[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / clang / lib / Sema / SemaTemplateInstantiateDecl.cpp
blob8edcbf4709a2301d3e617676634768a2aa640a17
1 //===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //===----------------------------------------------------------------------===/
7 //
8 // This file implements C++ template instantiation for declarations.
9 //
10 //===----------------------------------------------------------------------===/
12 #include "TreeTransform.h"
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTMutationListener.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/DeclVisitor.h"
18 #include "clang/AST/DependentDiagnostic.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/PrettyDeclStackTrace.h"
22 #include "clang/AST/TypeLoc.h"
23 #include "clang/Basic/SourceManager.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Sema/EnterExpressionEvaluationContext.h"
26 #include "clang/Sema/Initialization.h"
27 #include "clang/Sema/Lookup.h"
28 #include "clang/Sema/ScopeInfo.h"
29 #include "clang/Sema/SemaInternal.h"
30 #include "clang/Sema/Template.h"
31 #include "clang/Sema/TemplateInstCallback.h"
32 #include "llvm/Support/TimeProfiler.h"
33 #include <optional>
35 using namespace clang;
37 static bool isDeclWithinFunction(const Decl *D) {
38 const DeclContext *DC = D->getDeclContext();
39 if (DC->isFunctionOrMethod())
40 return true;
42 if (DC->isRecord())
43 return cast<CXXRecordDecl>(DC)->isLocalClass();
45 return false;
48 template<typename DeclT>
49 static bool SubstQualifier(Sema &SemaRef, const DeclT *OldDecl, DeclT *NewDecl,
50 const MultiLevelTemplateArgumentList &TemplateArgs) {
51 if (!OldDecl->getQualifierLoc())
52 return false;
54 assert((NewDecl->getFriendObjectKind() ||
55 !OldDecl->getLexicalDeclContext()->isDependentContext()) &&
56 "non-friend with qualified name defined in dependent context");
57 Sema::ContextRAII SavedContext(
58 SemaRef,
59 const_cast<DeclContext *>(NewDecl->getFriendObjectKind()
60 ? NewDecl->getLexicalDeclContext()
61 : OldDecl->getLexicalDeclContext()));
63 NestedNameSpecifierLoc NewQualifierLoc
64 = SemaRef.SubstNestedNameSpecifierLoc(OldDecl->getQualifierLoc(),
65 TemplateArgs);
67 if (!NewQualifierLoc)
68 return true;
70 NewDecl->setQualifierInfo(NewQualifierLoc);
71 return false;
74 bool TemplateDeclInstantiator::SubstQualifier(const DeclaratorDecl *OldDecl,
75 DeclaratorDecl *NewDecl) {
76 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs);
79 bool TemplateDeclInstantiator::SubstQualifier(const TagDecl *OldDecl,
80 TagDecl *NewDecl) {
81 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs);
84 // Include attribute instantiation code.
85 #include "clang/Sema/AttrTemplateInstantiate.inc"
87 static void instantiateDependentAlignedAttr(
88 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
89 const AlignedAttr *Aligned, Decl *New, bool IsPackExpansion) {
90 if (Aligned->isAlignmentExpr()) {
91 // The alignment expression is a constant expression.
92 EnterExpressionEvaluationContext Unevaluated(
93 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
94 ExprResult Result = S.SubstExpr(Aligned->getAlignmentExpr(), TemplateArgs);
95 if (!Result.isInvalid())
96 S.AddAlignedAttr(New, *Aligned, Result.getAs<Expr>(), IsPackExpansion);
97 } else {
98 if (TypeSourceInfo *Result =
99 S.SubstType(Aligned->getAlignmentType(), TemplateArgs,
100 Aligned->getLocation(), DeclarationName())) {
101 if (!S.CheckAlignasTypeArgument(Aligned->getSpelling(), Result,
102 Aligned->getLocation(),
103 Result->getTypeLoc().getSourceRange()))
104 S.AddAlignedAttr(New, *Aligned, Result, IsPackExpansion);
109 static void instantiateDependentAlignedAttr(
110 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
111 const AlignedAttr *Aligned, Decl *New) {
112 if (!Aligned->isPackExpansion()) {
113 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false);
114 return;
117 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
118 if (Aligned->isAlignmentExpr())
119 S.collectUnexpandedParameterPacks(Aligned->getAlignmentExpr(),
120 Unexpanded);
121 else
122 S.collectUnexpandedParameterPacks(Aligned->getAlignmentType()->getTypeLoc(),
123 Unexpanded);
124 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
126 // Determine whether we can expand this attribute pack yet.
127 bool Expand = true, RetainExpansion = false;
128 std::optional<unsigned> NumExpansions;
129 // FIXME: Use the actual location of the ellipsis.
130 SourceLocation EllipsisLoc = Aligned->getLocation();
131 if (S.CheckParameterPacksForExpansion(EllipsisLoc, Aligned->getRange(),
132 Unexpanded, TemplateArgs, Expand,
133 RetainExpansion, NumExpansions))
134 return;
136 if (!Expand) {
137 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, -1);
138 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, true);
139 } else {
140 for (unsigned I = 0; I != *NumExpansions; ++I) {
141 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, I);
142 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false);
147 static void instantiateDependentAssumeAlignedAttr(
148 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
149 const AssumeAlignedAttr *Aligned, Decl *New) {
150 // The alignment expression is a constant expression.
151 EnterExpressionEvaluationContext Unevaluated(
152 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
154 Expr *E, *OE = nullptr;
155 ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs);
156 if (Result.isInvalid())
157 return;
158 E = Result.getAs<Expr>();
160 if (Aligned->getOffset()) {
161 Result = S.SubstExpr(Aligned->getOffset(), TemplateArgs);
162 if (Result.isInvalid())
163 return;
164 OE = Result.getAs<Expr>();
167 S.AddAssumeAlignedAttr(New, *Aligned, E, OE);
170 static void instantiateDependentAlignValueAttr(
171 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
172 const AlignValueAttr *Aligned, Decl *New) {
173 // The alignment expression is a constant expression.
174 EnterExpressionEvaluationContext Unevaluated(
175 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
176 ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs);
177 if (!Result.isInvalid())
178 S.AddAlignValueAttr(New, *Aligned, Result.getAs<Expr>());
181 static void instantiateDependentAllocAlignAttr(
182 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
183 const AllocAlignAttr *Align, Decl *New) {
184 Expr *Param = IntegerLiteral::Create(
185 S.getASTContext(),
186 llvm::APInt(64, Align->getParamIndex().getSourceIndex()),
187 S.getASTContext().UnsignedLongLongTy, Align->getLocation());
188 S.AddAllocAlignAttr(New, *Align, Param);
191 static void instantiateDependentAnnotationAttr(
192 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
193 const AnnotateAttr *Attr, Decl *New) {
194 EnterExpressionEvaluationContext Unevaluated(
195 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
197 // If the attribute has delayed arguments it will have to instantiate those
198 // and handle them as new arguments for the attribute.
199 bool HasDelayedArgs = Attr->delayedArgs_size();
201 ArrayRef<Expr *> ArgsToInstantiate =
202 HasDelayedArgs
203 ? ArrayRef<Expr *>{Attr->delayedArgs_begin(), Attr->delayedArgs_end()}
204 : ArrayRef<Expr *>{Attr->args_begin(), Attr->args_end()};
206 SmallVector<Expr *, 4> Args;
207 if (S.SubstExprs(ArgsToInstantiate,
208 /*IsCall=*/false, TemplateArgs, Args))
209 return;
211 StringRef Str = Attr->getAnnotation();
212 if (HasDelayedArgs) {
213 if (Args.size() < 1) {
214 S.Diag(Attr->getLoc(), diag::err_attribute_too_few_arguments)
215 << Attr << 1;
216 return;
219 if (!S.checkStringLiteralArgumentAttr(*Attr, Args[0], Str))
220 return;
222 llvm::SmallVector<Expr *, 4> ActualArgs;
223 ActualArgs.insert(ActualArgs.begin(), Args.begin() + 1, Args.end());
224 std::swap(Args, ActualArgs);
226 S.AddAnnotationAttr(New, *Attr, Str, Args);
229 static Expr *instantiateDependentFunctionAttrCondition(
230 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
231 const Attr *A, Expr *OldCond, const Decl *Tmpl, FunctionDecl *New) {
232 Expr *Cond = nullptr;
234 Sema::ContextRAII SwitchContext(S, New);
235 EnterExpressionEvaluationContext Unevaluated(
236 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
237 ExprResult Result = S.SubstExpr(OldCond, TemplateArgs);
238 if (Result.isInvalid())
239 return nullptr;
240 Cond = Result.getAs<Expr>();
242 if (!Cond->isTypeDependent()) {
243 ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
244 if (Converted.isInvalid())
245 return nullptr;
246 Cond = Converted.get();
249 SmallVector<PartialDiagnosticAt, 8> Diags;
250 if (OldCond->isValueDependent() && !Cond->isValueDependent() &&
251 !Expr::isPotentialConstantExprUnevaluated(Cond, New, Diags)) {
252 S.Diag(A->getLocation(), diag::err_attr_cond_never_constant_expr) << A;
253 for (const auto &P : Diags)
254 S.Diag(P.first, P.second);
255 return nullptr;
257 return Cond;
260 static void instantiateDependentEnableIfAttr(
261 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
262 const EnableIfAttr *EIA, const Decl *Tmpl, FunctionDecl *New) {
263 Expr *Cond = instantiateDependentFunctionAttrCondition(
264 S, TemplateArgs, EIA, EIA->getCond(), Tmpl, New);
266 if (Cond)
267 New->addAttr(new (S.getASTContext()) EnableIfAttr(S.getASTContext(), *EIA,
268 Cond, EIA->getMessage()));
271 static void instantiateDependentDiagnoseIfAttr(
272 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
273 const DiagnoseIfAttr *DIA, const Decl *Tmpl, FunctionDecl *New) {
274 Expr *Cond = instantiateDependentFunctionAttrCondition(
275 S, TemplateArgs, DIA, DIA->getCond(), Tmpl, New);
277 if (Cond)
278 New->addAttr(new (S.getASTContext()) DiagnoseIfAttr(
279 S.getASTContext(), *DIA, Cond, DIA->getMessage(),
280 DIA->getDiagnosticType(), DIA->getArgDependent(), New));
283 // Constructs and adds to New a new instance of CUDALaunchBoundsAttr using
284 // template A as the base and arguments from TemplateArgs.
285 static void instantiateDependentCUDALaunchBoundsAttr(
286 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
287 const CUDALaunchBoundsAttr &Attr, Decl *New) {
288 // The alignment expression is a constant expression.
289 EnterExpressionEvaluationContext Unevaluated(
290 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
292 ExprResult Result = S.SubstExpr(Attr.getMaxThreads(), TemplateArgs);
293 if (Result.isInvalid())
294 return;
295 Expr *MaxThreads = Result.getAs<Expr>();
297 Expr *MinBlocks = nullptr;
298 if (Attr.getMinBlocks()) {
299 Result = S.SubstExpr(Attr.getMinBlocks(), TemplateArgs);
300 if (Result.isInvalid())
301 return;
302 MinBlocks = Result.getAs<Expr>();
305 Expr *MaxBlocks = nullptr;
306 if (Attr.getMaxBlocks()) {
307 Result = S.SubstExpr(Attr.getMaxBlocks(), TemplateArgs);
308 if (Result.isInvalid())
309 return;
310 MaxBlocks = Result.getAs<Expr>();
313 S.AddLaunchBoundsAttr(New, Attr, MaxThreads, MinBlocks, MaxBlocks);
316 static void
317 instantiateDependentModeAttr(Sema &S,
318 const MultiLevelTemplateArgumentList &TemplateArgs,
319 const ModeAttr &Attr, Decl *New) {
320 S.AddModeAttr(New, Attr, Attr.getMode(),
321 /*InInstantiation=*/true);
324 /// Instantiation of 'declare simd' attribute and its arguments.
325 static void instantiateOMPDeclareSimdDeclAttr(
326 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
327 const OMPDeclareSimdDeclAttr &Attr, Decl *New) {
328 // Allow 'this' in clauses with varlists.
329 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New))
330 New = FTD->getTemplatedDecl();
331 auto *FD = cast<FunctionDecl>(New);
332 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext());
333 SmallVector<Expr *, 4> Uniforms, Aligneds, Alignments, Linears, Steps;
334 SmallVector<unsigned, 4> LinModifiers;
336 auto SubstExpr = [&](Expr *E) -> ExprResult {
337 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
338 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
339 Sema::ContextRAII SavedContext(S, FD);
340 LocalInstantiationScope Local(S);
341 if (FD->getNumParams() > PVD->getFunctionScopeIndex())
342 Local.InstantiatedLocal(
343 PVD, FD->getParamDecl(PVD->getFunctionScopeIndex()));
344 return S.SubstExpr(E, TemplateArgs);
346 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(),
347 FD->isCXXInstanceMember());
348 return S.SubstExpr(E, TemplateArgs);
351 // Substitute a single OpenMP clause, which is a potentially-evaluated
352 // full-expression.
353 auto Subst = [&](Expr *E) -> ExprResult {
354 EnterExpressionEvaluationContext Evaluated(
355 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
356 ExprResult Res = SubstExpr(E);
357 if (Res.isInvalid())
358 return Res;
359 return S.ActOnFinishFullExpr(Res.get(), false);
362 ExprResult Simdlen;
363 if (auto *E = Attr.getSimdlen())
364 Simdlen = Subst(E);
366 if (Attr.uniforms_size() > 0) {
367 for(auto *E : Attr.uniforms()) {
368 ExprResult Inst = Subst(E);
369 if (Inst.isInvalid())
370 continue;
371 Uniforms.push_back(Inst.get());
375 auto AI = Attr.alignments_begin();
376 for (auto *E : Attr.aligneds()) {
377 ExprResult Inst = Subst(E);
378 if (Inst.isInvalid())
379 continue;
380 Aligneds.push_back(Inst.get());
381 Inst = ExprEmpty();
382 if (*AI)
383 Inst = S.SubstExpr(*AI, TemplateArgs);
384 Alignments.push_back(Inst.get());
385 ++AI;
388 auto SI = Attr.steps_begin();
389 for (auto *E : Attr.linears()) {
390 ExprResult Inst = Subst(E);
391 if (Inst.isInvalid())
392 continue;
393 Linears.push_back(Inst.get());
394 Inst = ExprEmpty();
395 if (*SI)
396 Inst = S.SubstExpr(*SI, TemplateArgs);
397 Steps.push_back(Inst.get());
398 ++SI;
400 LinModifiers.append(Attr.modifiers_begin(), Attr.modifiers_end());
401 (void)S.ActOnOpenMPDeclareSimdDirective(
402 S.ConvertDeclToDeclGroup(New), Attr.getBranchState(), Simdlen.get(),
403 Uniforms, Aligneds, Alignments, Linears, LinModifiers, Steps,
404 Attr.getRange());
407 /// Instantiation of 'declare variant' attribute and its arguments.
408 static void instantiateOMPDeclareVariantAttr(
409 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
410 const OMPDeclareVariantAttr &Attr, Decl *New) {
411 // Allow 'this' in clauses with varlists.
412 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New))
413 New = FTD->getTemplatedDecl();
414 auto *FD = cast<FunctionDecl>(New);
415 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext());
417 auto &&SubstExpr = [FD, ThisContext, &S, &TemplateArgs](Expr *E) {
418 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
419 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
420 Sema::ContextRAII SavedContext(S, FD);
421 LocalInstantiationScope Local(S);
422 if (FD->getNumParams() > PVD->getFunctionScopeIndex())
423 Local.InstantiatedLocal(
424 PVD, FD->getParamDecl(PVD->getFunctionScopeIndex()));
425 return S.SubstExpr(E, TemplateArgs);
427 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(),
428 FD->isCXXInstanceMember());
429 return S.SubstExpr(E, TemplateArgs);
432 // Substitute a single OpenMP clause, which is a potentially-evaluated
433 // full-expression.
434 auto &&Subst = [&SubstExpr, &S](Expr *E) {
435 EnterExpressionEvaluationContext Evaluated(
436 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
437 ExprResult Res = SubstExpr(E);
438 if (Res.isInvalid())
439 return Res;
440 return S.ActOnFinishFullExpr(Res.get(), false);
443 ExprResult VariantFuncRef;
444 if (Expr *E = Attr.getVariantFuncRef()) {
445 // Do not mark function as is used to prevent its emission if this is the
446 // only place where it is used.
447 EnterExpressionEvaluationContext Unevaluated(
448 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
449 VariantFuncRef = Subst(E);
452 // Copy the template version of the OMPTraitInfo and run substitute on all
453 // score and condition expressiosn.
454 OMPTraitInfo &TI = S.getASTContext().getNewOMPTraitInfo();
455 TI = *Attr.getTraitInfos();
457 // Try to substitute template parameters in score and condition expressions.
458 auto SubstScoreOrConditionExpr = [&S, Subst](Expr *&E, bool) {
459 if (E) {
460 EnterExpressionEvaluationContext Unevaluated(
461 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
462 ExprResult ER = Subst(E);
463 if (ER.isUsable())
464 E = ER.get();
465 else
466 return true;
468 return false;
470 if (TI.anyScoreOrCondition(SubstScoreOrConditionExpr))
471 return;
473 Expr *E = VariantFuncRef.get();
475 // Check function/variant ref for `omp declare variant` but not for `omp
476 // begin declare variant` (which use implicit attributes).
477 std::optional<std::pair<FunctionDecl *, Expr *>> DeclVarData =
478 S.checkOpenMPDeclareVariantFunction(S.ConvertDeclToDeclGroup(New), E, TI,
479 Attr.appendArgs_size(),
480 Attr.getRange());
482 if (!DeclVarData)
483 return;
485 E = DeclVarData->second;
486 FD = DeclVarData->first;
488 if (auto *VariantDRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
489 if (auto *VariantFD = dyn_cast<FunctionDecl>(VariantDRE->getDecl())) {
490 if (auto *VariantFTD = VariantFD->getDescribedFunctionTemplate()) {
491 if (!VariantFTD->isThisDeclarationADefinition())
492 return;
493 Sema::TentativeAnalysisScope Trap(S);
494 const TemplateArgumentList *TAL = TemplateArgumentList::CreateCopy(
495 S.Context, TemplateArgs.getInnermost());
497 auto *SubstFD = S.InstantiateFunctionDeclaration(VariantFTD, TAL,
498 New->getLocation());
499 if (!SubstFD)
500 return;
501 QualType NewType = S.Context.mergeFunctionTypes(
502 SubstFD->getType(), FD->getType(),
503 /* OfBlockPointer */ false,
504 /* Unqualified */ false, /* AllowCXX */ true);
505 if (NewType.isNull())
506 return;
507 S.InstantiateFunctionDefinition(
508 New->getLocation(), SubstFD, /* Recursive */ true,
509 /* DefinitionRequired */ false, /* AtEndOfTU */ false);
510 SubstFD->setInstantiationIsPending(!SubstFD->isDefined());
511 E = DeclRefExpr::Create(S.Context, NestedNameSpecifierLoc(),
512 SourceLocation(), SubstFD,
513 /* RefersToEnclosingVariableOrCapture */ false,
514 /* NameLoc */ SubstFD->getLocation(),
515 SubstFD->getType(), ExprValueKind::VK_PRValue);
520 SmallVector<Expr *, 8> NothingExprs;
521 SmallVector<Expr *, 8> NeedDevicePtrExprs;
522 SmallVector<OMPInteropInfo, 4> AppendArgs;
524 for (Expr *E : Attr.adjustArgsNothing()) {
525 ExprResult ER = Subst(E);
526 if (ER.isInvalid())
527 continue;
528 NothingExprs.push_back(ER.get());
530 for (Expr *E : Attr.adjustArgsNeedDevicePtr()) {
531 ExprResult ER = Subst(E);
532 if (ER.isInvalid())
533 continue;
534 NeedDevicePtrExprs.push_back(ER.get());
536 for (OMPInteropInfo &II : Attr.appendArgs()) {
537 // When prefer_type is implemented for append_args handle them here too.
538 AppendArgs.emplace_back(II.IsTarget, II.IsTargetSync);
541 S.ActOnOpenMPDeclareVariantDirective(
542 FD, E, TI, NothingExprs, NeedDevicePtrExprs, AppendArgs, SourceLocation(),
543 SourceLocation(), Attr.getRange());
546 static void instantiateDependentAMDGPUFlatWorkGroupSizeAttr(
547 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
548 const AMDGPUFlatWorkGroupSizeAttr &Attr, Decl *New) {
549 // Both min and max expression are constant expressions.
550 EnterExpressionEvaluationContext Unevaluated(
551 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
553 ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs);
554 if (Result.isInvalid())
555 return;
556 Expr *MinExpr = Result.getAs<Expr>();
558 Result = S.SubstExpr(Attr.getMax(), TemplateArgs);
559 if (Result.isInvalid())
560 return;
561 Expr *MaxExpr = Result.getAs<Expr>();
563 S.addAMDGPUFlatWorkGroupSizeAttr(New, Attr, MinExpr, MaxExpr);
566 ExplicitSpecifier Sema::instantiateExplicitSpecifier(
567 const MultiLevelTemplateArgumentList &TemplateArgs, ExplicitSpecifier ES) {
568 if (!ES.getExpr())
569 return ES;
570 Expr *OldCond = ES.getExpr();
571 Expr *Cond = nullptr;
573 EnterExpressionEvaluationContext Unevaluated(
574 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
575 ExprResult SubstResult = SubstExpr(OldCond, TemplateArgs);
576 if (SubstResult.isInvalid()) {
577 return ExplicitSpecifier::Invalid();
579 Cond = SubstResult.get();
581 ExplicitSpecifier Result(Cond, ES.getKind());
582 if (!Cond->isTypeDependent())
583 tryResolveExplicitSpecifier(Result);
584 return Result;
587 static void instantiateDependentAMDGPUWavesPerEUAttr(
588 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
589 const AMDGPUWavesPerEUAttr &Attr, Decl *New) {
590 // Both min and max expression are constant expressions.
591 EnterExpressionEvaluationContext Unevaluated(
592 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
594 ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs);
595 if (Result.isInvalid())
596 return;
597 Expr *MinExpr = Result.getAs<Expr>();
599 Expr *MaxExpr = nullptr;
600 if (auto Max = Attr.getMax()) {
601 Result = S.SubstExpr(Max, TemplateArgs);
602 if (Result.isInvalid())
603 return;
604 MaxExpr = Result.getAs<Expr>();
607 S.addAMDGPUWavesPerEUAttr(New, Attr, MinExpr, MaxExpr);
610 // This doesn't take any template parameters, but we have a custom action that
611 // needs to happen when the kernel itself is instantiated. We need to run the
612 // ItaniumMangler to mark the names required to name this kernel.
613 static void instantiateDependentSYCLKernelAttr(
614 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
615 const SYCLKernelAttr &Attr, Decl *New) {
616 New->addAttr(Attr.clone(S.getASTContext()));
619 /// Determine whether the attribute A might be relevant to the declaration D.
620 /// If not, we can skip instantiating it. The attribute may or may not have
621 /// been instantiated yet.
622 static bool isRelevantAttr(Sema &S, const Decl *D, const Attr *A) {
623 // 'preferred_name' is only relevant to the matching specialization of the
624 // template.
625 if (const auto *PNA = dyn_cast<PreferredNameAttr>(A)) {
626 QualType T = PNA->getTypedefType();
627 const auto *RD = cast<CXXRecordDecl>(D);
628 if (!T->isDependentType() && !RD->isDependentContext() &&
629 !declaresSameEntity(T->getAsCXXRecordDecl(), RD))
630 return false;
631 for (const auto *ExistingPNA : D->specific_attrs<PreferredNameAttr>())
632 if (S.Context.hasSameType(ExistingPNA->getTypedefType(),
633 PNA->getTypedefType()))
634 return false;
635 return true;
638 if (const auto *BA = dyn_cast<BuiltinAttr>(A)) {
639 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
640 switch (BA->getID()) {
641 case Builtin::BIforward:
642 // Do not treat 'std::forward' as a builtin if it takes an rvalue reference
643 // type and returns an lvalue reference type. The library implementation
644 // will produce an error in this case; don't get in its way.
645 if (FD && FD->getNumParams() >= 1 &&
646 FD->getParamDecl(0)->getType()->isRValueReferenceType() &&
647 FD->getReturnType()->isLValueReferenceType()) {
648 return false;
650 [[fallthrough]];
651 case Builtin::BImove:
652 case Builtin::BImove_if_noexcept:
653 // HACK: Super-old versions of libc++ (3.1 and earlier) provide
654 // std::forward and std::move overloads that sometimes return by value
655 // instead of by reference when building in C++98 mode. Don't treat such
656 // cases as builtins.
657 if (FD && !FD->getReturnType()->isReferenceType())
658 return false;
659 break;
663 return true;
666 void Sema::InstantiateAttrsForDecl(
667 const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Tmpl,
668 Decl *New, LateInstantiatedAttrVec *LateAttrs,
669 LocalInstantiationScope *OuterMostScope) {
670 if (NamedDecl *ND = dyn_cast<NamedDecl>(New)) {
671 // FIXME: This function is called multiple times for the same template
672 // specialization. We should only instantiate attributes that were added
673 // since the previous instantiation.
674 for (const auto *TmplAttr : Tmpl->attrs()) {
675 if (!isRelevantAttr(*this, New, TmplAttr))
676 continue;
678 // FIXME: If any of the special case versions from InstantiateAttrs become
679 // applicable to template declaration, we'll need to add them here.
680 CXXThisScopeRAII ThisScope(
681 *this, dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()),
682 Qualifiers(), ND->isCXXInstanceMember());
684 Attr *NewAttr = sema::instantiateTemplateAttributeForDecl(
685 TmplAttr, Context, *this, TemplateArgs);
686 if (NewAttr && isRelevantAttr(*this, New, NewAttr))
687 New->addAttr(NewAttr);
692 static Sema::RetainOwnershipKind
693 attrToRetainOwnershipKind(const Attr *A) {
694 switch (A->getKind()) {
695 case clang::attr::CFConsumed:
696 return Sema::RetainOwnershipKind::CF;
697 case clang::attr::OSConsumed:
698 return Sema::RetainOwnershipKind::OS;
699 case clang::attr::NSConsumed:
700 return Sema::RetainOwnershipKind::NS;
701 default:
702 llvm_unreachable("Wrong argument supplied");
706 void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs,
707 const Decl *Tmpl, Decl *New,
708 LateInstantiatedAttrVec *LateAttrs,
709 LocalInstantiationScope *OuterMostScope) {
710 for (const auto *TmplAttr : Tmpl->attrs()) {
711 if (!isRelevantAttr(*this, New, TmplAttr))
712 continue;
714 // FIXME: This should be generalized to more than just the AlignedAttr.
715 const AlignedAttr *Aligned = dyn_cast<AlignedAttr>(TmplAttr);
716 if (Aligned && Aligned->isAlignmentDependent()) {
717 instantiateDependentAlignedAttr(*this, TemplateArgs, Aligned, New);
718 continue;
721 if (const auto *AssumeAligned = dyn_cast<AssumeAlignedAttr>(TmplAttr)) {
722 instantiateDependentAssumeAlignedAttr(*this, TemplateArgs, AssumeAligned, New);
723 continue;
726 if (const auto *AlignValue = dyn_cast<AlignValueAttr>(TmplAttr)) {
727 instantiateDependentAlignValueAttr(*this, TemplateArgs, AlignValue, New);
728 continue;
731 if (const auto *AllocAlign = dyn_cast<AllocAlignAttr>(TmplAttr)) {
732 instantiateDependentAllocAlignAttr(*this, TemplateArgs, AllocAlign, New);
733 continue;
736 if (const auto *Annotate = dyn_cast<AnnotateAttr>(TmplAttr)) {
737 instantiateDependentAnnotationAttr(*this, TemplateArgs, Annotate, New);
738 continue;
741 if (const auto *EnableIf = dyn_cast<EnableIfAttr>(TmplAttr)) {
742 instantiateDependentEnableIfAttr(*this, TemplateArgs, EnableIf, Tmpl,
743 cast<FunctionDecl>(New));
744 continue;
747 if (const auto *DiagnoseIf = dyn_cast<DiagnoseIfAttr>(TmplAttr)) {
748 instantiateDependentDiagnoseIfAttr(*this, TemplateArgs, DiagnoseIf, Tmpl,
749 cast<FunctionDecl>(New));
750 continue;
753 if (const auto *CUDALaunchBounds =
754 dyn_cast<CUDALaunchBoundsAttr>(TmplAttr)) {
755 instantiateDependentCUDALaunchBoundsAttr(*this, TemplateArgs,
756 *CUDALaunchBounds, New);
757 continue;
760 if (const auto *Mode = dyn_cast<ModeAttr>(TmplAttr)) {
761 instantiateDependentModeAttr(*this, TemplateArgs, *Mode, New);
762 continue;
765 if (const auto *OMPAttr = dyn_cast<OMPDeclareSimdDeclAttr>(TmplAttr)) {
766 instantiateOMPDeclareSimdDeclAttr(*this, TemplateArgs, *OMPAttr, New);
767 continue;
770 if (const auto *OMPAttr = dyn_cast<OMPDeclareVariantAttr>(TmplAttr)) {
771 instantiateOMPDeclareVariantAttr(*this, TemplateArgs, *OMPAttr, New);
772 continue;
775 if (const auto *AMDGPUFlatWorkGroupSize =
776 dyn_cast<AMDGPUFlatWorkGroupSizeAttr>(TmplAttr)) {
777 instantiateDependentAMDGPUFlatWorkGroupSizeAttr(
778 *this, TemplateArgs, *AMDGPUFlatWorkGroupSize, New);
781 if (const auto *AMDGPUFlatWorkGroupSize =
782 dyn_cast<AMDGPUWavesPerEUAttr>(TmplAttr)) {
783 instantiateDependentAMDGPUWavesPerEUAttr(*this, TemplateArgs,
784 *AMDGPUFlatWorkGroupSize, New);
787 // Existing DLL attribute on the instantiation takes precedence.
788 if (TmplAttr->getKind() == attr::DLLExport ||
789 TmplAttr->getKind() == attr::DLLImport) {
790 if (New->hasAttr<DLLExportAttr>() || New->hasAttr<DLLImportAttr>()) {
791 continue;
795 if (const auto *ABIAttr = dyn_cast<ParameterABIAttr>(TmplAttr)) {
796 AddParameterABIAttr(New, *ABIAttr, ABIAttr->getABI());
797 continue;
800 if (isa<NSConsumedAttr>(TmplAttr) || isa<OSConsumedAttr>(TmplAttr) ||
801 isa<CFConsumedAttr>(TmplAttr)) {
802 AddXConsumedAttr(New, *TmplAttr, attrToRetainOwnershipKind(TmplAttr),
803 /*template instantiation=*/true);
804 continue;
807 if (auto *A = dyn_cast<PointerAttr>(TmplAttr)) {
808 if (!New->hasAttr<PointerAttr>())
809 New->addAttr(A->clone(Context));
810 continue;
813 if (auto *A = dyn_cast<OwnerAttr>(TmplAttr)) {
814 if (!New->hasAttr<OwnerAttr>())
815 New->addAttr(A->clone(Context));
816 continue;
819 if (auto *A = dyn_cast<SYCLKernelAttr>(TmplAttr)) {
820 instantiateDependentSYCLKernelAttr(*this, TemplateArgs, *A, New);
821 continue;
824 assert(!TmplAttr->isPackExpansion());
825 if (TmplAttr->isLateParsed() && LateAttrs) {
826 // Late parsed attributes must be instantiated and attached after the
827 // enclosing class has been instantiated. See Sema::InstantiateClass.
828 LocalInstantiationScope *Saved = nullptr;
829 if (CurrentInstantiationScope)
830 Saved = CurrentInstantiationScope->cloneScopes(OuterMostScope);
831 LateAttrs->push_back(LateInstantiatedAttribute(TmplAttr, Saved, New));
832 } else {
833 // Allow 'this' within late-parsed attributes.
834 auto *ND = cast<NamedDecl>(New);
835 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext());
836 CXXThisScopeRAII ThisScope(*this, ThisContext, Qualifiers(),
837 ND->isCXXInstanceMember());
839 Attr *NewAttr = sema::instantiateTemplateAttribute(TmplAttr, Context,
840 *this, TemplateArgs);
841 if (NewAttr && isRelevantAttr(*this, New, TmplAttr))
842 New->addAttr(NewAttr);
847 /// Update instantiation attributes after template was late parsed.
849 /// Some attributes are evaluated based on the body of template. If it is
850 /// late parsed, such attributes cannot be evaluated when declaration is
851 /// instantiated. This function is used to update instantiation attributes when
852 /// template definition is ready.
853 void Sema::updateAttrsForLateParsedTemplate(const Decl *Pattern, Decl *Inst) {
854 for (const auto *Attr : Pattern->attrs()) {
855 if (auto *A = dyn_cast<StrictFPAttr>(Attr)) {
856 if (!Inst->hasAttr<StrictFPAttr>())
857 Inst->addAttr(A->clone(getASTContext()));
858 continue;
863 /// In the MS ABI, we need to instantiate default arguments of dllexported
864 /// default constructors along with the constructor definition. This allows IR
865 /// gen to emit a constructor closure which calls the default constructor with
866 /// its default arguments.
