[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / compiler-rt / lib / scudo / standalone / combined.h
blobb1700e5ecef7f5ba5015b33cb6884008b58ae895
1 //===-- combined.h ----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef SCUDO_COMBINED_H_
10 #define SCUDO_COMBINED_H_
12 #include "chunk.h"
13 #include "common.h"
14 #include "flags.h"
15 #include "flags_parser.h"
16 #include "local_cache.h"
17 #include "memtag.h"
18 #include "options.h"
19 #include "quarantine.h"
20 #include "report.h"
21 #include "secondary.h"
22 #include "stack_depot.h"
23 #include "string_utils.h"
24 #include "tsd.h"
26 #include "scudo/interface.h"
28 #ifdef GWP_ASAN_HOOKS
29 #include "gwp_asan/guarded_pool_allocator.h"
30 #include "gwp_asan/optional/backtrace.h"
31 #include "gwp_asan/optional/segv_handler.h"
32 #endif // GWP_ASAN_HOOKS
34 extern "C" inline void EmptyCallback() {}
36 #ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
37 // This function is not part of the NDK so it does not appear in any public
38 // header files. We only declare/use it when targeting the platform.
39 extern "C" size_t android_unsafe_frame_pointer_chase(scudo::uptr *buf,
40 size_t num_entries);
41 #endif
43 namespace scudo {
45 template <class Config, void (*PostInitCallback)(void) = EmptyCallback>
46 class Allocator {
47 public:
48 using PrimaryT = typename Config::template PrimaryT<Config>;
49 using SecondaryT = typename Config::template SecondaryT<Config>;
50 using CacheT = typename PrimaryT::CacheT;
51 typedef Allocator<Config, PostInitCallback> ThisT;
52 typedef typename Config::template TSDRegistryT<ThisT> TSDRegistryT;
54 void callPostInitCallback() {
55 pthread_once(&PostInitNonce, PostInitCallback);
58 struct QuarantineCallback {
59 explicit QuarantineCallback(ThisT &Instance, CacheT &LocalCache)
60 : Allocator(Instance), Cache(LocalCache) {}
62 // Chunk recycling function, returns a quarantined chunk to the backend,
63 // first making sure it hasn't been tampered with.
64 void recycle(void *Ptr) {
65 Chunk::UnpackedHeader Header;
66 Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
67 if (UNLIKELY(Header.State != Chunk::State::Quarantined))
68 reportInvalidChunkState(AllocatorAction::Recycling, Ptr);
70 Header.State = Chunk::State::Available;
71 Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);
73 if (allocatorSupportsMemoryTagging<Config>())
74 Ptr = untagPointer(Ptr);
75 void *BlockBegin = Allocator::getBlockBegin(Ptr, &Header);
76 Cache.deallocate(Header.ClassId, BlockBegin);
79 // We take a shortcut when allocating a quarantine batch by working with the
80 // appropriate class ID instead of using Size. The compiler should optimize
81 // the class ID computation and work with the associated cache directly.
82 void *allocate(UNUSED uptr Size) {
83 const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
84 sizeof(QuarantineBatch) + Chunk::getHeaderSize());
85 void *Ptr = Cache.allocate(QuarantineClassId);
86 // Quarantine batch allocation failure is fatal.
87 if (UNLIKELY(!Ptr))
88 reportOutOfMemory(SizeClassMap::getSizeByClassId(QuarantineClassId));
90 Ptr = reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) +
91 Chunk::getHeaderSize());
92 Chunk::UnpackedHeader Header = {};
93 Header.ClassId = QuarantineClassId & Chunk::ClassIdMask;
94 Header.SizeOrUnusedBytes = sizeof(QuarantineBatch);
95 Header.State = Chunk::State::Allocated;
96 Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);
98 // Reset tag to 0 as this chunk may have been previously used for a tagged
99 // user allocation.
100 if (UNLIKELY(useMemoryTagging<Config>(Allocator.Primary.Options.load())))
101 storeTags(reinterpret_cast<uptr>(Ptr),
102 reinterpret_cast<uptr>(Ptr) + sizeof(QuarantineBatch));
104 return Ptr;
107 void deallocate(void *Ptr) {
108 const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
109 sizeof(QuarantineBatch) + Chunk::getHeaderSize());
110 Chunk::UnpackedHeader Header;
111 Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
113 if (UNLIKELY(Header.State != Chunk::State::Allocated))
114 reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
115 DCHECK_EQ(Header.ClassId, QuarantineClassId);
116 DCHECK_EQ(Header.Offset, 0);
117 DCHECK_EQ(Header.SizeOrUnusedBytes, sizeof(QuarantineBatch));
119 Header.State = Chunk::State::Available;
120 Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);
121 Cache.deallocate(QuarantineClassId,
122 reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) -
123 Chunk::getHeaderSize()));
126 private:
127 ThisT &Allocator;
128 CacheT &Cache;
131 typedef GlobalQuarantine<QuarantineCallback, void> QuarantineT;
132 typedef typename QuarantineT::CacheT QuarantineCacheT;
134 void init() {
135 performSanityChecks();
137 // Check if hardware CRC32 is supported in the binary and by the platform,
138 // if so, opt for the CRC32 hardware version of the checksum.
139 if (&computeHardwareCRC32 && hasHardwareCRC32())
140 HashAlgorithm = Checksum::HardwareCRC32;
142 if (UNLIKELY(!getRandom(&Cookie, sizeof(Cookie))))
143 Cookie = static_cast<u32>(getMonotonicTime() ^
144 (reinterpret_cast<uptr>(this) >> 4));
146 initFlags();
147 reportUnrecognizedFlags();
149 // Store some flags locally.
150 if (getFlags()->may_return_null)
151 Primary.Options.set(OptionBit::MayReturnNull);
152 if (getFlags()->zero_contents)
153 Primary.Options.setFillContentsMode(ZeroFill);
154 else if (getFlags()->pattern_fill_contents)
155 Primary.Options.setFillContentsMode(PatternOrZeroFill);
156 if (getFlags()->dealloc_type_mismatch)
157 Primary.Options.set(OptionBit::DeallocTypeMismatch);
158 if (getFlags()->delete_size_mismatch)
159 Primary.Options.set(OptionBit::DeleteSizeMismatch);
160 if (allocatorSupportsMemoryTagging<Config>() &&
161 systemSupportsMemoryTagging())
162 Primary.Options.set(OptionBit::UseMemoryTagging);
164 QuarantineMaxChunkSize =
165 static_cast<u32>(getFlags()->quarantine_max_chunk_size);
167 Stats.init();
168 const s32 ReleaseToOsIntervalMs = getFlags()->release_to_os_interval_ms;
169 Primary.init(ReleaseToOsIntervalMs);
170 Secondary.init(&Stats, ReleaseToOsIntervalMs);
171 Quarantine.init(
172 static_cast<uptr>(getFlags()->quarantine_size_kb << 10),
173 static_cast<uptr>(getFlags()->thread_local_quarantine_size_kb << 10));
175 mapAndInitializeRingBuffer();
178 // Initialize the embedded GWP-ASan instance. Requires the main allocator to
179 // be functional, best called from PostInitCallback.
180 void initGwpAsan() {
181 #ifdef GWP_ASAN_HOOKS
182 gwp_asan::options::Options Opt;
183 Opt.Enabled = getFlags()->GWP_ASAN_Enabled;
184 Opt.MaxSimultaneousAllocations =
185 getFlags()->GWP_ASAN_MaxSimultaneousAllocations;
186 Opt.SampleRate = getFlags()->GWP_ASAN_SampleRate;
187 Opt.InstallSignalHandlers = getFlags()->GWP_ASAN_InstallSignalHandlers;
188 Opt.Recoverable = getFlags()->GWP_ASAN_Recoverable;
189 // Embedded GWP-ASan is locked through the Scudo atfork handler (via
190 // Allocator::disable calling GWPASan.disable). Disable GWP-ASan's atfork
191 // handler.
