195 bool TraverseTemplateName(TemplateName N) {
3196 if (TemplateTemplateParmDecl *PD =
3197 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
3198 if (Matches(PD->getDepth()))
3199 return false;
3200 return super::TraverseTemplateName(N);
3203 bool VisitDeclRefExpr(DeclRefExpr *E) {
3204 if (NonTypeTemplateParmDecl *PD =
3205 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
3206 if (Matches(PD->getDepth(), E->getExprLoc()))
3207 return false;
3208 return super::VisitDeclRefExpr(E);
3211 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
3212 return TraverseType(T->getReplacementType());
3215 bool
3216 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
3217 return TraverseTemplateArgument(T->getArgumentPack());
3220 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
3221 return TraverseType(T->getInjectedSpecializationType());
3224 } // end anonymous namespace
3226 /// Determines whether a given type depends on the given parameter
3227 /// list.
3228 static bool
3229 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
3230 if (!Params->size())
3231 return false;
3233 DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
3234 Checker.TraverseType(T);
3235 return Checker.Match;
3238 // Find the source range corresponding to the named type in the given
3239 // nested-name-specifier, if any.
3240 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
3241 QualType T,
3242 const CXXScopeSpec &SS) {
3243 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
3244 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
3245 if (const Type *CurType = NNS->getAsType()) {
3246 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
3247 return NNSLoc.getTypeLoc().getSourceRange();
3248 } else
3249 break;
3251 NNSLoc = NNSLoc.getPrefix();
3254 return SourceRange();
3257 /// Match the given template parameter lists to the given scope
3258 /// specifier, returning the template parameter list that applies to the
3259 /// name.
3261 /// \param DeclStartLoc the start of the declaration that has a scope
3262 /// specifier or a template parameter list.
3264 /// \param DeclLoc The location of the declaration itself.
3266 /// \param SS the scope specifier that will be matched to the given template
3267 /// parameter lists. This scope specifier precedes a qualified name that is
3268 /// being declared.
3270 /// \param TemplateId The template-id following the scope specifier, if there
3271 /// is one. Used to check for a missing 'template<>'.
3273 /// \param ParamLists the template parameter lists, from the outermost to the
3274 /// innermost template parameter lists.
3276 /// \param IsFriend Whether to apply the slightly different rules for
3277 /// matching template parameters to scope specifiers in friend
3278 /// declarations.
3280 /// \param IsMemberSpecialization will be set true if the scope specifier
3281 /// denotes a fully-specialized type, and therefore this is a declaration of
3282 /// a member specialization.
3284 /// \returns the template parameter list, if any, that corresponds to the
3285 /// name that is preceded by the scope specifier @p SS. This template
3286 /// parameter list may have template parameters (if we're declaring a
3287 /// template) or may have no template parameters (if we're declaring a
3288 /// template specialization), or may be NULL (if what we're declaring isn't
3289 /// itself a template).
3290 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
3291 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
3292 TemplateIdAnnotation *TemplateId,
3293 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
3294 bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) {
3295 IsMemberSpecialization = false;
3296 Invalid = false;
3298 // The sequence of nested types to which we will match up the template
3299 // parameter lists. We first build this list by starting with the type named
3300 // by the nested-name-specifier and walking out until we run out of types.
3301 SmallVector<QualType, 4> NestedTypes;
3302 QualType T;
3303 if (SS.getScopeRep()) {
3304 if (CXXRecordDecl *Record
3305 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
3306 T = Context.getTypeDeclType(Record);
3307 else
3308 T = QualType(SS.getScopeRep()->getAsType(), 0);
3311 // If we found an explicit specialization that prevents us from needing
3312 // 'template<>' headers, this will be set to the location of that
3313 // explicit specialization.
3314 SourceLocation ExplicitSpecLoc;
3316 while (!T.isNull()) {
3317 NestedTypes.push_back(T);
3319 // Retrieve the parent of a record type.
3320 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3321 // If this type is an explicit specialization, we're done.
3322 if (ClassTemplateSpecializationDecl *Spec
3323 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
3324 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
3325 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
3326 ExplicitSpecLoc = Spec->getLocation();
3327 break;
3329 } else if (Record->getTemplateSpecializationKind()
3330 == TSK_ExplicitSpecialization) {
3331 ExplicitSpecLoc = Record->getLocation();
3332 break;
3335 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
3336 T = Context.getTypeDeclType(Parent);
3337 else
3338 T = QualType();
3339 continue;
3342 if (const TemplateSpecializationType *TST
3343 = T->getAs<TemplateSpecializationType>()) {
3344 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3345 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
3346 T = Context.getTypeDeclType(Parent);
3347 else
3348 T = QualType();
3349 continue;
3353 // Look one step prior in a dependent template specialization type.
3354 if (const DependentTemplateSpecializationType *DependentTST
3355 = T->getAs<DependentTemplateSpecializationType>()) {
3356 if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
3357 T = QualType(NNS->getAsType(), 0);
3358 else
3359 T = QualType();
3360 continue;
3363 // Look one step prior in a dependent name type.
3364 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
3365 if (NestedNameSpecifier *NNS = DependentName->getQualifier())
3366 T = QualType(NNS->getAsType(), 0);
3367 else
3368 T = QualType();
3369 continue;
3372 // Retrieve the parent of an enumeration type.
3373 if (const EnumType *EnumT = T->getAs<EnumType>()) {
3374 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
3375 // check here.
3376 EnumDecl *Enum = EnumT->getDecl();
3378 // Get to the parent type.
3379 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
3380 T = Context.getTypeDeclType(Parent);
3381 else
3382 T = QualType();
3383 continue;
3386 T = QualType();
3388 // Reverse the nested types list, since we want to traverse from the outermost
3389 // to the innermost while checking template-parameter-lists.
3390 std::reverse(NestedTypes.begin(), NestedTypes.end());
3392 // C++0x [temp.expl.spec]p17:
3393 // A member or a member template may be nested within many
3394 // enclosing class templates. In an explicit specialization for
3395 // such a member, the member declaration shall be preceded by a
3396 // template<> for each enclosing class template that is
3397 // explicitly specialized.
3398 bool SawNonEmptyTemplateParameterList = false;
3400 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
3401 if (SawNonEmptyTemplateParameterList) {
3402 if (!SuppressDiagnostic)
3403 Diag(DeclLoc, diag::err_specialize_member_of_template)
3404 << !Recovery << Range;
3405 Invalid = true;
3406 IsMemberSpecialization = false;
3407 return true;
3410 return false;
3413 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
3414 // Check that we can have an explicit specialization here.
3415 if (CheckExplicitSpecialization(Range, true))
3416 return true;
3418 // We don't have a template header, but we should.
3419 SourceLocation ExpectedTemplateLoc;
3420 if (!ParamLists.empty())
3421 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
3422 else
3423 ExpectedTemplateLoc = DeclStartLoc;
3425 if (!SuppressDiagnostic)
3426 Diag(DeclLoc, diag::err_template_spec_needs_header)
3427 << Range
3428 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
3429 return false;
3432 unsigned ParamIdx = 0;
3433 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
3434 ++TypeIdx) {
3435 T = NestedTypes[TypeIdx];
3437 // Whether we expect a 'template<>' header.
3438 bool NeedEmptyTemplateHeader = false;
3440 // Whether we expect a template header with parameters.
3441 bool NeedNonemptyTemplateHeader = false;
3443 // For a dependent type, the set of template parameters that we
3444 // expect to see.
3445 TemplateParameterList *ExpectedTemplateParams = nullptr;
3447 // C++0x [temp.expl.spec]p15:
3448 // A member or a member template may be nested within many enclosing
3449 // class templates. In an explicit specialization for such a member, the
3450 // member declaration shall be preceded by a template<> for each
3451 // enclosing class template that is explicitly specialized.
3452 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3453 if (ClassTemplatePartialSpecializationDecl *Partial
3454 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
3455 ExpectedTemplateParams = Partial->getTemplateParameters();
3456 NeedNonemptyTemplateHeader = true;
3457 } else if (Record->isDependentType()) {
3458 if (Record->getDescribedClassTemplate()) {
3459 ExpectedTemplateParams = Record->getDescribedClassTemplate()
3460 ->getTemplateParameters();
3461 NeedNonemptyTemplateHeader = true;
3463 } else if (ClassTemplateSpecializationDecl *Spec
3464 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
3465 // C++0x [temp.expl.spec]p4:
3466 // Members of an explicitly specialized class template are defined
3467 // in the same manner as members of normal classes, and not using
3468 // the template<> syntax.
3469 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
3470 NeedEmptyTemplateHeader = true;
3471 else
3472 continue;
3473 } else if (Record->getTemplateSpecializationKind()) {
3474 if (Record->getTemplateSpecializationKind()
3475 != TSK_ExplicitSpecialization &&
3476 TypeIdx == NumTypes - 1)
3477 IsMemberSpecialization = true;
3479 continue;
3481 } else if (const TemplateSpecializationType *TST
3482 = T->getAs<TemplateSpecializationType>()) {
3483 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3484 ExpectedTemplateParams = Template->getTemplateParameters();
3485 NeedNonemptyTemplateHeader = true;
3487 } else if (T->getAs<DependentTemplateSpecializationType>()) {
3488 // FIXME: We actually could/should check the template arguments here
3489 // against the corresponding template parameter list.
3490 NeedNonemptyTemplateHeader = false;
3493 // C++ [temp.expl.spec]p16:
3494 // In an explicit specialization declaration for a member of a class
3495 // template or a member template that ap- pears in namespace scope, the
3496 // member template and some of its enclosing class templates may remain
3497 // unspecialized, except that the declaration shall not explicitly
3498 // specialize a class member template if its en- closing class templates
3499 // are not explicitly specialized as well.
3500 if (ParamIdx < ParamLists.size()) {
3501 if (ParamLists[ParamIdx]->size() == 0) {
3502 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3503 false))
3504 return nullptr;
3505 } else
3506 SawNonEmptyTemplateParameterList = true;
3509 if (NeedEmptyTemplateHeader) {
3510 // If we're on the last of the types, and we need a 'template<>' header
3511 // here, then it's a member specialization.
3512 if (TypeIdx == NumTypes - 1)
3513 IsMemberSpecialization = true;
3515 if (ParamIdx < ParamLists.size()) {
3516 if (ParamLists[ParamIdx]->size() > 0) {
3517 // The header has template parameters when it shouldn't. Complain.
3518 if (!SuppressDiagnostic)
3519 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3520 diag::err_template_param_list_matches_nontemplate)
3521 << T
3522 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
3523 ParamLists[ParamIdx]->getRAngleLoc())
3524 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3525 Invalid = true;
3526 return nullptr;
3529 // Consume this template header.
3530 ++ParamIdx;
3531 continue;
3534 if (!IsFriend)
3535 if (DiagnoseMissingExplicitSpecialization(
3536 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
3537 return nullptr;
3539 continue;
3542 if (NeedNonemptyTemplateHeader) {
3543 // In friend declarations we can have template-ids which don't
3544 // depend on the corresponding template parameter lists. But
3545 // assume that empty parameter lists are supposed to match this
3546 // template-id.
3547 if (IsFriend && T->isDependentType()) {
3548 if (ParamIdx < ParamLists.size() &&
3549 DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
3550 ExpectedTemplateParams = nullptr;
3551 else
3552 continue;
3555 if (ParamIdx < ParamLists.size()) {
3556 // Check the template parameter list, if we can.
3557 if (ExpectedTemplateParams &&
3558 !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
3559 ExpectedTemplateParams,
3560 !SuppressDiagnostic, TPL_TemplateMatch))
3561 Invalid = true;
3563 if (!Invalid &&
3564 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
3565 TPC_ClassTemplateMember))
3566 Invalid = true;
3568 ++ParamIdx;
3569 continue;
3572 if (!SuppressDiagnostic)
3573 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
3574 << T
3575 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3576 Invalid = true;
3577 continue;
3581 // If there were at least as many template-ids as there were template
3582 // parameter lists, then there are no template parameter lists remaining for
3583 // the declaration itself.
3584 if (ParamIdx >= ParamLists.size()) {
3585 if (TemplateId && !IsFriend) {
3586 // We don't have a template header for the declaration itself, but we
3587 // should.
3588 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
3589 TemplateId->RAngleLoc));
3591 // Fabricate an empty template parameter list for the invented header.
3592 return TemplateParameterList::Create(Context, SourceLocation(),
3593 SourceLocation(), std::nullopt,
3594 SourceLocation(), nullptr);
3597 return nullptr;
3600 // If there were too many template parameter lists, complain about that now.
3601 if (ParamIdx < ParamLists.size() - 1) {
3602 bool HasAnyExplicitSpecHeader = false;
3603 bool AllExplicitSpecHeaders = true;
3604 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
3605 if (ParamLists[I]->size() == 0)
3606 HasAnyExplicitSpecHeader = true;
3607 else
3608 AllExplicitSpecHeaders = false;
3611 if (!SuppressDiagnostic)
3612 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3613 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
3614 : diag::err_template_spec_extra_headers)
3615 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
3616 ParamLists[ParamLists.size() - 2]->getRAngleLoc());
3618 // If there was a specialization somewhere, such that 'template<>' is
3619 // not required, and there were any 'template<>' headers, note where the
3620 // specialization occurred.
3621 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader &&
3622 !SuppressDiagnostic)
3623 Diag(ExplicitSpecLoc,
3624 diag::note_explicit_template_spec_does_not_need_header)
3625 << NestedTypes.back();
3627 // We have a template parameter list with no corresponding scope, which
3628 // means that the resulting template declaration can't be instantiated
3629 // properly (we'll end up with dependent nodes when we shouldn't).
3630 if (!AllExplicitSpecHeaders)
3631 Invalid = true;
3634 // C++ [temp.expl.spec]p16:
3635 // In an explicit specialization declaration for a member of a class
3636 // template or a member template that ap- pears in namespace scope, the
3637 // member template and some of its enclosing class templates may remain
3638 // unspecialized, except that the declaration shall not explicitly
3639 // specialize a class member template if its en- closing class templates
3640 // are not explicitly specialized as well.
3641 if (ParamLists.back()->size() == 0 &&
3642 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3643 false))
3644 return nullptr;
3646 // Return the last template parameter list, which corresponds to the
3647 // entity being declared.
3648 return ParamLists.back();
3651 void Sema::NoteAllFoundTemplates(TemplateName Name) {
3652 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
3653 Diag(Template->getLocation(), diag::note_template_declared_here)
3654 << (isa<FunctionTemplateDecl>(Template)
3656 : isa<ClassTemplateDecl>(Template)
3658 : isa<VarTemplateDecl>(Template)
3660 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
3661 << Template->getDeclName();
3662 return;
3665 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
3666 for (OverloadedTemplateStorage::iterator I = OST->begin(),
3667 IEnd = OST->end();
3668 I != IEnd; ++I)
3669 Diag((*I)->getLocation(), diag::note_template_declared_here)
3670 << 0 << (*I)->getDeclName();
3672 return;
3676 static QualType
3677 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
3678 ArrayRef<TemplateArgument> Converted,
3679 SourceLocation TemplateLoc,
3680 TemplateArgumentListInfo &TemplateArgs) {
3681 ASTContext &Context = SemaRef.getASTContext();
3683 switch (BTD->getBuiltinTemplateKind()) {
3684 case BTK__make_integer_seq: {
3685 // Specializations of __make_integer_seq<S, T, N> are treated like
3686 // S<T, 0, ..., N-1>.
3688 QualType OrigType = Converted[1].getAsType();
3689 // C++14 [inteseq.intseq]p1:
3690 // T shall be an integer type.
3691 if (!OrigType->isDependentType() && !OrigType->isIntegralType(Context)) {
3692 SemaRef.Diag(TemplateArgs[1].getLocation(),
3693 diag::err_integer_sequence_integral_element_type);
3694 return QualType();
3697 TemplateArgument NumArgsArg = Converted[2];
3698 if (NumArgsArg.isDependent())
3699 return Context.getCanonicalTemplateSpecializationType(TemplateName(BTD),
3700 Converted);
3702 TemplateArgumentListInfo SyntheticTemplateArgs;
3703 // The type argument, wrapped in substitution sugar, gets reused as the
3704 // first template argument in the synthetic template argument list.
3705 SyntheticTemplateArgs.addArgument(
3706 TemplateArgumentLoc(TemplateArgument(OrigType),
3707 SemaRef.Context.getTrivialTypeSourceInfo(
3708 OrigType, TemplateArgs[1].getLocation())));
3710 if (llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); NumArgs >= 0) {
3711 // Expand N into 0 ... N-1.
3712 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
3713 I < NumArgs; ++I) {
3714 TemplateArgument TA(Context, I, OrigType);
3715 SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
3716 TA, OrigType, TemplateArgs[2].getLocation()));
3718 } else {
3719 // C++14 [inteseq.make]p1:
3720 // If N is negative the program is ill-formed.
3721 SemaRef.Diag(TemplateArgs[2].getLocation(),
3722 diag::err_integer_sequence_negative_length);
3723 return QualType();
3726 // The first template argument will be reused as the template decl that
3727 // our synthetic template arguments will be applied to.
3728 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
3729 TemplateLoc, SyntheticTemplateArgs);
3732 case BTK__type_pack_element:
3733 // Specializations of
3734 // __type_pack_element<Index, T_1, ..., T_N>
3735 // are treated like T_Index.
3736 assert(Converted.size() == 2 &&
3737 "__type_pack_element should be given an index and a parameter pack");
3739 TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
3740 if (IndexArg.isDependent() || Ts.isDependent())
3741 return Context.getCanonicalTemplateSpecializationType(TemplateName(BTD),
3742 Converted);
3744 llvm::APSInt Index = IndexArg.getAsIntegral();
3745 assert(Index >= 0 && "the index used with __type_pack_element should be of "
3746 "type std::size_t, and hence be non-negative");
3747 // If the Index is out of bounds, the program is ill-formed.
3748 if (Index >= Ts.pack_size()) {
3749 SemaRef.Diag(TemplateArgs[0].getLocation(),
3750 diag::err_type_pack_element_out_of_bounds);
3751 return QualType();
3754 // We simply return the type at index `Index`.
3755 int64_t N = Index.getExtValue();
3756 return Ts.getPackAsArray()[N].getAsType();
3758 llvm_unreachable("unexpected BuiltinTemplateDecl!");
3761 /// Determine whether this alias template is "enable_if_t".
3762 /// libc++ >=14 uses "__enable_if_t" in C++11 mode.
3763 static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) {
3764 return AliasTemplate->getName().equals("enable_if_t") ||
3765 AliasTemplate->getName().equals("__enable_if_t");
3768 /// Collect all of the separable terms in the given condition, which
3769 /// might be a conjunction.
3771 /// FIXME: The right answer is to convert the logical expression into
3772 /// disjunctive normal form, so we can find the first failed term
3773 /// within each possible clause.
3774 static void collectConjunctionTerms(Expr *Clause,
3775 SmallVectorImpl<Expr *> &Terms) {
3776 if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) {
3777 if (BinOp->getOpcode() == BO_LAnd) {
3778 collectConjunctionTerms(BinOp->getLHS(), Terms);
3779 collectConjunctionTerms(BinOp->getRHS(), Terms);
3780 return;
3784 Terms.push_back(Clause);
3787 // The ranges-v3 library uses an odd pattern of a top-level "||" with
3788 // a left-hand side that is value-dependent but never true. Identify
3789 // the idiom and ignore that term.
3790 static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) {
3791 // Top-level '||'.
3792 auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts());
3793 if (!BinOp) return Cond;
3795 if (BinOp->getOpcode() != BO_LOr) return Cond;
3797 // With an inner '==' that has a literal on the right-hand side.
3798 Expr *LHS = BinOp->getLHS();
3799 auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts());
3800 if (!InnerBinOp) return Cond;
3802 if (InnerBinOp->getOpcode() != BO_EQ ||
3803 !isa<IntegerLiteral>(InnerBinOp->getRHS()))
3804 return Cond;
3806 // If the inner binary operation came from a macro expansion named
3807 // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side
3808 // of the '||', which is the real, user-provided condition.
3809 SourceLocation Loc = InnerBinOp->getExprLoc();
3810 if (!Loc.isMacroID()) return Cond;
3812 StringRef MacroName = PP.getImmediateMacroName(Loc);
3813 if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_")
3814 return BinOp->getRHS();
3816 return Cond;
3819 namespace {
3821 // A PrinterHelper that prints more helpful diagnostics for some sub-expressions
3822 // within failing boolean expression, such as substituting template parameters
3823 // for actual types.
3824 class FailedBooleanConditionPrinterHelper : public PrinterHelper {
3825 public:
3826 explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P)
3827 : Policy(P) {}
3829 bool handledStmt(Stmt *E, raw_ostream &OS) override {
3830 const auto *DR = dyn_cast<DeclRefExpr>(E);
3831 if (DR && DR->getQualifier()) {
3832 // If this is a qualified name, expand the template arguments in nested
3833 // qualifiers.
3834 DR->getQualifier()->print(OS, Policy, true);
3835 // Then print the decl itself.
3836 const ValueDecl *VD = DR->getDecl();
3837 OS << VD->getName();
3838 if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
3839 // This is a template variable, print the expanded template arguments.
3840 printTemplateArgumentList(
3841 OS, IV->getTemplateArgs().asArray(), Policy,
3842 IV->getSpecializedTemplate()->getTemplateParameters());
3844 return true;
3846 return false;
3849 private:
3850 const PrintingPolicy Policy;
3853 } // end anonymous namespace
3855 std::pair<Expr *, std::string>
3856 Sema::findFailedBooleanCondition(Expr *Cond) {
3857 Cond = lookThroughRangesV3Condition(PP, Cond);
3859 // Separate out all of the terms in a conjunction.
3860 SmallVector<Expr *, 4> Terms;
3861 collectConjunctionTerms(Cond, Terms);
3863 // Determine which term failed.
3864 Expr *FailedCond = nullptr;
3865 for (Expr *Term : Terms) {
3866 Expr *TermAsWritten = Term->IgnoreParenImpCasts();
3868 // Literals are uninteresting.
3869 if (isa<CXXBoolLiteralExpr>(TermAsWritten) ||
3870 isa<IntegerLiteral>(TermAsWritten))
3871 continue;
3873 // The initialization of the parameter from the argument is
3874 // a constant-evaluated context.
3875 EnterExpressionEvaluationContext ConstantEvaluated(
3876 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
3878 bool Succeeded;
3879 if (Term->EvaluateAsBooleanCondition(Succeeded, Context) &&
3880 !Succeeded) {
3881 FailedCond = TermAsWritten;
3882 break;
3885 if (!FailedCond)
3886 FailedCond = Cond->IgnoreParenImpCasts();
3888 std::string Description;
3890 llvm::raw_string_ostream Out(Description);
3891 PrintingPolicy Policy = getPrintingPolicy();
3892 Policy.PrintCanonicalTypes = true;
3893 FailedBooleanConditionPrinterHelper Helper(Policy);
3894 FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr);
3896 return { FailedCond, Description };
3899 QualType Sema::CheckTemplateIdType(TemplateName Name,
3900 SourceLocation TemplateLoc,
3901 TemplateArgumentListInfo &TemplateArgs) {
3902 DependentTemplateName *DTN
3903 = Name.getUnderlying().getAsDependentTemplateName();
3904 if (DTN && DTN->isIdentifier())
3905 // When building a template-id where the template-name is dependent,
3906 // assume the template is a type template. Either our assumption is
3907 // correct, or the code is ill-formed and will be diagnosed when the
3908 // dependent name is substituted.
3909 return Context.getDependentTemplateSpecializationType(
3910 ElaboratedTypeKeyword::None, DTN->getQualifier(), DTN->getIdentifier(),
3911 TemplateArgs.arguments());
3913 if (Name.getAsAssumedTemplateName() &&
3914 resolveAssumedTemplateNameAsType(/*Scope*/nullptr, Name, TemplateLoc))
3915 return QualType();
3917 TemplateDecl *Template = Name.getAsTemplateDecl();
3918 if (!Template || isa<FunctionTemplateDecl>(Template) ||
3919 isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) {
3920 // We might have a substituted template template parameter pack. If so,
3921 // build a template specialization type for it.
3922 if (Name.getAsSubstTemplateTemplateParmPack())
3923 return Context.getTemplateSpecializationType(Name,
3924 TemplateArgs.arguments());
3926 Diag(TemplateLoc, diag::err_template_id_not_a_type)
3927 << Name;
3928 NoteAllFoundTemplates(Name);
3929 return QualType();
3932 // Check that the template argument list is well-formed for this
3933 // template.
3934 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
3935 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, false,
3936 SugaredConverted, CanonicalConverted,
3937 /*UpdateArgsWithConversions=*/true))
3938 return QualType();
3940 QualType CanonType;
3942 if (TypeAliasTemplateDecl *AliasTemplate =
3943 dyn_cast<TypeAliasTemplateDecl>(Template)) {
3945 // Find the canonical type for this type alias template specialization.
3946 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
3947 if (Pattern->isInvalidDecl())
3948 return QualType();
3950 // Only substitute for the innermost template argument list.
3951 MultiLevelTemplateArgumentList TemplateArgLists;
3952 TemplateArgLists.addOuterTemplateArguments(Template, CanonicalConverted,
3953 /*Final=*/false);
3954 TemplateArgLists.addOuterRetainedLevels(
3955 AliasTemplate->getTemplateParameters()->getDepth());
3957 LocalInstantiationScope Scope(*this);
3958 InstantiatingTemplate Inst(*this, TemplateLoc, Template);
3959 if (Inst.isInvalid())
3960 return QualType();
3962 CanonType = SubstType(Pattern->getUnderlyingType(),
3963 TemplateArgLists, AliasTemplate->getLocation(),
3964 AliasTemplate->getDeclName());
3965 if (CanonType.isNull()) {
3966 // If this was enable_if and we failed to find the nested type
3967 // within enable_if in a SFINAE context, dig out the specific
3968 // enable_if condition that failed and present that instead.
3969 if (isEnableIfAliasTemplate(AliasTemplate)) {
3970 if (auto DeductionInfo = isSFINAEContext()) {
3971 if (*DeductionInfo &&
3972 (*DeductionInfo)->hasSFINAEDiagnostic() &&
3973 (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() ==
3974 diag::err_typename_nested_not_found_enable_if &&
3975 TemplateArgs[0].getArgument().getKind()
3976 == TemplateArgument::Expression) {
3977 Expr *FailedCond;
3978 std::string FailedDescription;
3979 std::tie(FailedCond, FailedDescription) =
3980 findFailedBooleanCondition(TemplateArgs[0].getSourceExpression());
3982 // Remove the old SFINAE diagnostic.
3983 PartialDiagnosticAt OldDiag =
3984 {SourceLocation(), PartialDiagnostic::NullDiagnostic()};
3985 (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag);
3987 // Add a new SFINAE diagnostic specifying which condition
3988 // failed.
3989 (*DeductionInfo)->addSFINAEDiagnostic(
3990 OldDiag.first,
3991 PDiag(diag::err_typename_nested_not_found_requirement)
3992 << FailedDescription
3993 << FailedCond->getSourceRange());
3998 return QualType();
4000 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
4001 CanonType = checkBuiltinTemplateIdType(*this, BTD, SugaredConverted,
4002 TemplateLoc, TemplateArgs);
4003 } else if (Name.isDependent() ||
4004 TemplateSpecializationType::anyDependentTemplateArguments(
4005 TemplateArgs, CanonicalConverted)) {
4006 // This class template specialization is a dependent
4007 // type. Therefore, its canonical type is another class template
4008 // specialization type that contains all of the converted
4009 // arguments in canonical form. This ensures that, e.g., A<T> and
4010 // A<T, T> have identical types when A is declared as:
4012 // template<typename T, typename U = T> struct A;
4013 CanonType = Context.getCanonicalTemplateSpecializationType(
4014 Name, CanonicalConverted);
4016 // This might work out to be a current instantiation, in which
4017 // case the canonical type needs to be the InjectedClassNameType.
4019 // TODO: in theory this could be a simple hashtable lookup; most
4020 // changes to CurContext don't change the set of current
4021 // instantiations.
4022 if (isa<ClassTemplateDecl>(Template)) {
4023 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
4024 // If we get out to a namespace, we're done.
4025 if (Ctx->isFileContext()) break;
4027 // If this isn't a record, keep looking.
4028 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
4029 if (!Record) continue;
4031 // Look for one of the two cases with InjectedClassNameTypes
4032 // and check whether it's the same template.
4033 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
4034 !Record->getDescribedClassTemplate())
4035 continue;
4037 // Fetch the injected class name type and check whether its
4038 // injected type is equal to the type we just built.
4039 QualType ICNT = Context.getTypeDeclType(Record);
4040 QualType Injected = cast<InjectedClassNameType>(ICNT)
4041 ->getInjectedSpecializationType();
4043 if (CanonType != Injected->getCanonicalTypeInternal())
4044 continue;
4046 // If so, the canonical type of this TST is the injected
4047 // class name type of the record we just found.
4048 assert(ICNT.isCanonical());
4049 CanonType = ICNT;
4050 break;
4053 } else if (ClassTemplateDecl *ClassTemplate =
4054 dyn_cast<ClassTemplateDecl>(Template)) {
4055 // Find the class template specialization declaration that
4056 // corresponds to these arguments.
4057 void *InsertPos = nullptr;
4058 ClassTemplateSpecializationDecl *Decl =
4059 ClassTemplate->findSpecialization(CanonicalConverted, InsertPos);
4060 if (!Decl) {
4061 // This is the first time we have referenced this class template
4062 // specialization. Create the canonical declaration and add it to
4063 // the set of specializations.
4064 Decl = ClassTemplateSpecializationDecl::Create(
4065 Context, ClassTemplate->getTemplatedDecl()->getTagKind(),
4066 ClassTemplate->getDeclContext(),
4067 ClassTemplate->getTemplatedDecl()->getBeginLoc(),
4068 ClassTemplate->getLocation(), ClassTemplate, CanonicalConverted,
4069 nullptr);
4070 ClassTemplate->AddSpecialization(Decl, InsertPos);
4071 if (ClassTemplate->isOutOfLine())
4072 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
4075 if (Decl->getSpecializationKind() == TSK_Undeclared &&
4076 ClassTemplate->getTemplatedDecl()->hasAttrs()) {
4077 InstantiatingTemplate Inst(*this, TemplateLoc, Decl);
4078 if (!Inst.isInvalid()) {
4079 MultiLevelTemplateArgumentList TemplateArgLists(Template,
4080 CanonicalConverted,
4081 /*Final=*/false);
4082 InstantiateAttrsForDecl(TemplateArgLists,
4083 ClassTemplate->getTemplatedDecl(), Decl);
4087 // Diagnose uses of this specialization.
4088 (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
4090 CanonType = Context.getTypeDeclType(Decl);
4091 assert(isa<RecordType>(CanonType) &&
4092 "type of non-dependent specialization is not a RecordType");
4093 } else {
4094 llvm_unreachable("Unhandled template kind");
4097 // Build the fully-sugared type for this class template
4098 // specialization, which refers back to the class template
4099 // specialization we created or found.
4100 return Context.getTemplateSpecializationType(Name, TemplateArgs.arguments(),
4101 CanonType);
4104 void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName,
4105 TemplateNameKind &TNK,
4106 SourceLocation NameLoc,
4107 IdentifierInfo *&II) {
4108 assert(TNK == TNK_Undeclared_template && "not an undeclared template name");
4110 TemplateName Name = ParsedName.get();
4111 auto *ATN = Name.getAsAssumedTemplateName();
4112 assert(ATN && "not an assumed template name");
4113 II = ATN->getDeclName().getAsIdentifierInfo();
4115 if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) {
4116 // Resolved to a type template name.
4117 ParsedName = TemplateTy::make(Name);
4118 TNK = TNK_Type_template;
4122 bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
4123 SourceLocation NameLoc,
4124 bool Diagnose) {
4125 // We assumed this undeclared identifier to be an (ADL-only) function
4126 // template name, but it was used in a context where a type was required.
4127 // Try to typo-correct it now.
4128 AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName();
4129 assert(ATN && "not an assumed template name");
4131 LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName);
4132 struct CandidateCallback : CorrectionCandidateCallback {
4133 bool ValidateCandidate(const TypoCorrection &TC) override {
4134 return TC.getCorrectionDecl() &&
4135 getAsTypeTemplateDecl(TC.getCorrectionDecl());
4137 std::unique_ptr<CorrectionCandidateCallback> clone() override {
4138 return std::make_unique<CandidateCallback>(*this);
4140 } FilterCCC;
4142 TypoCorrection Corrected =
4143 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr,
4144 FilterCCC, CTK_ErrorRecovery);
4145 if (Corrected && Corrected.getFoundDecl()) {
4146 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest)
4147 << ATN->getDeclName());
4148 Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>());
4149 return false;
4152 if (Diagnose)
4153 Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName();
4154 return true;
4157 TypeResult Sema::ActOnTemplateIdType(
4158 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
4159 TemplateTy TemplateD, IdentifierInfo *TemplateII,
4160 SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
4161 ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc,
4162 bool IsCtorOrDtorName, bool IsClassName,
4163 ImplicitTypenameContext AllowImplicitTypename) {
4164 if (SS.isInvalid())
4165 return true;
4167 if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
4168 DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
4170 // C++ [temp.res]p3:
4171 // A qualified-id that refers to a type and in which the
4172 // nested-name-specifier depends on a template-parameter (14.6.2)
4173 // shall be prefixed by the keyword typename to indicate that the
4174 // qualified-id denotes a type, forming an
4175 // elaborated-type-specifier (7.1.5.3).
4176 if (!LookupCtx && isDependentScopeSpecifier(SS)) {
4177 // C++2a relaxes some of those restrictions in [temp.res]p5.
4178 if (AllowImplicitTypename == ImplicitTypenameContext::Yes) {
4179 if (getLangOpts().CPlusPlus20)
4180 Diag(SS.getBeginLoc(), diag::warn_cxx17_compat_implicit_typename);
4181 else
4182 Diag(SS.getBeginLoc(), diag::ext_implicit_typename)
4183 << SS.getScopeRep() << TemplateII->getName()
4184 << FixItHint::CreateInsertion(SS.getBeginLoc(), "typename ");
4185 } else
4186 Diag(SS.getBeginLoc(), diag::err_typename_missing_template)
4187 << SS.getScopeRep() << TemplateII->getName();
4189 // FIXME: This is not quite correct recovery as we don't transform SS
4190 // into the corresponding dependent form (and we don't diagnose missing
4191 // 'template' keywords within SS as a result).
4192 return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc,
4193 TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
4194 TemplateArgsIn, RAngleLoc);
4197 // Per C++ [class.qual]p2, if the template-id was an injected-class-name,
4198 // it's not actually allowed to be used as a type in most cases. Because
4199 // we annotate it before we know whether it's valid, we have to check for
4200 // this case here.
4201 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
4202 if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
4203 Diag(TemplateIILoc,
4204 TemplateKWLoc.isInvalid()
4205 ? diag::err_out_of_line_qualified_id_type_names_constructor
4206 : diag::ext_out_of_line_qualified_id_type_names_constructor)
4207 << TemplateII << 0 /*injected-class-name used as template name*/
4208 << 1 /*if any keyword was present, it was 'template'*/;
4212 TemplateName Template = TemplateD.get();
4213 if (Template.getAsAssumedTemplateName() &&
4214 resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc))
4215 return true;
4217 // Translate the parser's template argument list in our AST format.
4218 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4219 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4221 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
4222 assert(SS.getScopeRep() == DTN->getQualifier());
4223 QualType T = Context.getDependentTemplateSpecializationType(
4224 ElaboratedTypeKeyword::None, DTN->getQualifier(), DTN->getIdentifier(),
4225 TemplateArgs.arguments());
4226 // Build type-source information.
4227 TypeLocBuilder TLB;
4228 DependentTemplateSpecializationTypeLoc SpecTL
4229 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
4230 SpecTL.setElaboratedKeywordLoc(SourceLocation());
4231 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
4232 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4233 SpecTL.setTemplateNameLoc(TemplateIILoc);
4234 SpecTL.setLAngleLoc(LAngleLoc);
4235 SpecTL.setRAngleLoc(RAngleLoc);
4236 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
4237 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
4238 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
4241 QualType SpecTy = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
4242 if (SpecTy.isNull())
4243 return true;
4245 // Build type-source information.
4246 TypeLocBuilder TLB;
4247 TemplateSpecializationTypeLoc SpecTL =
4248 TLB.push<TemplateSpecializationTypeLoc>(SpecTy);
4249 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4250 SpecTL.setTemplateNameLoc(TemplateIILoc);
4251 SpecTL.setLAngleLoc(LAngleLoc);
4252 SpecTL.setRAngleLoc(RAngleLoc);
4253 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
4254 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
4256 // Create an elaborated-type-specifier containing the nested-name-specifier.