867 void Sema::InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl *Ctor) {
868 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() &&
869 Ctor->isDefaultConstructor());
870 unsigned NumParams = Ctor->getNumParams();
871 if (NumParams == 0)
872 return;
873 DLLExportAttr *Attr = Ctor->getAttr<DLLExportAttr>();
874 if (!Attr)
875 return;
876 for (unsigned I = 0; I != NumParams; ++I) {
877 (void)CheckCXXDefaultArgExpr(Attr->getLocation(), Ctor,
878 Ctor->getParamDecl(I));
879 CleanupVarDeclMarking();
883 /// Get the previous declaration of a declaration for the purposes of template
884 /// instantiation. If this finds a previous declaration, then the previous
885 /// declaration of the instantiation of D should be an instantiation of the
886 /// result of this function.
887 template<typename DeclT>
888 static DeclT *getPreviousDeclForInstantiation(DeclT *D) {
889 DeclT *Result = D->getPreviousDecl();
891 // If the declaration is within a class, and the previous declaration was
892 // merged from a different definition of that class, then we don't have a
893 // previous declaration for the purpose of template instantiation.
894 if (Result && isa<CXXRecordDecl>(D->getDeclContext()) &&
895 D->getLexicalDeclContext() != Result->getLexicalDeclContext())
896 return nullptr;
898 return Result;
901 Decl *
902 TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl *D) {
903 llvm_unreachable("Translation units cannot be instantiated");
906 Decl *TemplateDeclInstantiator::VisitHLSLBufferDecl(HLSLBufferDecl *Decl) {
907 llvm_unreachable("HLSL buffer declarations cannot be instantiated");
910 Decl *
911 TemplateDeclInstantiator::VisitPragmaCommentDecl(PragmaCommentDecl *D) {
912 llvm_unreachable("pragma comment cannot be instantiated");
915 Decl *TemplateDeclInstantiator::VisitPragmaDetectMismatchDecl(
916 PragmaDetectMismatchDecl *D) {
917 llvm_unreachable("pragma comment cannot be instantiated");
920 Decl *
921 TemplateDeclInstantiator::VisitExternCContextDecl(ExternCContextDecl *D) {
922 llvm_unreachable("extern \"C\" context cannot be instantiated");
925 Decl *TemplateDeclInstantiator::VisitMSGuidDecl(MSGuidDecl *D) {
926 llvm_unreachable("GUID declaration cannot be instantiated");
929 Decl *TemplateDeclInstantiator::VisitUnnamedGlobalConstantDecl(
930 UnnamedGlobalConstantDecl *D) {
931 llvm_unreachable("UnnamedGlobalConstantDecl cannot be instantiated");
934 Decl *TemplateDeclInstantiator::VisitTemplateParamObjectDecl(
935 TemplateParamObjectDecl *D) {
936 llvm_unreachable("template parameter objects cannot be instantiated");
939 Decl *
940 TemplateDeclInstantiator::VisitLabelDecl(LabelDecl *D) {
941 LabelDecl *Inst = LabelDecl::Create(SemaRef.Context, Owner, D->getLocation(),
942 D->getIdentifier());
943 Owner->addDecl(Inst);
944 return Inst;
947 Decl *
948 TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl *D) {
949 llvm_unreachable("Namespaces cannot be instantiated");
952 Decl *
953 TemplateDeclInstantiator::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) {
954 NamespaceAliasDecl *Inst
955 = NamespaceAliasDecl::Create(SemaRef.Context, Owner,
956 D->getNamespaceLoc(),
957 D->getAliasLoc(),
958 D->getIdentifier(),
959 D->getQualifierLoc(),
960 D->getTargetNameLoc(),
961 D->getNamespace());
962 Owner->addDecl(Inst);
963 return Inst;
966 Decl *TemplateDeclInstantiator::InstantiateTypedefNameDecl(TypedefNameDecl *D,
967 bool IsTypeAlias) {
968 bool Invalid = false;
969 TypeSourceInfo *DI = D->getTypeSourceInfo();
970 if (DI->getType()->isInstantiationDependentType() ||
971 DI->getType()->isVariablyModifiedType()) {
972 DI = SemaRef.SubstType(DI, TemplateArgs,
973 D->getLocation(), D->getDeclName());
974 if (!DI) {
975 Invalid = true;
976 DI = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.Context.IntTy);
978 } else {
979 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType());
982 // HACK: 2012-10-23 g++ has a bug where it gets the value kind of ?: wrong.
983 // libstdc++ relies upon this bug in its implementation of common_type. If we
984 // happen to be processing that implementation, fake up the g++ ?:
985 // semantics. See LWG issue 2141 for more information on the bug. The bugs
986 // are fixed in g++ and libstdc++ 4.9.0 (2014-04-22).
987 const DecltypeType *DT = DI->getType()->getAs<DecltypeType>();
988 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext());
989 if (DT && RD && isa<ConditionalOperator>(DT->getUnderlyingExpr()) &&
990 DT->isReferenceType() &&
991 RD->getEnclosingNamespaceContext() == SemaRef.getStdNamespace() &&
992 RD->getIdentifier() && RD->getIdentifier()->isStr("common_type") &&
993 D->getIdentifier() && D->getIdentifier()->isStr("type") &&
994 SemaRef.getSourceManager().isInSystemHeader(D->getBeginLoc()))
995 // Fold it to the (non-reference) type which g++ would have produced.
996 DI = SemaRef.Context.getTrivialTypeSourceInfo(
997 DI->getType().getNonReferenceType());
999 // Create the new typedef
1000 TypedefNameDecl *Typedef;
1001 if (IsTypeAlias)
1002 Typedef = TypeAliasDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(),
1003 D->getLocation(), D->getIdentifier(), DI);
1004 else
1005 Typedef = TypedefDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(),
1006 D->getLocation(), D->getIdentifier(), DI);
1007 if (Invalid)
1008 Typedef->setInvalidDecl();
1010 // If the old typedef was the name for linkage purposes of an anonymous
1011 // tag decl, re-establish that relationship for the new typedef.
1012 if (const TagType *oldTagType = D->getUnderlyingType()->getAs<TagType>()) {
1013 TagDecl *oldTag = oldTagType->getDecl();
1014 if (oldTag->getTypedefNameForAnonDecl() == D && !Invalid) {
1015 TagDecl *newTag = DI->getType()->castAs<TagType>()->getDecl();
1016 assert(!newTag->hasNameForLinkage());
1017 newTag->setTypedefNameForAnonDecl(Typedef);
1021 if (TypedefNameDecl *Prev = getPreviousDeclForInstantiation(D)) {
1022 NamedDecl *InstPrev = SemaRef.FindInstantiatedDecl(D->getLocation(), Prev,
1023 TemplateArgs);
1024 if (!InstPrev)
1025 return nullptr;
1027 TypedefNameDecl *InstPrevTypedef = cast<TypedefNameDecl>(InstPrev);
1029 // If the typedef types are not identical, reject them.
1030 SemaRef.isIncompatibleTypedef(InstPrevTypedef, Typedef);
1032 Typedef->setPreviousDecl(InstPrevTypedef);
1035 SemaRef.InstantiateAttrs(TemplateArgs, D, Typedef);
1037 if (D->getUnderlyingType()->getAs<DependentNameType>())
1038 SemaRef.inferGslPointerAttribute(Typedef);
1040 Typedef->setAccess(D->getAccess());
1041 Typedef->setReferenced(D->isReferenced());
1043 return Typedef;
1046 Decl *TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl *D) {
1047 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/false);
1048 if (Typedef)
1049 Owner->addDecl(Typedef);
1050 return Typedef;
1053 Decl *TemplateDeclInstantiator::VisitTypeAliasDecl(TypeAliasDecl *D) {
1054 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/true);
1055 if (Typedef)
1056 Owner->addDecl(Typedef);
1057 return Typedef;
1060 Decl *
1061 TemplateDeclInstantiator::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) {
1062 // Create a local instantiation scope for this type alias template, which
1063 // will contain the instantiations of the template parameters.
1064 LocalInstantiationScope Scope(SemaRef);
1066 TemplateParameterList *TempParams = D->getTemplateParameters();
1067 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
1068 if (!InstParams)
1069 return nullptr;
1071 TypeAliasDecl *Pattern = D->getTemplatedDecl();
1073 TypeAliasTemplateDecl *PrevAliasTemplate = nullptr;
1074 if (getPreviousDeclForInstantiation<TypedefNameDecl>(Pattern)) {
1075 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName());
1076 if (!Found.empty()) {
1077 PrevAliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Found.front());
1081 TypeAliasDecl *AliasInst = cast_or_null<TypeAliasDecl>(
1082 InstantiateTypedefNameDecl(Pattern, /*IsTypeAlias=*/true));
1083 if (!AliasInst)
1084 return nullptr;
1086 TypeAliasTemplateDecl *Inst
1087 = TypeAliasTemplateDecl::Create(SemaRef.Context, Owner, D->getLocation(),
1088 D->getDeclName(), InstParams, AliasInst);
1089 AliasInst->setDescribedAliasTemplate(Inst);
1090 if (PrevAliasTemplate)
1091 Inst->setPreviousDecl(PrevAliasTemplate);
1093 Inst->setAccess(D->getAccess());
1095 if (!PrevAliasTemplate)
1096 Inst->setInstantiatedFromMemberTemplate(D);
1098 Owner->addDecl(Inst);
1100 return Inst;
1103 Decl *TemplateDeclInstantiator::VisitBindingDecl(BindingDecl *D) {
1104 auto *NewBD = BindingDecl::Create(SemaRef.Context, Owner, D->getLocation(),
1105 D->getIdentifier());
1106 NewBD->setReferenced(D->isReferenced());
1107 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewBD);
1108 return NewBD;
1111 Decl *TemplateDeclInstantiator::VisitDecompositionDecl(DecompositionDecl *D) {
1112 // Transform the bindings first.
1113 SmallVector<BindingDecl*, 16> NewBindings;
1114 for (auto *OldBD : D->bindings())
1115 NewBindings.push_back(cast<BindingDecl>(VisitBindingDecl(OldBD)));
1116 ArrayRef<BindingDecl*> NewBindingArray = NewBindings;
1118 auto *NewDD = cast_or_null<DecompositionDecl>(
1119 VisitVarDecl(D, /*InstantiatingVarTemplate=*/false, &NewBindingArray));
1121 if (!NewDD || NewDD->isInvalidDecl())
1122 for (auto *NewBD : NewBindings)
1123 NewBD->setInvalidDecl();
1125 return NewDD;
1128 Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D) {
1129 return VisitVarDecl(D, /*InstantiatingVarTemplate=*/false);
1132 Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D,
1133 bool InstantiatingVarTemplate,
1134 ArrayRef<BindingDecl*> *Bindings) {
1136 // Do substitution on the type of the declaration
1137 TypeSourceInfo *DI = SemaRef.SubstType(
1138 D->getTypeSourceInfo(), TemplateArgs, D->getTypeSpecStartLoc(),
1139 D->getDeclName(), /*AllowDeducedTST*/true);
1140 if (!DI)
1141 return nullptr;
1143 if (DI->getType()->isFunctionType()) {
1144 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function)
1145 << D->isStaticDataMember() << DI->getType();
1146 return nullptr;
1149 DeclContext *DC = Owner;
1150 if (D->isLocalExternDecl())
1151 SemaRef.adjustContextForLocalExternDecl(DC);
1153 // Build the instantiated declaration.
1154 VarDecl *Var;
1155 if (Bindings)
1156 Var = DecompositionDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(),
1157 D->getLocation(), DI->getType(), DI,
1158 D->getStorageClass(), *Bindings);
1159 else
1160 Var = VarDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(),
1161 D->getLocation(), D->getIdentifier(), DI->getType(),
1162 DI, D->getStorageClass());
1164 // In ARC, infer 'retaining' for variables of retainable type.
1165 if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1166 SemaRef.inferObjCARCLifetime(Var))
1167 Var->setInvalidDecl();
1169 if (SemaRef.getLangOpts().OpenCL)
1170 SemaRef.deduceOpenCLAddressSpace(Var);
1172 // Substitute the nested name specifier, if any.
1173 if (SubstQualifier(D, Var))
1174 return nullptr;
1176 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner,
1177 StartingScope, InstantiatingVarTemplate);
1178 if (D->isNRVOVariable() && !Var->isInvalidDecl()) {
1179 QualType RT;
1180 if (auto *F = dyn_cast<FunctionDecl>(DC))
1181 RT = F->getReturnType();
1182 else if (isa<BlockDecl>(DC))
1183 RT = cast<FunctionType>(SemaRef.getCurBlock()->FunctionType)
1184 ->getReturnType();
1185 else
1186 llvm_unreachable("Unknown context type");
1188 // This is the last chance we have of checking copy elision eligibility
1189 // for functions in dependent contexts. The sema actions for building
1190 // the return statement during template instantiation will have no effect
1191 // regarding copy elision, since NRVO propagation runs on the scope exit
1192 // actions, and these are not run on instantiation.
1193 // This might run through some VarDecls which were returned from non-taken
1194 // 'if constexpr' branches, and these will end up being constructed on the
1195 // return slot even if they will never be returned, as a sort of accidental
1196 // 'optimization'. Notably, functions with 'auto' return types won't have it
1197 // deduced by this point. Coupled with the limitation described
1198 // previously, this makes it very hard to support copy elision for these.
1199 Sema::NamedReturnInfo Info = SemaRef.getNamedReturnInfo(Var);
1200 bool NRVO = SemaRef.getCopyElisionCandidate(Info, RT) != nullptr;
1201 Var->setNRVOVariable(NRVO);
1204 Var->setImplicit(D->isImplicit());
1206 if (Var->isStaticLocal())
1207 SemaRef.CheckStaticLocalForDllExport(Var);
1209 if (Var->getTLSKind())
1210 SemaRef.CheckThreadLocalForLargeAlignment(Var);
1212 return Var;
1215 Decl *TemplateDeclInstantiator::VisitAccessSpecDecl(AccessSpecDecl *D) {
1216 AccessSpecDecl* AD
1217 = AccessSpecDecl::Create(SemaRef.Context, D->getAccess(), Owner,
1218 D->getAccessSpecifierLoc(), D->getColonLoc());
1219 Owner->addHiddenDecl(AD);
1220 return AD;
1223 Decl *TemplateDeclInstantiator::VisitFieldDecl(FieldDecl *D) {
1224 bool Invalid = false;
1225 TypeSourceInfo *DI = D->getTypeSourceInfo();
1226 if (DI->getType()->isInstantiationDependentType() ||
1227 DI->getType()->isVariablyModifiedType()) {
1228 DI = SemaRef.SubstType(DI, TemplateArgs,
1229 D->getLocation(), D->getDeclName());
1230 if (!DI) {
1231 DI = D->getTypeSourceInfo();
1232 Invalid = true;
1233 } else if (DI->getType()->isFunctionType()) {
1234 // C++ [temp.arg.type]p3:
1235 // If a declaration acquires a function type through a type
1236 // dependent on a template-parameter and this causes a
1237 // declaration that does not use the syntactic form of a
1238 // function declarator to have function type, the program is
1239 // ill-formed.
1240 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function)
1241 << DI->getType();
1242 Invalid = true;
1244 } else {
1245 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType());
1248 Expr *BitWidth = D->getBitWidth();
1249 if (Invalid)
1250 BitWidth = nullptr;
1251 else if (BitWidth) {
1252 // The bit-width expression is a constant expression.
1253 EnterExpressionEvaluationContext Unevaluated(
1254 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1256 ExprResult InstantiatedBitWidth
1257 = SemaRef.SubstExpr(BitWidth, TemplateArgs);
1258 if (InstantiatedBitWidth.isInvalid()) {
1259 Invalid = true;
1260 BitWidth = nullptr;
1261 } else
1262 BitWidth = InstantiatedBitWidth.getAs<Expr>();
1265 FieldDecl *Field = SemaRef.CheckFieldDecl(D->getDeclName(),
1266 DI->getType(), DI,
1267 cast<RecordDecl>(Owner),
1268 D->getLocation(),
1269 D->isMutable(),
1270 BitWidth,
1271 D->getInClassInitStyle(),
1272 D->getInnerLocStart(),
1273 D->getAccess(),
1274 nullptr);
1275 if (!Field) {
1276 cast<Decl>(Owner)->setInvalidDecl();
1277 return nullptr;
1280 SemaRef.InstantiateAttrs(TemplateArgs, D, Field, LateAttrs, StartingScope);
1282 if (Field->hasAttrs())
1283 SemaRef.CheckAlignasUnderalignment(Field);
1285 if (Invalid)
1286 Field->setInvalidDecl();
1288 if (!Field->getDeclName()) {
1289 // Keep track of where this decl came from.
1290 SemaRef.Context.setInstantiatedFromUnnamedFieldDecl(Field, D);
1292 if (CXXRecordDecl *Parent= dyn_cast<CXXRecordDecl>(Field->getDeclContext())) {
1293 if (Parent->isAnonymousStructOrUnion() &&
1294 Parent->getRedeclContext()->isFunctionOrMethod())
1295 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Field);
1298 Field->setImplicit(D->isImplicit());
1299 Field->setAccess(D->getAccess());
1300 Owner->addDecl(Field);
1302 return Field;
1305 Decl *TemplateDeclInstantiator::VisitMSPropertyDecl(MSPropertyDecl *D) {
1306 bool Invalid = false;
1307 TypeSourceInfo *DI = D->getTypeSourceInfo();
1309 if (DI->getType()->isVariablyModifiedType()) {
1310 SemaRef.Diag(D->getLocation(), diag::err_property_is_variably_modified)
1311 << D;
1312 Invalid = true;
1313 } else if (DI->getType()->isInstantiationDependentType()) {
1314 DI = SemaRef.SubstType(DI, TemplateArgs,
1315 D->getLocation(), D->getDeclName());
1316 if (!DI) {
1317 DI = D->getTypeSourceInfo();
1318 Invalid = true;
1319 } else if (DI->getType()->isFunctionType()) {
1320 // C++ [temp.arg.type]p3:
1321 // If a declaration acquires a function type through a type
1322 // dependent on a template-parameter and this causes a
1323 // declaration that does not use the syntactic form of a
1324 // function declarator to have function type, the program is
1325 // ill-formed.
1326 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function)
1327 << DI->getType();
1328 Invalid = true;
1330 } else {
1331 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType());
1334 MSPropertyDecl *Property = MSPropertyDecl::Create(
1335 SemaRef.Context, Owner, D->getLocation(), D->getDeclName(), DI->getType(),
1336 DI, D->getBeginLoc(), D->getGetterId(), D->getSetterId());
1338 SemaRef.InstantiateAttrs(TemplateArgs, D, Property, LateAttrs,
1339 StartingScope);
1341 if (Invalid)
1342 Property->setInvalidDecl();
1344 Property->setAccess(D->getAccess());
1345 Owner->addDecl(Property);
1347 return Property;
1350 Decl *TemplateDeclInstantiator::VisitIndirectFieldDecl(IndirectFieldDecl *D) {
1351 NamedDecl **NamedChain =
1352 new (SemaRef.Context)NamedDecl*[D->getChainingSize()];
1354 int i = 0;
1355 for (auto *PI : D->chain()) {
1356 NamedDecl *Next = SemaRef.FindInstantiatedDecl(D->getLocation(), PI,
1357 TemplateArgs);
1358 if (!Next)
1359 return nullptr;
1361 NamedChain[i++] = Next;
1364 QualType T = cast<FieldDecl>(NamedChain[i-1])->getType();
1365 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
1366 SemaRef.Context, Owner, D->getLocation(), D->getIdentifier(), T,
1367 {NamedChain, D->getChainingSize()});
1369 for (const auto *Attr : D->attrs())
1370 IndirectField->addAttr(Attr->clone(SemaRef.Context));
1372 IndirectField->setImplicit(D->isImplicit());
1373 IndirectField->setAccess(D->getAccess());
1374 Owner->addDecl(IndirectField);
1375 return IndirectField;
1378 Decl *TemplateDeclInstantiator::VisitFriendDecl(FriendDecl *D) {
1379 // Handle friend type expressions by simply substituting template
1380 // parameters into the pattern type and checking the result.
1381 if (TypeSourceInfo *Ty = D->getFriendType()) {
1382 TypeSourceInfo *InstTy;
1383 // If this is an unsupported friend, don't bother substituting template
1384 // arguments into it. The actual type referred to won't be used by any
1385 // parts of Clang, and may not be valid for instantiating. Just use the
1386 // same info for the instantiated friend.
1387 if (D->isUnsupportedFriend()) {
1388 InstTy = Ty;
1389 } else {
1390 InstTy = SemaRef.SubstType(Ty, TemplateArgs,
1391 D->getLocation(), DeclarationName());
1393 if (!InstTy)
1394 return nullptr;
1396 FriendDecl *FD = SemaRef.CheckFriendTypeDecl(D->getBeginLoc(),
1397 D->getFriendLoc(), InstTy);
1398 if (!FD)
1399 return nullptr;
1401 FD->setAccess(AS_public);
1402 FD->setUnsupportedFriend(D->isUnsupportedFriend());
1403 Owner->addDecl(FD);
1404 return FD;
1407 NamedDecl *ND = D->getFriendDecl();
1408 assert(ND && "friend decl must be a decl or a type!");
1410 // All of the Visit implementations for the various potential friend
1411 // declarations have to be carefully written to work for friend
1412 // objects, with the most important detail being that the target
1413 // decl should almost certainly not be placed in Owner.
1414 Decl *NewND = Visit(ND);
1415 if (!NewND) return nullptr;
1417 FriendDecl *FD =
1418 FriendDecl::Create(SemaRef.Context, Owner, D->getLocation(),
1419 cast<NamedDecl>(NewND), D->getFriendLoc());
1420 FD->setAccess(AS_public);
1421 FD->setUnsupportedFriend(D->isUnsupportedFriend());
1422 Owner->addDecl(FD);
1423 return FD;
1426 Decl *TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl *D) {
1427 Expr *AssertExpr = D->getAssertExpr();
1429 // The expression in a static assertion is a constant expression.
1430 EnterExpressionEvaluationContext Unevaluated(
1431 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1433 ExprResult InstantiatedAssertExpr
1434 = SemaRef.SubstExpr(AssertExpr, TemplateArgs);
1435 if (InstantiatedAssertExpr.isInvalid())
1436 return nullptr;
1438 ExprResult InstantiatedMessageExpr =
1439 SemaRef.SubstExpr(D->getMessage(), TemplateArgs);
1440 if (InstantiatedMessageExpr.isInvalid())
1441 return nullptr;
1443 return SemaRef.BuildStaticAssertDeclaration(
1444 D->getLocation(), InstantiatedAssertExpr.get(),
1445 InstantiatedMessageExpr.get(), D->getRParenLoc(), D->isFailed());
1448 Decl *TemplateDeclInstantiator::VisitEnumDecl(EnumDecl *D) {
1449 EnumDecl *PrevDecl = nullptr;
1450 if (EnumDecl *PatternPrev = getPreviousDeclForInstantiation(D)) {
1451 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(),
1452 PatternPrev,
1453 TemplateArgs);
1454 if (!Prev) return nullptr;
1455 PrevDecl = cast<EnumDecl>(Prev);
1458 EnumDecl *Enum =
1459 EnumDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(),
1460 D->getLocation(), D->getIdentifier(), PrevDecl,
1461 D->isScoped(), D->isScopedUsingClassTag(), D->isFixed());
1462 if (D->isFixed()) {
1463 if (TypeSourceInfo *TI = D->getIntegerTypeSourceInfo()) {
1464 // If we have type source information for the underlying type, it means it
1465 // has been explicitly set by the user. Perform substitution on it before
1466 // moving on.
1467 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
1468 TypeSourceInfo *NewTI = SemaRef.SubstType(TI, TemplateArgs, UnderlyingLoc,
1469 DeclarationName());
1470 if (!NewTI || SemaRef.CheckEnumUnderlyingType(NewTI))
1471 Enum->setIntegerType(SemaRef.Context.IntTy);
1472 else
1473 Enum->setIntegerTypeSourceInfo(NewTI);
1474 } else {
1475 assert(!D->getIntegerType()->isDependentType()
1476 && "Dependent type without type source info");
1477 Enum->setIntegerType(D->getIntegerType());
1481 SemaRef.InstantiateAttrs(TemplateArgs, D, Enum);
1483 Enum->setInstantiationOfMemberEnum(D, TSK_ImplicitInstantiation);
1484 Enum->setAccess(D->getAccess());
1485 // Forward the mangling number from the template to the instantiated decl.
1486 SemaRef.Context.setManglingNumber(Enum, SemaRef.Context.getManglingNumber(D));
1487 // See if the old tag was defined along with a declarator.
1488 // If it did, mark the new tag as being associated with that declarator.
1489 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D))
1490 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Enum, DD);
1491 // See if the old tag was defined along with a typedef.
1492 // If it did, mark the new tag as being associated with that typedef.
1493 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D))
1494 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Enum, TND);
1495 if (SubstQualifier(D, Enum)) return nullptr;
1496 Owner->addDecl(Enum);
1498 EnumDecl *Def = D->getDefinition();
1499 if (Def && Def != D) {
1500 // If this is an out-of-line definition of an enum member template, check
1501 // that the underlying types match in the instantiation of both
1502 // declarations.
1503 if (TypeSourceInfo *TI = Def->getIntegerTypeSourceInfo()) {
1504 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
1505 QualType DefnUnderlying =
1506 SemaRef.SubstType(TI->getType(), TemplateArgs,
1507 UnderlyingLoc, DeclarationName());
1508 SemaRef.CheckEnumRedeclaration(Def->getLocation(), Def->isScoped(),
1509 DefnUnderlying, /*IsFixed=*/true, Enum);
1513 // C++11 [temp.inst]p1: The implicit instantiation of a class template
1514 // specialization causes the implicit instantiation of the declarations, but
1515 // not the definitions of scoped member enumerations.
1517 // DR1484 clarifies that enumeration definitions inside of a template
1518 // declaration aren't considered entities that can be separately instantiated
1519 // from the rest of the entity they are declared inside of.
1520 if (isDeclWithinFunction(D) ? D == Def : Def && !Enum->isScoped()) {
1521 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Enum);
1522 InstantiateEnumDefinition(Enum, Def);
1525 return Enum;
1528 void TemplateDeclInstantiator::InstantiateEnumDefinition(
1529 EnumDecl *Enum, EnumDecl *Pattern) {
1530 Enum->startDefinition();
1532 // Update the location to refer to the definition.
1533 Enum->setLocation(Pattern->getLocation());
1535 SmallVector<Decl*, 4> Enumerators;
1537 EnumConstantDecl *LastEnumConst = nullptr;
1538 for (auto *EC : Pattern->enumerators()) {
1539 // The specified value for the enumerator.
1540 ExprResult Value((Expr *)nullptr);
1541 if (Expr *UninstValue = EC->getInitExpr()) {
1542 // The enumerator's value expression is a constant expression.
1543 EnterExpressionEvaluationContext Unevaluated(
1544 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1546 Value = SemaRef.SubstExpr(UninstValue, TemplateArgs);
1549 // Drop the initial value and continue.
1550 bool isInvalid = false;
1551 if (Value.isInvalid()) {
1552 Value = nullptr;
1553 isInvalid = true;
1556 EnumConstantDecl *EnumConst
1557 = SemaRef.CheckEnumConstant(Enum, LastEnumConst,
1558 EC->getLocation(), EC->getIdentifier(),
1559 Value.get());
1561 if (isInvalid) {
1562 if (EnumConst)
1563 EnumConst->setInvalidDecl();
1564 Enum->setInvalidDecl();
1567 if (EnumConst) {
1568 SemaRef.InstantiateAttrs(TemplateArgs, EC, EnumConst);
1570 EnumConst->setAccess(Enum->getAccess());
1571 Enum->addDecl(EnumConst);
1572 Enumerators.push_back(EnumConst);
1573 LastEnumConst = EnumConst;
1575 if (Pattern->getDeclContext()->isFunctionOrMethod() &&
1576 !Enum->isScoped()) {
1577 // If the enumeration is within a function or method, record the enum
1578 // constant as a local.
1579 SemaRef.CurrentInstantiationScope->InstantiatedLocal(EC, EnumConst);
1584 SemaRef.ActOnEnumBody(Enum->getLocation(), Enum->getBraceRange(), Enum,
1585 Enumerators, nullptr, ParsedAttributesView());
1588 Decl *TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl *D) {
1589 llvm_unreachable("EnumConstantDecls can only occur within EnumDecls.");
1592 Decl *
1593 TemplateDeclInstantiator::VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D) {
1594 llvm_unreachable("BuiltinTemplateDecls cannot be instantiated.");
1597 Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) {
1598 bool isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
1600 // Create a local instantiation scope for this class template, which
1601 // will contain the instantiations of the template parameters.
1602 LocalInstantiationScope Scope(SemaRef);
1603 TemplateParameterList *TempParams = D->getTemplateParameters();
1604 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
1605 if (!InstParams)
1606 return nullptr;
1608 CXXRecordDecl *Pattern = D->getTemplatedDecl();
1610 // Instantiate the qualifier. We have to do this first in case
1611 // we're a friend declaration, because if we are then we need to put
1612 // the new declaration in the appropriate context.
1613 NestedNameSpecifierLoc QualifierLoc = Pattern->getQualifierLoc();
1614 if (QualifierLoc) {
1615 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
1616 TemplateArgs);
1617 if (!QualifierLoc)
1618 return nullptr;
1621 CXXRecordDecl *PrevDecl = nullptr;
1622 ClassTemplateDecl *PrevClassTemplate = nullptr;
1624 if (!isFriend && getPreviousDeclForInstantiation(Pattern)) {
1625 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName());
1626 if (!Found.empty()) {
1627 PrevClassTemplate = dyn_cast<ClassTemplateDecl>(Found.front());
1628 if (PrevClassTemplate)
1629 PrevDecl = PrevClassTemplate->getTemplatedDecl();
1633 // If this isn't a friend, then it's a member template, in which
1634 // case we just want to build the instantiation in the
1635 // specialization. If it is a friend, we want to build it in
1636 // the appropriate context.
1637 DeclContext *DC = Owner;
1638 if (isFriend) {
1639 if (QualifierLoc) {
1640 CXXScopeSpec SS;
1641 SS.Adopt(QualifierLoc);
1642 DC = SemaRef.computeDeclContext(SS);
1643 if (!DC) return nullptr;
1644 } else {
1645 DC = SemaRef.FindInstantiatedContext(Pattern->getLocation(),
1646 Pattern->getDeclContext(),
1647 TemplateArgs);
1650 // Look for a previous declaration of the template in the owning
1651 // context.
1652 LookupResult R(SemaRef, Pattern->getDeclName(), Pattern->getLocation(),
1653 Sema::LookupOrdinaryName,
1654 SemaRef.forRedeclarationInCurContext());
1655 SemaRef.LookupQualifiedName(R, DC);
1657 if (R.isSingleResult()) {
1658 PrevClassTemplate = R.getAsSingle<ClassTemplateDecl>();
1659 if (PrevClassTemplate)
1660 PrevDecl = PrevClassTemplate->getTemplatedDecl();
1663 if (!PrevClassTemplate && QualifierLoc) {
1664 SemaRef.Diag(Pattern->getLocation(), diag::err_not_tag_in_scope)
1665 << D->getTemplatedDecl()->getTagKind() << Pattern->getDeclName() << DC
1666 << QualifierLoc.getSourceRange();
1667 return nullptr;
1671 CXXRecordDecl *RecordInst = CXXRecordDecl::Create(
1672 SemaRef.Context, Pattern->getTagKind(), DC, Pattern->getBeginLoc(),
1673 Pattern->getLocation(), Pattern->getIdentifier(), PrevDecl,
1674 /*DelayTypeCreation=*/true);
1675 if (QualifierLoc)
1676 RecordInst->setQualifierInfo(QualifierLoc);
1678 SemaRef.InstantiateAttrsForDecl(TemplateArgs, Pattern, RecordInst, LateAttrs,
1679 StartingScope);
1681 ClassTemplateDecl *Inst
1682 = ClassTemplateDecl::Create(SemaRef.Context, DC, D->getLocation(),
1683 D->getIdentifier(), InstParams, RecordInst);
1684 RecordInst->setDescribedClassTemplate(Inst);
1686 if (isFriend) {
1687 assert(!Owner->isDependentContext());
1688 Inst->setLexicalDeclContext(Owner);
1689 RecordInst->setLexicalDeclContext(Owner);
1691 if (PrevClassTemplate) {
1692 Inst->setCommonPtr(PrevClassTemplate->getCommonPtr());
1693 RecordInst->setTypeForDecl(
1694 PrevClassTemplate->getTemplatedDecl()->getTypeForDecl());
1695 const ClassTemplateDecl *MostRecentPrevCT =
1696 PrevClassTemplate->getMostRecentDecl();
1697 TemplateParameterList *PrevParams =
1698 MostRecentPrevCT->getTemplateParameters();
1700 // Make sure the parameter lists match.
1701 if (!SemaRef.TemplateParameterListsAreEqual(
1702 RecordInst, InstParams, MostRecentPrevCT->getTemplatedDecl(),
1703 PrevParams, true, Sema::TPL_TemplateMatch))
1704 return nullptr;
1706 // Do some additional validation, then merge default arguments
1707 // from the existing declarations.
