[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / clang / lib / StaticAnalyzer / Checkers / DynamicTypePropagation.cpp
blobeda8302595ba4fbcea266c3eb6e3e451af9387ce
1 //===- DynamicTypePropagation.cpp ------------------------------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains two checkers. One helps the static analyzer core to track
10 // types, the other does type inference on Obj-C generics and report type
11 // errors.
13 // Dynamic Type Propagation:
14 // This checker defines the rules for dynamic type gathering and propagation.
16 // Generics Checker for Objective-C:
17 // This checker tries to find type errors that the compiler is not able to catch
18 // due to the implicit conversions that were introduced for backward
19 // compatibility.
21 //===----------------------------------------------------------------------===//
23 #include "clang/AST/ParentMap.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
27 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
28 #include "clang/StaticAnalyzer/Core/Checker.h"
29 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
30 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
31 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
32 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
33 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include <optional>
37 using namespace clang;
38 using namespace ento;
40 // ProgramState trait - The type inflation is tracked by DynamicTypeMap. This is
41 // an auxiliary map that tracks more information about generic types, because in
42 // some cases the most derived type is not the most informative one about the
43 // type parameters. This types that are stored for each symbol in this map must
44 // be specialized.
45 // TODO: In some case the type stored in this map is exactly the same that is
46 // stored in DynamicTypeMap. We should no store duplicated information in those
47 // cases.
48 REGISTER_MAP_WITH_PROGRAMSTATE(MostSpecializedTypeArgsMap, SymbolRef,
49 const ObjCObjectPointerType *)
51 namespace {
52 class DynamicTypePropagation:
53 public Checker< check::PreCall,
54 check::PostCall,
55 check::DeadSymbols,
56 check::PostStmt<CastExpr>,
57 check::PostStmt<CXXNewExpr>,
58 check::PreObjCMessage,
59 check::PostObjCMessage > {
61 /// Return a better dynamic type if one can be derived from the cast.
62 const ObjCObjectPointerType *getBetterObjCType(const Expr *CastE,
63 CheckerContext &C) const;
65 ExplodedNode *dynamicTypePropagationOnCasts(const CastExpr *CE,
66 ProgramStateRef &State,
67 CheckerContext &C) const;
69 mutable std::unique_ptr<BugType> ObjCGenericsBugType;
70 void initBugType() const {
71 if (!ObjCGenericsBugType)
72 ObjCGenericsBugType.reset(new BugType(
73 GenericCheckName, "Generics", categories::CoreFoundationObjectiveC));
76 class GenericsBugVisitor : public BugReporterVisitor {
77 public:
78 GenericsBugVisitor(SymbolRef S) : Sym(S) {}
80 void Profile(llvm::FoldingSetNodeID &ID) const override {
81 static int X = 0;
82 ID.AddPointer(&X);
83 ID.AddPointer(Sym);
86 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
87 BugReporterContext &BRC,
88 PathSensitiveBugReport &BR) override;
90 private:
91 // The tracked symbol.
92 SymbolRef Sym;
95 void reportGenericsBug(const ObjCObjectPointerType *From,
96 const ObjCObjectPointerType *To, ExplodedNode *N,
97 SymbolRef Sym, CheckerContext &C,
98 const Stmt *ReportedNode = nullptr) const;
100 public:
101 void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
102 void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
103 void checkPostStmt(const CastExpr *CastE, CheckerContext &C) const;
104 void checkPostStmt(const CXXNewExpr *NewE, CheckerContext &C) const;
105 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
106 void checkPreObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
107 void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
109 /// This value is set to true, when the Generics checker is turned on.
110 bool CheckGenerics = false;
111 CheckerNameRef GenericCheckName;
114 bool isObjCClassType(QualType Type) {
115 if (const auto *PointerType = dyn_cast<ObjCObjectPointerType>(Type)) {
116 return PointerType->getObjectType()->isObjCClass();
118 return false;
121 struct RuntimeType {
122 const ObjCObjectType *Type = nullptr;
123 bool Precise = false;
125 operator bool() const { return Type != nullptr; }
128 RuntimeType inferReceiverType(const ObjCMethodCall &Message,
129 CheckerContext &C) {
130 const ObjCMessageExpr *MessageExpr = Message.getOriginExpr();
132 // Check if we can statically infer the actual type precisely.
134 // 1. Class is written directly in the message:
135 // \code
136 // [ActualClass classMethod];
137 // \endcode
138 if (MessageExpr->getReceiverKind() == ObjCMessageExpr::Class) {
139 return {MessageExpr->getClassReceiver()->getAs<ObjCObjectType>(),
140 /*Precise=*/true};
143 // 2. Receiver is 'super' from a class method (a.k.a 'super' is a
144 // class object).
145 // \code
146 // [super classMethod];
147 // \endcode
148 if (MessageExpr->getReceiverKind() == ObjCMessageExpr::SuperClass) {
149 return {MessageExpr->getSuperType()->getAs<ObjCObjectType>(),
150 /*Precise=*/true};
153 // 3. Receiver is 'super' from an instance method (a.k.a 'super' is an
154 // instance of a super class).
155 // \code
156 // [super instanceMethod];
157 // \encode
158 if (MessageExpr->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
159 if (const auto *ObjTy =
160 MessageExpr->getSuperType()->getAs<ObjCObjectPointerType>())
161 return {ObjTy->getObjectType(), /*Precise=*/true};
164 const Expr *RecE = MessageExpr->getInstanceReceiver();
166 if (!RecE)
167 return {};
169 // Otherwise, let's try to get type information from our estimations of
170 // runtime types.