4257 QualType ElTy =
4258 getElaboratedType(ElaboratedTypeKeyword::None,
4259 !IsCtorOrDtorName ? SS : CXXScopeSpec(), SpecTy);
4260 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(ElTy);
4261 ElabTL.setElaboratedKeywordLoc(SourceLocation());
4262 if (!ElabTL.isEmpty())
4263 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
4264 return CreateParsedType(ElTy, TLB.getTypeSourceInfo(Context, ElTy));
4267 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
4268 TypeSpecifierType TagSpec,
4269 SourceLocation TagLoc,
4270 CXXScopeSpec &SS,
4271 SourceLocation TemplateKWLoc,
4272 TemplateTy TemplateD,
4273 SourceLocation TemplateLoc,
4274 SourceLocation LAngleLoc,
4275 ASTTemplateArgsPtr TemplateArgsIn,
4276 SourceLocation RAngleLoc) {
4277 if (SS.isInvalid())
4278 return TypeResult(true);
4280 TemplateName Template = TemplateD.get();
4282 // Translate the parser's template argument list in our AST format.
4283 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4284 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4286 // Determine the tag kind
4287 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4288 ElaboratedTypeKeyword Keyword
4289 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
4291 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
4292 assert(SS.getScopeRep() == DTN->getQualifier());
4293 QualType T = Context.getDependentTemplateSpecializationType(
4294 Keyword, DTN->getQualifier(), DTN->getIdentifier(),
4295 TemplateArgs.arguments());
4297 // Build type-source information.
4298 TypeLocBuilder TLB;
4299 DependentTemplateSpecializationTypeLoc SpecTL
4300 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
4301 SpecTL.setElaboratedKeywordLoc(TagLoc);
4302 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
4303 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4304 SpecTL.setTemplateNameLoc(TemplateLoc);
4305 SpecTL.setLAngleLoc(LAngleLoc);
4306 SpecTL.setRAngleLoc(RAngleLoc);
4307 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
4308 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
4309 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
4312 if (TypeAliasTemplateDecl *TAT =
4313 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
4314 // C++0x [dcl.type.elab]p2:
4315 // If the identifier resolves to a typedef-name or the simple-template-id
4316 // resolves to an alias template specialization, the
4317 // elaborated-type-specifier is ill-formed.
4318 Diag(TemplateLoc, diag::err_tag_reference_non_tag)
4319 << TAT << NTK_TypeAliasTemplate << TagKind;
4320 Diag(TAT->getLocation(), diag::note_declared_at);
4323 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
4324 if (Result.isNull())
4325 return TypeResult(true);
4327 // Check the tag kind
4328 if (const RecordType *RT = Result->getAs<RecordType>()) {
4329 RecordDecl *D = RT->getDecl();
4331 IdentifierInfo *Id = D->getIdentifier();
4332 assert(Id && "templated class must have an identifier");
4334 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
4335 TagLoc, Id)) {
4336 Diag(TagLoc, diag::err_use_with_wrong_tag)
4337 << Result
4338 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
4339 Diag(D->getLocation(), diag::note_previous_use);
4343 // Provide source-location information for the template specialization.
4344 TypeLocBuilder TLB;
4345 TemplateSpecializationTypeLoc SpecTL
4346 = TLB.push<TemplateSpecializationTypeLoc>(Result);
4347 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4348 SpecTL.setTemplateNameLoc(TemplateLoc);
4349 SpecTL.setLAngleLoc(LAngleLoc);
4350 SpecTL.setRAngleLoc(RAngleLoc);
4351 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
4352 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
4354 // Construct an elaborated type containing the nested-name-specifier (if any)
4355 // and tag keyword.
4356 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
4357 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
4358 ElabTL.setElaboratedKeywordLoc(TagLoc);
4359 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
4360 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
4363 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
4364 NamedDecl *PrevDecl,
4365 SourceLocation Loc,
4366 bool IsPartialSpecialization);
4368 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
4370 static bool isTemplateArgumentTemplateParameter(
4371 const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
4372 switch (Arg.getKind()) {
4373 case TemplateArgument::Null:
4374 case TemplateArgument::NullPtr:
4375 case TemplateArgument::Integral:
4376 case TemplateArgument::Declaration:
4377 case TemplateArgument::Pack:
4378 case TemplateArgument::TemplateExpansion:
4379 return false;
4381 case TemplateArgument::Type: {
4382 QualType Type = Arg.getAsType();
4383 const TemplateTypeParmType *TPT =
4384 Arg.getAsType()->getAs<TemplateTypeParmType>();
4385 return TPT && !Type.hasQualifiers() &&
4386 TPT->getDepth() == Depth && TPT->getIndex() == Index;
4389 case TemplateArgument::Expression: {
4390 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
4391 if (!DRE || !DRE->getDecl())
4392 return false;
4393 const NonTypeTemplateParmDecl *NTTP =
4394 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
4395 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
4398 case TemplateArgument::Template:
4399 const TemplateTemplateParmDecl *TTP =
4400 dyn_cast_or_null<TemplateTemplateParmDecl>(
4401 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
4402 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
4404 llvm_unreachable("unexpected kind of template argument");
4407 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
4408 ArrayRef<TemplateArgument> Args) {
4409 if (Params->size() != Args.size())
4410 return false;
4412 unsigned Depth = Params->getDepth();
4414 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4415 TemplateArgument Arg = Args[I];
4417 // If the parameter is a pack expansion, the argument must be a pack
4418 // whose only element is a pack expansion.
4419 if (Params->getParam(I)->isParameterPack()) {
4420 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
4421 !Arg.pack_begin()->isPackExpansion())
4422 return false;
4423 Arg = Arg.pack_begin()->getPackExpansionPattern();
4426 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
4427 return false;
4430 return true;
4433 template<typename PartialSpecDecl>
4434 static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
4435 if (Partial->getDeclContext()->isDependentContext())
4436 return;
4438 // FIXME: Get the TDK from deduction in order to provide better diagnostics
4439 // for non-substitution-failure issues?
4440 TemplateDeductionInfo Info(Partial->getLocation());
4441 if (S.isMoreSpecializedThanPrimary(Partial, Info))
4442 return;
4444 auto *Template = Partial->getSpecializedTemplate();
4445 S.Diag(Partial->getLocation(),
4446 diag::ext_partial_spec_not_more_specialized_than_primary)
4447 << isa<VarTemplateDecl>(Template);
4449 if (Info.hasSFINAEDiagnostic()) {
4450 PartialDiagnosticAt Diag = {SourceLocation(),
4451 PartialDiagnostic::NullDiagnostic()};
4452 Info.takeSFINAEDiagnostic(Diag);
4453 SmallString<128> SFINAEArgString;
4454 Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString);
4455 S.Diag(Diag.first,
4456 diag::note_partial_spec_not_more_specialized_than_primary)
4457 << SFINAEArgString;
4460 S.Diag(Template->getLocation(), diag::note_template_decl_here);
4461 SmallVector<const Expr *, 3> PartialAC, TemplateAC;
4462 Template->getAssociatedConstraints(TemplateAC);
4463 Partial->getAssociatedConstraints(PartialAC);
4464 S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template,
4465 TemplateAC);
4468 static void
4469 noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
4470 const llvm::SmallBitVector &DeducibleParams) {
4471 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4472 if (!DeducibleParams[I]) {
4473 NamedDecl *Param = TemplateParams->getParam(I);
4474 if (Param->getDeclName())
4475 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4476 << Param->getDeclName();
4477 else
4478 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4479 << "(anonymous)";
4485 template<typename PartialSpecDecl>
4486 static void checkTemplatePartialSpecialization(Sema &S,
4487 PartialSpecDecl *Partial) {
4488 // C++1z [temp.class.spec]p8: (DR1495)
4489 // - The specialization shall be more specialized than the primary
4490 // template (14.5.5.2).
4491 checkMoreSpecializedThanPrimary(S, Partial);
4493 // C++ [temp.class.spec]p8: (DR1315)
4494 // - Each template-parameter shall appear at least once in the
4495 // template-id outside a non-deduced context.
4496 // C++1z [temp.class.spec.match]p3 (P0127R2)
4497 // If the template arguments of a partial specialization cannot be
4498 // deduced because of the structure of its template-parameter-list
4499 // and the template-id, the program is ill-formed.
4500 auto *TemplateParams = Partial->getTemplateParameters();
4501 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4502 S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4503 TemplateParams->getDepth(), DeducibleParams);
4505 if (!DeducibleParams.all()) {
4506 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4507 S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
4508 << isa<VarTemplatePartialSpecializationDecl>(Partial)
4509 << (NumNonDeducible > 1)
4510 << SourceRange(Partial->getLocation(),
4511 Partial->getTemplateArgsAsWritten()->RAngleLoc);
4512 noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
4516 void Sema::CheckTemplatePartialSpecialization(
4517 ClassTemplatePartialSpecializationDecl *Partial) {
4518 checkTemplatePartialSpecialization(*this, Partial);
4521 void Sema::CheckTemplatePartialSpecialization(
4522 VarTemplatePartialSpecializationDecl *Partial) {
4523 checkTemplatePartialSpecialization(*this, Partial);
4526 void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
4527 // C++1z [temp.param]p11:
4528 // A template parameter of a deduction guide template that does not have a
4529 // default-argument shall be deducible from the parameter-type-list of the
4530 // deduction guide template.
4531 auto *TemplateParams = TD->getTemplateParameters();
4532 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4533 MarkDeducedTemplateParameters(TD, DeducibleParams);
4534 for (unsigned I = 0; I != TemplateParams->size(); ++I) {
4535 // A parameter pack is deducible (to an empty pack).
4536 auto *Param = TemplateParams->getParam(I);
4537 if (Param->isParameterPack() || hasVisibleDefaultArgument(Param))
4538 DeducibleParams[I] = true;
4541 if (!DeducibleParams.all()) {
4542 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4543 Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
4544 << (NumNonDeducible > 1);
4545 noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
4549 DeclResult Sema::ActOnVarTemplateSpecialization(
4550 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
4551 TemplateParameterList *TemplateParams, StorageClass SC,
4552 bool IsPartialSpecialization) {
4553 // D must be variable template id.
4554 assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&
4555 "Variable template specialization is declared with a template id.");
4557 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4558 TemplateArgumentListInfo TemplateArgs =
4559 makeTemplateArgumentListInfo(*this, *TemplateId);
4560 SourceLocation TemplateNameLoc = D.getIdentifierLoc();
4561 SourceLocation LAngleLoc = TemplateId->LAngleLoc;
4562 SourceLocation RAngleLoc = TemplateId->RAngleLoc;
4564 TemplateName Name = TemplateId->Template.get();
4566 // The template-id must name a variable template.
4567 VarTemplateDecl *VarTemplate =
4568 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
4569 if (!VarTemplate) {
4570 NamedDecl *FnTemplate;
4571 if (auto *OTS = Name.getAsOverloadedTemplate())
4572 FnTemplate = *OTS->begin();
4573 else
4574 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
4575 if (FnTemplate)
4576 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
4577 << FnTemplate->getDeclName();
4578 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
4579 << IsPartialSpecialization;
4582 // Check for unexpanded parameter packs in any of the template arguments.
4583 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4584 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4585 UPPC_PartialSpecialization))
4586 return true;
4588 // Check that the template argument list is well-formed for this
4589 // template.
4590 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4591 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
4592 false, SugaredConverted, CanonicalConverted,
4593 /*UpdateArgsWithConversions=*/true))
4594 return true;
4596 // Find the variable template (partial) specialization declaration that
4597 // corresponds to these arguments.
4598 if (IsPartialSpecialization) {
4599 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
4600 TemplateArgs.size(),
4601 CanonicalConverted))
4602 return true;
4604 // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we
4605 // also do them during instantiation.
4606 if (!Name.isDependent() &&
4607 !TemplateSpecializationType::anyDependentTemplateArguments(
4608 TemplateArgs, CanonicalConverted)) {
4609 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4610 << VarTemplate->getDeclName();
4611 IsPartialSpecialization = false;
4614 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
4615 CanonicalConverted) &&
4616 (!Context.getLangOpts().CPlusPlus20 ||
4617 !TemplateParams->hasAssociatedConstraints())) {
4618 // C++ [temp.class.spec]p9b3:
4620 // -- The argument list of the specialization shall not be identical
4621 // to the implicit argument list of the primary template.
4622 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4623 << /*variable template*/ 1
4624 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
4625 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4626 // FIXME: Recover from this by treating the declaration as a redeclaration
4627 // of the primary template.
4628 return true;
4632 void *InsertPos = nullptr;
4633 VarTemplateSpecializationDecl *PrevDecl = nullptr;
4635 if (IsPartialSpecialization)
4636 PrevDecl = VarTemplate->findPartialSpecialization(
4637 CanonicalConverted, TemplateParams, InsertPos);
4638 else
4639 PrevDecl = VarTemplate->findSpecialization(CanonicalConverted, InsertPos);
4641 VarTemplateSpecializationDecl *Specialization = nullptr;
4643 // Check whether we can declare a variable template specialization in
4644 // the current scope.
4645 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
4646 TemplateNameLoc,
4647 IsPartialSpecialization))
4648 return true;
4650 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4651 // Since the only prior variable template specialization with these
4652 // arguments was referenced but not declared, reuse that
4653 // declaration node as our own, updating its source location and
4654 // the list of outer template parameters to reflect our new declaration.
4655 Specialization = PrevDecl;
4656 Specialization->setLocation(TemplateNameLoc);
4657 PrevDecl = nullptr;
4658 } else if (IsPartialSpecialization) {
4659 // Create a new class template partial specialization declaration node.
4660 VarTemplatePartialSpecializationDecl *PrevPartial =
4661 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
4662 VarTemplatePartialSpecializationDecl *Partial =
4663 VarTemplatePartialSpecializationDecl::Create(
4664 Context, VarTemplate->getDeclContext(), TemplateKWLoc,
4665 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
4666 CanonicalConverted, TemplateArgs);
4668 if (!PrevPartial)
4669 VarTemplate->AddPartialSpecialization(Partial, InsertPos);
4670 Specialization = Partial;
4672 // If we are providing an explicit specialization of a member variable
4673 // template specialization, make a note of that.
4674 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4675 PrevPartial->setMemberSpecialization();
4677 CheckTemplatePartialSpecialization(Partial);
4678 } else {
4679 // Create a new class template specialization declaration node for
4680 // this explicit specialization or friend declaration.
4681 Specialization = VarTemplateSpecializationDecl::Create(
4682 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
4683 VarTemplate, DI->getType(), DI, SC, CanonicalConverted);
4684 Specialization->setTemplateArgsInfo(TemplateArgs);
4686 if (!PrevDecl)
4687 VarTemplate->AddSpecialization(Specialization, InsertPos);
4690 // C++ [temp.expl.spec]p6:
4691 // If a template, a member template or the member of a class template is
4692 // explicitly specialized then that specialization shall be declared
4693 // before the first use of that specialization that would cause an implicit
4694 // instantiation to take place, in every translation unit in which such a
4695 // use occurs; no diagnostic is required.
4696 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4697 bool Okay = false;
4698 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
4699 // Is there any previous explicit specialization declaration?
4700 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4701 Okay = true;
4702 break;
4706 if (!Okay) {
4707 SourceRange Range(TemplateNameLoc, RAngleLoc);
4708 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4709 << Name << Range;
4711 Diag(PrevDecl->getPointOfInstantiation(),
4712 diag::note_instantiation_required_here)
4713 << (PrevDecl->getTemplateSpecializationKind() !=
4714 TSK_ImplicitInstantiation);
4715 return true;
4719 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
4720 Specialization->setLexicalDeclContext(CurContext);
4722 // Add the specialization into its lexical context, so that it can
4723 // be seen when iterating through the list of declarations in that
4724 // context. However, specializations are not found by name lookup.
4725 CurContext->addDecl(Specialization);
4727 // Note that this is an explicit specialization.
4728 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4730 if (PrevDecl) {
4731 // Check that this isn't a redefinition of this specialization,
4732 // merging with previous declarations.
4733 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
4734 forRedeclarationInCurContext());
4735 PrevSpec.addDecl(PrevDecl);
4736 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
4737 } else if (Specialization->isStaticDataMember() &&
4738 Specialization->isOutOfLine()) {
4739 Specialization->setAccess(VarTemplate->getAccess());
4742 return Specialization;
4745 namespace {
4746 /// A partial specialization whose template arguments have matched
4747 /// a given template-id.
4748 struct PartialSpecMatchResult {
4749 VarTemplatePartialSpecializationDecl *Partial;
4750 TemplateArgumentList *Args;
4752 } // end anonymous namespace
4754 DeclResult
4755 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
4756 SourceLocation TemplateNameLoc,
4757 const TemplateArgumentListInfo &TemplateArgs) {
4758 assert(Template && "A variable template id without template?");
4760 // Check that the template argument list is well-formed for this template.
4761 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4762 if (CheckTemplateArgumentList(
4763 Template, TemplateNameLoc,
4764 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
4765 SugaredConverted, CanonicalConverted,
4766 /*UpdateArgsWithConversions=*/true))
4767 return true;
4769 // Produce a placeholder value if the specialization is dependent.
4770 if (Template->getDeclContext()->isDependentContext() ||
4771 TemplateSpecializationType::anyDependentTemplateArguments(
4772 TemplateArgs, CanonicalConverted))
4773 return DeclResult();
4775 // Find the variable template specialization declaration that
4776 // corresponds to these arguments.
4777 void *InsertPos = nullptr;
4778 if (VarTemplateSpecializationDecl *Spec =
4779 Template->findSpecialization(CanonicalConverted, InsertPos)) {
4780 checkSpecializationReachability(TemplateNameLoc, Spec);
4781 // If we already have a variable template specialization, return it.
4782 return Spec;
4785 // This is the first time we have referenced this variable template
4786 // specialization. Create the canonical declaration and add it to
4787 // the set of specializations, based on the closest partial specialization
4788 // that it represents. That is,
4789 VarDecl *InstantiationPattern = Template->getTemplatedDecl();
4790 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
4791 CanonicalConverted);
4792 TemplateArgumentList *InstantiationArgs = &TemplateArgList;
4793 bool AmbiguousPartialSpec = false;
4794 typedef PartialSpecMatchResult MatchResult;
4795 SmallVector<MatchResult, 4> Matched;
4796 SourceLocation PointOfInstantiation = TemplateNameLoc;
4797 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
4798 /*ForTakingAddress=*/false);
4800 // 1. Attempt to find the closest partial specialization that this
4801 // specializes, if any.
4802 // TODO: Unify with InstantiateClassTemplateSpecialization()?
4803 // Perhaps better after unification of DeduceTemplateArguments() and
4804 // getMoreSpecializedPartialSpecialization().
4805 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
4806 Template->getPartialSpecializations(PartialSpecs);
4808 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
4809 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
4810 TemplateDeductionInfo Info(FailedCandidates.getLocation());
4812 if (TemplateDeductionResult Result =
4813 DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
4814 // Store the failed-deduction information for use in diagnostics, later.
4815 // TODO: Actually use the failed-deduction info?
4816 FailedCandidates.addCandidate().set(
4817 DeclAccessPair::make(Template, AS_public), Partial,
4818 MakeDeductionFailureInfo(Context, Result, Info));
4819 (void)Result;
4820 } else {
4821 Matched.push_back(PartialSpecMatchResult());
4822 Matched.back().Partial = Partial;
4823 Matched.back().Args = Info.takeCanonical();
4827 if (Matched.size() >= 1) {
4828 SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
4829 if (Matched.size() == 1) {
4830 // -- If exactly one matching specialization is found, the
4831 // instantiation is generated from that specialization.
4832 // We don't need to do anything for this.
4833 } else {
4834 // -- If more than one matching specialization is found, the
4835 // partial order rules (14.5.4.2) are used to determine
4836 // whether one of the specializations is more specialized
4837 // than the others. If none of the specializations is more
4838 // specialized than all of the other matching
4839 // specializations, then the use of the variable template is
4840 // ambiguous and the program is ill-formed.
4841 for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
4842 PEnd = Matched.end();
4843 P != PEnd; ++P) {
4844 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
4845 PointOfInstantiation) ==
4846 P->Partial)
4847 Best = P;
4850 // Determine if the best partial specialization is more specialized than
4851 // the others.
4852 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
4853 PEnd = Matched.end();
4854 P != PEnd; ++P) {
4855 if (P != Best && getMoreSpecializedPartialSpecialization(
4856 P->Partial, Best->Partial,
4857 PointOfInstantiation) != Best->Partial) {
4858 AmbiguousPartialSpec = true;
4859 break;
4864 // Instantiate using the best variable template partial specialization.
4865 InstantiationPattern = Best->Partial;
4866 InstantiationArgs = Best->Args;
4867 } else {
4868 // -- If no match is found, the instantiation is generated
4869 // from the primary template.
4870 // InstantiationPattern = Template->getTemplatedDecl();
4873 // 2. Create the canonical declaration.
4874 // Note that we do not instantiate a definition until we see an odr-use
4875 // in DoMarkVarDeclReferenced().
4876 // FIXME: LateAttrs et al.?
4877 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
4878 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
4879 CanonicalConverted, TemplateNameLoc /*, LateAttrs, StartingScope*/);
4880 if (!Decl)
4881 return true;
4883 if (AmbiguousPartialSpec) {
4884 // Partial ordering did not produce a clear winner. Complain.
4885 Decl->setInvalidDecl();
4886 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
4887 << Decl;
4889 // Print the matching partial specializations.
4890 for (MatchResult P : Matched)
4891 Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
4892 << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
4893 *P.Args);
4894 return true;
4897 if (VarTemplatePartialSpecializationDecl *D =
4898 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
4899 Decl->setInstantiationOf(D, InstantiationArgs);
4901 checkSpecializationReachability(TemplateNameLoc, Decl);
4903 assert(Decl && "No variable template specialization?");
4904 return Decl;
4907 ExprResult
4908 Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
4909 const DeclarationNameInfo &NameInfo,
4910 VarTemplateDecl *Template, SourceLocation TemplateLoc,
4911 const TemplateArgumentListInfo *TemplateArgs) {
4913 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
4914 *TemplateArgs);
4915 if (Decl.isInvalid())
4916 return ExprError();
4918 if (!Decl.get())
4919 return ExprResult();
4921 VarDecl *Var = cast<VarDecl>(Decl.get());
4922 if (!Var->getTemplateSpecializationKind())
4923 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
4924 NameInfo.getLoc());
4926 // Build an ordinary singleton decl ref.
4927 return BuildDeclarationNameExpr(SS, NameInfo, Var,
4928 /*FoundD=*/nullptr, TemplateArgs);
4931 void Sema::diagnoseMissingTemplateArguments(TemplateName Name,
4932 SourceLocation Loc) {
4933 Diag(Loc, diag::err_template_missing_args)
4934 << (int)getTemplateNameKindForDiagnostics(Name) << Name;
4935 if (TemplateDecl *TD = Name.getAsTemplateDecl()) {
4936 Diag(TD->getLocation(), diag::note_template_decl_here)
4937 << TD->getTemplateParameters()->getSourceRange();
4941 ExprResult
4942 Sema::CheckConceptTemplateId(const CXXScopeSpec &SS,
4943 SourceLocation TemplateKWLoc,
4944 const DeclarationNameInfo &ConceptNameInfo,
4945 NamedDecl *FoundDecl,
4946 ConceptDecl *NamedConcept,
4947 const TemplateArgumentListInfo *TemplateArgs) {
4948 assert(NamedConcept && "A concept template id without a template?");
4950 llvm::SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4951 if (CheckTemplateArgumentList(
4952 NamedConcept, ConceptNameInfo.getLoc(),
4953 const_cast<TemplateArgumentListInfo &>(*TemplateArgs),
4954 /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted,
4955 /*UpdateArgsWithConversions=*/false))
4956 return ExprError();
4958 auto *CSD = ImplicitConceptSpecializationDecl::Create(
4959 Context, NamedConcept->getDeclContext(), NamedConcept->getLocation(),
4960 CanonicalConverted);
4961 ConstraintSatisfaction Satisfaction;
4962 bool AreArgsDependent =
4963 TemplateSpecializationType::anyDependentTemplateArguments(
4964 *TemplateArgs, CanonicalConverted);
4965 MultiLevelTemplateArgumentList MLTAL(NamedConcept, CanonicalConverted,
4966 /*Final=*/false);
4967 LocalInstantiationScope Scope(*this);
4969 EnterExpressionEvaluationContext EECtx{
4970 *this, ExpressionEvaluationContext::ConstantEvaluated, CSD};
4972 if (!AreArgsDependent &&
4973 CheckConstraintSatisfaction(
4974 NamedConcept, {NamedConcept->getConstraintExpr()}, MLTAL,
4975 SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(),
4976 TemplateArgs->getRAngleLoc()),
4977 Satisfaction))
4978 return ExprError();
4979 auto *CL = ConceptReference::Create(
4980 Context,
4981 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{},
4982 TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept,
4983 ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs));
4984 return ConceptSpecializationExpr::Create(
4985 Context, CL, CSD, AreArgsDependent ? nullptr : &Satisfaction);
4988 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
4989 SourceLocation TemplateKWLoc,
4990 LookupResult &R,
4991 bool RequiresADL,
4992 const TemplateArgumentListInfo *TemplateArgs) {
4993 // FIXME: Can we do any checking at this point? I guess we could check the
4994 // template arguments that we have against the template name, if the template
4995 // name refers to a single template. That's not a terribly common case,
4996 // though.
4997 // foo<int> could identify a single function unambiguously
4998 // This approach does NOT work, since f<int>(1);
4999 // gets resolved prior to resorting to overload resolution
5000 // i.e., template<class T> void f(double);
5001 // vs template<class T, class U> void f(U);
5003 // These should be filtered out by our callers.
5004 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
5006 // Non-function templates require a template argument list.
5007 if (auto *TD = R.getAsSingle<TemplateDecl>()) {
5008 if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) {
5009 diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc());
5010 return ExprError();
5013 bool KnownDependent = false;
5014 // In C++1y, check variable template ids.
5015 if (R.getAsSingle<VarTemplateDecl>()) {
5016 ExprResult Res = CheckVarTemplateId(SS, R.getLookupNameInfo(),
5017 R.getAsSingle<VarTemplateDecl>(),
5018 TemplateKWLoc, TemplateArgs);
5019 if (Res.isInvalid() || Res.isUsable())
5020 return Res;
5021 // Result is dependent. Carry on to build an UnresolvedLookupEpxr.
5022 KnownDependent = true;
5025 if (R.getAsSingle<ConceptDecl>()) {
5026 return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(),
5027 R.getFoundDecl(),
5028 R.getAsSingle<ConceptDecl>(), TemplateArgs);
5031 // We don't want lookup warnings at this point.
5032 R.suppressDiagnostics();
5034 UnresolvedLookupExpr *ULE = UnresolvedLookupExpr::Create(
5035 Context, R.getNamingClass(), SS.getWithLocInContext(Context),
5036 TemplateKWLoc, R.getLookupNameInfo(), RequiresADL, TemplateArgs,
5037 R.begin(), R.end(), KnownDependent);
5039 return ULE;
5042 // We actually only call this from template instantiation.
5043 ExprResult
5044 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
5045 SourceLocation TemplateKWLoc,
5046 const DeclarationNameInfo &NameInfo,
5047 const TemplateArgumentListInfo *TemplateArgs) {
5049 assert(TemplateArgs || TemplateKWLoc.isValid());
5050 DeclContext *DC;
5051 if (!(DC = computeDeclContext(SS, false)) ||
5052 DC->isDependentContext() ||
5053 RequireCompleteDeclContext(SS, DC))
5054 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
5056 bool MemberOfUnknownSpecialization;
5057 LookupResult R(*this, NameInfo, LookupOrdinaryName);
5058 if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(),
5059 /*Entering*/false, MemberOfUnknownSpecialization,
5060 TemplateKWLoc))
5061 return ExprError();
5063 if (R.isAmbiguous())
5064 return ExprError();
5066 if (R.empty()) {
5067 Diag(NameInfo.getLoc(), diag::err_no_member)
5068 << NameInfo.getName() << DC << SS.getRange();
5069 return ExprError();
5072 auto DiagnoseTypeTemplateDecl = [&](TemplateDecl *Temp,
5073 bool isTypeAliasTemplateDecl) {
5074 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_type_template)
5075 << SS.getScopeRep() << NameInfo.getName().getAsString() << SS.getRange()
5076 << isTypeAliasTemplateDecl;
5077 Diag(Temp->getLocation(), diag::note_referenced_type_template) << 0;
5078 return ExprError();
5081 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>())
5082 return DiagnoseTypeTemplateDecl(Temp, false);
5084 if (TypeAliasTemplateDecl *Temp = R.getAsSingle<TypeAliasTemplateDecl>())
5085 return DiagnoseTypeTemplateDecl(Temp, true);
5087 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
5090 /// Form a template name from a name that is syntactically required to name a
5091 /// template, either due to use of the 'template' keyword or because a name in
5092 /// this syntactic context is assumed to name a template (C++ [temp.names]p2-4).
5094 /// This action forms a template name given the name of the template and its
5095 /// optional scope specifier. This is used when the 'template' keyword is used
5096 /// or when the parsing context unambiguously treats a following '<' as
5097 /// introducing a template argument list. Note that this may produce a
5098 /// non-dependent template name if we can perform the lookup now and identify
5099 /// the named template.
5101 /// For example, given "x.MetaFun::template apply", the scope specifier
5102 /// \p SS will be "MetaFun::", \p TemplateKWLoc contains the location
5103 /// of the "template" keyword, and "apply" is the \p Name.
5104 TemplateNameKind Sema::ActOnTemplateName(Scope *S,
5105 CXXScopeSpec &SS,
5106 SourceLocation TemplateKWLoc,
5107 const UnqualifiedId &Name,
5108 ParsedType ObjectType,
5109 bool EnteringContext,
5110 TemplateTy &Result,
5111 bool AllowInjectedClassName) {
5112 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
5113 Diag(TemplateKWLoc,
5114 getLangOpts().CPlusPlus11 ?
5115 diag::warn_cxx98_compat_template_outside_of_template :
5116 diag::ext_template_outside_of_template)
5117 << FixItHint::CreateRemoval(TemplateKWLoc);
5119 if (SS.isInvalid())
5120 return TNK_Non_template;
5122 // Figure out where isTemplateName is going to look.
5123 DeclContext *LookupCtx = nullptr;
5124 if (SS.isNotEmpty())
5125 LookupCtx = computeDeclContext(SS, EnteringContext);
5126 else if (ObjectType)
5127 LookupCtx = computeDeclContext(GetTypeFromParser(ObjectType));
5129 // C++0x [temp.names]p5:
5130 // If a name prefixed by the keyword template is not the name of
5131 // a template, the program is ill-formed. [Note: the keyword
5132 // template may not be applied to non-template members of class
5133 // templates. -end note ] [ Note: as is the case with the
5134 // typename prefix, the template prefix is allowed in cases
5135 // where it is not strictly necessary; i.e., when the
5136 // nested-name-specifier or the expression on the left of the ->
5137 // or . is not dependent on a template-parameter, or the use
5138 // does not appear in the scope of a template. -end note]
5140 // Note: C++03 was more strict here, because it banned the use of
5141 // the "template" keyword prior to a template-name that was not a
5142 // dependent name. C++ DR468 relaxed this requirement (the
5143 // "template" keyword is now permitted). We follow the C++0x
5144 // rules, even in C++03 mode with a warning, retroactively applying the DR.
5145 bool MemberOfUnknownSpecialization;
5146 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
5147 ObjectType, EnteringContext, Result,
5148 MemberOfUnknownSpecialization);
5149 if (TNK != TNK_Non_template) {
5150 // We resolved this to a (non-dependent) template name. Return it.
5151 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
5152 if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD &&
5153 Name.getKind() == UnqualifiedIdKind::IK_Identifier &&
5154 Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) {
5155 // C++14 [class.qual]p2:
5156 // In a lookup in which function names are not ignored and the
5157 // nested-name-specifier nominates a class C, if the name specified
5158 // [...] is the injected-class-name of C, [...] the name is instead
5159 // considered to name the constructor
5161 // We don't get here if naming the constructor would be valid, so we
5162 // just reject immediately and recover by treating the
5163 // injected-class-name as naming the template.
5164 Diag(Name.getBeginLoc(),
5165 diag::ext_out_of_line_qualified_id_type_names_constructor)
5166 << Name.Identifier
5167 << 0 /*injected-class-name used as template name*/
5168 << TemplateKWLoc.isValid();
5170 return TNK;
5173 if (!MemberOfUnknownSpecialization) {
5174 // Didn't find a template name, and the lookup wasn't dependent.
5175 // Do the lookup again to determine if this is a "nothing found" case or
5176 // a "not a template" case. FIXME: Refactor isTemplateName so we don't
5177 // need to do this.
5178 DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name);
5179 LookupResult R(*this, DNI.getName(), Name.getBeginLoc(),
5180 LookupOrdinaryName);
5181 bool MOUS;
5182 // Tell LookupTemplateName that we require a template so that it diagnoses
5183 // cases where it finds a non-template.
5184 RequiredTemplateKind RTK = TemplateKWLoc.isValid()
5185 ? RequiredTemplateKind(TemplateKWLoc)
5186 : TemplateNameIsRequired;
5187 if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, MOUS,
5188 RTK, nullptr, /*AllowTypoCorrection=*/false) &&
5189 !R.isAmbiguous()) {
5190 if (LookupCtx)
5191 Diag(Name.getBeginLoc(), diag::err_no_member)
5192 << DNI.getName() << LookupCtx << SS.getRange();
5193 else
5194 Diag(Name.getBeginLoc(), diag::err_undeclared_use)
5195 << DNI.getName() << SS.getRange();
5197 return TNK_Non_template;
5200 NestedNameSpecifier *Qualifier = SS.getScopeRep();
5202 switch (Name.getKind()) {
5203 case UnqualifiedIdKind::IK_Identifier:
5204 Result = TemplateTy::make(
5205 Context.getDependentTemplateName(Qualifier, Name.Identifier));
5206 return TNK_Dependent_template_name;
5208 case UnqualifiedIdKind::IK_OperatorFunctionId:
5209 Result = TemplateTy::make(Context.getDependentTemplateName(
5210 Qualifier, Name.OperatorFunctionId.Operator));
5211 return TNK_Function_template;
5213 case UnqualifiedIdKind::IK_LiteralOperatorId:
5214 // This is a kind of template name, but can never occur in a dependent
5215 // scope (literal operators can only be declared at namespace scope).
5216 break;
5218 default:
5219 break;
5222 // This name cannot possibly name a dependent template. Diagnose this now
5223 // rather than building a dependent template name that can never be valid.
5224 Diag(Name.getBeginLoc(),
5225 diag::err_template_kw_refers_to_dependent_non_template)
5226 << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange()
5227 << TemplateKWLoc.isValid() << TemplateKWLoc;
5228 return TNK_Non_template;
5231 bool Sema::CheckTemplateTypeArgument(
5232 TemplateTypeParmDecl *Param, TemplateArgumentLoc &AL,
5233 SmallVectorImpl<TemplateArgument> &SugaredConverted,
5234 SmallVectorImpl<TemplateArgument> &CanonicalConverted) {
5235 const TemplateArgument &Arg = AL.getArgument();
5236 QualType ArgType;
5237 TypeSourceInfo *TSI = nullptr;
5239 // Check template type parameter.
5240 switch(Arg.getKind()) {
5241 case TemplateArgument::Type:
5242 // C++ [temp.arg.type]p1:
5243 // A template-argument for a template-parameter which is a
5244 // type shall be a type-id.
5245 ArgType = Arg.getAsType();
5246 TSI = AL.getTypeSourceInfo();
5247 break;
5248 case TemplateArgument::Template:
5249 case TemplateArgument::TemplateExpansion: {
5250 // We have a template type parameter but the template argument
5251 // is a template without any arguments.
5252 SourceRange SR = AL.getSourceRange();
5253 TemplateName Name = Arg.getAsTemplateOrTemplatePattern();
5254 diagnoseMissingTemplateArguments(Name, SR.getEnd());
5255 return true;
5257 case TemplateArgument::Expression: {
5258 // We have a template type parameter but the template argument is an
5259 // expression; see if maybe it is missing the "typename" keyword.