1708 if (SemaRef.CheckTemplateParameterList(InstParams, PrevParams,
1709 Sema::TPC_ClassTemplate))
1710 return nullptr;
1712 Inst->setAccess(PrevClassTemplate->getAccess());
1713 } else {
1714 Inst->setAccess(D->getAccess());
1717 Inst->setObjectOfFriendDecl();
1718 // TODO: do we want to track the instantiation progeny of this
1719 // friend target decl?
1720 } else {
1721 Inst->setAccess(D->getAccess());
1722 if (!PrevClassTemplate)
1723 Inst->setInstantiatedFromMemberTemplate(D);
1726 Inst->setPreviousDecl(PrevClassTemplate);
1728 // Trigger creation of the type for the instantiation.
1729 SemaRef.Context.getInjectedClassNameType(
1730 RecordInst, Inst->getInjectedClassNameSpecialization());
1732 // Finish handling of friends.
1733 if (isFriend) {
1734 DC->makeDeclVisibleInContext(Inst);
1735 return Inst;
1738 if (D->isOutOfLine()) {
1739 Inst->setLexicalDeclContext(D->getLexicalDeclContext());
1740 RecordInst->setLexicalDeclContext(D->getLexicalDeclContext());
1743 Owner->addDecl(Inst);
1745 if (!PrevClassTemplate) {
1746 // Queue up any out-of-line partial specializations of this member
1747 // class template; the client will force their instantiation once
1748 // the enclosing class has been instantiated.
1749 SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs;
1750 D->getPartialSpecializations(PartialSpecs);
1751 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I)
1752 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine())
1753 OutOfLinePartialSpecs.push_back(std::make_pair(Inst, PartialSpecs[I]));
1756 return Inst;
1759 Decl *
1760 TemplateDeclInstantiator::VisitClassTemplatePartialSpecializationDecl(
1761 ClassTemplatePartialSpecializationDecl *D) {
1762 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate();
1764 // Lookup the already-instantiated declaration in the instantiation
1765 // of the class template and return that.
1766 DeclContext::lookup_result Found
1767 = Owner->lookup(ClassTemplate->getDeclName());
1768 if (Found.empty())
1769 return nullptr;
1771 ClassTemplateDecl *InstClassTemplate
1772 = dyn_cast<ClassTemplateDecl>(Found.front());
1773 if (!InstClassTemplate)
1774 return nullptr;
1776 if (ClassTemplatePartialSpecializationDecl *Result
1777 = InstClassTemplate->findPartialSpecInstantiatedFromMember(D))
1778 return Result;
1780 return InstantiateClassTemplatePartialSpecialization(InstClassTemplate, D);
1783 Decl *TemplateDeclInstantiator::VisitVarTemplateDecl(VarTemplateDecl *D) {
1784 assert(D->getTemplatedDecl()->isStaticDataMember() &&
1785 "Only static data member templates are allowed.");
1787 // Create a local instantiation scope for this variable template, which
1788 // will contain the instantiations of the template parameters.
1789 LocalInstantiationScope Scope(SemaRef);
1790 TemplateParameterList *TempParams = D->getTemplateParameters();
1791 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
1792 if (!InstParams)
1793 return nullptr;
1795 VarDecl *Pattern = D->getTemplatedDecl();
1796 VarTemplateDecl *PrevVarTemplate = nullptr;
1798 if (getPreviousDeclForInstantiation(Pattern)) {
1799 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName());
1800 if (!Found.empty())
1801 PrevVarTemplate = dyn_cast<VarTemplateDecl>(Found.front());
1804 VarDecl *VarInst =
1805 cast_or_null<VarDecl>(VisitVarDecl(Pattern,
1806 /*InstantiatingVarTemplate=*/true));
1807 if (!VarInst) return nullptr;
1809 DeclContext *DC = Owner;
1811 VarTemplateDecl *Inst = VarTemplateDecl::Create(
1812 SemaRef.Context, DC, D->getLocation(), D->getIdentifier(), InstParams,
1813 VarInst);
1814 VarInst->setDescribedVarTemplate(Inst);
1815 Inst->setPreviousDecl(PrevVarTemplate);
1817 Inst->setAccess(D->getAccess());
1818 if (!PrevVarTemplate)
1819 Inst->setInstantiatedFromMemberTemplate(D);
1821 if (D->isOutOfLine()) {
1822 Inst->setLexicalDeclContext(D->getLexicalDeclContext());
1823 VarInst->setLexicalDeclContext(D->getLexicalDeclContext());
1826 Owner->addDecl(Inst);
1828 if (!PrevVarTemplate) {
1829 // Queue up any out-of-line partial specializations of this member
1830 // variable template; the client will force their instantiation once
1831 // the enclosing class has been instantiated.
1832 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
1833 D->getPartialSpecializations(PartialSpecs);
1834 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I)
1835 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine())
1836 OutOfLineVarPartialSpecs.push_back(
1837 std::make_pair(Inst, PartialSpecs[I]));
1840 return Inst;
1843 Decl *TemplateDeclInstantiator::VisitVarTemplatePartialSpecializationDecl(
1844 VarTemplatePartialSpecializationDecl *D) {
1845 assert(D->isStaticDataMember() &&
1846 "Only static data member templates are allowed.");
1848 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate();
1850 // Lookup the already-instantiated declaration and return that.
1851 DeclContext::lookup_result Found = Owner->lookup(VarTemplate->getDeclName());
1852 assert(!Found.empty() && "Instantiation found nothing?");
1854 VarTemplateDecl *InstVarTemplate = dyn_cast<VarTemplateDecl>(Found.front());
1855 assert(InstVarTemplate && "Instantiation did not find a variable template?");
1857 if (VarTemplatePartialSpecializationDecl *Result =
1858 InstVarTemplate->findPartialSpecInstantiatedFromMember(D))
1859 return Result;
1861 return InstantiateVarTemplatePartialSpecialization(InstVarTemplate, D);
1864 Decl *
1865 TemplateDeclInstantiator::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) {
1866 // Create a local instantiation scope for this function template, which
1867 // will contain the instantiations of the template parameters and then get
1868 // merged with the local instantiation scope for the function template
1869 // itself.
1870 LocalInstantiationScope Scope(SemaRef);
1871 Sema::ConstraintEvalRAII<TemplateDeclInstantiator> RAII(*this);
1873 TemplateParameterList *TempParams = D->getTemplateParameters();
1874 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
1875 if (!InstParams)
1876 return nullptr;
1878 FunctionDecl *Instantiated = nullptr;
1879 if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(D->getTemplatedDecl()))
1880 Instantiated = cast_or_null<FunctionDecl>(VisitCXXMethodDecl(DMethod,
1881 InstParams));
1882 else
1883 Instantiated = cast_or_null<FunctionDecl>(VisitFunctionDecl(
1884 D->getTemplatedDecl(),
1885 InstParams));
1887 if (!Instantiated)
1888 return nullptr;
1890 // Link the instantiated function template declaration to the function
1891 // template from which it was instantiated.
1892 FunctionTemplateDecl *InstTemplate
1893 = Instantiated->getDescribedFunctionTemplate();
1894 InstTemplate->setAccess(D->getAccess());
1895 assert(InstTemplate &&
1896 "VisitFunctionDecl/CXXMethodDecl didn't create a template!");
1898 bool isFriend = (InstTemplate->getFriendObjectKind() != Decl::FOK_None);
1900 // Link the instantiation back to the pattern *unless* this is a
1901 // non-definition friend declaration.
1902 if (!InstTemplate->getInstantiatedFromMemberTemplate() &&
1903 !(isFriend && !D->getTemplatedDecl()->isThisDeclarationADefinition()))
1904 InstTemplate->setInstantiatedFromMemberTemplate(D);
1906 // Make declarations visible in the appropriate context.
1907 if (!isFriend) {
1908 Owner->addDecl(InstTemplate);
1909 } else if (InstTemplate->getDeclContext()->isRecord() &&
1910 !getPreviousDeclForInstantiation(D)) {
1911 SemaRef.CheckFriendAccess(InstTemplate);
1914 return InstTemplate;
1917 Decl *TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl *D) {
1918 CXXRecordDecl *PrevDecl = nullptr;
1919 if (CXXRecordDecl *PatternPrev = getPreviousDeclForInstantiation(D)) {
1920 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(),
1921 PatternPrev,
1922 TemplateArgs);
1923 if (!Prev) return nullptr;
1924 PrevDecl = cast<CXXRecordDecl>(Prev);
1927 CXXRecordDecl *Record = nullptr;
1928 bool IsInjectedClassName = D->isInjectedClassName();
1929 if (D->isLambda())
1930 Record = CXXRecordDecl::CreateLambda(
1931 SemaRef.Context, Owner, D->getLambdaTypeInfo(), D->getLocation(),
1932 D->getLambdaDependencyKind(), D->isGenericLambda(),
1933 D->getLambdaCaptureDefault());
1934 else
1935 Record = CXXRecordDecl::Create(SemaRef.Context, D->getTagKind(), Owner,
1936 D->getBeginLoc(), D->getLocation(),
1937 D->getIdentifier(), PrevDecl,
1938 /*DelayTypeCreation=*/IsInjectedClassName);
1939 // Link the type of the injected-class-name to that of the outer class.
1940 if (IsInjectedClassName)
1941 (void)SemaRef.Context.getTypeDeclType(Record, cast<CXXRecordDecl>(Owner));
1943 // Substitute the nested name specifier, if any.
1944 if (SubstQualifier(D, Record))
1945 return nullptr;
1947 SemaRef.InstantiateAttrsForDecl(TemplateArgs, D, Record, LateAttrs,
1948 StartingScope);
1950 Record->setImplicit(D->isImplicit());
1951 // FIXME: Check against AS_none is an ugly hack to work around the issue that
1952 // the tag decls introduced by friend class declarations don't have an access
1953 // specifier. Remove once this area of the code gets sorted out.
1954 if (D->getAccess() != AS_none)
1955 Record->setAccess(D->getAccess());
1956 if (!IsInjectedClassName)
1957 Record->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation);
1959 // If the original function was part of a friend declaration,
1960 // inherit its namespace state.
1961 if (D->getFriendObjectKind())
1962 Record->setObjectOfFriendDecl();
1964 // Make sure that anonymous structs and unions are recorded.
1965 if (D->isAnonymousStructOrUnion())
1966 Record->setAnonymousStructOrUnion(true);
1968 if (D->isLocalClass())
1969 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Record);
1971 // Forward the mangling number from the template to the instantiated decl.
1972 SemaRef.Context.setManglingNumber(Record,
1973 SemaRef.Context.getManglingNumber(D));
1975 // See if the old tag was defined along with a declarator.
1976 // If it did, mark the new tag as being associated with that declarator.
1977 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D))
1978 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Record, DD);
1980 // See if the old tag was defined along with a typedef.
1981 // If it did, mark the new tag as being associated with that typedef.
1982 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D))
1983 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Record, TND);
1985 Owner->addDecl(Record);
1987 // DR1484 clarifies that the members of a local class are instantiated as part
1988 // of the instantiation of their enclosing entity.
1989 if (D->isCompleteDefinition() && D->isLocalClass()) {
1990 Sema::LocalEagerInstantiationScope LocalInstantiations(SemaRef);
1992 SemaRef.InstantiateClass(D->getLocation(), Record, D, TemplateArgs,
1993 TSK_ImplicitInstantiation,
1994 /*Complain=*/true);
1996 // For nested local classes, we will instantiate the members when we
1997 // reach the end of the outermost (non-nested) local class.
1998 if (!D->isCXXClassMember())
1999 SemaRef.InstantiateClassMembers(D->getLocation(), Record, TemplateArgs,
2000 TSK_ImplicitInstantiation);
2002 // This class may have local implicit instantiations that need to be
2003 // performed within this scope.
2004 LocalInstantiations.perform();
2007 SemaRef.DiagnoseUnusedNestedTypedefs(Record);
2009 if (IsInjectedClassName)
2010 assert(Record->isInjectedClassName() && "Broken injected-class-name");
2012 return Record;
2015 /// Adjust the given function type for an instantiation of the
2016 /// given declaration, to cope with modifications to the function's type that
2017 /// aren't reflected in the type-source information.
2019 /// \param D The declaration we're instantiating.
2020 /// \param TInfo The already-instantiated type.
2021 static QualType adjustFunctionTypeForInstantiation(ASTContext &Context,
2022 FunctionDecl *D,
2023 TypeSourceInfo *TInfo) {
2024 const FunctionProtoType *OrigFunc
2025 = D->getType()->castAs<FunctionProtoType>();
2026 const FunctionProtoType *NewFunc
2027 = TInfo->getType()->castAs<FunctionProtoType>();
2028 if (OrigFunc->getExtInfo() == NewFunc->getExtInfo())
2029 return TInfo->getType();
2031 FunctionProtoType::ExtProtoInfo NewEPI = NewFunc->getExtProtoInfo();
2032 NewEPI.ExtInfo = OrigFunc->getExtInfo();
2033 return Context.getFunctionType(NewFunc->getReturnType(),
2034 NewFunc->getParamTypes(), NewEPI);
2037 /// Normal class members are of more specific types and therefore
2038 /// don't make it here. This function serves three purposes:
2039 /// 1) instantiating function templates
2040 /// 2) substituting friend and local function declarations
2041 /// 3) substituting deduction guide declarations for nested class templates
2042 Decl *TemplateDeclInstantiator::VisitFunctionDecl(
2043 FunctionDecl *D, TemplateParameterList *TemplateParams,
2044 RewriteKind FunctionRewriteKind) {
2045 // Check whether there is already a function template specialization for
2046 // this declaration.
2047 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate();
2048 if (FunctionTemplate && !TemplateParams) {
2049 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
2051 void *InsertPos = nullptr;
2052 FunctionDecl *SpecFunc
2053 = FunctionTemplate->findSpecialization(Innermost, InsertPos);
2055 // If we already have a function template specialization, return it.
2056 if (SpecFunc)
2057 return SpecFunc;
2060 bool isFriend;
2061 if (FunctionTemplate)
2062 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None);
2063 else
2064 isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
2066 bool MergeWithParentScope = (TemplateParams != nullptr) ||
2067 Owner->isFunctionOrMethod() ||
2068 !(isa<Decl>(Owner) &&
2069 cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod());
2070 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope);
2072 ExplicitSpecifier InstantiatedExplicitSpecifier;
2073 if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) {
2074 InstantiatedExplicitSpecifier = SemaRef.instantiateExplicitSpecifier(
2075 TemplateArgs, DGuide->getExplicitSpecifier());
2076 if (InstantiatedExplicitSpecifier.isInvalid())
2077 return nullptr;
2080 SmallVector<ParmVarDecl *, 4> Params;
2081 TypeSourceInfo *TInfo = SubstFunctionType(D, Params);
2082 if (!TInfo)
2083 return nullptr;
2084 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo);
2086 if (TemplateParams && TemplateParams->size()) {
2087 auto *LastParam =
2088 dyn_cast<TemplateTypeParmDecl>(TemplateParams->asArray().back());
2089 if (LastParam && LastParam->isImplicit() &&
2090 LastParam->hasTypeConstraint()) {
2091 // In abbreviated templates, the type-constraints of invented template
2092 // type parameters are instantiated with the function type, invalidating
2093 // the TemplateParameterList which relied on the template type parameter
2094 // not having a type constraint. Recreate the TemplateParameterList with
2095 // the updated parameter list.
2096 TemplateParams = TemplateParameterList::Create(
2097 SemaRef.Context, TemplateParams->getTemplateLoc(),
2098 TemplateParams->getLAngleLoc(), TemplateParams->asArray(),
2099 TemplateParams->getRAngleLoc(), TemplateParams->getRequiresClause());
2103 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc();
2104 if (QualifierLoc) {
2105 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2106 TemplateArgs);
2107 if (!QualifierLoc)
2108 return nullptr;
2111 Expr *TrailingRequiresClause = D->getTrailingRequiresClause();
2113 // If we're instantiating a local function declaration, put the result
2114 // in the enclosing namespace; otherwise we need to find the instantiated
2115 // context.
2116 DeclContext *DC;
2117 if (D->isLocalExternDecl()) {
2118 DC = Owner;
2119 SemaRef.adjustContextForLocalExternDecl(DC);
2120 } else if (isFriend && QualifierLoc) {
2121 CXXScopeSpec SS;
2122 SS.Adopt(QualifierLoc);
2123 DC = SemaRef.computeDeclContext(SS);
2124 if (!DC) return nullptr;
2125 } else {
2126 DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(),
2127 TemplateArgs);
2130 DeclarationNameInfo NameInfo
2131 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs);
2133 if (FunctionRewriteKind != RewriteKind::None)
2134 adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo);
2136 FunctionDecl *Function;
2137 if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) {
2138 Function = CXXDeductionGuideDecl::Create(
2139 SemaRef.Context, DC, D->getInnerLocStart(),
2140 InstantiatedExplicitSpecifier, NameInfo, T, TInfo,
2141 D->getSourceRange().getEnd(), DGuide->getCorrespondingConstructor(),
2142 DGuide->getDeductionCandidateKind());
2143 Function->setAccess(D->getAccess());
2144 } else {
2145 Function = FunctionDecl::Create(
2146 SemaRef.Context, DC, D->getInnerLocStart(), NameInfo, T, TInfo,
2147 D->getCanonicalDecl()->getStorageClass(), D->UsesFPIntrin(),
2148 D->isInlineSpecified(), D->hasWrittenPrototype(), D->getConstexprKind(),
2149 TrailingRequiresClause);
2150 Function->setFriendConstraintRefersToEnclosingTemplate(
2151 D->FriendConstraintRefersToEnclosingTemplate());
2152 Function->setRangeEnd(D->getSourceRange().getEnd());
2155 if (D->isInlined())
2156 Function->setImplicitlyInline();
2158 if (QualifierLoc)
2159 Function->setQualifierInfo(QualifierLoc);
2161 if (D->isLocalExternDecl())
2162 Function->setLocalExternDecl();
2164 DeclContext *LexicalDC = Owner;
2165 if (!isFriend && D->isOutOfLine() && !D->isLocalExternDecl()) {
2166 assert(D->getDeclContext()->isFileContext());
2167 LexicalDC = D->getDeclContext();
2169 else if (D->isLocalExternDecl()) {
2170 LexicalDC = SemaRef.CurContext;
2173 Function->setLexicalDeclContext(LexicalDC);
2175 // Attach the parameters
2176 for (unsigned P = 0; P < Params.size(); ++P)
2177 if (Params[P])
2178 Params[P]->setOwningFunction(Function);
2179 Function->setParams(Params);
2181 if (TrailingRequiresClause)
2182 Function->setTrailingRequiresClause(TrailingRequiresClause);
2184 if (TemplateParams) {
2185 // Our resulting instantiation is actually a function template, since we
2186 // are substituting only the outer template parameters. For example, given
2188 // template<typename T>
2189 // struct X {
2190 // template<typename U> friend void f(T, U);
2191 // };
2193 // X<int> x;
2195 // We are instantiating the friend function template "f" within X<int>,
2196 // which means substituting int for T, but leaving "f" as a friend function
2197 // template.
2198 // Build the function template itself.
2199 FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, DC,
2200 Function->getLocation(),
2201 Function->getDeclName(),
2202 TemplateParams, Function);
2203 Function->setDescribedFunctionTemplate(FunctionTemplate);
2205 FunctionTemplate->setLexicalDeclContext(LexicalDC);
2207 if (isFriend && D->isThisDeclarationADefinition()) {
2208 FunctionTemplate->setInstantiatedFromMemberTemplate(
2209 D->getDescribedFunctionTemplate());
2211 } else if (FunctionTemplate) {
2212 // Record this function template specialization.
2213 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
2214 Function->setFunctionTemplateSpecialization(FunctionTemplate,
2215 TemplateArgumentList::CreateCopy(SemaRef.Context,
2216 Innermost),
2217 /*InsertPos=*/nullptr);
2218 } else if (isFriend && D->isThisDeclarationADefinition()) {
2219 // Do not connect the friend to the template unless it's actually a
2220 // definition. We don't want non-template functions to be marked as being
2221 // template instantiations.
2222 Function->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation);
2223 } else if (!isFriend) {
2224 // If this is not a function template, and this is not a friend (that is,
2225 // this is a locally declared function), save the instantiation relationship
2226 // for the purposes of constraint instantiation.
2227 Function->setInstantiatedFromDecl(D);
2230 if (isFriend) {
2231 Function->setObjectOfFriendDecl();
2232 if (FunctionTemplateDecl *FT = Function->getDescribedFunctionTemplate())
2233 FT->setObjectOfFriendDecl();
2236 if (InitFunctionInstantiation(Function, D))
2237 Function->setInvalidDecl();
2239 bool IsExplicitSpecialization = false;
2241 LookupResult Previous(
2242 SemaRef, Function->getDeclName(), SourceLocation(),
2243 D->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage
2244 : Sema::LookupOrdinaryName,
2245 D->isLocalExternDecl() ? Sema::ForExternalRedeclaration
2246 : SemaRef.forRedeclarationInCurContext());
2248 if (DependentFunctionTemplateSpecializationInfo *DFTSI =
2249 D->getDependentSpecializationInfo()) {
2250 assert(isFriend && "dependent specialization info on "
2251 "non-member non-friend function?");
2253 // Instantiate the explicit template arguments.
2254 TemplateArgumentListInfo ExplicitArgs;
2255 if (const auto *ArgsWritten = DFTSI->TemplateArgumentsAsWritten) {
2256 ExplicitArgs.setLAngleLoc(ArgsWritten->getLAngleLoc());
2257 ExplicitArgs.setRAngleLoc(ArgsWritten->getRAngleLoc());
2258 if (SemaRef.SubstTemplateArguments(ArgsWritten->arguments(), TemplateArgs,
2259 ExplicitArgs))
2260 return nullptr;
2263 // Map the candidates for the primary template to their instantiations.
2264 for (FunctionTemplateDecl *FTD : DFTSI->getCandidates()) {
2265 if (NamedDecl *ND =
2266 SemaRef.FindInstantiatedDecl(D->getLocation(), FTD, TemplateArgs))
2267 Previous.addDecl(ND);
2268 else
2269 return nullptr;
2272 if (SemaRef.CheckFunctionTemplateSpecialization(
2273 Function,
2274 DFTSI->TemplateArgumentsAsWritten ? &ExplicitArgs : nullptr,
2275 Previous))
2276 Function->setInvalidDecl();
2278 IsExplicitSpecialization = true;
2279 } else if (const ASTTemplateArgumentListInfo *ArgsWritten =
2280 D->getTemplateSpecializationArgsAsWritten()) {
2281 // The name of this function was written as a template-id.
2282 SemaRef.LookupQualifiedName(Previous, DC);
2284 // Instantiate the explicit template arguments.
2285 TemplateArgumentListInfo ExplicitArgs(ArgsWritten->getLAngleLoc(),
2286 ArgsWritten->getRAngleLoc());
2287 if (SemaRef.SubstTemplateArguments(ArgsWritten->arguments(), TemplateArgs,
2288 ExplicitArgs))
2289 return nullptr;
2291 if (SemaRef.CheckFunctionTemplateSpecialization(Function,
2292 &ExplicitArgs,
2293 Previous))
2294 Function->setInvalidDecl();
2296 IsExplicitSpecialization = true;
2297 } else if (TemplateParams || !FunctionTemplate) {
2298 // Look only into the namespace where the friend would be declared to
2299 // find a previous declaration. This is the innermost enclosing namespace,
2300 // as described in ActOnFriendFunctionDecl.
2301 SemaRef.LookupQualifiedName(Previous, DC->getRedeclContext());
2303 // In C++, the previous declaration we find might be a tag type
2304 // (class or enum). In this case, the new declaration will hide the
2305 // tag type. Note that this does not apply if we're declaring a
2306 // typedef (C++ [dcl.typedef]p4).
2307 if (Previous.isSingleTagDecl())
2308 Previous.clear();
2310 // Filter out previous declarations that don't match the scope. The only
2311 // effect this has is to remove declarations found in inline namespaces
2312 // for friend declarations with unqualified names.
2313 if (isFriend && !QualifierLoc) {
2314 SemaRef.FilterLookupForScope(Previous, DC, /*Scope=*/ nullptr,
2315 /*ConsiderLinkage=*/ true,
2316 QualifierLoc.hasQualifier());
2320 // Per [temp.inst], default arguments in function declarations at local scope
2321 // are instantiated along with the enclosing declaration. For example:
2323 // template<typename T>
2324 // void ft() {
2325 // void f(int = []{ return T::value; }());
2326 // }
2327 // template void ft<int>(); // error: type 'int' cannot be used prior
2328 // to '::' because it has no members
2330 // The error is issued during instantiation of ft<int>() because substitution
2331 // into the default argument fails; the default argument is instantiated even
2332 // though it is never used.
2333 if (Function->isLocalExternDecl()) {
2334 for (ParmVarDecl *PVD : Function->parameters()) {
2335 if (!PVD->hasDefaultArg())
2336 continue;
2337 if (SemaRef.SubstDefaultArgument(D->getInnerLocStart(), PVD, TemplateArgs)) {
2338 // If substitution fails, the default argument is set to a
2339 // RecoveryExpr that wraps the uninstantiated default argument so
2340 // that downstream diagnostics are omitted.
2341 Expr *UninstExpr = PVD->getUninstantiatedDefaultArg();
2342 ExprResult ErrorResult = SemaRef.CreateRecoveryExpr(
2343 UninstExpr->getBeginLoc(), UninstExpr->getEndLoc(),
2344 { UninstExpr }, UninstExpr->getType());
2345 if (ErrorResult.isUsable())
2346 PVD->setDefaultArg(ErrorResult.get());
2351 SemaRef.CheckFunctionDeclaration(/*Scope*/ nullptr, Function, Previous,
2352 IsExplicitSpecialization,
2353 Function->isThisDeclarationADefinition());
2355 // Check the template parameter list against the previous declaration. The
2356 // goal here is to pick up default arguments added since the friend was
2357 // declared; we know the template parameter lists match, since otherwise
2358 // we would not have picked this template as the previous declaration.
2359 if (isFriend && TemplateParams && FunctionTemplate->getPreviousDecl()) {
2360 SemaRef.CheckTemplateParameterList(
2361 TemplateParams,
2362 FunctionTemplate->getPreviousDecl()->getTemplateParameters(),
2363 Function->isThisDeclarationADefinition()
2364 ? Sema::TPC_FriendFunctionTemplateDefinition
2365 : Sema::TPC_FriendFunctionTemplate);
2368 // If we're introducing a friend definition after the first use, trigger
2369 // instantiation.
2370 // FIXME: If this is a friend function template definition, we should check
2371 // to see if any specializations have been used.
2372 if (isFriend && D->isThisDeclarationADefinition() && Function->isUsed(false)) {
2373 if (MemberSpecializationInfo *MSInfo =
2374 Function->getMemberSpecializationInfo()) {
2375 if (MSInfo->getPointOfInstantiation().isInvalid()) {
2376 SourceLocation Loc = D->getLocation(); // FIXME
2377 MSInfo->setPointOfInstantiation(Loc);
2378 SemaRef.PendingLocalImplicitInstantiations.push_back(
2379 std::make_pair(Function, Loc));
2384 if (D->isExplicitlyDefaulted()) {
2385 if (SubstDefaultedFunction(Function, D))
2386 return nullptr;
2388 if (D->isDeleted())
2389 SemaRef.SetDeclDeleted(Function, D->getLocation());
2391 NamedDecl *PrincipalDecl =
2392 (TemplateParams ? cast<NamedDecl>(FunctionTemplate) : Function);
2394 // If this declaration lives in a different context from its lexical context,
2395 // add it to the corresponding lookup table.
2396 if (isFriend ||
2397 (Function->isLocalExternDecl() && !Function->getPreviousDecl()))
2398 DC->makeDeclVisibleInContext(PrincipalDecl);
2400 if (Function->isOverloadedOperator() && !DC->isRecord() &&
2401 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
2402 PrincipalDecl->setNonMemberOperator();
2404 return Function;
2407 Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(
2408 CXXMethodDecl *D, TemplateParameterList *TemplateParams,
2409 RewriteKind FunctionRewriteKind) {
2410 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate();
2411 if (FunctionTemplate && !TemplateParams) {
2412 // We are creating a function template specialization from a function
2413 // template. Check whether there is already a function template
2414 // specialization for this particular set of template arguments.
2415 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
2417 void *InsertPos = nullptr;
2418 FunctionDecl *SpecFunc
2419 = FunctionTemplate->findSpecialization(Innermost, InsertPos);
2421 // If we already have a function template specialization, return it.
2422 if (SpecFunc)
2423 return SpecFunc;
2426 bool isFriend;
2427 if (FunctionTemplate)
2428 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None);
2429 else
2430 isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
2432 bool MergeWithParentScope = (TemplateParams != nullptr) ||
2433 !(isa<Decl>(Owner) &&
2434 cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod());
2435 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope);
2437 Sema::LambdaScopeForCallOperatorInstantiationRAII LambdaScope(
2438 SemaRef, const_cast<CXXMethodDecl *>(D), TemplateArgs, Scope);
2440 // Instantiate enclosing template arguments for friends.
2441 SmallVector<TemplateParameterList *, 4> TempParamLists;
2442 unsigned NumTempParamLists = 0;
2443 if (isFriend && (NumTempParamLists = D->getNumTemplateParameterLists())) {
2444 TempParamLists.resize(NumTempParamLists);
2445 for (unsigned I = 0; I != NumTempParamLists; ++I) {
2446 TemplateParameterList *TempParams = D->getTemplateParameterList(I);
2447 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
2448 if (!InstParams)
2449 return nullptr;
2450 TempParamLists[I] = InstParams;
2454 auto InstantiatedExplicitSpecifier = ExplicitSpecifier::getFromDecl(D);
2455 // deduction guides need this
2456 const bool CouldInstantiate =
2457 InstantiatedExplicitSpecifier.getExpr() == nullptr ||
2458 !InstantiatedExplicitSpecifier.getExpr()->isValueDependent();
2460 // Delay the instantiation of the explicit-specifier until after the
2461 // constraints are checked during template argument deduction.
2462 if (CouldInstantiate ||
2463 SemaRef.CodeSynthesisContexts.back().Kind !=
2464 Sema::CodeSynthesisContext::DeducedTemplateArgumentSubstitution) {
2465 InstantiatedExplicitSpecifier = SemaRef.instantiateExplicitSpecifier(
2466 TemplateArgs, InstantiatedExplicitSpecifier);
2468 if (InstantiatedExplicitSpecifier.isInvalid())
2469 return nullptr;
2470 } else {
2471 InstantiatedExplicitSpecifier.setKind(ExplicitSpecKind::Unresolved);
2474 // Implicit destructors/constructors created for local classes in
2475 // DeclareImplicit* (see SemaDeclCXX.cpp) might not have an associated TSI.
2476 // Unfortunately there isn't enough context in those functions to
2477 // conditionally populate the TSI without breaking non-template related use
2478 // cases. Populate TSIs prior to calling SubstFunctionType to make sure we get
2479 // a proper transformation.
2480 if (cast<CXXRecordDecl>(D->getParent())->isLambda() &&
2481 !D->getTypeSourceInfo() &&
2482 isa<CXXConstructorDecl, CXXDestructorDecl>(D)) {
2483 TypeSourceInfo *TSI =
2484 SemaRef.Context.getTrivialTypeSourceInfo(D->getType());
2485 D->setTypeSourceInfo(TSI);
2488 SmallVector<ParmVarDecl *, 4> Params;
2489 TypeSourceInfo *TInfo = SubstFunctionType(D, Params);
2490 if (!TInfo)
2491 return nullptr;
2492 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo);
2494 if (TemplateParams && TemplateParams->size()) {
2495 auto *LastParam =
2496 dyn_cast<TemplateTypeParmDecl>(TemplateParams->asArray().back());
2497 if (LastParam && LastParam->isImplicit() &&
2498 LastParam->hasTypeConstraint()) {
2499 // In abbreviated templates, the type-constraints of invented template
2500 // type parameters are instantiated with the function type, invalidating
2501 // the TemplateParameterList which relied on the template type parameter
2502 // not having a type constraint. Recreate the TemplateParameterList with
2503 // the updated parameter list.
2504 TemplateParams = TemplateParameterList::Create(
2505 SemaRef.Context, TemplateParams->getTemplateLoc(),
2506 TemplateParams->getLAngleLoc(), TemplateParams->asArray(),
2507 TemplateParams->getRAngleLoc(), TemplateParams->getRequiresClause());
2511 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc();
2512 if (QualifierLoc) {
2513 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2514 TemplateArgs);
2515 if (!QualifierLoc)
2516 return nullptr;
2519 DeclContext *DC = Owner;
2520 if (isFriend) {
2521 if (QualifierLoc) {
2522 CXXScopeSpec SS;
2523 SS.Adopt(QualifierLoc);
2524 DC = SemaRef.computeDeclContext(SS);
2526 if (DC && SemaRef.RequireCompleteDeclContext(SS, DC))
2527 return nullptr;
2528 } else {
2529 DC = SemaRef.FindInstantiatedContext(D->getLocation(),
2530 D->getDeclContext(),
2531 TemplateArgs);
2533 if (!DC) return nullptr;
2536 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
2537 Expr *TrailingRequiresClause = D->getTrailingRequiresClause();
2539 DeclarationNameInfo NameInfo
2540 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs);
2542 if (FunctionRewriteKind != RewriteKind::None)
2543 adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo);
2545 // Build the instantiated method declaration.