192 Opt.InstallForkHandlers = false;
193 Opt.Backtrace = gwp_asan::backtrace::getBacktraceFunction();
194 GuardedAlloc.init(Opt);
196 if (Opt.InstallSignalHandlers)
197 gwp_asan::segv_handler::installSignalHandlers(
198 &GuardedAlloc, Printf,
199 gwp_asan::backtrace::getPrintBacktraceFunction(),
200 gwp_asan::backtrace::getSegvBacktraceFunction(),
201 Opt.Recoverable);
203 GuardedAllocSlotSize =
204 GuardedAlloc.getAllocatorState()->maximumAllocationSize();
205 Stats.add(StatFree, static_cast<uptr>(Opt.MaxSimultaneousAllocations) *
206 GuardedAllocSlotSize);
207 #endif // GWP_ASAN_HOOKS
210 #ifdef GWP_ASAN_HOOKS
211 const gwp_asan::AllocationMetadata *getGwpAsanAllocationMetadata() {
212 return GuardedAlloc.getMetadataRegion();
215 const gwp_asan::AllocatorState *getGwpAsanAllocatorState() {
216 return GuardedAlloc.getAllocatorState();
218 #endif // GWP_ASAN_HOOKS
220 ALWAYS_INLINE void initThreadMaybe(bool MinimalInit = false) {
221 TSDRegistry.initThreadMaybe(this, MinimalInit);
224 void unmapTestOnly() {
225 unmapRingBuffer();
226 TSDRegistry.unmapTestOnly(this);
227 Primary.unmapTestOnly();
228 Secondary.unmapTestOnly();
229 #ifdef GWP_ASAN_HOOKS
230 if (getFlags()->GWP_ASAN_InstallSignalHandlers)
231 gwp_asan::segv_handler::uninstallSignalHandlers();
232 GuardedAlloc.uninitTestOnly();
233 #endif // GWP_ASAN_HOOKS
236 TSDRegistryT *getTSDRegistry() { return &TSDRegistry; }
237 QuarantineT *getQuarantine() { return &Quarantine; }
239 // The Cache must be provided zero-initialized.
240 void initCache(CacheT *Cache) { Cache->init(&Stats, &Primary); }
242 // Release the resources used by a TSD, which involves:
243 // - draining the local quarantine cache to the global quarantine;
244 // - releasing the cached pointers back to the Primary;
245 // - unlinking the local stats from the global ones (destroying the cache does
246 // the last two items).
247 void commitBack(TSD<ThisT> *TSD) {
248 TSD->assertLocked(/*BypassCheck=*/true);
249 Quarantine.drain(&TSD->getQuarantineCache(),
250 QuarantineCallback(*this, TSD->getCache()));
251 TSD->getCache().destroy(&Stats);
254 void drainCache(TSD<ThisT> *TSD) {
255 TSD->assertLocked(/*BypassCheck=*/true);
256 Quarantine.drainAndRecycle(&TSD->getQuarantineCache(),
257 QuarantineCallback(*this, TSD->getCache()));
258 TSD->getCache().drain();
260 void drainCaches() { TSDRegistry.drainCaches(this); }
262 ALWAYS_INLINE void *getHeaderTaggedPointer(void *Ptr) {
263 if (!allocatorSupportsMemoryTagging<Config>())
264 return Ptr;
265 auto UntaggedPtr = untagPointer(Ptr);
266 if (UntaggedPtr != Ptr)
267 return UntaggedPtr;
268 // Secondary, or pointer allocated while memory tagging is unsupported or
269 // disabled. The tag mismatch is okay in the latter case because tags will
270 // not be checked.
271 return addHeaderTag(Ptr);
274 ALWAYS_INLINE uptr addHeaderTag(uptr Ptr) {
275 if (!allocatorSupportsMemoryTagging<Config>())
276 return Ptr;
277 return addFixedTag(Ptr, 2);
280 ALWAYS_INLINE void *addHeaderTag(void *Ptr) {
281 return reinterpret_cast<void *>(addHeaderTag(reinterpret_cast<uptr>(Ptr)));
284 NOINLINE u32 collectStackTrace() {
285 #ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
286 // Discard collectStackTrace() frame and allocator function frame.
287 constexpr uptr DiscardFrames = 2;
288 uptr Stack[MaxTraceSize + DiscardFrames];
289 uptr Size =
290 android_unsafe_frame_pointer_chase(Stack, MaxTraceSize + DiscardFrames);
291 Size = Min<uptr>(Size, MaxTraceSize + DiscardFrames);
292 return Depot.insert(Stack + Min<uptr>(DiscardFrames, Size), Stack + Size);
293 #else
294 return 0;
295 #endif
298 uptr computeOddEvenMaskForPointerMaybe(const Options &Options, uptr Ptr,
299 uptr ClassId) {
300 if (!Options.get(OptionBit::UseOddEvenTags))
301 return 0;
303 // If a chunk's tag is odd, we want the tags of the surrounding blocks to be
304 // even, and vice versa. Blocks are laid out Size bytes apart, and adding
305 // Size to Ptr will flip the least significant set bit of Size in Ptr, so
306 // that bit will have the pattern 010101... for consecutive blocks, which we
307 // can use to determine which tag mask to use.
308 return 0x5555U << ((Ptr >> SizeClassMap::getSizeLSBByClassId(ClassId)) & 1);
311 NOINLINE void *allocate(uptr Size, Chunk::Origin Origin,
312 uptr Alignment = MinAlignment,
313 bool ZeroContents = false) NO_THREAD_SAFETY_ANALYSIS {
314 initThreadMaybe();
316 const Options Options = Primary.Options.load();
317 if (UNLIKELY(Alignment > MaxAlignment)) {
318 if (Options.get(OptionBit::MayReturnNull))
319 return nullptr;
320 reportAlignmentTooBig(Alignment, MaxAlignment);
322 if (Alignment < MinAlignment)
323 Alignment = MinAlignment;
325 #ifdef GWP_ASAN_HOOKS
326 if (UNLIKELY(GuardedAlloc.shouldSample())) {
327 if (void *Ptr = GuardedAlloc.allocate(Size, Alignment)) {
328 Stats.lock();
329 Stats.add(StatAllocated, GuardedAllocSlotSize);
330 Stats.sub(StatFree, GuardedAllocSlotSize);
331 Stats.unlock();
332 return Ptr;
335 #endif // GWP_ASAN_HOOKS
337 const FillContentsMode FillContents = ZeroContents ? ZeroFill
338 : TSDRegistry.getDisableMemInit()
339 ? NoFill
340 : Options.getFillContentsMode();
342 // If the requested size happens to be 0 (more common than you might think),
343 // allocate MinAlignment bytes on top of the header. Then add the extra
344 // bytes required to fulfill the alignment requirements: we allocate enough
345 // to be sure that there will be an address in the block that will satisfy
346 // the alignment.
347 const uptr NeededSize =
348 roundUp(Size, MinAlignment) +
349 ((Alignment > MinAlignment) ? Alignment : Chunk::getHeaderSize());
351 // Takes care of extravagantly large sizes as well as integer overflows.
352 static_assert(MaxAllowedMallocSize < UINTPTR_MAX - MaxAlignment, "");
353 if (UNLIKELY(Size >= MaxAllowedMallocSize)) {
354 if (Options.get(OptionBit::MayReturnNull))
355 return nullptr;
356 reportAllocationSizeTooBig(Size, NeededSize, MaxAllowedMallocSize);
358 DCHECK_LE(Size, NeededSize);
360 void *Block = nullptr;
361 uptr ClassId = 0;
362 uptr SecondaryBlockEnd = 0;
363 if (LIKELY(PrimaryT::canAllocate(NeededSize))) {
364 ClassId = SizeClassMap::getClassIdBySize(NeededSize);
365 DCHECK_NE(ClassId, 0U);
366 bool UnlockRequired;
367 auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
368 TSD->assertLocked(/*BypassCheck=*/!UnlockRequired);
369 Block = TSD->getCache().allocate(ClassId);
370 // If the allocation failed, retry in each successively larger class until
371 // it fits. If it fails to fit in the largest class, fallback to the
372 // Secondary.
373 if (UNLIKELY(!Block)) {
374 while (ClassId < SizeClassMap::LargestClassId && !Block)
375 Block = TSD->getCache().allocate(++ClassId);
376 if (!Block)
377 ClassId = 0;
379 if (UnlockRequired)
380 TSD->unlock();
382 if (UNLIKELY(ClassId == 0)) {
383 Block = Secondary.allocate(Options, Size, Alignment, &SecondaryBlockEnd,
384 FillContents);
387 if (UNLIKELY(!Block)) {
388 if (Options.get(OptionBit::MayReturnNull))
389 return nullptr;
390 printStats();
391 reportOutOfMemory(NeededSize);
394 const uptr BlockUptr = reinterpret_cast<uptr>(Block);
395 const uptr UnalignedUserPtr = BlockUptr + Chunk::getHeaderSize();
396 const uptr UserPtr = roundUp(UnalignedUserPtr, Alignment);
398 void *Ptr = reinterpret_cast<void *>(UserPtr);
399 void *TaggedPtr = Ptr;
400 if (LIKELY(ClassId)) {
401 // We only need to zero or tag the contents for Primary backed
402 // allocations. We only set tags for primary allocations in order to avoid
403 // faulting potentially large numbers of pages for large secondary
404 // allocations. We assume that guard pages are enough to protect these
405 // allocations.
