1 //===-- tsan_interceptors_posix.cpp ---------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 // FIXME: move as many interceptors as possible into
12 // sanitizer_common/sanitizer_common_interceptors.inc
13 //===----------------------------------------------------------------------===//
15 #include "sanitizer_common/sanitizer_atomic.h"
16 #include "sanitizer_common/sanitizer_errno.h"
17 #include "sanitizer_common/sanitizer_libc.h"
18 #include "sanitizer_common/sanitizer_linux.h"
19 #include "sanitizer_common/sanitizer_platform_limits_netbsd.h"
20 #include "sanitizer_common/sanitizer_platform_limits_posix.h"
21 #include "sanitizer_common/sanitizer_placement_new.h"
22 #include "sanitizer_common/sanitizer_posix.h"
23 #include "sanitizer_common/sanitizer_stacktrace.h"
24 #include "sanitizer_common/sanitizer_tls_get_addr.h"
25 #include "interception/interception.h"
26 #include "tsan_interceptors.h"
27 #include "tsan_interface.h"
28 #include "tsan_platform.h"
29 #include "tsan_suppressions.h"
31 #include "tsan_mman.h"
36 using namespace __tsan
;
38 DECLARE_REAL(void *, memcpy
, void *to
, const void *from
, SIZE_T size
)
39 DECLARE_REAL(void *, memset
, void *block
, int c
, SIZE_T size
)
41 #if SANITIZER_FREEBSD || SANITIZER_APPLE
42 #define stdout __stdoutp
43 #define stderr __stderrp
47 #define dirfd(dirp) (*(int *)(dirp))
48 #define fileno_unlocked(fp) \
49 (((__sanitizer_FILE *)fp)->_file == -1 \
51 : (int)(unsigned short)(((__sanitizer_FILE *)fp)->_file))
53 #define stdout ((__sanitizer_FILE*)&__sF[1])
54 #define stderr ((__sanitizer_FILE*)&__sF[2])
56 #define nanosleep __nanosleep50
57 #define vfork __vfork14
61 const int kSigCount
= 129;
63 const int kSigCount
= 65;
68 u64 opaque
[768 / sizeof(u64
) + 1];
72 // The size is determined by looking at sizeof of real ucontext_t on linux.
73 u64 opaque
[936 / sizeof(u64
) + 1];
77 #if defined(__x86_64__) || defined(__mips__) || SANITIZER_PPC64V1 || \
79 #define PTHREAD_ABI_BASE "GLIBC_2.3.2"
80 #elif defined(__aarch64__) || SANITIZER_PPC64V2
81 #define PTHREAD_ABI_BASE "GLIBC_2.17"
82 #elif SANITIZER_LOONGARCH64
83 #define PTHREAD_ABI_BASE "GLIBC_2.36"
84 #elif SANITIZER_RISCV64
85 # define PTHREAD_ABI_BASE "GLIBC_2.27"
88 extern "C" int pthread_attr_init(void *attr
);
89 extern "C" int pthread_attr_destroy(void *attr
);
90 DECLARE_REAL(int, pthread_attr_getdetachstate
, void *, void *)
91 extern "C" int pthread_attr_setstacksize(void *attr
, uptr stacksize
);
92 extern "C" int pthread_atfork(void (*prepare
)(void), void (*parent
)(void),
94 extern "C" int pthread_key_create(unsigned *key
, void (*destructor
)(void* v
));
95 extern "C" int pthread_setspecific(unsigned key
, const void *v
);
96 DECLARE_REAL(int, pthread_mutexattr_gettype
, void *, void *)
97 DECLARE_REAL(int, fflush
, __sanitizer_FILE
*fp
)
98 DECLARE_REAL_AND_INTERCEPTOR(void *, malloc
, uptr size
)
99 DECLARE_REAL_AND_INTERCEPTOR(void, free
, void *ptr
)
100 extern "C" int pthread_equal(void *t1
, void *t2
);
101 extern "C" void *pthread_self();
102 extern "C" void _exit(int status
);
103 #if !SANITIZER_NETBSD
104 extern "C" int fileno_unlocked(void *stream
);
105 extern "C" int dirfd(void *dirp
);
108 extern __sanitizer_FILE __sF
[];
110 extern __sanitizer_FILE
*stdout
, *stderr
;
112 #if !SANITIZER_FREEBSD && !SANITIZER_APPLE && !SANITIZER_NETBSD
113 const int PTHREAD_MUTEX_RECURSIVE
= 1;
114 const int PTHREAD_MUTEX_RECURSIVE_NP
= 1;
116 const int PTHREAD_MUTEX_RECURSIVE
= 2;
117 const int PTHREAD_MUTEX_RECURSIVE_NP
= 2;
119 #if !SANITIZER_FREEBSD && !SANITIZER_APPLE && !SANITIZER_NETBSD
120 const int EPOLL_CTL_ADD
= 1;
122 const int SIGILL
= 4;