5260 CXXScopeSpec SS;
5261 DeclarationNameInfo NameInfo;
5263 if (DependentScopeDeclRefExpr *ArgExpr =
5264 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
5265 SS.Adopt(ArgExpr->getQualifierLoc());
5266 NameInfo = ArgExpr->getNameInfo();
5267 } else if (CXXDependentScopeMemberExpr *ArgExpr =
5268 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
5269 if (ArgExpr->isImplicitAccess()) {
5270 SS.Adopt(ArgExpr->getQualifierLoc());
5271 NameInfo = ArgExpr->getMemberNameInfo();
5275 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
5276 LookupResult Result(*this, NameInfo, LookupOrdinaryName);
5277 LookupParsedName(Result, CurScope, &SS);
5279 if (Result.getAsSingle<TypeDecl>() ||
5280 Result.getResultKind() ==
5281 LookupResult::NotFoundInCurrentInstantiation) {
5282 assert(SS.getScopeRep() && "dependent scope expr must has a scope!");
5283 // Suggest that the user add 'typename' before the NNS.
5284 SourceLocation Loc = AL.getSourceRange().getBegin();
5285 Diag(Loc, getLangOpts().MSVCCompat
5286 ? diag::ext_ms_template_type_arg_missing_typename
5287 : diag::err_template_arg_must_be_type_suggest)
5288 << FixItHint::CreateInsertion(Loc, "typename ");
5289 Diag(Param->getLocation(), diag::note_template_param_here);
5291 // Recover by synthesizing a type using the location information that we
5292 // already have.
5293 ArgType = Context.getDependentNameType(ElaboratedTypeKeyword::Typename,
5294 SS.getScopeRep(), II);
5295 TypeLocBuilder TLB;
5296 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
5297 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
5298 TL.setQualifierLoc(SS.getWithLocInContext(Context));
5299 TL.setNameLoc(NameInfo.getLoc());
5300 TSI = TLB.getTypeSourceInfo(Context, ArgType);
5302 // Overwrite our input TemplateArgumentLoc so that we can recover
5303 // properly.
5304 AL = TemplateArgumentLoc(TemplateArgument(ArgType),
5305 TemplateArgumentLocInfo(TSI));
5307 break;
5310 // fallthrough
5311 [[fallthrough]];
5313 default: {
5314 // We have a template type parameter but the template argument
5315 // is not a type.
5316 SourceRange SR = AL.getSourceRange();
5317 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
5318 Diag(Param->getLocation(), diag::note_template_param_here);
5320 return true;
5324 if (CheckTemplateArgument(TSI))
5325 return true;
5327 // Objective-C ARC:
5328 // If an explicitly-specified template argument type is a lifetime type
5329 // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
5330 if (getLangOpts().ObjCAutoRefCount &&
5331 ArgType->isObjCLifetimeType() &&
5332 !ArgType.getObjCLifetime()) {
5333 Qualifiers Qs;
5334 Qs.setObjCLifetime(Qualifiers::OCL_Strong);
5335 ArgType = Context.getQualifiedType(ArgType, Qs);
5338 SugaredConverted.push_back(TemplateArgument(ArgType));
5339 CanonicalConverted.push_back(
5340 TemplateArgument(Context.getCanonicalType(ArgType)));
5341 return false;
5344 /// Substitute template arguments into the default template argument for
5345 /// the given template type parameter.
5347 /// \param SemaRef the semantic analysis object for which we are performing
5348 /// the substitution.
5350 /// \param Template the template that we are synthesizing template arguments
5351 /// for.
5353 /// \param TemplateLoc the location of the template name that started the
5354 /// template-id we are checking.
5356 /// \param RAngleLoc the location of the right angle bracket ('>') that
5357 /// terminates the template-id.
5359 /// \param Param the template template parameter whose default we are
5360 /// substituting into.
5362 /// \param Converted the list of template arguments provided for template
5363 /// parameters that precede \p Param in the template parameter list.
5364 /// \returns the substituted template argument, or NULL if an error occurred.
5365 static TypeSourceInfo *SubstDefaultTemplateArgument(
5366 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
5367 SourceLocation RAngleLoc, TemplateTypeParmDecl *Param,
5368 ArrayRef<TemplateArgument> SugaredConverted,
5369 ArrayRef<TemplateArgument> CanonicalConverted) {
5370 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
5372 // If the argument type is dependent, instantiate it now based
5373 // on the previously-computed template arguments.
5374 if (ArgType->getType()->isInstantiationDependentType()) {
5375 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template,
5376 SugaredConverted,
5377 SourceRange(TemplateLoc, RAngleLoc));
5378 if (Inst.isInvalid())
5379 return nullptr;
5381 // Only substitute for the innermost template argument list.
5382 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
5383 /*Final=*/true);
5384 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5385 TemplateArgLists.addOuterTemplateArguments(std::nullopt);
5387 bool ForLambdaCallOperator = false;
5388 if (const auto *Rec = dyn_cast<CXXRecordDecl>(Template->getDeclContext()))
5389 ForLambdaCallOperator = Rec->isLambda();
5390 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext(),
5391 !ForLambdaCallOperator);
5392 ArgType =
5393 SemaRef.SubstType(ArgType, TemplateArgLists,
5394 Param->getDefaultArgumentLoc(), Param->getDeclName());
5397 return ArgType;
5400 /// Substitute template arguments into the default template argument for
5401 /// the given non-type template parameter.
5403 /// \param SemaRef the semantic analysis object for which we are performing
5404 /// the substitution.
5406 /// \param Template the template that we are synthesizing template arguments
5407 /// for.
5409 /// \param TemplateLoc the location of the template name that started the
5410 /// template-id we are checking.
5412 /// \param RAngleLoc the location of the right angle bracket ('>') that
5413 /// terminates the template-id.
5415 /// \param Param the non-type template parameter whose default we are
5416 /// substituting into.
5418 /// \param Converted the list of template arguments provided for template
5419 /// parameters that precede \p Param in the template parameter list.
5421 /// \returns the substituted template argument, or NULL if an error occurred.
5422 static ExprResult SubstDefaultTemplateArgument(
5423 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
5424 SourceLocation RAngleLoc, NonTypeTemplateParmDecl *Param,
5425 ArrayRef<TemplateArgument> SugaredConverted,
5426 ArrayRef<TemplateArgument> CanonicalConverted) {
5427 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template,
5428 SugaredConverted,
5429 SourceRange(TemplateLoc, RAngleLoc));
5430 if (Inst.isInvalid())
5431 return ExprError();
5433 // Only substitute for the innermost template argument list.
5434 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
5435 /*Final=*/true);
5436 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5437 TemplateArgLists.addOuterTemplateArguments(std::nullopt);
5439 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5440 EnterExpressionEvaluationContext ConstantEvaluated(
5441 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5442 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
5445 /// Substitute template arguments into the default template argument for
5446 /// the given template template parameter.
5448 /// \param SemaRef the semantic analysis object for which we are performing
5449 /// the substitution.
5451 /// \param Template the template that we are synthesizing template arguments
5452 /// for.
5454 /// \param TemplateLoc the location of the template name that started the
5455 /// template-id we are checking.
5457 /// \param RAngleLoc the location of the right angle bracket ('>') that
5458 /// terminates the template-id.
5460 /// \param Param the template template parameter whose default we are
5461 /// substituting into.
5463 /// \param Converted the list of template arguments provided for template
5464 /// parameters that precede \p Param in the template parameter list.
5466 /// \param QualifierLoc Will be set to the nested-name-specifier (with
5467 /// source-location information) that precedes the template name.
5469 /// \returns the substituted template argument, or NULL if an error occurred.
5470 static TemplateName SubstDefaultTemplateArgument(
5471 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
5472 SourceLocation RAngleLoc, TemplateTemplateParmDecl *Param,
5473 ArrayRef<TemplateArgument> SugaredConverted,
5474 ArrayRef<TemplateArgument> CanonicalConverted,
5475 NestedNameSpecifierLoc &QualifierLoc) {
5476 Sema::InstantiatingTemplate Inst(
5477 SemaRef, TemplateLoc, TemplateParameter(Param), Template,
5478 SugaredConverted, SourceRange(TemplateLoc, RAngleLoc));
5479 if (Inst.isInvalid())
5480 return TemplateName();
5482 // Only substitute for the innermost template argument list.
5483 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
5484 /*Final=*/true);
5485 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5486 TemplateArgLists.addOuterTemplateArguments(std::nullopt);
5488 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5489 // Substitute into the nested-name-specifier first,
5490 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
5491 if (QualifierLoc) {
5492 QualifierLoc =
5493 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
5494 if (!QualifierLoc)
5495 return TemplateName();
5498 return SemaRef.SubstTemplateName(
5499 QualifierLoc,
5500 Param->getDefaultArgument().getArgument().getAsTemplate(),
5501 Param->getDefaultArgument().getTemplateNameLoc(),
5502 TemplateArgLists);
5505 /// If the given template parameter has a default template
5506 /// argument, substitute into that default template argument and
5507 /// return the corresponding template argument.
5508 TemplateArgumentLoc Sema::SubstDefaultTemplateArgumentIfAvailable(
5509 TemplateDecl *Template, SourceLocation TemplateLoc,
5510 SourceLocation RAngleLoc, Decl *Param,
5511 ArrayRef<TemplateArgument> SugaredConverted,
5512 ArrayRef<TemplateArgument> CanonicalConverted, bool &HasDefaultArg) {
5513 HasDefaultArg = false;
5515 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
5516 if (!hasReachableDefaultArgument(TypeParm))
5517 return TemplateArgumentLoc();
5519 HasDefaultArg = true;
5520 TypeSourceInfo *DI = SubstDefaultTemplateArgument(
5521 *this, Template, TemplateLoc, RAngleLoc, TypeParm, SugaredConverted,
5522 CanonicalConverted);
5523 if (DI)
5524 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
5526 return TemplateArgumentLoc();
5529 if (NonTypeTemplateParmDecl *NonTypeParm
5530 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5531 if (!hasReachableDefaultArgument(NonTypeParm))
5532 return TemplateArgumentLoc();
5534 HasDefaultArg = true;
5535 ExprResult Arg = SubstDefaultTemplateArgument(
5536 *this, Template, TemplateLoc, RAngleLoc, NonTypeParm, SugaredConverted,
5537 CanonicalConverted);
5538 if (Arg.isInvalid())
5539 return TemplateArgumentLoc();
5541 Expr *ArgE = Arg.getAs<Expr>();
5542 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
5545 TemplateTemplateParmDecl *TempTempParm
5546 = cast<TemplateTemplateParmDecl>(Param);
5547 if (!hasReachableDefaultArgument(TempTempParm))
5548 return TemplateArgumentLoc();
5550 HasDefaultArg = true;
5551 NestedNameSpecifierLoc QualifierLoc;
5552 TemplateName TName = SubstDefaultTemplateArgument(
5553 *this, Template, TemplateLoc, RAngleLoc, TempTempParm, SugaredConverted,
5554 CanonicalConverted, QualifierLoc);
5555 if (TName.isNull())
5556 return TemplateArgumentLoc();
5558 return TemplateArgumentLoc(
5559 Context, TemplateArgument(TName),
5560 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
5561 TempTempParm->getDefaultArgument().getTemplateNameLoc());
5564 /// Convert a template-argument that we parsed as a type into a template, if
5565 /// possible. C++ permits injected-class-names to perform dual service as
5566 /// template template arguments and as template type arguments.
5567 static TemplateArgumentLoc
5568 convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) {
5569 // Extract and step over any surrounding nested-name-specifier.
5570 NestedNameSpecifierLoc QualLoc;
5571 if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
5572 if (ETLoc.getTypePtr()->getKeyword() != ElaboratedTypeKeyword::None)
5573 return TemplateArgumentLoc();
5575 QualLoc = ETLoc.getQualifierLoc();
5576 TLoc = ETLoc.getNamedTypeLoc();
5578 // If this type was written as an injected-class-name, it can be used as a
5579 // template template argument.
5580 if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
5581 return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(),
5582 QualLoc, InjLoc.getNameLoc());
5584 // If this type was written as an injected-class-name, it may have been
5585 // converted to a RecordType during instantiation. If the RecordType is
5586 // *not* wrapped in a TemplateSpecializationType and denotes a class
5587 // template specialization, it must have come from an injected-class-name.
5588 if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
5589 if (auto *CTSD =
5590 dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl()))
5591 return TemplateArgumentLoc(Context,
5592 TemplateName(CTSD->getSpecializedTemplate()),
5593 QualLoc, RecLoc.getNameLoc());
5595 return TemplateArgumentLoc();
5598 /// Check that the given template argument corresponds to the given
5599 /// template parameter.
5601 /// \param Param The template parameter against which the argument will be
5602 /// checked.
5604 /// \param Arg The template argument, which may be updated due to conversions.
5606 /// \param Template The template in which the template argument resides.
5608 /// \param TemplateLoc The location of the template name for the template
5609 /// whose argument list we're matching.
5611 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
5612 /// the template argument list.
5614 /// \param ArgumentPackIndex The index into the argument pack where this
5615 /// argument will be placed. Only valid if the parameter is a parameter pack.
5617 /// \param Converted The checked, converted argument will be added to the
5618 /// end of this small vector.
5620 /// \param CTAK Describes how we arrived at this particular template argument:
5621 /// explicitly written, deduced, etc.
5623 /// \returns true on error, false otherwise.
5624 bool Sema::CheckTemplateArgument(
5625 NamedDecl *Param, TemplateArgumentLoc &Arg, NamedDecl *Template,
5626 SourceLocation TemplateLoc, SourceLocation RAngleLoc,
5627 unsigned ArgumentPackIndex,
5628 SmallVectorImpl<TemplateArgument> &SugaredConverted,
5629 SmallVectorImpl<TemplateArgument> &CanonicalConverted,
5630 CheckTemplateArgumentKind CTAK) {
5631 // Check template type parameters.
5632 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
5633 return CheckTemplateTypeArgument(TTP, Arg, SugaredConverted,
5634 CanonicalConverted);
5636 // Check non-type template parameters.
5637 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5638 // Do substitution on the type of the non-type template parameter
5639 // with the template arguments we've seen thus far. But if the
5640 // template has a dependent context then we cannot substitute yet.
5641 QualType NTTPType = NTTP->getType();
5642 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
5643 NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
5645 if (NTTPType->isInstantiationDependentType() &&
5646 !isa<TemplateTemplateParmDecl>(Template) &&
5647 !Template->getDeclContext()->isDependentContext()) {
5648 // Do substitution on the type of the non-type template parameter.
5649 InstantiatingTemplate Inst(*this, TemplateLoc, Template, NTTP,
5650 SugaredConverted,
5651 SourceRange(TemplateLoc, RAngleLoc));
5652 if (Inst.isInvalid())
5653 return true;
5655 MultiLevelTemplateArgumentList MLTAL(Template, SugaredConverted,
5656 /*Final=*/true);
5657 // If the parameter is a pack expansion, expand this slice of the pack.
5658 if (auto *PET = NTTPType->getAs<PackExpansionType>()) {
5659 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this,
5660 ArgumentPackIndex);
5661 NTTPType = SubstType(PET->getPattern(), MLTAL, NTTP->getLocation(),
5662 NTTP->getDeclName());
5663 } else {
5664 NTTPType = SubstType(NTTPType, MLTAL, NTTP->getLocation(),
5665 NTTP->getDeclName());
5668 // If that worked, check the non-type template parameter type
5669 // for validity.
5670 if (!NTTPType.isNull())
5671 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
5672 NTTP->getLocation());
5673 if (NTTPType.isNull())
5674 return true;
5677 switch (Arg.getArgument().getKind()) {
5678 case TemplateArgument::Null:
5679 llvm_unreachable("Should never see a NULL template argument here");
5681 case TemplateArgument::Expression: {
5682 Expr *E = Arg.getArgument().getAsExpr();
5683 TemplateArgument SugaredResult, CanonicalResult;
5684 unsigned CurSFINAEErrors = NumSFINAEErrors;
5685 ExprResult Res = CheckTemplateArgument(NTTP, NTTPType, E, SugaredResult,
5686 CanonicalResult, CTAK);
5687 if (Res.isInvalid())
5688 return true;
5689 // If the current template argument causes an error, give up now.
5690 if (CurSFINAEErrors < NumSFINAEErrors)
5691 return true;
5693 // If the resulting expression is new, then use it in place of the
5694 // old expression in the template argument.
5695 if (Res.get() != E) {
5696 TemplateArgument TA(Res.get());
5697 Arg = TemplateArgumentLoc(TA, Res.get());
5700 SugaredConverted.push_back(SugaredResult);
5701 CanonicalConverted.push_back(CanonicalResult);
5702 break;
5705 case TemplateArgument::Declaration:
5706 case TemplateArgument::Integral:
5707 case TemplateArgument::NullPtr:
5708 // We've already checked this template argument, so just copy
5709 // it to the list of converted arguments.
5710 SugaredConverted.push_back(Arg.getArgument());
5711 CanonicalConverted.push_back(
5712 Context.getCanonicalTemplateArgument(Arg.getArgument()));
5713 break;
5715 case TemplateArgument::Template:
5716 case TemplateArgument::TemplateExpansion:
5717 // We were given a template template argument. It may not be ill-formed;
5718 // see below.
5719 if (DependentTemplateName *DTN
5720 = Arg.getArgument().getAsTemplateOrTemplatePattern()
5721 .getAsDependentTemplateName()) {
5722 // We have a template argument such as \c T::template X, which we
5723 // parsed as a template template argument. However, since we now
5724 // know that we need a non-type template argument, convert this
5725 // template name into an expression.
5727 DeclarationNameInfo NameInfo(DTN->getIdentifier(),
5728 Arg.getTemplateNameLoc());
5730 CXXScopeSpec SS;
5731 SS.Adopt(Arg.getTemplateQualifierLoc());
5732 // FIXME: the template-template arg was a DependentTemplateName,
5733 // so it was provided with a template keyword. However, its source
5734 // location is not stored in the template argument structure.
5735 SourceLocation TemplateKWLoc;
5736 ExprResult E = DependentScopeDeclRefExpr::Create(
5737 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
5738 nullptr);
5740 // If we parsed the template argument as a pack expansion, create a
5741 // pack expansion expression.
5742 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
5743 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
5744 if (E.isInvalid())
5745 return true;
5748 TemplateArgument SugaredResult, CanonicalResult;
5749 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), SugaredResult,
5750 CanonicalResult, CTAK_Specified);
5751 if (E.isInvalid())
5752 return true;
5754 SugaredConverted.push_back(SugaredResult);
5755 CanonicalConverted.push_back(CanonicalResult);
5756 break;
5759 // We have a template argument that actually does refer to a class
5760 // template, alias template, or template template parameter, and
5761 // therefore cannot be a non-type template argument.
5762 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
5763 << Arg.getSourceRange();
5765 Diag(Param->getLocation(), diag::note_template_param_here);
5766 return true;
5768 case TemplateArgument::Type: {
5769 // We have a non-type template parameter but the template
5770 // argument is a type.
5772 // C++ [temp.arg]p2:
5773 // In a template-argument, an ambiguity between a type-id and
5774 // an expression is resolved to a type-id, regardless of the
5775 // form of the corresponding template-parameter.
5777 // We warn specifically about this case, since it can be rather
5778 // confusing for users.
5779 QualType T = Arg.getArgument().getAsType();
5780 SourceRange SR = Arg.getSourceRange();
5781 if (T->isFunctionType())
5782 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
5783 else
5784 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
5785 Diag(Param->getLocation(), diag::note_template_param_here);
5786 return true;
5789 case TemplateArgument::Pack:
5790 llvm_unreachable("Caller must expand template argument packs");
5793 return false;
5797 // Check template template parameters.
5798 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
5800 TemplateParameterList *Params = TempParm->getTemplateParameters();
5801 if (TempParm->isExpandedParameterPack())
5802 Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex);
5804 // Substitute into the template parameter list of the template
5805 // template parameter, since previously-supplied template arguments
5806 // may appear within the template template parameter.
5808 // FIXME: Skip this if the parameters aren't instantiation-dependent.
5810 // Set up a template instantiation context.
5811 LocalInstantiationScope Scope(*this);
5812 InstantiatingTemplate Inst(*this, TemplateLoc, Template, TempParm,
5813 SugaredConverted,
5814 SourceRange(TemplateLoc, RAngleLoc));
5815 if (Inst.isInvalid())
5816 return true;
5818 Params =
5819 SubstTemplateParams(Params, CurContext,
5820 MultiLevelTemplateArgumentList(
5821 Template, SugaredConverted, /*Final=*/true),
5822 /*EvaluateConstraints=*/false);
5823 if (!Params)
5824 return true;
5827 // C++1z [temp.local]p1: (DR1004)
5828 // When [the injected-class-name] is used [...] as a template-argument for
5829 // a template template-parameter [...] it refers to the class template
5830 // itself.
5831 if (Arg.getArgument().getKind() == TemplateArgument::Type) {
5832 TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
5833 Context, Arg.getTypeSourceInfo()->getTypeLoc());
5834 if (!ConvertedArg.getArgument().isNull())
5835 Arg = ConvertedArg;
5838 switch (Arg.getArgument().getKind()) {
5839 case TemplateArgument::Null:
5840 llvm_unreachable("Should never see a NULL template argument here");
5842 case TemplateArgument::Template:
5843 case TemplateArgument::TemplateExpansion:
5844 if (CheckTemplateTemplateArgument(TempParm, Params, Arg))
5845 return true;
5847 SugaredConverted.push_back(Arg.getArgument());
5848 CanonicalConverted.push_back(
5849 Context.getCanonicalTemplateArgument(Arg.getArgument()));
5850 break;
5852 case TemplateArgument::Expression:
5853 case TemplateArgument::Type:
5854 // We have a template template parameter but the template
5855 // argument does not refer to a template.
5856 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
5857 << getLangOpts().CPlusPlus11;
5858 return true;
5860 case TemplateArgument::Declaration:
5861 llvm_unreachable("Declaration argument with template template parameter");
5862 case TemplateArgument::Integral:
5863 llvm_unreachable("Integral argument with template template parameter");
5864 case TemplateArgument::NullPtr:
5865 llvm_unreachable("Null pointer argument with template template parameter");
5867 case TemplateArgument::Pack:
5868 llvm_unreachable("Caller must expand template argument packs");
5871 return false;
5874 /// Diagnose a missing template argument.
5875 template<typename TemplateParmDecl>
5876 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
5877 TemplateDecl *TD,
5878 const TemplateParmDecl *D,
5879 TemplateArgumentListInfo &Args) {
5880 // Dig out the most recent declaration of the template parameter; there may be
5881 // declarations of the template that are more recent than TD.
5882 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
5883 ->getTemplateParameters()
5884 ->getParam(D->getIndex()));
5886 // If there's a default argument that's not reachable, diagnose that we're
5887 // missing a module import.
5888 llvm::SmallVector<Module*, 8> Modules;
5889 if (D->hasDefaultArgument() && !S.hasReachableDefaultArgument(D, &Modules)) {
5890 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
5891 D->getDefaultArgumentLoc(), Modules,
5892 Sema::MissingImportKind::DefaultArgument,
5893 /*Recover*/true);
5894 return true;
5897 // FIXME: If there's a more recent default argument that *is* visible,
5898 // diagnose that it was declared too late.
5900 TemplateParameterList *Params = TD->getTemplateParameters();
5902 S.Diag(Loc, diag::err_template_arg_list_different_arity)
5903 << /*not enough args*/0
5904 << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD))
5905 << TD;
5906 S.Diag(TD->getLocation(), diag::note_template_decl_here)
5907 << Params->getSourceRange();
5908 return true;
5911 /// Check that the given template argument list is well-formed
5912 /// for specializing the given template.
5913 bool Sema::CheckTemplateArgumentList(
5914 TemplateDecl *Template, SourceLocation TemplateLoc,
5915 TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
5916 SmallVectorImpl<TemplateArgument> &SugaredConverted,
5917 SmallVectorImpl<TemplateArgument> &CanonicalConverted,
5918 bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) {
5920 if (ConstraintsNotSatisfied)
5921 *ConstraintsNotSatisfied = false;
5923 // Make a copy of the template arguments for processing. Only make the
5924 // changes at the end when successful in matching the arguments to the
5925 // template.
5926 TemplateArgumentListInfo NewArgs = TemplateArgs;
5928 // Make sure we get the template parameter list from the most
5929 // recent declaration, since that is the only one that is guaranteed to
5930 // have all the default template argument information.
5931 TemplateParameterList *Params =
5932 cast<TemplateDecl>(Template->getMostRecentDecl())
5933 ->getTemplateParameters();
5935 SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
5937 // C++ [temp.arg]p1:
5938 // [...] The type and form of each template-argument specified in
5939 // a template-id shall match the type and form specified for the
5940 // corresponding parameter declared by the template in its
5941 // template-parameter-list.
5942 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
5943 SmallVector<TemplateArgument, 2> SugaredArgumentPack;
5944 SmallVector<TemplateArgument, 2> CanonicalArgumentPack;
5945 unsigned ArgIdx = 0, NumArgs = NewArgs.size();
5946 LocalInstantiationScope InstScope(*this, true);
5947 for (TemplateParameterList::iterator Param = Params->begin(),
5948 ParamEnd = Params->end();
5949 Param != ParamEnd; /* increment in loop */) {
5950 // If we have an expanded parameter pack, make sure we don't have too
5951 // many arguments.
5952 if (std::optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
5953 if (*Expansions == SugaredArgumentPack.size()) {
5954 // We're done with this parameter pack. Pack up its arguments and add
5955 // them to the list.
5956 SugaredConverted.push_back(
5957 TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack));
5958 SugaredArgumentPack.clear();
5960 CanonicalConverted.push_back(
5961 TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack));
5962 CanonicalArgumentPack.clear();
5964 // This argument is assigned to the next parameter.
5965 ++Param;
5966 continue;
5967 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
5968 // Not enough arguments for this parameter pack.
5969 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
5970 << /*not enough args*/0
5971 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
5972 << Template;
5973 Diag(Template->getLocation(), diag::note_template_decl_here)
5974 << Params->getSourceRange();
5975 return true;
5979 if (ArgIdx < NumArgs) {
5980 // Check the template argument we were given.
5981 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template, TemplateLoc,
5982 RAngleLoc, SugaredArgumentPack.size(),
5983 SugaredConverted, CanonicalConverted,
5984 CTAK_Specified))
5985 return true;
5987 CanonicalConverted.back().setIsDefaulted(
5988 clang::isSubstitutedDefaultArgument(
5989 Context, NewArgs[ArgIdx].getArgument(), *Param,
5990 CanonicalConverted, Params->getDepth()));
5992 bool PackExpansionIntoNonPack =
5993 NewArgs[ArgIdx].getArgument().isPackExpansion() &&
5994 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
5995 if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Template) ||
5996 isa<ConceptDecl>(Template))) {
5997 // Core issue 1430: we have a pack expansion as an argument to an
5998 // alias template, and it's not part of a parameter pack. This
5999 // can't be canonicalized, so reject it now.
6000 // As for concepts - we cannot normalize constraints where this
6001 // situation exists.
6002 Diag(NewArgs[ArgIdx].getLocation(),
6003 diag::err_template_expansion_into_fixed_list)
6004 << (isa<ConceptDecl>(Template) ? 1 : 0)
6005 << NewArgs[ArgIdx].getSourceRange();
6006 Diag((*Param)->getLocation(), diag::note_template_param_here);
6007 return true;
6010 // We're now done with this argument.
6011 ++ArgIdx;
6013 if ((*Param)->isTemplateParameterPack()) {
6014 // The template parameter was a template parameter pack, so take the
6015 // deduced argument and place it on the argument pack. Note that we
6016 // stay on the same template parameter so that we can deduce more
6017 // arguments.
6018 SugaredArgumentPack.push_back(SugaredConverted.pop_back_val());
6019 CanonicalArgumentPack.push_back(CanonicalConverted.pop_back_val());
6020 } else {
6021 // Move to the next template parameter.
6022 ++Param;
6025 // If we just saw a pack expansion into a non-pack, then directly convert
6026 // the remaining arguments, because we don't know what parameters they'll
6027 // match up with.
6028 if (PackExpansionIntoNonPack) {
6029 if (!SugaredArgumentPack.empty()) {
6030 // If we were part way through filling in an expanded parameter pack,
6031 // fall back to just producing individual arguments.
6032 SugaredConverted.insert(SugaredConverted.end(),
6033 SugaredArgumentPack.begin(),
6034 SugaredArgumentPack.end());
6035 SugaredArgumentPack.clear();
6037 CanonicalConverted.insert(CanonicalConverted.end(),
6038 CanonicalArgumentPack.begin(),
6039 CanonicalArgumentPack.end());
6040 CanonicalArgumentPack.clear();
6043 while (ArgIdx < NumArgs) {
6044 const TemplateArgument &Arg = NewArgs[ArgIdx].getArgument();
6045 SugaredConverted.push_back(Arg);
6046 CanonicalConverted.push_back(
6047 Context.getCanonicalTemplateArgument(Arg));
6048 ++ArgIdx;
6051 return false;
6054 continue;
6057 // If we're checking a partial template argument list, we're done.
6058 if (PartialTemplateArgs) {
6059 if ((*Param)->isTemplateParameterPack() && !SugaredArgumentPack.empty()) {
6060 SugaredConverted.push_back(
6061 TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack));
6062 CanonicalConverted.push_back(
6063 TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack));
6065 return false;
6068 // If we have a template parameter pack with no more corresponding
6069 // arguments, just break out now and we'll fill in the argument pack below.
6070 if ((*Param)->isTemplateParameterPack()) {
6071 assert(!getExpandedPackSize(*Param) &&
6072 "Should have dealt with this already");
6074 // A non-expanded parameter pack before the end of the parameter list
6075 // only occurs for an ill-formed template parameter list, unless we've
6076 // got a partial argument list for a function template, so just bail out.
6077 if (Param + 1 != ParamEnd) {
6078 assert(
6079 (Template->getMostRecentDecl()->getKind() != Decl::Kind::Concept) &&
6080 "Concept templates must have parameter packs at the end.");
6081 return true;
6084 SugaredConverted.push_back(
6085 TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack));
6086 SugaredArgumentPack.clear();
6088 CanonicalConverted.push_back(
6089 TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack));
6090 CanonicalArgumentPack.clear();
6092 ++Param;
6093 continue;
6096 // Check whether we have a default argument.
6097 TemplateArgumentLoc Arg;
6099 // Retrieve the default template argument from the template
6100 // parameter. For each kind of template parameter, we substitute the
6101 // template arguments provided thus far and any "outer" template arguments
6102 // (when the template parameter was part of a nested template) into
6103 // the default argument.
6104 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
6105 if (!hasReachableDefaultArgument(TTP))
6106 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
6107 NewArgs);
6109 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(
6110 *this, Template, TemplateLoc, RAngleLoc, TTP, SugaredConverted,
6111 CanonicalConverted);
6112 if (!ArgType)
6113 return true;
6115 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
6116 ArgType);
6117 } else if (NonTypeTemplateParmDecl *NTTP
6118 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
6119 if (!hasReachableDefaultArgument(NTTP))
6120 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
6121 NewArgs);
6123 ExprResult E = SubstDefaultTemplateArgument(
6124 *this, Template, TemplateLoc, RAngleLoc, NTTP, SugaredConverted,
6125 CanonicalConverted);
6126 if (E.isInvalid())
6127 return true;
6129 Expr *Ex = E.getAs<Expr>();
6130 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
6131 } else {
6132 TemplateTemplateParmDecl *TempParm
6133 = cast<TemplateTemplateParmDecl>(*Param);
6135 if (!hasReachableDefaultArgument(TempParm))
6136 return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
6137 NewArgs);
6139 NestedNameSpecifierLoc QualifierLoc;
6140 TemplateName Name = SubstDefaultTemplateArgument(
6141 *this, Template, TemplateLoc, RAngleLoc, TempParm, SugaredConverted,
6142 CanonicalConverted, QualifierLoc);
6143 if (Name.isNull())
6144 return true;
6146 Arg = TemplateArgumentLoc(
6147 Context, TemplateArgument(Name), QualifierLoc,
6148 TempParm->getDefaultArgument().getTemplateNameLoc());
6151 // Introduce an instantiation record that describes where we are using
6152 // the default template argument. We're not actually instantiating a
6153 // template here, we just create this object to put a note into the
6154 // context stack.
6155 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param,
6156 SugaredConverted,
6157 SourceRange(TemplateLoc, RAngleLoc));
6158 if (Inst.isInvalid())
6159 return true;
6161 // Check the default template argument.
6162 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, RAngleLoc, 0,
6163 SugaredConverted, CanonicalConverted,
6164 CTAK_Specified))
6165 return true;
6167 CanonicalConverted.back().setIsDefaulted(true);
6169 // Core issue 150 (assumed resolution): if this is a template template
6170 // parameter, keep track of the default template arguments from the
6171 // template definition.
6172 if (isTemplateTemplateParameter)
6173 NewArgs.addArgument(Arg);
6175 // Move to the next template parameter and argument.
6176 ++Param;
6177 ++ArgIdx;
6180 // If we're performing a partial argument substitution, allow any trailing
6181 // pack expansions; they might be empty. This can happen even if
6182 // PartialTemplateArgs is false (the list of arguments is complete but
6183 // still dependent).
6184 if (ArgIdx < NumArgs && CurrentInstantiationScope &&
6185 CurrentInstantiationScope->getPartiallySubstitutedPack()) {
6186 while (ArgIdx < NumArgs &&
6187 NewArgs[ArgIdx].getArgument().isPackExpansion()) {
6188 const TemplateArgument &Arg = NewArgs[ArgIdx++].getArgument();
6189 SugaredConverted.push_back(Arg);
6190 CanonicalConverted.push_back(Context.getCanonicalTemplateArgument(Arg));
6194 // If we have any leftover arguments, then there were too many arguments.
6195 // Complain and fail.
6196 if (ArgIdx < NumArgs) {
6197 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
6198 << /*too many args*/1
6199 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
6200 << Template
6201 << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc());
6202 Diag(Template->getLocation(), diag::note_template_decl_here)
6203 << Params->getSourceRange();
6204 return true;
6207 // No problems found with the new argument list, propagate changes back
6208 // to caller.
6209 if (UpdateArgsWithConversions)
6210 TemplateArgs = std::move(NewArgs);
6212 if (!PartialTemplateArgs) {
6213 TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack,
6214 CanonicalConverted);
6215 // Setup the context/ThisScope for the case where we are needing to
6216 // re-instantiate constraints outside of normal instantiation.
6217 DeclContext *NewContext = Template->getDeclContext();
6219 // If this template is in a template, make sure we extract the templated
6220 // decl.