407 // FIXME: When the kernel provides a way to set the background tag of a
408 // mapping, we should be able to tag secondary allocations as well.
410 // When memory tagging is enabled, zeroing the contents is done as part of
411 // setting the tag.
412 if (UNLIKELY(useMemoryTagging<Config>(Options))) {
413 uptr PrevUserPtr;
414 Chunk::UnpackedHeader Header;
415 const uptr BlockSize = PrimaryT::getSizeByClassId(ClassId);
416 const uptr BlockEnd = BlockUptr + BlockSize;
417 // If possible, try to reuse the UAF tag that was set by deallocate().
418 // For simplicity, only reuse tags if we have the same start address as
419 // the previous allocation. This handles the majority of cases since
420 // most allocations will not be more aligned than the minimum alignment.
422 // We need to handle situations involving reclaimed chunks, and retag
423 // the reclaimed portions if necessary. In the case where the chunk is
424 // fully reclaimed, the chunk's header will be zero, which will trigger
425 // the code path for new mappings and invalid chunks that prepares the
426 // chunk from scratch. There are three possibilities for partial
427 // reclaiming:
429 // (1) Header was reclaimed, data was partially reclaimed.
430 // (2) Header was not reclaimed, all data was reclaimed (e.g. because
431 // data started on a page boundary).
432 // (3) Header was not reclaimed, data was partially reclaimed.
434 // Case (1) will be handled in the same way as for full reclaiming,
435 // since the header will be zero.
437 // We can detect case (2) by loading the tag from the start
438 // of the chunk. If it is zero, it means that either all data was
439 // reclaimed (since we never use zero as the chunk tag), or that the
440 // previous allocation was of size zero. Either way, we need to prepare
441 // a new chunk from scratch.
443 // We can detect case (3) by moving to the next page (if covered by the
444 // chunk) and loading the tag of its first granule. If it is zero, it
445 // means that all following pages may need to be retagged. On the other
446 // hand, if it is nonzero, we can assume that all following pages are
447 // still tagged, according to the logic that if any of the pages
448 // following the next page were reclaimed, the next page would have been
449 // reclaimed as well.
450 uptr TaggedUserPtr;
451 if (getChunkFromBlock(BlockUptr, &PrevUserPtr, &Header) &&
452 PrevUserPtr == UserPtr &&
453 (TaggedUserPtr = loadTag(UserPtr)) != UserPtr) {
454 uptr PrevEnd = TaggedUserPtr + Header.SizeOrUnusedBytes;
455 const uptr NextPage = roundUp(TaggedUserPtr, getPageSizeCached());
456 if (NextPage < PrevEnd && loadTag(NextPage) != NextPage)
457 PrevEnd = NextPage;
458 TaggedPtr = reinterpret_cast<void *>(TaggedUserPtr);
459 resizeTaggedChunk(PrevEnd, TaggedUserPtr + Size, Size, BlockEnd);
460 if (UNLIKELY(FillContents != NoFill && !Header.OriginOrWasZeroed)) {
461 // If an allocation needs to be zeroed (i.e. calloc) we can normally
462 // avoid zeroing the memory now since we can rely on memory having
463 // been zeroed on free, as this is normally done while setting the
464 // UAF tag. But if tagging was disabled per-thread when the memory
465 // was freed, it would not have been retagged and thus zeroed, and
466 // therefore it needs to be zeroed now.
467 memset(TaggedPtr, 0,
468 Min(Size, roundUp(PrevEnd - TaggedUserPtr,
469 archMemoryTagGranuleSize())));
470 } else if (Size) {
471 // Clear any stack metadata that may have previously been stored in
472 // the chunk data.
473 memset(TaggedPtr, 0, archMemoryTagGranuleSize());
475 } else {
476 const uptr OddEvenMask =
477 computeOddEvenMaskForPointerMaybe(Options, BlockUptr, ClassId);
478 TaggedPtr = prepareTaggedChunk(Ptr, Size, OddEvenMask, BlockEnd);
480 storePrimaryAllocationStackMaybe(Options, Ptr);
481 } else {
482 Block = addHeaderTag(Block);
483 Ptr = addHeaderTag(Ptr);
484 if (UNLIKELY(FillContents != NoFill)) {
485 // This condition is not necessarily unlikely, but since memset is
486 // costly, we might as well mark it as such.
487 memset(Block, FillContents == ZeroFill ? 0 : PatternFillByte,
488 PrimaryT::getSizeByClassId(ClassId));
491 } else {
492 Block = addHeaderTag(Block);
493 Ptr = addHeaderTag(Ptr);
494 if (UNLIKELY(useMemoryTagging<Config>(Options))) {
495 storeTags(reinterpret_cast<uptr>(Block), reinterpret_cast<uptr>(Ptr));
496 storeSecondaryAllocationStackMaybe(Options, Ptr, Size);
500 Chunk::UnpackedHeader Header = {};
501 if (UNLIKELY(UnalignedUserPtr != UserPtr)) {
502 const uptr Offset = UserPtr - UnalignedUserPtr;
503 DCHECK_GE(Offset, 2 * sizeof(u32));
504 // The BlockMarker has no security purpose, but is specifically meant for
505 // the chunk iteration function that can be used in debugging situations.
506 // It is the only situation where we have to locate the start of a chunk
507 // based on its block address.
508 reinterpret_cast<u32 *>(Block)[0] = BlockMarker;
509 reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset);
510 Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask;
512 Header.ClassId = ClassId & Chunk::ClassIdMask;
513 Header.State = Chunk::State::Allocated;
514 Header.OriginOrWasZeroed = Origin & Chunk::OriginMask;
515 Header.SizeOrUnusedBytes =
516 (ClassId ? Size : SecondaryBlockEnd - (UserPtr + Size)) &
517 Chunk::SizeOrUnusedBytesMask;
518 Chunk::storeHeader(Cookie, Ptr, &Header);
520 return TaggedPtr;
523 NOINLINE void deallocate(void *Ptr, Chunk::Origin Origin, uptr DeleteSize = 0,
524 UNUSED uptr Alignment = MinAlignment) {
525 // For a deallocation, we only ensure minimal initialization, meaning thread
526 // local data will be left uninitialized for now (when using ELF TLS). The
527 // fallback cache will be used instead. This is a workaround for a situation
528 // where the only heap operation performed in a thread would be a free past
529 // the TLS destructors, ending up in initialized thread specific data never
530 // being destroyed properly. Any other heap operation will do a full init.
531 initThreadMaybe(/*MinimalInit=*/true);
533 if (UNLIKELY(!Ptr))
534 return;
536 #ifdef GWP_ASAN_HOOKS
537 if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) {
538 GuardedAlloc.deallocate(Ptr);
539 Stats.lock();
540 Stats.add(StatFree, GuardedAllocSlotSize);
541 Stats.sub(StatAllocated, GuardedAllocSlotSize);
542 Stats.unlock();
543 return;
545 #endif // GWP_ASAN_HOOKS
547 if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment)))
548 reportMisalignedPointer(AllocatorAction::Deallocating, Ptr);
550 void *TaggedPtr = Ptr;
551 Ptr = getHeaderTaggedPointer(Ptr);
553 Chunk::UnpackedHeader Header;
554 Chunk::loadHeader(Cookie, Ptr, &Header);
556 if (UNLIKELY(Header.State != Chunk::State::Allocated))
557 reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
559 const Options Options = Primary.Options.load();
560 if (Options.get(OptionBit::DeallocTypeMismatch)) {
561 if (UNLIKELY(Header.OriginOrWasZeroed != Origin)) {
562 // With the exception of memalign'd chunks, that can be still be free'd.
563 if (Header.OriginOrWasZeroed != Chunk::Origin::Memalign ||
564 Origin != Chunk::Origin::Malloc)
565 reportDeallocTypeMismatch(AllocatorAction::Deallocating, Ptr,
566 Header.OriginOrWasZeroed, Origin);
570 const uptr Size = getSize(Ptr, &Header);
571 if (DeleteSize && Options.get(OptionBit::DeleteSizeMismatch)) {
572 if (UNLIKELY(DeleteSize != Size))
573 reportDeleteSizeMismatch(Ptr, DeleteSize, Size);
576 quarantineOrDeallocateChunk(Options, TaggedPtr, &Header, Size);
579 void *reallocate(void *OldPtr, uptr NewSize, uptr Alignment = MinAlignment) {
580 initThreadMaybe();
582 const Options Options = Primary.Options.load();
583 if (UNLIKELY(NewSize >= MaxAllowedMallocSize)) {
584 if (Options.get(OptionBit::MayReturnNull))
585 return nullptr;
586 reportAllocationSizeTooBig(NewSize, 0, MaxAllowedMallocSize);
589 // The following cases are handled by the C wrappers.