171 QualType InferredType;
172 SVal ReceiverSVal = C.getSVal(RecE);
173 ProgramStateRef State = C.getState();
175 if (const MemRegion *ReceiverRegion = ReceiverSVal.getAsRegion()) {
176 if (DynamicTypeInfo DTI = getDynamicTypeInfo(State, ReceiverRegion)) {
177 InferredType = DTI.getType().getCanonicalType();
181 if (SymbolRef ReceiverSymbol = ReceiverSVal.getAsSymbol()) {
182 if (InferredType.isNull()) {
183 InferredType = ReceiverSymbol->getType();
186 // If receiver is a Class object, we want to figure out the type it
187 // represents.
188 if (isObjCClassType(InferredType)) {
189 // We actually might have some info on what type is contained in there.
190 if (DynamicTypeInfo DTI =
191 getClassObjectDynamicTypeInfo(State, ReceiverSymbol)) {
193 // Types in Class objects can be ONLY Objective-C types
194 return {cast<ObjCObjectType>(DTI.getType()), !DTI.canBeASubClass()};
197 SVal SelfSVal = State->getSelfSVal(C.getLocationContext());
199 // Another way we can guess what is in Class object, is when it is a
200 // 'self' variable of the current class method.
201 if (ReceiverSVal == SelfSVal) {
202 // In this case, we should return the type of the enclosing class
203 // declaration.
204 if (const ObjCMethodDecl *MD =
205 dyn_cast<ObjCMethodDecl>(C.getStackFrame()->getDecl()))
206 if (const ObjCObjectType *ObjTy = dyn_cast<ObjCObjectType>(
207 MD->getClassInterface()->getTypeForDecl()))
208 return {ObjTy};
213 // Unfortunately, it seems like we have no idea what that type is.
214 if (InferredType.isNull()) {
215 return {};
218 // We can end up here if we got some dynamic type info and the
219 // receiver is not one of the known Class objects.
220 if (const auto *ReceiverInferredType =
221 dyn_cast<ObjCObjectPointerType>(InferredType)) {
222 return {ReceiverInferredType->getObjectType()};
225 // Any other type (like 'Class') is not really useful at this point.
226 return {};
228 } // end anonymous namespace
230 void DynamicTypePropagation::checkDeadSymbols(SymbolReaper &SR,
231 CheckerContext &C) const {
232 ProgramStateRef State = removeDeadTypes(C.getState(), SR);
233 State = removeDeadClassObjectTypes(State, SR);
235 MostSpecializedTypeArgsMapTy TyArgMap =
236 State->get<MostSpecializedTypeArgsMap>();
237 for (SymbolRef Sym : llvm::make_first_range(TyArgMap)) {
238 if (SR.isDead(Sym)) {
239 State = State->remove<MostSpecializedTypeArgsMap>(Sym);
243 C.addTransition(State);
246 static void recordFixedType(const MemRegion *Region, const CXXMethodDecl *MD,
247 CheckerContext &C) {
248 assert(Region);
249 assert(MD);
251 ASTContext &Ctx = C.getASTContext();
252 QualType Ty = Ctx.getPointerType(Ctx.getRecordType(MD->getParent()));
254 ProgramStateRef State = C.getState();
255 State = setDynamicTypeInfo(State, Region, Ty, /*CanBeSubClassed=*/false);
256 C.addTransition(State);
259 void DynamicTypePropagation::checkPreCall(const CallEvent &Call,
260 CheckerContext &C) const {
261 if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(&Call)) {
262 // C++11 [class.cdtor]p4: When a virtual function is called directly or
263 // indirectly from a constructor or from a destructor, including during
264 // the construction or destruction of the class's non-static data members,
265 // and the object to which the call applies is the object under
266 // construction or destruction, the function called is the final overrider
267 // in the constructor's or destructor's class and not one overriding it in
268 // a more-derived class.
270 switch (Ctor->getOriginExpr()->getConstructionKind()) {
271 case CXXConstructExpr::CK_Complete:
272 case CXXConstructExpr::CK_Delegating:
273 // No additional type info necessary.
274 return;
275 case CXXConstructExpr::CK_NonVirtualBase:
276 case CXXConstructExpr::CK_VirtualBase:
277 if (const MemRegion *Target = Ctor->getCXXThisVal().getAsRegion())
278 recordFixedType(Target, Ctor->getDecl(), C);
279 return;
282 return;
285 if (const CXXDestructorCall *Dtor = dyn_cast<CXXDestructorCall>(&Call)) {
286 // C++11 [class.cdtor]p4 (see above)
287 if (!Dtor->isBaseDestructor())
288 return;
290 const MemRegion *Target = Dtor->getCXXThisVal().getAsRegion();
291 if (!Target)
292 return;
294 const Decl *D = Dtor->getDecl();
295 if (!D)
296 return;
298 recordFixedType(Target, cast<CXXDestructorDecl>(D), C);
299 return;
303 void DynamicTypePropagation::checkPostCall(const CallEvent &Call,
304 CheckerContext &C) const {
305 // We can obtain perfect type info for return values from some calls.
306 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
308 // Get the returned value if it's a region.
309 const MemRegion *RetReg = Call.getReturnValue().getAsRegion();
310 if (!RetReg)
311 return;
313 ProgramStateRef State = C.getState();
314 const ObjCMethodDecl *D = Msg->getDecl();
316 if (D && D->hasRelatedResultType()) {
317 switch (Msg->getMethodFamily()) {
318 default:
319 break;
321 // We assume that the type of the object returned by alloc and new are the
322 // pointer to the object of the class specified in the receiver of the
323 // message.
324 case OMF_alloc:
325 case OMF_new: {
326 // Get the type of object that will get created.
