[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / clang / lib / StaticAnalyzer / Checkers / GenericTaintChecker.cpp
blob4ceaf933d0bfc845007c64baf9f384fd7f567328
1 //== GenericTaintChecker.cpp ----------------------------------- -*- C++ -*--=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This checker defines the attack surface for generic taint propagation.
11 // The taint information produced by it might be useful to other checkers. For
12 // example, checkers should report errors which involve tainted data more
13 // aggressively, even if the involved symbols are under constrained.
15 //===----------------------------------------------------------------------===//
17 #include "Yaml.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/Basic/Builtins.h"
20 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
21 #include "clang/StaticAnalyzer/Checkers/Taint.h"
22 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
23 #include "clang/StaticAnalyzer/Core/Checker.h"
24 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/Support/YAMLTraits.h"
32 #include <limits>
33 #include <memory>
34 #include <optional>
35 #include <utility>
36 #include <vector>
38 #define DEBUG_TYPE "taint-checker"
40 using namespace clang;
41 using namespace ento;
42 using namespace taint;
44 using llvm::ImmutableSet;
46 namespace {
48 class GenericTaintChecker;
50 /// Check for CWE-134: Uncontrolled Format String.
51 constexpr llvm::StringLiteral MsgUncontrolledFormatString =
52 "Untrusted data is used as a format string "
53 "(CWE-134: Uncontrolled Format String)";
55 /// Check for:
56 /// CERT/STR02-C. "Sanitize data passed to complex subsystems"
57 /// CWE-78, "Failure to Sanitize Data into an OS Command"
58 constexpr llvm::StringLiteral MsgSanitizeSystemArgs =
59 "Untrusted data is passed to a system call "
60 "(CERT/STR02-C. Sanitize data passed to complex subsystems)";
62 /// Check if tainted data is used as a buffer size in strn.. functions,
63 /// and allocators.
64 constexpr llvm::StringLiteral MsgTaintedBufferSize =
65 "Untrusted data is used to specify the buffer size "
66 "(CERT/STR31-C. Guarantee that storage for strings has sufficient space "
67 "for character data and the null terminator)";
69 /// Check if tainted data is used as a custom sink's parameter.
70 constexpr llvm::StringLiteral MsgCustomSink =
71 "Untrusted data is passed to a user-defined sink";
73 using ArgIdxTy = int;
74 using ArgVecTy = llvm::SmallVector<ArgIdxTy, 2>;
76 /// Denotes the return value.
77 constexpr ArgIdxTy ReturnValueIndex{-1};
79 static ArgIdxTy fromArgumentCount(unsigned Count) {
80 assert(Count <=
81 static_cast<std::size_t>(std::numeric_limits<ArgIdxTy>::max()) &&
82 "ArgIdxTy is not large enough to represent the number of arguments.");
83 return Count;
86 /// Check if the region the expression evaluates to is the standard input,
87 /// and thus, is tainted.
88 /// FIXME: Move this to Taint.cpp.
89 bool isStdin(SVal Val, const ASTContext &ACtx) {
90 // FIXME: What if Val is NonParamVarRegion?
92 // The region should be symbolic, we do not know it's value.
93 const auto *SymReg = dyn_cast_or_null<SymbolicRegion>(Val.getAsRegion());
94 if (!SymReg)
95 return false;
97 // Get it's symbol and find the declaration region it's pointing to.
98 const auto *DeclReg =
99 dyn_cast_or_null<DeclRegion>(SymReg->getSymbol()->getOriginRegion());
100 if (!DeclReg)
101 return false;
103 // This region corresponds to a declaration, find out if it's a global/extern
104 // variable named stdin with the proper type.
105 if (const auto *D = dyn_cast_or_null<VarDecl>(DeclReg->getDecl())) {
106 D = D->getCanonicalDecl();
107 if (D->getName() == "stdin" && D->hasExternalStorage() && D->isExternC()) {
108 const QualType FILETy = ACtx.getFILEType().getCanonicalType();
109 const QualType Ty = D->getType().getCanonicalType();
111 if (Ty->isPointerType())
112 return Ty->getPointeeType() == FILETy;
115 return false;
118 SVal getPointeeOf(ProgramStateRef State, Loc LValue) {
119 const QualType ArgTy = LValue.getType(State->getStateManager().getContext());
120 if (!ArgTy->isPointerType() || !ArgTy->getPointeeType()->isVoidType())
121 return State->getSVal(LValue);
123 // Do not dereference void pointers. Treat them as byte pointers instead.
124 // FIXME: we might want to consider more than just the first byte.
125 return State->getSVal(LValue, State->getStateManager().getContext().CharTy);
128 /// Given a pointer/reference argument, return the value it refers to.
129 std::optional<SVal> getPointeeOf(ProgramStateRef State, SVal Arg) {
130 if (auto LValue = Arg.getAs<Loc>())
131 return getPointeeOf(State, *LValue);
132 return std::nullopt;
135 /// Given a pointer, return the SVal of its pointee or if it is tainted,
136 /// otherwise return the pointer's SVal if tainted.
137 /// Also considers stdin as a taint source.
138 std::optional<SVal> getTaintedPointeeOrPointer(ProgramStateRef State,
139 SVal Arg) {
140 if (auto Pointee = getPointeeOf(State, Arg))
141 if (isTainted(State, *Pointee)) // FIXME: isTainted(...) ? Pointee : None;
142 return Pointee;
144 if (isTainted(State, Arg))
145 return Arg;
146 return std::nullopt;
149 bool isTaintedOrPointsToTainted(ProgramStateRef State, SVal ExprSVal) {
150 return getTaintedPointeeOrPointer(State, ExprSVal).has_value();
153 /// Helps in printing taint diagnostics.
154 /// Marks the incoming parameters of a function interesting (to be printed)
155 /// when the return value, or the outgoing parameters are tainted.