590 DCHECK_NE(OldPtr, nullptr);
591 DCHECK_NE(NewSize, 0);
593 #ifdef GWP_ASAN_HOOKS
594 if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) {
595 uptr OldSize = GuardedAlloc.getSize(OldPtr);
596 void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
597 if (NewPtr)
598 memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize);
599 GuardedAlloc.deallocate(OldPtr);
600 Stats.lock();
601 Stats.add(StatFree, GuardedAllocSlotSize);
602 Stats.sub(StatAllocated, GuardedAllocSlotSize);
603 Stats.unlock();
604 return NewPtr;
606 #endif // GWP_ASAN_HOOKS
608 void *OldTaggedPtr = OldPtr;
609 OldPtr = getHeaderTaggedPointer(OldPtr);
611 if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(OldPtr), MinAlignment)))
612 reportMisalignedPointer(AllocatorAction::Reallocating, OldPtr);
614 Chunk::UnpackedHeader Header;
615 Chunk::loadHeader(Cookie, OldPtr, &Header);
617 if (UNLIKELY(Header.State != Chunk::State::Allocated))
618 reportInvalidChunkState(AllocatorAction::Reallocating, OldPtr);
620 // Pointer has to be allocated with a malloc-type function. Some
621 // applications think that it is OK to realloc a memalign'ed pointer, which
622 // will trigger this check. It really isn't.
623 if (Options.get(OptionBit::DeallocTypeMismatch)) {
624 if (UNLIKELY(Header.OriginOrWasZeroed != Chunk::Origin::Malloc))
625 reportDeallocTypeMismatch(AllocatorAction::Reallocating, OldPtr,
626 Header.OriginOrWasZeroed,
627 Chunk::Origin::Malloc);
630 void *BlockBegin = getBlockBegin(OldTaggedPtr, &Header);
631 uptr BlockEnd;
632 uptr OldSize;
633 const uptr ClassId = Header.ClassId;
634 if (LIKELY(ClassId)) {
635 BlockEnd = reinterpret_cast<uptr>(BlockBegin) +
636 SizeClassMap::getSizeByClassId(ClassId);
637 OldSize = Header.SizeOrUnusedBytes;
638 } else {
639 BlockEnd = SecondaryT::getBlockEnd(BlockBegin);
640 OldSize = BlockEnd - (reinterpret_cast<uptr>(OldTaggedPtr) +
641 Header.SizeOrUnusedBytes);
643 // If the new chunk still fits in the previously allocated block (with a
644 // reasonable delta), we just keep the old block, and update the chunk
645 // header to reflect the size change.
646 if (reinterpret_cast<uptr>(OldTaggedPtr) + NewSize <= BlockEnd) {
647 if (NewSize > OldSize || (OldSize - NewSize) < getPageSizeCached()) {
648 Header.SizeOrUnusedBytes =
649 (ClassId ? NewSize
650 : BlockEnd -
651 (reinterpret_cast<uptr>(OldTaggedPtr) + NewSize)) &
652 Chunk::SizeOrUnusedBytesMask;
653 Chunk::storeHeader(Cookie, OldPtr, &Header);
654 if (UNLIKELY(useMemoryTagging<Config>(Options))) {
655 if (ClassId) {
656 resizeTaggedChunk(reinterpret_cast<uptr>(OldTaggedPtr) + OldSize,
657 reinterpret_cast<uptr>(OldTaggedPtr) + NewSize,
658 NewSize, untagPointer(BlockEnd));
659 storePrimaryAllocationStackMaybe(Options, OldPtr);
660 } else {
661 storeSecondaryAllocationStackMaybe(Options, OldPtr, NewSize);
664 return OldTaggedPtr;
668 // Otherwise we allocate a new one, and deallocate the old one. Some
669 // allocators will allocate an even larger chunk (by a fixed factor) to
670 // allow for potential further in-place realloc. The gains of such a trick
671 // are currently unclear.
672 void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
673 if (LIKELY(NewPtr)) {
674 memcpy(NewPtr, OldTaggedPtr, Min(NewSize, OldSize));
675 quarantineOrDeallocateChunk(Options, OldTaggedPtr, &Header, OldSize);
677 return NewPtr;
680 // TODO(kostyak): disable() is currently best-effort. There are some small
681 // windows of time when an allocation could still succeed after
682 // this function finishes. We will revisit that later.
683 void disable() NO_THREAD_SAFETY_ANALYSIS {
684 initThreadMaybe();
685 #ifdef GWP_ASAN_HOOKS
686 GuardedAlloc.disable();
687 #endif
688 TSDRegistry.disable();
689 Stats.disable();
690 Quarantine.disable();
691 Primary.disable();
692 Secondary.disable();
695 void enable() NO_THREAD_SAFETY_ANALYSIS {
696 initThreadMaybe();
697 Secondary.enable();
698 Primary.enable();
699 Quarantine.enable();
700 Stats.enable();
701 TSDRegistry.enable();
702 #ifdef GWP_ASAN_HOOKS
703 GuardedAlloc.enable();
704 #endif
707 // The function returns the amount of bytes required to store the statistics,
708 // which might be larger than the amount of bytes provided. Note that the
709 // statistics buffer is not necessarily constant between calls to this
710 // function. This can be called with a null buffer or zero size for buffer
711 // sizing purposes.
712 uptr getStats(char *Buffer, uptr Size) {
713 ScopedString Str;
714 const uptr Length = getStats(&Str) + 1;
715 if (Length < Size)
716 Size = Length;
717 if (Buffer && Size) {
718 memcpy(Buffer, Str.data(), Size);
719 Buffer[Size - 1] = '\0';
721 return Length;
724 void printStats() {
725 ScopedString Str;
726 getStats(&Str);
727 Str.output();
730 void printFragmentationInfo() {
731 ScopedString Str;
732 Primary.getFragmentationInfo(&Str);
733 // Secondary allocator dumps the fragmentation data in getStats().
734 Str.output();
737 void releaseToOS(ReleaseToOS ReleaseType) {
738 initThreadMaybe();
739 if (ReleaseType == ReleaseToOS::ForceAll)
740 drainCaches();
741 Primary.releaseToOS(ReleaseType);
742 Secondary.releaseToOS();
745 // Iterate over all chunks and call a callback for all busy chunks located
746 // within the provided memory range. Said callback must not use this allocator
747 // or a deadlock can ensue. This fits Android's malloc_iterate() needs.
748 void iterateOverChunks(uptr Base, uptr Size, iterate_callback Callback,
749 void *Arg) {
750 initThreadMaybe();
751 if (archSupportsMemoryTagging())
752 Base = untagPointer(Base);
753 const uptr From = Base;
754 const uptr To = Base + Size;
755 bool MayHaveTaggedPrimary = allocatorSupportsMemoryTagging<Config>() &&
756 systemSupportsMemoryTagging();
757 auto Lambda = [this, From, To, MayHaveTaggedPrimary, Callback,
758 Arg](uptr Block) {
759 if (Block < From || Block >= To)
760 return;
761 uptr Chunk;
762 Chunk::UnpackedHeader Header;
763 if (MayHaveTaggedPrimary) {
764 // A chunk header can either have a zero tag (tagged primary) or the
765 // header tag (secondary, or untagged primary). We don't know which so
766 // try both.
767 ScopedDisableMemoryTagChecks x;
768 if (!getChunkFromBlock(Block, &Chunk, &Header) &&
769 !getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header))
770 return;
771 } else {
772 if (!getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header))
773 return;
775 if (Header.State == Chunk::State::Allocated) {
776 uptr TaggedChunk = Chunk;
777 if (allocatorSupportsMemoryTagging<Config>())
778 TaggedChunk = untagPointer(TaggedChunk);
779 if (useMemoryTagging<Config>(Primary.Options.load()))
780 TaggedChunk = loadTag(Chunk);
781 Callback(TaggedChunk, getSize(reinterpret_cast<void *>(Chunk), &Header),
782 Arg);
785 Primary.iterateOverBlocks(Lambda);
786 Secondary.iterateOverBlocks(Lambda);
787 #ifdef GWP_ASAN_HOOKS
788 GuardedAlloc.iterate(reinterpret_cast<void *>(Base), Size, Callback, Arg);
789 #endif
792 bool canReturnNull() {
793 initThreadMaybe();
794 return Primary.Options.load().get(OptionBit::MayReturnNull);
797 bool setOption(Option O, sptr Value) {
798 initThreadMaybe();
799 if (O == Option::MemtagTuning) {
800 // Enabling odd/even tags involves a tradeoff between use-after-free
801 // detection and buffer overflow detection. Odd/even tags make it more
802 // likely for buffer overflows to be detected by increasing the size of
803 // the guaranteed "red zone" around the allocation, but on the other hand
804 // use-after-free is less likely to be detected because the tag space for
805 // any particular chunk is cut in half. Therefore we use this tuning
806 // setting to control whether odd/even tags are enabled.