327 RuntimeType ObjTy = inferReceiverType(*Msg, C);
329 if (!ObjTy)
330 return;
332 QualType DynResTy =
333 C.getASTContext().getObjCObjectPointerType(QualType(ObjTy.Type, 0));
334 // We used to assume that whatever type we got from inferring the
335 // type is actually precise (and it is not exactly correct).
336 // A big portion of the existing behavior depends on that assumption
337 // (e.g. certain inlining won't take place). For this reason, we don't
338 // use ObjTy.Precise flag here.
340 // TODO: We should mitigate this problem some time in the future
341 // and replace hardcoded 'false' with '!ObjTy.Precise'.
342 C.addTransition(setDynamicTypeInfo(State, RetReg, DynResTy, false));
343 break;
345 case OMF_init: {
346 // Assume, the result of the init method has the same dynamic type as
347 // the receiver and propagate the dynamic type info.
348 const MemRegion *RecReg = Msg->getReceiverSVal().getAsRegion();
349 if (!RecReg)
350 return;
351 DynamicTypeInfo RecDynType = getDynamicTypeInfo(State, RecReg);
352 C.addTransition(setDynamicTypeInfo(State, RetReg, RecDynType));
353 break;
357 return;
360 if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(&Call)) {
361 // We may need to undo the effects of our pre-call check.
362 switch (Ctor->getOriginExpr()->getConstructionKind()) {
363 case CXXConstructExpr::CK_Complete:
364 case CXXConstructExpr::CK_Delegating:
365 // No additional work necessary.
366 // Note: This will leave behind the actual type of the object for
367 // complete constructors, but arguably that's a good thing, since it
368 // means the dynamic type info will be correct even for objects
369 // constructed with operator new.
370 return;
371 case CXXConstructExpr::CK_NonVirtualBase:
372 case CXXConstructExpr::CK_VirtualBase:
373 if (const MemRegion *Target = Ctor->getCXXThisVal().getAsRegion()) {
374 // We just finished a base constructor. Now we can use the subclass's
375 // type when resolving virtual calls.
376 const LocationContext *LCtx = C.getLocationContext();
378 // FIXME: In C++17 classes with non-virtual bases may be treated as
379 // aggregates, and in such case no top-frame constructor will be called.
380 // Figure out if we need to do anything in this case.
381 // FIXME: Instead of relying on the ParentMap, we should have the
382 // trigger-statement (InitListExpr in this case) available in this
383 // callback, ideally as part of CallEvent.
384 if (isa_and_nonnull<InitListExpr>(
385 LCtx->getParentMap().getParent(Ctor->getOriginExpr())))
386 return;
388 recordFixedType(Target, cast<CXXConstructorDecl>(LCtx->getDecl()), C);
390 return;
395 /// TODO: Handle explicit casts.
396 /// Handle C++ casts.
398 /// Precondition: the cast is between ObjCObjectPointers.
399 ExplodedNode *DynamicTypePropagation::dynamicTypePropagationOnCasts(
400 const CastExpr *CE, ProgramStateRef &State, CheckerContext &C) const {
401 // We only track type info for regions.
402 const MemRegion *ToR = C.getSVal(CE).getAsRegion();
403 if (!ToR)
404 return C.getPredecessor();
406 if (isa<ExplicitCastExpr>(CE))
407 return C.getPredecessor();
409 if (const Type *NewTy = getBetterObjCType(CE, C)) {
410 State = setDynamicTypeInfo(State, ToR, QualType(NewTy, 0));
411 return C.addTransition(State);
413 return C.getPredecessor();
416 void DynamicTypePropagation::checkPostStmt(const CXXNewExpr *NewE,
417 CheckerContext &C) const {
418 if (NewE->isArray())
419 return;
421 // We only track dynamic type info for regions.
422 const MemRegion *MR = C.getSVal(NewE).getAsRegion();
423 if (!MR)
424 return;
426 C.addTransition(setDynamicTypeInfo(C.getState(), MR, NewE->getType(),
427 /*CanBeSubClassed=*/false));
430 // Return a better dynamic type if one can be derived from the cast.
431 // Compare the current dynamic type of the region and the new type to which we
432 // are casting. If the new type is lower in the inheritance hierarchy, pick it.
433 const ObjCObjectPointerType *
434 DynamicTypePropagation::getBetterObjCType(const Expr *CastE,
435 CheckerContext &C) const {
436 const MemRegion *ToR = C.getSVal(CastE).getAsRegion();
437 assert(ToR);
439 // Get the old and new types.
440 const ObjCObjectPointerType *NewTy =
441 CastE->getType()->getAs<ObjCObjectPointerType>();
442 if (!NewTy)
443 return nullptr;
444 QualType OldDTy = getDynamicTypeInfo(C.getState(), ToR).getType();
445 if (OldDTy.isNull()) {
446 return NewTy;
448 const ObjCObjectPointerType *OldTy =
449 OldDTy->getAs<ObjCObjectPointerType>();
450 if (!OldTy)
451 return nullptr;
453 // Id the old type is 'id', the new one is more precise.
454 if (OldTy->isObjCIdType() && !NewTy->isObjCIdType())
455 return NewTy;
457 // Return new if it's a subclass of old.
458 const ObjCInterfaceDecl *ToI = NewTy->getInterfaceDecl();
459 const ObjCInterfaceDecl *FromI = OldTy->getInterfaceDecl();
460 if (ToI && FromI && FromI->isSuperClassOf(ToI))
461 return NewTy;
463 return nullptr;
466 static const ObjCObjectPointerType *getMostInformativeDerivedClassImpl(
467 const ObjCObjectPointerType *From, const ObjCObjectPointerType *To,
468 const ObjCObjectPointerType *MostInformativeCandidate, ASTContext &C) {
469 // Checking if from and to are the same classes modulo specialization.