6221 if (auto *TD = dyn_cast<TemplateDecl>(NewContext))
6222 NewContext = Decl::castToDeclContext(TD->getTemplatedDecl());
6223 auto *RD = dyn_cast<CXXRecordDecl>(NewContext);
6225 Qualifiers ThisQuals;
6226 if (const auto *Method =
6227 dyn_cast_or_null<CXXMethodDecl>(Template->getTemplatedDecl()))
6228 ThisQuals = Method->getMethodQualifiers();
6230 ContextRAII Context(*this, NewContext);
6231 CXXThisScopeRAII(*this, RD, ThisQuals, RD != nullptr);
6233 MultiLevelTemplateArgumentList MLTAL = getTemplateInstantiationArgs(
6234 Template, NewContext, /*Final=*/false, &StackTemplateArgs,
6235 /*RelativeToPrimary=*/true,
6236 /*Pattern=*/nullptr,
6237 /*ForConceptInstantiation=*/true);
6238 if (EnsureTemplateArgumentListConstraints(
6239 Template, MLTAL,
6240 SourceRange(TemplateLoc, TemplateArgs.getRAngleLoc()))) {
6241 if (ConstraintsNotSatisfied)
6242 *ConstraintsNotSatisfied = true;
6243 return true;
6247 return false;
6250 namespace {
6251 class UnnamedLocalNoLinkageFinder
6252 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
6254 Sema &S;
6255 SourceRange SR;
6257 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
6259 public:
6260 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
6262 bool Visit(QualType T) {
6263 return T.isNull() ? false : inherited::Visit(T.getTypePtr());
6266 #define TYPE(Class, Parent) \
6267 bool Visit##Class##Type(const Class##Type *);
6268 #define ABSTRACT_TYPE(Class, Parent) \
6269 bool Visit##Class##Type(const Class##Type *) { return false; }
6270 #define NON_CANONICAL_TYPE(Class, Parent) \
6271 bool Visit##Class##Type(const Class##Type *) { return false; }
6272 #include "clang/AST/TypeNodes.inc"
6274 bool VisitTagDecl(const TagDecl *Tag);
6275 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
6277 } // end anonymous namespace
6279 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
6280 return false;
6283 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
6284 return Visit(T->getElementType());
6287 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
6288 return Visit(T->getPointeeType());
6291 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
6292 const BlockPointerType* T) {
6293 return Visit(T->getPointeeType());
6296 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
6297 const LValueReferenceType* T) {
6298 return Visit(T->getPointeeType());
6301 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
6302 const RValueReferenceType* T) {
6303 return Visit(T->getPointeeType());
6306 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
6307 const MemberPointerType* T) {
6308 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
6311 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
6312 const ConstantArrayType* T) {
6313 return Visit(T->getElementType());
6316 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
6317 const IncompleteArrayType* T) {
6318 return Visit(T->getElementType());
6321 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
6322 const VariableArrayType* T) {
6323 return Visit(T->getElementType());
6326 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
6327 const DependentSizedArrayType* T) {
6328 return Visit(T->getElementType());
6331 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
6332 const DependentSizedExtVectorType* T) {
6333 return Visit(T->getElementType());
6336 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType(
6337 const DependentSizedMatrixType *T) {
6338 return Visit(T->getElementType());
6341 bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType(
6342 const DependentAddressSpaceType *T) {
6343 return Visit(T->getPointeeType());
6346 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
6347 return Visit(T->getElementType());
6350 bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType(
6351 const DependentVectorType *T) {
6352 return Visit(T->getElementType());
6355 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
6356 return Visit(T->getElementType());
6359 bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType(
6360 const ConstantMatrixType *T) {
6361 return Visit(T->getElementType());
6364 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
6365 const FunctionProtoType* T) {
6366 for (const auto &A : T->param_types()) {
6367 if (Visit(A))
6368 return true;
6371 return Visit(T->getReturnType());
6374 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
6375 const FunctionNoProtoType* T) {
6376 return Visit(T->getReturnType());
6379 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
6380 const UnresolvedUsingType*) {
6381 return false;
6384 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
6385 return false;
6388 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
6389 return Visit(T->getUnmodifiedType());
6392 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
6393 return false;
6396 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
6397 const UnaryTransformType*) {
6398 return false;
6401 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
6402 return Visit(T->getDeducedType());
6405 bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType(
6406 const DeducedTemplateSpecializationType *T) {
6407 return Visit(T->getDeducedType());
6410 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
6411 return VisitTagDecl(T->getDecl());
6414 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
6415 return VisitTagDecl(T->getDecl());
6418 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
6419 const TemplateTypeParmType*) {
6420 return false;
6423 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
6424 const SubstTemplateTypeParmPackType *) {
6425 return false;
6428 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
6429 const TemplateSpecializationType*) {
6430 return false;
6433 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
6434 const InjectedClassNameType* T) {
6435 return VisitTagDecl(T->getDecl());
6438 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
6439 const DependentNameType* T) {
6440 return VisitNestedNameSpecifier(T->getQualifier());
6443 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
6444 const DependentTemplateSpecializationType* T) {
6445 if (auto *Q = T->getQualifier())
6446 return VisitNestedNameSpecifier(Q);
6447 return false;
6450 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
6451 const PackExpansionType* T) {
6452 return Visit(T->getPattern());
6455 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
6456 return false;
6459 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
6460 const ObjCInterfaceType *) {
6461 return false;
6464 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
6465 const ObjCObjectPointerType *) {
6466 return false;
6469 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
6470 return Visit(T->getValueType());
6473 bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
6474 return false;
6477 bool UnnamedLocalNoLinkageFinder::VisitBitIntType(const BitIntType *T) {
6478 return false;
6481 bool UnnamedLocalNoLinkageFinder::VisitDependentBitIntType(
6482 const DependentBitIntType *T) {
6483 return false;
6486 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
6487 if (Tag->getDeclContext()->isFunctionOrMethod()) {
6488 S.Diag(SR.getBegin(),
6489 S.getLangOpts().CPlusPlus11 ?
6490 diag::warn_cxx98_compat_template_arg_local_type :
6491 diag::ext_template_arg_local_type)
6492 << S.Context.getTypeDeclType(Tag) << SR;
6493 return true;
6496 if (!Tag->hasNameForLinkage()) {
6497 S.Diag(SR.getBegin(),
6498 S.getLangOpts().CPlusPlus11 ?
6499 diag::warn_cxx98_compat_template_arg_unnamed_type :
6500 diag::ext_template_arg_unnamed_type) << SR;
6501 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
6502 return true;
6505 return false;
6508 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
6509 NestedNameSpecifier *NNS) {
6510 assert(NNS);
6511 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
6512 return true;
6514 switch (NNS->getKind()) {
6515 case NestedNameSpecifier::Identifier:
6516 case NestedNameSpecifier::Namespace:
6517 case NestedNameSpecifier::NamespaceAlias:
6518 case NestedNameSpecifier::Global:
6519 case NestedNameSpecifier::Super:
6520 return false;
6522 case NestedNameSpecifier::TypeSpec:
6523 case NestedNameSpecifier::TypeSpecWithTemplate:
6524 return Visit(QualType(NNS->getAsType(), 0));
6526 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
6529 /// Check a template argument against its corresponding
6530 /// template type parameter.
6532 /// This routine implements the semantics of C++ [temp.arg.type]. It
6533 /// returns true if an error occurred, and false otherwise.
6534 bool Sema::CheckTemplateArgument(TypeSourceInfo *ArgInfo) {
6535 assert(ArgInfo && "invalid TypeSourceInfo");
6536 QualType Arg = ArgInfo->getType();
6537 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
6538 QualType CanonArg = Context.getCanonicalType(Arg);
6540 if (CanonArg->isVariablyModifiedType()) {
6541 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
6542 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
6543 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
6546 // C++03 [temp.arg.type]p2:
6547 // A local type, a type with no linkage, an unnamed type or a type
6548 // compounded from any of these types shall not be used as a
6549 // template-argument for a template type-parameter.
6551 // C++11 allows these, and even in C++03 we allow them as an extension with
6552 // a warning.
6553 if (LangOpts.CPlusPlus11 || CanonArg->hasUnnamedOrLocalType()) {
6554 UnnamedLocalNoLinkageFinder Finder(*this, SR);
6555 (void)Finder.Visit(CanonArg);
6558 return false;
6561 enum NullPointerValueKind {
6562 NPV_NotNullPointer,
6563 NPV_NullPointer,
6564 NPV_Error
6567 /// Determine whether the given template argument is a null pointer
6568 /// value of the appropriate type.
6569 static NullPointerValueKind
6570 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
6571 QualType ParamType, Expr *Arg,
6572 Decl *Entity = nullptr) {
6573 if (Arg->isValueDependent() || Arg->isTypeDependent())
6574 return NPV_NotNullPointer;
6576 // dllimport'd entities aren't constant but are available inside of template
6577 // arguments.
6578 if (Entity && Entity->hasAttr<DLLImportAttr>())
6579 return NPV_NotNullPointer;
6581 if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
6582 llvm_unreachable(
6583 "Incomplete parameter type in isNullPointerValueTemplateArgument!");
6585 if (!S.getLangOpts().CPlusPlus11)
6586 return NPV_NotNullPointer;
6588 // Determine whether we have a constant expression.
6589 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
6590 if (ArgRV.isInvalid())
6591 return NPV_Error;
6592 Arg = ArgRV.get();
6594 Expr::EvalResult EvalResult;
6595 SmallVector<PartialDiagnosticAt, 8> Notes;
6596 EvalResult.Diag = &Notes;
6597 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
6598 EvalResult.HasSideEffects) {
6599 SourceLocation DiagLoc = Arg->getExprLoc();
6601 // If our only note is the usual "invalid subexpression" note, just point
6602 // the caret at its location rather than producing an essentially
6603 // redundant note.
6604 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6605 diag::note_invalid_subexpr_in_const_expr) {
6606 DiagLoc = Notes[0].first;
6607 Notes.clear();
6610 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
6611 << Arg->getType() << Arg->getSourceRange();
6612 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6613 S.Diag(Notes[I].first, Notes[I].second);
6615 S.Diag(Param->getLocation(), diag::note_template_param_here);
6616 return NPV_Error;
6619 // C++11 [temp.arg.nontype]p1:
6620 // - an address constant expression of type std::nullptr_t
6621 if (Arg->getType()->isNullPtrType())
6622 return NPV_NullPointer;
6624 // - a constant expression that evaluates to a null pointer value (4.10); or
6625 // - a constant expression that evaluates to a null member pointer value
6626 // (4.11); or
6627 if ((EvalResult.Val.isLValue() && EvalResult.Val.isNullPointer()) ||
6628 (EvalResult.Val.isMemberPointer() &&
6629 !EvalResult.Val.getMemberPointerDecl())) {
6630 // If our expression has an appropriate type, we've succeeded.
6631 bool ObjCLifetimeConversion;
6632 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
6633 S.IsQualificationConversion(Arg->getType(), ParamType, false,
6634 ObjCLifetimeConversion))
6635 return NPV_NullPointer;
6637 // The types didn't match, but we know we got a null pointer; complain,
6638 // then recover as if the types were correct.
6639 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
6640 << Arg->getType() << ParamType << Arg->getSourceRange();
6641 S.Diag(Param->getLocation(), diag::note_template_param_here);
6642 return NPV_NullPointer;
6645 if (EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) {
6646 // We found a pointer that isn't null, but doesn't refer to an object.
6647 // We could just return NPV_NotNullPointer, but we can print a better
6648 // message with the information we have here.
6649 S.Diag(Arg->getExprLoc(), diag::err_template_arg_invalid)
6650 << EvalResult.Val.getAsString(S.Context, ParamType);
6651 S.Diag(Param->getLocation(), diag::note_template_param_here);
6652 return NPV_Error;
6655 // If we don't have a null pointer value, but we do have a NULL pointer
6656 // constant, suggest a cast to the appropriate type.
6657 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
6658 std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
6659 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
6660 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code)
6661 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()),
6662 ")");
6663 S.Diag(Param->getLocation(), diag::note_template_param_here);
6664 return NPV_NullPointer;
6667 // FIXME: If we ever want to support general, address-constant expressions
6668 // as non-type template arguments, we should return the ExprResult here to
6669 // be interpreted by the caller.
6670 return NPV_NotNullPointer;
6673 /// Checks whether the given template argument is compatible with its
6674 /// template parameter.
6675 static bool CheckTemplateArgumentIsCompatibleWithParameter(
6676 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
6677 Expr *Arg, QualType ArgType) {
6678 bool ObjCLifetimeConversion;
6679 if (ParamType->isPointerType() &&
6680 !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() &&
6681 S.IsQualificationConversion(ArgType, ParamType, false,
6682 ObjCLifetimeConversion)) {
6683 // For pointer-to-object types, qualification conversions are
6684 // permitted.
6685 } else {
6686 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
6687 if (!ParamRef->getPointeeType()->isFunctionType()) {
6688 // C++ [temp.arg.nontype]p5b3:
6689 // For a non-type template-parameter of type reference to
6690 // object, no conversions apply. The type referred to by the
6691 // reference may be more cv-qualified than the (otherwise
6692 // identical) type of the template- argument. The
6693 // template-parameter is bound directly to the
6694 // template-argument, which shall be an lvalue.
6696 // FIXME: Other qualifiers?
6697 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
6698 unsigned ArgQuals = ArgType.getCVRQualifiers();
6700 if ((ParamQuals | ArgQuals) != ParamQuals) {
6701 S.Diag(Arg->getBeginLoc(),
6702 diag::err_template_arg_ref_bind_ignores_quals)
6703 << ParamType << Arg->getType() << Arg->getSourceRange();
6704 S.Diag(Param->getLocation(), diag::note_template_param_here);
6705 return true;
6710 // At this point, the template argument refers to an object or
6711 // function with external linkage. We now need to check whether the
6712 // argument and parameter types are compatible.
6713 if (!S.Context.hasSameUnqualifiedType(ArgType,
6714 ParamType.getNonReferenceType())) {
6715 // We can't perform this conversion or binding.
6716 if (ParamType->isReferenceType())
6717 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind)
6718 << ParamType << ArgIn->getType() << Arg->getSourceRange();
6719 else
6720 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
6721 << ArgIn->getType() << ParamType << Arg->getSourceRange();
6722 S.Diag(Param->getLocation(), diag::note_template_param_here);
6723 return true;
6727 return false;
6730 /// Checks whether the given template argument is the address
6731 /// of an object or function according to C++ [temp.arg.nontype]p1.
6732 static bool CheckTemplateArgumentAddressOfObjectOrFunction(
6733 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
6734 TemplateArgument &SugaredConverted, TemplateArgument &CanonicalConverted) {
6735 bool Invalid = false;
6736 Expr *Arg = ArgIn;
6737 QualType ArgType = Arg->getType();
6739 bool AddressTaken = false;
6740 SourceLocation AddrOpLoc;
6741 if (S.getLangOpts().MicrosoftExt) {
6742 // Microsoft Visual C++ strips all casts, allows an arbitrary number of
6743 // dereference and address-of operators.
6744 Arg = Arg->IgnoreParenCasts();
6746 bool ExtWarnMSTemplateArg = false;
6747 UnaryOperatorKind FirstOpKind;
6748 SourceLocation FirstOpLoc;
6749 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6750 UnaryOperatorKind UnOpKind = UnOp->getOpcode();
6751 if (UnOpKind == UO_Deref)
6752 ExtWarnMSTemplateArg = true;
6753 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
6754 Arg = UnOp->getSubExpr()->IgnoreParenCasts();
6755 if (!AddrOpLoc.isValid()) {
6756 FirstOpKind = UnOpKind;
6757 FirstOpLoc = UnOp->getOperatorLoc();
6759 } else
6760 break;
6762 if (FirstOpLoc.isValid()) {
6763 if (ExtWarnMSTemplateArg)
6764 S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument)
6765 << ArgIn->getSourceRange();
6767 if (FirstOpKind == UO_AddrOf)
6768 AddressTaken = true;
6769 else if (Arg->getType()->isPointerType()) {
6770 // We cannot let pointers get dereferenced here, that is obviously not a
6771 // constant expression.
6772 assert(FirstOpKind == UO_Deref);
6773 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6774 << Arg->getSourceRange();
6777 } else {
6778 // See through any implicit casts we added to fix the type.
6779 Arg = Arg->IgnoreImpCasts();
6781 // C++ [temp.arg.nontype]p1:
6783 // A template-argument for a non-type, non-template
6784 // template-parameter shall be one of: [...]
6786 // -- the address of an object or function with external
6787 // linkage, including function templates and function
6788 // template-ids but excluding non-static class members,
6789 // expressed as & id-expression where the & is optional if
6790 // the name refers to a function or array, or if the
6791 // corresponding template-parameter is a reference; or
6793 // In C++98/03 mode, give an extension warning on any extra parentheses.
6794 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6795 bool ExtraParens = false;
6796 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6797 if (!Invalid && !ExtraParens) {
6798 S.Diag(Arg->getBeginLoc(),
6799 S.getLangOpts().CPlusPlus11
6800 ? diag::warn_cxx98_compat_template_arg_extra_parens
6801 : diag::ext_template_arg_extra_parens)
6802 << Arg->getSourceRange();
6803 ExtraParens = true;
6806 Arg = Parens->getSubExpr();
6809 while (SubstNonTypeTemplateParmExpr *subst =
6810 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6811 Arg = subst->getReplacement()->IgnoreImpCasts();
6813 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6814 if (UnOp->getOpcode() == UO_AddrOf) {
6815 Arg = UnOp->getSubExpr();
6816 AddressTaken = true;
6817 AddrOpLoc = UnOp->getOperatorLoc();
6821 while (SubstNonTypeTemplateParmExpr *subst =
6822 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6823 Arg = subst->getReplacement()->IgnoreImpCasts();
6826 ValueDecl *Entity = nullptr;
6827 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg))
6828 Entity = DRE->getDecl();
6829 else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Arg))
6830 Entity = CUE->getGuidDecl();
6832 // If our parameter has pointer type, check for a null template value.
6833 if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
6834 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn,
6835 Entity)) {
6836 case NPV_NullPointer:
6837 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6838 SugaredConverted = TemplateArgument(ParamType,
6839 /*isNullPtr=*/true);
6840 CanonicalConverted =
6841 TemplateArgument(S.Context.getCanonicalType(ParamType),
6842 /*isNullPtr=*/true);
6843 return false;
6845 case NPV_Error:
6846 return true;
6848 case NPV_NotNullPointer:
6849 break;
6853 // Stop checking the precise nature of the argument if it is value dependent,
6854 // it should be checked when instantiated.
6855 if (Arg->isValueDependent()) {
6856 SugaredConverted = TemplateArgument(ArgIn);
6857 CanonicalConverted =
6858 S.Context.getCanonicalTemplateArgument(SugaredConverted);
6859 return false;
6862 if (!Entity) {
6863 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6864 << Arg->getSourceRange();
6865 S.Diag(Param->getLocation(), diag::note_template_param_here);
6866 return true;
6869 // Cannot refer to non-static data members
6870 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
6871 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field)
6872 << Entity << Arg->getSourceRange();
6873 S.Diag(Param->getLocation(), diag::note_template_param_here);
6874 return true;
6877 // Cannot refer to non-static member functions
6878 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
6879 if (!Method->isStatic()) {
6880 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method)
6881 << Method << Arg->getSourceRange();
6882 S.Diag(Param->getLocation(), diag::note_template_param_here);
6883 return true;
6887 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
6888 VarDecl *Var = dyn_cast<VarDecl>(Entity);
6889 MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Entity);
6891 // A non-type template argument must refer to an object or function.
6892 if (!Func && !Var && !Guid) {
6893 // We found something, but we don't know specifically what it is.
6894 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func)
6895 << Arg->getSourceRange();
6896 S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here);
6897 return true;
6900 // Address / reference template args must have external linkage in C++98.
6901 if (Entity->getFormalLinkage() == InternalLinkage) {
6902 S.Diag(Arg->getBeginLoc(),
6903 S.getLangOpts().CPlusPlus11
6904 ? diag::warn_cxx98_compat_template_arg_object_internal
6905 : diag::ext_template_arg_object_internal)
6906 << !Func << Entity << Arg->getSourceRange();
6907 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6908 << !Func;
6909 } else if (!Entity->hasLinkage()) {
6910 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage)
6911 << !Func << Entity << Arg->getSourceRange();
6912 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6913 << !Func;
6914 return true;
6917 if (Var) {
6918 // A value of reference type is not an object.
6919 if (Var->getType()->isReferenceType()) {
6920 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var)
6921 << Var->getType() << Arg->getSourceRange();
6922 S.Diag(Param->getLocation(), diag::note_template_param_here);
6923 return true;
6926 // A template argument must have static storage duration.
6927 if (Var->getTLSKind()) {
6928 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local)
6929 << Arg->getSourceRange();
6930 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
6931 return true;
6935 if (AddressTaken && ParamType->isReferenceType()) {
6936 // If we originally had an address-of operator, but the
6937 // parameter has reference type, complain and (if things look
6938 // like they will work) drop the address-of operator.
6939 if (!S.Context.hasSameUnqualifiedType(Entity->getType(),
6940 ParamType.getNonReferenceType())) {
6941 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6942 << ParamType;
6943 S.Diag(Param->getLocation(), diag::note_template_param_here);
6944 return true;
6947 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6948 << ParamType
6949 << FixItHint::CreateRemoval(AddrOpLoc);
6950 S.Diag(Param->getLocation(), diag::note_template_param_here);
6952 ArgType = Entity->getType();
6955 // If the template parameter has pointer type, either we must have taken the
6956 // address or the argument must decay to a pointer.
6957 if (!AddressTaken && ParamType->isPointerType()) {
6958 if (Func) {
6959 // Function-to-pointer decay.
6960 ArgType = S.Context.getPointerType(Func->getType());
6961 } else if (Entity->getType()->isArrayType()) {
6962 // Array-to-pointer decay.
6963 ArgType = S.Context.getArrayDecayedType(Entity->getType());
6964 } else {
6965 // If the template parameter has pointer type but the address of
6966 // this object was not taken, complain and (possibly) recover by
6967 // taking the address of the entity.
6968 ArgType = S.Context.getPointerType(Entity->getType());
6969 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
6970 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
6971 << ParamType;
6972 S.Diag(Param->getLocation(), diag::note_template_param_here);
6973 return true;
6976 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
6977 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&");
6979 S.Diag(Param->getLocation(), diag::note_template_param_here);
6983 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
6984 Arg, ArgType))
6985 return true;
6987 // Create the template argument.
6988 SugaredConverted = TemplateArgument(Entity, ParamType);
6989 CanonicalConverted =
6990 TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()),
6991 S.Context.getCanonicalType(ParamType));
6992 S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false);
6993 return false;
6996 /// Checks whether the given template argument is a pointer to
6997 /// member constant according to C++ [temp.arg.nontype]p1.
6998 static bool
6999 CheckTemplateArgumentPointerToMember(Sema &S, NonTypeTemplateParmDecl *Param,
7000 QualType ParamType, Expr *&ResultArg,
7001 TemplateArgument &SugaredConverted,
7002 TemplateArgument &CanonicalConverted) {
7003 bool Invalid = false;
7005 Expr *Arg = ResultArg;
7006 bool ObjCLifetimeConversion;
7008 // C++ [temp.arg.nontype]p1:
7010 // A template-argument for a non-type, non-template
7011 // template-parameter shall be one of: [...]
7013 // -- a pointer to member expressed as described in 5.3.1.
7014 DeclRefExpr *DRE = nullptr;
7016 // In C++98/03 mode, give an extension warning on any extra parentheses.
7017 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
7018 bool ExtraParens = false;
7019 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
7020 if (!Invalid && !ExtraParens) {
7021 S.Diag(Arg->getBeginLoc(),
7022 S.getLangOpts().CPlusPlus11
7023 ? diag::warn_cxx98_compat_template_arg_extra_parens
7024 : diag::ext_template_arg_extra_parens)
7025 << Arg->getSourceRange();
7026 ExtraParens = true;
7029 Arg = Parens->getSubExpr();
7032 while (SubstNonTypeTemplateParmExpr *subst =
7033 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
7034 Arg = subst->getReplacement()->IgnoreImpCasts();
7036 // A pointer-to-member constant written &Class::member.
7037 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
7038 if (UnOp->getOpcode() == UO_AddrOf) {
7039 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
7040 if (DRE && !DRE->getQualifier())
7041 DRE = nullptr;
7044 // A constant of pointer-to-member type.
7045 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
7046 ValueDecl *VD = DRE->getDecl();
7047 if (VD->getType()->isMemberPointerType()) {
7048 if (isa<NonTypeTemplateParmDecl>(VD)) {
7049 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7050 SugaredConverted = TemplateArgument(Arg);
7051 CanonicalConverted =
7052 S.Context.getCanonicalTemplateArgument(SugaredConverted);
7053 } else {
7054 SugaredConverted = TemplateArgument(VD, ParamType);
7055 CanonicalConverted =
7056 TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()),
7057 S.Context.getCanonicalType(ParamType));
7059 return Invalid;
7063 DRE = nullptr;
7066 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
7068 // Check for a null pointer value.
7069 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg,
7070 Entity)) {
7071 case NPV_Error:
7072 return true;
7073 case NPV_NullPointer:
7074 S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
7075 SugaredConverted = TemplateArgument(ParamType,
7076 /*isNullPtr*/ true);
7077 CanonicalConverted = TemplateArgument(S.Context.getCanonicalType(ParamType),
7078 /*isNullPtr*/ true);
7079 return false;
7080 case NPV_NotNullPointer:
7081 break;
7084 if (S.IsQualificationConversion(ResultArg->getType(),
7085 ParamType.getNonReferenceType(), false,
7086 ObjCLifetimeConversion)) {
7087 ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp,
7088 ResultArg->getValueKind())
7089 .get();
7090 } else if (!S.Context.hasSameUnqualifiedType(
7091 ResultArg->getType(), ParamType.getNonReferenceType())) {
7092 // We can't perform this conversion.
7093 S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible)
7094 << ResultArg->getType() << ParamType << ResultArg->getSourceRange();
7095 S.Diag(Param->getLocation(), diag::note_template_param_here);
7096 return true;
7099 if (!DRE)
7100 return S.Diag(Arg->getBeginLoc(),
7101 diag::err_template_arg_not_pointer_to_member_form)
7102 << Arg->getSourceRange();
7104 if (isa<FieldDecl>(DRE->getDecl()) ||
7105 isa<IndirectFieldDecl>(DRE->getDecl()) ||
7106 isa<CXXMethodDecl>(DRE->getDecl())) {
7107 assert((isa<FieldDecl>(DRE->getDecl()) ||
7108 isa<IndirectFieldDecl>(DRE->getDecl()) ||
7109 cast<CXXMethodDecl>(DRE->getDecl())
7110 ->isImplicitObjectMemberFunction()) &&
7111 "Only non-static member pointers can make it here");
7113 // Okay: this is the address of a non-static member, and therefore
7114 // a member pointer constant.
7115 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7116 SugaredConverted = TemplateArgument(Arg);
7117 CanonicalConverted =
7118 S.Context.getCanonicalTemplateArgument(SugaredConverted);
7119 } else {
7120 ValueDecl *D = DRE->getDecl();
7121 SugaredConverted = TemplateArgument(D, ParamType);
7122 CanonicalConverted =
7123 TemplateArgument(cast<ValueDecl>(D->getCanonicalDecl()),
7124 S.Context.getCanonicalType(ParamType));
7126 return Invalid;
7129 // We found something else, but we don't know specifically what it is.
7130 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form)
7131 << Arg->getSourceRange();
7132 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
7133 return true;
7136 /// Check a template argument against its corresponding
7137 /// non-type template parameter.
7139 /// This routine implements the semantics of C++ [temp.arg.nontype].
7140 /// If an error occurred, it returns ExprError(); otherwise, it
7141 /// returns the converted template argument. \p ParamType is the
7142 /// type of the non-type template parameter after it has been instantiated.
7143 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
7144 QualType ParamType, Expr *Arg,
7145 TemplateArgument &SugaredConverted,
7146 TemplateArgument &CanonicalConverted,
7147 CheckTemplateArgumentKind CTAK) {
7148 SourceLocation StartLoc = Arg->getBeginLoc();
7150 // If the parameter type somehow involves auto, deduce the type now.
7151 DeducedType *DeducedT = ParamType->getContainedDeducedType();
7152 if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) {
7153 // During template argument deduction, we allow 'decltype(auto)' to
7154 // match an arbitrary dependent argument.
7155 // FIXME: The language rules don't say what happens in this case.
7156 // FIXME: We get an opaque dependent type out of decltype(auto) if the
7157 // expression is merely instantiation-dependent; is this enough?
7158 if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) {
7159 auto *AT = dyn_cast<AutoType>(DeducedT);
7160 if (AT && AT->isDecltypeAuto()) {
7161 SugaredConverted = TemplateArgument(Arg);
7162 CanonicalConverted = TemplateArgument(
7163 Context.getCanonicalTemplateArgument(SugaredConverted));
7164 return Arg;
7168 // When checking a deduced template argument, deduce from its type even if
7169 // the type is dependent, in order to check the types of non-type template
7170 // arguments line up properly in partial ordering.
7171 Expr *DeductionArg = Arg;
7172 if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg))
7173 DeductionArg = PE->getPattern();
7174 TypeSourceInfo *TSI =
7175 Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation());
7176 if (isa<DeducedTemplateSpecializationType>(DeducedT)) {
7177 InitializedEntity Entity =
7178 InitializedEntity::InitializeTemplateParameter(ParamType, Param);
7179 InitializationKind Kind = InitializationKind::CreateForInit(
7180 DeductionArg->getBeginLoc(), /*DirectInit*/false, DeductionArg);
7181 Expr *Inits[1] = {DeductionArg};
7182 ParamType =
7183 DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, Inits);
7184 if (ParamType.isNull())
7185 return ExprError();
7186 } else {
7187 TemplateDeductionInfo Info(DeductionArg->getExprLoc(),
7188 Param->getDepth() + 1);
7189 ParamType = QualType();
7190 TemplateDeductionResult Result =
7191 DeduceAutoType(TSI->getTypeLoc(), DeductionArg, ParamType, Info,
7192 /*DependentDeduction=*/true,
7193 // We do not check constraints right now because the
7194 // immediately-declared constraint of the auto type is
7195 // also an associated constraint, and will be checked
7196 // along with the other associated constraints after
7197 // checking the template argument list.
7198 /*IgnoreConstraints=*/true);
7199 if (Result == TDK_AlreadyDiagnosed) {
7200 if (ParamType.isNull())
7201 return ExprError();
7202 } else if (Result != TDK_Success) {
7203 Diag(Arg->getExprLoc(),
7204 diag::err_non_type_template_parm_type_deduction_failure)
7205 << Param->getDeclName() << Param->getType() << Arg->getType()
7206 << Arg->getSourceRange();
7207 Diag(Param->getLocation(), diag::note_template_param_here);
7208 return ExprError();
7211 // CheckNonTypeTemplateParameterType will produce a diagnostic if there's
7212 // an error. The error message normally references the parameter
7213 // declaration, but here we'll pass the argument location because that's
7214 // where the parameter type is deduced.
7215 ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
7216 if (ParamType.isNull()) {
7217 Diag(Param->getLocation(), diag::note_template_param_here);
7218 return ExprError();
7222 // We should have already dropped all cv-qualifiers by now.
7223 assert(!ParamType.hasQualifiers() &&
7224 "non-type template parameter type cannot be qualified");
7226 // FIXME: When Param is a reference, should we check that Arg is an lvalue?
7227 if (CTAK == CTAK_Deduced &&
7228 (ParamType->isReferenceType()
7229 ? !Context.hasSameType(ParamType.getNonReferenceType(),
7230 Arg->getType())
7231 : !Context.hasSameUnqualifiedType(ParamType, Arg->getType()))) {
7232 // FIXME: If either type is dependent, we skip the check. This isn't
7233 // correct, since during deduction we're supposed to have replaced each
7234 // template parameter with some unique (non-dependent) placeholder.
7235 // FIXME: If the argument type contains 'auto', we carry on and fail the
7236 // type check in order to force specific types to be more specialized than
7237 // 'auto'. It's not clear how partial ordering with 'auto' is supposed to
7238 // work. Similarly for CTAD, when comparing 'A<x>' against 'A'.
7239 if ((ParamType->isDependentType() || Arg->isTypeDependent()) &&
7240 !Arg->getType()->getContainedDeducedType()) {
7241 SugaredConverted = TemplateArgument(Arg);
7242 CanonicalConverted = TemplateArgument(
7243 Context.getCanonicalTemplateArgument(SugaredConverted));
7244 return Arg;
7246 // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
7247 // we should actually be checking the type of the template argument in P,
7248 // not the type of the template argument deduced from A, against the
7249 // template parameter type.
7250 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
7251 << Arg->getType()
7252 << ParamType.getUnqualifiedType();
7253 Diag(Param->getLocation(), diag::note_template_param_here);
7254 return ExprError();
7257 // If either the parameter has a dependent type or the argument is
7258 // type-dependent, there's nothing we can check now.
7259 if (ParamType->isDependentType() || Arg->isTypeDependent()) {
7260 // Force the argument to the type of the parameter to maintain invariants.
7261 auto *PE = dyn_cast<PackExpansionExpr>(Arg);
7262 if (PE)
7263 Arg = PE->getPattern();
7264 ExprResult E = ImpCastExprToType(
7265 Arg, ParamType.getNonLValueExprType(Context), CK_Dependent,
7266 ParamType->isLValueReferenceType() ? VK_LValue
7267 : ParamType->isRValueReferenceType() ? VK_XValue
7268 : VK_PRValue);
7269 if (E.isInvalid())
7270 return ExprError();
7271 if (PE) {
7272 // Recreate a pack expansion if we unwrapped one.
7273 E = new (Context)
7274 PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(),
7275 PE->getNumExpansions());
7277 SugaredConverted = TemplateArgument(E.get());
7278 CanonicalConverted = TemplateArgument(
7279 Context.getCanonicalTemplateArgument(SugaredConverted));
7280 return E;
7283 // The initialization of the parameter from the argument is
7284 // a constant-evaluated context.
7285 EnterExpressionEvaluationContext ConstantEvaluated(
7286 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
7288 if (getLangOpts().CPlusPlus17) {
7289 QualType CanonParamType = Context.getCanonicalType(ParamType);
7291 // Avoid making a copy when initializing a template parameter of class type
7292 // from a template parameter object of the same type. This is going beyond
7293 // the standard, but is required for soundness: in
7294 // template<A a> struct X { X *p; X<a> *q; };
7295 // ... we need p and q to have the same type.
7297 // Similarly, don't inject a call to a copy constructor when initializing
7298 // from a template parameter of the same type.
7299 Expr *InnerArg = Arg->IgnoreParenImpCasts();
7300 if (ParamType->isRecordType() && isa<DeclRefExpr>(InnerArg) &&
7301 Context.hasSameUnqualifiedType(ParamType, InnerArg->getType())) {
7302 NamedDecl *ND = cast<DeclRefExpr>(InnerArg)->getDecl();
7303 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
7305 SugaredConverted = TemplateArgument(TPO, ParamType);
7306 CanonicalConverted =
7307 TemplateArgument(TPO->getCanonicalDecl(), CanonParamType);
7308 return Arg;
7310 if (isa<NonTypeTemplateParmDecl>(ND)) {
7311 SugaredConverted = TemplateArgument(Arg);
7312 CanonicalConverted =
7313 Context.getCanonicalTemplateArgument(SugaredConverted);
7314 return Arg;
7318 // C++17 [temp.arg.nontype]p1:
7319 // A template-argument for a non-type template parameter shall be
7320 // a converted constant expression of the type of the template-parameter.
7321 APValue Value;
7322 ExprResult ArgResult = CheckConvertedConstantExpression(
7323 Arg, ParamType, Value, CCEK_TemplateArg, Param);
7324 if (ArgResult.isInvalid())
7325 return ExprError();
7327 // For a value-dependent argument, CheckConvertedConstantExpression is
7328 // permitted (and expected) to be unable to determine a value.
7329 if (ArgResult.get()->isValueDependent()) {
7330 SugaredConverted = TemplateArgument(ArgResult.get());
7331 CanonicalConverted =
7332 Context.getCanonicalTemplateArgument(SugaredConverted);
7333 return ArgResult;
7336 // Convert the APValue to a TemplateArgument.
7337 switch (Value.getKind()) {
7338 case APValue::None:
7339 assert(ParamType->isNullPtrType());
7340 SugaredConverted = TemplateArgument(ParamType, /*isNullPtr=*/true);
7341 CanonicalConverted = TemplateArgument(CanonParamType, /*isNullPtr=*/true);
7342 break;
7343 case APValue::Indeterminate:
7344 llvm_unreachable("result of constant evaluation should be initialized");
7345 break;
7346 case APValue::Int:
7347 assert(ParamType->isIntegralOrEnumerationType());
7348 SugaredConverted = TemplateArgument(Context, Value.getInt(), ParamType);
7349 CanonicalConverted =
7350 TemplateArgument(Context, Value.getInt(), CanonParamType);
7351 break;
7352 case APValue::MemberPointer: {
7353 assert(ParamType->isMemberPointerType());
7355 // FIXME: We need TemplateArgument representation and mangling for these.
7356 if (!Value.getMemberPointerPath().empty()) {
7357 Diag(Arg->getBeginLoc(),
7358 diag::err_template_arg_member_ptr_base_derived_not_supported)
7359 << Value.getMemberPointerDecl() << ParamType
7360 << Arg->getSourceRange();
7361 return ExprError();
7364 auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
7365 SugaredConverted = VD ? TemplateArgument(VD, ParamType)
7366 : TemplateArgument(ParamType, /*isNullPtr=*/true);
7367 CanonicalConverted =
7368 VD ? TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()),
7369 CanonParamType)
7370 : TemplateArgument(CanonParamType, /*isNullPtr=*/true);
7371 break;
7373 case APValue::LValue: {
7374 // For a non-type template-parameter of pointer or reference type,
7375 // the value of the constant expression shall not refer to
7376 assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
7377 ParamType->isNullPtrType());
7378 // -- a temporary object
7379 // -- a string literal
7380 // -- the result of a typeid expression, or
7381 // -- a predefined __func__ variable
7382 APValue::LValueBase Base = Value.getLValueBase();
7383 auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>());
7384 if (Base &&
7385 (!VD ||
7386 isa<LifetimeExtendedTemporaryDecl, UnnamedGlobalConstantDecl>(VD))) {
7387 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
7388 << Arg->getSourceRange();
7389 return ExprError();
7391 // -- a subobject
7392 // FIXME: Until C++20
7393 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
7394 VD && VD->getType()->isArrayType() &&
7395 Value.getLValuePath()[0].getAsArrayIndex() == 0 &&
7396 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
7397 // Per defect report (no number yet):
7398 // ... other than a pointer to the first element of a complete array
7399 // object.