807 if (Value == M_MEMTAG_TUNING_BUFFER_OVERFLOW)
808 Primary.Options.set(OptionBit::UseOddEvenTags);
809 else if (Value == M_MEMTAG_TUNING_UAF)
810 Primary.Options.clear(OptionBit::UseOddEvenTags);
811 return true;
812 } else {
813 // We leave it to the various sub-components to decide whether or not they
814 // want to handle the option, but we do not want to short-circuit
815 // execution if one of the setOption was to return false.
816 const bool PrimaryResult = Primary.setOption(O, Value);
817 const bool SecondaryResult = Secondary.setOption(O, Value);
818 const bool RegistryResult = TSDRegistry.setOption(O, Value);
819 return PrimaryResult && SecondaryResult && RegistryResult;
821 return false;
824 // Return the usable size for a given chunk. Technically we lie, as we just
825 // report the actual size of a chunk. This is done to counteract code actively
826 // writing past the end of a chunk (like sqlite3) when the usable size allows
827 // for it, which then forces realloc to copy the usable size of a chunk as
828 // opposed to its actual size.
829 uptr getUsableSize(const void *Ptr) {
830 initThreadMaybe();
831 if (UNLIKELY(!Ptr))
832 return 0;
834 #ifdef GWP_ASAN_HOOKS
835 if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr)))
836 return GuardedAlloc.getSize(Ptr);
837 #endif // GWP_ASAN_HOOKS
839 Ptr = getHeaderTaggedPointer(const_cast<void *>(Ptr));
840 Chunk::UnpackedHeader Header;
841 Chunk::loadHeader(Cookie, Ptr, &Header);
842 // Getting the usable size of a chunk only makes sense if it's allocated.
843 if (UNLIKELY(Header.State != Chunk::State::Allocated))
844 reportInvalidChunkState(AllocatorAction::Sizing, const_cast<void *>(Ptr));
845 return getSize(Ptr, &Header);
848 void getStats(StatCounters S) {
849 initThreadMaybe();
850 Stats.get(S);
853 // Returns true if the pointer provided was allocated by the current
854 // allocator instance, which is compliant with tcmalloc's ownership concept.
855 // A corrupted chunk will not be reported as owned, which is WAI.
856 bool isOwned(const void *Ptr) {
857 initThreadMaybe();
858 #ifdef GWP_ASAN_HOOKS
859 if (GuardedAlloc.pointerIsMine(Ptr))
860 return true;
861 #endif // GWP_ASAN_HOOKS
862 if (!Ptr || !isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment))
863 return false;
864 Ptr = getHeaderTaggedPointer(const_cast<void *>(Ptr));
865 Chunk::UnpackedHeader Header;
866 return Chunk::isValid(Cookie, Ptr, &Header) &&
867 Header.State == Chunk::State::Allocated;
870 bool useMemoryTaggingTestOnly() const {
871 return useMemoryTagging<Config>(Primary.Options.load());
873 void disableMemoryTagging() {
874 // If we haven't been initialized yet, we need to initialize now in order to
875 // prevent a future call to initThreadMaybe() from enabling memory tagging
876 // based on feature detection. But don't call initThreadMaybe() because it
877 // may end up calling the allocator (via pthread_atfork, via the post-init
878 // callback), which may cause mappings to be created with memory tagging
879 // enabled.
880 TSDRegistry.initOnceMaybe(this);
881 if (allocatorSupportsMemoryTagging<Config>()) {
882 Secondary.disableMemoryTagging();
883 Primary.Options.clear(OptionBit::UseMemoryTagging);
887 void setTrackAllocationStacks(bool Track) {
888 initThreadMaybe();
889 if (getFlags()->allocation_ring_buffer_size == 0) {
890 DCHECK(!Primary.Options.load().get(OptionBit::TrackAllocationStacks));
891 return;
893 if (Track)
894 Primary.Options.set(OptionBit::TrackAllocationStacks);
895 else
896 Primary.Options.clear(OptionBit::TrackAllocationStacks);
899 void setFillContents(FillContentsMode FillContents) {
900 initThreadMaybe();
901 Primary.Options.setFillContentsMode(FillContents);
904 void setAddLargeAllocationSlack(bool AddSlack) {
905 initThreadMaybe();
906 if (AddSlack)
907 Primary.Options.set(OptionBit::AddLargeAllocationSlack);
908 else
909 Primary.Options.clear(OptionBit::AddLargeAllocationSlack);
912 const char *getStackDepotAddress() const {
913 return reinterpret_cast<const char *>(&Depot);
916 const char *getRegionInfoArrayAddress() const {
917 return Primary.getRegionInfoArrayAddress();
920 static uptr getRegionInfoArraySize() {
921 return PrimaryT::getRegionInfoArraySize();
924 const char *getRingBufferAddress() {
925 initThreadMaybe();
926 return RawRingBuffer;
929 uptr getRingBufferSize() {
930 initThreadMaybe();
931 auto *RingBuffer = getRingBuffer();
932 return RingBuffer ? ringBufferSizeInBytes(RingBuffer->Size) : 0;
935 static bool setRingBufferSizeForBuffer(char *Buffer, size_t Size) {
936 // Need at least one entry.
937 if (Size < sizeof(AllocationRingBuffer) +
938 sizeof(typename AllocationRingBuffer::Entry)) {
939 return false;
941 AllocationRingBuffer *RingBuffer =
942 reinterpret_cast<AllocationRingBuffer *>(Buffer);
943 RingBuffer->Size = (Size - sizeof(AllocationRingBuffer)) /
944 sizeof(typename AllocationRingBuffer::Entry);
945 return true;
948 static const uptr MaxTraceSize = 64;
950 static void collectTraceMaybe(const StackDepot *Depot,
951 uintptr_t (&Trace)[MaxTraceSize], u32 Hash) {
952 uptr RingPos, Size;
953 if (!Depot->find(Hash, &RingPos, &Size))
954 return;
955 for (unsigned I = 0; I != Size && I != MaxTraceSize; ++I)
956 Trace[I] = static_cast<uintptr_t>((*Depot)[RingPos + I]);
959 static void getErrorInfo(struct scudo_error_info *ErrorInfo,
960 uintptr_t FaultAddr, const char *DepotPtr,
961 const char *RegionInfoPtr, const char *RingBufferPtr,
962 const char *Memory, const char *MemoryTags,
963 uintptr_t MemoryAddr, size_t MemorySize) {
964 *ErrorInfo = {};
965 if (!allocatorSupportsMemoryTagging<Config>() ||
966 MemoryAddr + MemorySize < MemoryAddr)
967 return;
969 auto *Depot = reinterpret_cast<const StackDepot *>(DepotPtr);
970 size_t NextErrorReport = 0;
972 // Check for OOB in the current block and the two surrounding blocks. Beyond
973 // that, UAF is more likely.
974 if (extractTag(FaultAddr) != 0)
975 getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
976 RegionInfoPtr, Memory, MemoryTags, MemoryAddr,
977 MemorySize, 0, 2);
979 // Check the ring buffer. For primary allocations this will only find UAF;
980 // for secondary allocations we can find either UAF or OOB.
981 getRingBufferErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
982 RingBufferPtr);
984 // Check for OOB in the 28 blocks surrounding the 3 we checked earlier.
985 // Beyond that we are likely to hit false positives.
986 if (extractTag(FaultAddr) != 0)
987 getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
988 RegionInfoPtr, Memory, MemoryTags, MemoryAddr,
989 MemorySize, 2, 16);
992 private:
993 typedef typename PrimaryT::SizeClassMap SizeClassMap;
995 static const uptr MinAlignmentLog = SCUDO_MIN_ALIGNMENT_LOG;
996 static const uptr MaxAlignmentLog = 24U; // 16 MB seems reasonable.