2546 CXXMethodDecl *Method = nullptr;
2548 SourceLocation StartLoc = D->getInnerLocStart();
2549 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
2550 Method = CXXConstructorDecl::Create(
2551 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo,
2552 InstantiatedExplicitSpecifier, Constructor->UsesFPIntrin(),
2553 Constructor->isInlineSpecified(), false,
2554 Constructor->getConstexprKind(), InheritedConstructor(),
2555 TrailingRequiresClause);
2556 Method->setRangeEnd(Constructor->getEndLoc());
2557 } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
2558 Method = CXXDestructorDecl::Create(
2559 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo,
2560 Destructor->UsesFPIntrin(), Destructor->isInlineSpecified(), false,
2561 Destructor->getConstexprKind(), TrailingRequiresClause);
2562 Method->setIneligibleOrNotSelected(true);
2563 Method->setRangeEnd(Destructor->getEndLoc());
2564 Method->setDeclName(SemaRef.Context.DeclarationNames.getCXXDestructorName(
2565 SemaRef.Context.getCanonicalType(
2566 SemaRef.Context.getTypeDeclType(Record))));
2567 } else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
2568 Method = CXXConversionDecl::Create(
2569 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo,
2570 Conversion->UsesFPIntrin(), Conversion->isInlineSpecified(),
2571 InstantiatedExplicitSpecifier, Conversion->getConstexprKind(),
2572 Conversion->getEndLoc(), TrailingRequiresClause);
2573 } else {
2574 StorageClass SC = D->isStatic() ? SC_Static : SC_None;
2575 Method = CXXMethodDecl::Create(
2576 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, SC,
2577 D->UsesFPIntrin(), D->isInlineSpecified(), D->getConstexprKind(),
2578 D->getEndLoc(), TrailingRequiresClause);
2581 if (D->isInlined())
2582 Method->setImplicitlyInline();
2584 if (QualifierLoc)
2585 Method->setQualifierInfo(QualifierLoc);
2587 if (TemplateParams) {
2588 // Our resulting instantiation is actually a function template, since we
2589 // are substituting only the outer template parameters. For example, given
2591 // template<typename T>
2592 // struct X {
2593 // template<typename U> void f(T, U);
2594 // };
2596 // X<int> x;
2598 // We are instantiating the member template "f" within X<int>, which means
2599 // substituting int for T, but leaving "f" as a member function template.
2600 // Build the function template itself.
2601 FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, Record,
2602 Method->getLocation(),
2603 Method->getDeclName(),
2604 TemplateParams, Method);
2605 if (isFriend) {
2606 FunctionTemplate->setLexicalDeclContext(Owner);
2607 FunctionTemplate->setObjectOfFriendDecl();
2608 } else if (D->isOutOfLine())
2609 FunctionTemplate->setLexicalDeclContext(D->getLexicalDeclContext());
2610 Method->setDescribedFunctionTemplate(FunctionTemplate);
2611 } else if (FunctionTemplate) {
2612 // Record this function template specialization.
2613 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
2614 Method->setFunctionTemplateSpecialization(FunctionTemplate,
2615 TemplateArgumentList::CreateCopy(SemaRef.Context,
2616 Innermost),
2617 /*InsertPos=*/nullptr);
2618 } else if (!isFriend) {
2619 // Record that this is an instantiation of a member function.
2620 Method->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation);
2623 // If we are instantiating a member function defined
2624 // out-of-line, the instantiation will have the same lexical
2625 // context (which will be a namespace scope) as the template.
2626 if (isFriend) {
2627 if (NumTempParamLists)
2628 Method->setTemplateParameterListsInfo(
2629 SemaRef.Context,
2630 llvm::ArrayRef(TempParamLists.data(), NumTempParamLists));
2632 Method->setLexicalDeclContext(Owner);
2633 Method->setObjectOfFriendDecl();
2634 } else if (D->isOutOfLine())
2635 Method->setLexicalDeclContext(D->getLexicalDeclContext());
2637 // Attach the parameters
2638 for (unsigned P = 0; P < Params.size(); ++P)
2639 Params[P]->setOwningFunction(Method);
2640 Method->setParams(Params);
2642 if (InitMethodInstantiation(Method, D))
2643 Method->setInvalidDecl();
2645 LookupResult Previous(SemaRef, NameInfo, Sema::LookupOrdinaryName,
2646 Sema::ForExternalRedeclaration);
2648 bool IsExplicitSpecialization = false;
2650 // If the name of this function was written as a template-id, instantiate
2651 // the explicit template arguments.
2652 if (DependentFunctionTemplateSpecializationInfo *DFTSI =
2653 D->getDependentSpecializationInfo()) {
2654 // Instantiate the explicit template arguments.
2655 TemplateArgumentListInfo ExplicitArgs;
2656 if (const auto *ArgsWritten = DFTSI->TemplateArgumentsAsWritten) {
2657 ExplicitArgs.setLAngleLoc(ArgsWritten->getLAngleLoc());
2658 ExplicitArgs.setRAngleLoc(ArgsWritten->getRAngleLoc());
2659 if (SemaRef.SubstTemplateArguments(ArgsWritten->arguments(), TemplateArgs,
2660 ExplicitArgs))
2661 return nullptr;
2664 // Map the candidates for the primary template to their instantiations.
2665 for (FunctionTemplateDecl *FTD : DFTSI->getCandidates()) {
2666 if (NamedDecl *ND =
2667 SemaRef.FindInstantiatedDecl(D->getLocation(), FTD, TemplateArgs))
2668 Previous.addDecl(ND);
2669 else
2670 return nullptr;
2673 if (SemaRef.CheckFunctionTemplateSpecialization(
2674 Method, DFTSI->TemplateArgumentsAsWritten ? &ExplicitArgs : nullptr,
2675 Previous))
2676 Method->setInvalidDecl();
2678 IsExplicitSpecialization = true;
2679 } else if (const ASTTemplateArgumentListInfo *ArgsWritten =
2680 D->getTemplateSpecializationArgsAsWritten()) {
2681 SemaRef.LookupQualifiedName(Previous, DC);
2683 TemplateArgumentListInfo ExplicitArgs(ArgsWritten->getLAngleLoc(),
2684 ArgsWritten->getRAngleLoc());
2686 if (SemaRef.SubstTemplateArguments(ArgsWritten->arguments(), TemplateArgs,
2687 ExplicitArgs))
2688 return nullptr;
2690 if (SemaRef.CheckFunctionTemplateSpecialization(Method,
2691 &ExplicitArgs,
2692 Previous))
2693 Method->setInvalidDecl();
2695 IsExplicitSpecialization = true;
2696 } else if (!FunctionTemplate || TemplateParams || isFriend) {
2697 SemaRef.LookupQualifiedName(Previous, Record);
2699 // In C++, the previous declaration we find might be a tag type
2700 // (class or enum). In this case, the new declaration will hide the
2701 // tag type. Note that this does not apply if we're declaring a
2702 // typedef (C++ [dcl.typedef]p4).
2703 if (Previous.isSingleTagDecl())
2704 Previous.clear();
2707 // Per [temp.inst], default arguments in member functions of local classes
2708 // are instantiated along with the member function declaration. For example:
2710 // template<typename T>
2711 // void ft() {
2712 // struct lc {
2713 // int operator()(int p = []{ return T::value; }());
2714 // };
2715 // }
2716 // template void ft<int>(); // error: type 'int' cannot be used prior
2717 // to '::'because it has no members
2719 // The error is issued during instantiation of ft<int>()::lc::operator()
2720 // because substitution into the default argument fails; the default argument
2721 // is instantiated even though it is never used.
2722 if (D->isInLocalScopeForInstantiation()) {
2723 for (unsigned P = 0; P < Params.size(); ++P) {
2724 if (!Params[P]->hasDefaultArg())
2725 continue;
2726 if (SemaRef.SubstDefaultArgument(StartLoc, Params[P], TemplateArgs)) {
2727 // If substitution fails, the default argument is set to a
2728 // RecoveryExpr that wraps the uninstantiated default argument so
2729 // that downstream diagnostics are omitted.
2730 Expr *UninstExpr = Params[P]->getUninstantiatedDefaultArg();
2731 ExprResult ErrorResult = SemaRef.CreateRecoveryExpr(
2732 UninstExpr->getBeginLoc(), UninstExpr->getEndLoc(),
2733 { UninstExpr }, UninstExpr->getType());
2734 if (ErrorResult.isUsable())
2735 Params[P]->setDefaultArg(ErrorResult.get());
2740 SemaRef.CheckFunctionDeclaration(nullptr, Method, Previous,
2741 IsExplicitSpecialization,
2742 Method->isThisDeclarationADefinition());
2744 if (D->isPure())
2745 SemaRef.CheckPureMethod(Method, SourceRange());
2747 // Propagate access. For a non-friend declaration, the access is
2748 // whatever we're propagating from. For a friend, it should be the
2749 // previous declaration we just found.
2750 if (isFriend && Method->getPreviousDecl())
2751 Method->setAccess(Method->getPreviousDecl()->getAccess());
2752 else
2753 Method->setAccess(D->getAccess());
2754 if (FunctionTemplate)
2755 FunctionTemplate->setAccess(Method->getAccess());
2757 SemaRef.CheckOverrideControl(Method);
2759 // If a function is defined as defaulted or deleted, mark it as such now.
2760 if (D->isExplicitlyDefaulted()) {
2761 if (SubstDefaultedFunction(Method, D))
2762 return nullptr;
2764 if (D->isDeletedAsWritten())
2765 SemaRef.SetDeclDeleted(Method, Method->getLocation());
2767 // If this is an explicit specialization, mark the implicitly-instantiated
2768 // template specialization as being an explicit specialization too.
2769 // FIXME: Is this necessary?
2770 if (IsExplicitSpecialization && !isFriend)
2771 SemaRef.CompleteMemberSpecialization(Method, Previous);
2773 // If the method is a special member function, we need to mark it as
2774 // ineligible so that Owner->addDecl() won't mark the class as non trivial.
2775 // At the end of the class instantiation, we calculate eligibility again and
2776 // then we adjust trivility if needed.
2777 // We need this check to happen only after the method parameters are set,
2778 // because being e.g. a copy constructor depends on the instantiated
2779 // arguments.
2780 if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Method)) {
2781 if (Constructor->isDefaultConstructor() ||
2782 Constructor->isCopyOrMoveConstructor())
2783 Method->setIneligibleOrNotSelected(true);
2784 } else if (Method->isCopyAssignmentOperator() ||
2785 Method->isMoveAssignmentOperator()) {
2786 Method->setIneligibleOrNotSelected(true);
2789 // If there's a function template, let our caller handle it.
2790 if (FunctionTemplate) {
2791 // do nothing
2793 // Don't hide a (potentially) valid declaration with an invalid one.
2794 } else if (Method->isInvalidDecl() && !Previous.empty()) {
2795 // do nothing
2797 // Otherwise, check access to friends and make them visible.
2798 } else if (isFriend) {
2799 // We only need to re-check access for methods which we didn't
2800 // manage to match during parsing.
2801 if (!D->getPreviousDecl())
2802 SemaRef.CheckFriendAccess(Method);
2804 Record->makeDeclVisibleInContext(Method);
2806 // Otherwise, add the declaration. We don't need to do this for
2807 // class-scope specializations because we'll have matched them with
2808 // the appropriate template.
2809 } else {
2810 Owner->addDecl(Method);
2813 // PR17480: Honor the used attribute to instantiate member function
2814 // definitions
2815 if (Method->hasAttr<UsedAttr>()) {
2816 if (const auto *A = dyn_cast<CXXRecordDecl>(Owner)) {
2817 SourceLocation Loc;
2818 if (const MemberSpecializationInfo *MSInfo =
2819 A->getMemberSpecializationInfo())
2820 Loc = MSInfo->getPointOfInstantiation();
2821 else if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(A))
2822 Loc = Spec->getPointOfInstantiation();
2823 SemaRef.MarkFunctionReferenced(Loc, Method);
2827 return Method;
2830 Decl *TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl *D) {
2831 return VisitCXXMethodDecl(D);
2834 Decl *TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl *D) {
2835 return VisitCXXMethodDecl(D);
2838 Decl *TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl *D) {
2839 return VisitCXXMethodDecl(D);
2842 Decl *TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl *D) {
2843 return SemaRef.SubstParmVarDecl(D, TemplateArgs, /*indexAdjustment*/ 0,
2844 std::nullopt,
2845 /*ExpectParameterPack=*/false);
2848 Decl *TemplateDeclInstantiator::VisitTemplateTypeParmDecl(
2849 TemplateTypeParmDecl *D) {
2850 assert(D->getTypeForDecl()->isTemplateTypeParmType());
2852 std::optional<unsigned> NumExpanded;
2854 if (const TypeConstraint *TC = D->getTypeConstraint()) {
2855 if (D->isPackExpansion() && !D->isExpandedParameterPack()) {
2856 assert(TC->getTemplateArgsAsWritten() &&
2857 "type parameter can only be an expansion when explicit arguments "
2858 "are specified");
2859 // The template type parameter pack's type is a pack expansion of types.
2860 // Determine whether we need to expand this parameter pack into separate
2861 // types.
2862 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
2863 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
2864 SemaRef.collectUnexpandedParameterPacks(ArgLoc, Unexpanded);
2866 // Determine whether the set of unexpanded parameter packs can and should
2867 // be expanded.
2868 bool Expand = true;
2869 bool RetainExpansion = false;
2870 if (SemaRef.CheckParameterPacksForExpansion(
2871 cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint())
2872 ->getEllipsisLoc(),
2873 SourceRange(TC->getConceptNameLoc(),
2874 TC->hasExplicitTemplateArgs() ?
2875 TC->getTemplateArgsAsWritten()->getRAngleLoc() :
2876 TC->getConceptNameInfo().getEndLoc()),
2877 Unexpanded, TemplateArgs, Expand, RetainExpansion, NumExpanded))
2878 return nullptr;
2882 TemplateTypeParmDecl *Inst = TemplateTypeParmDecl::Create(
2883 SemaRef.Context, Owner, D->getBeginLoc(), D->getLocation(),
2884 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), D->getIndex(),
2885 D->getIdentifier(), D->wasDeclaredWithTypename(), D->isParameterPack(),
2886 D->hasTypeConstraint(), NumExpanded);
2888 Inst->setAccess(AS_public);
2889 Inst->setImplicit(D->isImplicit());
2890 if (auto *TC = D->getTypeConstraint()) {
2891 if (!D->isImplicit()) {
2892 // Invented template parameter type constraints will be instantiated
2893 // with the corresponding auto-typed parameter as it might reference
2894 // other parameters.
2895 if (SemaRef.SubstTypeConstraint(Inst, TC, TemplateArgs,
2896 EvaluateConstraints))
2897 return nullptr;
2900 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
2901 TypeSourceInfo *InstantiatedDefaultArg =
2902 SemaRef.SubstType(D->getDefaultArgumentInfo(), TemplateArgs,
2903 D->getDefaultArgumentLoc(), D->getDeclName());
2904 if (InstantiatedDefaultArg)
2905 Inst->setDefaultArgument(InstantiatedDefaultArg);
2908 // Introduce this template parameter's instantiation into the instantiation
2909 // scope.
2910 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst);
2912 return Inst;
2915 Decl *TemplateDeclInstantiator::VisitNonTypeTemplateParmDecl(
2916 NonTypeTemplateParmDecl *D) {
2917 // Substitute into the type of the non-type template parameter.
2918 TypeLoc TL = D->getTypeSourceInfo()->getTypeLoc();
2919 SmallVector<TypeSourceInfo *, 4> ExpandedParameterPackTypesAsWritten;
2920 SmallVector<QualType, 4> ExpandedParameterPackTypes;
2921 bool IsExpandedParameterPack = false;
2922 TypeSourceInfo *DI;
2923 QualType T;
2924 bool Invalid = false;
2926 if (D->isExpandedParameterPack()) {
2927 // The non-type template parameter pack is an already-expanded pack
2928 // expansion of types. Substitute into each of the expanded types.
2929 ExpandedParameterPackTypes.reserve(D->getNumExpansionTypes());
2930 ExpandedParameterPackTypesAsWritten.reserve(D->getNumExpansionTypes());
2931 for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) {
2932 TypeSourceInfo *NewDI =
2933 SemaRef.SubstType(D->getExpansionTypeSourceInfo(I), TemplateArgs,
2934 D->getLocation(), D->getDeclName());
2935 if (!NewDI)
2936 return nullptr;
2938 QualType NewT =
2939 SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation());
2940 if (NewT.isNull())
2941 return nullptr;
2943 ExpandedParameterPackTypesAsWritten.push_back(NewDI);
2944 ExpandedParameterPackTypes.push_back(NewT);
2947 IsExpandedParameterPack = true;
2948 DI = D->getTypeSourceInfo();
2949 T = DI->getType();
2950 } else if (D->isPackExpansion()) {
2951 // The non-type template parameter pack's type is a pack expansion of types.
2952 // Determine whether we need to expand this parameter pack into separate
2953 // types.
2954 PackExpansionTypeLoc Expansion = TL.castAs<PackExpansionTypeLoc>();
2955 TypeLoc Pattern = Expansion.getPatternLoc();
2956 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
2957 SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded);
2959 // Determine whether the set of unexpanded parameter packs can and should
2960 // be expanded.
2961 bool Expand = true;
2962 bool RetainExpansion = false;
2963 std::optional<unsigned> OrigNumExpansions =
2964 Expansion.getTypePtr()->getNumExpansions();
2965 std::optional<unsigned> NumExpansions = OrigNumExpansions;
2966 if (SemaRef.CheckParameterPacksForExpansion(Expansion.getEllipsisLoc(),
2967 Pattern.getSourceRange(),
2968 Unexpanded,
2969 TemplateArgs,
2970 Expand, RetainExpansion,
2971 NumExpansions))
2972 return nullptr;
2974 if (Expand) {
2975 for (unsigned I = 0; I != *NumExpansions; ++I) {
2976 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
2977 TypeSourceInfo *NewDI = SemaRef.SubstType(Pattern, TemplateArgs,
2978 D->getLocation(),
2979 D->getDeclName());
2980 if (!NewDI)
2981 return nullptr;
2983 QualType NewT =
2984 SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation());
2985 if (NewT.isNull())
2986 return nullptr;
2988 ExpandedParameterPackTypesAsWritten.push_back(NewDI);
2989 ExpandedParameterPackTypes.push_back(NewT);
2992 // Note that we have an expanded parameter pack. The "type" of this
2993 // expanded parameter pack is the original expansion type, but callers
2994 // will end up using the expanded parameter pack types for type-checking.
2995 IsExpandedParameterPack = true;
2996 DI = D->getTypeSourceInfo();
2997 T = DI->getType();
2998 } else {
2999 // We cannot fully expand the pack expansion now, so substitute into the
3000 // pattern and create a new pack expansion type.
3001 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
3002 TypeSourceInfo *NewPattern = SemaRef.SubstType(Pattern, TemplateArgs,
3003 D->getLocation(),
3004 D->getDeclName());
3005 if (!NewPattern)
3006 return nullptr;
3008 SemaRef.CheckNonTypeTemplateParameterType(NewPattern, D->getLocation());
3009 DI = SemaRef.CheckPackExpansion(NewPattern, Expansion.getEllipsisLoc(),
3010 NumExpansions);
3011 if (!DI)
3012 return nullptr;
3014 T = DI->getType();
3016 } else {
3017 // Simple case: substitution into a parameter that is not a parameter pack.
3018 DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs,
3019 D->getLocation(), D->getDeclName());
3020 if (!DI)
3021 return nullptr;
3023 // Check that this type is acceptable for a non-type template parameter.
3024 T = SemaRef.CheckNonTypeTemplateParameterType(DI, D->getLocation());
3025 if (T.isNull()) {
3026 T = SemaRef.Context.IntTy;
3027 Invalid = true;
3031 NonTypeTemplateParmDecl *Param;
3032 if (IsExpandedParameterPack)
3033 Param = NonTypeTemplateParmDecl::Create(
3034 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(),
3035 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
3036 D->getPosition(), D->getIdentifier(), T, DI, ExpandedParameterPackTypes,
3037 ExpandedParameterPackTypesAsWritten);
3038 else
3039 Param = NonTypeTemplateParmDecl::Create(
3040 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(),
3041 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
3042 D->getPosition(), D->getIdentifier(), T, D->isParameterPack(), DI);
3044 if (AutoTypeLoc AutoLoc = DI->getTypeLoc().getContainedAutoTypeLoc())
3045 if (AutoLoc.isConstrained())
3046 // Note: We attach the uninstantiated constriant here, so that it can be
3047 // instantiated relative to the top level, like all our other constraints.
3048 if (SemaRef.AttachTypeConstraint(
3049 AutoLoc, Param, D,
3050 IsExpandedParameterPack
3051 ? DI->getTypeLoc().getAs<PackExpansionTypeLoc>()
3052 .getEllipsisLoc()
3053 : SourceLocation()))
3054 Invalid = true;
3056 Param->setAccess(AS_public);
3057 Param->setImplicit(D->isImplicit());
3058 if (Invalid)
3059 Param->setInvalidDecl();
3061 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
3062 EnterExpressionEvaluationContext ConstantEvaluated(
3063 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
3064 ExprResult Value = SemaRef.SubstExpr(D->getDefaultArgument(), TemplateArgs);
3065 if (!Value.isInvalid())
3066 Param->setDefaultArgument(Value.get());
3069 // Introduce this template parameter's instantiation into the instantiation
3070 // scope.
3071 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param);
3072 return Param;
3075 static void collectUnexpandedParameterPacks(
3076 Sema &S,
3077 TemplateParameterList *Params,
3078 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
3079 for (const auto &P : *Params) {
3080 if (P->isTemplateParameterPack())
3081 continue;
3082 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P))
3083 S.collectUnexpandedParameterPacks(NTTP->getTypeSourceInfo()->getTypeLoc(),
3084 Unexpanded);
3085 if (TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(P))
3086 collectUnexpandedParameterPacks(S, TTP->getTemplateParameters(),
3087 Unexpanded);
3091 Decl *
3092 TemplateDeclInstantiator::VisitTemplateTemplateParmDecl(
3093 TemplateTemplateParmDecl *D) {
3094 // Instantiate the template parameter list of the template template parameter.
3095 TemplateParameterList *TempParams = D->getTemplateParameters();
3096 TemplateParameterList *InstParams;
3097 SmallVector<TemplateParameterList*, 8> ExpandedParams;
3099 bool IsExpandedParameterPack = false;
3101 if (D->isExpandedParameterPack()) {
3102 // The template template parameter pack is an already-expanded pack
3103 // expansion of template parameters. Substitute into each of the expanded
3104 // parameters.
3105 ExpandedParams.reserve(D->getNumExpansionTemplateParameters());
3106 for (unsigned I = 0, N = D->getNumExpansionTemplateParameters();
3107 I != N; ++I) {
3108 LocalInstantiationScope Scope(SemaRef);
3109 TemplateParameterList *Expansion =
3110 SubstTemplateParams(D->getExpansionTemplateParameters(I));
3111 if (!Expansion)
3112 return nullptr;
3113 ExpandedParams.push_back(Expansion);
3116 IsExpandedParameterPack = true;
3117 InstParams = TempParams;
3118 } else if (D->isPackExpansion()) {
3119 // The template template parameter pack expands to a pack of template
3120 // template parameters. Determine whether we need to expand this parameter
3121 // pack into separate parameters.
3122 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3123 collectUnexpandedParameterPacks(SemaRef, D->getTemplateParameters(),
3124 Unexpanded);
3126 // Determine whether the set of unexpanded parameter packs can and should
3127 // be expanded.
3128 bool Expand = true;
3129 bool RetainExpansion = false;
3130 std::optional<unsigned> NumExpansions;
3131 if (SemaRef.CheckParameterPacksForExpansion(D->getLocation(),
3132 TempParams->getSourceRange(),
3133 Unexpanded,
3134 TemplateArgs,
3135 Expand, RetainExpansion,
3136 NumExpansions))
3137 return nullptr;
3139 if (Expand) {
3140 for (unsigned I = 0; I != *NumExpansions; ++I) {
3141 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
3142 LocalInstantiationScope Scope(SemaRef);
3143 TemplateParameterList *Expansion = SubstTemplateParams(TempParams);
3144 if (!Expansion)
3145 return nullptr;
3146 ExpandedParams.push_back(Expansion);
3149 // Note that we have an expanded parameter pack. The "type" of this
3150 // expanded parameter pack is the original expansion type, but callers
3151 // will end up using the expanded parameter pack types for type-checking.
3152 IsExpandedParameterPack = true;
3153 InstParams = TempParams;
3154 } else {
3155 // We cannot fully expand the pack expansion now, so just substitute
3156 // into the pattern.
3157 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
3159 LocalInstantiationScope Scope(SemaRef);
3160 InstParams = SubstTemplateParams(TempParams);
3161 if (!InstParams)
3162 return nullptr;
3164 } else {
3165 // Perform the actual substitution of template parameters within a new,
3166 // local instantiation scope.
3167 LocalInstantiationScope Scope(SemaRef);
3168 InstParams = SubstTemplateParams(TempParams);
3169 if (!InstParams)
3170 return nullptr;
3173 // Build the template template parameter.
3174 TemplateTemplateParmDecl *Param;
3175 if (IsExpandedParameterPack)
3176 Param = TemplateTemplateParmDecl::Create(
3177 SemaRef.Context, Owner, D->getLocation(),
3178 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
3179 D->getPosition(), D->getIdentifier(), InstParams, ExpandedParams);
3180 else
3181 Param = TemplateTemplateParmDecl::Create(
3182 SemaRef.Context, Owner, D->getLocation(),
3183 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
3184 D->getPosition(), D->isParameterPack(), D->getIdentifier(), InstParams);
3185 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
3186 NestedNameSpecifierLoc QualifierLoc =
3187 D->getDefaultArgument().getTemplateQualifierLoc();
3188 QualifierLoc =
3189 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs);
3190 TemplateName TName = SemaRef.SubstTemplateName(
3191 QualifierLoc, D->getDefaultArgument().getArgument().getAsTemplate(),
3192 D->getDefaultArgument().getTemplateNameLoc(), TemplateArgs);
3193 if (!TName.isNull())
3194 Param->setDefaultArgument(
3195 SemaRef.Context,
3196 TemplateArgumentLoc(SemaRef.Context, TemplateArgument(TName),
3197 D->getDefaultArgument().getTemplateQualifierLoc(),
3198 D->getDefaultArgument().getTemplateNameLoc()));
3200 Param->setAccess(AS_public);
3201 Param->setImplicit(D->isImplicit());
3203 // Introduce this template parameter's instantiation into the instantiation
3204 // scope.
3205 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param);
3207 return Param;
3210 Decl *TemplateDeclInstantiator::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) {
3211 // Using directives are never dependent (and never contain any types or
3212 // expressions), so they require no explicit instantiation work.
3214 UsingDirectiveDecl *Inst
3215 = UsingDirectiveDecl::Create(SemaRef.Context, Owner, D->getLocation(),
3216 D->getNamespaceKeyLocation(),
3217 D->getQualifierLoc(),
3218 D->getIdentLocation(),
3219 D->getNominatedNamespace(),
3220 D->getCommonAncestor());
3222 // Add the using directive to its declaration context
3223 // only if this is not a function or method.
3224 if (!Owner->isFunctionOrMethod())
3225 Owner->addDecl(Inst);
3227 return Inst;
3230 Decl *TemplateDeclInstantiator::VisitBaseUsingDecls(BaseUsingDecl *D,
3231 BaseUsingDecl *Inst,
3232 LookupResult *Lookup) {
3234 bool isFunctionScope = Owner->isFunctionOrMethod();
3236 for (auto *Shadow : D->shadows()) {
3237 // FIXME: UsingShadowDecl doesn't preserve its immediate target, so
3238 // reconstruct it in the case where it matters. Hm, can we extract it from
3239 // the DeclSpec when parsing and save it in the UsingDecl itself?
3240 NamedDecl *OldTarget = Shadow->getTargetDecl();
3241 if (auto *CUSD = dyn_cast<ConstructorUsingShadowDecl>(Shadow))
3242 if (auto *BaseShadow = CUSD->getNominatedBaseClassShadowDecl())
3243 OldTarget = BaseShadow;
3245 NamedDecl *InstTarget = nullptr;
3246 if (auto *EmptyD =
3247 dyn_cast<UnresolvedUsingIfExistsDecl>(Shadow->getTargetDecl())) {
3248 InstTarget = UnresolvedUsingIfExistsDecl::Create(
3249 SemaRef.Context, Owner, EmptyD->getLocation(), EmptyD->getDeclName());
3250 } else {
3251 InstTarget = cast_or_null<NamedDecl>(SemaRef.FindInstantiatedDecl(
3252 Shadow->getLocation(), OldTarget, TemplateArgs));
3254 if (!InstTarget)
3255 return nullptr;
3257 UsingShadowDecl *PrevDecl = nullptr;
3258 if (Lookup &&
3259 SemaRef.CheckUsingShadowDecl(Inst, InstTarget, *Lookup, PrevDecl))
3260 continue;
3262 if (UsingShadowDecl *OldPrev = getPreviousDeclForInstantiation(Shadow))
3263 PrevDecl = cast_or_null<UsingShadowDecl>(SemaRef.FindInstantiatedDecl(
3264 Shadow->getLocation(), OldPrev, TemplateArgs));
3266 UsingShadowDecl *InstShadow = SemaRef.BuildUsingShadowDecl(
3267 /*Scope*/ nullptr, Inst, InstTarget, PrevDecl);
3268 SemaRef.Context.setInstantiatedFromUsingShadowDecl(InstShadow, Shadow);
3270 if (isFunctionScope)
3271 SemaRef.CurrentInstantiationScope->InstantiatedLocal(Shadow, InstShadow);
3274 return Inst;
3277 Decl *TemplateDeclInstantiator::VisitUsingDecl(UsingDecl *D) {
3279 // The nested name specifier may be dependent, for example
3280 // template <typename T> struct t {
3281 // struct s1 { T f1(); };
3282 // struct s2 : s1 { using s1::f1; };
3283 // };
3284 // template struct t<int>;
3285 // Here, in using s1::f1, s1 refers to t<T>::s1;
3286 // we need to substitute for t<int>::s1.
3287 NestedNameSpecifierLoc QualifierLoc
3288 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(),
3289 TemplateArgs);
3290 if (!QualifierLoc)
3291 return nullptr;
3293 // For an inheriting constructor declaration, the name of the using
3294 // declaration is the name of a constructor in this class, not in the
3295 // base class.
3296 DeclarationNameInfo NameInfo = D->getNameInfo();
3297 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName)
3298 if (auto *RD = dyn_cast<CXXRecordDecl>(SemaRef.CurContext))
3299 NameInfo.setName(SemaRef.Context.DeclarationNames.getCXXConstructorName(
3300 SemaRef.Context.getCanonicalType(SemaRef.Context.getRecordType(RD))));
3302 // We only need to do redeclaration lookups if we're in a class scope (in
3303 // fact, it's not really even possible in non-class scopes).
3304 bool CheckRedeclaration = Owner->isRecord();
3305 LookupResult Prev(SemaRef, NameInfo, Sema::LookupUsingDeclName,
3306 Sema::ForVisibleRedeclaration);
3308 UsingDecl *NewUD = UsingDecl::Create(SemaRef.Context, Owner,
3309 D->getUsingLoc(),
3310 QualifierLoc,
3311 NameInfo,
3312 D->hasTypename());
3314 CXXScopeSpec SS;
3315 SS.Adopt(QualifierLoc);
3316 if (CheckRedeclaration) {
3317 Prev.setHideTags(false);
3318 SemaRef.LookupQualifiedName(Prev, Owner);
3320 // Check for invalid redeclarations.
3321 if (SemaRef.CheckUsingDeclRedeclaration(D->getUsingLoc(),
3322 D->hasTypename(), SS,
3323 D->getLocation(), Prev))
3324 NewUD->setInvalidDecl();
3327 if (!NewUD->isInvalidDecl() &&
3328 SemaRef.CheckUsingDeclQualifier(D->getUsingLoc(), D->hasTypename(), SS,
3329 NameInfo, D->getLocation(), nullptr, D))
3330 NewUD->setInvalidDecl();
3332 SemaRef.Context.setInstantiatedFromUsingDecl(NewUD, D);
3333 NewUD->setAccess(D->getAccess());
3334 Owner->addDecl(NewUD);
3336 // Don't process the shadow decls for an invalid decl.