156 const NoteTag *taintOriginTrackerTag(CheckerContext &C,
157 std::vector<SymbolRef> TaintedSymbols,
158 std::vector<ArgIdxTy> TaintedArgs,
159 const LocationContext *CallLocation) {
160 return C.getNoteTag([TaintedSymbols = std::move(TaintedSymbols),
161 TaintedArgs = std::move(TaintedArgs), CallLocation](
162 PathSensitiveBugReport &BR) -> std::string {
163 SmallString<256> Msg;
164 // We give diagnostics only for taint related reports
165 if (!BR.isInteresting(CallLocation) ||
166 BR.getBugType().getCategory() != categories::TaintedData) {
167 return "";
169 if (TaintedSymbols.empty())
170 return "Taint originated here";
172 for (auto Sym : TaintedSymbols) {
173 BR.markInteresting(Sym);
175 LLVM_DEBUG(for (auto Arg
176 : TaintedArgs) {
177 llvm::dbgs() << "Taint Propagated from argument " << Arg + 1 << "\n";
179 return "";
183 /// Helps in printing taint diagnostics.
184 /// Marks the function interesting (to be printed)
185 /// when the return value, or the outgoing parameters are tainted.
186 const NoteTag *taintPropagationExplainerTag(
187 CheckerContext &C, std::vector<SymbolRef> TaintedSymbols,
188 std::vector<ArgIdxTy> TaintedArgs, const LocationContext *CallLocation) {
189 assert(TaintedSymbols.size() == TaintedArgs.size());
190 return C.getNoteTag([TaintedSymbols = std::move(TaintedSymbols),
191 TaintedArgs = std::move(TaintedArgs), CallLocation](
192 PathSensitiveBugReport &BR) -> std::string {
193 SmallString<256> Msg;
194 llvm::raw_svector_ostream Out(Msg);
195 // We give diagnostics only for taint related reports
196 if (TaintedSymbols.empty() ||
197 BR.getBugType().getCategory() != categories::TaintedData) {
198 return "";
200 int nofTaintedArgs = 0;
201 for (auto [Idx, Sym] : llvm::enumerate(TaintedSymbols)) {
202 if (BR.isInteresting(Sym)) {
203 BR.markInteresting(CallLocation);
204 if (TaintedArgs[Idx] != ReturnValueIndex) {
205 LLVM_DEBUG(llvm::dbgs() << "Taint Propagated to argument "
206 << TaintedArgs[Idx] + 1 << "\n");
207 if (nofTaintedArgs == 0)
208 Out << "Taint propagated to the ";
209 else
210 Out << ", ";
211 Out << TaintedArgs[Idx] + 1
212 << llvm::getOrdinalSuffix(TaintedArgs[Idx] + 1) << " argument";
213 nofTaintedArgs++;
214 } else {
215 LLVM_DEBUG(llvm::dbgs() << "Taint Propagated to return value.\n");
216 Out << "Taint propagated to the return value";
220 return std::string(Out.str());
224 /// ArgSet is used to describe arguments relevant for taint detection or
225 /// taint application. A discrete set of argument indexes and a variadic
226 /// argument list signified by a starting index are supported.
227 class ArgSet {
228 public:
229 ArgSet() = default;
230 ArgSet(ArgVecTy &&DiscreteArgs,
231 std::optional<ArgIdxTy> VariadicIndex = std::nullopt)
232 : DiscreteArgs(std::move(DiscreteArgs)),
233 VariadicIndex(std::move(VariadicIndex)) {}
235 bool contains(ArgIdxTy ArgIdx) const {
236 if (llvm::is_contained(DiscreteArgs, ArgIdx))
237 return true;
239 return VariadicIndex && ArgIdx >= *VariadicIndex;
242 bool isEmpty() const { return DiscreteArgs.empty() && !VariadicIndex; }
244 private:
245 ArgVecTy DiscreteArgs;
246 std::optional<ArgIdxTy> VariadicIndex;
249 /// A struct used to specify taint propagation rules for a function.
251 /// If any of the possible taint source arguments is tainted, all of the
252 /// destination arguments should also be tainted. If ReturnValueIndex is added
253 /// to the dst list, the return value will be tainted.
254 class GenericTaintRule {
255 /// Arguments which are taints sinks and should be checked, and a report
256 /// should be emitted if taint reaches these.
257 ArgSet SinkArgs;
258 /// Arguments which should be sanitized on function return.
259 ArgSet FilterArgs;
260 /// Arguments which can participate in taint propagation. If any of the
261 /// arguments in PropSrcArgs is tainted, all arguments in PropDstArgs should
262 /// be tainted.
263 ArgSet PropSrcArgs;
264 ArgSet PropDstArgs;
266 /// A message that explains why the call is sensitive to taint.
267 std::optional<StringRef> SinkMsg;
269 GenericTaintRule() = default;
271 GenericTaintRule(ArgSet &&Sink, ArgSet &&Filter, ArgSet &&Src, ArgSet &&Dst,
272 std::optional<StringRef> SinkMsg = std::nullopt)
273 : SinkArgs(std::move(Sink)), FilterArgs(std::move(Filter)),
274 PropSrcArgs(std::move(Src)), PropDstArgs(std::move(Dst)),
275 SinkMsg(SinkMsg) {}
277 public:
278 /// Make a rule that reports a warning if taint reaches any of \p FilterArgs
279 /// arguments.
280 static GenericTaintRule Sink(ArgSet &&SinkArgs,
281 std::optional<StringRef> Msg = std::nullopt) {
282 return {std::move(SinkArgs), {}, {}, {}, Msg};
285 /// Make a rule that sanitizes all FilterArgs arguments.
286 static GenericTaintRule Filter(ArgSet &&FilterArgs) {
287 return {{}, std::move(FilterArgs), {}, {}};
290 /// Make a rule that unconditionally taints all Args.
291 /// If Func is provided, it must also return true for taint to propagate.
292 static GenericTaintRule Source(ArgSet &&SourceArgs) {
293 return {{}, {}, {}, std::move(SourceArgs)};
296 /// Make a rule that taints all PropDstArgs if any of PropSrcArgs is tainted.
297 static GenericTaintRule Prop(ArgSet &&SrcArgs, ArgSet &&DstArgs) {
298 return {{}, {}, std::move(SrcArgs), std::move(DstArgs)};
301 /// Make a rule that taints all PropDstArgs if any of PropSrcArgs is tainted.