997 static const uptr MinAlignment = 1UL << MinAlignmentLog;
998 static const uptr MaxAlignment = 1UL << MaxAlignmentLog;
999 static const uptr MaxAllowedMallocSize =
1000 FIRST_32_SECOND_64(1UL << 31, 1ULL << 40);
1002 static_assert(MinAlignment >= sizeof(Chunk::PackedHeader),
1003 "Minimal alignment must at least cover a chunk header.");
1004 static_assert(!allocatorSupportsMemoryTagging<Config>() ||
1005 MinAlignment >= archMemoryTagGranuleSize(),
1006 "");
1008 static const u32 BlockMarker = 0x44554353U;
1010 // These are indexes into an "array" of 32-bit values that store information
1011 // inline with a chunk that is relevant to diagnosing memory tag faults, where
1012 // 0 corresponds to the address of the user memory. This means that only
1013 // negative indexes may be used. The smallest index that may be used is -2,
1014 // which corresponds to 8 bytes before the user memory, because the chunk
1015 // header size is 8 bytes and in allocators that support memory tagging the
1016 // minimum alignment is at least the tag granule size (16 on aarch64).
1017 static const sptr MemTagAllocationTraceIndex = -2;
1018 static const sptr MemTagAllocationTidIndex = -1;
1020 u32 Cookie = 0;
1021 u32 QuarantineMaxChunkSize = 0;
1023 GlobalStats Stats;
1024 PrimaryT Primary;
1025 SecondaryT Secondary;
1026 QuarantineT Quarantine;
1027 TSDRegistryT TSDRegistry;
1028 pthread_once_t PostInitNonce = PTHREAD_ONCE_INIT;
1030 #ifdef GWP_ASAN_HOOKS
1031 gwp_asan::GuardedPoolAllocator GuardedAlloc;
1032 uptr GuardedAllocSlotSize = 0;
1033 #endif // GWP_ASAN_HOOKS
1035 StackDepot Depot;
1037 struct AllocationRingBuffer {
1038 struct Entry {
1039 atomic_uptr Ptr;
1040 atomic_uptr AllocationSize;
1041 atomic_u32 AllocationTrace;
1042 atomic_u32 AllocationTid;
1043 atomic_u32 DeallocationTrace;
1044 atomic_u32 DeallocationTid;
1047 MemMapT MemMap;
1048 atomic_uptr Pos;
1049 u32 Size;
1050 // An array of Size (at least one) elements of type Entry is immediately
1051 // following to this struct.
1053 // Pointer to memory mapped area starting with AllocationRingBuffer struct,
1054 // and immediately followed by Size elements of type Entry.
1055 char *RawRingBuffer = {};
1057 // The following might get optimized out by the compiler.
1058 NOINLINE void performSanityChecks() {
1059 // Verify that the header offset field can hold the maximum offset. In the
1060 // case of the Secondary allocator, it takes care of alignment and the
1061 // offset will always be small. In the case of the Primary, the worst case
1062 // scenario happens in the last size class, when the backend allocation
1063 // would already be aligned on the requested alignment, which would happen
1064 // to be the maximum alignment that would fit in that size class. As a
1065 // result, the maximum offset will be at most the maximum alignment for the
1066 // last size class minus the header size, in multiples of MinAlignment.
1067 Chunk::UnpackedHeader Header = {};
1068 const uptr MaxPrimaryAlignment = 1UL << getMostSignificantSetBitIndex(
1069 SizeClassMap::MaxSize - MinAlignment);
1070 const uptr MaxOffset =
1071 (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog;
1072 Header.Offset = MaxOffset & Chunk::OffsetMask;
1073 if (UNLIKELY(Header.Offset != MaxOffset))
1074 reportSanityCheckError("offset");
1076 // Verify that we can fit the maximum size or amount of unused bytes in the
1077 // header. Given that the Secondary fits the allocation to a page, the worst
1078 // case scenario happens in the Primary. It will depend on the second to
1079 // last and last class sizes, as well as the dynamic base for the Primary.
1080 // The following is an over-approximation that works for our needs.
1081 const uptr MaxSizeOrUnusedBytes = SizeClassMap::MaxSize - 1;
1082 Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
1083 if (UNLIKELY(Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes))
1084 reportSanityCheckError("size (or unused bytes)");
1086 const uptr LargestClassId = SizeClassMap::LargestClassId;
1087 Header.ClassId = LargestClassId;
1088 if (UNLIKELY(Header.ClassId != LargestClassId))
1089 reportSanityCheckError("class ID");
1092 static inline void *getBlockBegin(const void *Ptr,
1093 Chunk::UnpackedHeader *Header) {
1094 return reinterpret_cast<void *>(
1095 reinterpret_cast<uptr>(Ptr) - Chunk::getHeaderSize() -
1096 (static_cast<uptr>(Header->Offset) << MinAlignmentLog));
1099 // Return the size of a chunk as requested during its allocation.
1100 inline uptr getSize(const void *Ptr, Chunk::UnpackedHeader *Header) {
1101 const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes;
1102 if (LIKELY(Header->ClassId))
1103 return SizeOrUnusedBytes;
1104 if (allocatorSupportsMemoryTagging<Config>())
1105 Ptr = untagPointer(const_cast<void *>(Ptr));
1106 return SecondaryT::getBlockEnd(getBlockBegin(Ptr, Header)) -
1107 reinterpret_cast<uptr>(Ptr) - SizeOrUnusedBytes;
1110 void quarantineOrDeallocateChunk(const Options &Options, void *TaggedPtr,
1111 Chunk::UnpackedHeader *Header,
1112 uptr Size) NO_THREAD_SAFETY_ANALYSIS {
1113 void *Ptr = getHeaderTaggedPointer(TaggedPtr);
1114 // If the quarantine is disabled, the actual size of a chunk is 0 or larger
1115 // than the maximum allowed, we return a chunk directly to the backend.
1116 // This purposefully underflows for Size == 0.
1117 const bool BypassQuarantine = !Quarantine.getCacheSize() ||
1118 ((Size - 1) >= QuarantineMaxChunkSize) ||
1119 !Header->ClassId;
1120 if (BypassQuarantine)
1121 Header->State = Chunk::State::Available;
1122 else
1123 Header->State = Chunk::State::Quarantined;
1124 Header->OriginOrWasZeroed = useMemoryTagging<Config>(Options) &&
1125 Header->ClassId &&
1126 !TSDRegistry.getDisableMemInit();
1127 Chunk::storeHeader(Cookie, Ptr, Header);
1129 if (UNLIKELY(useMemoryTagging<Config>(Options))) {
1130 u8 PrevTag = extractTag(reinterpret_cast<uptr>(TaggedPtr));
1131 storeDeallocationStackMaybe(Options, Ptr, PrevTag, Size);
1132 if (Header->ClassId) {
1133 if (!TSDRegistry.getDisableMemInit()) {
1134 uptr TaggedBegin, TaggedEnd;
1135 const uptr OddEvenMask = computeOddEvenMaskForPointerMaybe(
1136 Options, reinterpret_cast<uptr>(getBlockBegin(Ptr, Header)),
1137 Header->ClassId);
1138 // Exclude the previous tag so that immediate use after free is
1139 // detected 100% of the time.
1140 setRandomTag(Ptr, Size, OddEvenMask | (1UL << PrevTag), &TaggedBegin,
1141 &TaggedEnd);
1145 if (BypassQuarantine) {
1146 if (allocatorSupportsMemoryTagging<Config>())
1147 Ptr = untagPointer(Ptr);
1148 void *BlockBegin = getBlockBegin(Ptr, Header);
1149 const uptr ClassId = Header->ClassId;
1150 if (LIKELY(ClassId)) {
1151 bool UnlockRequired;
1152 auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
1153 TSD->assertLocked(/*BypassCheck=*/!UnlockRequired);
1154 const bool CacheDrained =
1155 TSD->getCache().deallocate(ClassId, BlockBegin);
1156 if (UnlockRequired)
1157 TSD->unlock();
1158 // When we have drained some blocks back to the Primary from TSD, that
1159 // implies that we may have the chance to release some pages as well.
1160 // Note that in order not to block other thread's accessing the TSD,
1161 // release the TSD first then try the page release.