7400 } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
7401 Value.isLValueOnePastTheEnd()) {
7402 Diag(StartLoc, diag::err_non_type_template_arg_subobject)
7403 << Value.getAsString(Context, ParamType);
7404 return ExprError();
7406 assert((VD || !ParamType->isReferenceType()) &&
7407 "null reference should not be a constant expression");
7408 assert((!VD || !ParamType->isNullPtrType()) &&
7409 "non-null value of type nullptr_t?");
7411 SugaredConverted = VD ? TemplateArgument(VD, ParamType)
7412 : TemplateArgument(ParamType, /*isNullPtr=*/true);
7413 CanonicalConverted =
7414 VD ? TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()),
7415 CanonParamType)
7416 : TemplateArgument(CanonParamType, /*isNullPtr=*/true);
7417 break;
7419 case APValue::Struct:
7420 case APValue::Union: {
7421 // Get or create the corresponding template parameter object.
7422 TemplateParamObjectDecl *D =
7423 Context.getTemplateParamObjectDecl(ParamType, Value);
7424 SugaredConverted = TemplateArgument(D, ParamType);
7425 CanonicalConverted =
7426 TemplateArgument(D->getCanonicalDecl(), CanonParamType);
7427 break;
7429 case APValue::AddrLabelDiff:
7430 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
7431 case APValue::FixedPoint:
7432 case APValue::Float:
7433 case APValue::ComplexInt:
7434 case APValue::ComplexFloat:
7435 case APValue::Vector:
7436 case APValue::Array:
7437 return Diag(StartLoc, diag::err_non_type_template_arg_unsupported)
7438 << ParamType;
7441 return ArgResult.get();
7444 // C++ [temp.arg.nontype]p5:
7445 // The following conversions are performed on each expression used
7446 // as a non-type template-argument. If a non-type
7447 // template-argument cannot be converted to the type of the
7448 // corresponding template-parameter then the program is
7449 // ill-formed.
7450 if (ParamType->isIntegralOrEnumerationType()) {
7451 // C++11:
7452 // -- for a non-type template-parameter of integral or
7453 // enumeration type, conversions permitted in a converted
7454 // constant expression are applied.
7456 // C++98:
7457 // -- for a non-type template-parameter of integral or
7458 // enumeration type, integral promotions (4.5) and integral
7459 // conversions (4.7) are applied.
7461 if (getLangOpts().CPlusPlus11) {
7462 // C++ [temp.arg.nontype]p1:
7463 // A template-argument for a non-type, non-template template-parameter
7464 // shall be one of:
7466 // -- for a non-type template-parameter of integral or enumeration
7467 // type, a converted constant expression of the type of the
7468 // template-parameter; or
7469 llvm::APSInt Value;
7470 ExprResult ArgResult =
7471 CheckConvertedConstantExpression(Arg, ParamType, Value,
7472 CCEK_TemplateArg);
7473 if (ArgResult.isInvalid())
7474 return ExprError();
7476 // We can't check arbitrary value-dependent arguments.
7477 if (ArgResult.get()->isValueDependent()) {
7478 SugaredConverted = TemplateArgument(ArgResult.get());
7479 CanonicalConverted =
7480 Context.getCanonicalTemplateArgument(SugaredConverted);
7481 return ArgResult;
7484 // Widen the argument value to sizeof(parameter type). This is almost
7485 // always a no-op, except when the parameter type is bool. In
7486 // that case, this may extend the argument from 1 bit to 8 bits.
7487 QualType IntegerType = ParamType;
7488 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
7489 IntegerType = Enum->getDecl()->getIntegerType();
7490 Value = Value.extOrTrunc(IntegerType->isBitIntType()
7491 ? Context.getIntWidth(IntegerType)
7492 : Context.getTypeSize(IntegerType));
7494 SugaredConverted = TemplateArgument(Context, Value, ParamType);
7495 CanonicalConverted =
7496 TemplateArgument(Context, Value, Context.getCanonicalType(ParamType));
7497 return ArgResult;
7500 ExprResult ArgResult = DefaultLvalueConversion(Arg);
7501 if (ArgResult.isInvalid())
7502 return ExprError();
7503 Arg = ArgResult.get();
7505 QualType ArgType = Arg->getType();
7507 // C++ [temp.arg.nontype]p1:
7508 // A template-argument for a non-type, non-template
7509 // template-parameter shall be one of:
7511 // -- an integral constant-expression of integral or enumeration
7512 // type; or
7513 // -- the name of a non-type template-parameter; or
7514 llvm::APSInt Value;
7515 if (!ArgType->isIntegralOrEnumerationType()) {
7516 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral)
7517 << ArgType << Arg->getSourceRange();
7518 Diag(Param->getLocation(), diag::note_template_param_here);
7519 return ExprError();
7520 } else if (!Arg->isValueDependent()) {
7521 class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
7522 QualType T;
7524 public:
7525 TmplArgICEDiagnoser(QualType T) : T(T) { }
7527 SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
7528 SourceLocation Loc) override {
7529 return S.Diag(Loc, diag::err_template_arg_not_ice) << T;
7531 } Diagnoser(ArgType);
7533 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser).get();
7534 if (!Arg)
7535 return ExprError();
7538 // From here on out, all we care about is the unqualified form
7539 // of the argument type.
7540 ArgType = ArgType.getUnqualifiedType();
7542 // Try to convert the argument to the parameter's type.
7543 if (Context.hasSameType(ParamType, ArgType)) {
7544 // Okay: no conversion necessary
7545 } else if (ParamType->isBooleanType()) {
7546 // This is an integral-to-boolean conversion.
7547 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
7548 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
7549 !ParamType->isEnumeralType()) {
7550 // This is an integral promotion or conversion.
7551 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
7552 } else {
7553 // We can't perform this conversion.
7554 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
7555 << Arg->getType() << ParamType << Arg->getSourceRange();
7556 Diag(Param->getLocation(), diag::note_template_param_here);
7557 return ExprError();
7560 // Add the value of this argument to the list of converted
7561 // arguments. We use the bitwidth and signedness of the template
7562 // parameter.
7563 if (Arg->isValueDependent()) {
7564 // The argument is value-dependent. Create a new
7565 // TemplateArgument with the converted expression.
7566 SugaredConverted = TemplateArgument(Arg);
7567 CanonicalConverted =
7568 Context.getCanonicalTemplateArgument(SugaredConverted);
7569 return Arg;
7572 QualType IntegerType = ParamType;
7573 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) {
7574 IntegerType = Enum->getDecl()->getIntegerType();
7577 if (ParamType->isBooleanType()) {
7578 // Value must be zero or one.
7579 Value = Value != 0;
7580 unsigned AllowedBits = Context.getTypeSize(IntegerType);
7581 if (Value.getBitWidth() != AllowedBits)
7582 Value = Value.extOrTrunc(AllowedBits);
7583 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
7584 } else {
7585 llvm::APSInt OldValue = Value;
7587 // Coerce the template argument's value to the value it will have
7588 // based on the template parameter's type.
7589 unsigned AllowedBits = IntegerType->isBitIntType()
7590 ? Context.getIntWidth(IntegerType)
7591 : Context.getTypeSize(IntegerType);
7592 if (Value.getBitWidth() != AllowedBits)
7593 Value = Value.extOrTrunc(AllowedBits);
7594 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
7596 // Complain if an unsigned parameter received a negative value.
7597 if (IntegerType->isUnsignedIntegerOrEnumerationType() &&
7598 (OldValue.isSigned() && OldValue.isNegative())) {
7599 Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative)
7600 << toString(OldValue, 10) << toString(Value, 10) << Param->getType()
7601 << Arg->getSourceRange();
7602 Diag(Param->getLocation(), diag::note_template_param_here);
7605 // Complain if we overflowed the template parameter's type.
7606 unsigned RequiredBits;
7607 if (IntegerType->isUnsignedIntegerOrEnumerationType())
7608 RequiredBits = OldValue.getActiveBits();
7609 else if (OldValue.isUnsigned())
7610 RequiredBits = OldValue.getActiveBits() + 1;
7611 else
7612 RequiredBits = OldValue.getSignificantBits();
7613 if (RequiredBits > AllowedBits) {
7614 Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large)
7615 << toString(OldValue, 10) << toString(Value, 10) << Param->getType()
7616 << Arg->getSourceRange();
7617 Diag(Param->getLocation(), diag::note_template_param_here);
7621 QualType T = ParamType->isEnumeralType() ? ParamType : IntegerType;
7622 SugaredConverted = TemplateArgument(Context, Value, T);
7623 CanonicalConverted =
7624 TemplateArgument(Context, Value, Context.getCanonicalType(T));
7625 return Arg;
7628 QualType ArgType = Arg->getType();
7629 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
7631 // Handle pointer-to-function, reference-to-function, and
7632 // pointer-to-member-function all in (roughly) the same way.
7633 if (// -- For a non-type template-parameter of type pointer to
7634 // function, only the function-to-pointer conversion (4.3) is
7635 // applied. If the template-argument represents a set of
7636 // overloaded functions (or a pointer to such), the matching
7637 // function is selected from the set (13.4).
7638 (ParamType->isPointerType() &&
7639 ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) ||
7640 // -- For a non-type template-parameter of type reference to
7641 // function, no conversions apply. If the template-argument
7642 // represents a set of overloaded functions, the matching
7643 // function is selected from the set (13.4).
7644 (ParamType->isReferenceType() &&
7645 ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
7646 // -- For a non-type template-parameter of type pointer to
7647 // member function, no conversions apply. If the
7648 // template-argument represents a set of overloaded member
7649 // functions, the matching member function is selected from
7650 // the set (13.4).
7651 (ParamType->isMemberPointerType() &&
7652 ParamType->castAs<MemberPointerType>()->getPointeeType()
7653 ->isFunctionType())) {
7655 if (Arg->getType() == Context.OverloadTy) {
7656 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
7657 true,
7658 FoundResult)) {
7659 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7660 return ExprError();
7662 ExprResult Res = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7663 if (Res.isInvalid())
7664 return ExprError();
7665 Arg = Res.get();
7666 ArgType = Arg->getType();
7667 } else
7668 return ExprError();
7671 if (!ParamType->isMemberPointerType()) {
7672 if (CheckTemplateArgumentAddressOfObjectOrFunction(
7673 *this, Param, ParamType, Arg, SugaredConverted,
7674 CanonicalConverted))
7675 return ExprError();
7676 return Arg;
7679 if (CheckTemplateArgumentPointerToMember(
7680 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
7681 return ExprError();
7682 return Arg;
7685 if (ParamType->isPointerType()) {
7686 // -- for a non-type template-parameter of type pointer to
7687 // object, qualification conversions (4.4) and the
7688 // array-to-pointer conversion (4.2) are applied.
7689 // C++0x also allows a value of std::nullptr_t.
7690 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
7691 "Only object pointers allowed here");
7693 if (CheckTemplateArgumentAddressOfObjectOrFunction(
7694 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
7695 return ExprError();
7696 return Arg;
7699 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
7700 // -- For a non-type template-parameter of type reference to
7701 // object, no conversions apply. The type referred to by the
7702 // reference may be more cv-qualified than the (otherwise
7703 // identical) type of the template-argument. The
7704 // template-parameter is bound directly to the
7705 // template-argument, which must be an lvalue.
7706 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
7707 "Only object references allowed here");
7709 if (Arg->getType() == Context.OverloadTy) {
7710 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
7711 ParamRefType->getPointeeType(),
7712 true,
7713 FoundResult)) {
7714 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7715 return ExprError();
7716 ExprResult Res = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7717 if (Res.isInvalid())
7718 return ExprError();
7719 Arg = Res.get();
7720 ArgType = Arg->getType();
7721 } else
7722 return ExprError();
7725 if (CheckTemplateArgumentAddressOfObjectOrFunction(
7726 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
7727 return ExprError();
7728 return Arg;
7731 // Deal with parameters of type std::nullptr_t.
7732 if (ParamType->isNullPtrType()) {
7733 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7734 SugaredConverted = TemplateArgument(Arg);
7735 CanonicalConverted =
7736 Context.getCanonicalTemplateArgument(SugaredConverted);
7737 return Arg;
7740 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
7741 case NPV_NotNullPointer:
7742 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
7743 << Arg->getType() << ParamType;
7744 Diag(Param->getLocation(), diag::note_template_param_here);
7745 return ExprError();
7747 case NPV_Error:
7748 return ExprError();
7750 case NPV_NullPointer:
7751 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
7752 SugaredConverted = TemplateArgument(ParamType,
7753 /*isNullPtr=*/true);
7754 CanonicalConverted = TemplateArgument(Context.getCanonicalType(ParamType),
7755 /*isNullPtr=*/true);
7756 return Arg;
7760 // -- For a non-type template-parameter of type pointer to data
7761 // member, qualification conversions (4.4) are applied.
7762 assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
7764 if (CheckTemplateArgumentPointerToMember(
7765 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
7766 return ExprError();
7767 return Arg;
7770 static void DiagnoseTemplateParameterListArityMismatch(
7771 Sema &S, TemplateParameterList *New, TemplateParameterList *Old,
7772 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc);
7774 /// Check a template argument against its corresponding
7775 /// template template parameter.
7777 /// This routine implements the semantics of C++ [temp.arg.template].
7778 /// It returns true if an error occurred, and false otherwise.
7779 bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
7780 TemplateParameterList *Params,
7781 TemplateArgumentLoc &Arg) {
7782 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
7783 TemplateDecl *Template = Name.getAsTemplateDecl();
7784 if (!Template) {
7785 // Any dependent template name is fine.
7786 assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
7787 return false;
7790 if (Template->isInvalidDecl())
7791 return true;
7793 // C++0x [temp.arg.template]p1:
7794 // A template-argument for a template template-parameter shall be
7795 // the name of a class template or an alias template, expressed as an
7796 // id-expression. When the template-argument names a class template, only
7797 // primary class templates are considered when matching the
7798 // template template argument with the corresponding parameter;
7799 // partial specializations are not considered even if their
7800 // parameter lists match that of the template template parameter.
7802 // Note that we also allow template template parameters here, which
7803 // will happen when we are dealing with, e.g., class template
7804 // partial specializations.
7805 if (!isa<ClassTemplateDecl>(Template) &&
7806 !isa<TemplateTemplateParmDecl>(Template) &&
7807 !isa<TypeAliasTemplateDecl>(Template) &&
7808 !isa<BuiltinTemplateDecl>(Template)) {
7809 assert(isa<FunctionTemplateDecl>(Template) &&
7810 "Only function templates are possible here");
7811 Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
7812 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
7813 << Template;
7816 // C++1z [temp.arg.template]p3: (DR 150)
7817 // A template-argument matches a template template-parameter P when P
7818 // is at least as specialized as the template-argument A.
7819 // FIXME: We should enable RelaxedTemplateTemplateArgs by default as it is a
7820 // defect report resolution from C++17 and shouldn't be introduced by
7821 // concepts.
7822 if (getLangOpts().RelaxedTemplateTemplateArgs) {
7823 // Quick check for the common case:
7824 // If P contains a parameter pack, then A [...] matches P if each of A's
7825 // template parameters matches the corresponding template parameter in
7826 // the template-parameter-list of P.
7827 if (TemplateParameterListsAreEqual(
7828 Template->getTemplateParameters(), Params, false,
7829 TPL_TemplateTemplateArgumentMatch, Arg.getLocation()) &&
7830 // If the argument has no associated constraints, then the parameter is
7831 // definitely at least as specialized as the argument.
7832 // Otherwise - we need a more thorough check.
7833 !Template->hasAssociatedConstraints())
7834 return false;
7836 if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template,
7837 Arg.getLocation())) {
7838 // P2113
7839 // C++20[temp.func.order]p2
7840 // [...] If both deductions succeed, the partial ordering selects the
7841 // more constrained template (if one exists) as determined below.
7842 SmallVector<const Expr *, 3> ParamsAC, TemplateAC;
7843 Params->getAssociatedConstraints(ParamsAC);
7844 // C++2a[temp.arg.template]p3
7845 // [...] In this comparison, if P is unconstrained, the constraints on A
7846 // are not considered.
7847 if (ParamsAC.empty())
7848 return false;
7850 Template->getAssociatedConstraints(TemplateAC);
7852 bool IsParamAtLeastAsConstrained;
7853 if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC,
7854 IsParamAtLeastAsConstrained))
7855 return true;
7856 if (!IsParamAtLeastAsConstrained) {
7857 Diag(Arg.getLocation(),
7858 diag::err_template_template_parameter_not_at_least_as_constrained)
7859 << Template << Param << Arg.getSourceRange();
7860 Diag(Param->getLocation(), diag::note_entity_declared_at) << Param;
7861 Diag(Template->getLocation(), diag::note_entity_declared_at)
7862 << Template;
7863 MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template,
7864 TemplateAC);
7865 return true;
7867 return false;
7869 // FIXME: Produce better diagnostics for deduction failures.
7872 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
7873 Params,
7874 true,
7875 TPL_TemplateTemplateArgumentMatch,
7876 Arg.getLocation());
7879 /// Given a non-type template argument that refers to a
7880 /// declaration and the type of its corresponding non-type template
7881 /// parameter, produce an expression that properly refers to that
7882 /// declaration.
7883 ExprResult
7884 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
7885 QualType ParamType,
7886 SourceLocation Loc) {
7887 // C++ [temp.param]p8:
7889 // A non-type template-parameter of type "array of T" or
7890 // "function returning T" is adjusted to be of type "pointer to
7891 // T" or "pointer to function returning T", respectively.
7892 if (ParamType->isArrayType())
7893 ParamType = Context.getArrayDecayedType(ParamType);
7894 else if (ParamType->isFunctionType())
7895 ParamType = Context.getPointerType(ParamType);
7897 // For a NULL non-type template argument, return nullptr casted to the
7898 // parameter's type.
7899 if (Arg.getKind() == TemplateArgument::NullPtr) {
7900 return ImpCastExprToType(
7901 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
7902 ParamType,
7903 ParamType->getAs<MemberPointerType>()
7904 ? CK_NullToMemberPointer
7905 : CK_NullToPointer);
7907 assert(Arg.getKind() == TemplateArgument::Declaration &&
7908 "Only declaration template arguments permitted here");
7910 ValueDecl *VD = Arg.getAsDecl();
7912 CXXScopeSpec SS;
7913 if (ParamType->isMemberPointerType()) {
7914 // If this is a pointer to member, we need to use a qualified name to
7915 // form a suitable pointer-to-member constant.
7916 assert(VD->getDeclContext()->isRecord() &&
7917 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
7918 isa<IndirectFieldDecl>(VD)));
7919 QualType ClassType
7920 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
7921 NestedNameSpecifier *Qualifier
7922 = NestedNameSpecifier::Create(Context, nullptr, false,
7923 ClassType.getTypePtr());
7924 SS.MakeTrivial(Context, Qualifier, Loc);
7927 ExprResult RefExpr = BuildDeclarationNameExpr(
7928 SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD);
7929 if (RefExpr.isInvalid())
7930 return ExprError();
7932 // For a pointer, the argument declaration is the pointee. Take its address.
7933 QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0);
7934 if (ParamType->isPointerType() && !ElemT.isNull() &&
7935 Context.hasSimilarType(ElemT, ParamType->getPointeeType())) {
7936 // Decay an array argument if we want a pointer to its first element.
7937 RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
7938 if (RefExpr.isInvalid())
7939 return ExprError();
7940 } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
7941 // For any other pointer, take the address (or form a pointer-to-member).
7942 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
7943 if (RefExpr.isInvalid())
7944 return ExprError();
7945 } else if (ParamType->isRecordType()) {
7946 assert(isa<TemplateParamObjectDecl>(VD) &&
7947 "arg for class template param not a template parameter object");
7948 // No conversions apply in this case.
7949 return RefExpr;
7950 } else {
7951 assert(ParamType->isReferenceType() &&
7952 "unexpected type for decl template argument");
7955 // At this point we should have the right value category.
7956 assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() &&
7957 "value kind mismatch for non-type template argument");
7959 // The type of the template parameter can differ from the type of the
7960 // argument in various ways; convert it now if necessary.
7961 QualType DestExprType = ParamType.getNonLValueExprType(Context);
7962 if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) {
7963 CastKind CK;
7964 QualType Ignored;
7965 if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) ||
7966 IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) {
7967 CK = CK_NoOp;
7968 } else if (ParamType->isVoidPointerType() &&
7969 RefExpr.get()->getType()->isPointerType()) {
7970 CK = CK_BitCast;
7971 } else {
7972 // FIXME: Pointers to members can need conversion derived-to-base or
7973 // base-to-derived conversions. We currently don't retain enough
7974 // information to convert properly (we need to track a cast path or
7975 // subobject number in the template argument).
7976 llvm_unreachable(
7977 "unexpected conversion required for non-type template argument");
7979 RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK,
7980 RefExpr.get()->getValueKind());
7983 return RefExpr;
7986 /// Construct a new expression that refers to the given
7987 /// integral template argument with the given source-location
7988 /// information.
7990 /// This routine takes care of the mapping from an integral template
7991 /// argument (which may have any integral type) to the appropriate
7992 /// literal value.
7993 ExprResult
7994 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
7995 SourceLocation Loc) {
7996 assert(Arg.getKind() == TemplateArgument::Integral &&
7997 "Operation is only valid for integral template arguments");
7998 QualType OrigT = Arg.getIntegralType();
8000 // If this is an enum type that we're instantiating, we need to use an integer
8001 // type the same size as the enumerator. We don't want to build an
8002 // IntegerLiteral with enum type. The integer type of an enum type can be of
8003 // any integral type with C++11 enum classes, make sure we create the right
8004 // type of literal for it.
8005 QualType T = OrigT;
8006 if (const EnumType *ET = OrigT->getAs<EnumType>())
8007 T = ET->getDecl()->getIntegerType();
8009 Expr *E;
8010 if (T->isAnyCharacterType()) {
8011 CharacterLiteral::CharacterKind Kind;
8012 if (T->isWideCharType())
8013 Kind = CharacterLiteral::Wide;
8014 else if (T->isChar8Type() && getLangOpts().Char8)
8015 Kind = CharacterLiteral::UTF8;
8016 else if (T->isChar16Type())
8017 Kind = CharacterLiteral::UTF16;
8018 else if (T->isChar32Type())
8019 Kind = CharacterLiteral::UTF32;
8020 else
8021 Kind = CharacterLiteral::Ascii;
8023 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
8024 Kind, T, Loc);
8025 } else if (T->isBooleanType()) {
8026 E = CXXBoolLiteralExpr::Create(Context, Arg.getAsIntegral().getBoolValue(),
8027 T, Loc);
8028 } else if (T->isNullPtrType()) {
8029 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
8030 } else {
8031 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
8034 if (OrigT->isEnumeralType()) {
8035 // FIXME: This is a hack. We need a better way to handle substituted
8036 // non-type template parameters.
8037 E = CStyleCastExpr::Create(Context, OrigT, VK_PRValue, CK_IntegralCast, E,
8038 nullptr, CurFPFeatureOverrides(),
8039 Context.getTrivialTypeSourceInfo(OrigT, Loc),
8040 Loc, Loc);
8043 return E;
8046 /// Match two template parameters within template parameter lists.
8047 static bool MatchTemplateParameterKind(
8048 Sema &S, NamedDecl *New,
8049 const Sema::TemplateCompareNewDeclInfo &NewInstFrom, NamedDecl *Old,
8050 const NamedDecl *OldInstFrom, bool Complain,
8051 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) {
8052 // Check the actual kind (type, non-type, template).
8053 if (Old->getKind() != New->getKind()) {
8054 if (Complain) {
8055 unsigned NextDiag = diag::err_template_param_different_kind;
8056 if (TemplateArgLoc.isValid()) {
8057 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
8058 NextDiag = diag::note_template_param_different_kind;
8060 S.Diag(New->getLocation(), NextDiag)
8061 << (Kind != Sema::TPL_TemplateMatch);
8062 S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
8063 << (Kind != Sema::TPL_TemplateMatch);
8066 return false;
8069 // Check that both are parameter packs or neither are parameter packs.
8070 // However, if we are matching a template template argument to a
8071 // template template parameter, the template template parameter can have
8072 // a parameter pack where the template template argument does not.
8073 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
8074 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
8075 Old->isTemplateParameterPack())) {
8076 if (Complain) {
8077 unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
8078 if (TemplateArgLoc.isValid()) {
8079 S.Diag(TemplateArgLoc,
8080 diag::err_template_arg_template_params_mismatch);
8081 NextDiag = diag::note_template_parameter_pack_non_pack;
8084 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
8085 : isa<NonTypeTemplateParmDecl>(New)? 1
8086 : 2;
8087 S.Diag(New->getLocation(), NextDiag)
8088 << ParamKind << New->isParameterPack();
8089 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
8090 << ParamKind << Old->isParameterPack();
8093 return false;
8096 // For non-type template parameters, check the type of the parameter.
8097 if (NonTypeTemplateParmDecl *OldNTTP
8098 = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
8099 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
8101 // If we are matching a template template argument to a template
8102 // template parameter and one of the non-type template parameter types
8103 // is dependent, then we must wait until template instantiation time
8104 // to actually compare the arguments.
8105 if (Kind != Sema::TPL_TemplateTemplateArgumentMatch ||
8106 (!OldNTTP->getType()->isDependentType() &&
8107 !NewNTTP->getType()->isDependentType())) {
8108 // C++20 [temp.over.link]p6:
8109 // Two [non-type] template-parameters are equivalent [if] they have
8110 // equivalent types ignoring the use of type-constraints for
8111 // placeholder types
8112 QualType OldType = S.Context.getUnconstrainedType(OldNTTP->getType());
8113 QualType NewType = S.Context.getUnconstrainedType(NewNTTP->getType());
8114 if (!S.Context.hasSameType(OldType, NewType)) {
8115 if (Complain) {
8116 unsigned NextDiag = diag::err_template_nontype_parm_different_type;
8117 if (TemplateArgLoc.isValid()) {
8118 S.Diag(TemplateArgLoc,
8119 diag::err_template_arg_template_params_mismatch);
8120 NextDiag = diag::note_template_nontype_parm_different_type;
8122 S.Diag(NewNTTP->getLocation(), NextDiag)
8123 << NewNTTP->getType()
8124 << (Kind != Sema::TPL_TemplateMatch);
8125 S.Diag(OldNTTP->getLocation(),
8126 diag::note_template_nontype_parm_prev_declaration)
8127 << OldNTTP->getType();
8130 return false;
8134 // For template template parameters, check the template parameter types.
8135 // The template parameter lists of template template
8136 // parameters must agree.
8137 else if (TemplateTemplateParmDecl *OldTTP =
8138 dyn_cast<TemplateTemplateParmDecl>(Old)) {
8139 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
8140 if (!S.TemplateParameterListsAreEqual(
8141 NewInstFrom, NewTTP->getTemplateParameters(), OldInstFrom,
8142 OldTTP->getTemplateParameters(), Complain,
8143 (Kind == Sema::TPL_TemplateMatch
8144 ? Sema::TPL_TemplateTemplateParmMatch
8145 : Kind),
8146 TemplateArgLoc))
8147 return false;
8150 if (Kind != Sema::TPL_TemplateParamsEquivalent &&
8151 Kind != Sema::TPL_TemplateTemplateArgumentMatch &&
8152 !isa<TemplateTemplateParmDecl>(Old)) {
8153 const Expr *NewC = nullptr, *OldC = nullptr;
8155 if (isa<TemplateTypeParmDecl>(New)) {
8156 if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint())
8157 NewC = TC->getImmediatelyDeclaredConstraint();
8158 if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint())
8159 OldC = TC->getImmediatelyDeclaredConstraint();
8160 } else if (isa<NonTypeTemplateParmDecl>(New)) {
8161 if (const Expr *E = cast<NonTypeTemplateParmDecl>(New)
8162 ->getPlaceholderTypeConstraint())
8163 NewC = E;
8164 if (const Expr *E = cast<NonTypeTemplateParmDecl>(Old)
8165 ->getPlaceholderTypeConstraint())
8166 OldC = E;
8167 } else
8168 llvm_unreachable("unexpected template parameter type");
8170 auto Diagnose = [&] {
8171 S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(),
8172 diag::err_template_different_type_constraint);
8173 S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(),
8174 diag::note_template_prev_declaration) << /*declaration*/0;
8177 if (!NewC != !OldC) {
8178 if (Complain)
8179 Diagnose();
8180 return false;
8183 if (NewC) {
8184 if (!S.AreConstraintExpressionsEqual(OldInstFrom, OldC, NewInstFrom,
8185 NewC)) {
8186 if (Complain)
8187 Diagnose();
8188 return false;
8193 return true;
8196 /// Diagnose a known arity mismatch when comparing template argument
8197 /// lists.
8198 static
8199 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
8200 TemplateParameterList *New,
8201 TemplateParameterList *Old,
8202 Sema::TemplateParameterListEqualKind Kind,
8203 SourceLocation TemplateArgLoc) {
8204 unsigned NextDiag = diag::err_template_param_list_different_arity;
8205 if (TemplateArgLoc.isValid()) {
8206 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
8207 NextDiag = diag::note_template_param_list_different_arity;
8209 S.Diag(New->getTemplateLoc(), NextDiag)
8210 << (New->size() > Old->size())
8211 << (Kind != Sema::TPL_TemplateMatch)
8212 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
8213 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
8214 << (Kind != Sema::TPL_TemplateMatch)
8215 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
8218 /// Determine whether the given template parameter lists are
8219 /// equivalent.
8221 /// \param New The new template parameter list, typically written in the
8222 /// source code as part of a new template declaration.
8224 /// \param Old The old template parameter list, typically found via
8225 /// name lookup of the template declared with this template parameter
8226 /// list.
8228 /// \param Complain If true, this routine will produce a diagnostic if
8229 /// the template parameter lists are not equivalent.
8231 /// \param Kind describes how we are to match the template parameter lists.
8233 /// \param TemplateArgLoc If this source location is valid, then we
8234 /// are actually checking the template parameter list of a template
8235 /// argument (New) against the template parameter list of its
8236 /// corresponding template template parameter (Old). We produce
8237 /// slightly different diagnostics in this scenario.
8239 /// \returns True if the template parameter lists are equal, false
8240 /// otherwise.
8241 bool Sema::TemplateParameterListsAreEqual(
8242 const TemplateCompareNewDeclInfo &NewInstFrom, TemplateParameterList *New,
8243 const NamedDecl *OldInstFrom, TemplateParameterList *Old, bool Complain,
8244 TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) {
8245 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
8246 if (Complain)
8247 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
8248 TemplateArgLoc);
8250 return false;
8253 // C++0x [temp.arg.template]p3:
8254 // A template-argument matches a template template-parameter (call it P)
8255 // when each of the template parameters in the template-parameter-list of
8256 // the template-argument's corresponding class template or alias template
8257 // (call it A) matches the corresponding template parameter in the
8258 // template-parameter-list of P. [...]
8259 TemplateParameterList::iterator NewParm = New->begin();
8260 TemplateParameterList::iterator NewParmEnd = New->end();
8261 for (TemplateParameterList::iterator OldParm = Old->begin(),
8262 OldParmEnd = Old->end();
8263 OldParm != OldParmEnd; ++OldParm) {
8264 if (Kind != TPL_TemplateTemplateArgumentMatch ||
8265 !(*OldParm)->isTemplateParameterPack()) {
8266 if (NewParm == NewParmEnd) {
8267 if (Complain)
8268 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
8269 TemplateArgLoc);
8271 return false;
8274 if (!MatchTemplateParameterKind(*this, *NewParm, NewInstFrom, *OldParm,
8275 OldInstFrom, Complain, Kind,
8276 TemplateArgLoc))
8277 return false;
8279 ++NewParm;
8280 continue;
8283 // C++0x [temp.arg.template]p3:
8284 // [...] When P's template- parameter-list contains a template parameter
8285 // pack (14.5.3), the template parameter pack will match zero or more
8286 // template parameters or template parameter packs in the
8287 // template-parameter-list of A with the same type and form as the
8288 // template parameter pack in P (ignoring whether those template
8289 // parameters are template parameter packs).
8290 for (; NewParm != NewParmEnd; ++NewParm) {
8291 if (!MatchTemplateParameterKind(*this, *NewParm, NewInstFrom, *OldParm,
8292 OldInstFrom, Complain, Kind,
8293 TemplateArgLoc))
8294 return false;
8298 // Make sure we exhausted all of the arguments.
8299 if (NewParm != NewParmEnd) {
8300 if (Complain)
8301 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
8302 TemplateArgLoc);
8304 return false;
8307 if (Kind != TPL_TemplateTemplateArgumentMatch &&
8308 Kind != TPL_TemplateParamsEquivalent) {
8309 const Expr *NewRC = New->getRequiresClause();
8310 const Expr *OldRC = Old->getRequiresClause();
8312 auto Diagnose = [&] {
8313 Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(),
8314 diag::err_template_different_requires_clause);
8315 Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(),
8316 diag::note_template_prev_declaration) << /*declaration*/0;
8319 if (!NewRC != !OldRC) {
8320 if (Complain)
8321 Diagnose();
8322 return false;
8325 if (NewRC) {
8326 if (!AreConstraintExpressionsEqual(OldInstFrom, OldRC, NewInstFrom,
8327 NewRC)) {
8328 if (Complain)
8329 Diagnose();
8330 return false;
8335 return true;
8338 /// Check whether a template can be declared within this scope.
8340 /// If the template declaration is valid in this scope, returns
8341 /// false. Otherwise, issues a diagnostic and returns true.
8342 bool
8343 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
8344 if (!S)
8345 return false;
8347 // Find the nearest enclosing declaration scope.
8348 while ((S->getFlags() & Scope::DeclScope) == 0 ||
8349 (S->getFlags() & Scope::TemplateParamScope) != 0)
8350 S = S->getParent();
8352 // C++ [temp.pre]p6: [P2096]
8353 // A template, explicit specialization, or partial specialization shall not
8354 // have C linkage.
8355 DeclContext *Ctx = S->getEntity();
8356 if (Ctx && Ctx->isExternCContext()) {
8357 Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
8358 << TemplateParams->getSourceRange();
8359 if (const LinkageSpecDecl *LSD = Ctx->getExternCContext())
8360 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
8361 return true;
8363 Ctx = Ctx ? Ctx->getRedeclContext() : nullptr;
8365 // C++ [temp]p2:
8366 // A template-declaration can appear only as a namespace scope or
8367 // class scope declaration.
8368 // C++ [temp.expl.spec]p3:
8369 // An explicit specialization may be declared in any scope in which the
8370 // corresponding primary template may be defined.
8371 // C++ [temp.class.spec]p6: [P2096]
8372 // A partial specialization may be declared in any scope in which the
8373 // corresponding primary template may be defined.
8374 if (Ctx) {
8375 if (Ctx->isFileContext())
8376 return false;
8377 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
8378 // C++ [temp.mem]p2:
8379 // A local class shall not have member templates.
8380 if (RD->isLocalClass())
8381 return Diag(TemplateParams->getTemplateLoc(),
8382 diag::err_template_inside_local_class)
8383 << TemplateParams->getSourceRange();
8384 else
8385 return false;
8389 return Diag(TemplateParams->getTemplateLoc(),
8390 diag::err_template_outside_namespace_or_class_scope)
8391 << TemplateParams->getSourceRange();
8394 /// Determine what kind of template specialization the given declaration
8395 /// is.
8396 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
8397 if (!D)
8398 return TSK_Undeclared;
8400 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
8401 return Record->getTemplateSpecializationKind();
8402 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
8403 return Function->getTemplateSpecializationKind();
8404 if (VarDecl *Var = dyn_cast<VarDecl>(D))
8405 return Var->getTemplateSpecializationKind();
8407 return TSK_Undeclared;
8410 /// Check whether a specialization is well-formed in the current
8411 /// context.
8413 /// This routine determines whether a template specialization can be declared
8414 /// in the current context (C++ [temp.expl.spec]p2).
8416 /// \param S the semantic analysis object for which this check is being
8417 /// performed.
8419 /// \param Specialized the entity being specialized or instantiated, which
8420 /// may be a kind of template (class template, function template, etc.) or
8421 /// a member of a class template (member function, static data member,
8422 /// member class).
8424 /// \param PrevDecl the previous declaration of this entity, if any.
8426 /// \param Loc the location of the explicit specialization or instantiation of
8427 /// this entity.