470 if (From->getInterfaceDecl()->getCanonicalDecl() ==
471 To->getInterfaceDecl()->getCanonicalDecl()) {
472 if (To->isSpecialized()) {
473 assert(MostInformativeCandidate->isSpecialized());
474 return MostInformativeCandidate;
476 return From;
479 if (To->getObjectType()->getSuperClassType().isNull()) {
480 // If To has no super class and From and To aren't the same then
481 // To was not actually a descendent of From. In this case the best we can
482 // do is 'From'.
483 return From;
486 const auto *SuperOfTo =
487 To->getObjectType()->getSuperClassType()->castAs<ObjCObjectType>();
488 assert(SuperOfTo);
489 QualType SuperPtrOfToQual =
490 C.getObjCObjectPointerType(QualType(SuperOfTo, 0));
491 const auto *SuperPtrOfTo = SuperPtrOfToQual->castAs<ObjCObjectPointerType>();
492 if (To->isUnspecialized())
493 return getMostInformativeDerivedClassImpl(From, SuperPtrOfTo, SuperPtrOfTo,
495 else
496 return getMostInformativeDerivedClassImpl(From, SuperPtrOfTo,
497 MostInformativeCandidate, C);
500 /// A downcast may loose specialization information. E. g.:
501 /// MutableMap<T, U> : Map
502 /// The downcast to MutableMap looses the information about the types of the
503 /// Map (due to the type parameters are not being forwarded to Map), and in
504 /// general there is no way to recover that information from the
505 /// declaration. In order to have to most information, lets find the most
506 /// derived type that has all the type parameters forwarded.
508 /// Get the a subclass of \p From (which has a lower bound \p To) that do not
509 /// loose information about type parameters. \p To has to be a subclass of
510 /// \p From. From has to be specialized.
511 static const ObjCObjectPointerType *
512 getMostInformativeDerivedClass(const ObjCObjectPointerType *From,
513 const ObjCObjectPointerType *To, ASTContext &C) {
514 return getMostInformativeDerivedClassImpl(From, To, To, C);
517 /// Inputs:
518 /// \param StaticLowerBound Static lower bound for a symbol. The dynamic lower
519 /// bound might be the subclass of this type.
520 /// \param StaticUpperBound A static upper bound for a symbol.
521 /// \p StaticLowerBound expected to be the subclass of \p StaticUpperBound.
522 /// \param Current The type that was inferred for a symbol in a previous
523 /// context. Might be null when this is the first time that inference happens.
524 /// Precondition:
525 /// \p StaticLowerBound or \p StaticUpperBound is specialized. If \p Current
526 /// is not null, it is specialized.
527 /// Possible cases:
528 /// (1) The \p Current is null and \p StaticLowerBound <: \p StaticUpperBound
529 /// (2) \p StaticLowerBound <: \p Current <: \p StaticUpperBound
530 /// (3) \p Current <: \p StaticLowerBound <: \p StaticUpperBound
531 /// (4) \p StaticLowerBound <: \p StaticUpperBound <: \p Current
532 /// Effect:
533 /// Use getMostInformativeDerivedClass with the upper and lower bound of the
534 /// set {\p StaticLowerBound, \p Current, \p StaticUpperBound}. The computed
535 /// lower bound must be specialized. If the result differs from \p Current or
536 /// \p Current is null, store the result.
537 static bool
538 storeWhenMoreInformative(ProgramStateRef &State, SymbolRef Sym,
539 const ObjCObjectPointerType *const *Current,
540 const ObjCObjectPointerType *StaticLowerBound,
541 const ObjCObjectPointerType *StaticUpperBound,
542 ASTContext &C) {
543 // TODO: The above 4 cases are not exhaustive. In particular, it is possible
544 // for Current to be incomparable with StaticLowerBound, StaticUpperBound,
545 // or both.
547 // For example, suppose Foo<T> and Bar<T> are unrelated types.
549 // Foo<T> *f = ...
550 // Bar<T> *b = ...
552 // id t1 = b;
553 // f = t1;
554 // id t2 = f; // StaticLowerBound is Foo<T>, Current is Bar<T>
556 // We should either constrain the callers of this function so that the stated
557 // preconditions hold (and assert it) or rewrite the function to expicitly
558 // handle the additional cases.
560 // Precondition
561 assert(StaticUpperBound->isSpecialized() ||
562 StaticLowerBound->isSpecialized());
563 assert(!Current || (*Current)->isSpecialized());
565 // Case (1)
566 if (!Current) {
567 if (StaticUpperBound->isUnspecialized()) {
568 State = State->set<MostSpecializedTypeArgsMap>(Sym, StaticLowerBound);
569 return true;
571 // Upper bound is specialized.
572 const ObjCObjectPointerType *WithMostInfo =
573 getMostInformativeDerivedClass(StaticUpperBound, StaticLowerBound, C);
574 State = State->set<MostSpecializedTypeArgsMap>(Sym, WithMostInfo);
575 return true;
578 // Case (3)
579 if (C.canAssignObjCInterfaces(StaticLowerBound, *Current)) {
580 return false;
583 // Case (4)
584 if (C.canAssignObjCInterfaces(*Current, StaticUpperBound)) {
585 // The type arguments might not be forwarded at any point of inheritance.