302 static GenericTaintRule
303 SinkProp(ArgSet &&SinkArgs, ArgSet &&SrcArgs, ArgSet &&DstArgs,
304 std::optional<StringRef> Msg = std::nullopt) {
305 return {
306 std::move(SinkArgs), {}, std::move(SrcArgs), std::move(DstArgs), Msg};
309 /// Process a function which could either be a taint source, a taint sink, a
310 /// taint filter or a taint propagator.
311 void process(const GenericTaintChecker &Checker, const CallEvent &Call,
312 CheckerContext &C) const;
314 /// Handles the resolution of indexes of type ArgIdxTy to Expr*-s.
315 static const Expr *GetArgExpr(ArgIdxTy ArgIdx, const CallEvent &Call) {
316 return ArgIdx == ReturnValueIndex ? Call.getOriginExpr()
317 : Call.getArgExpr(ArgIdx);
320 /// Functions for custom taintedness propagation.
321 static bool UntrustedEnv(CheckerContext &C);
324 using RuleLookupTy = CallDescriptionMap<GenericTaintRule>;
326 /// Used to parse the configuration file.
327 struct TaintConfiguration {
328 using NameScopeArgs = std::tuple<std::string, std::string, ArgVecTy>;
329 enum class VariadicType { None, Src, Dst };
331 struct Common {
332 std::string Name;
333 std::string Scope;
336 struct Sink : Common {
337 ArgVecTy SinkArgs;
340 struct Filter : Common {
341 ArgVecTy FilterArgs;
344 struct Propagation : Common {
345 ArgVecTy SrcArgs;
346 ArgVecTy DstArgs;
347 VariadicType VarType;
348 ArgIdxTy VarIndex;
351 std::vector<Propagation> Propagations;
352 std::vector<Filter> Filters;
353 std::vector<Sink> Sinks;
355 TaintConfiguration() = default;
356 TaintConfiguration(const TaintConfiguration &) = default;
357 TaintConfiguration(TaintConfiguration &&) = default;
358 TaintConfiguration &operator=(const TaintConfiguration &) = default;
359 TaintConfiguration &operator=(TaintConfiguration &&) = default;
362 struct GenericTaintRuleParser {
363 GenericTaintRuleParser(CheckerManager &Mgr) : Mgr(Mgr) {}
364 /// Container type used to gather call identification objects grouped into
365 /// pairs with their corresponding taint rules. It is temporary as it is used
366 /// to finally initialize RuleLookupTy, which is considered to be immutable.
367 using RulesContTy = std::vector<std::pair<CallDescription, GenericTaintRule>>;
368 RulesContTy parseConfiguration(const std::string &Option,
369 TaintConfiguration &&Config) const;
371 private:
372 using NamePartsTy = llvm::SmallVector<StringRef, 2>;
374 /// Validate part of the configuration, which contains a list of argument
375 /// indexes.
376 void validateArgVector(const std::string &Option, const ArgVecTy &Args) const;
378 template <typename Config> static NamePartsTy parseNameParts(const Config &C);
380 // Takes the config and creates a CallDescription for it and associates a Rule
381 // with that.
382 template <typename Config>
383 static void consumeRulesFromConfig(const Config &C, GenericTaintRule &&Rule,
384 RulesContTy &Rules);
386 void parseConfig(const std::string &Option, TaintConfiguration::Sink &&P,
387 RulesContTy &Rules) const;
388 void parseConfig(const std::string &Option, TaintConfiguration::Filter &&P,
389 RulesContTy &Rules) const;
390 void parseConfig(const std::string &Option,
391 TaintConfiguration::Propagation &&P,
392 RulesContTy &Rules) const;
394 CheckerManager &Mgr;
397 class GenericTaintChecker : public Checker<check::PreCall, check::PostCall> {
398 public:
399 void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
400 void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
402 void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
403 const char *Sep) const override;
405 /// Generate a report if the expression is tainted or points to tainted data.
406 bool generateReportIfTainted(const Expr *E, StringRef Msg,
407 CheckerContext &C) const;
409 private:
410 const BugType BT{this, "Use of Untrusted Data", categories::TaintedData};
412 bool checkUncontrolledFormatString(const CallEvent &Call,
413 CheckerContext &C) const;
415 void taintUnsafeSocketProtocol(const CallEvent &Call,
416 CheckerContext &C) const;
418 /// Default taint rules are initalized with the help of a CheckerContext to
419 /// access the names of built-in functions like memcpy.
420 void initTaintRules(CheckerContext &C) const;
422 /// CallDescription currently cannot restrict matches to the global namespace
423 /// only, which is why multiple CallDescriptionMaps are used, as we want to
424 /// disambiguate global C functions from functions inside user-defined
425 /// namespaces.
426 // TODO: Remove separation to simplify matching logic once CallDescriptions
427 // are more expressive.
429 mutable std::optional<RuleLookupTy> StaticTaintRules;
430 mutable std::optional<RuleLookupTy> DynamicTaintRules;
432 } // end of anonymous namespace
434 /// YAML serialization mapping.
435 LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfiguration::Sink)
436 LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfiguration::Filter)
437 LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfiguration::Propagation)
439 namespace llvm {
440 namespace yaml {
441 template <> struct MappingTraits<TaintConfiguration> {
442 static void mapping(IO &IO, TaintConfiguration &Config) {
443 IO.mapOptional("Propagations", Config.Propagations);
444 IO.mapOptional("Filters", Config.Filters);
445 IO.mapOptional("Sinks", Config.Sinks);
449 template <> struct MappingTraits<TaintConfiguration::Sink> {
450 static void mapping(IO &IO, TaintConfiguration::Sink &Sink) {
451 IO.mapRequired("Name", Sink.Name);
452 IO.mapOptional("Scope", Sink.Scope);
453 IO.mapRequired("Args", Sink.SinkArgs);
457 template <> struct MappingTraits<TaintConfiguration::Filter> {
458 static void mapping(IO &IO, TaintConfiguration::Filter &Filter) {
459 IO.mapRequired("Name", Filter.Name);
460 IO.mapOptional("Scope", Filter.Scope);
461 IO.mapRequired("Args", Filter.FilterArgs);
465 template <> struct MappingTraits<TaintConfiguration::Propagation> {
466 static void mapping(IO &IO, TaintConfiguration::Propagation &Propagation) {
467 IO.mapRequired("Name", Propagation.Name);
468 IO.mapOptional("Scope", Propagation.Scope);
469 IO.mapOptional("SrcArgs", Propagation.SrcArgs);
470 IO.mapOptional("DstArgs", Propagation.DstArgs);
471 IO.mapOptional("VariadicType", Propagation.VarType);
472 IO.mapOptional("VariadicIndex", Propagation.VarIndex);
476 template <> struct ScalarEnumerationTraits<TaintConfiguration::VariadicType> {
477 static void enumeration(IO &IO, TaintConfiguration::VariadicType &Value) {
478 IO.enumCase(Value, "None", TaintConfiguration::VariadicType::None);
479 IO.enumCase(Value, "Src", TaintConfiguration::VariadicType::Src);
480 IO.enumCase(Value, "Dst", TaintConfiguration::VariadicType::Dst);
483 } // namespace yaml
484 } // namespace llvm
486 /// A set which is used to pass information from call pre-visit instruction
487 /// to the call post-visit. The values are signed integers, which are either
488 /// ReturnValueIndex, or indexes of the pointer/reference argument, which
489 /// points to data, which should be tainted on return.