8429 /// \param IsPartialSpecialization whether this is a partial specialization of
8430 /// a class template.
8432 /// \returns true if there was an error that we cannot recover from, false
8433 /// otherwise.
8434 static bool CheckTemplateSpecializationScope(Sema &S,
8435 NamedDecl *Specialized,
8436 NamedDecl *PrevDecl,
8437 SourceLocation Loc,
8438 bool IsPartialSpecialization) {
8439 // Keep these "kind" numbers in sync with the %select statements in the
8440 // various diagnostics emitted by this routine.
8441 int EntityKind = 0;
8442 if (isa<ClassTemplateDecl>(Specialized))
8443 EntityKind = IsPartialSpecialization? 1 : 0;
8444 else if (isa<VarTemplateDecl>(Specialized))
8445 EntityKind = IsPartialSpecialization ? 3 : 2;
8446 else if (isa<FunctionTemplateDecl>(Specialized))
8447 EntityKind = 4;
8448 else if (isa<CXXMethodDecl>(Specialized))
8449 EntityKind = 5;
8450 else if (isa<VarDecl>(Specialized))
8451 EntityKind = 6;
8452 else if (isa<RecordDecl>(Specialized))
8453 EntityKind = 7;
8454 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
8455 EntityKind = 8;
8456 else {
8457 S.Diag(Loc, diag::err_template_spec_unknown_kind)
8458 << S.getLangOpts().CPlusPlus11;
8459 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
8460 return true;
8463 // C++ [temp.expl.spec]p2:
8464 // An explicit specialization may be declared in any scope in which
8465 // the corresponding primary template may be defined.
8466 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
8467 S.Diag(Loc, diag::err_template_spec_decl_function_scope)
8468 << Specialized;
8469 return true;
8472 // C++ [temp.class.spec]p6:
8473 // A class template partial specialization may be declared in any
8474 // scope in which the primary template may be defined.
8475 DeclContext *SpecializedContext =
8476 Specialized->getDeclContext()->getRedeclContext();
8477 DeclContext *DC = S.CurContext->getRedeclContext();
8479 // Make sure that this redeclaration (or definition) occurs in the same
8480 // scope or an enclosing namespace.
8481 if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext)
8482 : DC->Equals(SpecializedContext))) {
8483 if (isa<TranslationUnitDecl>(SpecializedContext))
8484 S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
8485 << EntityKind << Specialized;
8486 else {
8487 auto *ND = cast<NamedDecl>(SpecializedContext);
8488 int Diag = diag::err_template_spec_redecl_out_of_scope;
8489 if (S.getLangOpts().MicrosoftExt && !DC->isRecord())
8490 Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
8491 S.Diag(Loc, Diag) << EntityKind << Specialized
8492 << ND << isa<CXXRecordDecl>(ND);
8495 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
8497 // Don't allow specializing in the wrong class during error recovery.
8498 // Otherwise, things can go horribly wrong.
8499 if (DC->isRecord())
8500 return true;
8503 return false;
8506 static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) {
8507 if (!E->isTypeDependent())
8508 return SourceLocation();
8509 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
8510 Checker.TraverseStmt(E);
8511 if (Checker.MatchLoc.isInvalid())
8512 return E->getSourceRange();
8513 return Checker.MatchLoc;
8516 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
8517 if (!TL.getType()->isDependentType())
8518 return SourceLocation();
8519 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
8520 Checker.TraverseTypeLoc(TL);
8521 if (Checker.MatchLoc.isInvalid())
8522 return TL.getSourceRange();
8523 return Checker.MatchLoc;
8526 /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs
8527 /// that checks non-type template partial specialization arguments.
8528 static bool CheckNonTypeTemplatePartialSpecializationArgs(
8529 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
8530 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
8531 for (unsigned I = 0; I != NumArgs; ++I) {
8532 if (Args[I].getKind() == TemplateArgument::Pack) {
8533 if (CheckNonTypeTemplatePartialSpecializationArgs(
8534 S, TemplateNameLoc, Param, Args[I].pack_begin(),
8535 Args[I].pack_size(), IsDefaultArgument))
8536 return true;
8538 continue;
8541 if (Args[I].getKind() != TemplateArgument::Expression)
8542 continue;
8544 Expr *ArgExpr = Args[I].getAsExpr();
8546 // We can have a pack expansion of any of the bullets below.
8547 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
8548 ArgExpr = Expansion->getPattern();
8550 // Strip off any implicit casts we added as part of type checking.
8551 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
8552 ArgExpr = ICE->getSubExpr();
8554 // C++ [temp.class.spec]p8:
8555 // A non-type argument is non-specialized if it is the name of a
8556 // non-type parameter. All other non-type arguments are
8557 // specialized.
8559 // Below, we check the two conditions that only apply to
8560 // specialized non-type arguments, so skip any non-specialized
8561 // arguments.
8562 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
8563 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
8564 continue;
8566 // C++ [temp.class.spec]p9:
8567 // Within the argument list of a class template partial
8568 // specialization, the following restrictions apply:
8569 // -- A partially specialized non-type argument expression
8570 // shall not involve a template parameter of the partial
8571 // specialization except when the argument expression is a
8572 // simple identifier.
8573 // -- The type of a template parameter corresponding to a
8574 // specialized non-type argument shall not be dependent on a
8575 // parameter of the specialization.
8576 // DR1315 removes the first bullet, leaving an incoherent set of rules.
8577 // We implement a compromise between the original rules and DR1315:
8578 // -- A specialized non-type template argument shall not be
8579 // type-dependent and the corresponding template parameter
8580 // shall have a non-dependent type.
8581 SourceRange ParamUseRange =
8582 findTemplateParameterInType(Param->getDepth(), ArgExpr);
8583 if (ParamUseRange.isValid()) {
8584 if (IsDefaultArgument) {
8585 S.Diag(TemplateNameLoc,
8586 diag::err_dependent_non_type_arg_in_partial_spec);
8587 S.Diag(ParamUseRange.getBegin(),
8588 diag::note_dependent_non_type_default_arg_in_partial_spec)
8589 << ParamUseRange;
8590 } else {
8591 S.Diag(ParamUseRange.getBegin(),
8592 diag::err_dependent_non_type_arg_in_partial_spec)
8593 << ParamUseRange;
8595 return true;
8598 ParamUseRange = findTemplateParameter(
8599 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
8600 if (ParamUseRange.isValid()) {
8601 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(),
8602 diag::err_dependent_typed_non_type_arg_in_partial_spec)
8603 << Param->getType();
8604 S.Diag(Param->getLocation(), diag::note_template_param_here)
8605 << (IsDefaultArgument ? ParamUseRange : SourceRange())
8606 << ParamUseRange;
8607 return true;
8611 return false;
8614 /// Check the non-type template arguments of a class template
8615 /// partial specialization according to C++ [temp.class.spec]p9.
8617 /// \param TemplateNameLoc the location of the template name.
8618 /// \param PrimaryTemplate the template parameters of the primary class
8619 /// template.
8620 /// \param NumExplicit the number of explicitly-specified template arguments.
8621 /// \param TemplateArgs the template arguments of the class template
8622 /// partial specialization.
8624 /// \returns \c true if there was an error, \c false otherwise.
8625 bool Sema::CheckTemplatePartialSpecializationArgs(
8626 SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate,
8627 unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) {
8628 // We have to be conservative when checking a template in a dependent
8629 // context.
8630 if (PrimaryTemplate->getDeclContext()->isDependentContext())
8631 return false;
8633 TemplateParameterList *TemplateParams =
8634 PrimaryTemplate->getTemplateParameters();
8635 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8636 NonTypeTemplateParmDecl *Param
8637 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
8638 if (!Param)
8639 continue;
8641 if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc,
8642 Param, &TemplateArgs[I],
8643 1, I >= NumExplicit))
8644 return true;
8647 return false;
8650 DeclResult Sema::ActOnClassTemplateSpecialization(
8651 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
8652 SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
8653 TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
8654 MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) {
8655 assert(TUK != TUK_Reference && "References are not specializations");
8657 // NOTE: KWLoc is the location of the tag keyword. This will instead
8658 // store the location of the outermost template keyword in the declaration.
8659 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
8660 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
8661 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
8662 SourceLocation LAngleLoc = TemplateId.LAngleLoc;
8663 SourceLocation RAngleLoc = TemplateId.RAngleLoc;
8665 // Find the class template we're specializing
8666 TemplateName Name = TemplateId.Template.get();
8667 ClassTemplateDecl *ClassTemplate
8668 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
8670 if (!ClassTemplate) {
8671 Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
8672 << (Name.getAsTemplateDecl() &&
8673 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
8674 return true;
8677 bool isMemberSpecialization = false;
8678 bool isPartialSpecialization = false;
8680 // Check the validity of the template headers that introduce this
8681 // template.
8682 // FIXME: We probably shouldn't complain about these headers for
8683 // friend declarations.
8684 bool Invalid = false;
8685 TemplateParameterList *TemplateParams =
8686 MatchTemplateParametersToScopeSpecifier(
8687 KWLoc, TemplateNameLoc, SS, &TemplateId,
8688 TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization,
8689 Invalid);
8690 if (Invalid)
8691 return true;
8693 // Check that we can declare a template specialization here.
8694 if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams))
8695 return true;
8697 if (TemplateParams && TemplateParams->size() > 0) {
8698 isPartialSpecialization = true;
8700 if (TUK == TUK_Friend) {
8701 Diag(KWLoc, diag::err_partial_specialization_friend)
8702 << SourceRange(LAngleLoc, RAngleLoc);
8703 return true;
8706 // C++ [temp.class.spec]p10:
8707 // The template parameter list of a specialization shall not
8708 // contain default template argument values.
8709 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8710 Decl *Param = TemplateParams->getParam(I);
8711 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
8712 if (TTP->hasDefaultArgument()) {
8713 Diag(TTP->getDefaultArgumentLoc(),
8714 diag::err_default_arg_in_partial_spec);
8715 TTP->removeDefaultArgument();
8717 } else if (NonTypeTemplateParmDecl *NTTP
8718 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
8719 if (Expr *DefArg = NTTP->getDefaultArgument()) {
8720 Diag(NTTP->getDefaultArgumentLoc(),
8721 diag::err_default_arg_in_partial_spec)
8722 << DefArg->getSourceRange();
8723 NTTP->removeDefaultArgument();
8725 } else {
8726 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
8727 if (TTP->hasDefaultArgument()) {
8728 Diag(TTP->getDefaultArgument().getLocation(),
8729 diag::err_default_arg_in_partial_spec)
8730 << TTP->getDefaultArgument().getSourceRange();
8731 TTP->removeDefaultArgument();
8735 } else if (TemplateParams) {
8736 if (TUK == TUK_Friend)
8737 Diag(KWLoc, diag::err_template_spec_friend)
8738 << FixItHint::CreateRemoval(
8739 SourceRange(TemplateParams->getTemplateLoc(),
8740 TemplateParams->getRAngleLoc()))
8741 << SourceRange(LAngleLoc, RAngleLoc);
8742 } else {
8743 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
8746 // Check that the specialization uses the same tag kind as the
8747 // original template.
8748 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8749 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
8750 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
8751 Kind, TUK == TUK_Definition, KWLoc,
8752 ClassTemplate->getIdentifier())) {
8753 Diag(KWLoc, diag::err_use_with_wrong_tag)
8754 << ClassTemplate
8755 << FixItHint::CreateReplacement(KWLoc,
8756 ClassTemplate->getTemplatedDecl()->getKindName());
8757 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
8758 diag::note_previous_use);
8759 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
8762 // Translate the parser's template argument list in our AST format.
8763 TemplateArgumentListInfo TemplateArgs =
8764 makeTemplateArgumentListInfo(*this, TemplateId);
8766 // Check for unexpanded parameter packs in any of the template arguments.
8767 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
8768 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
8769 UPPC_PartialSpecialization))
8770 return true;
8772 // Check that the template argument list is well-formed for this
8773 // template.
8774 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
8775 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs,
8776 false, SugaredConverted, CanonicalConverted,
8777 /*UpdateArgsWithConversions=*/true))
8778 return true;
8780 // Find the class template (partial) specialization declaration that
8781 // corresponds to these arguments.
8782 if (isPartialSpecialization) {
8783 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate,
8784 TemplateArgs.size(),
8785 CanonicalConverted))
8786 return true;
8788 // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we
8789 // also do it during instantiation.
8790 if (!Name.isDependent() &&
8791 !TemplateSpecializationType::anyDependentTemplateArguments(
8792 TemplateArgs, CanonicalConverted)) {
8793 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
8794 << ClassTemplate->getDeclName();
8795 isPartialSpecialization = false;
8799 void *InsertPos = nullptr;
8800 ClassTemplateSpecializationDecl *PrevDecl = nullptr;
8802 if (isPartialSpecialization)
8803 PrevDecl = ClassTemplate->findPartialSpecialization(
8804 CanonicalConverted, TemplateParams, InsertPos);
8805 else
8806 PrevDecl = ClassTemplate->findSpecialization(CanonicalConverted, InsertPos);
8808 ClassTemplateSpecializationDecl *Specialization = nullptr;
8810 // Check whether we can declare a class template specialization in
8811 // the current scope.
8812 if (TUK != TUK_Friend &&
8813 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
8814 TemplateNameLoc,
8815 isPartialSpecialization))
8816 return true;
8818 // The canonical type
8819 QualType CanonType;
8820 if (isPartialSpecialization) {
8821 // Build the canonical type that describes the converted template
8822 // arguments of the class template partial specialization.
8823 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8824 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
8825 CanonicalConverted);
8827 if (Context.hasSameType(CanonType,
8828 ClassTemplate->getInjectedClassNameSpecialization()) &&
8829 (!Context.getLangOpts().CPlusPlus20 ||
8830 !TemplateParams->hasAssociatedConstraints())) {
8831 // C++ [temp.class.spec]p9b3:
8833 // -- The argument list of the specialization shall not be identical
8834 // to the implicit argument list of the primary template.
8836 // This rule has since been removed, because it's redundant given DR1495,
8837 // but we keep it because it produces better diagnostics and recovery.
8838 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
8839 << /*class template*/0 << (TUK == TUK_Definition)
8840 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
8841 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
8842 ClassTemplate->getIdentifier(),
8843 TemplateNameLoc,
8844 Attr,
8845 TemplateParams,
8846 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
8847 /*FriendLoc*/SourceLocation(),
8848 TemplateParameterLists.size() - 1,
8849 TemplateParameterLists.data());
8852 // Create a new class template partial specialization declaration node.
8853 ClassTemplatePartialSpecializationDecl *PrevPartial
8854 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
8855 ClassTemplatePartialSpecializationDecl *Partial =
8856 ClassTemplatePartialSpecializationDecl::Create(
8857 Context, Kind, ClassTemplate->getDeclContext(), KWLoc,
8858 TemplateNameLoc, TemplateParams, ClassTemplate, CanonicalConverted,
8859 TemplateArgs, CanonType, PrevPartial);
8860 SetNestedNameSpecifier(*this, Partial, SS);
8861 if (TemplateParameterLists.size() > 1 && SS.isSet()) {
8862 Partial->setTemplateParameterListsInfo(
8863 Context, TemplateParameterLists.drop_back(1));
8866 if (!PrevPartial)
8867 ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
8868 Specialization = Partial;
8870 // If we are providing an explicit specialization of a member class
8871 // template specialization, make a note of that.
8872 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
8873 PrevPartial->setMemberSpecialization();
8875 CheckTemplatePartialSpecialization(Partial);
8876 } else {
8877 // Create a new class template specialization declaration node for
8878 // this explicit specialization or friend declaration.
8879 Specialization = ClassTemplateSpecializationDecl::Create(
8880 Context, Kind, ClassTemplate->getDeclContext(), KWLoc, TemplateNameLoc,
8881 ClassTemplate, CanonicalConverted, PrevDecl);
8882 SetNestedNameSpecifier(*this, Specialization, SS);
8883 if (TemplateParameterLists.size() > 0) {
8884 Specialization->setTemplateParameterListsInfo(Context,
8885 TemplateParameterLists);
8888 if (!PrevDecl)
8889 ClassTemplate->AddSpecialization(Specialization, InsertPos);
8891 if (CurContext->isDependentContext()) {
8892 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8893 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
8894 CanonicalConverted);
8895 } else {
8896 CanonType = Context.getTypeDeclType(Specialization);
8900 // C++ [temp.expl.spec]p6:
8901 // If a template, a member template or the member of a class template is
8902 // explicitly specialized then that specialization shall be declared
8903 // before the first use of that specialization that would cause an implicit
8904 // instantiation to take place, in every translation unit in which such a
8905 // use occurs; no diagnostic is required.
8906 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
8907 bool Okay = false;
8908 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8909 // Is there any previous explicit specialization declaration?
8910 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
8911 Okay = true;
8912 break;
8916 if (!Okay) {
8917 SourceRange Range(TemplateNameLoc, RAngleLoc);
8918 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
8919 << Context.getTypeDeclType(Specialization) << Range;
8921 Diag(PrevDecl->getPointOfInstantiation(),
8922 diag::note_instantiation_required_here)
8923 << (PrevDecl->getTemplateSpecializationKind()
8924 != TSK_ImplicitInstantiation);
8925 return true;
8929 // If this is not a friend, note that this is an explicit specialization.
8930 if (TUK != TUK_Friend)
8931 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
8933 // Check that this isn't a redefinition of this specialization.
8934 if (TUK == TUK_Definition) {
8935 RecordDecl *Def = Specialization->getDefinition();
8936 NamedDecl *Hidden = nullptr;
8937 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
8938 SkipBody->ShouldSkip = true;
8939 SkipBody->Previous = Def;
8940 makeMergedDefinitionVisible(Hidden);
8941 } else if (Def) {
8942 SourceRange Range(TemplateNameLoc, RAngleLoc);
8943 Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range;
8944 Diag(Def->getLocation(), diag::note_previous_definition);
8945 Specialization->setInvalidDecl();
8946 return true;
8950 ProcessDeclAttributeList(S, Specialization, Attr);
8952 // Add alignment attributes if necessary; these attributes are checked when
8953 // the ASTContext lays out the structure.
8954 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
8955 AddAlignmentAttributesForRecord(Specialization);
8956 AddMsStructLayoutForRecord(Specialization);
8959 if (ModulePrivateLoc.isValid())
8960 Diag(Specialization->getLocation(), diag::err_module_private_specialization)
8961 << (isPartialSpecialization? 1 : 0)
8962 << FixItHint::CreateRemoval(ModulePrivateLoc);
8964 // Build the fully-sugared type for this class template
8965 // specialization as the user wrote in the specialization
8966 // itself. This means that we'll pretty-print the type retrieved
8967 // from the specialization's declaration the way that the user
8968 // actually wrote the specialization, rather than formatting the
8969 // name based on the "canonical" representation used to store the
8970 // template arguments in the specialization.
8971 TypeSourceInfo *WrittenTy
8972 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
8973 TemplateArgs, CanonType);
8974 if (TUK != TUK_Friend) {
8975 Specialization->setTypeAsWritten(WrittenTy);
8976 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
8979 // C++ [temp.expl.spec]p9:
8980 // A template explicit specialization is in the scope of the
8981 // namespace in which the template was defined.
8983 // We actually implement this paragraph where we set the semantic
8984 // context (in the creation of the ClassTemplateSpecializationDecl),
8985 // but we also maintain the lexical context where the actual
8986 // definition occurs.
8987 Specialization->setLexicalDeclContext(CurContext);
8989 // We may be starting the definition of this specialization.
8990 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
8991 Specialization->startDefinition();
8993 if (TUK == TUK_Friend) {
8994 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
8995 TemplateNameLoc,
8996 WrittenTy,
8997 /*FIXME:*/KWLoc);
8998 Friend->setAccess(AS_public);
8999 CurContext->addDecl(Friend);
9000 } else {
9001 // Add the specialization into its lexical context, so that it can
9002 // be seen when iterating through the list of declarations in that
9003 // context. However, specializations are not found by name lookup.
9004 CurContext->addDecl(Specialization);
9007 if (SkipBody && SkipBody->ShouldSkip)
9008 return SkipBody->Previous;
9010 return Specialization;
9013 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
9014 MultiTemplateParamsArg TemplateParameterLists,
9015 Declarator &D) {
9016 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
9017 ActOnDocumentableDecl(NewDecl);
9018 return NewDecl;
9021 Decl *Sema::ActOnConceptDefinition(Scope *S,
9022 MultiTemplateParamsArg TemplateParameterLists,
9023 IdentifierInfo *Name, SourceLocation NameLoc,
9024 Expr *ConstraintExpr) {
9025 DeclContext *DC = CurContext;
9027 if (!DC->getRedeclContext()->isFileContext()) {
9028 Diag(NameLoc,
9029 diag::err_concept_decls_may_only_appear_in_global_namespace_scope);
9030 return nullptr;
9033 if (TemplateParameterLists.size() > 1) {
9034 Diag(NameLoc, diag::err_concept_extra_headers);
9035 return nullptr;
9038 TemplateParameterList *Params = TemplateParameterLists.front();
9040 if (Params->size() == 0) {
9041 Diag(NameLoc, diag::err_concept_no_parameters);
9042 return nullptr;
9045 // Ensure that the parameter pack, if present, is the last parameter in the
9046 // template.
9047 for (TemplateParameterList::const_iterator ParamIt = Params->begin(),
9048 ParamEnd = Params->end();
9049 ParamIt != ParamEnd; ++ParamIt) {
9050 Decl const *Param = *ParamIt;
9051 if (Param->isParameterPack()) {
9052 if (++ParamIt == ParamEnd)
9053 break;
9054 Diag(Param->getLocation(),
9055 diag::err_template_param_pack_must_be_last_template_parameter);
9056 return nullptr;
9060 if (DiagnoseUnexpandedParameterPack(ConstraintExpr))
9061 return nullptr;
9063 ConceptDecl *NewDecl =
9064 ConceptDecl::Create(Context, DC, NameLoc, Name, Params, ConstraintExpr);
9066 if (NewDecl->hasAssociatedConstraints()) {
9067 // C++2a [temp.concept]p4:
9068 // A concept shall not have associated constraints.
9069 Diag(NameLoc, diag::err_concept_no_associated_constraints);
9070 NewDecl->setInvalidDecl();
9073 // Check for conflicting previous declaration.
9074 DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc);
9075 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
9076 forRedeclarationInCurContext());
9077 LookupName(Previous, S);
9078 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false,
9079 /*AllowInlineNamespace*/false);
9080 bool AddToScope = true;
9081 CheckConceptRedefinition(NewDecl, Previous, AddToScope);
9083 ActOnDocumentableDecl(NewDecl);
9084 if (AddToScope)
9085 PushOnScopeChains(NewDecl, S);
9086 return NewDecl;
9089 void Sema::CheckConceptRedefinition(ConceptDecl *NewDecl,
9090 LookupResult &Previous, bool &AddToScope) {
9091 AddToScope = true;
9093 if (Previous.empty())
9094 return;
9096 auto *OldConcept = dyn_cast<ConceptDecl>(Previous.getRepresentativeDecl()->getUnderlyingDecl());
9097 if (!OldConcept) {
9098 auto *Old = Previous.getRepresentativeDecl();
9099 Diag(NewDecl->getLocation(), diag::err_redefinition_different_kind)
9100 << NewDecl->getDeclName();
9101 notePreviousDefinition(Old, NewDecl->getLocation());
9102 AddToScope = false;
9103 return;
9105 // Check if we can merge with a concept declaration.
9106 bool IsSame = Context.isSameEntity(NewDecl, OldConcept);
9107 if (!IsSame) {
9108 Diag(NewDecl->getLocation(), diag::err_redefinition_different_concept)
9109 << NewDecl->getDeclName();
9110 notePreviousDefinition(OldConcept, NewDecl->getLocation());
9111 AddToScope = false;
9112 return;
9114 if (hasReachableDefinition(OldConcept) &&
9115 IsRedefinitionInModule(NewDecl, OldConcept)) {
9116 Diag(NewDecl->getLocation(), diag::err_redefinition)
9117 << NewDecl->getDeclName();
9118 notePreviousDefinition(OldConcept, NewDecl->getLocation());
9119 AddToScope = false;
9120 return;
9122 if (!Previous.isSingleResult()) {
9123 // FIXME: we should produce an error in case of ambig and failed lookups.
9124 // Other decls (e.g. namespaces) also have this shortcoming.
9125 return;
9127 // We unwrap canonical decl late to check for module visibility.
9128 Context.setPrimaryMergedDecl(NewDecl, OldConcept->getCanonicalDecl());
9131 /// \brief Strips various properties off an implicit instantiation
9132 /// that has just been explicitly specialized.
9133 static void StripImplicitInstantiation(NamedDecl *D, bool MinGW) {
9134 if (MinGW || (isa<FunctionDecl>(D) &&
9135 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())) {
9136 D->dropAttr<DLLImportAttr>();
9137 D->dropAttr<DLLExportAttr>();
9140 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
9141 FD->setInlineSpecified(false);
9144 /// Compute the diagnostic location for an explicit instantiation
9145 // declaration or definition.
9146 static SourceLocation DiagLocForExplicitInstantiation(
9147 NamedDecl* D, SourceLocation PointOfInstantiation) {
9148 // Explicit instantiations following a specialization have no effect and
9149 // hence no PointOfInstantiation. In that case, walk decl backwards
9150 // until a valid name loc is found.
9151 SourceLocation PrevDiagLoc = PointOfInstantiation;
9152 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
9153 Prev = Prev->getPreviousDecl()) {
9154 PrevDiagLoc = Prev->getLocation();
9156 assert(PrevDiagLoc.isValid() &&
9157 "Explicit instantiation without point of instantiation?");
9158 return PrevDiagLoc;
9161 /// Diagnose cases where we have an explicit template specialization
9162 /// before/after an explicit template instantiation, producing diagnostics
9163 /// for those cases where they are required and determining whether the
9164 /// new specialization/instantiation will have any effect.
9166 /// \param NewLoc the location of the new explicit specialization or
9167 /// instantiation.
9169 /// \param NewTSK the kind of the new explicit specialization or instantiation.
9171 /// \param PrevDecl the previous declaration of the entity.
9173 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
9175 /// \param PrevPointOfInstantiation if valid, indicates where the previous
9176 /// declaration was instantiated (either implicitly or explicitly).
9178 /// \param HasNoEffect will be set to true to indicate that the new
9179 /// specialization or instantiation has no effect and should be ignored.
9181 /// \returns true if there was an error that should prevent the introduction of
9182 /// the new declaration into the AST, false otherwise.
9183 bool
9184 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
9185 TemplateSpecializationKind NewTSK,
9186 NamedDecl *PrevDecl,
9187 TemplateSpecializationKind PrevTSK,
9188 SourceLocation PrevPointOfInstantiation,
9189 bool &HasNoEffect) {
9190 HasNoEffect = false;
9192 switch (NewTSK) {
9193 case TSK_Undeclared:
9194 case TSK_ImplicitInstantiation:
9195 assert(
9196 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
9197 "previous declaration must be implicit!");
9198 return false;
9200 case TSK_ExplicitSpecialization:
9201 switch (PrevTSK) {
9202 case TSK_Undeclared:
9203 case TSK_ExplicitSpecialization:
9204 // Okay, we're just specializing something that is either already
9205 // explicitly specialized or has merely been mentioned without any
9206 // instantiation.
9207 return false;
9209 case TSK_ImplicitInstantiation:
9210 if (PrevPointOfInstantiation.isInvalid()) {
9211 // The declaration itself has not actually been instantiated, so it is
9212 // still okay to specialize it.
9213 StripImplicitInstantiation(
9214 PrevDecl,
9215 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment());
9216 return false;
9218 // Fall through
9219 [[fallthrough]];
9221 case TSK_ExplicitInstantiationDeclaration:
9222 case TSK_ExplicitInstantiationDefinition:
9223 assert((PrevTSK == TSK_ImplicitInstantiation ||
9224 PrevPointOfInstantiation.isValid()) &&
9225 "Explicit instantiation without point of instantiation?");
9227 // C++ [temp.expl.spec]p6:
9228 // If a template, a member template or the member of a class template
9229 // is explicitly specialized then that specialization shall be declared
9230 // before the first use of that specialization that would cause an
9231 // implicit instantiation to take place, in every translation unit in
9232 // which such a use occurs; no diagnostic is required.
9233 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
9234 // Is there any previous explicit specialization declaration?
9235 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
9236 return false;
9239 Diag(NewLoc, diag::err_specialization_after_instantiation)
9240 << PrevDecl;
9241 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
9242 << (PrevTSK != TSK_ImplicitInstantiation);
9244 return true;
9246 llvm_unreachable("The switch over PrevTSK must be exhaustive.");
9248 case TSK_ExplicitInstantiationDeclaration:
9249 switch (PrevTSK) {
9250 case TSK_ExplicitInstantiationDeclaration:
9251 // This explicit instantiation declaration is redundant (that's okay).
9252 HasNoEffect = true;
9253 return false;
9255 case TSK_Undeclared:
9256 case TSK_ImplicitInstantiation:
9257 // We're explicitly instantiating something that may have already been
9258 // implicitly instantiated; that's fine.
9259 return false;
9261 case TSK_ExplicitSpecialization:
9262 // C++0x [temp.explicit]p4:
9263 // For a given set of template parameters, if an explicit instantiation
9264 // of a template appears after a declaration of an explicit
9265 // specialization for that template, the explicit instantiation has no
9266 // effect.
9267 HasNoEffect = true;
9268 return false;
9270 case TSK_ExplicitInstantiationDefinition:
9271 // C++0x [temp.explicit]p10:
9272 // If an entity is the subject of both an explicit instantiation
9273 // declaration and an explicit instantiation definition in the same
9274 // translation unit, the definition shall follow the declaration.
9275 Diag(NewLoc,
9276 diag::err_explicit_instantiation_declaration_after_definition);
9278 // Explicit instantiations following a specialization have no effect and
9279 // hence no PrevPointOfInstantiation. In that case, walk decl backwards
9280 // until a valid name loc is found.
9281 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
9282 diag::note_explicit_instantiation_definition_here);
9283 HasNoEffect = true;
9284 return false;
9286 llvm_unreachable("Unexpected TemplateSpecializationKind!");
9288 case TSK_ExplicitInstantiationDefinition:
9289 switch (PrevTSK) {
9290 case TSK_Undeclared:
9291 case TSK_ImplicitInstantiation:
9292 // We're explicitly instantiating something that may have already been
9293 // implicitly instantiated; that's fine.
9294 return false;
9296 case TSK_ExplicitSpecialization:
9297 // C++ DR 259, C++0x [temp.explicit]p4:
9298 // For a given set of template parameters, if an explicit
9299 // instantiation of a template appears after a declaration of
9300 // an explicit specialization for that template, the explicit
9301 // instantiation has no effect.
9302 Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
9303 << PrevDecl;
9304 Diag(PrevDecl->getLocation(),
9305 diag::note_previous_template_specialization);
9306 HasNoEffect = true;
9307 return false;
9309 case TSK_ExplicitInstantiationDeclaration:
9310 // We're explicitly instantiating a definition for something for which we
9311 // were previously asked to suppress instantiations. That's fine.
9313 // C++0x [temp.explicit]p4:
9314 // For a given set of template parameters, if an explicit instantiation
9315 // of a template appears after a declaration of an explicit
9316 // specialization for that template, the explicit instantiation has no
9317 // effect.
9318 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
9319 // Is there any previous explicit specialization declaration?
9320 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
9321 HasNoEffect = true;
9322 break;
9326 return false;
9328 case TSK_ExplicitInstantiationDefinition:
9329 // C++0x [temp.spec]p5:
9330 // For a given template and a given set of template-arguments,
9331 // - an explicit instantiation definition shall appear at most once
9332 // in a program,
9334 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
9335 Diag(NewLoc, (getLangOpts().MSVCCompat)
9336 ? diag::ext_explicit_instantiation_duplicate
9337 : diag::err_explicit_instantiation_duplicate)
9338 << PrevDecl;
9339 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
9340 diag::note_previous_explicit_instantiation);
9341 HasNoEffect = true;
9342 return false;
9346 llvm_unreachable("Missing specialization/instantiation case?");
9349 /// Perform semantic analysis for the given dependent function
9350 /// template specialization.
9352 /// The only possible way to get a dependent function template specialization
9353 /// is with a friend declaration, like so:
9355 /// \code
9356 /// template \<class T> void foo(T);
9357 /// template \<class T> class A {
9358 /// friend void foo<>(T);
9359 /// };
9360 /// \endcode
9362 /// There really isn't any useful analysis we can do here, so we
9363 /// just store the information.
9364 bool Sema::CheckDependentFunctionTemplateSpecialization(
9365 FunctionDecl *FD, const TemplateArgumentListInfo *ExplicitTemplateArgs,
9366 LookupResult &Previous) {
9367 // Remove anything from Previous that isn't a function template in
9368 // the correct context.
9369 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
9370 LookupResult::Filter F = Previous.makeFilter();
9371 enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing };
9372 SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates;
9373 while (F.hasNext()) {
9374 NamedDecl *D = F.next()->getUnderlyingDecl();
9375 if (!isa<FunctionTemplateDecl>(D)) {
9376 F.erase();
9377 DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D));
9378 continue;
9381 if (!FDLookupContext->InEnclosingNamespaceSetOf(
9382 D->getDeclContext()->getRedeclContext())) {
9383 F.erase();
9384 DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D));
9385 continue;
9388 F.done();
9390 bool IsFriend = FD->getFriendObjectKind() != Decl::FOK_None;
9391 if (Previous.empty()) {
9392 Diag(FD->getLocation(), diag::err_dependent_function_template_spec_no_match)
9393 << IsFriend;
9394 for (auto &P : DiscardedCandidates)
9395 Diag(P.second->getLocation(),
9396 diag::note_dependent_function_template_spec_discard_reason)
9397 << P.first << IsFriend;
9398 return true;
9401 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
9402 ExplicitTemplateArgs);
9403 return false;
9406 /// Perform semantic analysis for the given function template
9407 /// specialization.
9409 /// This routine performs all of the semantic analysis required for an
9410 /// explicit function template specialization. On successful completion,
9411 /// the function declaration \p FD will become a function template
9412 /// specialization.
9414 /// \param FD the function declaration, which will be updated to become a
9415 /// function template specialization.
9417 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
9418 /// if any. Note that this may be valid info even when 0 arguments are
9419 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
9420 /// as it anyway contains info on the angle brackets locations.
9422 /// \param Previous the set of declarations that may be specialized by
9423 /// this function specialization.
9425 /// \param QualifiedFriend whether this is a lookup for a qualified friend
9426 /// declaration with no explicit template argument list that might be
9427 /// befriending a function template specialization.
9428 bool Sema::CheckFunctionTemplateSpecialization(
9429 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
9430 LookupResult &Previous, bool QualifiedFriend) {
9431 // The set of function template specializations that could match this
9432 // explicit function template specialization.
9433 UnresolvedSet<8> Candidates;
9434 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
9435 /*ForTakingAddress=*/false);
9437 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
9438 ConvertedTemplateArgs;
9440 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
9441 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9442 I != E; ++I) {
9443 NamedDecl *Ovl = (*I)->getUnderlyingDecl();
9444 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
9445 // Only consider templates found within the same semantic lookup scope as
9446 // FD.
9447 if (!FDLookupContext->InEnclosingNamespaceSetOf(
9448 Ovl->getDeclContext()->getRedeclContext()))
9449 continue;
9451 // When matching a constexpr member function template specialization
9452 // against the primary template, we don't yet know whether the
9453 // specialization has an implicit 'const' (because we don't know whether
9454 // it will be a static member function until we know which template it
9455 // specializes), so adjust it now assuming it specializes this template.
9456 QualType FT = FD->getType();
9457 if (FD->isConstexpr()) {
9458 CXXMethodDecl *OldMD =
9459 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
9460 if (OldMD && OldMD->isConst()) {
9461 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
9462 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9463 EPI.TypeQuals.addConst();
9464 FT = Context.getFunctionType(FPT->getReturnType(),
9465 FPT->getParamTypes(), EPI);
9469 TemplateArgumentListInfo Args;
9470 if (ExplicitTemplateArgs)
9471 Args = *ExplicitTemplateArgs;
9473 // C++ [temp.expl.spec]p11:
9474 // A trailing template-argument can be left unspecified in the
9475 // template-id naming an explicit function template specialization
9476 // provided it can be deduced from the function argument type.
9477 // Perform template argument deduction to determine whether we may be
9478 // specializing this template.