586 const ObjCObjectPointerType *WithMostInfo =
587 getMostInformativeDerivedClass(*Current, StaticUpperBound, C);
588 WithMostInfo =
589 getMostInformativeDerivedClass(WithMostInfo, StaticLowerBound, C);
590 if (WithMostInfo == *Current)
591 return false;
592 State = State->set<MostSpecializedTypeArgsMap>(Sym, WithMostInfo);
593 return true;
596 // Case (2)
597 const ObjCObjectPointerType *WithMostInfo =
598 getMostInformativeDerivedClass(*Current, StaticLowerBound, C);
599 if (WithMostInfo != *Current) {
600 State = State->set<MostSpecializedTypeArgsMap>(Sym, WithMostInfo);
601 return true;
604 return false;
607 /// Type inference based on static type information that is available for the
608 /// cast and the tracked type information for the given symbol. When the tracked
609 /// symbol and the destination type of the cast are unrelated, report an error.
610 void DynamicTypePropagation::checkPostStmt(const CastExpr *CE,
611 CheckerContext &C) const {
612 if (CE->getCastKind() != CK_BitCast)
613 return;
615 QualType OriginType = CE->getSubExpr()->getType();
616 QualType DestType = CE->getType();
618 const auto *OrigObjectPtrType = OriginType->getAs<ObjCObjectPointerType>();
619 const auto *DestObjectPtrType = DestType->getAs<ObjCObjectPointerType>();
621 if (!OrigObjectPtrType || !DestObjectPtrType)
622 return;
624 ProgramStateRef State = C.getState();
625 ExplodedNode *AfterTypeProp = dynamicTypePropagationOnCasts(CE, State, C);
627 ASTContext &ASTCtxt = C.getASTContext();
629 // This checker detects the subtyping relationships using the assignment
630 // rules. In order to be able to do this the kindofness must be stripped
631 // first. The checker treats every type as kindof type anyways: when the
632 // tracked type is the subtype of the static type it tries to look up the
633 // methods in the tracked type first.
634 OrigObjectPtrType = OrigObjectPtrType->stripObjCKindOfTypeAndQuals(ASTCtxt);
635 DestObjectPtrType = DestObjectPtrType->stripObjCKindOfTypeAndQuals(ASTCtxt);
637 if (OrigObjectPtrType->isUnspecialized() &&
638 DestObjectPtrType->isUnspecialized())
639 return;
641 SymbolRef Sym = C.getSVal(CE).getAsSymbol();
642 if (!Sym)
643 return;
645 const ObjCObjectPointerType *const *TrackedType =
646 State->get<MostSpecializedTypeArgsMap>(Sym);
648 if (isa<ExplicitCastExpr>(CE)) {
649 // Treat explicit casts as an indication from the programmer that the
650 // Objective-C type system is not rich enough to express the needed
651 // invariant. In such cases, forget any existing information inferred
652 // about the type arguments. We don't assume the casted-to specialized
653 // type here because the invariant the programmer specifies in the cast
654 // may only hold at this particular program point and not later ones.
655 // We don't want a suppressing cast to require a cascade of casts down the
656 // line.
657 if (TrackedType) {
658 State = State->remove<MostSpecializedTypeArgsMap>(Sym);
659 C.addTransition(State, AfterTypeProp);
661 return;
664 // Check which assignments are legal.
665 bool OrigToDest =
666 ASTCtxt.canAssignObjCInterfaces(DestObjectPtrType, OrigObjectPtrType);
667 bool DestToOrig =
668 ASTCtxt.canAssignObjCInterfaces(OrigObjectPtrType, DestObjectPtrType);
670 // The tracked type should be the sub or super class of the static destination
671 // type. When an (implicit) upcast or a downcast happens according to static
672 // types, and there is no subtyping relationship between the tracked and the
673 // static destination types, it indicates an error.
674 if (TrackedType &&
675 !ASTCtxt.canAssignObjCInterfaces(DestObjectPtrType, *TrackedType) &&
676 !ASTCtxt.canAssignObjCInterfaces(*TrackedType, DestObjectPtrType)) {
677 static CheckerProgramPointTag IllegalConv(this, "IllegalConversion");
678 ExplodedNode *N = C.addTransition(State, AfterTypeProp, &IllegalConv);
679 reportGenericsBug(*TrackedType, DestObjectPtrType, N, Sym, C);
680 return;
683 // Handle downcasts and upcasts.
685 const ObjCObjectPointerType *LowerBound = DestObjectPtrType;
686 const ObjCObjectPointerType *UpperBound = OrigObjectPtrType;
687 if (OrigToDest && !DestToOrig)
688 std::swap(LowerBound, UpperBound);
690 // The id type is not a real bound. Eliminate it.
691 LowerBound = LowerBound->isObjCIdType() ? UpperBound : LowerBound;
692 UpperBound = UpperBound->isObjCIdType() ? LowerBound : UpperBound;
694 if (storeWhenMoreInformative(State, Sym, TrackedType, LowerBound, UpperBound,
695 ASTCtxt)) {
696 C.addTransition(State, AfterTypeProp);
700 static const Expr *stripCastsAndSugar(const Expr *E) {
701 E = E->IgnoreParenImpCasts();
702 if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
703 E = POE->getSyntacticForm()->IgnoreParenImpCasts();
704 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
705 E = OVE->getSourceExpr()->IgnoreParenImpCasts();
706 return E;
709 static bool isObjCTypeParamDependent(QualType Type) {
710 // It is illegal to typedef parameterized types inside an interface. Therefore
711 // an Objective-C type can only be dependent on a type parameter when the type
712 // parameter structurally present in the type itself.