3337 if (NewUD->isInvalidDecl())
3338 return NewUD;
3340 // If the using scope was dependent, or we had dependent bases, we need to
3341 // recheck the inheritance
3342 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName)
3343 SemaRef.CheckInheritingConstructorUsingDecl(NewUD);
3345 return VisitBaseUsingDecls(D, NewUD, CheckRedeclaration ? &Prev : nullptr);
3348 Decl *TemplateDeclInstantiator::VisitUsingEnumDecl(UsingEnumDecl *D) {
3349 // Cannot be a dependent type, but still could be an instantiation
3350 EnumDecl *EnumD = cast_or_null<EnumDecl>(SemaRef.FindInstantiatedDecl(
3351 D->getLocation(), D->getEnumDecl(), TemplateArgs));
3353 if (SemaRef.RequireCompleteEnumDecl(EnumD, EnumD->getLocation()))
3354 return nullptr;
3356 TypeSourceInfo *TSI = SemaRef.SubstType(D->getEnumType(), TemplateArgs,
3357 D->getLocation(), D->getDeclName());
3358 UsingEnumDecl *NewUD =
3359 UsingEnumDecl::Create(SemaRef.Context, Owner, D->getUsingLoc(),
3360 D->getEnumLoc(), D->getLocation(), TSI);
3362 SemaRef.Context.setInstantiatedFromUsingEnumDecl(NewUD, D);
3363 NewUD->setAccess(D->getAccess());
3364 Owner->addDecl(NewUD);
3366 // Don't process the shadow decls for an invalid decl.
3367 if (NewUD->isInvalidDecl())
3368 return NewUD;
3370 // We don't have to recheck for duplication of the UsingEnumDecl itself, as it
3371 // cannot be dependent, and will therefore have been checked during template
3372 // definition.
3374 return VisitBaseUsingDecls(D, NewUD, nullptr);
3377 Decl *TemplateDeclInstantiator::VisitUsingShadowDecl(UsingShadowDecl *D) {
3378 // Ignore these; we handle them in bulk when processing the UsingDecl.
3379 return nullptr;
3382 Decl *TemplateDeclInstantiator::VisitConstructorUsingShadowDecl(
3383 ConstructorUsingShadowDecl *D) {
3384 // Ignore these; we handle them in bulk when processing the UsingDecl.
3385 return nullptr;
3388 template <typename T>
3389 Decl *TemplateDeclInstantiator::instantiateUnresolvedUsingDecl(
3390 T *D, bool InstantiatingPackElement) {
3391 // If this is a pack expansion, expand it now.
3392 if (D->isPackExpansion() && !InstantiatingPackElement) {
3393 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3394 SemaRef.collectUnexpandedParameterPacks(D->getQualifierLoc(), Unexpanded);
3395 SemaRef.collectUnexpandedParameterPacks(D->getNameInfo(), Unexpanded);
3397 // Determine whether the set of unexpanded parameter packs can and should
3398 // be expanded.
3399 bool Expand = true;
3400 bool RetainExpansion = false;
3401 std::optional<unsigned> NumExpansions;
3402 if (SemaRef.CheckParameterPacksForExpansion(
3403 D->getEllipsisLoc(), D->getSourceRange(), Unexpanded, TemplateArgs,
3404 Expand, RetainExpansion, NumExpansions))
3405 return nullptr;
3407 // This declaration cannot appear within a function template signature,
3408 // so we can't have a partial argument list for a parameter pack.
3409 assert(!RetainExpansion &&
3410 "should never need to retain an expansion for UsingPackDecl");
3412 if (!Expand) {
3413 // We cannot fully expand the pack expansion now, so substitute into the
3414 // pattern and create a new pack expansion.
3415 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
3416 return instantiateUnresolvedUsingDecl(D, true);
3419 // Within a function, we don't have any normal way to check for conflicts
3420 // between shadow declarations from different using declarations in the
3421 // same pack expansion, but this is always ill-formed because all expansions
3422 // must produce (conflicting) enumerators.
3424 // Sadly we can't just reject this in the template definition because it
3425 // could be valid if the pack is empty or has exactly one expansion.
3426 if (D->getDeclContext()->isFunctionOrMethod() && *NumExpansions > 1) {
3427 SemaRef.Diag(D->getEllipsisLoc(),
3428 diag::err_using_decl_redeclaration_expansion);
3429 return nullptr;
3432 // Instantiate the slices of this pack and build a UsingPackDecl.
3433 SmallVector<NamedDecl*, 8> Expansions;
3434 for (unsigned I = 0; I != *NumExpansions; ++I) {
3435 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
3436 Decl *Slice = instantiateUnresolvedUsingDecl(D, true);
3437 if (!Slice)
3438 return nullptr;
3439 // Note that we can still get unresolved using declarations here, if we
3440 // had arguments for all packs but the pattern also contained other
3441 // template arguments (this only happens during partial substitution, eg
3442 // into the body of a generic lambda in a function template).
3443 Expansions.push_back(cast<NamedDecl>(Slice));
3446 auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions);
3447 if (isDeclWithinFunction(D))
3448 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD);
3449 return NewD;
3452 UnresolvedUsingTypenameDecl *TD = dyn_cast<UnresolvedUsingTypenameDecl>(D);
3453 SourceLocation TypenameLoc = TD ? TD->getTypenameLoc() : SourceLocation();
3455 NestedNameSpecifierLoc QualifierLoc
3456 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(),
3457 TemplateArgs);
3458 if (!QualifierLoc)
3459 return nullptr;
3461 CXXScopeSpec SS;
3462 SS.Adopt(QualifierLoc);
3464 DeclarationNameInfo NameInfo
3465 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs);
3467 // Produce a pack expansion only if we're not instantiating a particular
3468 // slice of a pack expansion.
3469 bool InstantiatingSlice = D->getEllipsisLoc().isValid() &&
3470 SemaRef.ArgumentPackSubstitutionIndex != -1;
3471 SourceLocation EllipsisLoc =
3472 InstantiatingSlice ? SourceLocation() : D->getEllipsisLoc();
3474 bool IsUsingIfExists = D->template hasAttr<UsingIfExistsAttr>();
3475 NamedDecl *UD = SemaRef.BuildUsingDeclaration(
3476 /*Scope*/ nullptr, D->getAccess(), D->getUsingLoc(),
3477 /*HasTypename*/ TD, TypenameLoc, SS, NameInfo, EllipsisLoc,
3478 ParsedAttributesView(),
3479 /*IsInstantiation*/ true, IsUsingIfExists);
3480 if (UD) {
3481 SemaRef.InstantiateAttrs(TemplateArgs, D, UD);
3482 SemaRef.Context.setInstantiatedFromUsingDecl(UD, D);
3485 return UD;
3488 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingTypenameDecl(
3489 UnresolvedUsingTypenameDecl *D) {
3490 return instantiateUnresolvedUsingDecl(D);
3493 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingValueDecl(
3494 UnresolvedUsingValueDecl *D) {
3495 return instantiateUnresolvedUsingDecl(D);
3498 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingIfExistsDecl(
3499 UnresolvedUsingIfExistsDecl *D) {
3500 llvm_unreachable("referring to unresolved decl out of UsingShadowDecl");
3503 Decl *TemplateDeclInstantiator::VisitUsingPackDecl(UsingPackDecl *D) {
3504 SmallVector<NamedDecl*, 8> Expansions;
3505 for (auto *UD : D->expansions()) {
3506 if (NamedDecl *NewUD =
3507 SemaRef.FindInstantiatedDecl(D->getLocation(), UD, TemplateArgs))
3508 Expansions.push_back(NewUD);
3509 else
3510 return nullptr;
3513 auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions);
3514 if (isDeclWithinFunction(D))
3515 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD);
3516 return NewD;
3519 Decl *TemplateDeclInstantiator::VisitOMPThreadPrivateDecl(
3520 OMPThreadPrivateDecl *D) {
3521 SmallVector<Expr *, 5> Vars;
3522 for (auto *I : D->varlists()) {
3523 Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get();
3524 assert(isa<DeclRefExpr>(Var) && "threadprivate arg is not a DeclRefExpr");
3525 Vars.push_back(Var);
3528 OMPThreadPrivateDecl *TD =
3529 SemaRef.CheckOMPThreadPrivateDecl(D->getLocation(), Vars);
3531 TD->setAccess(AS_public);
3532 Owner->addDecl(TD);
3534 return TD;
3537 Decl *TemplateDeclInstantiator::VisitOMPAllocateDecl(OMPAllocateDecl *D) {
3538 SmallVector<Expr *, 5> Vars;
3539 for (auto *I : D->varlists()) {
3540 Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get();
3541 assert(isa<DeclRefExpr>(Var) && "allocate arg is not a DeclRefExpr");
3542 Vars.push_back(Var);
3544 SmallVector<OMPClause *, 4> Clauses;
3545 // Copy map clauses from the original mapper.
3546 for (OMPClause *C : D->clauselists()) {
3547 OMPClause *IC = nullptr;
3548 if (auto *AC = dyn_cast<OMPAllocatorClause>(C)) {
3549 ExprResult NewE = SemaRef.SubstExpr(AC->getAllocator(), TemplateArgs);
3550 if (!NewE.isUsable())
3551 continue;
3552 IC = SemaRef.ActOnOpenMPAllocatorClause(
3553 NewE.get(), AC->getBeginLoc(), AC->getLParenLoc(), AC->getEndLoc());
3554 } else if (auto *AC = dyn_cast<OMPAlignClause>(C)) {
3555 ExprResult NewE = SemaRef.SubstExpr(AC->getAlignment(), TemplateArgs);
3556 if (!NewE.isUsable())
3557 continue;
3558 IC = SemaRef.ActOnOpenMPAlignClause(NewE.get(), AC->getBeginLoc(),
3559 AC->getLParenLoc(), AC->getEndLoc());
3560 // If align clause value ends up being invalid, this can end up null.
3561 if (!IC)
3562 continue;
3564 Clauses.push_back(IC);
3567 Sema::DeclGroupPtrTy Res = SemaRef.ActOnOpenMPAllocateDirective(
3568 D->getLocation(), Vars, Clauses, Owner);
3569 if (Res.get().isNull())
3570 return nullptr;
3571 return Res.get().getSingleDecl();
3574 Decl *TemplateDeclInstantiator::VisitOMPRequiresDecl(OMPRequiresDecl *D) {
3575 llvm_unreachable(
3576 "Requires directive cannot be instantiated within a dependent context");
3579 Decl *TemplateDeclInstantiator::VisitOMPDeclareReductionDecl(
3580 OMPDeclareReductionDecl *D) {
3581 // Instantiate type and check if it is allowed.
3582 const bool RequiresInstantiation =
3583 D->getType()->isDependentType() ||
3584 D->getType()->isInstantiationDependentType() ||
3585 D->getType()->containsUnexpandedParameterPack();
3586 QualType SubstReductionType;
3587 if (RequiresInstantiation) {
3588 SubstReductionType = SemaRef.ActOnOpenMPDeclareReductionType(
3589 D->getLocation(),
3590 ParsedType::make(SemaRef.SubstType(
3591 D->getType(), TemplateArgs, D->getLocation(), DeclarationName())));
3592 } else {
3593 SubstReductionType = D->getType();
3595 if (SubstReductionType.isNull())
3596 return nullptr;
3597 Expr *Combiner = D->getCombiner();
3598 Expr *Init = D->getInitializer();
3599 bool IsCorrect = true;
3600 // Create instantiated copy.
3601 std::pair<QualType, SourceLocation> ReductionTypes[] = {
3602 std::make_pair(SubstReductionType, D->getLocation())};
3603 auto *PrevDeclInScope = D->getPrevDeclInScope();
3604 if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) {
3605 PrevDeclInScope = cast<OMPDeclareReductionDecl>(
3606 SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope)
3607 ->get<Decl *>());
3609 auto DRD = SemaRef.ActOnOpenMPDeclareReductionDirectiveStart(
3610 /*S=*/nullptr, Owner, D->getDeclName(), ReductionTypes, D->getAccess(),
3611 PrevDeclInScope);
3612 auto *NewDRD = cast<OMPDeclareReductionDecl>(DRD.get().getSingleDecl());
3613 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDRD);
3614 Expr *SubstCombiner = nullptr;
3615 Expr *SubstInitializer = nullptr;
3616 // Combiners instantiation sequence.
3617 if (Combiner) {
3618 SemaRef.ActOnOpenMPDeclareReductionCombinerStart(
3619 /*S=*/nullptr, NewDRD);
3620 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3621 cast<DeclRefExpr>(D->getCombinerIn())->getDecl(),
3622 cast<DeclRefExpr>(NewDRD->getCombinerIn())->getDecl());
3623 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3624 cast<DeclRefExpr>(D->getCombinerOut())->getDecl(),
3625 cast<DeclRefExpr>(NewDRD->getCombinerOut())->getDecl());
3626 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner);
3627 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(),
3628 ThisContext);
3629 SubstCombiner = SemaRef.SubstExpr(Combiner, TemplateArgs).get();
3630 SemaRef.ActOnOpenMPDeclareReductionCombinerEnd(NewDRD, SubstCombiner);
3632 // Initializers instantiation sequence.
3633 if (Init) {
3634 VarDecl *OmpPrivParm = SemaRef.ActOnOpenMPDeclareReductionInitializerStart(
3635 /*S=*/nullptr, NewDRD);
3636 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3637 cast<DeclRefExpr>(D->getInitOrig())->getDecl(),
3638 cast<DeclRefExpr>(NewDRD->getInitOrig())->getDecl());
3639 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3640 cast<DeclRefExpr>(D->getInitPriv())->getDecl(),
3641 cast<DeclRefExpr>(NewDRD->getInitPriv())->getDecl());
3642 if (D->getInitializerKind() == OMPDeclareReductionInitKind::Call) {
3643 SubstInitializer = SemaRef.SubstExpr(Init, TemplateArgs).get();
3644 } else {
3645 auto *OldPrivParm =
3646 cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl());
3647 IsCorrect = IsCorrect && OldPrivParm->hasInit();
3648 if (IsCorrect)
3649 SemaRef.InstantiateVariableInitializer(OmpPrivParm, OldPrivParm,
3650 TemplateArgs);
3652 SemaRef.ActOnOpenMPDeclareReductionInitializerEnd(NewDRD, SubstInitializer,
3653 OmpPrivParm);
3655 IsCorrect = IsCorrect && SubstCombiner &&
3656 (!Init ||
3657 (D->getInitializerKind() == OMPDeclareReductionInitKind::Call &&
3658 SubstInitializer) ||
3659 (D->getInitializerKind() != OMPDeclareReductionInitKind::Call &&
3660 !SubstInitializer));
3662 (void)SemaRef.ActOnOpenMPDeclareReductionDirectiveEnd(
3663 /*S=*/nullptr, DRD, IsCorrect && !D->isInvalidDecl());
3665 return NewDRD;
3668 Decl *
3669 TemplateDeclInstantiator::VisitOMPDeclareMapperDecl(OMPDeclareMapperDecl *D) {
3670 // Instantiate type and check if it is allowed.
3671 const bool RequiresInstantiation =
3672 D->getType()->isDependentType() ||
3673 D->getType()->isInstantiationDependentType() ||
3674 D->getType()->containsUnexpandedParameterPack();
3675 QualType SubstMapperTy;
3676 DeclarationName VN = D->getVarName();
3677 if (RequiresInstantiation) {
3678 SubstMapperTy = SemaRef.ActOnOpenMPDeclareMapperType(
3679 D->getLocation(),
3680 ParsedType::make(SemaRef.SubstType(D->getType(), TemplateArgs,
3681 D->getLocation(), VN)));
3682 } else {
3683 SubstMapperTy = D->getType();
3685 if (SubstMapperTy.isNull())
3686 return nullptr;
3687 // Create an instantiated copy of mapper.
3688 auto *PrevDeclInScope = D->getPrevDeclInScope();
3689 if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) {
3690 PrevDeclInScope = cast<OMPDeclareMapperDecl>(
3691 SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope)
3692 ->get<Decl *>());
3694 bool IsCorrect = true;
3695 SmallVector<OMPClause *, 6> Clauses;
3696 // Instantiate the mapper variable.
3697 DeclarationNameInfo DirName;
3698 SemaRef.StartOpenMPDSABlock(llvm::omp::OMPD_declare_mapper, DirName,
3699 /*S=*/nullptr,
3700 (*D->clauselist_begin())->getBeginLoc());
3701 ExprResult MapperVarRef = SemaRef.ActOnOpenMPDeclareMapperDirectiveVarDecl(
3702 /*S=*/nullptr, SubstMapperTy, D->getLocation(), VN);
3703 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3704 cast<DeclRefExpr>(D->getMapperVarRef())->getDecl(),
3705 cast<DeclRefExpr>(MapperVarRef.get())->getDecl());
3706 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner);
3707 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(),
3708 ThisContext);
3709 // Instantiate map clauses.
3710 for (OMPClause *C : D->clauselists()) {
3711 auto *OldC = cast<OMPMapClause>(C);
3712 SmallVector<Expr *, 4> NewVars;
3713 for (Expr *OE : OldC->varlists()) {
3714 Expr *NE = SemaRef.SubstExpr(OE, TemplateArgs).get();
3715 if (!NE) {
3716 IsCorrect = false;
3717 break;
3719 NewVars.push_back(NE);
3721 if (!IsCorrect)
3722 break;
3723 NestedNameSpecifierLoc NewQualifierLoc =
3724 SemaRef.SubstNestedNameSpecifierLoc(OldC->getMapperQualifierLoc(),
3725 TemplateArgs);
3726 CXXScopeSpec SS;
3727 SS.Adopt(NewQualifierLoc);
3728 DeclarationNameInfo NewNameInfo =
3729 SemaRef.SubstDeclarationNameInfo(OldC->getMapperIdInfo(), TemplateArgs);
3730 OMPVarListLocTy Locs(OldC->getBeginLoc(), OldC->getLParenLoc(),
3731 OldC->getEndLoc());
3732 OMPClause *NewC = SemaRef.ActOnOpenMPMapClause(
3733 OldC->getIteratorModifier(), OldC->getMapTypeModifiers(),
3734 OldC->getMapTypeModifiersLoc(), SS, NewNameInfo, OldC->getMapType(),
3735 OldC->isImplicitMapType(), OldC->getMapLoc(), OldC->getColonLoc(),
3736 NewVars, Locs);
3737 Clauses.push_back(NewC);
3739 SemaRef.EndOpenMPDSABlock(nullptr);
3740 if (!IsCorrect)
3741 return nullptr;
3742 Sema::DeclGroupPtrTy DG = SemaRef.ActOnOpenMPDeclareMapperDirective(
3743 /*S=*/nullptr, Owner, D->getDeclName(), SubstMapperTy, D->getLocation(),
3744 VN, D->getAccess(), MapperVarRef.get(), Clauses, PrevDeclInScope);
3745 Decl *NewDMD = DG.get().getSingleDecl();
3746 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDMD);
3747 return NewDMD;
3750 Decl *TemplateDeclInstantiator::VisitOMPCapturedExprDecl(
3751 OMPCapturedExprDecl * /*D*/) {
3752 llvm_unreachable("Should not be met in templates");
3755 Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D) {
3756 return VisitFunctionDecl(D, nullptr);
3759 Decl *
3760 TemplateDeclInstantiator::VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl *D) {
3761 Decl *Inst = VisitFunctionDecl(D, nullptr);
3762 if (Inst && !D->getDescribedFunctionTemplate())
3763 Owner->addDecl(Inst);
3764 return Inst;
3767 Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D) {
3768 return VisitCXXMethodDecl(D, nullptr);
3771 Decl *TemplateDeclInstantiator::VisitRecordDecl(RecordDecl *D) {
3772 llvm_unreachable("There are only CXXRecordDecls in C++");
3775 Decl *
3776 TemplateDeclInstantiator::VisitClassTemplateSpecializationDecl(
3777 ClassTemplateSpecializationDecl *D) {
3778 // As a MS extension, we permit class-scope explicit specialization
3779 // of member class templates.
3780 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate();
3781 assert(ClassTemplate->getDeclContext()->isRecord() &&
3782 D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
3783 "can only instantiate an explicit specialization "
3784 "for a member class template");
3786 // Lookup the already-instantiated declaration in the instantiation
3787 // of the class template.
3788 ClassTemplateDecl *InstClassTemplate =
3789 cast_or_null<ClassTemplateDecl>(SemaRef.FindInstantiatedDecl(
3790 D->getLocation(), ClassTemplate, TemplateArgs));
3791 if (!InstClassTemplate)
3792 return nullptr;
3794 // Substitute into the template arguments of the class template explicit
3795 // specialization.
3796 TemplateSpecializationTypeLoc Loc = D->getTypeAsWritten()->getTypeLoc().
3797 castAs<TemplateSpecializationTypeLoc>();
3798 TemplateArgumentListInfo InstTemplateArgs(Loc.getLAngleLoc(),
3799 Loc.getRAngleLoc());
3800 SmallVector<TemplateArgumentLoc, 4> ArgLocs;
3801 for (unsigned I = 0; I != Loc.getNumArgs(); ++I)
3802 ArgLocs.push_back(Loc.getArgLoc(I));
3803 if (SemaRef.SubstTemplateArguments(ArgLocs, TemplateArgs, InstTemplateArgs))
3804 return nullptr;
3806 // Check that the template argument list is well-formed for this
3807 // class template.
3808 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
3809 if (SemaRef.CheckTemplateArgumentList(InstClassTemplate, D->getLocation(),
3810 InstTemplateArgs, false,
3811 SugaredConverted, CanonicalConverted,
3812 /*UpdateArgsWithConversions=*/true))
3813 return nullptr;
3815 // Figure out where to insert this class template explicit specialization
3816 // in the member template's set of class template explicit specializations.
3817 void *InsertPos = nullptr;
3818 ClassTemplateSpecializationDecl *PrevDecl =
3819 InstClassTemplate->findSpecialization(CanonicalConverted, InsertPos);
3821 // Check whether we've already seen a conflicting instantiation of this
3822 // declaration (for instance, if there was a prior implicit instantiation).
3823 bool Ignored;
3824 if (PrevDecl &&
3825 SemaRef.CheckSpecializationInstantiationRedecl(D->getLocation(),
3826 D->getSpecializationKind(),
3827 PrevDecl,
3828 PrevDecl->getSpecializationKind(),
3829 PrevDecl->getPointOfInstantiation(),
3830 Ignored))
3831 return nullptr;
3833 // If PrevDecl was a definition and D is also a definition, diagnose.
3834 // This happens in cases like:
3836 // template<typename T, typename U>
3837 // struct Outer {
3838 // template<typename X> struct Inner;
3839 // template<> struct Inner<T> {};
3840 // template<> struct Inner<U> {};
3841 // };
3843 // Outer<int, int> outer; // error: the explicit specializations of Inner
3844 // // have the same signature.
3845 if (PrevDecl && PrevDecl->getDefinition() &&
3846 D->isThisDeclarationADefinition()) {
3847 SemaRef.Diag(D->getLocation(), diag::err_redefinition) << PrevDecl;
3848 SemaRef.Diag(PrevDecl->getDefinition()->getLocation(),
3849 diag::note_previous_definition);
3850 return nullptr;
3853 // Create the class template partial specialization declaration.
3854 ClassTemplateSpecializationDecl *InstD =
3855 ClassTemplateSpecializationDecl::Create(
3856 SemaRef.Context, D->getTagKind(), Owner, D->getBeginLoc(),
3857 D->getLocation(), InstClassTemplate, CanonicalConverted, PrevDecl);
3859 // Add this partial specialization to the set of class template partial
3860 // specializations.
3861 if (!PrevDecl)
3862 InstClassTemplate->AddSpecialization(InstD, InsertPos);
3864 // Substitute the nested name specifier, if any.
3865 if (SubstQualifier(D, InstD))
3866 return nullptr;
3868 // Build the canonical type that describes the converted template
3869 // arguments of the class template explicit specialization.
3870 QualType CanonType = SemaRef.Context.getTemplateSpecializationType(
3871 TemplateName(InstClassTemplate), CanonicalConverted,
3872 SemaRef.Context.getRecordType(InstD));
3874 // Build the fully-sugared type for this class template
3875 // specialization as the user wrote in the specialization
3876 // itself. This means that we'll pretty-print the type retrieved
3877 // from the specialization's declaration the way that the user
3878 // actually wrote the specialization, rather than formatting the
3879 // name based on the "canonical" representation used to store the
3880 // template arguments in the specialization.
3881 TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo(
3882 TemplateName(InstClassTemplate), D->getLocation(), InstTemplateArgs,
3883 CanonType);
3885 InstD->setAccess(D->getAccess());
3886 InstD->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation);
3887 InstD->setSpecializationKind(D->getSpecializationKind());
3888 InstD->setTypeAsWritten(WrittenTy);
3889 InstD->setExternLoc(D->getExternLoc());
3890 InstD->setTemplateKeywordLoc(D->getTemplateKeywordLoc());
3892 Owner->addDecl(InstD);
3894 // Instantiate the members of the class-scope explicit specialization eagerly.
3895 // We don't have support for lazy instantiation of an explicit specialization
3896 // yet, and MSVC eagerly instantiates in this case.
3897 // FIXME: This is wrong in standard C++.
3898 if (D->isThisDeclarationADefinition() &&
3899 SemaRef.InstantiateClass(D->getLocation(), InstD, D, TemplateArgs,
3900 TSK_ImplicitInstantiation,
3901 /*Complain=*/true))
3902 return nullptr;
3904 return InstD;
3907 Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl(
3908 VarTemplateSpecializationDecl *D) {
3910 TemplateArgumentListInfo VarTemplateArgsInfo;
3911 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate();
3912 assert(VarTemplate &&
3913 "A template specialization without specialized template?");
3915 VarTemplateDecl *InstVarTemplate =
3916 cast_or_null<VarTemplateDecl>(SemaRef.FindInstantiatedDecl(
3917 D->getLocation(), VarTemplate, TemplateArgs));
3918 if (!InstVarTemplate)
3919 return nullptr;
3921 // Substitute the current template arguments.
3922 if (const ASTTemplateArgumentListInfo *TemplateArgsInfo =
3923 D->getTemplateArgsInfo()) {
3924 VarTemplateArgsInfo.setLAngleLoc(TemplateArgsInfo->getLAngleLoc());
3925 VarTemplateArgsInfo.setRAngleLoc(TemplateArgsInfo->getRAngleLoc());
3927 if (SemaRef.SubstTemplateArguments(TemplateArgsInfo->arguments(),
3928 TemplateArgs, VarTemplateArgsInfo))
3929 return nullptr;
3932 // Check that the template argument list is well-formed for this template.
3933 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
3934 if (SemaRef.CheckTemplateArgumentList(InstVarTemplate, D->getLocation(),
3935 VarTemplateArgsInfo, false,
3936 SugaredConverted, CanonicalConverted,
3937 /*UpdateArgsWithConversions=*/true))
3938 return nullptr;
3940 // Check whether we've already seen a declaration of this specialization.
3941 void *InsertPos = nullptr;
3942 VarTemplateSpecializationDecl *PrevDecl =
3943 InstVarTemplate->findSpecialization(CanonicalConverted, InsertPos);
3945 // Check whether we've already seen a conflicting instantiation of this
3946 // declaration (for instance, if there was a prior implicit instantiation).
3947 bool Ignored;
3948 if (PrevDecl && SemaRef.CheckSpecializationInstantiationRedecl(
3949 D->getLocation(), D->getSpecializationKind(), PrevDecl,
3950 PrevDecl->getSpecializationKind(),
3951 PrevDecl->getPointOfInstantiation(), Ignored))
3952 return nullptr;
3954 return VisitVarTemplateSpecializationDecl(
3955 InstVarTemplate, D, VarTemplateArgsInfo, CanonicalConverted, PrevDecl);
3958 Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl(
3959 VarTemplateDecl *VarTemplate, VarDecl *D,
3960 const TemplateArgumentListInfo &TemplateArgsInfo,
3961 ArrayRef<TemplateArgument> Converted,
3962 VarTemplateSpecializationDecl *PrevDecl) {
3964 // Do substitution on the type of the declaration
3965 TypeSourceInfo *DI =
3966 SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs,
3967 D->getTypeSpecStartLoc(), D->getDeclName());
3968 if (!DI)
3969 return nullptr;
3971 if (DI->getType()->isFunctionType()) {
3972 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function)
3973 << D->isStaticDataMember() << DI->getType();
3974 return nullptr;
3977 // Build the instantiated declaration
3978 VarTemplateSpecializationDecl *Var = VarTemplateSpecializationDecl::Create(
3979 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(),
3980 VarTemplate, DI->getType(), DI, D->getStorageClass(), Converted);
3981 Var->setTemplateArgsInfo(TemplateArgsInfo);
3982 if (!PrevDecl) {
3983 void *InsertPos = nullptr;
3984 VarTemplate->findSpecialization(Converted, InsertPos);
3985 VarTemplate->AddSpecialization(Var, InsertPos);
3988 if (SemaRef.getLangOpts().OpenCL)
3989 SemaRef.deduceOpenCLAddressSpace(Var);
3991 // Substitute the nested name specifier, if any.
3992 if (SubstQualifier(D, Var))
3993 return nullptr;
3995 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner,
3996 StartingScope, false, PrevDecl);
3998 return Var;
4001 Decl *TemplateDeclInstantiator::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D) {
4002 llvm_unreachable("@defs is not supported in Objective-C++");
4005 Decl *TemplateDeclInstantiator::VisitFriendTemplateDecl(FriendTemplateDecl *D) {
4006 // FIXME: We need to be able to instantiate FriendTemplateDecls.
4007 unsigned DiagID = SemaRef.getDiagnostics().getCustomDiagID(
4008 DiagnosticsEngine::Error,
4009 "cannot instantiate %0 yet");
4010 SemaRef.Diag(D->getLocation(), DiagID)
4011 << D->getDeclKindName();
4013 return nullptr;
4016 Decl *TemplateDeclInstantiator::VisitConceptDecl(ConceptDecl *D) {
4017 llvm_unreachable("Concept definitions cannot reside inside a template");
4020 Decl *TemplateDeclInstantiator::VisitImplicitConceptSpecializationDecl(
4021 ImplicitConceptSpecializationDecl *D) {
4022 llvm_unreachable("Concept specializations cannot reside inside a template");
4025 Decl *
4026 TemplateDeclInstantiator::VisitRequiresExprBodyDecl(RequiresExprBodyDecl *D) {
4027 return RequiresExprBodyDecl::Create(SemaRef.Context, D->getDeclContext(),
4028 D->getBeginLoc());
4031 Decl *TemplateDeclInstantiator::VisitDecl(Decl *D) {
4032 llvm_unreachable("Unexpected decl");
4035 Decl *Sema::SubstDecl(Decl *D, DeclContext *Owner,
4036 const MultiLevelTemplateArgumentList &TemplateArgs) {
4037 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs);
4038 if (D->isInvalidDecl())
4039 return nullptr;
4041 Decl *SubstD;
4042 runWithSufficientStackSpace(D->getLocation(), [&] {
4043 SubstD = Instantiator.Visit(D);
4045 return SubstD;
4048 void TemplateDeclInstantiator::adjustForRewrite(RewriteKind RK,
4049 FunctionDecl *Orig, QualType &T,
4050 TypeSourceInfo *&TInfo,
4051 DeclarationNameInfo &NameInfo) {
4052 assert(RK == RewriteKind::RewriteSpaceshipAsEqualEqual);
4054 // C++2a [class.compare.default]p3:
4055 // the return type is replaced with bool
4056 auto *FPT = T->castAs<FunctionProtoType>();
4057 T = SemaRef.Context.getFunctionType(
4058 SemaRef.Context.BoolTy, FPT->getParamTypes(), FPT->getExtProtoInfo());
4060 // Update the return type in the source info too. The most straightforward
4061 // way is to create new TypeSourceInfo for the new type. Use the location of
4062 // the '= default' as the location of the new type.
4064 // FIXME: Set the correct return type when we initially transform the type,
4065 // rather than delaying it to now.
4066 TypeSourceInfo *NewTInfo =
4067 SemaRef.Context.getTrivialTypeSourceInfo(T, Orig->getEndLoc());
4068 auto OldLoc = TInfo->getTypeLoc().getAsAdjusted<FunctionProtoTypeLoc>();
4069 assert(OldLoc && "type of function is not a function type?");
4070 auto NewLoc = NewTInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>();
4071 for (unsigned I = 0, N = OldLoc.getNumParams(); I != N; ++I)
4072 NewLoc.setParam(I, OldLoc.getParam(I));
4073 TInfo = NewTInfo;
4075 // and the declarator-id is replaced with operator==
4076 NameInfo.setName(
4077 SemaRef.Context.DeclarationNames.getCXXOperatorName(OO_EqualEqual));
4080 FunctionDecl *Sema::SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD,
4081 FunctionDecl *Spaceship) {
4082 if (Spaceship->isInvalidDecl())
4083 return nullptr;
4085 // C++2a [class.compare.default]p3:
4086 // an == operator function is declared implicitly [...] with the same
4087 // access and function-definition and in the same class scope as the
4088 // three-way comparison operator function
4089 MultiLevelTemplateArgumentList NoTemplateArgs;
4090 NoTemplateArgs.setKind(TemplateSubstitutionKind::Rewrite);
4091 NoTemplateArgs.addOuterRetainedLevels(RD->getTemplateDepth());
4092 TemplateDeclInstantiator Instantiator(*this, RD, NoTemplateArgs);
4093 Decl *R;
4094 if (auto *MD = dyn_cast<CXXMethodDecl>(Spaceship)) {
4095 R = Instantiator.VisitCXXMethodDecl(
4096 MD, /*TemplateParams=*/nullptr,
4097 TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual);
4098 } else {
4099 assert(Spaceship->getFriendObjectKind() &&
4100 "defaulted spaceship is neither a member nor a friend");
4102 R = Instantiator.VisitFunctionDecl(
4103 Spaceship, /*TemplateParams=*/nullptr,
4104 TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual);
4105 if (!R)
4106 return nullptr;
4108 FriendDecl *FD =
4109 FriendDecl::Create(Context, RD, Spaceship->getLocation(),
4110 cast<NamedDecl>(R), Spaceship->getBeginLoc());
4111 FD->setAccess(AS_public);
4112 RD->addDecl(FD);
4114 return cast_or_null<FunctionDecl>(R);
4117 /// Instantiates a nested template parameter list in the current
4118 /// instantiation context.