1162 if (CacheDrained)
1163 Primary.tryReleaseToOS(ClassId, ReleaseToOS::Normal);
1164 } else {
1165 if (UNLIKELY(useMemoryTagging<Config>(Options)))
1166 storeTags(reinterpret_cast<uptr>(BlockBegin),
1167 reinterpret_cast<uptr>(Ptr));
1168 Secondary.deallocate(Options, BlockBegin);
1170 } else {
1171 bool UnlockRequired;
1172 auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
1173 TSD->assertLocked(/*BypassCheck=*/!UnlockRequired);
1174 Quarantine.put(&TSD->getQuarantineCache(),
1175 QuarantineCallback(*this, TSD->getCache()), Ptr, Size);
1176 if (UnlockRequired)
1177 TSD->unlock();
1181 bool getChunkFromBlock(uptr Block, uptr *Chunk,
1182 Chunk::UnpackedHeader *Header) {
1183 *Chunk =
1184 Block + getChunkOffsetFromBlock(reinterpret_cast<const char *>(Block));
1185 return Chunk::isValid(Cookie, reinterpret_cast<void *>(*Chunk), Header);
1188 static uptr getChunkOffsetFromBlock(const char *Block) {
1189 u32 Offset = 0;
1190 if (reinterpret_cast<const u32 *>(Block)[0] == BlockMarker)
1191 Offset = reinterpret_cast<const u32 *>(Block)[1];
1192 return Offset + Chunk::getHeaderSize();
1195 // Set the tag of the granule past the end of the allocation to 0, to catch
1196 // linear overflows even if a previous larger allocation used the same block
1197 // and tag. Only do this if the granule past the end is in our block, because
1198 // this would otherwise lead to a SEGV if the allocation covers the entire
1199 // block and our block is at the end of a mapping. The tag of the next block's
1200 // header granule will be set to 0, so it will serve the purpose of catching
1201 // linear overflows in this case.
1203 // For allocations of size 0 we do not end up storing the address tag to the
1204 // memory tag space, which getInlineErrorInfo() normally relies on to match
1205 // address tags against chunks. To allow matching in this case we store the
1206 // address tag in the first byte of the chunk.
1207 void storeEndMarker(uptr End, uptr Size, uptr BlockEnd) {
1208 DCHECK_EQ(BlockEnd, untagPointer(BlockEnd));
1209 uptr UntaggedEnd = untagPointer(End);
1210 if (UntaggedEnd != BlockEnd) {
1211 storeTag(UntaggedEnd);
1212 if (Size == 0)
1213 *reinterpret_cast<u8 *>(UntaggedEnd) = extractTag(End);
1217 void *prepareTaggedChunk(void *Ptr, uptr Size, uptr ExcludeMask,
1218 uptr BlockEnd) {
1219 // Prepare the granule before the chunk to store the chunk header by setting
1220 // its tag to 0. Normally its tag will already be 0, but in the case where a
1221 // chunk holding a low alignment allocation is reused for a higher alignment
1222 // allocation, the chunk may already have a non-zero tag from the previous
1223 // allocation.
1224 storeTag(reinterpret_cast<uptr>(Ptr) - archMemoryTagGranuleSize());
1226 uptr TaggedBegin, TaggedEnd;
1227 setRandomTag(Ptr, Size, ExcludeMask, &TaggedBegin, &TaggedEnd);
1229 storeEndMarker(TaggedEnd, Size, BlockEnd);
1230 return reinterpret_cast<void *>(TaggedBegin);
1233 void resizeTaggedChunk(uptr OldPtr, uptr NewPtr, uptr NewSize,
1234 uptr BlockEnd) {
1235 uptr RoundOldPtr = roundUp(OldPtr, archMemoryTagGranuleSize());
1236 uptr RoundNewPtr;
1237 if (RoundOldPtr >= NewPtr) {
1238 // If the allocation is shrinking we just need to set the tag past the end
1239 // of the allocation to 0. See explanation in storeEndMarker() above.
1240 RoundNewPtr = roundUp(NewPtr, archMemoryTagGranuleSize());
1241 } else {
1242 // Set the memory tag of the region
1243 // [RoundOldPtr, roundUp(NewPtr, archMemoryTagGranuleSize()))
1244 // to the pointer tag stored in OldPtr.
1245 RoundNewPtr = storeTags(RoundOldPtr, NewPtr);
1247 storeEndMarker(RoundNewPtr, NewSize, BlockEnd);
1250 void storePrimaryAllocationStackMaybe(const Options &Options, void *Ptr) {
1251 if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1252 return;
1253 auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1254 Ptr32[MemTagAllocationTraceIndex] = collectStackTrace();
1255 Ptr32[MemTagAllocationTidIndex] = getThreadID();
1258 void storeRingBufferEntry(void *Ptr, u32 AllocationTrace, u32 AllocationTid,
1259 uptr AllocationSize, u32 DeallocationTrace,
1260 u32 DeallocationTid) {
1261 uptr Pos = atomic_fetch_add(&getRingBuffer()->Pos, 1, memory_order_relaxed);
1262 typename AllocationRingBuffer::Entry *Entry =
1263 getRingBufferEntry(RawRingBuffer, Pos % getRingBuffer()->Size);
1265 // First invalidate our entry so that we don't attempt to interpret a
1266 // partially written state in getSecondaryErrorInfo(). The fences below
1267 // ensure that the compiler does not move the stores to Ptr in between the
1268 // stores to the other fields.
1269 atomic_store_relaxed(&Entry->Ptr, 0);
1271 __atomic_signal_fence(__ATOMIC_SEQ_CST);
1272 atomic_store_relaxed(&Entry->AllocationTrace, AllocationTrace);
1273 atomic_store_relaxed(&Entry->AllocationTid, AllocationTid);
1274 atomic_store_relaxed(&Entry->AllocationSize, AllocationSize);
1275 atomic_store_relaxed(&Entry->DeallocationTrace, DeallocationTrace);
1276 atomic_store_relaxed(&Entry->DeallocationTid, DeallocationTid);
1277 __atomic_signal_fence(__ATOMIC_SEQ_CST);
1279 atomic_store_relaxed(&Entry->Ptr, reinterpret_cast<uptr>(Ptr));
1282 void storeSecondaryAllocationStackMaybe(const Options &Options, void *Ptr,
1283 uptr Size) {
1284 if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1285 return;
1287 u32 Trace = collectStackTrace();
1288 u32 Tid = getThreadID();
1290 auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1291 Ptr32[MemTagAllocationTraceIndex] = Trace;
1292 Ptr32[MemTagAllocationTidIndex] = Tid;
1294 storeRingBufferEntry(untagPointer(Ptr), Trace, Tid, Size, 0, 0);
1297 void storeDeallocationStackMaybe(const Options &Options, void *Ptr,
1298 u8 PrevTag, uptr Size) {
1299 if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1300 return;
1302 auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1303 u32 AllocationTrace = Ptr32[MemTagAllocationTraceIndex];
1304 u32 AllocationTid = Ptr32[MemTagAllocationTidIndex];
1306 u32 DeallocationTrace = collectStackTrace();
1307 u32 DeallocationTid = getThreadID();
1309 storeRingBufferEntry(addFixedTag(untagPointer(Ptr), PrevTag),
1310 AllocationTrace, AllocationTid, Size,
1311 DeallocationTrace, DeallocationTid);
1314 static const size_t NumErrorReports =
1315 sizeof(((scudo_error_info *)nullptr)->reports) /
1316 sizeof(((scudo_error_info *)nullptr)->reports[0]);
1318 static void getInlineErrorInfo(struct scudo_error_info *ErrorInfo,
1319 size_t &NextErrorReport, uintptr_t FaultAddr,
1320 const StackDepot *Depot,
1321 const char *RegionInfoPtr, const char *Memory,
1322 const char *MemoryTags, uintptr_t MemoryAddr,
1323 size_t MemorySize, size_t MinDistance,
1324 size_t MaxDistance) {
1325 uptr UntaggedFaultAddr = untagPointer(FaultAddr);
1326 u8 FaultAddrTag = extractTag(FaultAddr);
1327 BlockInfo Info =
1328 PrimaryT::findNearestBlock(RegionInfoPtr, UntaggedFaultAddr);
1330 auto GetGranule = [&](uptr Addr, const char **Data, uint8_t *Tag) -> bool {
1331 if (Addr < MemoryAddr || Addr + archMemoryTagGranuleSize() < Addr ||
1332 Addr + archMemoryTagGranuleSize() > MemoryAddr + MemorySize)
1333 return false;
1334 *Data = &Memory[Addr - MemoryAddr];
1335 *Tag = static_cast<u8>(
1336 MemoryTags[(Addr - MemoryAddr) / archMemoryTagGranuleSize()]);
1337 return true;
1340 auto ReadBlock = [&](uptr Addr, uptr *ChunkAddr,
1341 Chunk::UnpackedHeader *Header, const u32 **Data,
1342 u8 *Tag) {
1343 const char *BlockBegin;
1344 u8 BlockBeginTag;
1345 if (!GetGranule(Addr, &BlockBegin, &BlockBeginTag))
1346 return false;
1347 uptr ChunkOffset = getChunkOffsetFromBlock(BlockBegin);
1348 *ChunkAddr = Addr + ChunkOffset;
1350 const char *ChunkBegin;
1351 if (!GetGranule(*ChunkAddr, &ChunkBegin, Tag))
1352 return false;
1353 *Header = *reinterpret_cast<const Chunk::UnpackedHeader *>(
1354 ChunkBegin - Chunk::getHeaderSize());
1355 *Data = reinterpret_cast<const u32 *>(ChunkBegin);
1357 // Allocations of size 0 will have stashed the tag in the first byte of
1358 // the chunk, see storeEndMarker().