713 class IsObjCTypeParamDependentTypeVisitor
714 : public RecursiveASTVisitor<IsObjCTypeParamDependentTypeVisitor> {
715 public:
716 IsObjCTypeParamDependentTypeVisitor() = default;
717 bool VisitObjCTypeParamType(const ObjCTypeParamType *Type) {
718 if (isa<ObjCTypeParamDecl>(Type->getDecl())) {
719 Result = true;
720 return false;
722 return true;
725 bool Result = false;
728 IsObjCTypeParamDependentTypeVisitor Visitor;
729 Visitor.TraverseType(Type);
730 return Visitor.Result;
733 /// A method might not be available in the interface indicated by the static
734 /// type. However it might be available in the tracked type. In order to
735 /// properly substitute the type parameters we need the declaration context of
736 /// the method. The more specialized the enclosing class of the method is, the
737 /// more likely that the parameter substitution will be successful.
738 static const ObjCMethodDecl *
739 findMethodDecl(const ObjCMessageExpr *MessageExpr,
740 const ObjCObjectPointerType *TrackedType, ASTContext &ASTCtxt) {
741 const ObjCMethodDecl *Method = nullptr;
743 QualType ReceiverType = MessageExpr->getReceiverType();
745 // Do this "devirtualization" on instance and class methods only. Trust the
746 // static type on super and super class calls.
747 if (MessageExpr->getReceiverKind() == ObjCMessageExpr::Instance ||
748 MessageExpr->getReceiverKind() == ObjCMessageExpr::Class) {
749 // When the receiver type is id, Class, or some super class of the tracked
750 // type, look up the method in the tracked type, not in the receiver type.
751 // This way we preserve more information.
752 if (ReceiverType->isObjCIdType() || ReceiverType->isObjCClassType() ||
753 ASTCtxt.canAssignObjCInterfaces(
754 ReceiverType->castAs<ObjCObjectPointerType>(), TrackedType)) {
755 const ObjCInterfaceDecl *InterfaceDecl = TrackedType->getInterfaceDecl();
756 // The method might not be found.
757 Selector Sel = MessageExpr->getSelector();
758 Method = InterfaceDecl->lookupInstanceMethod(Sel);
759 if (!Method)
760 Method = InterfaceDecl->lookupClassMethod(Sel);
764 // Fallback to statick method lookup when the one based on the tracked type
765 // failed.
766 return Method ? Method : MessageExpr->getMethodDecl();
769 /// Get the returned ObjCObjectPointerType by a method based on the tracked type
770 /// information, or null pointer when the returned type is not an
771 /// ObjCObjectPointerType.
772 static QualType getReturnTypeForMethod(
773 const ObjCMethodDecl *Method, ArrayRef<QualType> TypeArgs,
774 const ObjCObjectPointerType *SelfType, ASTContext &C) {
775 QualType StaticResultType = Method->getReturnType();
777 // Is the return type declared as instance type?
778 if (StaticResultType == C.getObjCInstanceType())
779 return QualType(SelfType, 0);
781 // Check whether the result type depends on a type parameter.
782 if (!isObjCTypeParamDependent(StaticResultType))
783 return QualType();
785 QualType ResultType = StaticResultType.substObjCTypeArgs(
786 C, TypeArgs, ObjCSubstitutionContext::Result);
788 return ResultType;
791 /// When the receiver has a tracked type, use that type to validate the
792 /// argumments of the message expression and the return value.
793 void DynamicTypePropagation::checkPreObjCMessage(const ObjCMethodCall &M,
794 CheckerContext &C) const {
795 ProgramStateRef State = C.getState();
796 SymbolRef Sym = M.getReceiverSVal().getAsSymbol();
797 if (!Sym)
798 return;
800 const ObjCObjectPointerType *const *TrackedType =
801 State->get<MostSpecializedTypeArgsMap>(Sym);
802 if (!TrackedType)
803 return;
805 // Get the type arguments from tracked type and substitute type arguments
806 // before do the semantic check.
808 ASTContext &ASTCtxt = C.getASTContext();
809 const ObjCMessageExpr *MessageExpr = M.getOriginExpr();
810 const ObjCMethodDecl *Method =
811 findMethodDecl(MessageExpr, *TrackedType, ASTCtxt);
813 // It is possible to call non-existent methods in Obj-C.
814 if (!Method)
815 return;
817 // If the method is declared on a class that has a non-invariant
818 // type parameter, don't warn about parameter mismatches after performing
819 // substitution. This prevents warning when the programmer has purposely
820 // casted the receiver to a super type or unspecialized type but the analyzer
821 // has a more precise tracked type than the programmer intends at the call
822 // site.
824 // For example, consider NSArray (which has a covariant type parameter)
825 // and NSMutableArray (a subclass of NSArray where the type parameter is
826 // invariant):
827 // NSMutableArray *a = [[NSMutableArray<NSString *> alloc] init;
829 // [a containsObject:number]; // Safe: -containsObject is defined on NSArray.
830 // NSArray<NSObject *> *other = [a arrayByAddingObject:number] // Safe
832 // [a addObject:number] // Unsafe: -addObject: is defined on NSMutableArray
835 const ObjCInterfaceDecl *Interface = Method->getClassInterface();
836 if (!Interface)
837 return;
839 ObjCTypeParamList *TypeParams = Interface->getTypeParamList();
840 if (!TypeParams)
841 return;
843 for (ObjCTypeParamDecl *TypeParam : *TypeParams) {
844 if (TypeParam->getVariance() != ObjCTypeParamVariance::Invariant)
845 return;
848 std::optional<ArrayRef<QualType>> TypeArgs =
849 (*TrackedType)->getObjCSubstitutions(Method->getDeclContext());
850 // This case might happen when there is an unspecialized override of a
851 // specialized method.