4120 /// \param L The parameter list to instantiate
4122 /// \returns NULL if there was an error
4123 TemplateParameterList *
4124 TemplateDeclInstantiator::SubstTemplateParams(TemplateParameterList *L) {
4125 // Get errors for all the parameters before bailing out.
4126 bool Invalid = false;
4128 unsigned N = L->size();
4129 typedef SmallVector<NamedDecl *, 8> ParamVector;
4130 ParamVector Params;
4131 Params.reserve(N);
4132 for (auto &P : *L) {
4133 NamedDecl *D = cast_or_null<NamedDecl>(Visit(P));
4134 Params.push_back(D);
4135 Invalid = Invalid || !D || D->isInvalidDecl();
4138 // Clean up if we had an error.
4139 if (Invalid)
4140 return nullptr;
4142 Expr *InstRequiresClause = L->getRequiresClause();
4144 TemplateParameterList *InstL
4145 = TemplateParameterList::Create(SemaRef.Context, L->getTemplateLoc(),
4146 L->getLAngleLoc(), Params,
4147 L->getRAngleLoc(), InstRequiresClause);
4148 return InstL;
4151 TemplateParameterList *
4152 Sema::SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner,
4153 const MultiLevelTemplateArgumentList &TemplateArgs,
4154 bool EvaluateConstraints) {
4155 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs);
4156 Instantiator.setEvaluateConstraints(EvaluateConstraints);
4157 return Instantiator.SubstTemplateParams(Params);
4160 /// Instantiate the declaration of a class template partial
4161 /// specialization.
4163 /// \param ClassTemplate the (instantiated) class template that is partially
4164 // specialized by the instantiation of \p PartialSpec.
4166 /// \param PartialSpec the (uninstantiated) class template partial
4167 /// specialization that we are instantiating.
4169 /// \returns The instantiated partial specialization, if successful; otherwise,
4170 /// NULL to indicate an error.
4171 ClassTemplatePartialSpecializationDecl *
4172 TemplateDeclInstantiator::InstantiateClassTemplatePartialSpecialization(
4173 ClassTemplateDecl *ClassTemplate,
4174 ClassTemplatePartialSpecializationDecl *PartialSpec) {
4175 // Create a local instantiation scope for this class template partial
4176 // specialization, which will contain the instantiations of the template
4177 // parameters.
4178 LocalInstantiationScope Scope(SemaRef);
4180 // Substitute into the template parameters of the class template partial
4181 // specialization.
4182 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters();
4183 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
4184 if (!InstParams)
4185 return nullptr;
4187 // Substitute into the template arguments of the class template partial
4188 // specialization.
4189 const ASTTemplateArgumentListInfo *TemplArgInfo
4190 = PartialSpec->getTemplateArgsAsWritten();
4191 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc,
4192 TemplArgInfo->RAngleLoc);
4193 if (SemaRef.SubstTemplateArguments(TemplArgInfo->arguments(), TemplateArgs,
4194 InstTemplateArgs))
4195 return nullptr;
4197 // Check that the template argument list is well-formed for this
4198 // class template.
4199 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4200 if (SemaRef.CheckTemplateArgumentList(
4201 ClassTemplate, PartialSpec->getLocation(), InstTemplateArgs,
4202 /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted))
4203 return nullptr;
4205 // Check these arguments are valid for a template partial specialization.
4206 if (SemaRef.CheckTemplatePartialSpecializationArgs(
4207 PartialSpec->getLocation(), ClassTemplate, InstTemplateArgs.size(),
4208 CanonicalConverted))
4209 return nullptr;
4211 // Figure out where to insert this class template partial specialization
4212 // in the member template's set of class template partial specializations.
4213 void *InsertPos = nullptr;
4214 ClassTemplateSpecializationDecl *PrevDecl =
4215 ClassTemplate->findPartialSpecialization(CanonicalConverted, InstParams,
4216 InsertPos);
4218 // Build the canonical type that describes the converted template
4219 // arguments of the class template partial specialization.
4220 QualType CanonType = SemaRef.Context.getTemplateSpecializationType(
4221 TemplateName(ClassTemplate), CanonicalConverted);
4223 // Build the fully-sugared type for this class template
4224 // specialization as the user wrote in the specialization
4225 // itself. This means that we'll pretty-print the type retrieved
4226 // from the specialization's declaration the way that the user
4227 // actually wrote the specialization, rather than formatting the
4228 // name based on the "canonical" representation used to store the
4229 // template arguments in the specialization.
4230 TypeSourceInfo *WrittenTy
4231 = SemaRef.Context.getTemplateSpecializationTypeInfo(
4232 TemplateName(ClassTemplate),
4233 PartialSpec->getLocation(),
4234 InstTemplateArgs,
4235 CanonType);
4237 if (PrevDecl) {
4238 // We've already seen a partial specialization with the same template
4239 // parameters and template arguments. This can happen, for example, when
4240 // substituting the outer template arguments ends up causing two
4241 // class template partial specializations of a member class template
4242 // to have identical forms, e.g.,
4244 // template<typename T, typename U>
4245 // struct Outer {
4246 // template<typename X, typename Y> struct Inner;
4247 // template<typename Y> struct Inner<T, Y>;
4248 // template<typename Y> struct Inner<U, Y>;
4249 // };
4251 // Outer<int, int> outer; // error: the partial specializations of Inner
4252 // // have the same signature.
4253 SemaRef.Diag(PartialSpec->getLocation(), diag::err_partial_spec_redeclared)
4254 << WrittenTy->getType();
4255 SemaRef.Diag(PrevDecl->getLocation(), diag::note_prev_partial_spec_here)
4256 << SemaRef.Context.getTypeDeclType(PrevDecl);
4257 return nullptr;
4261 // Create the class template partial specialization declaration.
4262 ClassTemplatePartialSpecializationDecl *InstPartialSpec =
4263 ClassTemplatePartialSpecializationDecl::Create(
4264 SemaRef.Context, PartialSpec->getTagKind(), Owner,
4265 PartialSpec->getBeginLoc(), PartialSpec->getLocation(), InstParams,
4266 ClassTemplate, CanonicalConverted, InstTemplateArgs, CanonType,
4267 nullptr);
4268 // Substitute the nested name specifier, if any.
4269 if (SubstQualifier(PartialSpec, InstPartialSpec))
4270 return nullptr;
4272 InstPartialSpec->setInstantiatedFromMember(PartialSpec);
4273 InstPartialSpec->setTypeAsWritten(WrittenTy);
4275 // Check the completed partial specialization.
4276 SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec);
4278 // Add this partial specialization to the set of class template partial
4279 // specializations.
4280 ClassTemplate->AddPartialSpecialization(InstPartialSpec,
4281 /*InsertPos=*/nullptr);
4282 return InstPartialSpec;
4285 /// Instantiate the declaration of a variable template partial
4286 /// specialization.
4288 /// \param VarTemplate the (instantiated) variable template that is partially
4289 /// specialized by the instantiation of \p PartialSpec.
4291 /// \param PartialSpec the (uninstantiated) variable template partial
4292 /// specialization that we are instantiating.
4294 /// \returns The instantiated partial specialization, if successful; otherwise,
4295 /// NULL to indicate an error.
4296 VarTemplatePartialSpecializationDecl *
4297 TemplateDeclInstantiator::InstantiateVarTemplatePartialSpecialization(
4298 VarTemplateDecl *VarTemplate,
4299 VarTemplatePartialSpecializationDecl *PartialSpec) {
4300 // Create a local instantiation scope for this variable template partial
4301 // specialization, which will contain the instantiations of the template
4302 // parameters.
4303 LocalInstantiationScope Scope(SemaRef);
4305 // Substitute into the template parameters of the variable template partial
4306 // specialization.
4307 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters();
4308 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
4309 if (!InstParams)
4310 return nullptr;
4312 // Substitute into the template arguments of the variable template partial
4313 // specialization.
4314 const ASTTemplateArgumentListInfo *TemplArgInfo
4315 = PartialSpec->getTemplateArgsAsWritten();
4316 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc,
4317 TemplArgInfo->RAngleLoc);
4318 if (SemaRef.SubstTemplateArguments(TemplArgInfo->arguments(), TemplateArgs,
4319 InstTemplateArgs))
4320 return nullptr;
4322 // Check that the template argument list is well-formed for this
4323 // class template.
4324 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4325 if (SemaRef.CheckTemplateArgumentList(
4326 VarTemplate, PartialSpec->getLocation(), InstTemplateArgs,
4327 /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted))
4328 return nullptr;
4330 // Check these arguments are valid for a template partial specialization.
4331 if (SemaRef.CheckTemplatePartialSpecializationArgs(
4332 PartialSpec->getLocation(), VarTemplate, InstTemplateArgs.size(),
4333 CanonicalConverted))
4334 return nullptr;
4336 // Figure out where to insert this variable template partial specialization
4337 // in the member template's set of variable template partial specializations.
4338 void *InsertPos = nullptr;
4339 VarTemplateSpecializationDecl *PrevDecl =
4340 VarTemplate->findPartialSpecialization(CanonicalConverted, InstParams,
4341 InsertPos);
4343 // Build the canonical type that describes the converted template
4344 // arguments of the variable template partial specialization.
4345 QualType CanonType = SemaRef.Context.getTemplateSpecializationType(
4346 TemplateName(VarTemplate), CanonicalConverted);
4348 // Build the fully-sugared type for this variable template
4349 // specialization as the user wrote in the specialization
4350 // itself. This means that we'll pretty-print the type retrieved
4351 // from the specialization's declaration the way that the user
4352 // actually wrote the specialization, rather than formatting the
4353 // name based on the "canonical" representation used to store the
4354 // template arguments in the specialization.
4355 TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo(
4356 TemplateName(VarTemplate), PartialSpec->getLocation(), InstTemplateArgs,
4357 CanonType);
4359 if (PrevDecl) {
4360 // We've already seen a partial specialization with the same template
4361 // parameters and template arguments. This can happen, for example, when
4362 // substituting the outer template arguments ends up causing two
4363 // variable template partial specializations of a member variable template
4364 // to have identical forms, e.g.,
4366 // template<typename T, typename U>
4367 // struct Outer {
4368 // template<typename X, typename Y> pair<X,Y> p;
4369 // template<typename Y> pair<T, Y> p;
4370 // template<typename Y> pair<U, Y> p;
4371 // };
4373 // Outer<int, int> outer; // error: the partial specializations of Inner
4374 // // have the same signature.
4375 SemaRef.Diag(PartialSpec->getLocation(),
4376 diag::err_var_partial_spec_redeclared)
4377 << WrittenTy->getType();
4378 SemaRef.Diag(PrevDecl->getLocation(),
4379 diag::note_var_prev_partial_spec_here);
4380 return nullptr;
4383 // Do substitution on the type of the declaration
4384 TypeSourceInfo *DI = SemaRef.SubstType(
4385 PartialSpec->getTypeSourceInfo(), TemplateArgs,
4386 PartialSpec->getTypeSpecStartLoc(), PartialSpec->getDeclName());
4387 if (!DI)
4388 return nullptr;
4390 if (DI->getType()->isFunctionType()) {
4391 SemaRef.Diag(PartialSpec->getLocation(),
4392 diag::err_variable_instantiates_to_function)
4393 << PartialSpec->isStaticDataMember() << DI->getType();
4394 return nullptr;
4397 // Create the variable template partial specialization declaration.
4398 VarTemplatePartialSpecializationDecl *InstPartialSpec =
4399 VarTemplatePartialSpecializationDecl::Create(
4400 SemaRef.Context, Owner, PartialSpec->getInnerLocStart(),
4401 PartialSpec->getLocation(), InstParams, VarTemplate, DI->getType(),
4402 DI, PartialSpec->getStorageClass(), CanonicalConverted,
4403 InstTemplateArgs);
4405 // Substitute the nested name specifier, if any.
4406 if (SubstQualifier(PartialSpec, InstPartialSpec))
4407 return nullptr;
4409 InstPartialSpec->setInstantiatedFromMember(PartialSpec);
4410 InstPartialSpec->setTypeAsWritten(WrittenTy);
4412 // Check the completed partial specialization.
4413 SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec);
4415 // Add this partial specialization to the set of variable template partial
4416 // specializations. The instantiation of the initializer is not necessary.
4417 VarTemplate->AddPartialSpecialization(InstPartialSpec, /*InsertPos=*/nullptr);
4419 SemaRef.BuildVariableInstantiation(InstPartialSpec, PartialSpec, TemplateArgs,
4420 LateAttrs, Owner, StartingScope);
4422 return InstPartialSpec;
4425 TypeSourceInfo*
4426 TemplateDeclInstantiator::SubstFunctionType(FunctionDecl *D,
4427 SmallVectorImpl<ParmVarDecl *> &Params) {
4428 TypeSourceInfo *OldTInfo = D->getTypeSourceInfo();
4429 assert(OldTInfo && "substituting function without type source info");
4430 assert(Params.empty() && "parameter vector is non-empty at start");
4432 CXXRecordDecl *ThisContext = nullptr;
4433 Qualifiers ThisTypeQuals;
4434 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4435 ThisContext = cast<CXXRecordDecl>(Owner);
4436 ThisTypeQuals = Method->getFunctionObjectParameterType().getQualifiers();
4439 TypeSourceInfo *NewTInfo = SemaRef.SubstFunctionDeclType(
4440 OldTInfo, TemplateArgs, D->getTypeSpecStartLoc(), D->getDeclName(),
4441 ThisContext, ThisTypeQuals, EvaluateConstraints);
4442 if (!NewTInfo)
4443 return nullptr;
4445 TypeLoc OldTL = OldTInfo->getTypeLoc().IgnoreParens();
4446 if (FunctionProtoTypeLoc OldProtoLoc = OldTL.getAs<FunctionProtoTypeLoc>()) {
4447 if (NewTInfo != OldTInfo) {
4448 // Get parameters from the new type info.
4449 TypeLoc NewTL = NewTInfo->getTypeLoc().IgnoreParens();
4450 FunctionProtoTypeLoc NewProtoLoc = NewTL.castAs<FunctionProtoTypeLoc>();
4451 unsigned NewIdx = 0;
4452 for (unsigned OldIdx = 0, NumOldParams = OldProtoLoc.getNumParams();
4453 OldIdx != NumOldParams; ++OldIdx) {
4454 ParmVarDecl *OldParam = OldProtoLoc.getParam(OldIdx);
4455 if (!OldParam)
4456 return nullptr;
4458 LocalInstantiationScope *Scope = SemaRef.CurrentInstantiationScope;
4460 std::optional<unsigned> NumArgumentsInExpansion;
4461 if (OldParam->isParameterPack())
4462 NumArgumentsInExpansion =
4463 SemaRef.getNumArgumentsInExpansion(OldParam->getType(),
4464 TemplateArgs);
4465 if (!NumArgumentsInExpansion) {
4466 // Simple case: normal parameter, or a parameter pack that's
4467 // instantiated to a (still-dependent) parameter pack.
4468 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++);
4469 Params.push_back(NewParam);
4470 Scope->InstantiatedLocal(OldParam, NewParam);
4471 } else {
4472 // Parameter pack expansion: make the instantiation an argument pack.
4473 Scope->MakeInstantiatedLocalArgPack(OldParam);
4474 for (unsigned I = 0; I != *NumArgumentsInExpansion; ++I) {
4475 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++);
4476 Params.push_back(NewParam);
4477 Scope->InstantiatedLocalPackArg(OldParam, NewParam);
4481 } else {
4482 // The function type itself was not dependent and therefore no
4483 // substitution occurred. However, we still need to instantiate
4484 // the function parameters themselves.
4485 const FunctionProtoType *OldProto =
4486 cast<FunctionProtoType>(OldProtoLoc.getType());
4487 for (unsigned i = 0, i_end = OldProtoLoc.getNumParams(); i != i_end;
4488 ++i) {
4489 ParmVarDecl *OldParam = OldProtoLoc.getParam(i);
4490 if (!OldParam) {
4491 Params.push_back(SemaRef.BuildParmVarDeclForTypedef(
4492 D, D->getLocation(), OldProto->getParamType(i)));
4493 continue;
4496 ParmVarDecl *Parm =
4497 cast_or_null<ParmVarDecl>(VisitParmVarDecl(OldParam));
4498 if (!Parm)
4499 return nullptr;
4500 Params.push_back(Parm);
4503 } else {
4504 // If the type of this function, after ignoring parentheses, is not
4505 // *directly* a function type, then we're instantiating a function that
4506 // was declared via a typedef or with attributes, e.g.,
4508 // typedef int functype(int, int);
4509 // functype func;
4510 // int __cdecl meth(int, int);
4512 // In this case, we'll just go instantiate the ParmVarDecls that we
4513 // synthesized in the method declaration.
4514 SmallVector<QualType, 4> ParamTypes;
4515 Sema::ExtParameterInfoBuilder ExtParamInfos;
4516 if (SemaRef.SubstParmTypes(D->getLocation(), D->parameters(), nullptr,
4517 TemplateArgs, ParamTypes, &Params,
4518 ExtParamInfos))
4519 return nullptr;
4522 return NewTInfo;
4525 /// Introduce the instantiated local variables into the local
4526 /// instantiation scope.
4527 void Sema::addInstantiatedLocalVarsToScope(FunctionDecl *Function,
4528 const FunctionDecl *PatternDecl,
4529 LocalInstantiationScope &Scope) {
4530 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(getFunctionScopes().back());
4532 for (auto *decl : PatternDecl->decls()) {
4533 if (!isa<VarDecl>(decl) || isa<ParmVarDecl>(decl))
4534 continue;
4536 VarDecl *VD = cast<VarDecl>(decl);
4537 IdentifierInfo *II = VD->getIdentifier();
4539 auto it = llvm::find_if(Function->decls(), [&](Decl *inst) {
4540 VarDecl *InstVD = dyn_cast<VarDecl>(inst);
4541 return InstVD && InstVD->isLocalVarDecl() &&
4542 InstVD->getIdentifier() == II;
4545 if (it == Function->decls().end())
4546 continue;
4548 Scope.InstantiatedLocal(VD, *it);
4549 LSI->addCapture(cast<VarDecl>(*it), /*isBlock=*/false, /*isByref=*/false,
4550 /*isNested=*/false, VD->getLocation(), SourceLocation(),
4551 VD->getType(), /*Invalid=*/false);
4555 /// Introduce the instantiated function parameters into the local
4556 /// instantiation scope, and set the parameter names to those used
4557 /// in the template.
4558 bool Sema::addInstantiatedParametersToScope(
4559 FunctionDecl *Function, const FunctionDecl *PatternDecl,
4560 LocalInstantiationScope &Scope,
4561 const MultiLevelTemplateArgumentList &TemplateArgs) {
4562 unsigned FParamIdx = 0;
4563 for (unsigned I = 0, N = PatternDecl->getNumParams(); I != N; ++I) {
4564 const ParmVarDecl *PatternParam = PatternDecl->getParamDecl(I);
4565 if (!PatternParam->isParameterPack()) {
4566 // Simple case: not a parameter pack.
4567 assert(FParamIdx < Function->getNumParams());
4568 ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx);
4569 FunctionParam->setDeclName(PatternParam->getDeclName());
4570 // If the parameter's type is not dependent, update it to match the type
4571 // in the pattern. They can differ in top-level cv-qualifiers, and we want
4572 // the pattern's type here. If the type is dependent, they can't differ,
4573 // per core issue 1668. Substitute into the type from the pattern, in case
4574 // it's instantiation-dependent.
4575 // FIXME: Updating the type to work around this is at best fragile.
4576 if (!PatternDecl->getType()->isDependentType()) {
4577 QualType T = SubstType(PatternParam->getType(), TemplateArgs,
4578 FunctionParam->getLocation(),
4579 FunctionParam->getDeclName());
4580 if (T.isNull())
4581 return true;
4582 FunctionParam->setType(T);
4585 Scope.InstantiatedLocal(PatternParam, FunctionParam);
4586 ++FParamIdx;
4587 continue;
4590 // Expand the parameter pack.
4591 Scope.MakeInstantiatedLocalArgPack(PatternParam);
4592 std::optional<unsigned> NumArgumentsInExpansion =
4593 getNumArgumentsInExpansion(PatternParam->getType(), TemplateArgs);
4594 if (NumArgumentsInExpansion) {
4595 QualType PatternType =
4596 PatternParam->getType()->castAs<PackExpansionType>()->getPattern();
4597 for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg) {
4598 ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx);
4599 FunctionParam->setDeclName(PatternParam->getDeclName());
4600 if (!PatternDecl->getType()->isDependentType()) {
4601 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, Arg);
4602 QualType T =
4603 SubstType(PatternType, TemplateArgs, FunctionParam->getLocation(),
4604 FunctionParam->getDeclName());
4605 if (T.isNull())
4606 return true;
4607 FunctionParam->setType(T);
4610 Scope.InstantiatedLocalPackArg(PatternParam, FunctionParam);
4611 ++FParamIdx;
4616 return false;
4619 bool Sema::InstantiateDefaultArgument(SourceLocation CallLoc, FunctionDecl *FD,
4620 ParmVarDecl *Param) {
4621 assert(Param->hasUninstantiatedDefaultArg());
4623 // Instantiate the expression.
4625 // FIXME: Pass in a correct Pattern argument, otherwise
4626 // getTemplateInstantiationArgs uses the lexical context of FD, e.g.
4628 // template<typename T>
4629 // struct A {
4630 // static int FooImpl();
4632 // template<typename Tp>
4633 // // bug: default argument A<T>::FooImpl() is evaluated with 2-level
4634 // // template argument list [[T], [Tp]], should be [[Tp]].
4635 // friend A<Tp> Foo(int a);
4636 // };
4638 // template<typename T>
4639 // A<T> Foo(int a = A<T>::FooImpl());
4640 MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs(
4641 FD, FD->getLexicalDeclContext(), /*Final=*/false, nullptr,
4642 /*RelativeToPrimary=*/true);
4644 if (SubstDefaultArgument(CallLoc, Param, TemplateArgs, /*ForCallExpr*/ true))
4645 return true;
4647 if (ASTMutationListener *L = getASTMutationListener())
4648 L->DefaultArgumentInstantiated(Param);
4650 return false;
4653 void Sema::InstantiateExceptionSpec(SourceLocation PointOfInstantiation,
4654 FunctionDecl *Decl) {
4655 const FunctionProtoType *Proto = Decl->getType()->castAs<FunctionProtoType>();
4656 if (Proto->getExceptionSpecType() != EST_Uninstantiated)
4657 return;
4659 InstantiatingTemplate Inst(*this, PointOfInstantiation, Decl,
4660 InstantiatingTemplate::ExceptionSpecification());
4661 if (Inst.isInvalid()) {
4662 // We hit the instantiation depth limit. Clear the exception specification
4663 // so that our callers don't have to cope with EST_Uninstantiated.
4664 UpdateExceptionSpec(Decl, EST_None);
4665 return;
4667 if (Inst.isAlreadyInstantiating()) {
4668 // This exception specification indirectly depends on itself. Reject.
4669 // FIXME: Corresponding rule in the standard?
4670 Diag(PointOfInstantiation, diag::err_exception_spec_cycle) << Decl;
4671 UpdateExceptionSpec(Decl, EST_None);
4672 return;
4675 // Enter the scope of this instantiation. We don't use
4676 // PushDeclContext because we don't have a scope.
4677 Sema::ContextRAII savedContext(*this, Decl);
4678 LocalInstantiationScope Scope(*this);
4680 MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs(
4681 Decl, Decl->getLexicalDeclContext(), /*Final=*/false, nullptr,
4682 /*RelativeToPrimary*/ true);
4684 // FIXME: We can't use getTemplateInstantiationPattern(false) in general
4685 // here, because for a non-defining friend declaration in a class template,
4686 // we don't store enough information to map back to the friend declaration in
4687 // the template.
4688 FunctionDecl *Template = Proto->getExceptionSpecTemplate();
4689 if (addInstantiatedParametersToScope(Decl, Template, Scope, TemplateArgs)) {
4690 UpdateExceptionSpec(Decl, EST_None);
4691 return;
4694 SubstExceptionSpec(Decl, Template->getType()->castAs<FunctionProtoType>(),
4695 TemplateArgs);
4698 /// Initializes the common fields of an instantiation function
4699 /// declaration (New) from the corresponding fields of its template (Tmpl).
4701 /// \returns true if there was an error
4702 bool
4703 TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl *New,
4704 FunctionDecl *Tmpl) {
4705 New->setImplicit(Tmpl->isImplicit());
4707 // Forward the mangling number from the template to the instantiated decl.
4708 SemaRef.Context.setManglingNumber(New,
4709 SemaRef.Context.getManglingNumber(Tmpl));
4711 // If we are performing substituting explicitly-specified template arguments
4712 // or deduced template arguments into a function template and we reach this
4713 // point, we are now past the point where SFINAE applies and have committed
4714 // to keeping the new function template specialization. We therefore
4715 // convert the active template instantiation for the function template
4716 // into a template instantiation for this specific function template
4717 // specialization, which is not a SFINAE context, so that we diagnose any
4718 // further errors in the declaration itself.
4720 // FIXME: This is a hack.
4721 typedef Sema::CodeSynthesisContext ActiveInstType;
4722 ActiveInstType &ActiveInst = SemaRef.CodeSynthesisContexts.back();
4723 if (ActiveInst.Kind == ActiveInstType::ExplicitTemplateArgumentSubstitution ||
4724 ActiveInst.Kind == ActiveInstType::DeducedTemplateArgumentSubstitution) {
4725 if (isa<FunctionTemplateDecl>(ActiveInst.Entity)) {
4726 SemaRef.InstantiatingSpecializations.erase(
4727 {ActiveInst.Entity->getCanonicalDecl(), ActiveInst.Kind});
4728 atTemplateEnd(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst);
4729 ActiveInst.Kind = ActiveInstType::TemplateInstantiation;
4730 ActiveInst.Entity = New;
4731 atTemplateBegin(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst);
4735 const FunctionProtoType *Proto = Tmpl->getType()->getAs<FunctionProtoType>();
4736 assert(Proto && "Function template without prototype?");
4738 if (Proto->hasExceptionSpec() || Proto->getNoReturnAttr()) {
4739 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4741 // DR1330: In C++11, defer instantiation of a non-trivial
4742 // exception specification.
4743 // DR1484: Local classes and their members are instantiated along with the
4744 // containing function.
4745 if (SemaRef.getLangOpts().CPlusPlus11 &&
4746 EPI.ExceptionSpec.Type != EST_None &&
4747 EPI.ExceptionSpec.Type != EST_DynamicNone &&
4748 EPI.ExceptionSpec.Type != EST_BasicNoexcept &&
4749 !Tmpl->isInLocalScopeForInstantiation()) {
4750 FunctionDecl *ExceptionSpecTemplate = Tmpl;
4751 if (EPI.ExceptionSpec.Type == EST_Uninstantiated)
4752 ExceptionSpecTemplate = EPI.ExceptionSpec.SourceTemplate;
4753 ExceptionSpecificationType NewEST = EST_Uninstantiated;
4754 if (EPI.ExceptionSpec.Type == EST_Unevaluated)
4755 NewEST = EST_Unevaluated;
4757 // Mark the function has having an uninstantiated exception specification.
4758 const FunctionProtoType *NewProto
4759 = New->getType()->getAs<FunctionProtoType>();
4760 assert(NewProto && "Template instantiation without function prototype?");
4761 EPI = NewProto->getExtProtoInfo();
4762 EPI.ExceptionSpec.Type = NewEST;
4763 EPI.ExceptionSpec.SourceDecl = New;
4764 EPI.ExceptionSpec.SourceTemplate = ExceptionSpecTemplate;
4765 New->setType(SemaRef.Context.getFunctionType(
4766 NewProto->getReturnType(), NewProto->getParamTypes(), EPI));
4767 } else {
4768 Sema::ContextRAII SwitchContext(SemaRef, New);
4769 SemaRef.SubstExceptionSpec(New, Proto, TemplateArgs);
4773 // Get the definition. Leaves the variable unchanged if undefined.
4774 const FunctionDecl *Definition = Tmpl;
4775 Tmpl->isDefined(Definition);
4777 SemaRef.InstantiateAttrs(TemplateArgs, Definition, New,
4778 LateAttrs, StartingScope);
4780 return false;
4783 /// Initializes common fields of an instantiated method
4784 /// declaration (New) from the corresponding fields of its template
4785 /// (Tmpl).
4787 /// \returns true if there was an error
4788 bool
4789 TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl *New,
4790 CXXMethodDecl *Tmpl) {
4791 if (InitFunctionInstantiation(New, Tmpl))
4792 return true;
4794 if (isa<CXXDestructorDecl>(New) && SemaRef.getLangOpts().CPlusPlus11)
4795 SemaRef.AdjustDestructorExceptionSpec(cast<CXXDestructorDecl>(New));
4797 New->setAccess(Tmpl->getAccess());
4798 if (Tmpl->isVirtualAsWritten())
4799 New->setVirtualAsWritten(true);
4801 // FIXME: New needs a pointer to Tmpl
4802 return false;
4805 bool TemplateDeclInstantiator::SubstDefaultedFunction(FunctionDecl *New,
4806 FunctionDecl *Tmpl) {
4807 // Transfer across any unqualified lookups.
4808 if (auto *DFI = Tmpl->getDefaultedFunctionInfo()) {
4809 SmallVector<DeclAccessPair, 32> Lookups;
4810 Lookups.reserve(DFI->getUnqualifiedLookups().size());
4811 bool AnyChanged = false;
4812 for (DeclAccessPair DA : DFI->getUnqualifiedLookups()) {
4813 NamedDecl *D = SemaRef.FindInstantiatedDecl(New->getLocation(),
4814 DA.getDecl(), TemplateArgs);
4815 if (!D)
4816 return true;
4817 AnyChanged |= (D != DA.getDecl());
4818 Lookups.push_back(DeclAccessPair::make(D, DA.getAccess()));
4821 // It's unlikely that substitution will change any declarations. Don't
4822 // store an unnecessary copy in that case.
4823 New->setDefaultedFunctionInfo(
4824 AnyChanged ? FunctionDecl::DefaultedFunctionInfo::Create(
4825 SemaRef.Context, Lookups)
4826 : DFI);
4829 SemaRef.SetDeclDefaulted(New, Tmpl->getLocation());
4830 return false;
4833 /// Instantiate (or find existing instantiation of) a function template with a
4834 /// given set of template arguments.
4836 /// Usually this should not be used, and template argument deduction should be
4837 /// used in its place.
4838 FunctionDecl *
4839 Sema::InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD,
4840 const TemplateArgumentList *Args,
4841 SourceLocation Loc) {
4842 FunctionDecl *FD = FTD->getTemplatedDecl();
4844 sema::TemplateDeductionInfo Info(Loc);
4845 InstantiatingTemplate Inst(
4846 *this, Loc, FTD, Args->asArray(),
4847 CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info);
4848 if (Inst.isInvalid())
4849 return nullptr;
4851 ContextRAII SavedContext(*this, FD);
4852 MultiLevelTemplateArgumentList MArgs(FTD, Args->asArray(),
4853 /*Final=*/false);
4855 return cast_or_null<FunctionDecl>(SubstDecl(FD, FD->getParent(), MArgs));
4858 /// Instantiate the definition of the given function from its
4859 /// template.
4861 /// \param PointOfInstantiation the point at which the instantiation was
4862 /// required. Note that this is not precisely a "point of instantiation"
4863 /// for the function, but it's close.
4865 /// \param Function the already-instantiated declaration of a
4866 /// function template specialization or member function of a class template
4867 /// specialization.
4869 /// \param Recursive if true, recursively instantiates any functions that
4870 /// are required by this instantiation.
4872 /// \param DefinitionRequired if true, then we are performing an explicit
4873 /// instantiation where the body of the function is required. Complain if
4874 /// there is no such body.
4875 void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,
4876 FunctionDecl *Function,
4877 bool Recursive,
4878 bool DefinitionRequired,
4879 bool AtEndOfTU) {
4880 if (Function->isInvalidDecl() || isa<CXXDeductionGuideDecl>(Function))
4881 return;
4883 // Never instantiate an explicit specialization except if it is a class scope
4884 // explicit specialization.
4885 TemplateSpecializationKind TSK =
4886 Function->getTemplateSpecializationKindForInstantiation();
4887 if (TSK == TSK_ExplicitSpecialization)
4888 return;
4890 // Never implicitly instantiate a builtin; we don't actually need a function
4891 // body.
4892 if (Function->getBuiltinID() && TSK == TSK_ImplicitInstantiation &&
4893 !DefinitionRequired)
4894 return;
4896 // Don't instantiate a definition if we already have one.
4897 const FunctionDecl *ExistingDefn = nullptr;
4898 if (Function->isDefined(ExistingDefn,
4899 /*CheckForPendingFriendDefinition=*/true)) {
4900 if (ExistingDefn->isThisDeclarationADefinition())
4901 return;
4903 // If we're asked to instantiate a function whose body comes from an
4904 // instantiated friend declaration, attach the instantiated body to the
4905 // corresponding declaration of the function.