490 REGISTER_MAP_WITH_PROGRAMSTATE(TaintArgsOnPostVisit, const LocationContext *,
491 ImmutableSet<ArgIdxTy>)
492 REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(ArgIdxFactory, ArgIdxTy)
494 void GenericTaintRuleParser::validateArgVector(const std::string &Option,
495 const ArgVecTy &Args) const {
496 for (ArgIdxTy Arg : Args) {
497 if (Arg < ReturnValueIndex) {
498 Mgr.reportInvalidCheckerOptionValue(
499 Mgr.getChecker<GenericTaintChecker>(), Option,
500 "an argument number for propagation rules greater or equal to -1");
505 template <typename Config>
506 GenericTaintRuleParser::NamePartsTy
507 GenericTaintRuleParser::parseNameParts(const Config &C) {
508 NamePartsTy NameParts;
509 if (!C.Scope.empty()) {
510 // If the Scope argument contains multiple "::" parts, those are considered
511 // namespace identifiers.
512 StringRef{C.Scope}.split(NameParts, "::", /*MaxSplit*/ -1,
513 /*KeepEmpty*/ false);
515 NameParts.emplace_back(C.Name);
516 return NameParts;
519 template <typename Config>
520 void GenericTaintRuleParser::consumeRulesFromConfig(const Config &C,
521 GenericTaintRule &&Rule,
522 RulesContTy &Rules) {
523 NamePartsTy NameParts = parseNameParts(C);
524 Rules.emplace_back(CallDescription(NameParts), std::move(Rule));
527 void GenericTaintRuleParser::parseConfig(const std::string &Option,
528 TaintConfiguration::Sink &&S,
529 RulesContTy &Rules) const {
530 validateArgVector(Option, S.SinkArgs);
531 consumeRulesFromConfig(S, GenericTaintRule::Sink(std::move(S.SinkArgs)),
532 Rules);
535 void GenericTaintRuleParser::parseConfig(const std::string &Option,
536 TaintConfiguration::Filter &&S,
537 RulesContTy &Rules) const {
538 validateArgVector(Option, S.FilterArgs);
539 consumeRulesFromConfig(S, GenericTaintRule::Filter(std::move(S.FilterArgs)),
540 Rules);
543 void GenericTaintRuleParser::parseConfig(const std::string &Option,
544 TaintConfiguration::Propagation &&P,
545 RulesContTy &Rules) const {
546 validateArgVector(Option, P.SrcArgs);
547 validateArgVector(Option, P.DstArgs);
548 bool IsSrcVariadic = P.VarType == TaintConfiguration::VariadicType::Src;
549 bool IsDstVariadic = P.VarType == TaintConfiguration::VariadicType::Dst;
550 std::optional<ArgIdxTy> JustVarIndex = P.VarIndex;
552 ArgSet SrcDesc(std::move(P.SrcArgs),
553 IsSrcVariadic ? JustVarIndex : std::nullopt);
554 ArgSet DstDesc(std::move(P.DstArgs),
555 IsDstVariadic ? JustVarIndex : std::nullopt);
557 consumeRulesFromConfig(
558 P, GenericTaintRule::Prop(std::move(SrcDesc), std::move(DstDesc)), Rules);
561 GenericTaintRuleParser::RulesContTy
562 GenericTaintRuleParser::parseConfiguration(const std::string &Option,
563 TaintConfiguration &&Config) const {
565 RulesContTy Rules;
567 for (auto &F : Config.Filters)
568 parseConfig(Option, std::move(F), Rules);
570 for (auto &S : Config.Sinks)
571 parseConfig(Option, std::move(S), Rules);
573 for (auto &P : Config.Propagations)
574 parseConfig(Option, std::move(P), Rules);
576 return Rules;
579 void GenericTaintChecker::initTaintRules(CheckerContext &C) const {
580 // Check for exact name match for functions without builtin substitutes.
581 // Use qualified name, because these are C functions without namespace.
583 if (StaticTaintRules || DynamicTaintRules)
584 return;
586 using RulesConstructionTy =
587 std::vector<std::pair<CallDescription, GenericTaintRule>>;
588 using TR = GenericTaintRule;
590 const Builtin::Context &BI = C.getASTContext().BuiltinInfo;
592 RulesConstructionTy GlobalCRules{
593 // Sources
594 {{{"fdopen"}}, TR::Source({{ReturnValueIndex}})},
595 {{{"fopen"}}, TR::Source({{ReturnValueIndex}})},
596 {{{"freopen"}}, TR::Source({{ReturnValueIndex}})},
597 {{{"getch"}}, TR::Source({{ReturnValueIndex}})},
598 {{{"getchar"}}, TR::Source({{ReturnValueIndex}})},
599 {{{"getchar_unlocked"}}, TR::Source({{ReturnValueIndex}})},
600 {{{"gets"}}, TR::Source({{0}, ReturnValueIndex})},
601 {{{"gets_s"}}, TR::Source({{0}, ReturnValueIndex})},
602 {{{"scanf"}}, TR::Source({{}, 1})},
603 {{{"scanf_s"}}, TR::Source({{}, {1}})},
604 {{{"wgetch"}}, TR::Source({{}, ReturnValueIndex})},
605 // Sometimes the line between taint sources and propagators is blurry.