9479 // FIXME: It is somewhat wasteful to build
9480 TemplateDeductionInfo Info(FailedCandidates.getLocation());
9481 FunctionDecl *Specialization = nullptr;
9482 if (TemplateDeductionResult TDK = DeduceTemplateArguments(
9483 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
9484 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization,
9485 Info)) {
9486 // Template argument deduction failed; record why it failed, so
9487 // that we can provide nifty diagnostics.
9488 FailedCandidates.addCandidate().set(
9489 I.getPair(), FunTmpl->getTemplatedDecl(),
9490 MakeDeductionFailureInfo(Context, TDK, Info));
9491 (void)TDK;
9492 continue;
9495 // Target attributes are part of the cuda function signature, so
9496 // the deduced template's cuda target must match that of the
9497 // specialization. Given that C++ template deduction does not
9498 // take target attributes into account, we reject candidates
9499 // here that have a different target.
9500 if (LangOpts.CUDA &&
9501 IdentifyCUDATarget(Specialization,
9502 /* IgnoreImplicitHDAttr = */ true) !=
9503 IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttr = */ true)) {
9504 FailedCandidates.addCandidate().set(
9505 I.getPair(), FunTmpl->getTemplatedDecl(),
9506 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
9507 continue;
9510 // Record this candidate.
9511 if (ExplicitTemplateArgs)
9512 ConvertedTemplateArgs[Specialization] = std::move(Args);
9513 Candidates.addDecl(Specialization, I.getAccess());
9517 // For a qualified friend declaration (with no explicit marker to indicate
9518 // that a template specialization was intended), note all (template and
9519 // non-template) candidates.
9520 if (QualifiedFriend && Candidates.empty()) {
9521 Diag(FD->getLocation(), diag::err_qualified_friend_no_match)
9522 << FD->getDeclName() << FDLookupContext;
9523 // FIXME: We should form a single candidate list and diagnose all
9524 // candidates at once, to get proper sorting and limiting.
9525 for (auto *OldND : Previous) {
9526 if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl()))
9527 NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false);
9529 FailedCandidates.NoteCandidates(*this, FD->getLocation());
9530 return true;
9533 // Find the most specialized function template.
9534 UnresolvedSetIterator Result = getMostSpecialized(
9535 Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(),
9536 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
9537 PDiag(diag::err_function_template_spec_ambiguous)
9538 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
9539 PDiag(diag::note_function_template_spec_matched));
9541 if (Result == Candidates.end())
9542 return true;
9544 // Ignore access information; it doesn't figure into redeclaration checking.
9545 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
9547 FunctionTemplateSpecializationInfo *SpecInfo
9548 = Specialization->getTemplateSpecializationInfo();
9549 assert(SpecInfo && "Function template specialization info missing?");
9551 // Note: do not overwrite location info if previous template
9552 // specialization kind was explicit.
9553 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
9554 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
9555 Specialization->setLocation(FD->getLocation());
9556 Specialization->setLexicalDeclContext(FD->getLexicalDeclContext());
9557 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
9558 // function can differ from the template declaration with respect to
9559 // the constexpr specifier.
9560 // FIXME: We need an update record for this AST mutation.
9561 // FIXME: What if there are multiple such prior declarations (for instance,
9562 // from different modules)?
9563 Specialization->setConstexprKind(FD->getConstexprKind());
9566 // FIXME: Check if the prior specialization has a point of instantiation.
9567 // If so, we have run afoul of .
9569 // If this is a friend declaration, then we're not really declaring
9570 // an explicit specialization.
9571 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
9573 // Check the scope of this explicit specialization.
9574 if (!isFriend &&
9575 CheckTemplateSpecializationScope(*this,
9576 Specialization->getPrimaryTemplate(),
9577 Specialization, FD->getLocation(),
9578 false))
9579 return true;
9581 // C++ [temp.expl.spec]p6:
9582 // If a template, a member template or the member of a class template is
9583 // explicitly specialized then that specialization shall be declared
9584 // before the first use of that specialization that would cause an implicit
9585 // instantiation to take place, in every translation unit in which such a
9586 // use occurs; no diagnostic is required.
9587 bool HasNoEffect = false;
9588 if (!isFriend &&
9589 CheckSpecializationInstantiationRedecl(FD->getLocation(),
9590 TSK_ExplicitSpecialization,
9591 Specialization,
9592 SpecInfo->getTemplateSpecializationKind(),
9593 SpecInfo->getPointOfInstantiation(),
9594 HasNoEffect))
9595 return true;
9597 // Mark the prior declaration as an explicit specialization, so that later
9598 // clients know that this is an explicit specialization.
9599 if (!isFriend) {
9600 // Since explicit specializations do not inherit '=delete' from their
9601 // primary function template - check if the 'specialization' that was
9602 // implicitly generated (during template argument deduction for partial
9603 // ordering) from the most specialized of all the function templates that
9604 // 'FD' could have been specializing, has a 'deleted' definition. If so,
9605 // first check that it was implicitly generated during template argument
9606 // deduction by making sure it wasn't referenced, and then reset the deleted
9607 // flag to not-deleted, so that we can inherit that information from 'FD'.
9608 if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
9609 !Specialization->getCanonicalDecl()->isReferenced()) {
9610 // FIXME: This assert will not hold in the presence of modules.
9611 assert(
9612 Specialization->getCanonicalDecl() == Specialization &&
9613 "This must be the only existing declaration of this specialization");
9614 // FIXME: We need an update record for this AST mutation.
9615 Specialization->setDeletedAsWritten(false);
9617 // FIXME: We need an update record for this AST mutation.
9618 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
9619 MarkUnusedFileScopedDecl(Specialization);
9622 // Turn the given function declaration into a function template
9623 // specialization, with the template arguments from the previous
9624 // specialization.
9625 // Take copies of (semantic and syntactic) template argument lists.
9626 const TemplateArgumentList* TemplArgs = new (Context)
9627 TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
9628 FD->setFunctionTemplateSpecialization(
9629 Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
9630 SpecInfo->getTemplateSpecializationKind(),
9631 ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
9633 // A function template specialization inherits the target attributes
9634 // of its template. (We require the attributes explicitly in the
9635 // code to match, but a template may have implicit attributes by
9636 // virtue e.g. of being constexpr, and it passes these implicit
9637 // attributes on to its specializations.)
9638 if (LangOpts.CUDA)
9639 inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate());
9641 // The "previous declaration" for this function template specialization is
9642 // the prior function template specialization.
9643 Previous.clear();
9644 Previous.addDecl(Specialization);
9645 return false;
9648 /// Perform semantic analysis for the given non-template member
9649 /// specialization.
9651 /// This routine performs all of the semantic analysis required for an
9652 /// explicit member function specialization. On successful completion,
9653 /// the function declaration \p FD will become a member function
9654 /// specialization.
9656 /// \param Member the member declaration, which will be updated to become a
9657 /// specialization.
9659 /// \param Previous the set of declarations, one of which may be specialized
9660 /// by this function specialization; the set will be modified to contain the
9661 /// redeclared member.
9662 bool
9663 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
9664 assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
9666 // Try to find the member we are instantiating.
9667 NamedDecl *FoundInstantiation = nullptr;
9668 NamedDecl *Instantiation = nullptr;
9669 NamedDecl *InstantiatedFrom = nullptr;
9670 MemberSpecializationInfo *MSInfo = nullptr;
9672 if (Previous.empty()) {
9673 // Nowhere to look anyway.
9674 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
9675 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9676 I != E; ++I) {
9677 NamedDecl *D = (*I)->getUnderlyingDecl();
9678 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
9679 QualType Adjusted = Function->getType();
9680 if (!hasExplicitCallingConv(Adjusted))
9681 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
9682 // This doesn't handle deduced return types, but both function
9683 // declarations should be undeduced at this point.
9684 if (Context.hasSameType(Adjusted, Method->getType())) {
9685 FoundInstantiation = *I;
9686 Instantiation = Method;
9687 InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
9688 MSInfo = Method->getMemberSpecializationInfo();
9689 break;
9693 } else if (isa<VarDecl>(Member)) {
9694 VarDecl *PrevVar;
9695 if (Previous.isSingleResult() &&
9696 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
9697 if (PrevVar->isStaticDataMember()) {
9698 FoundInstantiation = Previous.getRepresentativeDecl();
9699 Instantiation = PrevVar;
9700 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
9701 MSInfo = PrevVar->getMemberSpecializationInfo();
9703 } else if (isa<RecordDecl>(Member)) {
9704 CXXRecordDecl *PrevRecord;
9705 if (Previous.isSingleResult() &&
9706 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
9707 FoundInstantiation = Previous.getRepresentativeDecl();
9708 Instantiation = PrevRecord;
9709 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
9710 MSInfo = PrevRecord->getMemberSpecializationInfo();
9712 } else if (isa<EnumDecl>(Member)) {
9713 EnumDecl *PrevEnum;
9714 if (Previous.isSingleResult() &&
9715 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
9716 FoundInstantiation = Previous.getRepresentativeDecl();
9717 Instantiation = PrevEnum;
9718 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
9719 MSInfo = PrevEnum->getMemberSpecializationInfo();
9723 if (!Instantiation) {
9724 // There is no previous declaration that matches. Since member
9725 // specializations are always out-of-line, the caller will complain about
9726 // this mismatch later.
9727 return false;
9730 // A member specialization in a friend declaration isn't really declaring
9731 // an explicit specialization, just identifying a specific (possibly implicit)
9732 // specialization. Don't change the template specialization kind.
9734 // FIXME: Is this really valid? Other compilers reject.
9735 if (Member->getFriendObjectKind() != Decl::FOK_None) {
9736 // Preserve instantiation information.
9737 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
9738 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
9739 cast<CXXMethodDecl>(InstantiatedFrom),
9740 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
9741 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
9742 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
9743 cast<CXXRecordDecl>(InstantiatedFrom),
9744 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
9747 Previous.clear();
9748 Previous.addDecl(FoundInstantiation);
9749 return false;
9752 // Make sure that this is a specialization of a member.
9753 if (!InstantiatedFrom) {
9754 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
9755 << Member;
9756 Diag(Instantiation->getLocation(), diag::note_specialized_decl);
9757 return true;
9760 // C++ [temp.expl.spec]p6:
9761 // If a template, a member template or the member of a class template is
9762 // explicitly specialized then that specialization shall be declared
9763 // before the first use of that specialization that would cause an implicit
9764 // instantiation to take place, in every translation unit in which such a
9765 // use occurs; no diagnostic is required.
9766 assert(MSInfo && "Member specialization info missing?");
9768 bool HasNoEffect = false;
9769 if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
9770 TSK_ExplicitSpecialization,
9771 Instantiation,
9772 MSInfo->getTemplateSpecializationKind(),
9773 MSInfo->getPointOfInstantiation(),
9774 HasNoEffect))
9775 return true;
9777 // Check the scope of this explicit specialization.
9778 if (CheckTemplateSpecializationScope(*this,
9779 InstantiatedFrom,
9780 Instantiation, Member->getLocation(),
9781 false))
9782 return true;
9784 // Note that this member specialization is an "instantiation of" the
9785 // corresponding member of the original template.
9786 if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) {
9787 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
9788 if (InstantiationFunction->getTemplateSpecializationKind() ==
9789 TSK_ImplicitInstantiation) {
9790 // Explicit specializations of member functions of class templates do not
9791 // inherit '=delete' from the member function they are specializing.
9792 if (InstantiationFunction->isDeleted()) {
9793 // FIXME: This assert will not hold in the presence of modules.
9794 assert(InstantiationFunction->getCanonicalDecl() ==
9795 InstantiationFunction);
9796 // FIXME: We need an update record for this AST mutation.
9797 InstantiationFunction->setDeletedAsWritten(false);
9801 MemberFunction->setInstantiationOfMemberFunction(
9802 cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9803 } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) {
9804 MemberVar->setInstantiationOfStaticDataMember(
9805 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9806 } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) {
9807 MemberClass->setInstantiationOfMemberClass(
9808 cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9809 } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) {
9810 MemberEnum->setInstantiationOfMemberEnum(
9811 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9812 } else {
9813 llvm_unreachable("unknown member specialization kind");
9816 // Save the caller the trouble of having to figure out which declaration
9817 // this specialization matches.
9818 Previous.clear();
9819 Previous.addDecl(FoundInstantiation);
9820 return false;
9823 /// Complete the explicit specialization of a member of a class template by
9824 /// updating the instantiated member to be marked as an explicit specialization.
9826 /// \param OrigD The member declaration instantiated from the template.
9827 /// \param Loc The location of the explicit specialization of the member.
9828 template<typename DeclT>
9829 static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD,
9830 SourceLocation Loc) {
9831 if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
9832 return;
9834 // FIXME: Inform AST mutation listeners of this AST mutation.
9835 // FIXME: If there are multiple in-class declarations of the member (from
9836 // multiple modules, or a declaration and later definition of a member type),
9837 // should we update all of them?
9838 OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
9839 OrigD->setLocation(Loc);
9842 void Sema::CompleteMemberSpecialization(NamedDecl *Member,
9843 LookupResult &Previous) {
9844 NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl());
9845 if (Instantiation == Member)
9846 return;
9848 if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation))
9849 completeMemberSpecializationImpl(*this, Function, Member->getLocation());
9850 else if (auto *Var = dyn_cast<VarDecl>(Instantiation))
9851 completeMemberSpecializationImpl(*this, Var, Member->getLocation());
9852 else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation))
9853 completeMemberSpecializationImpl(*this, Record, Member->getLocation());
9854 else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation))
9855 completeMemberSpecializationImpl(*this, Enum, Member->getLocation());
9856 else
9857 llvm_unreachable("unknown member specialization kind");
9860 /// Check the scope of an explicit instantiation.
9862 /// \returns true if a serious error occurs, false otherwise.
9863 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
9864 SourceLocation InstLoc,
9865 bool WasQualifiedName) {
9866 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
9867 DeclContext *CurContext = S.CurContext->getRedeclContext();
9869 if (CurContext->isRecord()) {
9870 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
9871 << D;
9872 return true;
9875 // C++11 [temp.explicit]p3:
9876 // An explicit instantiation shall appear in an enclosing namespace of its
9877 // template. If the name declared in the explicit instantiation is an
9878 // unqualified name, the explicit instantiation shall appear in the
9879 // namespace where its template is declared or, if that namespace is inline
9880 // (7.3.1), any namespace from its enclosing namespace set.
9882 // This is DR275, which we do not retroactively apply to C++98/03.
9883 if (WasQualifiedName) {
9884 if (CurContext->Encloses(OrigContext))
9885 return false;
9886 } else {
9887 if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
9888 return false;
9891 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
9892 if (WasQualifiedName)
9893 S.Diag(InstLoc,
9894 S.getLangOpts().CPlusPlus11?
9895 diag::err_explicit_instantiation_out_of_scope :
9896 diag::warn_explicit_instantiation_out_of_scope_0x)
9897 << D << NS;
9898 else
9899 S.Diag(InstLoc,
9900 S.getLangOpts().CPlusPlus11?
9901 diag::err_explicit_instantiation_unqualified_wrong_namespace :
9902 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
9903 << D << NS;
9904 } else
9905 S.Diag(InstLoc,
9906 S.getLangOpts().CPlusPlus11?
9907 diag::err_explicit_instantiation_must_be_global :
9908 diag::warn_explicit_instantiation_must_be_global_0x)
9909 << D;
9910 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
9911 return false;
9914 /// Common checks for whether an explicit instantiation of \p D is valid.
9915 static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D,
9916 SourceLocation InstLoc,
9917 bool WasQualifiedName,
9918 TemplateSpecializationKind TSK) {
9919 // C++ [temp.explicit]p13:
9920 // An explicit instantiation declaration shall not name a specialization of
9921 // a template with internal linkage.
9922 if (TSK == TSK_ExplicitInstantiationDeclaration &&
9923 D->getFormalLinkage() == InternalLinkage) {
9924 S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D;
9925 return true;
9928 // C++11 [temp.explicit]p3: [DR 275]
9929 // An explicit instantiation shall appear in an enclosing namespace of its
9930 // template.
9931 if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName))
9932 return true;
9934 return false;
9937 /// Determine whether the given scope specifier has a template-id in it.
9938 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
9939 if (!SS.isSet())
9940 return false;
9942 // C++11 [temp.explicit]p3:
9943 // If the explicit instantiation is for a member function, a member class
9944 // or a static data member of a class template specialization, the name of
9945 // the class template specialization in the qualified-id for the member
9946 // name shall be a simple-template-id.
9948 // C++98 has the same restriction, just worded differently.
9949 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
9950 NNS = NNS->getPrefix())
9951 if (const Type *T = NNS->getAsType())
9952 if (isa<TemplateSpecializationType>(T))
9953 return true;
9955 return false;
9958 /// Make a dllexport or dllimport attr on a class template specialization take
9959 /// effect.
9960 static void dllExportImportClassTemplateSpecialization(
9961 Sema &S, ClassTemplateSpecializationDecl *Def) {
9962 auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def));
9963 assert(A && "dllExportImportClassTemplateSpecialization called "
9964 "on Def without dllexport or dllimport");
9966 // We reject explicit instantiations in class scope, so there should
9967 // never be any delayed exported classes to worry about.
9968 assert(S.DelayedDllExportClasses.empty() &&
9969 "delayed exports present at explicit instantiation");
9970 S.checkClassLevelDLLAttribute(Def);
9972 // Propagate attribute to base class templates.
9973 for (auto &B : Def->bases()) {
9974 if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
9975 B.getType()->getAsCXXRecordDecl()))
9976 S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc());
9979 S.referenceDLLExportedClassMethods();
9982 // Explicit instantiation of a class template specialization
9983 DeclResult Sema::ActOnExplicitInstantiation(
9984 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
9985 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
9986 TemplateTy TemplateD, SourceLocation TemplateNameLoc,
9987 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn,
9988 SourceLocation RAngleLoc, const ParsedAttributesView &Attr) {
9989 // Find the class template we're specializing
9990 TemplateName Name = TemplateD.get();
9991 TemplateDecl *TD = Name.getAsTemplateDecl();
9992 // Check that the specialization uses the same tag kind as the
9993 // original template.
9994 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9995 assert(Kind != TTK_Enum &&
9996 "Invalid enum tag in class template explicit instantiation!");
9998 ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD);
10000 if (!ClassTemplate) {
10001 NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind);
10002 Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind;
10003 Diag(TD->getLocation(), diag::note_previous_use);
10004 return true;
10007 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
10008 Kind, /*isDefinition*/false, KWLoc,
10009 ClassTemplate->getIdentifier())) {
10010 Diag(KWLoc, diag::err_use_with_wrong_tag)
10011 << ClassTemplate
10012 << FixItHint::CreateReplacement(KWLoc,
10013 ClassTemplate->getTemplatedDecl()->getKindName());
10014 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
10015 diag::note_previous_use);
10016 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
10019 // C++0x [temp.explicit]p2:
10020 // There are two forms of explicit instantiation: an explicit instantiation
10021 // definition and an explicit instantiation declaration. An explicit
10022 // instantiation declaration begins with the extern keyword. [...]
10023 TemplateSpecializationKind TSK = ExternLoc.isInvalid()
10024 ? TSK_ExplicitInstantiationDefinition
10025 : TSK_ExplicitInstantiationDeclaration;
10027 if (TSK == TSK_ExplicitInstantiationDeclaration &&
10028 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
10029 // Check for dllexport class template instantiation declarations,
10030 // except for MinGW mode.
10031 for (const ParsedAttr &AL : Attr) {
10032 if (AL.getKind() == ParsedAttr::AT_DLLExport) {
10033 Diag(ExternLoc,
10034 diag::warn_attribute_dllexport_explicit_instantiation_decl);
10035 Diag(AL.getLoc(), diag::note_attribute);
10036 break;
10040 if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
10041 Diag(ExternLoc,
10042 diag::warn_attribute_dllexport_explicit_instantiation_decl);
10043 Diag(A->getLocation(), diag::note_attribute);
10047 // In MSVC mode, dllimported explicit instantiation definitions are treated as
10048 // instantiation declarations for most purposes.
10049 bool DLLImportExplicitInstantiationDef = false;
10050 if (TSK == TSK_ExplicitInstantiationDefinition &&
10051 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
10052 // Check for dllimport class template instantiation definitions.
10053 bool DLLImport =
10054 ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
10055 for (const ParsedAttr &AL : Attr) {
10056 if (AL.getKind() == ParsedAttr::AT_DLLImport)
10057 DLLImport = true;
10058 if (AL.getKind() == ParsedAttr::AT_DLLExport) {
10059 // dllexport trumps dllimport here.
10060 DLLImport = false;
10061 break;
10064 if (DLLImport) {
10065 TSK = TSK_ExplicitInstantiationDeclaration;
10066 DLLImportExplicitInstantiationDef = true;
10070 // Translate the parser's template argument list in our AST format.
10071 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
10072 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
10074 // Check that the template argument list is well-formed for this
10075 // template.
10076 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
10077 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs,
10078 false, SugaredConverted, CanonicalConverted,
10079 /*UpdateArgsWithConversions=*/true))
10080 return true;
10082 // Find the class template specialization declaration that
10083 // corresponds to these arguments.
10084 void *InsertPos = nullptr;
10085 ClassTemplateSpecializationDecl *PrevDecl =
10086 ClassTemplate->findSpecialization(CanonicalConverted, InsertPos);
10088 TemplateSpecializationKind PrevDecl_TSK
10089 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
10091 if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr &&
10092 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
10093 // Check for dllexport class template instantiation definitions in MinGW
10094 // mode, if a previous declaration of the instantiation was seen.
10095 for (const ParsedAttr &AL : Attr) {
10096 if (AL.getKind() == ParsedAttr::AT_DLLExport) {
10097 Diag(AL.getLoc(),
10098 diag::warn_attribute_dllexport_explicit_instantiation_def);
10099 break;
10104 if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc,
10105 SS.isSet(), TSK))
10106 return true;
10108 ClassTemplateSpecializationDecl *Specialization = nullptr;
10110 bool HasNoEffect = false;
10111 if (PrevDecl) {
10112 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
10113 PrevDecl, PrevDecl_TSK,
10114 PrevDecl->getPointOfInstantiation(),
10115 HasNoEffect))
10116 return PrevDecl;
10118 // Even though HasNoEffect == true means that this explicit instantiation
10119 // has no effect on semantics, we go on to put its syntax in the AST.
10121 if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
10122 PrevDecl_TSK == TSK_Undeclared) {
10123 // Since the only prior class template specialization with these
10124 // arguments was referenced but not declared, reuse that
10125 // declaration node as our own, updating the source location
10126 // for the template name to reflect our new declaration.
10127 // (Other source locations will be updated later.)
10128 Specialization = PrevDecl;
10129 Specialization->setLocation(TemplateNameLoc);
10130 PrevDecl = nullptr;
10133 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
10134 DLLImportExplicitInstantiationDef) {
10135 // The new specialization might add a dllimport attribute.
10136 HasNoEffect = false;
10140 if (!Specialization) {
10141 // Create a new class template specialization declaration node for
10142 // this explicit specialization.
10143 Specialization = ClassTemplateSpecializationDecl::Create(
10144 Context, Kind, ClassTemplate->getDeclContext(), KWLoc, TemplateNameLoc,
10145 ClassTemplate, CanonicalConverted, PrevDecl);
10146 SetNestedNameSpecifier(*this, Specialization, SS);
10148 // A MSInheritanceAttr attached to the previous declaration must be
10149 // propagated to the new node prior to instantiation.
10150 if (PrevDecl) {
10151 if (const auto *A = PrevDecl->getAttr<MSInheritanceAttr>()) {
10152 auto *Clone = A->clone(getASTContext());
10153 Clone->setInherited(true);
10154 Specialization->addAttr(Clone);
10155 Consumer.AssignInheritanceModel(Specialization);
10159 if (!HasNoEffect && !PrevDecl) {
10160 // Insert the new specialization.
10161 ClassTemplate->AddSpecialization(Specialization, InsertPos);
10165 // Build the fully-sugared type for this explicit instantiation as
10166 // the user wrote in the explicit instantiation itself. This means
10167 // that we'll pretty-print the type retrieved from the
10168 // specialization's declaration the way that the user actually wrote
10169 // the explicit instantiation, rather than formatting the name based
10170 // on the "canonical" representation used to store the template
10171 // arguments in the specialization.
10172 TypeSourceInfo *WrittenTy
10173 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
10174 TemplateArgs,
10175 Context.getTypeDeclType(Specialization));
10176 Specialization->setTypeAsWritten(WrittenTy);
10178 // Set source locations for keywords.
10179 Specialization->setExternLoc(ExternLoc);
10180 Specialization->setTemplateKeywordLoc(TemplateLoc);
10181 Specialization->setBraceRange(SourceRange());
10183 bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>();
10184 ProcessDeclAttributeList(S, Specialization, Attr);
10186 // Add the explicit instantiation into its lexical context. However,
10187 // since explicit instantiations are never found by name lookup, we
10188 // just put it into the declaration context directly.
10189 Specialization->setLexicalDeclContext(CurContext);
10190 CurContext->addDecl(Specialization);
10192 // Syntax is now OK, so return if it has no other effect on semantics.
10193 if (HasNoEffect) {
10194 // Set the template specialization kind.
10195 Specialization->setTemplateSpecializationKind(TSK);
10196 return Specialization;
10199 // C++ [temp.explicit]p3:
10200 // A definition of a class template or class member template
10201 // shall be in scope at the point of the explicit instantiation of
10202 // the class template or class member template.
10204 // This check comes when we actually try to perform the
10205 // instantiation.
10206 ClassTemplateSpecializationDecl *Def
10207 = cast_or_null<ClassTemplateSpecializationDecl>(
10208 Specialization->getDefinition());
10209 if (!Def)
10210 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
10211 else if (TSK == TSK_ExplicitInstantiationDefinition) {
10212 MarkVTableUsed(TemplateNameLoc, Specialization, true);
10213 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
10216 // Instantiate the members of this class template specialization.
10217 Def = cast_or_null<ClassTemplateSpecializationDecl>(
10218 Specialization->getDefinition());
10219 if (Def) {
10220 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
10221 // Fix a TSK_ExplicitInstantiationDeclaration followed by a
10222 // TSK_ExplicitInstantiationDefinition
10223 if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
10224 (TSK == TSK_ExplicitInstantiationDefinition ||
10225 DLLImportExplicitInstantiationDef)) {
10226 // FIXME: Need to notify the ASTMutationListener that we did this.
10227 Def->setTemplateSpecializationKind(TSK);
10229 if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
10230 (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
10231 !Context.getTargetInfo().getTriple().isPS())) {
10232 // An explicit instantiation definition can add a dll attribute to a
10233 // template with a previous instantiation declaration. MinGW doesn't
10234 // allow this.
10235 auto *A = cast<InheritableAttr>(
10236 getDLLAttr(Specialization)->clone(getASTContext()));
10237 A->setInherited(true);
10238 Def->addAttr(A);
10239 dllExportImportClassTemplateSpecialization(*this, Def);
10243 // Fix a TSK_ImplicitInstantiation followed by a
10244 // TSK_ExplicitInstantiationDefinition
10245 bool NewlyDLLExported =
10246 !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>();
10247 if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported &&
10248 (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
10249 !Context.getTargetInfo().getTriple().isPS())) {
10250 // An explicit instantiation definition can add a dll attribute to a
10251 // template with a previous implicit instantiation. MinGW doesn't allow
10252 // this. We limit clang to only adding dllexport, to avoid potentially
10253 // strange codegen behavior. For example, if we extend this conditional
10254 // to dllimport, and we have a source file calling a method on an
10255 // implicitly instantiated template class instance and then declaring a
10256 // dllimport explicit instantiation definition for the same template
10257 // class, the codegen for the method call will not respect the dllimport,
10258 // while it will with cl. The Def will already have the DLL attribute,
10259 // since the Def and Specialization will be the same in the case of
10260 // Old_TSK == TSK_ImplicitInstantiation, and we already added the
10261 // attribute to the Specialization; we just need to make it take effect.
10262 assert(Def == Specialization &&
10263 "Def and Specialization should match for implicit instantiation");
10264 dllExportImportClassTemplateSpecialization(*this, Def);
10267 // In MinGW mode, export the template instantiation if the declaration
10268 // was marked dllexport.
10269 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
10270 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() &&
10271 PrevDecl->hasAttr<DLLExportAttr>()) {
10272 dllExportImportClassTemplateSpecialization(*this, Def);
10275 // Set the template specialization kind. Make sure it is set before
10276 // instantiating the members which will trigger ASTConsumer callbacks.
10277 Specialization->setTemplateSpecializationKind(TSK);
10278 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
10279 } else {
10281 // Set the template specialization kind.
10282 Specialization->setTemplateSpecializationKind(TSK);
10285 return Specialization;
10288 // Explicit instantiation of a member class of a class template.
10289 DeclResult
10290 Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
10291 SourceLocation TemplateLoc, unsigned TagSpec,
10292 SourceLocation KWLoc, CXXScopeSpec &SS,
10293 IdentifierInfo *Name, SourceLocation NameLoc,
10294 const ParsedAttributesView &Attr) {
10296 bool Owned = false;
10297 bool IsDependent = false;
10298 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, KWLoc, SS, Name,
10299 NameLoc, Attr, AS_none, /*ModulePrivateLoc=*/SourceLocation(),
10300 MultiTemplateParamsArg(), Owned, IsDependent, SourceLocation(),
10301 false, TypeResult(), /*IsTypeSpecifier*/ false,
10302 /*IsTemplateParamOrArg*/ false, /*OOK=*/OOK_Outside).get();
10303 assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
10305 if (!TagD)
10306 return true;
10308 TagDecl *Tag = cast<TagDecl>(TagD);
10309 assert(!Tag->isEnum() && "shouldn't see enumerations here");
10311 if (Tag->isInvalidDecl())
10312 return true;
10314 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
10315 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
10316 if (!Pattern) {
10317 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
10318 << Context.getTypeDeclType(Record);
10319 Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
10320 return true;
10323 // C++0x [temp.explicit]p2:
10324 // If the explicit instantiation is for a class or member class, the
10325 // elaborated-type-specifier in the declaration shall include a
10326 // simple-template-id.
10328 // C++98 has the same restriction, just worded differently.
10329 if (!ScopeSpecifierHasTemplateId(SS))
10330 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
10331 << Record << SS.getRange();
10333 // C++0x [temp.explicit]p2:
10334 // There are two forms of explicit instantiation: an explicit instantiation
10335 // definition and an explicit instantiation declaration. An explicit
10336 // instantiation declaration begins with the extern keyword. [...]
10337 TemplateSpecializationKind TSK
10338 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
10339 : TSK_ExplicitInstantiationDeclaration;
10341 CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK);
10343 // Verify that it is okay to explicitly instantiate here.
10344 CXXRecordDecl *PrevDecl
10345 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
10346 if (!PrevDecl && Record->getDefinition())
10347 PrevDecl = Record;
10348 if (PrevDecl) {
10349 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
10350 bool HasNoEffect = false;
10351 assert(MSInfo && "No member specialization information?");
10352 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
10353 PrevDecl,
10354 MSInfo->getTemplateSpecializationKind(),
10355 MSInfo->getPointOfInstantiation(),
10356 HasNoEffect))
10357 return true;
10358 if (HasNoEffect)
10359 return TagD;
10362 CXXRecordDecl *RecordDef
10363 = cast_or_null<CXXRecordDecl>(Record->getDefinition());
10364 if (!RecordDef) {
10365 // C++ [temp.explicit]p3:
10366 // A definition of a member class of a class template shall be in scope
10367 // at the point of an explicit instantiation of the member class.
10368 CXXRecordDecl *Def
10369 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
10370 if (!Def) {
10371 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
10372 << 0 << Record->getDeclName() << Record->getDeclContext();
10373 Diag(Pattern->getLocation(), diag::note_forward_declaration)
10374 << Pattern;
10375 return true;
10376 } else {
10377 if (InstantiateClass(NameLoc, Record, Def,
10378 getTemplateInstantiationArgs(Record),
10379 TSK))
10380 return true;
10382 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
10383 if (!RecordDef)
10384 return true;
10388 // Instantiate all of the members of the class.
10389 InstantiateClassMembers(NameLoc, RecordDef,
10390 getTemplateInstantiationArgs(Record), TSK);
10392 if (TSK == TSK_ExplicitInstantiationDefinition)
10393 MarkVTableUsed(NameLoc, RecordDef, true);
10395 // FIXME: We don't have any representation for explicit instantiations of
10396 // member classes. Such a representation is not needed for compilation, but it
10397 // should be available for clients that want to see all of the declarations in
10398 // the source code.
10399 return TagD;
10402 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
10403 SourceLocation ExternLoc,
10404 SourceLocation TemplateLoc,
10405 Declarator &D) {
10406 // Explicit instantiations always require a name.
10407 // TODO: check if/when DNInfo should replace Name.
10408 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10409 DeclarationName Name = NameInfo.getName();
10410 if (!Name) {
10411 if (!D.isInvalidType())
10412 Diag(D.getDeclSpec().getBeginLoc(),
10413 diag::err_explicit_instantiation_requires_name)
10414 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
10416 return true;
10419 // The scope passed in may not be a decl scope. Zip up the scope tree until
10420 // we find one that is.
10421 while ((S->getFlags() & Scope::DeclScope) == 0 ||
10422 (S->getFlags() & Scope::TemplateParamScope) != 0)
10423 S = S->getParent();
10425 // Determine the type of the declaration.
10426 TypeSourceInfo *T = GetTypeForDeclarator(D, S);
10427 QualType R = T->getType();
10428 if (R.isNull())
10429 return true;
10431 // C++ [dcl.stc]p1:
10432 // A storage-class-specifier shall not be specified in [...] an explicit
10433 // instantiation (14.7.2) directive.
10434 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
10435 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
10436 << Name;
10437 return true;
10438 } else if (D.getDeclSpec().getStorageClassSpec()
10439 != DeclSpec::SCS_unspecified) {
10440 // Complain about then remove the storage class specifier.
10441 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
10442 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
10444 D.getMutableDeclSpec().ClearStorageClassSpecs();
10447 // C++0x [temp.explicit]p1:
10448 // [...] An explicit instantiation of a function template shall not use the
10449 // inline or constexpr specifiers.
10450 // Presumably, this also applies to member functions of class templates as
10451 // well.
10452 if (D.getDeclSpec().isInlineSpecified())
10453 Diag(D.getDeclSpec().getInlineSpecLoc(),
10454 getLangOpts().CPlusPlus11 ?
10455 diag::err_explicit_instantiation_inline :
10456 diag::warn_explicit_instantiation_inline_0x)
10457 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
10458 if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType())
10459 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
10460 // not already specified.
10461 Diag(D.getDeclSpec().getConstexprSpecLoc(),
10462 diag::err_explicit_instantiation_constexpr);
10464 // A deduction guide is not on the list of entities that can be explicitly
10465 // instantiated.
10466 if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
10467 Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized)
10468 << /*explicit instantiation*/ 0;
10469 return true;
10472 // C++0x [temp.explicit]p2:
10473 // There are two forms of explicit instantiation: an explicit instantiation
10474 // definition and an explicit instantiation declaration. An explicit
10475 // instantiation declaration begins with the extern keyword. [...]
10476 TemplateSpecializationKind TSK
10477 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
10478 : TSK_ExplicitInstantiationDeclaration;
10480 LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
10481 LookupParsedName(Previous, S, &D.getCXXScopeSpec());
10483 if (!R->isFunctionType()) {
10484 // C++ [temp.explicit]p1:
10485 // A [...] static data member of a class template can be explicitly
10486 // instantiated from the member definition associated with its class
10487 // template.
10488 // C++1y [temp.explicit]p1:
10489 // A [...] variable [...] template specialization can be explicitly
10490 // instantiated from its template.
10491 if (Previous.isAmbiguous())
10492 return true;
10494 VarDecl *Prev = Previous.getAsSingle<VarDecl>();
10495 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
10497 if (!PrevTemplate) {
10498 if (!Prev || !Prev->isStaticDataMember()) {
10499 // We expect to see a static data member here.
10500 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
10501 << Name;
10502 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
10503 P != PEnd; ++P)
10504 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
10505 return true;
10508 if (!Prev->getInstantiatedFromStaticDataMember()) {
10509 // FIXME: Check for explicit specialization?
10510 Diag(D.getIdentifierLoc(),
10511 diag::err_explicit_instantiation_data_member_not_instantiated)
10512 << Prev;
10513 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
10514 // FIXME: Can we provide a note showing where this was declared?
10515 return true;
10517 } else {
10518 // Explicitly instantiate a variable template.