1359 if (Header->SizeOrUnusedBytes == 0)
1360 *Tag = static_cast<u8>(*ChunkBegin);
1362 return true;
1365 if (NextErrorReport == NumErrorReports)
1366 return;
1368 auto CheckOOB = [&](uptr BlockAddr) {
1369 if (BlockAddr < Info.RegionBegin || BlockAddr >= Info.RegionEnd)
1370 return false;
1372 uptr ChunkAddr;
1373 Chunk::UnpackedHeader Header;
1374 const u32 *Data;
1375 uint8_t Tag;
1376 if (!ReadBlock(BlockAddr, &ChunkAddr, &Header, &Data, &Tag) ||
1377 Header.State != Chunk::State::Allocated || Tag != FaultAddrTag)
1378 return false;
1380 auto *R = &ErrorInfo->reports[NextErrorReport++];
1381 R->error_type =
1382 UntaggedFaultAddr < ChunkAddr ? BUFFER_UNDERFLOW : BUFFER_OVERFLOW;
1383 R->allocation_address = ChunkAddr;
1384 R->allocation_size = Header.SizeOrUnusedBytes;
1385 collectTraceMaybe(Depot, R->allocation_trace,
1386 Data[MemTagAllocationTraceIndex]);
1387 R->allocation_tid = Data[MemTagAllocationTidIndex];
1388 return NextErrorReport == NumErrorReports;
1391 if (MinDistance == 0 && CheckOOB(Info.BlockBegin))
1392 return;
1394 for (size_t I = Max<size_t>(MinDistance, 1); I != MaxDistance; ++I)
1395 if (CheckOOB(Info.BlockBegin + I * Info.BlockSize) ||
1396 CheckOOB(Info.BlockBegin - I * Info.BlockSize))
1397 return;
1400 static void getRingBufferErrorInfo(struct scudo_error_info *ErrorInfo,
1401 size_t &NextErrorReport,
1402 uintptr_t FaultAddr,
1403 const StackDepot *Depot,
1404 const char *RingBufferPtr) {
1405 auto *RingBuffer =
1406 reinterpret_cast<const AllocationRingBuffer *>(RingBufferPtr);
1407 if (!RingBuffer || RingBuffer->Size == 0)
1408 return;
1409 uptr Pos = atomic_load_relaxed(&RingBuffer->Pos);
1411 for (uptr I = Pos - 1;
1412 I != Pos - 1 - RingBuffer->Size && NextErrorReport != NumErrorReports;
1413 --I) {
1414 auto *Entry = getRingBufferEntry(RingBufferPtr, I % RingBuffer->Size);
1415 uptr EntryPtr = atomic_load_relaxed(&Entry->Ptr);
1416 if (!EntryPtr)
1417 continue;
1419 uptr UntaggedEntryPtr = untagPointer(EntryPtr);
1420 uptr EntrySize = atomic_load_relaxed(&Entry->AllocationSize);
1421 u32 AllocationTrace = atomic_load_relaxed(&Entry->AllocationTrace);
1422 u32 AllocationTid = atomic_load_relaxed(&Entry->AllocationTid);
1423 u32 DeallocationTrace = atomic_load_relaxed(&Entry->DeallocationTrace);
1424 u32 DeallocationTid = atomic_load_relaxed(&Entry->DeallocationTid);
1426 if (DeallocationTid) {
1427 // For UAF we only consider in-bounds fault addresses because
1428 // out-of-bounds UAF is rare and attempting to detect it is very likely
1429 // to result in false positives.
1430 if (FaultAddr < EntryPtr || FaultAddr >= EntryPtr + EntrySize)
1431 continue;
1432 } else {
1433 // Ring buffer OOB is only possible with secondary allocations. In this
1434 // case we are guaranteed a guard region of at least a page on either
1435 // side of the allocation (guard page on the right, guard page + tagged
1436 // region on the left), so ignore any faults outside of that range.
1437 if (FaultAddr < EntryPtr - getPageSizeCached() ||
1438 FaultAddr >= EntryPtr + EntrySize + getPageSizeCached())
1439 continue;
1441 // For UAF the ring buffer will contain two entries, one for the
1442 // allocation and another for the deallocation. Don't report buffer
1443 // overflow/underflow using the allocation entry if we have already
1444 // collected a report from the deallocation entry.
1445 bool Found = false;
1446 for (uptr J = 0; J != NextErrorReport; ++J) {
1447 if (ErrorInfo->reports[J].allocation_address == UntaggedEntryPtr) {
1448 Found = true;
1449 break;
1452 if (Found)
1453 continue;
1456 auto *R = &ErrorInfo->reports[NextErrorReport++];
1457 if (DeallocationTid)
1458 R->error_type = USE_AFTER_FREE;
1459 else if (FaultAddr < EntryPtr)
1460 R->error_type = BUFFER_UNDERFLOW;
1461 else
1462 R->error_type = BUFFER_OVERFLOW;
1464 R->allocation_address = UntaggedEntryPtr;
1465 R->allocation_size = EntrySize;
1466 collectTraceMaybe(Depot, R->allocation_trace, AllocationTrace);
1467 R->allocation_tid = AllocationTid;
1468 collectTraceMaybe(Depot, R->deallocation_trace, DeallocationTrace);
1469 R->deallocation_tid = DeallocationTid;
1473 uptr getStats(ScopedString *Str) {
1474 Primary.getStats(Str);
1475 Secondary.getStats(Str);
1476 Quarantine.getStats(Str);
1477 TSDRegistry.getStats(Str);
1478 return Str->length();
1481 static typename AllocationRingBuffer::Entry *
1482 getRingBufferEntry(char *RawRingBuffer, uptr N) {
1483 return &reinterpret_cast<typename AllocationRingBuffer::Entry *>(
1484 &RawRingBuffer[sizeof(AllocationRingBuffer)])[N];
1486 static const typename AllocationRingBuffer::Entry *
1487 getRingBufferEntry(const char *RawRingBuffer, uptr N) {
1488 return &reinterpret_cast<const typename AllocationRingBuffer::Entry *>(
1489 &RawRingBuffer[sizeof(AllocationRingBuffer)])[N];
1492 void mapAndInitializeRingBuffer() {
1493 u32 AllocationRingBufferSize =
1494 static_cast<u32>(getFlags()->allocation_ring_buffer_size);
1495 if (AllocationRingBufferSize < 1)
1496 return;
1497 MemMapT MemMap;
1498 MemMap.map(
1499 /*Addr=*/0U,
1500 roundUp(ringBufferSizeInBytes(AllocationRingBufferSize),
1501 getPageSizeCached()),
1502 "scudo:ring_buffer");
1503 RawRingBuffer = reinterpret_cast<char *>(MemMap.getBase());
1504 auto *RingBuffer = reinterpret_cast<AllocationRingBuffer *>(RawRingBuffer);
1505 RingBuffer->MemMap = MemMap;
1506 RingBuffer->Size = AllocationRingBufferSize;
1507 static_assert(sizeof(AllocationRingBuffer) %
1508 alignof(typename AllocationRingBuffer::Entry) ==
1510 "invalid alignment");
1513 void unmapRingBuffer() {
1514 auto *RingBuffer = getRingBuffer();
1515 if (RingBuffer != nullptr) {
1516 MemMapT MemMap = RingBuffer->MemMap;
1517 MemMap.unmap(MemMap.getBase(), MemMap.getCapacity());
1519 RawRingBuffer = nullptr;
1522 static constexpr size_t ringBufferSizeInBytes(u32 AllocationRingBufferSize) {
1523 return sizeof(AllocationRingBuffer) +
1524 AllocationRingBufferSize *
1525 sizeof(typename AllocationRingBuffer::Entry);
1528 inline AllocationRingBuffer *getRingBuffer() {
1529 return reinterpret_cast<AllocationRingBuffer *>(RawRingBuffer);
1533 } // namespace scudo
1535 #endif // SCUDO_COMBINED_H_