606 // _IO_getc is choosen to be a source, but could also be a propagator.
607 // This way it is simpler, as modeling it as a propagator would require
608 // to model the possible sources of _IO_FILE * values, which the _IO_getc
609 // function takes as parameters.
610 {{{"_IO_getc"}}, TR::Source({{ReturnValueIndex}})},
611 {{{"getcwd"}}, TR::Source({{0, ReturnValueIndex}})},
612 {{{"getwd"}}, TR::Source({{0, ReturnValueIndex}})},
613 {{{"readlink"}}, TR::Source({{1, ReturnValueIndex}})},
614 {{{"readlinkat"}}, TR::Source({{2, ReturnValueIndex}})},
615 {{{"get_current_dir_name"}}, TR::Source({{ReturnValueIndex}})},
616 {{{"gethostname"}}, TR::Source({{0}})},
617 {{{"getnameinfo"}}, TR::Source({{2, 4}})},
618 {{{"getseuserbyname"}}, TR::Source({{1, 2}})},
619 {{{"getgroups"}}, TR::Source({{1, ReturnValueIndex}})},
620 {{{"getlogin"}}, TR::Source({{ReturnValueIndex}})},
621 {{{"getlogin_r"}}, TR::Source({{0}})},
623 // Props
624 {{{"accept"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
625 {{{"atoi"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
626 {{{"atol"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
627 {{{"atoll"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
628 {{{"fgetc"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
629 {{{"fgetln"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
630 {{{"fgets"}}, TR::Prop({{2}}, {{0, ReturnValueIndex}})},
631 {{{"fgetws"}}, TR::Prop({{2}}, {{0, ReturnValueIndex}})},
632 {{{"fscanf"}}, TR::Prop({{0}}, {{}, 2})},
633 {{{"fscanf_s"}}, TR::Prop({{0}}, {{}, {2}})},
634 {{{"sscanf"}}, TR::Prop({{0}}, {{}, 2})},
636 {{{"getc"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
637 {{{"getc_unlocked"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
638 {{{"getdelim"}}, TR::Prop({{3}}, {{0}})},
639 {{{"getline"}}, TR::Prop({{2}}, {{0}})},
640 {{{"getw"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
641 {{{"pread"}}, TR::Prop({{0, 1, 2, 3}}, {{1, ReturnValueIndex}})},
642 {{{"read"}}, TR::Prop({{0, 2}}, {{1, ReturnValueIndex}})},
643 {{{"strchr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
644 {{{"strrchr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
645 {{{"tolower"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
646 {{{"toupper"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
647 {{{"fread"}}, TR::Prop({{3}}, {{0, ReturnValueIndex}})},
648 {{{"recv"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
649 {{{"recvfrom"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
651 {{{"ttyname"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
652 {{{"ttyname_r"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
654 {{{"basename"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
655 {{{"dirname"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
656 {{{"fnmatch"}}, TR::Prop({{1}}, {{ReturnValueIndex}})},
657 {{{"memchr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
658 {{{"memrchr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
659 {{{"rawmemchr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
661 {{{"mbtowc"}}, TR::Prop({{1}}, {{0, ReturnValueIndex}})},
662 {{{"wctomb"}}, TR::Prop({{1}}, {{0, ReturnValueIndex}})},
663 {{{"wcwidth"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
665 {{{"memcmp"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
666 {{{"memcpy"}}, TR::Prop({{1}}, {{0, ReturnValueIndex}})},
667 {{{"memmove"}}, TR::Prop({{1}}, {{0, ReturnValueIndex}})},
668 // If memmem was called with a tainted needle and the search was
669 // successful, that would mean that the value pointed by the return value
670 // has the same content as the needle. If we choose to go by the policy of
671 // content equivalence implies taintedness equivalence, that would mean
672 // haystack should be considered a propagation source argument.
673 {{{"memmem"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
675 // The comment for memmem above also applies to strstr.
676 {{{"strstr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
677 {{{"strcasestr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
679 {{{"strchrnul"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
681 {{{"index"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
682 {{{"rindex"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
684 // FIXME: In case of arrays, only the first element of the array gets
685 // tainted.
686 {{{"qsort"}}, TR::Prop({{0}}, {{0}})},
687 {{{"qsort_r"}}, TR::Prop({{0}}, {{0}})},
689 {{{"strcmp"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
690 {{{"strcasecmp"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
691 {{{"strncmp"}}, TR::Prop({{0, 1, 2}}, {{ReturnValueIndex}})},
692 {{{"strncasecmp"}}, TR::Prop({{0, 1, 2}}, {{ReturnValueIndex}})},
693 {{{"strspn"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
694 {{{"strcspn"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
695 {{{"strpbrk"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
696 {{{"strndup"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
697 {{{"strndupa"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
699 // strlen, wcslen, strnlen and alike intentionally don't propagate taint.