852 if (!TypeArgs)
853 return;
855 for (unsigned i = 0; i < Method->param_size(); i++) {
856 const Expr *Arg = MessageExpr->getArg(i);
857 const ParmVarDecl *Param = Method->parameters()[i];
859 QualType OrigParamType = Param->getType();
860 if (!isObjCTypeParamDependent(OrigParamType))
861 continue;
863 QualType ParamType = OrigParamType.substObjCTypeArgs(
864 ASTCtxt, *TypeArgs, ObjCSubstitutionContext::Parameter);
865 // Check if it can be assigned
866 const auto *ParamObjectPtrType = ParamType->getAs<ObjCObjectPointerType>();
867 const auto *ArgObjectPtrType =
868 stripCastsAndSugar(Arg)->getType()->getAs<ObjCObjectPointerType>();
869 if (!ParamObjectPtrType || !ArgObjectPtrType)
870 continue;
872 // Check if we have more concrete tracked type that is not a super type of
873 // the static argument type.
874 SVal ArgSVal = M.getArgSVal(i);
875 SymbolRef ArgSym = ArgSVal.getAsSymbol();
876 if (ArgSym) {
877 const ObjCObjectPointerType *const *TrackedArgType =
878 State->get<MostSpecializedTypeArgsMap>(ArgSym);
879 if (TrackedArgType &&
880 ASTCtxt.canAssignObjCInterfaces(ArgObjectPtrType, *TrackedArgType)) {
881 ArgObjectPtrType = *TrackedArgType;
885 // Warn when argument is incompatible with the parameter.
886 if (!ASTCtxt.canAssignObjCInterfaces(ParamObjectPtrType,
887 ArgObjectPtrType)) {
888 static CheckerProgramPointTag Tag(this, "ArgTypeMismatch");
889 ExplodedNode *N = C.addTransition(State, &Tag);
890 reportGenericsBug(ArgObjectPtrType, ParamObjectPtrType, N, Sym, C, Arg);
891 return;
896 /// This callback is used to infer the types for Class variables. This info is
897 /// used later to validate messages that sent to classes. Class variables are
898 /// initialized with by invoking the 'class' method on a class.
899 /// This method is also used to infer the type information for the return
900 /// types.
901 // TODO: right now it only tracks generic types. Extend this to track every
902 // type in the DynamicTypeMap and diagnose type errors!
903 void DynamicTypePropagation::checkPostObjCMessage(const ObjCMethodCall &M,
904 CheckerContext &C) const {
905 const ObjCMessageExpr *MessageExpr = M.getOriginExpr();
907 SymbolRef RetSym = M.getReturnValue().getAsSymbol();
908 if (!RetSym)
909 return;
911 Selector Sel = MessageExpr->getSelector();
912 ProgramStateRef State = C.getState();
914 // Here we try to propagate information on Class objects.
915 if (Sel.getAsString() == "class") {
916 // We try to figure out the type from the receiver of the 'class' message.
917 if (RuntimeType ReceiverRuntimeType = inferReceiverType(M, C)) {
919 ReceiverRuntimeType.Type->getSuperClassType();
920 QualType ReceiverClassType(ReceiverRuntimeType.Type, 0);
922 // We want to consider only precise information on generics.
923 if (ReceiverRuntimeType.Type->isSpecialized() &&
924 ReceiverRuntimeType.Precise) {
925 QualType ReceiverClassPointerType =
926 C.getASTContext().getObjCObjectPointerType(ReceiverClassType);
927 const auto *InferredType =
928 ReceiverClassPointerType->castAs<ObjCObjectPointerType>();
929 State = State->set<MostSpecializedTypeArgsMap>(RetSym, InferredType);
932 // Constrain the resulting class object to the inferred type.
933 State = setClassObjectDynamicTypeInfo(State, RetSym, ReceiverClassType,
934 !ReceiverRuntimeType.Precise);
936 C.addTransition(State);
937 return;
941 if (Sel.getAsString() == "superclass") {
942 // We try to figure out the type from the receiver of the 'superclass'
943 // message.
944 if (RuntimeType ReceiverRuntimeType = inferReceiverType(M, C)) {
946 // Result type would be a super class of the receiver's type.
947 QualType ReceiversSuperClass =
948 ReceiverRuntimeType.Type->getSuperClassType();
950 // Check if it really had super class.
952 // TODO: we can probably pay closer attention to cases when the class
953 // object can be 'nil' as the result of such message.
954 if (!ReceiversSuperClass.isNull()) {
955 // Constrain the resulting class object to the inferred type.
956 State = setClassObjectDynamicTypeInfo(
957 State, RetSym, ReceiversSuperClass, !ReceiverRuntimeType.Precise);
959 C.addTransition(State);
961 return;
965 // Tracking for return types.
966 SymbolRef RecSym = M.getReceiverSVal().getAsSymbol();
967 if (!RecSym)
968 return;
970 const ObjCObjectPointerType *const *TrackedType =
971 State->get<MostSpecializedTypeArgsMap>(RecSym);
972 if (!TrackedType)
973 return;
975 ASTContext &ASTCtxt = C.getASTContext();
976 const ObjCMethodDecl *Method =
977 findMethodDecl(MessageExpr, *TrackedType, ASTCtxt);
978 if (!Method)
979 return;
981 std::optional<ArrayRef<QualType>> TypeArgs =
982 (*TrackedType)->getObjCSubstitutions(Method->getDeclContext());
983 if (!TypeArgs)
984 return;
986 QualType ResultType =
987 getReturnTypeForMethod(Method, *TypeArgs, *TrackedType, ASTCtxt);
988 // The static type is the same as the deduced type.