4906 assert(ExistingDefn->isThisDeclarationInstantiatedFromAFriendDefinition());
4907 Function = const_cast<FunctionDecl*>(ExistingDefn);
4910 // Find the function body that we'll be substituting.
4911 const FunctionDecl *PatternDecl = Function->getTemplateInstantiationPattern();
4912 assert(PatternDecl && "instantiating a non-template");
4914 const FunctionDecl *PatternDef = PatternDecl->getDefinition();
4915 Stmt *Pattern = nullptr;
4916 if (PatternDef) {
4917 Pattern = PatternDef->getBody(PatternDef);
4918 PatternDecl = PatternDef;
4919 if (PatternDef->willHaveBody())
4920 PatternDef = nullptr;
4923 // FIXME: We need to track the instantiation stack in order to know which
4924 // definitions should be visible within this instantiation.
4925 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Function,
4926 Function->getInstantiatedFromMemberFunction(),
4927 PatternDecl, PatternDef, TSK,
4928 /*Complain*/DefinitionRequired)) {
4929 if (DefinitionRequired)
4930 Function->setInvalidDecl();
4931 else if (TSK == TSK_ExplicitInstantiationDefinition ||
4932 (Function->isConstexpr() && !Recursive)) {
4933 // Try again at the end of the translation unit (at which point a
4934 // definition will be required).
4935 assert(!Recursive);
4936 Function->setInstantiationIsPending(true);
4937 PendingInstantiations.push_back(
4938 std::make_pair(Function, PointOfInstantiation));
4939 } else if (TSK == TSK_ImplicitInstantiation) {
4940 if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() &&
4941 !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) {
4942 Diag(PointOfInstantiation, diag::warn_func_template_missing)
4943 << Function;
4944 Diag(PatternDecl->getLocation(), diag::note_forward_template_decl);
4945 if (getLangOpts().CPlusPlus11)
4946 Diag(PointOfInstantiation, diag::note_inst_declaration_hint)
4947 << Function;
4951 return;
4954 // Postpone late parsed template instantiations.
4955 if (PatternDecl->isLateTemplateParsed() &&
4956 !LateTemplateParser) {
4957 Function->setInstantiationIsPending(true);
4958 LateParsedInstantiations.push_back(
4959 std::make_pair(Function, PointOfInstantiation));
4960 return;
4963 llvm::TimeTraceScope TimeScope("InstantiateFunction", [&]() {
4964 std::string Name;
4965 llvm::raw_string_ostream OS(Name);
4966 Function->getNameForDiagnostic(OS, getPrintingPolicy(),
4967 /*Qualified=*/true);
4968 return Name;
4971 // If we're performing recursive template instantiation, create our own
4972 // queue of pending implicit instantiations that we will instantiate later,
4973 // while we're still within our own instantiation context.
4974 // This has to happen before LateTemplateParser below is called, so that
4975 // it marks vtables used in late parsed templates as used.
4976 GlobalEagerInstantiationScope GlobalInstantiations(*this,
4977 /*Enabled=*/Recursive);
4978 LocalEagerInstantiationScope LocalInstantiations(*this);
4980 // Call the LateTemplateParser callback if there is a need to late parse
4981 // a templated function definition.
4982 if (!Pattern && PatternDecl->isLateTemplateParsed() &&
4983 LateTemplateParser) {
4984 // FIXME: Optimize to allow individual templates to be deserialized.
4985 if (PatternDecl->isFromASTFile())
4986 ExternalSource->ReadLateParsedTemplates(LateParsedTemplateMap);
4988 auto LPTIter = LateParsedTemplateMap.find(PatternDecl);
4989 assert(LPTIter != LateParsedTemplateMap.end() &&
4990 "missing LateParsedTemplate");
4991 LateTemplateParser(OpaqueParser, *LPTIter->second);
4992 Pattern = PatternDecl->getBody(PatternDecl);
4993 updateAttrsForLateParsedTemplate(PatternDecl, Function);
4996 // Note, we should never try to instantiate a deleted function template.
4997 assert((Pattern || PatternDecl->isDefaulted() ||
4998 PatternDecl->hasSkippedBody()) &&
4999 "unexpected kind of function template definition");
5001 // C++1y [temp.explicit]p10:
5002 // Except for inline functions, declarations with types deduced from their
5003 // initializer or return value, and class template specializations, other
5004 // explicit instantiation declarations have the effect of suppressing the
5005 // implicit instantiation of the entity to which they refer.
5006 if (TSK == TSK_ExplicitInstantiationDeclaration &&
5007 !PatternDecl->isInlined() &&
5008 !PatternDecl->getReturnType()->getContainedAutoType())
5009 return;
5011 if (PatternDecl->isInlined()) {
5012 // Function, and all later redeclarations of it (from imported modules,
5013 // for instance), are now implicitly inline.
5014 for (auto *D = Function->getMostRecentDecl(); /**/;
5015 D = D->getPreviousDecl()) {
5016 D->setImplicitlyInline();
5017 if (D == Function)
5018 break;
5022 InstantiatingTemplate Inst(*this, PointOfInstantiation, Function);
5023 if (Inst.isInvalid() || Inst.isAlreadyInstantiating())
5024 return;
5025 PrettyDeclStackTraceEntry CrashInfo(Context, Function, SourceLocation(),
5026 "instantiating function definition");
5028 // The instantiation is visible here, even if it was first declared in an
5029 // unimported module.
5030 Function->setVisibleDespiteOwningModule();
5032 // Copy the source locations from the pattern.
5033 Function->setLocation(PatternDecl->getLocation());
5034 Function->setInnerLocStart(PatternDecl->getInnerLocStart());
5035 Function->setRangeEnd(PatternDecl->getEndLoc());
5037 EnterExpressionEvaluationContext EvalContext(
5038 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
5040 // Introduce a new scope where local variable instantiations will be
5041 // recorded, unless we're actually a member function within a local
5042 // class, in which case we need to merge our results with the parent
5043 // scope (of the enclosing function). The exception is instantiating
5044 // a function template specialization, since the template to be
5045 // instantiated already has references to locals properly substituted.
5046 bool MergeWithParentScope = false;
5047 if (CXXRecordDecl *Rec = dyn_cast<CXXRecordDecl>(Function->getDeclContext()))
5048 MergeWithParentScope =
5049 Rec->isLocalClass() && !Function->isFunctionTemplateSpecialization();
5051 LocalInstantiationScope Scope(*this, MergeWithParentScope);
5052 auto RebuildTypeSourceInfoForDefaultSpecialMembers = [&]() {
5053 // Special members might get their TypeSourceInfo set up w.r.t the
5054 // PatternDecl context, in which case parameters could still be pointing
5055 // back to the original class, make sure arguments are bound to the
5056 // instantiated record instead.
5057 assert(PatternDecl->isDefaulted() &&
5058 "Special member needs to be defaulted");
5059 auto PatternSM = getDefaultedFunctionKind(PatternDecl).asSpecialMember();
5060 if (!(PatternSM == Sema::CXXCopyConstructor ||
5061 PatternSM == Sema::CXXCopyAssignment ||
5062 PatternSM == Sema::CXXMoveConstructor ||
5063 PatternSM == Sema::CXXMoveAssignment))
5064 return;
5066 auto *NewRec = dyn_cast<CXXRecordDecl>(Function->getDeclContext());
5067 const auto *PatternRec =
5068 dyn_cast<CXXRecordDecl>(PatternDecl->getDeclContext());
5069 if (!NewRec || !PatternRec)
5070 return;
5071 if (!PatternRec->isLambda())
5072 return;
5074 struct SpecialMemberTypeInfoRebuilder
5075 : TreeTransform<SpecialMemberTypeInfoRebuilder> {
5076 using Base = TreeTransform<SpecialMemberTypeInfoRebuilder>;
5077 const CXXRecordDecl *OldDecl;
5078 CXXRecordDecl *NewDecl;
5080 SpecialMemberTypeInfoRebuilder(Sema &SemaRef, const CXXRecordDecl *O,
5081 CXXRecordDecl *N)
5082 : TreeTransform(SemaRef), OldDecl(O), NewDecl(N) {}
5084 bool TransformExceptionSpec(SourceLocation Loc,
5085 FunctionProtoType::ExceptionSpecInfo &ESI,
5086 SmallVectorImpl<QualType> &Exceptions,
5087 bool &Changed) {
5088 return false;
5091 QualType TransformRecordType(TypeLocBuilder &TLB, RecordTypeLoc TL) {
5092 const RecordType *T = TL.getTypePtr();
5093 RecordDecl *Record = cast_or_null<RecordDecl>(
5094 getDerived().TransformDecl(TL.getNameLoc(), T->getDecl()));
5095 if (Record != OldDecl)
5096 return Base::TransformRecordType(TLB, TL);
5098 QualType Result = getDerived().RebuildRecordType(NewDecl);
5099 if (Result.isNull())
5100 return QualType();
5102 RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result);
5103 NewTL.setNameLoc(TL.getNameLoc());
5104 return Result;
5106 } IR{*this, PatternRec, NewRec};
5108 TypeSourceInfo *NewSI = IR.TransformType(Function->getTypeSourceInfo());
5109 assert(NewSI && "Type Transform failed?");
5110 Function->setType(NewSI->getType());
5111 Function->setTypeSourceInfo(NewSI);
5113 ParmVarDecl *Parm = Function->getParamDecl(0);
5114 TypeSourceInfo *NewParmSI = IR.TransformType(Parm->getTypeSourceInfo());
5115 Parm->setType(NewParmSI->getType());
5116 Parm->setTypeSourceInfo(NewParmSI);
5119 if (PatternDecl->isDefaulted()) {
5120 RebuildTypeSourceInfoForDefaultSpecialMembers();
5121 SetDeclDefaulted(Function, PatternDecl->getLocation());
5122 } else {
5123 MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs(
5124 Function, Function->getLexicalDeclContext(), /*Final=*/false, nullptr,
5125 false, PatternDecl);
5127 // Substitute into the qualifier; we can get a substitution failure here
5128 // through evil use of alias templates.
5129 // FIXME: Is CurContext correct for this? Should we go to the (instantiation
5130 // of the) lexical context of the pattern?
5131 SubstQualifier(*this, PatternDecl, Function, TemplateArgs);
5133 ActOnStartOfFunctionDef(nullptr, Function);
5135 // Enter the scope of this instantiation. We don't use
5136 // PushDeclContext because we don't have a scope.
5137 Sema::ContextRAII savedContext(*this, Function);
5139 FPFeaturesStateRAII SavedFPFeatures(*this);
5140 CurFPFeatures = FPOptions(getLangOpts());
5141 FpPragmaStack.CurrentValue = FPOptionsOverride();
5143 if (addInstantiatedParametersToScope(Function, PatternDecl, Scope,
5144 TemplateArgs))
5145 return;
5147 StmtResult Body;
5148 if (PatternDecl->hasSkippedBody()) {
5149 ActOnSkippedFunctionBody(Function);
5150 Body = nullptr;
5151 } else {
5152 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Function)) {
5153 // If this is a constructor, instantiate the member initializers.
5154 InstantiateMemInitializers(Ctor, cast<CXXConstructorDecl>(PatternDecl),
5155 TemplateArgs);
5157 // If this is an MS ABI dllexport default constructor, instantiate any
5158 // default arguments.
5159 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5160 Ctor->isDefaultConstructor()) {
5161 InstantiateDefaultCtorDefaultArgs(Ctor);
5165 // Instantiate the function body.
5166 Body = SubstStmt(Pattern, TemplateArgs);
5168 if (Body.isInvalid())
5169 Function->setInvalidDecl();
5171 // FIXME: finishing the function body while in an expression evaluation
5172 // context seems wrong. Investigate more.
5173 ActOnFinishFunctionBody(Function, Body.get(), /*IsInstantiation=*/true);
5175 PerformDependentDiagnostics(PatternDecl, TemplateArgs);
5177 if (auto *Listener = getASTMutationListener())
5178 Listener->FunctionDefinitionInstantiated(Function);
5180 savedContext.pop();
5183 DeclGroupRef DG(Function);
5184 Consumer.HandleTopLevelDecl(DG);
5186 // This class may have local implicit instantiations that need to be
5187 // instantiation within this scope.
5188 LocalInstantiations.perform();
5189 Scope.Exit();
5190 GlobalInstantiations.perform();
5193 VarTemplateSpecializationDecl *Sema::BuildVarTemplateInstantiation(
5194 VarTemplateDecl *VarTemplate, VarDecl *FromVar,
5195 const TemplateArgumentList &TemplateArgList,
5196 const TemplateArgumentListInfo &TemplateArgsInfo,
5197 SmallVectorImpl<TemplateArgument> &Converted,
5198 SourceLocation PointOfInstantiation, LateInstantiatedAttrVec *LateAttrs,
5199 LocalInstantiationScope *StartingScope) {
5200 if (FromVar->isInvalidDecl())
5201 return nullptr;
5203 InstantiatingTemplate Inst(*this, PointOfInstantiation, FromVar);
5204 if (Inst.isInvalid())
5205 return nullptr;
5207 // Instantiate the first declaration of the variable template: for a partial
5208 // specialization of a static data member template, the first declaration may
5209 // or may not be the declaration in the class; if it's in the class, we want
5210 // to instantiate a member in the class (a declaration), and if it's outside,
5211 // we want to instantiate a definition.
5213 // If we're instantiating an explicitly-specialized member template or member
5214 // partial specialization, don't do this. The member specialization completely
5215 // replaces the original declaration in this case.
5216 bool IsMemberSpec = false;
5217 MultiLevelTemplateArgumentList MultiLevelList;
5218 if (auto *PartialSpec =
5219 dyn_cast<VarTemplatePartialSpecializationDecl>(FromVar)) {
5220 IsMemberSpec = PartialSpec->isMemberSpecialization();
5221 MultiLevelList.addOuterTemplateArguments(
5222 PartialSpec, TemplateArgList.asArray(), /*Final=*/false);
5223 } else {
5224 assert(VarTemplate == FromVar->getDescribedVarTemplate());
5225 IsMemberSpec = VarTemplate->isMemberSpecialization();
5226 MultiLevelList.addOuterTemplateArguments(
5227 VarTemplate, TemplateArgList.asArray(), /*Final=*/false);
5229 if (!IsMemberSpec)
5230 FromVar = FromVar->getFirstDecl();
5232 TemplateDeclInstantiator Instantiator(*this, FromVar->getDeclContext(),
5233 MultiLevelList);
5235 // TODO: Set LateAttrs and StartingScope ...
5237 return cast_or_null<VarTemplateSpecializationDecl>(
5238 Instantiator.VisitVarTemplateSpecializationDecl(
5239 VarTemplate, FromVar, TemplateArgsInfo, Converted));
5242 /// Instantiates a variable template specialization by completing it
5243 /// with appropriate type information and initializer.
5244 VarTemplateSpecializationDecl *Sema::CompleteVarTemplateSpecializationDecl(
5245 VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl,
5246 const MultiLevelTemplateArgumentList &TemplateArgs) {
5247 assert(PatternDecl->isThisDeclarationADefinition() &&
5248 "don't have a definition to instantiate from");
5250 // Do substitution on the type of the declaration
5251 TypeSourceInfo *DI =
5252 SubstType(PatternDecl->getTypeSourceInfo(), TemplateArgs,
5253 PatternDecl->getTypeSpecStartLoc(), PatternDecl->getDeclName());
5254 if (!DI)
5255 return nullptr;
5257 // Update the type of this variable template specialization.
5258 VarSpec->setType(DI->getType());
5260 // Convert the declaration into a definition now.
5261 VarSpec->setCompleteDefinition();
5263 // Instantiate the initializer.
5264 InstantiateVariableInitializer(VarSpec, PatternDecl, TemplateArgs);
5266 if (getLangOpts().OpenCL)
5267 deduceOpenCLAddressSpace(VarSpec);
5269 return VarSpec;
5272 /// BuildVariableInstantiation - Used after a new variable has been created.
5273 /// Sets basic variable data and decides whether to postpone the
5274 /// variable instantiation.
5275 void Sema::BuildVariableInstantiation(
5276 VarDecl *NewVar, VarDecl *OldVar,
5277 const MultiLevelTemplateArgumentList &TemplateArgs,
5278 LateInstantiatedAttrVec *LateAttrs, DeclContext *Owner,
5279 LocalInstantiationScope *StartingScope,
5280 bool InstantiatingVarTemplate,
5281 VarTemplateSpecializationDecl *PrevDeclForVarTemplateSpecialization) {
5282 // Instantiating a partial specialization to produce a partial
5283 // specialization.
5284 bool InstantiatingVarTemplatePartialSpec =
5285 isa<VarTemplatePartialSpecializationDecl>(OldVar) &&
5286 isa<VarTemplatePartialSpecializationDecl>(NewVar);
5287 // Instantiating from a variable template (or partial specialization) to
5288 // produce a variable template specialization.
5289 bool InstantiatingSpecFromTemplate =
5290 isa<VarTemplateSpecializationDecl>(NewVar) &&
5291 (OldVar->getDescribedVarTemplate() ||
5292 isa<VarTemplatePartialSpecializationDecl>(OldVar));
5294 // If we are instantiating a local extern declaration, the
5295 // instantiation belongs lexically to the containing function.
5296 // If we are instantiating a static data member defined
5297 // out-of-line, the instantiation will have the same lexical
5298 // context (which will be a namespace scope) as the template.
5299 if (OldVar->isLocalExternDecl()) {
5300 NewVar->setLocalExternDecl();
5301 NewVar->setLexicalDeclContext(Owner);
5302 } else if (OldVar->isOutOfLine())
5303 NewVar->setLexicalDeclContext(OldVar->getLexicalDeclContext());
5304 NewVar->setTSCSpec(OldVar->getTSCSpec());
5305 NewVar->setInitStyle(OldVar->getInitStyle());
5306 NewVar->setCXXForRangeDecl(OldVar->isCXXForRangeDecl());
5307 NewVar->setObjCForDecl(OldVar->isObjCForDecl());
5308 NewVar->setConstexpr(OldVar->isConstexpr());
5309 NewVar->setInitCapture(OldVar->isInitCapture());
5310 NewVar->setPreviousDeclInSameBlockScope(
5311 OldVar->isPreviousDeclInSameBlockScope());
5312 NewVar->setAccess(OldVar->getAccess());
5314 if (!OldVar->isStaticDataMember()) {
5315 if (OldVar->isUsed(false))
5316 NewVar->setIsUsed();
5317 NewVar->setReferenced(OldVar->isReferenced());
5320 InstantiateAttrs(TemplateArgs, OldVar, NewVar, LateAttrs, StartingScope);
5322 LookupResult Previous(
5323 *this, NewVar->getDeclName(), NewVar->getLocation(),
5324 NewVar->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage
5325 : Sema::LookupOrdinaryName,
5326 NewVar->isLocalExternDecl() ? Sema::ForExternalRedeclaration
5327 : forRedeclarationInCurContext());
5329 if (NewVar->isLocalExternDecl() && OldVar->getPreviousDecl() &&
5330 (!OldVar->getPreviousDecl()->getDeclContext()->isDependentContext() ||
5331 OldVar->getPreviousDecl()->getDeclContext()==OldVar->getDeclContext())) {
5332 // We have a previous declaration. Use that one, so we merge with the
5333 // right type.
5334 if (NamedDecl *NewPrev = FindInstantiatedDecl(
5335 NewVar->getLocation(), OldVar->getPreviousDecl(), TemplateArgs))
5336 Previous.addDecl(NewPrev);
5337 } else if (!isa<VarTemplateSpecializationDecl>(NewVar) &&
5338 OldVar->hasLinkage()) {
5339 LookupQualifiedName(Previous, NewVar->getDeclContext(), false);
5340 } else if (PrevDeclForVarTemplateSpecialization) {
5341 Previous.addDecl(PrevDeclForVarTemplateSpecialization);
5343 CheckVariableDeclaration(NewVar, Previous);
5345 if (!InstantiatingVarTemplate) {
5346 NewVar->getLexicalDeclContext()->addHiddenDecl(NewVar);
5347 if (!NewVar->isLocalExternDecl() || !NewVar->getPreviousDecl())
5348 NewVar->getDeclContext()->makeDeclVisibleInContext(NewVar);
5351 if (!OldVar->isOutOfLine()) {
5352 if (NewVar->getDeclContext()->isFunctionOrMethod())
5353 CurrentInstantiationScope->InstantiatedLocal(OldVar, NewVar);
5356 // Link instantiations of static data members back to the template from
5357 // which they were instantiated.
5359 // Don't do this when instantiating a template (we link the template itself
5360 // back in that case) nor when instantiating a static data member template
5361 // (that's not a member specialization).
5362 if (NewVar->isStaticDataMember() && !InstantiatingVarTemplate &&
5363 !InstantiatingSpecFromTemplate)
5364 NewVar->setInstantiationOfStaticDataMember(OldVar,
5365 TSK_ImplicitInstantiation);
5367 // If the pattern is an (in-class) explicit specialization, then the result
5368 // is also an explicit specialization.
5369 if (VarTemplateSpecializationDecl *OldVTSD =
5370 dyn_cast<VarTemplateSpecializationDecl>(OldVar)) {
5371 if (OldVTSD->getSpecializationKind() == TSK_ExplicitSpecialization &&
5372 !isa<VarTemplatePartialSpecializationDecl>(OldVTSD))
5373 cast<VarTemplateSpecializationDecl>(NewVar)->setSpecializationKind(
5374 TSK_ExplicitSpecialization);
5377 // Forward the mangling number from the template to the instantiated decl.
5378 Context.setManglingNumber(NewVar, Context.getManglingNumber(OldVar));
5379 Context.setStaticLocalNumber(NewVar, Context.getStaticLocalNumber(OldVar));
5381 // Figure out whether to eagerly instantiate the initializer.
5382 if (InstantiatingVarTemplate || InstantiatingVarTemplatePartialSpec) {
5383 // We're producing a template. Don't instantiate the initializer yet.
5384 } else if (NewVar->getType()->isUndeducedType()) {
5385 // We need the type to complete the declaration of the variable.
5386 InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs);
5387 } else if (InstantiatingSpecFromTemplate ||
5388 (OldVar->isInline() && OldVar->isThisDeclarationADefinition() &&
5389 !NewVar->isThisDeclarationADefinition())) {
5390 // Delay instantiation of the initializer for variable template
5391 // specializations or inline static data members until a definition of the
5392 // variable is needed.
5393 } else {
5394 InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs);
5397 // Diagnose unused local variables with dependent types, where the diagnostic
5398 // will have been deferred.
5399 if (!NewVar->isInvalidDecl() &&
5400 NewVar->getDeclContext()->isFunctionOrMethod() &&
5401 OldVar->getType()->isDependentType())
5402 DiagnoseUnusedDecl(NewVar);
5405 /// Instantiate the initializer of a variable.
5406 void Sema::InstantiateVariableInitializer(
5407 VarDecl *Var, VarDecl *OldVar,
5408 const MultiLevelTemplateArgumentList &TemplateArgs) {
5409 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
5410 L->VariableDefinitionInstantiated(Var);
5412 // We propagate the 'inline' flag with the initializer, because it
5413 // would otherwise imply that the variable is a definition for a
5414 // non-static data member.
5415 if (OldVar->isInlineSpecified())
5416 Var->setInlineSpecified();
5417 else if (OldVar->isInline())
5418 Var->setImplicitlyInline();
5420 if (OldVar->getInit()) {
5421 EnterExpressionEvaluationContext Evaluated(
5422 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated, Var);
5424 // Instantiate the initializer.
5425 ExprResult Init;
5428 ContextRAII SwitchContext(*this, Var->getDeclContext());
5429 Init = SubstInitializer(OldVar->getInit(), TemplateArgs,
5430 OldVar->getInitStyle() == VarDecl::CallInit);
5433 if (!Init.isInvalid()) {
5434 Expr *InitExpr = Init.get();
5436 if (Var->hasAttr<DLLImportAttr>() &&
5437 (!InitExpr ||
5438 !InitExpr->isConstantInitializer(getASTContext(), false))) {
5439 // Do not dynamically initialize dllimport variables.
5440 } else if (InitExpr) {
5441 bool DirectInit = OldVar->isDirectInit();
5442 AddInitializerToDecl(Var, InitExpr, DirectInit);
5443 } else
5444 ActOnUninitializedDecl(Var);
5445 } else {
5446 // FIXME: Not too happy about invalidating the declaration
5447 // because of a bogus initializer.
5448 Var->setInvalidDecl();
5450 } else {
5451 // `inline` variables are a definition and declaration all in one; we won't
5452 // pick up an initializer from anywhere else.
5453 if (Var->isStaticDataMember() && !Var->isInline()) {
5454 if (!Var->isOutOfLine())
5455 return;
5457 // If the declaration inside the class had an initializer, don't add
5458 // another one to the out-of-line definition.
5459 if (OldVar->getFirstDecl()->hasInit())
5460 return;
5463 // We'll add an initializer to a for-range declaration later.
5464 if (Var->isCXXForRangeDecl() || Var->isObjCForDecl())
5465 return;
5467 ActOnUninitializedDecl(Var);
5470 if (getLangOpts().CUDA)
5471 checkAllowedCUDAInitializer(Var);
5474 /// Instantiate the definition of the given variable from its
5475 /// template.
5477 /// \param PointOfInstantiation the point at which the instantiation was
5478 /// required. Note that this is not precisely a "point of instantiation"
5479 /// for the variable, but it's close.
5481 /// \param Var the already-instantiated declaration of a templated variable.
5483 /// \param Recursive if true, recursively instantiates any functions that
5484 /// are required by this instantiation.
5486 /// \param DefinitionRequired if true, then we are performing an explicit
5487 /// instantiation where a definition of the variable is required. Complain
5488 /// if there is no such definition.
5489 void Sema::InstantiateVariableDefinition(SourceLocation PointOfInstantiation,
5490 VarDecl *Var, bool Recursive,
5491 bool DefinitionRequired, bool AtEndOfTU) {
5492 if (Var->isInvalidDecl())
5493 return;
5495 // Never instantiate an explicitly-specialized entity.
5496 TemplateSpecializationKind TSK =
5497 Var->getTemplateSpecializationKindForInstantiation();
5498 if (TSK == TSK_ExplicitSpecialization)
5499 return;
5501 // Find the pattern and the arguments to substitute into it.
5502 VarDecl *PatternDecl = Var->getTemplateInstantiationPattern();
5503 assert(PatternDecl && "no pattern for templated variable");
5504 MultiLevelTemplateArgumentList TemplateArgs =
5505 getTemplateInstantiationArgs(Var);
5507 VarTemplateSpecializationDecl *VarSpec =
5508 dyn_cast<VarTemplateSpecializationDecl>(Var);
5509 if (VarSpec) {
5510 // If this is a static data member template, there might be an
5511 // uninstantiated initializer on the declaration. If so, instantiate
5512 // it now.
5514 // FIXME: This largely duplicates what we would do below. The difference
5515 // is that along this path we may instantiate an initializer from an
5516 // in-class declaration of the template and instantiate the definition
5517 // from a separate out-of-class definition.
5518 if (PatternDecl->isStaticDataMember() &&
5519 (PatternDecl = PatternDecl->getFirstDecl())->hasInit() &&
5520 !Var->hasInit()) {
5521 // FIXME: Factor out the duplicated instantiation context setup/tear down
5522 // code here.
5523 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var);
5524 if (Inst.isInvalid() || Inst.isAlreadyInstantiating())
5525 return;
5526 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(),
5527 "instantiating variable initializer");
5529 // The instantiation is visible here, even if it was first declared in an
5530 // unimported module.
5531 Var->setVisibleDespiteOwningModule();
5533 // If we're performing recursive template instantiation, create our own
5534 // queue of pending implicit instantiations that we will instantiate
5535 // later, while we're still within our own instantiation context.
5536 GlobalEagerInstantiationScope GlobalInstantiations(*this,
5537 /*Enabled=*/Recursive);
5538 LocalInstantiationScope Local(*this);
5539 LocalEagerInstantiationScope LocalInstantiations(*this);
5541 // Enter the scope of this instantiation. We don't use
5542 // PushDeclContext because we don't have a scope.
5543 ContextRAII PreviousContext(*this, Var->getDeclContext());
5544 InstantiateVariableInitializer(Var, PatternDecl, TemplateArgs);
5545 PreviousContext.pop();
5547 // This variable may have local implicit instantiations that need to be
5548 // instantiated within this scope.
5549 LocalInstantiations.perform();
5550 Local.Exit();
5551 GlobalInstantiations.perform();
5553 } else {
5554 assert(Var->isStaticDataMember() && PatternDecl->isStaticDataMember() &&
5555 "not a static data member?");
5558 VarDecl *Def = PatternDecl->getDefinition(getASTContext());
5560 // If we don't have a definition of the variable template, we won't perform
5561 // any instantiation. Rather, we rely on the user to instantiate this
5562 // definition (or provide a specialization for it) in another translation
5563 // unit.
5564 if (!Def && !DefinitionRequired) {
5565 if (TSK == TSK_ExplicitInstantiationDefinition) {
5566 PendingInstantiations.push_back(
5567 std::make_pair(Var, PointOfInstantiation));
5568 } else if (TSK == TSK_ImplicitInstantiation) {
5569 // Warn about missing definition at the end of translation unit.
5570 if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() &&
5571 !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) {
5572 Diag(PointOfInstantiation, diag::warn_var_template_missing)
5573 << Var;
5574 Diag(PatternDecl->getLocation(), diag::note_forward_template_decl);
5575 if (getLangOpts().CPlusPlus11)
5576 Diag(PointOfInstantiation, diag::note_inst_declaration_hint) << Var;
5578 return;
5582 // FIXME: We need to track the instantiation stack in order to know which
5583 // definitions should be visible within this instantiation.
5584 // FIXME: Produce diagnostics when Var->getInstantiatedFromStaticDataMember().
5585 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Var,
5586 /*InstantiatedFromMember*/false,
5587 PatternDecl, Def, TSK,
5588 /*Complain*/DefinitionRequired))
5589 return;
5591 // C++11 [temp.explicit]p10:
5592 // Except for inline functions, const variables of literal types, variables
5593 // of reference types, [...] explicit instantiation declarations
5594 // have the effect of suppressing the implicit instantiation of the entity
5595 // to which they refer.
5597 // FIXME: That's not exactly the same as "might be usable in constant
5598 // expressions", which only allows constexpr variables and const integral
5599 // types, not arbitrary const literal types.
5600 if (TSK == TSK_ExplicitInstantiationDeclaration &&
5601 !Var->mightBeUsableInConstantExpressions(getASTContext()))
5602 return;
5604 // Make sure to pass the instantiated variable to the consumer at the end.
5605 struct PassToConsumerRAII {
5606 ASTConsumer &Consumer;
5607 VarDecl *Var;
5609 PassToConsumerRAII(ASTConsumer &Consumer, VarDecl *Var)
5610 : Consumer(Consumer), Var(Var) { }
5612 ~PassToConsumerRAII() {
5613 Consumer.HandleCXXStaticMemberVarInstantiation(Var);
5615 } PassToConsumerRAII(Consumer, Var);
5617 // If we already have a definition, we're done.
5618 if (VarDecl *Def = Var->getDefinition()) {
5619 // We may be explicitly instantiating something we've already implicitly
5620 // instantiated.
5621 Def->setTemplateSpecializationKind(Var->getTemplateSpecializationKind(),
5622 PointOfInstantiation);
5623 return;
5626 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var);
5627 if (Inst.isInvalid() || Inst.isAlreadyInstantiating())
5628 return;
5629 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(),
5630 "instantiating variable definition");
5632 // If we're performing recursive template instantiation, create our own
5633 // queue of pending implicit instantiations that we will instantiate later,
5634 // while we're still within our own instantiation context.
5635 GlobalEagerInstantiationScope GlobalInstantiations(*this,
5636 /*Enabled=*/Recursive);
5638 // Enter the scope of this instantiation. We don't use
5639 // PushDeclContext because we don't have a scope.
5640 ContextRAII PreviousContext(*this, Var->getDeclContext());
5641 LocalInstantiationScope Local(*this);
5643 LocalEagerInstantiationScope LocalInstantiations(*this);
5645 VarDecl *OldVar = Var;
5646 if (Def->isStaticDataMember() && !Def->isOutOfLine()) {
5647 // We're instantiating an inline static data member whose definition was
5648 // provided inside the class.
5649 InstantiateVariableInitializer(Var, Def, TemplateArgs);
5650 } else if (!VarSpec) {
5651 Var = cast_or_null<VarDecl>(SubstDecl(Def, Var->getDeclContext(),
5652 TemplateArgs));
5653 } else if (Var->isStaticDataMember() &&
5654 Var->getLexicalDeclContext()->isRecord()) {
5655 // We need to instantiate the definition of a static data member template,
5656 // and all we have is the in-class declaration of it. Instantiate a separate
5657 // declaration of the definition.