700 // See the details here: https://github.com/llvm/llvm-project/pull/66086
702 {{{"strtol"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
703 {{{"strtoll"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
704 {{{"strtoul"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
705 {{{"strtoull"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
707 {{{"isalnum"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
708 {{{"isalpha"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
709 {{{"isascii"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
710 {{{"isblank"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
711 {{{"iscntrl"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
712 {{{"isdigit"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
713 {{{"isgraph"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
714 {{{"islower"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
715 {{{"isprint"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
716 {{{"ispunct"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
717 {{{"isspace"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
718 {{{"isupper"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
719 {{{"isxdigit"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
721 {{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrncat)}},
722 TR::Prop({{1, 2}}, {{0, ReturnValueIndex}})},
723 {{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrlcpy)}},
724 TR::Prop({{1, 2}}, {{0}})},
725 {{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrlcat)}},
726 TR::Prop({{1, 2}}, {{0}})},
727 {{CDF_MaybeBuiltin, {{"snprintf"}}},
728 TR::Prop({{1}, 3}, {{0, ReturnValueIndex}})},
729 {{CDF_MaybeBuiltin, {{"sprintf"}}},
730 TR::Prop({{1}, 2}, {{0, ReturnValueIndex}})},
731 {{CDF_MaybeBuiltin, {{"strcpy"}}},
732 TR::Prop({{1}}, {{0, ReturnValueIndex}})},
733 {{CDF_MaybeBuiltin, {{"stpcpy"}}},
734 TR::Prop({{1}}, {{0, ReturnValueIndex}})},
735 {{CDF_MaybeBuiltin, {{"strcat"}}},
736 TR::Prop({{1}}, {{0, ReturnValueIndex}})},
737 {{CDF_MaybeBuiltin, {{"wcsncat"}}},
738 TR::Prop({{1}}, {{0, ReturnValueIndex}})},
739 {{CDF_MaybeBuiltin, {{"strdup"}}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
740 {{CDF_MaybeBuiltin, {{"strdupa"}}},
741 TR::Prop({{0}}, {{ReturnValueIndex}})},
742 {{CDF_MaybeBuiltin, {{"wcsdup"}}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
744 // Sinks
745 {{{"system"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
746 {{{"popen"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
747 {{{"execl"}}, TR::Sink({{}, {0}}, MsgSanitizeSystemArgs)},
748 {{{"execle"}}, TR::Sink({{}, {0}}, MsgSanitizeSystemArgs)},
749 {{{"execlp"}}, TR::Sink({{}, {0}}, MsgSanitizeSystemArgs)},
750 {{{"execv"}}, TR::Sink({{0, 1}}, MsgSanitizeSystemArgs)},
751 {{{"execve"}}, TR::Sink({{0, 1, 2}}, MsgSanitizeSystemArgs)},
752 {{{"fexecve"}}, TR::Sink({{0, 1, 2}}, MsgSanitizeSystemArgs)},
753 {{{"execvp"}}, TR::Sink({{0, 1}}, MsgSanitizeSystemArgs)},
754 {{{"execvpe"}}, TR::Sink({{0, 1, 2}}, MsgSanitizeSystemArgs)},
755 {{{"dlopen"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
756 {{CDF_MaybeBuiltin, {{"malloc"}}}, TR::Sink({{0}}, MsgTaintedBufferSize)},
757 {{CDF_MaybeBuiltin, {{"calloc"}}}, TR::Sink({{0}}, MsgTaintedBufferSize)},
758 {{CDF_MaybeBuiltin, {{"alloca"}}}, TR::Sink({{0}}, MsgTaintedBufferSize)},
759 {{CDF_MaybeBuiltin, {{"memccpy"}}},
760 TR::Sink({{3}}, MsgTaintedBufferSize)},
761 {{CDF_MaybeBuiltin, {{"realloc"}}},
762 TR::Sink({{1}}, MsgTaintedBufferSize)},
763 {{{{"setproctitle"}}}, TR::Sink({{0}, 1}, MsgUncontrolledFormatString)},
764 {{{{"setproctitle_fast"}}},
765 TR::Sink({{0}, 1}, MsgUncontrolledFormatString)},
767 // SinkProps
768 {{CDF_MaybeBuiltin, BI.getName(Builtin::BImemcpy)},
769 TR::SinkProp({{2}}, {{1, 2}}, {{0, ReturnValueIndex}},
770 MsgTaintedBufferSize)},
771 {{CDF_MaybeBuiltin, {BI.getName(Builtin::BImemmove)}},
772 TR::SinkProp({{2}}, {{1, 2}}, {{0, ReturnValueIndex}},
773 MsgTaintedBufferSize)},
774 {{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrncpy)}},
775 TR::SinkProp({{2}}, {{1, 2}}, {{0, ReturnValueIndex}},
776 MsgTaintedBufferSize)},
777 {{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrndup)}},
778 TR::SinkProp({{1}}, {{0, 1}}, {{ReturnValueIndex}},
779 MsgTaintedBufferSize)},
780 {{CDF_MaybeBuiltin, {{"bcopy"}}},
781 TR::SinkProp({{2}}, {{0, 2}}, {{1}}, MsgTaintedBufferSize)}};
783 // `getenv` returns taint only in untrusted environments.
784 if (TR::UntrustedEnv(C)) {
785 // void setproctitle_init(int argc, char *argv[], char *envp[])
786 GlobalCRules.push_back(
787 {{{"setproctitle_init"}}, TR::Sink({{1, 2}}, MsgCustomSink)});
788 GlobalCRules.push_back({{{"getenv"}}, TR::Source({{ReturnValueIndex}})});
791 StaticTaintRules.emplace(std::make_move_iterator(GlobalCRules.begin()),
792 std::make_move_iterator(GlobalCRules.end()));
794 // User-provided taint configuration.
795 CheckerManager *Mgr = C.getAnalysisManager().getCheckerManager();
796 assert(Mgr);
797 GenericTaintRuleParser ConfigParser{*Mgr};
798 std::string Option{"Config"};
799 StringRef ConfigFile =
800 Mgr->getAnalyzerOptions().getCheckerStringOption(this, Option);
801 std::optional<TaintConfiguration> Config =
802 getConfiguration<TaintConfiguration>(*Mgr, this, Option, ConfigFile);
803 if (!Config) {
804 // We don't have external taint config, no parsing required.
805 DynamicTaintRules = RuleLookupTy{};
806 return;
809 GenericTaintRuleParser::RulesContTy Rules{
810 ConfigParser.parseConfiguration(Option, std::move(*Config))};
812 DynamicTaintRules.emplace(std::make_move_iterator(Rules.begin()),
813 std::make_move_iterator(Rules.end()));
816 void GenericTaintChecker::checkPreCall(const CallEvent &Call,
817 CheckerContext &C) const {
818 initTaintRules(C);
820 // FIXME: this should be much simpler.
821 if (const auto *Rule =
822 Call.isGlobalCFunction() ? StaticTaintRules->lookup(Call) : nullptr)
823 Rule->process(*this, Call, C);
824 else if (const auto *Rule = DynamicTaintRules->lookup(Call))
825 Rule->process(*this, Call, C);
827 // FIXME: These edge cases are to be eliminated from here eventually.
829 // Additional check that is not supported by CallDescription.
830 // TODO: Make CallDescription be able to match attributes such as printf-like
831 // arguments.
832 checkUncontrolledFormatString(Call, C);
834 // TODO: Modeling sockets should be done in a specific checker.
835 // Socket is a source, which taints the return value.