989 if (ResultType.isNull())
990 return;
992 const MemRegion *RetRegion = M.getReturnValue().getAsRegion();
993 ExplodedNode *Pred = C.getPredecessor();
994 // When there is an entry available for the return symbol in DynamicTypeMap,
995 // the call was inlined, and the information in the DynamicTypeMap is should
996 // be precise.
997 if (RetRegion && !getRawDynamicTypeInfo(State, RetRegion)) {
998 // TODO: we have duplicated information in DynamicTypeMap and
999 // MostSpecializedTypeArgsMap. We should only store anything in the later if
1000 // the stored data differs from the one stored in the former.
1001 State = setDynamicTypeInfo(State, RetRegion, ResultType,
1002 /*CanBeSubClassed=*/true);
1003 Pred = C.addTransition(State);
1006 const auto *ResultPtrType = ResultType->getAs<ObjCObjectPointerType>();
1008 if (!ResultPtrType || ResultPtrType->isUnspecialized())
1009 return;
1011 // When the result is a specialized type and it is not tracked yet, track it
1012 // for the result symbol.
1013 if (!State->get<MostSpecializedTypeArgsMap>(RetSym)) {
1014 State = State->set<MostSpecializedTypeArgsMap>(RetSym, ResultPtrType);
1015 C.addTransition(State, Pred);
1019 void DynamicTypePropagation::reportGenericsBug(
1020 const ObjCObjectPointerType *From, const ObjCObjectPointerType *To,
1021 ExplodedNode *N, SymbolRef Sym, CheckerContext &C,
1022 const Stmt *ReportedNode) const {
1023 if (!CheckGenerics)
1024 return;
1026 initBugType();
1027 SmallString<192> Buf;
1028 llvm::raw_svector_ostream OS(Buf);
1029 OS << "Conversion from value of type '";
1030 QualType::print(From, Qualifiers(), OS, C.getLangOpts(), llvm::Twine());
1031 OS << "' to incompatible type '";
1032 QualType::print(To, Qualifiers(), OS, C.getLangOpts(), llvm::Twine());
1033 OS << "'";
1034 auto R = std::make_unique<PathSensitiveBugReport>(*ObjCGenericsBugType,
1035 OS.str(), N);
1036 R->markInteresting(Sym);
1037 R->addVisitor(std::make_unique<GenericsBugVisitor>(Sym));
1038 if (ReportedNode)
1039 R->addRange(ReportedNode->getSourceRange());
1040 C.emitReport(std::move(R));
1043 PathDiagnosticPieceRef DynamicTypePropagation::GenericsBugVisitor::VisitNode(
1044 const ExplodedNode *N, BugReporterContext &BRC,
1045 PathSensitiveBugReport &BR) {
1046 ProgramStateRef state = N->getState();
1047 ProgramStateRef statePrev = N->getFirstPred()->getState();
1049 const ObjCObjectPointerType *const *TrackedType =
1050 state->get<MostSpecializedTypeArgsMap>(Sym);
1051 const ObjCObjectPointerType *const *TrackedTypePrev =
1052 statePrev->get<MostSpecializedTypeArgsMap>(Sym);
1053 if (!TrackedType)
1054 return nullptr;
1056 if (TrackedTypePrev && *TrackedTypePrev == *TrackedType)
1057 return nullptr;
1059 // Retrieve the associated statement.
1060 const Stmt *S = N->getStmtForDiagnostics();
1061 if (!S)
1062 return nullptr;
1064 const LangOptions &LangOpts = BRC.getASTContext().getLangOpts();
1066 SmallString<256> Buf;
1067 llvm::raw_svector_ostream OS(Buf);
1068 OS << "Type '";
1069 QualType::print(*TrackedType, Qualifiers(), OS, LangOpts, llvm::Twine());
1070 OS << "' is inferred from ";
1072 if (const auto *ExplicitCast = dyn_cast<ExplicitCastExpr>(S)) {
1073 OS << "explicit cast (from '";
1074 QualType::print(ExplicitCast->getSubExpr()->getType().getTypePtr(),
1075 Qualifiers(), OS, LangOpts, llvm::Twine());
1076 OS << "' to '";
1077 QualType::print(ExplicitCast->getType().getTypePtr(), Qualifiers(), OS,
1078 LangOpts, llvm::Twine());
1079 OS << "')";
1080 } else if (const auto *ImplicitCast = dyn_cast<ImplicitCastExpr>(S)) {
1081 OS << "implicit cast (from '";
1082 QualType::print(ImplicitCast->getSubExpr()->getType().getTypePtr(),
1083 Qualifiers(), OS, LangOpts, llvm::Twine());
1084 OS << "' to '";
1085 QualType::print(ImplicitCast->getType().getTypePtr(), Qualifiers(), OS,
1086 LangOpts, llvm::Twine());
1087 OS << "')";
1088 } else {
1089 OS << "this context";
1092 // Generate the extra diagnostic.
1093 PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
1094 N->getLocationContext());
1095 return std::make_shared<PathDiagnosticEventPiece>(Pos, OS.str(), true);
1098 /// Register checkers.
1099 void ento::registerObjCGenericsChecker(CheckerManager &mgr) {
1100 DynamicTypePropagation *checker = mgr.getChecker<DynamicTypePropagation>();
1101 checker->CheckGenerics = true;
1102 checker->GenericCheckName = mgr.getCurrentCheckerName();
1105 bool ento::shouldRegisterObjCGenericsChecker(const CheckerManager &mgr) {
1106 return true;
1109 void ento::registerDynamicTypePropagation(CheckerManager &mgr) {
1110 mgr.registerChecker<DynamicTypePropagation>();
1113 bool ento::shouldRegisterDynamicTypePropagation(const CheckerManager &mgr) {
1114 return true;