5658 TemplateDeclInstantiator Instantiator(*this, Var->getDeclContext(),
5659 TemplateArgs);
5661 TemplateArgumentListInfo TemplateArgInfo;
5662 if (const ASTTemplateArgumentListInfo *ArgInfo =
5663 VarSpec->getTemplateArgsInfo()) {
5664 TemplateArgInfo.setLAngleLoc(ArgInfo->getLAngleLoc());
5665 TemplateArgInfo.setRAngleLoc(ArgInfo->getRAngleLoc());
5666 for (const TemplateArgumentLoc &Arg : ArgInfo->arguments())
5667 TemplateArgInfo.addArgument(Arg);
5670 Var = cast_or_null<VarDecl>(Instantiator.VisitVarTemplateSpecializationDecl(
5671 VarSpec->getSpecializedTemplate(), Def, TemplateArgInfo,
5672 VarSpec->getTemplateArgs().asArray(), VarSpec));
5673 if (Var) {
5674 llvm::PointerUnion<VarTemplateDecl *,
5675 VarTemplatePartialSpecializationDecl *> PatternPtr =
5676 VarSpec->getSpecializedTemplateOrPartial();
5677 if (VarTemplatePartialSpecializationDecl *Partial =
5678 PatternPtr.dyn_cast<VarTemplatePartialSpecializationDecl *>())
5679 cast<VarTemplateSpecializationDecl>(Var)->setInstantiationOf(
5680 Partial, &VarSpec->getTemplateInstantiationArgs());
5682 // Attach the initializer.
5683 InstantiateVariableInitializer(Var, Def, TemplateArgs);
5685 } else
5686 // Complete the existing variable's definition with an appropriately
5687 // substituted type and initializer.
5688 Var = CompleteVarTemplateSpecializationDecl(VarSpec, Def, TemplateArgs);
5690 PreviousContext.pop();
5692 if (Var) {
5693 PassToConsumerRAII.Var = Var;
5694 Var->setTemplateSpecializationKind(OldVar->getTemplateSpecializationKind(),
5695 OldVar->getPointOfInstantiation());
5698 // This variable may have local implicit instantiations that need to be
5699 // instantiated within this scope.
5700 LocalInstantiations.perform();
5701 Local.Exit();
5702 GlobalInstantiations.perform();
5705 void
5706 Sema::InstantiateMemInitializers(CXXConstructorDecl *New,
5707 const CXXConstructorDecl *Tmpl,
5708 const MultiLevelTemplateArgumentList &TemplateArgs) {
5710 SmallVector<CXXCtorInitializer*, 4> NewInits;
5711 bool AnyErrors = Tmpl->isInvalidDecl();
5713 // Instantiate all the initializers.
5714 for (const auto *Init : Tmpl->inits()) {
5715 // Only instantiate written initializers, let Sema re-construct implicit
5716 // ones.
5717 if (!Init->isWritten())
5718 continue;
5720 SourceLocation EllipsisLoc;
5722 if (Init->isPackExpansion()) {
5723 // This is a pack expansion. We should expand it now.
5724 TypeLoc BaseTL = Init->getTypeSourceInfo()->getTypeLoc();
5725 SmallVector<UnexpandedParameterPack, 4> Unexpanded;
5726 collectUnexpandedParameterPacks(BaseTL, Unexpanded);
5727 collectUnexpandedParameterPacks(Init->getInit(), Unexpanded);
5728 bool ShouldExpand = false;
5729 bool RetainExpansion = false;
5730 std::optional<unsigned> NumExpansions;
5731 if (CheckParameterPacksForExpansion(Init->getEllipsisLoc(),
5732 BaseTL.getSourceRange(),
5733 Unexpanded,
5734 TemplateArgs, ShouldExpand,
5735 RetainExpansion,
5736 NumExpansions)) {
5737 AnyErrors = true;
5738 New->setInvalidDecl();
5739 continue;
5741 assert(ShouldExpand && "Partial instantiation of base initializer?");
5743 // Loop over all of the arguments in the argument pack(s),
5744 for (unsigned I = 0; I != *NumExpansions; ++I) {
5745 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, I);
5747 // Instantiate the initializer.
5748 ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs,
5749 /*CXXDirectInit=*/true);
5750 if (TempInit.isInvalid()) {
5751 AnyErrors = true;
5752 break;
5755 // Instantiate the base type.
5756 TypeSourceInfo *BaseTInfo = SubstType(Init->getTypeSourceInfo(),
5757 TemplateArgs,
5758 Init->getSourceLocation(),
5759 New->getDeclName());
5760 if (!BaseTInfo) {
5761 AnyErrors = true;
5762 break;
5765 // Build the initializer.
5766 MemInitResult NewInit = BuildBaseInitializer(BaseTInfo->getType(),
5767 BaseTInfo, TempInit.get(),
5768 New->getParent(),
5769 SourceLocation());
5770 if (NewInit.isInvalid()) {
5771 AnyErrors = true;
5772 break;
5775 NewInits.push_back(NewInit.get());
5778 continue;
5781 // Instantiate the initializer.
5782 ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs,
5783 /*CXXDirectInit=*/true);
5784 if (TempInit.isInvalid()) {
5785 AnyErrors = true;
5786 continue;
5789 MemInitResult NewInit;
5790 if (Init->isDelegatingInitializer() || Init->isBaseInitializer()) {
5791 TypeSourceInfo *TInfo = SubstType(Init->getTypeSourceInfo(),
5792 TemplateArgs,
5793 Init->getSourceLocation(),
5794 New->getDeclName());
5795 if (!TInfo) {
5796 AnyErrors = true;
5797 New->setInvalidDecl();
5798 continue;
5801 if (Init->isBaseInitializer())
5802 NewInit = BuildBaseInitializer(TInfo->getType(), TInfo, TempInit.get(),
5803 New->getParent(), EllipsisLoc);
5804 else
5805 NewInit = BuildDelegatingInitializer(TInfo, TempInit.get(),
5806 cast<CXXRecordDecl>(CurContext->getParent()));
5807 } else if (Init->isMemberInitializer()) {
5808 FieldDecl *Member = cast_or_null<FieldDecl>(FindInstantiatedDecl(
5809 Init->getMemberLocation(),
5810 Init->getMember(),
5811 TemplateArgs));
5812 if (!Member) {
5813 AnyErrors = true;
5814 New->setInvalidDecl();
5815 continue;
5818 NewInit = BuildMemberInitializer(Member, TempInit.get(),
5819 Init->getSourceLocation());
5820 } else if (Init->isIndirectMemberInitializer()) {
5821 IndirectFieldDecl *IndirectMember =
5822 cast_or_null<IndirectFieldDecl>(FindInstantiatedDecl(
5823 Init->getMemberLocation(),
5824 Init->getIndirectMember(), TemplateArgs));
5826 if (!IndirectMember) {
5827 AnyErrors = true;
5828 New->setInvalidDecl();
5829 continue;
5832 NewInit = BuildMemberInitializer(IndirectMember, TempInit.get(),
5833 Init->getSourceLocation());
5836 if (NewInit.isInvalid()) {
5837 AnyErrors = true;
5838 New->setInvalidDecl();
5839 } else {
5840 NewInits.push_back(NewInit.get());
5844 // Assign all the initializers to the new constructor.
5845 ActOnMemInitializers(New,
5846 /*FIXME: ColonLoc */
5847 SourceLocation(),
5848 NewInits,
5849 AnyErrors);
5852 // TODO: this could be templated if the various decl types used the
5853 // same method name.
5854 static bool isInstantiationOf(ClassTemplateDecl *Pattern,
5855 ClassTemplateDecl *Instance) {
5856 Pattern = Pattern->getCanonicalDecl();
5858 do {
5859 Instance = Instance->getCanonicalDecl();
5860 if (Pattern == Instance) return true;
5861 Instance = Instance->getInstantiatedFromMemberTemplate();
5862 } while (Instance);
5864 return false;
5867 static bool isInstantiationOf(FunctionTemplateDecl *Pattern,
5868 FunctionTemplateDecl *Instance) {
5869 Pattern = Pattern->getCanonicalDecl();
5871 do {
5872 Instance = Instance->getCanonicalDecl();
5873 if (Pattern == Instance) return true;
5874 Instance = Instance->getInstantiatedFromMemberTemplate();
5875 } while (Instance);
5877 return false;
5880 static bool
5881 isInstantiationOf(ClassTemplatePartialSpecializationDecl *Pattern,
5882 ClassTemplatePartialSpecializationDecl *Instance) {
5883 Pattern
5884 = cast<ClassTemplatePartialSpecializationDecl>(Pattern->getCanonicalDecl());
5885 do {
5886 Instance = cast<ClassTemplatePartialSpecializationDecl>(
5887 Instance->getCanonicalDecl());
5888 if (Pattern == Instance)
5889 return true;
5890 Instance = Instance->getInstantiatedFromMember();
5891 } while (Instance);
5893 return false;
5896 static bool isInstantiationOf(CXXRecordDecl *Pattern,
5897 CXXRecordDecl *Instance) {
5898 Pattern = Pattern->getCanonicalDecl();
5900 do {
5901 Instance = Instance->getCanonicalDecl();
5902 if (Pattern == Instance) return true;
5903 Instance = Instance->getInstantiatedFromMemberClass();
5904 } while (Instance);
5906 return false;
5909 static bool isInstantiationOf(FunctionDecl *Pattern,
5910 FunctionDecl *Instance) {
5911 Pattern = Pattern->getCanonicalDecl();
5913 do {
5914 Instance = Instance->getCanonicalDecl();
5915 if (Pattern == Instance) return true;
5916 Instance = Instance->getInstantiatedFromMemberFunction();
5917 } while (Instance);
5919 return false;
5922 static bool isInstantiationOf(EnumDecl *Pattern,
5923 EnumDecl *Instance) {
5924 Pattern = Pattern->getCanonicalDecl();
5926 do {
5927 Instance = Instance->getCanonicalDecl();
5928 if (Pattern == Instance) return true;
5929 Instance = Instance->getInstantiatedFromMemberEnum();
5930 } while (Instance);
5932 return false;
5935 static bool isInstantiationOf(UsingShadowDecl *Pattern,
5936 UsingShadowDecl *Instance,
5937 ASTContext &C) {
5938 return declaresSameEntity(C.getInstantiatedFromUsingShadowDecl(Instance),
5939 Pattern);
5942 static bool isInstantiationOf(UsingDecl *Pattern, UsingDecl *Instance,
5943 ASTContext &C) {
5944 return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern);
5947 template<typename T>
5948 static bool isInstantiationOfUnresolvedUsingDecl(T *Pattern, Decl *Other,
5949 ASTContext &Ctx) {
5950 // An unresolved using declaration can instantiate to an unresolved using
5951 // declaration, or to a using declaration or a using declaration pack.
5953 // Multiple declarations can claim to be instantiated from an unresolved
5954 // using declaration if it's a pack expansion. We want the UsingPackDecl
5955 // in that case, not the individual UsingDecls within the pack.
5956 bool OtherIsPackExpansion;
5957 NamedDecl *OtherFrom;
5958 if (auto *OtherUUD = dyn_cast<T>(Other)) {
5959 OtherIsPackExpansion = OtherUUD->isPackExpansion();
5960 OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUUD);
5961 } else if (auto *OtherUPD = dyn_cast<UsingPackDecl>(Other)) {
5962 OtherIsPackExpansion = true;
5963 OtherFrom = OtherUPD->getInstantiatedFromUsingDecl();
5964 } else if (auto *OtherUD = dyn_cast<UsingDecl>(Other)) {
5965 OtherIsPackExpansion = false;
5966 OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUD);
5967 } else {
5968 return false;
5970 return Pattern->isPackExpansion() == OtherIsPackExpansion &&
5971 declaresSameEntity(OtherFrom, Pattern);
5974 static bool isInstantiationOfStaticDataMember(VarDecl *Pattern,
5975 VarDecl *Instance) {
5976 assert(Instance->isStaticDataMember());
5978 Pattern = Pattern->getCanonicalDecl();
5980 do {
5981 Instance = Instance->getCanonicalDecl();
5982 if (Pattern == Instance) return true;
5983 Instance = Instance->getInstantiatedFromStaticDataMember();
5984 } while (Instance);
5986 return false;
5989 // Other is the prospective instantiation
5990 // D is the prospective pattern
5991 static bool isInstantiationOf(ASTContext &Ctx, NamedDecl *D, Decl *Other) {
5992 if (auto *UUD = dyn_cast<UnresolvedUsingTypenameDecl>(D))
5993 return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx);
5995 if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(D))
5996 return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx);
5998 if (D->getKind() != Other->getKind())
5999 return false;
6001 if (auto *Record = dyn_cast<CXXRecordDecl>(Other))
6002 return isInstantiationOf(cast<CXXRecordDecl>(D), Record);
6004 if (auto *Function = dyn_cast<FunctionDecl>(Other))
6005 return isInstantiationOf(cast<FunctionDecl>(D), Function);
6007 if (auto *Enum = dyn_cast<EnumDecl>(Other))
6008 return isInstantiationOf(cast<EnumDecl>(D), Enum);
6010 if (auto *Var = dyn_cast<VarDecl>(Other))
6011 if (Var->isStaticDataMember())
6012 return isInstantiationOfStaticDataMember(cast<VarDecl>(D), Var);
6014 if (auto *Temp = dyn_cast<ClassTemplateDecl>(Other))
6015 return isInstantiationOf(cast<ClassTemplateDecl>(D), Temp);
6017 if (auto *Temp = dyn_cast<FunctionTemplateDecl>(Other))
6018 return isInstantiationOf(cast<FunctionTemplateDecl>(D), Temp);
6020 if (auto *PartialSpec =
6021 dyn_cast<ClassTemplatePartialSpecializationDecl>(Other))
6022 return isInstantiationOf(cast<ClassTemplatePartialSpecializationDecl>(D),
6023 PartialSpec);
6025 if (auto *Field = dyn_cast<FieldDecl>(Other)) {
6026 if (!Field->getDeclName()) {
6027 // This is an unnamed field.
6028 return declaresSameEntity(Ctx.getInstantiatedFromUnnamedFieldDecl(Field),
6029 cast<FieldDecl>(D));
6033 if (auto *Using = dyn_cast<UsingDecl>(Other))
6034 return isInstantiationOf(cast<UsingDecl>(D), Using, Ctx);
6036 if (auto *Shadow = dyn_cast<UsingShadowDecl>(Other))
6037 return isInstantiationOf(cast<UsingShadowDecl>(D), Shadow, Ctx);
6039 return D->getDeclName() &&
6040 D->getDeclName() == cast<NamedDecl>(Other)->getDeclName();
6043 template<typename ForwardIterator>
6044 static NamedDecl *findInstantiationOf(ASTContext &Ctx,
6045 NamedDecl *D,
6046 ForwardIterator first,
6047 ForwardIterator last) {
6048 for (; first != last; ++first)
6049 if (isInstantiationOf(Ctx, D, *first))
6050 return cast<NamedDecl>(*first);
6052 return nullptr;
6055 /// Finds the instantiation of the given declaration context
6056 /// within the current instantiation.
6058 /// \returns NULL if there was an error
6059 DeclContext *Sema::FindInstantiatedContext(SourceLocation Loc, DeclContext* DC,
6060 const MultiLevelTemplateArgumentList &TemplateArgs) {
6061 if (NamedDecl *D = dyn_cast<NamedDecl>(DC)) {
6062 Decl* ID = FindInstantiatedDecl(Loc, D, TemplateArgs, true);
6063 return cast_or_null<DeclContext>(ID);
6064 } else return DC;
6067 /// Determine whether the given context is dependent on template parameters at
6068 /// level \p Level or below.
6070 /// Sometimes we only substitute an inner set of template arguments and leave
6071 /// the outer templates alone. In such cases, contexts dependent only on the
6072 /// outer levels are not effectively dependent.
6073 static bool isDependentContextAtLevel(DeclContext *DC, unsigned Level) {
6074 if (!DC->isDependentContext())
6075 return false;
6076 if (!Level)
6077 return true;
6078 return cast<Decl>(DC)->getTemplateDepth() > Level;
6081 /// Find the instantiation of the given declaration within the
6082 /// current instantiation.
6084 /// This routine is intended to be used when \p D is a declaration
6085 /// referenced from within a template, that needs to mapped into the
6086 /// corresponding declaration within an instantiation. For example,
6087 /// given:
6089 /// \code
6090 /// template<typename T>
6091 /// struct X {
6092 /// enum Kind {
6093 /// KnownValue = sizeof(T)
6094 /// };
6096 /// bool getKind() const { return KnownValue; }
6097 /// };
6099 /// template struct X<int>;
6100 /// \endcode
6102 /// In the instantiation of X<int>::getKind(), we need to map the \p
6103 /// EnumConstantDecl for \p KnownValue (which refers to
6104 /// X<T>::<Kind>::KnownValue) to its instantiation (X<int>::<Kind>::KnownValue).
6105 /// \p FindInstantiatedDecl performs this mapping from within the instantiation
6106 /// of X<int>.
6107 NamedDecl *Sema::FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D,
6108 const MultiLevelTemplateArgumentList &TemplateArgs,
6109 bool FindingInstantiatedContext) {
6110 DeclContext *ParentDC = D->getDeclContext();
6111 // Determine whether our parent context depends on any of the template
6112 // arguments we're currently substituting.
6113 bool ParentDependsOnArgs = isDependentContextAtLevel(
6114 ParentDC, TemplateArgs.getNumRetainedOuterLevels());
6115 // FIXME: Parameters of pointer to functions (y below) that are themselves
6116 // parameters (p below) can have their ParentDC set to the translation-unit
6117 // - thus we can not consistently check if the ParentDC of such a parameter
6118 // is Dependent or/and a FunctionOrMethod.
6119 // For e.g. this code, during Template argument deduction tries to
6120 // find an instantiated decl for (T y) when the ParentDC for y is
6121 // the translation unit.
6122 // e.g. template <class T> void Foo(auto (*p)(T y) -> decltype(y())) {}
6123 // float baz(float(*)()) { return 0.0; }
6124 // Foo(baz);
6125 // The better fix here is perhaps to ensure that a ParmVarDecl, by the time
6126 // it gets here, always has a FunctionOrMethod as its ParentDC??
6127 // For now:
6128 // - as long as we have a ParmVarDecl whose parent is non-dependent and
6129 // whose type is not instantiation dependent, do nothing to the decl
6130 // - otherwise find its instantiated decl.
6131 if (isa<ParmVarDecl>(D) && !ParentDependsOnArgs &&
6132 !cast<ParmVarDecl>(D)->getType()->isInstantiationDependentType())
6133 return D;
6134 if (isa<ParmVarDecl>(D) || isa<NonTypeTemplateParmDecl>(D) ||
6135 isa<TemplateTypeParmDecl>(D) || isa<TemplateTemplateParmDecl>(D) ||
6136 (ParentDependsOnArgs && (ParentDC->isFunctionOrMethod() ||
6137 isa<OMPDeclareReductionDecl>(ParentDC) ||
6138 isa<OMPDeclareMapperDecl>(ParentDC))) ||
6139 (isa<CXXRecordDecl>(D) && cast<CXXRecordDecl>(D)->isLambda() &&
6140 cast<CXXRecordDecl>(D)->getTemplateDepth() >
6141 TemplateArgs.getNumRetainedOuterLevels())) {
6142 // D is a local of some kind. Look into the map of local
6143 // declarations to their instantiations.
6144 if (CurrentInstantiationScope) {
6145 if (auto Found = CurrentInstantiationScope->findInstantiationOf(D)) {
6146 if (Decl *FD = Found->dyn_cast<Decl *>())
6147 return cast<NamedDecl>(FD);
6149 int PackIdx = ArgumentPackSubstitutionIndex;
6150 assert(PackIdx != -1 &&
6151 "found declaration pack but not pack expanding");
6152 typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack;
6153 return cast<NamedDecl>((*Found->get<DeclArgumentPack *>())[PackIdx]);
6157 // If we're performing a partial substitution during template argument
6158 // deduction, we may not have values for template parameters yet. They
6159 // just map to themselves.
6160 if (isa<NonTypeTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) ||
6161 isa<TemplateTemplateParmDecl>(D))
6162 return D;
6164 if (D->isInvalidDecl())
6165 return nullptr;
6167 // Normally this function only searches for already instantiated declaration
6168 // however we have to make an exclusion for local types used before
6169 // definition as in the code:
6171 // template<typename T> void f1() {
6172 // void g1(struct x1);
6173 // struct x1 {};
6174 // }
6176 // In this case instantiation of the type of 'g1' requires definition of
6177 // 'x1', which is defined later. Error recovery may produce an enum used
6178 // before definition. In these cases we need to instantiate relevant
6179 // declarations here.
6180 bool NeedInstantiate = false;
6181 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D))
6182 NeedInstantiate = RD->isLocalClass();
6183 else if (isa<TypedefNameDecl>(D) &&
6184 isa<CXXDeductionGuideDecl>(D->getDeclContext()))
6185 NeedInstantiate = true;
6186 else
6187 NeedInstantiate = isa<EnumDecl>(D);
6188 if (NeedInstantiate) {
6189 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs);
6190 CurrentInstantiationScope->InstantiatedLocal(D, Inst);
6191 return cast<TypeDecl>(Inst);
6194 // If we didn't find the decl, then we must have a label decl that hasn't
6195 // been found yet. Lazily instantiate it and return it now.
6196 assert(isa<LabelDecl>(D));
6198 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs);
6199 assert(Inst && "Failed to instantiate label??");
6201 CurrentInstantiationScope->InstantiatedLocal(D, Inst);
6202 return cast<LabelDecl>(Inst);
6205 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
6206 if (!Record->isDependentContext())
6207 return D;
6209 // Determine whether this record is the "templated" declaration describing
6210 // a class template or class template partial specialization.
6211 ClassTemplateDecl *ClassTemplate = Record->getDescribedClassTemplate();
6212 if (ClassTemplate)
6213 ClassTemplate = ClassTemplate->getCanonicalDecl();
6214 else if (ClassTemplatePartialSpecializationDecl *PartialSpec
6215 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
6216 ClassTemplate = PartialSpec->getSpecializedTemplate()->getCanonicalDecl();
6218 // Walk the current context to find either the record or an instantiation of
6219 // it.
6220 DeclContext *DC = CurContext;
6221 while (!DC->isFileContext()) {
6222 // If we're performing substitution while we're inside the template
6223 // definition, we'll find our own context. We're done.
6224 if (DC->Equals(Record))
6225 return Record;
6227 if (CXXRecordDecl *InstRecord = dyn_cast<CXXRecordDecl>(DC)) {
6228 // Check whether we're in the process of instantiating a class template
6229 // specialization of the template we're mapping.
6230 if (ClassTemplateSpecializationDecl *InstSpec
6231 = dyn_cast<ClassTemplateSpecializationDecl>(InstRecord)){
6232 ClassTemplateDecl *SpecTemplate = InstSpec->getSpecializedTemplate();
6233 if (ClassTemplate && isInstantiationOf(ClassTemplate, SpecTemplate))
6234 return InstRecord;
6237 // Check whether we're in the process of instantiating a member class.
6238 if (isInstantiationOf(Record, InstRecord))
6239 return InstRecord;
6242 // Move to the outer template scope.
6243 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) {
6244 if (FD->getFriendObjectKind() &&
6245 FD->getNonTransparentDeclContext()->isFileContext()) {
6246 DC = FD->getLexicalDeclContext();
6247 continue;
6249 // An implicit deduction guide acts as if it's within the class template
6250 // specialization described by its name and first N template params.
6251 auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FD);
6252 if (Guide && Guide->isImplicit()) {
6253 TemplateDecl *TD = Guide->getDeducedTemplate();
6254 // Convert the arguments to an "as-written" list.
6255 TemplateArgumentListInfo Args(Loc, Loc);
6256 for (TemplateArgument Arg : TemplateArgs.getInnermost().take_front(
6257 TD->getTemplateParameters()->size())) {
6258 ArrayRef<TemplateArgument> Unpacked(Arg);
6259 if (Arg.getKind() == TemplateArgument::Pack)
6260 Unpacked = Arg.pack_elements();
6261 for (TemplateArgument UnpackedArg : Unpacked)
6262 Args.addArgument(
6263 getTrivialTemplateArgumentLoc(UnpackedArg, QualType(), Loc));
6265 QualType T = CheckTemplateIdType(TemplateName(TD), Loc, Args);
6266 if (T.isNull())
6267 return nullptr;
6268 auto *SubstRecord = T->getAsCXXRecordDecl();
6269 assert(SubstRecord && "class template id not a class type?");
6270 // Check that this template-id names the primary template and not a
6271 // partial or explicit specialization. (In the latter cases, it's
6272 // meaningless to attempt to find an instantiation of D within the
6273 // specialization.)
6274 // FIXME: The standard doesn't say what should happen here.
6275 if (FindingInstantiatedContext &&
6276 usesPartialOrExplicitSpecialization(
6277 Loc, cast<ClassTemplateSpecializationDecl>(SubstRecord))) {
6278 Diag(Loc, diag::err_specialization_not_primary_template)
6279 << T << (SubstRecord->getTemplateSpecializationKind() ==
6280 TSK_ExplicitSpecialization);
6281 return nullptr;
6283 DC = SubstRecord;
6284 continue;
6288 DC = DC->getParent();
6291 // Fall through to deal with other dependent record types (e.g.,
6292 // anonymous unions in class templates).
6295 if (!ParentDependsOnArgs)
6296 return D;
6298 ParentDC = FindInstantiatedContext(Loc, ParentDC, TemplateArgs);
6299 if (!ParentDC)
6300 return nullptr;
6302 if (ParentDC != D->getDeclContext()) {
6303 // We performed some kind of instantiation in the parent context,
6304 // so now we need to look into the instantiated parent context to
6305 // find the instantiation of the declaration D.
6307 // If our context used to be dependent, we may need to instantiate
6308 // it before performing lookup into that context.
6309 bool IsBeingInstantiated = false;
6310 if (CXXRecordDecl *Spec = dyn_cast<CXXRecordDecl>(ParentDC)) {
6311 if (!Spec->isDependentContext()) {
6312 QualType T = Context.getTypeDeclType(Spec);
6313 const RecordType *Tag = T->getAs<RecordType>();
6314 assert(Tag && "type of non-dependent record is not a RecordType");
6315 if (Tag->isBeingDefined())
6316 IsBeingInstantiated = true;
6317 if (!Tag->isBeingDefined() &&
6318 RequireCompleteType(Loc, T, diag::err_incomplete_type))
6319 return nullptr;
6321 ParentDC = Tag->getDecl();
6325 NamedDecl *Result = nullptr;
6326 // FIXME: If the name is a dependent name, this lookup won't necessarily
6327 // find it. Does that ever matter?
6328 if (auto Name = D->getDeclName()) {
6329 DeclarationNameInfo NameInfo(Name, D->getLocation());
6330 DeclarationNameInfo NewNameInfo =
6331 SubstDeclarationNameInfo(NameInfo, TemplateArgs);
6332 Name = NewNameInfo.getName();
6333 if (!Name)
6334 return nullptr;
6335 DeclContext::lookup_result Found = ParentDC->lookup(Name);
6337 Result = findInstantiationOf(Context, D, Found.begin(), Found.end());
6338 } else {
6339 // Since we don't have a name for the entity we're looking for,
6340 // our only option is to walk through all of the declarations to
6341 // find that name. This will occur in a few cases:
6343 // - anonymous struct/union within a template
6344 // - unnamed class/struct/union/enum within a template
6346 // FIXME: Find a better way to find these instantiations!
6347 Result = findInstantiationOf(Context, D,
6348 ParentDC->decls_begin(),
6349 ParentDC->decls_end());
6352 if (!Result) {
6353 if (isa<UsingShadowDecl>(D)) {
6354 // UsingShadowDecls can instantiate to nothing because of using hiding.
6355 } else if (hasUncompilableErrorOccurred()) {
6356 // We've already complained about some ill-formed code, so most likely
6357 // this declaration failed to instantiate. There's no point in
6358 // complaining further, since this is normal in invalid code.
6359 // FIXME: Use more fine-grained 'invalid' tracking for this.
6360 } else if (IsBeingInstantiated) {
6361 // The class in which this member exists is currently being
6362 // instantiated, and we haven't gotten around to instantiating this
6363 // member yet. This can happen when the code uses forward declarations
6364 // of member classes, and introduces ordering dependencies via
6365 // template instantiation.
6366 Diag(Loc, diag::err_member_not_yet_instantiated)
6367 << D->getDeclName()
6368 << Context.getTypeDeclType(cast<CXXRecordDecl>(ParentDC));
6369 Diag(D->getLocation(), diag::note_non_instantiated_member_here);
6370 } else if (EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) {
6371 // This enumeration constant was found when the template was defined,
6372 // but can't be found in the instantiation. This can happen if an
6373 // unscoped enumeration member is explicitly specialized.
6374 EnumDecl *Enum = cast<EnumDecl>(ED->getLexicalDeclContext());
6375 EnumDecl *Spec = cast<EnumDecl>(FindInstantiatedDecl(Loc, Enum,
6376 TemplateArgs));
6377 assert(Spec->getTemplateSpecializationKind() ==
6378 TSK_ExplicitSpecialization);
6379 Diag(Loc, diag::err_enumerator_does_not_exist)
6380 << D->getDeclName()
6381 << Context.getTypeDeclType(cast<TypeDecl>(Spec->getDeclContext()));
6382 Diag(Spec->getLocation(), diag::note_enum_specialized_here)
6383 << Context.getTypeDeclType(Spec);
6384 } else {
6385 // We should have found something, but didn't.
6386 llvm_unreachable("Unable to find instantiation of declaration!");
6390 D = Result;
6393 return D;
6396 /// Performs template instantiation for all implicit template
6397 /// instantiations we have seen until this point.
6398 void Sema::PerformPendingInstantiations(bool LocalOnly) {
6399 std::deque<PendingImplicitInstantiation> delayedPCHInstantiations;
6400 while (!PendingLocalImplicitInstantiations.empty() ||
6401 (!LocalOnly && !PendingInstantiations.empty())) {
6402 PendingImplicitInstantiation Inst;
6404 if (PendingLocalImplicitInstantiations.empty()) {
6405 Inst = PendingInstantiations.front();
6406 PendingInstantiations.pop_front();
6407 } else {
6408 Inst = PendingLocalImplicitInstantiations.front();
6409 PendingLocalImplicitInstantiations.pop_front();
6412 // Instantiate function definitions
6413 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Inst.first)) {
6414 bool DefinitionRequired = Function->getTemplateSpecializationKind() ==
6415 TSK_ExplicitInstantiationDefinition;
6416 if (Function->isMultiVersion()) {
6417 getASTContext().forEachMultiversionedFunctionVersion(
6418 Function, [this, Inst, DefinitionRequired](FunctionDecl *CurFD) {
6419 InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, CurFD, true,
6420 DefinitionRequired, true);
6421 if (CurFD->isDefined())
6422 CurFD->setInstantiationIsPending(false);
6424 } else {
6425 InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, Function, true,
6426 DefinitionRequired, true);
6427 if (Function->isDefined())
6428 Function->setInstantiationIsPending(false);
6430 // Definition of a PCH-ed template declaration may be available only in the TU.
6431 if (!LocalOnly && LangOpts.PCHInstantiateTemplates &&
6432 TUKind == TU_Prefix && Function->instantiationIsPending())
6433 delayedPCHInstantiations.push_back(Inst);
6434 continue;
6437 // Instantiate variable definitions
6438 VarDecl *Var = cast<VarDecl>(Inst.first);
6440 assert((Var->isStaticDataMember() ||
6441 isa<VarTemplateSpecializationDecl>(Var)) &&
6442 "Not a static data member, nor a variable template"
6443 " specialization?");
6445 // Don't try to instantiate declarations if the most recent redeclaration
6446 // is invalid.
6447 if (Var->getMostRecentDecl()->isInvalidDecl())
6448 continue;
6450 // Check if the most recent declaration has changed the specialization kind
6451 // and removed the need for implicit instantiation.
6452 switch (Var->getMostRecentDecl()
6453 ->getTemplateSpecializationKindForInstantiation()) {
6454 case TSK_Undeclared:
6455 llvm_unreachable("Cannot instantitiate an undeclared specialization.");
6456 case TSK_ExplicitInstantiationDeclaration:
6457 case TSK_ExplicitSpecialization:
6458 continue; // No longer need to instantiate this type.
6459 case TSK_ExplicitInstantiationDefinition:
6460 // We only need an instantiation if the pending instantiation *is* the
6461 // explicit instantiation.
6462 if (Var != Var->getMostRecentDecl())
6463 continue;
6464 break;
6465 case TSK_ImplicitInstantiation:
6466 break;
6469 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(),
6470 "instantiating variable definition");
6471 bool DefinitionRequired = Var->getTemplateSpecializationKind() ==
6472 TSK_ExplicitInstantiationDefinition;
6474 // Instantiate static data member definitions or variable template
6475 // specializations.
6476 InstantiateVariableDefinition(/*FIXME:*/ Inst.second, Var, true,
6477 DefinitionRequired, true);
6480 if (!LocalOnly && LangOpts.PCHInstantiateTemplates)
6481 PendingInstantiations.swap(delayedPCHInstantiations);
6484 void Sema::PerformDependentDiagnostics(const DeclContext *Pattern,
6485 const MultiLevelTemplateArgumentList &TemplateArgs) {
6486 for (auto *DD : Pattern->ddiags()) {
6487 switch (DD->getKind()) {
6488 case DependentDiagnostic::Access:
6489 HandleDependentAccessCheck(*DD, TemplateArgs);
6490 break;