836 taintUnsafeSocketProtocol(Call, C);
839 void GenericTaintChecker::checkPostCall(const CallEvent &Call,
840 CheckerContext &C) const {
841 // Set the marked values as tainted. The return value only accessible from
842 // checkPostStmt.
843 ProgramStateRef State = C.getState();
844 const StackFrameContext *CurrentFrame = C.getStackFrame();
846 // Depending on what was tainted at pre-visit, we determined a set of
847 // arguments which should be tainted after the function returns. These are
848 // stored in the state as TaintArgsOnPostVisit set.
849 TaintArgsOnPostVisitTy TaintArgsMap = State->get<TaintArgsOnPostVisit>();
851 const ImmutableSet<ArgIdxTy> *TaintArgs = TaintArgsMap.lookup(CurrentFrame);
852 if (!TaintArgs)
853 return;
854 assert(!TaintArgs->isEmpty());
856 LLVM_DEBUG(for (ArgIdxTy I
857 : *TaintArgs) {
858 llvm::dbgs() << "PostCall<";
859 Call.dump(llvm::dbgs());
860 llvm::dbgs() << "> actually wants to taint arg index: " << I << '\n';
863 const NoteTag *InjectionTag = nullptr;
864 std::vector<SymbolRef> TaintedSymbols;
865 std::vector<ArgIdxTy> TaintedIndexes;
866 for (ArgIdxTy ArgNum : *TaintArgs) {
867 // Special handling for the tainted return value.
868 if (ArgNum == ReturnValueIndex) {
869 State = addTaint(State, Call.getReturnValue());
870 std::vector<SymbolRef> TaintedSyms =
871 getTaintedSymbols(State, Call.getReturnValue());
872 if (!TaintedSyms.empty()) {
873 TaintedSymbols.push_back(TaintedSyms[0]);
874 TaintedIndexes.push_back(ArgNum);
876 continue;
878 // The arguments are pointer arguments. The data they are pointing at is
879 // tainted after the call.
880 if (auto V = getPointeeOf(State, Call.getArgSVal(ArgNum))) {
881 State = addTaint(State, *V);
882 std::vector<SymbolRef> TaintedSyms = getTaintedSymbols(State, *V);
883 if (!TaintedSyms.empty()) {
884 TaintedSymbols.push_back(TaintedSyms[0]);
885 TaintedIndexes.push_back(ArgNum);
889 // Create a NoteTag callback, which prints to the user where the taintedness
890 // was propagated to.
891 InjectionTag = taintPropagationExplainerTag(C, TaintedSymbols, TaintedIndexes,
892 Call.getCalleeStackFrame(0));
893 // Clear up the taint info from the state.
894 State = State->remove<TaintArgsOnPostVisit>(CurrentFrame);
895 C.addTransition(State, InjectionTag);
898 void GenericTaintChecker::printState(raw_ostream &Out, ProgramStateRef State,
899 const char *NL, const char *Sep) const {
900 printTaint(State, Out, NL, Sep);
903 void GenericTaintRule::process(const GenericTaintChecker &Checker,
904 const CallEvent &Call, CheckerContext &C) const {
905 ProgramStateRef State = C.getState();
906 const ArgIdxTy CallNumArgs = fromArgumentCount(Call.getNumArgs());
908 /// Iterate every call argument, and get their corresponding Expr and SVal.
909 const auto ForEachCallArg = [&C, &Call, CallNumArgs](auto &&Fun) {
910 for (ArgIdxTy I = ReturnValueIndex; I < CallNumArgs; ++I) {
911 const Expr *E = GetArgExpr(I, Call);
912 Fun(I, E, C.getSVal(E));
916 /// Check for taint sinks.
917 ForEachCallArg([this, &Checker, &C, &State](ArgIdxTy I, const Expr *E, SVal) {
918 // Add taintedness to stdin parameters
919 if (isStdin(C.getSVal(E), C.getASTContext())) {
920 State = addTaint(State, C.getSVal(E));
922 if (SinkArgs.contains(I) && isTaintedOrPointsToTainted(State, C.getSVal(E)))
923 Checker.generateReportIfTainted(E, SinkMsg.value_or(MsgCustomSink), C);
926 /// Check for taint filters.
927 ForEachCallArg([this, &State](ArgIdxTy I, const Expr *E, SVal S) {
928 if (FilterArgs.contains(I)) {
929 State = removeTaint(State, S);
930 if (auto P = getPointeeOf(State, S))
931 State = removeTaint(State, *P);
935 /// Check for taint propagation sources.
936 /// A rule will make the destination variables tainted if PropSrcArgs
937 /// is empty (taints the destination
938 /// arguments unconditionally), or if any of its signified
939 /// args are tainted in context of the current CallEvent.
940 bool IsMatching = PropSrcArgs.isEmpty();
941 std::vector<SymbolRef> TaintedSymbols;
942 std::vector<ArgIdxTy> TaintedIndexes;
943 ForEachCallArg([this, &C, &IsMatching, &State, &TaintedSymbols,
944 &TaintedIndexes](ArgIdxTy I, const Expr *E, SVal) {
945 std::optional<SVal> TaintedSVal =
946 getTaintedPointeeOrPointer(State, C.getSVal(E));
947 IsMatching =
948 IsMatching || (PropSrcArgs.contains(I) && TaintedSVal.has_value());
950 // We track back tainted arguments except for stdin
951 if (TaintedSVal && !isStdin(*TaintedSVal, C.getASTContext())) {
952 std::vector<SymbolRef> TaintedArgSyms =
953 getTaintedSymbols(State, *TaintedSVal);
954 if (!TaintedArgSyms.empty()) {
955 llvm::append_range(TaintedSymbols, TaintedArgSyms);
956 TaintedIndexes.push_back(I);
961 // Early return for propagation rules which dont match.
962 // Matching propagations, Sinks and Filters will pass this point.
963 if (!IsMatching)
964 return;
966 const auto WouldEscape = [](SVal V, QualType Ty) -> bool {
967 if (!isa<Loc>(V))
968 return false;
970 const bool IsNonConstRef = Ty->isReferenceType() && !Ty.isConstQualified();
971 const bool IsNonConstPtr =
972 Ty->isPointerType() && !Ty->getPointeeType().isConstQualified();
974 return IsNonConstRef || IsNonConstPtr;
977 /// Propagate taint where it is necessary.