10520 // C++1y [dcl.spec.auto]p6:
10521 // ... A program that uses auto or decltype(auto) in a context not
10522 // explicitly allowed in this section is ill-formed.
10524 // This includes auto-typed variable template instantiations.
10525 if (R->isUndeducedType()) {
10526 Diag(T->getTypeLoc().getBeginLoc(),
10527 diag::err_auto_not_allowed_var_inst);
10528 return true;
10531 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
10532 // C++1y [temp.explicit]p3:
10533 // If the explicit instantiation is for a variable, the unqualified-id
10534 // in the declaration shall be a template-id.
10535 Diag(D.getIdentifierLoc(),
10536 diag::err_explicit_instantiation_without_template_id)
10537 << PrevTemplate;
10538 Diag(PrevTemplate->getLocation(),
10539 diag::note_explicit_instantiation_here);
10540 return true;
10543 // Translate the parser's template argument list into our AST format.
10544 TemplateArgumentListInfo TemplateArgs =
10545 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
10547 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
10548 D.getIdentifierLoc(), TemplateArgs);
10549 if (Res.isInvalid())
10550 return true;
10552 if (!Res.isUsable()) {
10553 // We somehow specified dependent template arguments in an explicit
10554 // instantiation. This should probably only happen during error
10555 // recovery.
10556 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_dependent);
10557 return true;
10560 // Ignore access control bits, we don't need them for redeclaration
10561 // checking.
10562 Prev = cast<VarDecl>(Res.get());
10565 // C++0x [temp.explicit]p2:
10566 // If the explicit instantiation is for a member function, a member class
10567 // or a static data member of a class template specialization, the name of
10568 // the class template specialization in the qualified-id for the member
10569 // name shall be a simple-template-id.
10571 // C++98 has the same restriction, just worded differently.
10573 // This does not apply to variable template specializations, where the
10574 // template-id is in the unqualified-id instead.
10575 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
10576 Diag(D.getIdentifierLoc(),
10577 diag::ext_explicit_instantiation_without_qualified_id)
10578 << Prev << D.getCXXScopeSpec().getRange();
10580 CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK);
10582 // Verify that it is okay to explicitly instantiate here.
10583 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
10584 SourceLocation POI = Prev->getPointOfInstantiation();
10585 bool HasNoEffect = false;
10586 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
10587 PrevTSK, POI, HasNoEffect))
10588 return true;
10590 if (!HasNoEffect) {
10591 // Instantiate static data member or variable template.
10592 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
10593 // Merge attributes.
10594 ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes());
10595 if (TSK == TSK_ExplicitInstantiationDefinition)
10596 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
10599 // Check the new variable specialization against the parsed input.
10600 if (PrevTemplate && !Context.hasSameType(Prev->getType(), R)) {
10601 Diag(T->getTypeLoc().getBeginLoc(),
10602 diag::err_invalid_var_template_spec_type)
10603 << 0 << PrevTemplate << R << Prev->getType();
10604 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
10605 << 2 << PrevTemplate->getDeclName();
10606 return true;
10609 // FIXME: Create an ExplicitInstantiation node?
10610 return (Decl*) nullptr;
10613 // If the declarator is a template-id, translate the parser's template
10614 // argument list into our AST format.
10615 bool HasExplicitTemplateArgs = false;
10616 TemplateArgumentListInfo TemplateArgs;
10617 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
10618 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
10619 HasExplicitTemplateArgs = true;
10622 // C++ [temp.explicit]p1:
10623 // A [...] function [...] can be explicitly instantiated from its template.
10624 // A member function [...] of a class template can be explicitly
10625 // instantiated from the member definition associated with its class
10626 // template.
10627 UnresolvedSet<8> TemplateMatches;
10628 FunctionDecl *NonTemplateMatch = nullptr;
10629 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
10630 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
10631 P != PEnd; ++P) {
10632 NamedDecl *Prev = *P;
10633 if (!HasExplicitTemplateArgs) {
10634 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
10635 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(),
10636 /*AdjustExceptionSpec*/true);
10637 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
10638 if (Method->getPrimaryTemplate()) {
10639 TemplateMatches.addDecl(Method, P.getAccess());
10640 } else {
10641 // FIXME: Can this assert ever happen? Needs a test.
10642 assert(!NonTemplateMatch && "Multiple NonTemplateMatches");
10643 NonTemplateMatch = Method;
10649 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
10650 if (!FunTmpl)
10651 continue;
10653 TemplateDeductionInfo Info(FailedCandidates.getLocation());
10654 FunctionDecl *Specialization = nullptr;
10655 if (TemplateDeductionResult TDK
10656 = DeduceTemplateArguments(FunTmpl,
10657 (HasExplicitTemplateArgs ? &TemplateArgs
10658 : nullptr),
10659 R, Specialization, Info)) {
10660 // Keep track of almost-matches.
10661 FailedCandidates.addCandidate()
10662 .set(P.getPair(), FunTmpl->getTemplatedDecl(),
10663 MakeDeductionFailureInfo(Context, TDK, Info));
10664 (void)TDK;
10665 continue;
10668 // Target attributes are part of the cuda function signature, so
10669 // the cuda target of the instantiated function must match that of its
10670 // template. Given that C++ template deduction does not take
10671 // target attributes into account, we reject candidates here that
10672 // have a different target.
10673 if (LangOpts.CUDA &&
10674 IdentifyCUDATarget(Specialization,
10675 /* IgnoreImplicitHDAttr = */ true) !=
10676 IdentifyCUDATarget(D.getDeclSpec().getAttributes())) {
10677 FailedCandidates.addCandidate().set(
10678 P.getPair(), FunTmpl->getTemplatedDecl(),
10679 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
10680 continue;
10683 TemplateMatches.addDecl(Specialization, P.getAccess());
10686 FunctionDecl *Specialization = NonTemplateMatch;
10687 if (!Specialization) {
10688 // Find the most specialized function template specialization.
10689 UnresolvedSetIterator Result = getMostSpecialized(
10690 TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates,
10691 D.getIdentifierLoc(),
10692 PDiag(diag::err_explicit_instantiation_not_known) << Name,
10693 PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
10694 PDiag(diag::note_explicit_instantiation_candidate));
10696 if (Result == TemplateMatches.end())
10697 return true;
10699 // Ignore access control bits, we don't need them for redeclaration checking.
10700 Specialization = cast<FunctionDecl>(*Result);
10703 // C++11 [except.spec]p4
10704 // In an explicit instantiation an exception-specification may be specified,
10705 // but is not required.
10706 // If an exception-specification is specified in an explicit instantiation
10707 // directive, it shall be compatible with the exception-specifications of
10708 // other declarations of that function.
10709 if (auto *FPT = R->getAs<FunctionProtoType>())
10710 if (FPT->hasExceptionSpec()) {
10711 unsigned DiagID =
10712 diag::err_mismatched_exception_spec_explicit_instantiation;
10713 if (getLangOpts().MicrosoftExt)
10714 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
10715 bool Result = CheckEquivalentExceptionSpec(
10716 PDiag(DiagID) << Specialization->getType(),
10717 PDiag(diag::note_explicit_instantiation_here),
10718 Specialization->getType()->getAs<FunctionProtoType>(),
10719 Specialization->getLocation(), FPT, D.getBeginLoc());
10720 // In Microsoft mode, mismatching exception specifications just cause a
10721 // warning.
10722 if (!getLangOpts().MicrosoftExt && Result)
10723 return true;
10726 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
10727 Diag(D.getIdentifierLoc(),
10728 diag::err_explicit_instantiation_member_function_not_instantiated)
10729 << Specialization
10730 << (Specialization->getTemplateSpecializationKind() ==
10731 TSK_ExplicitSpecialization);
10732 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
10733 return true;
10736 FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
10737 if (!PrevDecl && Specialization->isThisDeclarationADefinition())
10738 PrevDecl = Specialization;
10740 if (PrevDecl) {
10741 bool HasNoEffect = false;
10742 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
10743 PrevDecl,
10744 PrevDecl->getTemplateSpecializationKind(),
10745 PrevDecl->getPointOfInstantiation(),
10746 HasNoEffect))
10747 return true;
10749 // FIXME: We may still want to build some representation of this
10750 // explicit specialization.
10751 if (HasNoEffect)
10752 return (Decl*) nullptr;
10755 // HACK: libc++ has a bug where it attempts to explicitly instantiate the
10756 // functions
10757 // valarray<size_t>::valarray(size_t) and
10758 // valarray<size_t>::~valarray()
10759 // that it declared to have internal linkage with the internal_linkage
10760 // attribute. Ignore the explicit instantiation declaration in this case.
10761 if (Specialization->hasAttr<InternalLinkageAttr>() &&
10762 TSK == TSK_ExplicitInstantiationDeclaration) {
10763 if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext()))
10764 if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") &&
10765 RD->isInStdNamespace())
10766 return (Decl*) nullptr;
10769 ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes());
10771 // In MSVC mode, dllimported explicit instantiation definitions are treated as
10772 // instantiation declarations.
10773 if (TSK == TSK_ExplicitInstantiationDefinition &&
10774 Specialization->hasAttr<DLLImportAttr>() &&
10775 Context.getTargetInfo().getCXXABI().isMicrosoft())
10776 TSK = TSK_ExplicitInstantiationDeclaration;
10778 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
10780 if (Specialization->isDefined()) {
10781 // Let the ASTConsumer know that this function has been explicitly
10782 // instantiated now, and its linkage might have changed.
10783 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
10784 } else if (TSK == TSK_ExplicitInstantiationDefinition)
10785 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
10787 // C++0x [temp.explicit]p2:
10788 // If the explicit instantiation is for a member function, a member class
10789 // or a static data member of a class template specialization, the name of
10790 // the class template specialization in the qualified-id for the member
10791 // name shall be a simple-template-id.
10793 // C++98 has the same restriction, just worded differently.
10794 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
10795 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl &&
10796 D.getCXXScopeSpec().isSet() &&
10797 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
10798 Diag(D.getIdentifierLoc(),
10799 diag::ext_explicit_instantiation_without_qualified_id)
10800 << Specialization << D.getCXXScopeSpec().getRange();
10802 CheckExplicitInstantiation(
10803 *this,
10804 FunTmpl ? (NamedDecl *)FunTmpl
10805 : Specialization->getInstantiatedFromMemberFunction(),
10806 D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK);
10808 // FIXME: Create some kind of ExplicitInstantiationDecl here.
10809 return (Decl*) nullptr;
10812 TypeResult
10813 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10814 const CXXScopeSpec &SS, IdentifierInfo *Name,
10815 SourceLocation TagLoc, SourceLocation NameLoc) {
10816 // This has to hold, because SS is expected to be defined.
10817 assert(Name && "Expected a name in a dependent tag");
10819 NestedNameSpecifier *NNS = SS.getScopeRep();
10820 if (!NNS)
10821 return true;
10823 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10825 if (TUK == TUK_Declaration || TUK == TUK_Definition) {
10826 Diag(NameLoc, diag::err_dependent_tag_decl)
10827 << (TUK == TUK_Definition) << Kind << SS.getRange();
10828 return true;
10831 // Create the resulting type.
10832 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10833 QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
10835 // Create type-source location information for this type.
10836 TypeLocBuilder TLB;
10837 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
10838 TL.setElaboratedKeywordLoc(TagLoc);
10839 TL.setQualifierLoc(SS.getWithLocInContext(Context));
10840 TL.setNameLoc(NameLoc);
10841 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
10844 TypeResult Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
10845 const CXXScopeSpec &SS,
10846 const IdentifierInfo &II,
10847 SourceLocation IdLoc,
10848 ImplicitTypenameContext IsImplicitTypename) {
10849 if (SS.isInvalid())
10850 return true;
10852 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
10853 Diag(TypenameLoc,
10854 getLangOpts().CPlusPlus11 ?
10855 diag::warn_cxx98_compat_typename_outside_of_template :
10856 diag::ext_typename_outside_of_template)
10857 << FixItHint::CreateRemoval(TypenameLoc);
10859 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10860 TypeSourceInfo *TSI = nullptr;
10861 QualType T =
10862 CheckTypenameType((TypenameLoc.isValid() ||
10863 IsImplicitTypename == ImplicitTypenameContext::Yes)
10864 ? ElaboratedTypeKeyword::Typename
10865 : ElaboratedTypeKeyword::None,
10866 TypenameLoc, QualifierLoc, II, IdLoc, &TSI,
10867 /*DeducedTSTContext=*/true);
10868 if (T.isNull())
10869 return true;
10870 return CreateParsedType(T, TSI);
10873 TypeResult
10874 Sema::ActOnTypenameType(Scope *S,
10875 SourceLocation TypenameLoc,
10876 const CXXScopeSpec &SS,
10877 SourceLocation TemplateKWLoc,
10878 TemplateTy TemplateIn,
10879 IdentifierInfo *TemplateII,
10880 SourceLocation TemplateIILoc,
10881 SourceLocation LAngleLoc,
10882 ASTTemplateArgsPtr TemplateArgsIn,
10883 SourceLocation RAngleLoc) {
10884 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
10885 Diag(TypenameLoc,
10886 getLangOpts().CPlusPlus11 ?
10887 diag::warn_cxx98_compat_typename_outside_of_template :
10888 diag::ext_typename_outside_of_template)
10889 << FixItHint::CreateRemoval(TypenameLoc);
10891 // Strangely, non-type results are not ignored by this lookup, so the
10892 // program is ill-formed if it finds an injected-class-name.
10893 if (TypenameLoc.isValid()) {
10894 auto *LookupRD =
10895 dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false));
10896 if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
10897 Diag(TemplateIILoc,
10898 diag::ext_out_of_line_qualified_id_type_names_constructor)
10899 << TemplateII << 0 /*injected-class-name used as template name*/
10900 << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/);
10904 // Translate the parser's template argument list in our AST format.
10905 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
10906 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
10908 TemplateName Template = TemplateIn.get();
10909 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
10910 // Construct a dependent template specialization type.
10911 assert(DTN && "dependent template has non-dependent name?");
10912 assert(DTN->getQualifier() == SS.getScopeRep());
10913 QualType T = Context.getDependentTemplateSpecializationType(
10914 ElaboratedTypeKeyword::Typename, DTN->getQualifier(),
10915 DTN->getIdentifier(), TemplateArgs.arguments());
10917 // Create source-location information for this type.
10918 TypeLocBuilder Builder;
10919 DependentTemplateSpecializationTypeLoc SpecTL
10920 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
10921 SpecTL.setElaboratedKeywordLoc(TypenameLoc);
10922 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
10923 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
10924 SpecTL.setTemplateNameLoc(TemplateIILoc);
10925 SpecTL.setLAngleLoc(LAngleLoc);
10926 SpecTL.setRAngleLoc(RAngleLoc);
10927 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
10928 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
10929 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
10932 QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
10933 if (T.isNull())
10934 return true;
10936 // Provide source-location information for the template specialization type.
10937 TypeLocBuilder Builder;
10938 TemplateSpecializationTypeLoc SpecTL
10939 = Builder.push<TemplateSpecializationTypeLoc>(T);
10940 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
10941 SpecTL.setTemplateNameLoc(TemplateIILoc);
10942 SpecTL.setLAngleLoc(LAngleLoc);
10943 SpecTL.setRAngleLoc(RAngleLoc);
10944 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
10945 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
10947 T = Context.getElaboratedType(ElaboratedTypeKeyword::Typename,
10948 SS.getScopeRep(), T);
10949 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
10950 TL.setElaboratedKeywordLoc(TypenameLoc);
10951 TL.setQualifierLoc(SS.getWithLocInContext(Context));
10953 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
10954 return CreateParsedType(T, TSI);
10958 /// Determine whether this failed name lookup should be treated as being
10959 /// disabled by a usage of std::enable_if.
10960 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
10961 SourceRange &CondRange, Expr *&Cond) {
10962 // We must be looking for a ::type...
10963 if (!II.isStr("type"))
10964 return false;
10966 // ... within an explicitly-written template specialization...
10967 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
10968 return false;
10969 TypeLoc EnableIfTy = NNS.getTypeLoc();
10970 TemplateSpecializationTypeLoc EnableIfTSTLoc =
10971 EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
10972 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
10973 return false;
10974 const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr();
10976 // ... which names a complete class template declaration...
10977 const TemplateDecl *EnableIfDecl =
10978 EnableIfTST->getTemplateName().getAsTemplateDecl();
10979 if (!EnableIfDecl || EnableIfTST->isIncompleteType())
10980 return false;
10982 // ... called "enable_if".
10983 const IdentifierInfo *EnableIfII =
10984 EnableIfDecl->getDeclName().getAsIdentifierInfo();
10985 if (!EnableIfII || !EnableIfII->isStr("enable_if"))
10986 return false;
10988 // Assume the first template argument is the condition.
10989 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
10991 // Dig out the condition.
10992 Cond = nullptr;
10993 if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind()
10994 != TemplateArgument::Expression)
10995 return true;
10997 Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression();
10999 // Ignore Boolean literals; they add no value.
11000 if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts()))
11001 Cond = nullptr;
11003 return true;
11006 QualType
11007 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
11008 SourceLocation KeywordLoc,
11009 NestedNameSpecifierLoc QualifierLoc,
11010 const IdentifierInfo &II,
11011 SourceLocation IILoc,
11012 TypeSourceInfo **TSI,
11013 bool DeducedTSTContext) {
11014 QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc,
11015 DeducedTSTContext);
11016 if (T.isNull())
11017 return QualType();
11019 *TSI = Context.CreateTypeSourceInfo(T);
11020 if (isa<DependentNameType>(T)) {
11021 DependentNameTypeLoc TL =
11022 (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>();
11023 TL.setElaboratedKeywordLoc(KeywordLoc);
11024 TL.setQualifierLoc(QualifierLoc);
11025 TL.setNameLoc(IILoc);
11026 } else {
11027 ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>();
11028 TL.setElaboratedKeywordLoc(KeywordLoc);
11029 TL.setQualifierLoc(QualifierLoc);
11030 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc);
11032 return T;
11035 /// Build the type that describes a C++ typename specifier,
11036 /// e.g., "typename T::type".
11037 QualType
11038 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
11039 SourceLocation KeywordLoc,
11040 NestedNameSpecifierLoc QualifierLoc,
11041 const IdentifierInfo &II,
11042 SourceLocation IILoc, bool DeducedTSTContext) {
11043 CXXScopeSpec SS;
11044 SS.Adopt(QualifierLoc);
11046 DeclContext *Ctx = nullptr;
11047 if (QualifierLoc) {
11048 Ctx = computeDeclContext(SS);
11049 if (!Ctx) {
11050 // If the nested-name-specifier is dependent and couldn't be
11051 // resolved to a type, build a typename type.
11052 assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
11053 return Context.getDependentNameType(Keyword,
11054 QualifierLoc.getNestedNameSpecifier(),
11055 &II);
11058 // If the nested-name-specifier refers to the current instantiation,
11059 // the "typename" keyword itself is superfluous. In C++03, the
11060 // program is actually ill-formed. However, DR 382 (in C++0x CD1)
11061 // allows such extraneous "typename" keywords, and we retroactively
11062 // apply this DR to C++03 code with only a warning. In any case we continue.
11064 if (RequireCompleteDeclContext(SS, Ctx))
11065 return QualType();
11068 DeclarationName Name(&II);
11069 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
11070 if (Ctx)
11071 LookupQualifiedName(Result, Ctx, SS);
11072 else
11073 LookupName(Result, CurScope);
11074 unsigned DiagID = 0;
11075 Decl *Referenced = nullptr;
11076 switch (Result.getResultKind()) {
11077 case LookupResult::NotFound: {
11078 // If we're looking up 'type' within a template named 'enable_if', produce
11079 // a more specific diagnostic.
11080 SourceRange CondRange;
11081 Expr *Cond = nullptr;
11082 if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) {
11083 // If we have a condition, narrow it down to the specific failed
11084 // condition.
11085 if (Cond) {
11086 Expr *FailedCond;
11087 std::string FailedDescription;
11088 std::tie(FailedCond, FailedDescription) =
11089 findFailedBooleanCondition(Cond);
11091 Diag(FailedCond->getExprLoc(),
11092 diag::err_typename_nested_not_found_requirement)
11093 << FailedDescription
11094 << FailedCond->getSourceRange();
11095 return QualType();
11098 Diag(CondRange.getBegin(),
11099 diag::err_typename_nested_not_found_enable_if)
11100 << Ctx << CondRange;
11101 return QualType();
11104 DiagID = Ctx ? diag::err_typename_nested_not_found
11105 : diag::err_unknown_typename;
11106 break;
11109 case LookupResult::FoundUnresolvedValue: {
11110 // We found a using declaration that is a value. Most likely, the using
11111 // declaration itself is meant to have the 'typename' keyword.
11112 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
11113 IILoc);
11114 Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
11115 << Name << Ctx << FullRange;
11116 if (UnresolvedUsingValueDecl *Using
11117 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
11118 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
11119 Diag(Loc, diag::note_using_value_decl_missing_typename)
11120 << FixItHint::CreateInsertion(Loc, "typename ");
11123 // Fall through to create a dependent typename type, from which we can recover
11124 // better.
11125 [[fallthrough]];
11127 case LookupResult::NotFoundInCurrentInstantiation:
11128 // Okay, it's a member of an unknown instantiation.
11129 return Context.getDependentNameType(Keyword,
11130 QualifierLoc.getNestedNameSpecifier(),
11131 &II);
11133 case LookupResult::Found:
11134 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
11135 // C++ [class.qual]p2:
11136 // In a lookup in which function names are not ignored and the
11137 // nested-name-specifier nominates a class C, if the name specified
11138 // after the nested-name-specifier, when looked up in C, is the
11139 // injected-class-name of C [...] then the name is instead considered
11140 // to name the constructor of class C.
11142 // Unlike in an elaborated-type-specifier, function names are not ignored
11143 // in typename-specifier lookup. However, they are ignored in all the
11144 // contexts where we form a typename type with no keyword (that is, in
11145 // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers).
11147 // FIXME: That's not strictly true: mem-initializer-id lookup does not
11148 // ignore functions, but that appears to be an oversight.
11149 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx);
11150 auto *FoundRD = dyn_cast<CXXRecordDecl>(Type);
11151 if (Keyword == ElaboratedTypeKeyword::Typename && LookupRD && FoundRD &&
11152 FoundRD->isInjectedClassName() &&
11153 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
11154 Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor)
11155 << &II << 1 << 0 /*'typename' keyword used*/;
11157 // We found a type. Build an ElaboratedType, since the
11158 // typename-specifier was just sugar.
11159 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
11160 return Context.getElaboratedType(Keyword,
11161 QualifierLoc.getNestedNameSpecifier(),
11162 Context.getTypeDeclType(Type));
11165 // C++ [dcl.type.simple]p2:
11166 // A type-specifier of the form
11167 // typename[opt] nested-name-specifier[opt] template-name
11168 // is a placeholder for a deduced class type [...].
11169 if (getLangOpts().CPlusPlus17) {
11170 if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) {
11171 if (!DeducedTSTContext) {
11172 QualType T(QualifierLoc
11173 ? QualifierLoc.getNestedNameSpecifier()->getAsType()
11174 : nullptr, 0);
11175 if (!T.isNull())
11176 Diag(IILoc, diag::err_dependent_deduced_tst)
11177 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T;
11178 else
11179 Diag(IILoc, diag::err_deduced_tst)
11180 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD));
11181 Diag(TD->getLocation(), diag::note_template_decl_here);
11182 return QualType();
11184 return Context.getElaboratedType(
11185 Keyword, QualifierLoc.getNestedNameSpecifier(),
11186 Context.getDeducedTemplateSpecializationType(TemplateName(TD),
11187 QualType(), false));
11191 DiagID = Ctx ? diag::err_typename_nested_not_type
11192 : diag::err_typename_not_type;
11193 Referenced = Result.getFoundDecl();
11194 break;
11196 case LookupResult::FoundOverloaded:
11197 DiagID = Ctx ? diag::err_typename_nested_not_type
11198 : diag::err_typename_not_type;
11199 Referenced = *Result.begin();
11200 break;
11202 case LookupResult::Ambiguous:
11203 return QualType();
11206 // If we get here, it's because name lookup did not find a
11207 // type. Emit an appropriate diagnostic and return an error.
11208 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
11209 IILoc);
11210 if (Ctx)
11211 Diag(IILoc, DiagID) << FullRange << Name << Ctx;
11212 else
11213 Diag(IILoc, DiagID) << FullRange << Name;
11214 if (Referenced)
11215 Diag(Referenced->getLocation(),
11216 Ctx ? diag::note_typename_member_refers_here
11217 : diag::note_typename_refers_here)
11218 << Name;
11219 return QualType();
11222 namespace {
11223 // See Sema::RebuildTypeInCurrentInstantiation
11224 class CurrentInstantiationRebuilder
11225 : public TreeTransform<CurrentInstantiationRebuilder> {
11226 SourceLocation Loc;
11227 DeclarationName Entity;
11229 public:
11230 typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
11232 CurrentInstantiationRebuilder(Sema &SemaRef,
11233 SourceLocation Loc,
11234 DeclarationName Entity)
11235 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
11236 Loc(Loc), Entity(Entity) { }
11238 /// Determine whether the given type \p T has already been
11239 /// transformed.
11241 /// For the purposes of type reconstruction, a type has already been
11242 /// transformed if it is NULL or if it is not dependent.
11243 bool AlreadyTransformed(QualType T) {
11244 return T.isNull() || !T->isInstantiationDependentType();
11247 /// Returns the location of the entity whose type is being
11248 /// rebuilt.
11249 SourceLocation getBaseLocation() { return Loc; }
11251 /// Returns the name of the entity whose type is being rebuilt.
11252 DeclarationName getBaseEntity() { return Entity; }
11254 /// Sets the "base" location and entity when that
11255 /// information is known based on another transformation.
11256 void setBase(SourceLocation Loc, DeclarationName Entity) {
11257 this->Loc = Loc;
11258 this->Entity = Entity;
11261 ExprResult TransformLambdaExpr(LambdaExpr *E) {
11262 // Lambdas never need to be transformed.
11263 return E;
11266 } // end anonymous namespace
11268 /// Rebuilds a type within the context of the current instantiation.
11270 /// The type \p T is part of the type of an out-of-line member definition of
11271 /// a class template (or class template partial specialization) that was parsed
11272 /// and constructed before we entered the scope of the class template (or
11273 /// partial specialization thereof). This routine will rebuild that type now
11274 /// that we have entered the declarator's scope, which may produce different
11275 /// canonical types, e.g.,
11277 /// \code
11278 /// template<typename T>
11279 /// struct X {
11280 /// typedef T* pointer;
11281 /// pointer data();
11282 /// };
11284 /// template<typename T>
11285 /// typename X<T>::pointer X<T>::data() { ... }
11286 /// \endcode
11288 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
11289 /// since we do not know that we can look into X<T> when we parsed the type.
11290 /// This function will rebuild the type, performing the lookup of "pointer"
11291 /// in X<T> and returning an ElaboratedType whose canonical type is the same
11292 /// as the canonical type of T*, allowing the return types of the out-of-line
11293 /// definition and the declaration to match.
11294 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
11295 SourceLocation Loc,
11296 DeclarationName Name) {
11297 if (!T || !T->getType()->isInstantiationDependentType())
11298 return T;
11300 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
11301 return Rebuilder.TransformType(T);
11304 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
11305 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
11306 DeclarationName());
11307 return Rebuilder.TransformExpr(E);
11310 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
11311 if (SS.isInvalid())
11312 return true;
11314 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
11315 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
11316 DeclarationName());
11317 NestedNameSpecifierLoc Rebuilt
11318 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
11319 if (!Rebuilt)
11320 return true;
11322 SS.Adopt(Rebuilt);
11323 return false;
11326 /// Rebuild the template parameters now that we know we're in a current
11327 /// instantiation.
11328 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
11329 TemplateParameterList *Params) {
11330 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
11331 Decl *Param = Params->getParam(I);
11333 // There is nothing to rebuild in a type parameter.
11334 if (isa<TemplateTypeParmDecl>(Param))
11335 continue;
11337 // Rebuild the template parameter list of a template template parameter.
11338 if (TemplateTemplateParmDecl *TTP
11339 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
11340 if (RebuildTemplateParamsInCurrentInstantiation(
11341 TTP->getTemplateParameters()))
11342 return true;
11344 continue;
11347 // Rebuild the type of a non-type template parameter.
11348 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
11349 TypeSourceInfo *NewTSI
11350 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
11351 NTTP->getLocation(),
11352 NTTP->getDeclName());
11353 if (!NewTSI)
11354 return true;
11356 if (NewTSI->getType()->isUndeducedType()) {
11357 // C++17 [temp.dep.expr]p3:
11358 // An id-expression is type-dependent if it contains
11359 // - an identifier associated by name lookup with a non-type
11360 // template-parameter declared with a type that contains a
11361 // placeholder type (7.1.7.4),
11362 NewTSI = SubstAutoTypeSourceInfoDependent(NewTSI);
11365 if (NewTSI != NTTP->getTypeSourceInfo()) {
11366 NTTP->setTypeSourceInfo(NewTSI);
11367 NTTP->setType(NewTSI->getType());
11371 return false;
11374 /// Produces a formatted string that describes the binding of
11375 /// template parameters to template arguments.
11376 std::string
11377 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
11378 const TemplateArgumentList &Args) {
11379 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
11382 std::string
11383 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
11384 const TemplateArgument *Args,
11385 unsigned NumArgs) {
11386 SmallString<128> Str;
11387 llvm::raw_svector_ostream Out(Str);
11389 if (!Params || Params->size() == 0 || NumArgs == 0)
11390 return std::string();
11392 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
11393 if (I >= NumArgs)
11394 break;
11396 if (I == 0)
11397 Out << "[with ";
11398 else
11399 Out << ", ";
11401 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
11402 Out << Id->getName();
11403 } else {
11404 Out << '$' << I;
11407 Out << " = ";
11408 Args[I].print(getPrintingPolicy(), Out,
11409 TemplateParameterList::shouldIncludeTypeForArgument(
11410 getPrintingPolicy(), Params, I));
11413 Out << ']';
11414 return std::string(Out.str());
11417 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
11418 CachedTokens &Toks) {
11419 if (!FD)
11420 return;
11422 auto LPT = std::make_unique<LateParsedTemplate>();
11424 // Take tokens to avoid allocations
11425 LPT->Toks.swap(Toks);
11426 LPT->D = FnD;
11427 LPT->FPO = getCurFPFeatures();
11428 LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT)));
11430 FD->setLateTemplateParsed(true);
11433 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
11434 if (!FD)
11435 return;
11436 FD->setLateTemplateParsed(false);
11439 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
11440 DeclContext *DC = CurContext;
11442 while (DC) {
11443 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
11444 const FunctionDecl *FD = RD->isLocalClass();
11445 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
11446 } else if (DC->isTranslationUnit() || DC->isNamespace())
11447 return false;
11449 DC = DC->getParent();
11451 return false;
11454 namespace {
11455 /// Walk the path from which a declaration was instantiated, and check
11456 /// that every explicit specialization along that path is visible. This enforces
11457 /// C++ [temp.expl.spec]/6:
11459 /// If a template, a member template or a member of a class template is
11460 /// explicitly specialized then that specialization shall be declared before
11461 /// the first use of that specialization that would cause an implicit
11462 /// instantiation to take place, in every translation unit in which such a
11463 /// use occurs; no diagnostic is required.
11465 /// and also C++ [temp.class.spec]/1:
11467 /// A partial specialization shall be declared before the first use of a
11468 /// class template specialization that would make use of the partial
11469 /// specialization as the result of an implicit or explicit instantiation
11470 /// in every translation unit in which such a use occurs; no diagnostic is
11471 /// required.
11472 class ExplicitSpecializationVisibilityChecker {
11473 Sema &S;
11474 SourceLocation Loc;
11475 llvm::SmallVector<Module *, 8> Modules;
11476 Sema::AcceptableKind Kind;
11478 public:
11479 ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc,
11480 Sema::AcceptableKind Kind)
11481 : S(S), Loc(Loc), Kind(Kind) {}
11483 void check(NamedDecl *ND) {
11484 if (auto *FD = dyn_cast<FunctionDecl>(ND))
11485 return checkImpl(FD);
11486 if (auto *RD = dyn_cast<CXXRecordDecl>(ND))
11487 return checkImpl(RD);
11488 if (auto *VD = dyn_cast<VarDecl>(ND))
11489 return checkImpl(VD);
11490 if (auto *ED = dyn_cast<EnumDecl>(ND))
11491 return checkImpl(ED);
11494 private:
11495 void diagnose(NamedDecl *D, bool IsPartialSpec) {
11496 auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
11497 : Sema::MissingImportKind::ExplicitSpecialization;
11498 const bool Recover = true;
11500 // If we got a custom set of modules (because only a subset of the
11501 // declarations are interesting), use them, otherwise let
11502 // diagnoseMissingImport intelligently pick some.
11503 if (Modules.empty())
11504 S.diagnoseMissingImport(Loc, D, Kind, Recover);
11505 else
11506 S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
11509 bool CheckMemberSpecialization(const NamedDecl *D) {
11510 return Kind == Sema::AcceptableKind::Visible
11511 ? S.hasVisibleMemberSpecialization(D)
11512 : S.hasReachableMemberSpecialization(D);
11515 bool CheckExplicitSpecialization(const NamedDecl *D) {
11516 return Kind == Sema::AcceptableKind::Visible
11517 ? S.hasVisibleExplicitSpecialization(D)
11518 : S.hasReachableExplicitSpecialization(D);
11521 bool CheckDeclaration(const NamedDecl *D) {
11522 return Kind == Sema::AcceptableKind::Visible ? S.hasVisibleDeclaration(D)
11523 : S.hasReachableDeclaration(D);
11526 // Check a specific declaration. There are three problematic cases:
11528 // 1) The declaration is an explicit specialization of a template
11529 // specialization.
11530 // 2) The declaration is an explicit specialization of a member of an
11531 // templated class.
11532 // 3) The declaration is an instantiation of a template, and that template
11533 // is an explicit specialization of a member of a templated class.
11535 // We don't need to go any deeper than that, as the instantiation of the
11536 // surrounding class / etc is not triggered by whatever triggered this
11537 // instantiation, and thus should be checked elsewhere.
11538 template<typename SpecDecl>
11539 void checkImpl(SpecDecl *Spec) {
11540 bool IsHiddenExplicitSpecialization = false;
11541 if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
11542 IsHiddenExplicitSpecialization = Spec->getMemberSpecializationInfo()
11543 ? !CheckMemberSpecialization(Spec)
11544 : !CheckExplicitSpecialization(Spec);
11545 } else {
11546 checkInstantiated(Spec);
11549 if (IsHiddenExplicitSpecialization)
11550 diagnose(Spec->getMostRecentDecl(), false);
11553 void checkInstantiated(FunctionDecl *FD) {
11554 if (auto *TD = FD->getPrimaryTemplate())
11555 checkTemplate(TD);
11558 void checkInstantiated(CXXRecordDecl *RD) {
11559 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD);
11560 if (!SD)
11561 return;
11563 auto From = SD->getSpecializedTemplateOrPartial();
11564 if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
11565 checkTemplate(TD);
11566 else if (auto *TD =
11567 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
11568 if (!CheckDeclaration(TD))
11569 diagnose(TD, true);
11570 checkTemplate(TD);
11574 void checkInstantiated(VarDecl *RD) {
11575 auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD);
11576 if (!SD)
11577 return;
11579 auto From = SD->getSpecializedTemplateOrPartial();
11580 if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
11581 checkTemplate(TD);
11582 else if (auto *TD =
11583 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
11584 if (!CheckDeclaration(TD))
11585 diagnose(TD, true);
11586 checkTemplate(TD);
11590 void checkInstantiated(EnumDecl *FD) {}
11592 template<typename TemplDecl>
11593 void checkTemplate(TemplDecl *TD) {
11594 if (TD->isMemberSpecialization()) {
11595 if (!CheckMemberSpecialization(TD))
11596 diagnose(TD->getMostRecentDecl(), false);
11600 } // end anonymous namespace
11602 void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
11603 if (!getLangOpts().Modules)
11604 return;
11606 ExplicitSpecializationVisibilityChecker(*this, Loc,
11607 Sema::AcceptableKind::Visible)
11608 .check(Spec);
11611 void Sema::checkSpecializationReachability(SourceLocation Loc,
11612 NamedDecl *Spec) {
11613 if (!getLangOpts().CPlusPlusModules)
11614 return checkSpecializationVisibility(Loc, Spec);
11616 ExplicitSpecializationVisibilityChecker(*this, Loc,
11617 Sema::AcceptableKind::Reachable)
11618 .check(Spec);