978 auto &F = State->getStateManager().get_context<ArgIdxFactory>();
979 ImmutableSet<ArgIdxTy> Result = F.getEmptySet();
980 ForEachCallArg(
981 [&](ArgIdxTy I, const Expr *E, SVal V) {
982 if (PropDstArgs.contains(I)) {
983 LLVM_DEBUG(llvm::dbgs() << "PreCall<"; Call.dump(llvm::dbgs());
984 llvm::dbgs()
985 << "> prepares tainting arg index: " << I << '\n';);
986 Result = F.add(Result, I);
989 // Taint property gets lost if the variable is passed as a
990 // non-const pointer or reference to a function which is
991 // not inlined. For matching rules we want to preserve the taintedness.
992 // TODO: We should traverse all reachable memory regions via the
993 // escaping parameter. Instead of doing that we simply mark only the
994 // referred memory region as tainted.
995 if (WouldEscape(V, E->getType()) && getTaintedPointeeOrPointer(State, V)) {
996 LLVM_DEBUG(if (!Result.contains(I)) {
997 llvm::dbgs() << "PreCall<";
998 Call.dump(llvm::dbgs());
999 llvm::dbgs() << "> prepares tainting arg index: " << I << '\n';
1001 Result = F.add(Result, I);
1005 if (!Result.isEmpty())
1006 State = State->set<TaintArgsOnPostVisit>(C.getStackFrame(), Result);
1007 const NoteTag *InjectionTag = taintOriginTrackerTag(
1008 C, std::move(TaintedSymbols), std::move(TaintedIndexes),
1009 Call.getCalleeStackFrame(0));
1010 C.addTransition(State, InjectionTag);
1013 bool GenericTaintRule::UntrustedEnv(CheckerContext &C) {
1014 return !C.getAnalysisManager()
1015 .getAnalyzerOptions()
1016 .ShouldAssumeControlledEnvironment;
1019 bool GenericTaintChecker::generateReportIfTainted(const Expr *E, StringRef Msg,
1020 CheckerContext &C) const {
1021 assert(E);
1022 std::optional<SVal> TaintedSVal =
1023 getTaintedPointeeOrPointer(C.getState(), C.getSVal(E));
1025 if (!TaintedSVal)
1026 return false;
1028 // Generate diagnostic.
1029 if (ExplodedNode *N = C.generateNonFatalErrorNode()) {
1030 auto report = std::make_unique<PathSensitiveBugReport>(BT, Msg, N);
1031 report->addRange(E->getSourceRange());
1032 for (auto TaintedSym : getTaintedSymbols(C.getState(), *TaintedSVal)) {
1033 report->markInteresting(TaintedSym);
1036 C.emitReport(std::move(report));
1037 return true;
1039 return false;
1042 /// TODO: remove checking for printf format attributes and socket whitelisting
1043 /// from GenericTaintChecker, and that means the following functions:
1044 /// getPrintfFormatArgumentNum,
1045 /// GenericTaintChecker::checkUncontrolledFormatString,
1046 /// GenericTaintChecker::taintUnsafeSocketProtocol
1048 static bool getPrintfFormatArgumentNum(const CallEvent &Call,
1049 const CheckerContext &C,
1050 ArgIdxTy &ArgNum) {
1051 // Find if the function contains a format string argument.
1052 // Handles: fprintf, printf, sprintf, snprintf, vfprintf, vprintf, vsprintf,
1053 // vsnprintf, syslog, custom annotated functions.
1054 const Decl *CallDecl = Call.getDecl();
1055 if (!CallDecl)
1056 return false;
1057 const FunctionDecl *FDecl = CallDecl->getAsFunction();
1058 if (!FDecl)
1059 return false;
1061 const ArgIdxTy CallNumArgs = fromArgumentCount(Call.getNumArgs());
1063 for (const auto *Format : FDecl->specific_attrs<FormatAttr>()) {
1064 ArgNum = Format->getFormatIdx() - 1;
1065 if ((Format->getType()->getName() == "printf") && CallNumArgs > ArgNum)
1066 return true;
1069 return false;
1072 bool GenericTaintChecker::checkUncontrolledFormatString(
1073 const CallEvent &Call, CheckerContext &C) const {
1074 // Check if the function contains a format string argument.
1075 ArgIdxTy ArgNum = 0;
1076 if (!getPrintfFormatArgumentNum(Call, C, ArgNum))
1077 return false;
1079 // If either the format string content or the pointer itself are tainted,
1080 // warn.
1081 return generateReportIfTainted(Call.getArgExpr(ArgNum),
1082 MsgUncontrolledFormatString, C);
1085 void GenericTaintChecker::taintUnsafeSocketProtocol(const CallEvent &Call,
1086 CheckerContext &C) const {
1087 if (Call.getNumArgs() < 1)
1088 return;
1089 const IdentifierInfo *ID = Call.getCalleeIdentifier();
1090 if (!ID)
1091 return;
1092 if (!ID->getName().equals("socket"))
1093 return;
1095 SourceLocation DomLoc = Call.getArgExpr(0)->getExprLoc();
1096 StringRef DomName = C.getMacroNameOrSpelling(DomLoc);
1097 // Allow internal communication protocols.
1098 bool SafeProtocol = DomName.equals("AF_SYSTEM") ||
1099 DomName.equals("AF_LOCAL") || DomName.equals("AF_UNIX") ||
1100 DomName.equals("AF_RESERVED_36");
1101 if (SafeProtocol)
1102 return;
1104 ProgramStateRef State = C.getState();
1105 auto &F = State->getStateManager().get_context<ArgIdxFactory>();
1106 ImmutableSet<ArgIdxTy> Result = F.add(F.getEmptySet(), ReturnValueIndex);
1107 State = State->set<TaintArgsOnPostVisit>(C.getStackFrame(), Result);
1108 C.addTransition(State);
1111 /// Checker registration
1112 void ento::registerGenericTaintChecker(CheckerManager &Mgr) {
1113 Mgr.registerChecker<GenericTaintChecker>();
1116 bool ento::shouldRegisterGenericTaintChecker(const CheckerManager &mgr) {
1117 return true;