123 const int SIGTRAP
= 5;
124 const int SIGABRT
= 6;
125 const int SIGFPE
= 8;
126 const int SIGSEGV
= 11;
127 const int SIGPIPE
= 13;
128 const int SIGTERM
= 15;
129 #if defined(__mips__) || SANITIZER_FREEBSD || SANITIZER_APPLE || SANITIZER_NETBSD
130 const int SIGBUS
= 10;
131 const int SIGSYS
= 12;
133 const int SIGBUS
= 7;
134 const int SIGSYS
= 31;
136 #if SANITIZER_HAS_SIGINFO
137 const int SI_TIMER
= -2;
139 void *const MAP_FAILED
= (void*)-1;
141 const int PTHREAD_BARRIER_SERIAL_THREAD
= 1234567;
142 #elif !SANITIZER_APPLE
143 const int PTHREAD_BARRIER_SERIAL_THREAD
= -1;
145 const int MAP_FIXED
= 0x10;
147 typedef __sanitizer::u16 mode_t
;
149 // From /usr/include/unistd.h
150 # define F_ULOCK 0 /* Unlock a previously locked region. */
151 # define F_LOCK 1 /* Lock a region for exclusive use. */
152 # define F_TLOCK 2 /* Test and lock a region for exclusive use. */
153 # define F_TEST 3 /* Test a region for other processes locks. */
155 #if SANITIZER_FREEBSD || SANITIZER_APPLE || SANITIZER_NETBSD
156 const int SA_SIGINFO
= 0x40;
157 const int SIG_SETMASK
= 3;
158 #elif defined(__mips__)
159 const int SA_SIGINFO
= 8;
160 const int SIG_SETMASK
= 3;
162 const int SA_SIGINFO
= 4;
163 const int SIG_SETMASK
= 2;
169 __sanitizer_siginfo siginfo
;
173 struct ThreadSignalContext
{
175 SignalDesc pending_signals
[kSigCount
];
176 // emptyset and oldset are too big for stack.
177 __sanitizer_sigset_t emptyset
;
178 __sanitizer_sigset_t oldset
;
181 void EnterBlockingFunc(ThreadState
*thr
) {
183 // The order is important to not delay a signal infinitely if it's
184 // delivered right before we set in_blocking_func. Note: we can't call
185 // ProcessPendingSignals when in_blocking_func is set, or we can handle
186 // a signal synchronously when we are already handling a signal.
187 atomic_store(&thr
->in_blocking_func
, 1, memory_order_relaxed
);
188 if (atomic_load(&thr
->pending_signals
, memory_order_relaxed
) == 0)
190 atomic_store(&thr
->in_blocking_func
, 0, memory_order_relaxed
);
191 ProcessPendingSignals(thr
);
195 // The sole reason tsan wraps atexit callbacks is to establish synchronization
196 // between callback setup and callback execution.
203 // InterceptorContext holds all global data required for interceptors.
204 // It's explicitly constructed in InitializeInterceptors with placement new
205 // and is never destroyed. This allows usage of members with non-trivial
206 // constructors and destructors.
207 struct InterceptorContext
{
208 // The object is 64-byte aligned, because we want hot data to be located
209 // in a single cache line if possible (it's accessed in every interceptor).
210 ALIGNED(64) LibIgnore libignore
;
211 __sanitizer_sigaction sigactions
[kSigCount
];
212 #if !SANITIZER_APPLE && !SANITIZER_NETBSD
213 unsigned finalize_key
;
217 Vector
<struct AtExitCtx
*> AtExitStack
;
219 InterceptorContext() : libignore(LINKER_INITIALIZED
), atexit_mu(MutexTypeAtExit
), AtExitStack() {}
222 static ALIGNED(64) char interceptor_placeholder
[sizeof(InterceptorContext
)];
223 InterceptorContext
*interceptor_ctx() {
224 return reinterpret_cast<InterceptorContext
*>(&interceptor_placeholder
[0]);
227 LibIgnore
*libignore() {
228 return &interceptor_ctx()->libignore
;
231 void InitializeLibIgnore() {
232 const SuppressionContext
&supp
= *Suppressions();
233 const uptr n
= supp
.SuppressionCount();
234 for (uptr i
= 0; i
< n
; i
++) {
235 const Suppression
*s
= supp
.SuppressionAt(i
);
236 if (0 == internal_strcmp(s
->type
, kSuppressionLib
))
237 libignore()->AddIgnoredLibrary(s
->templ
);
239 if (flags()->ignore_noninstrumented_modules
)
240 libignore()->IgnoreNoninstrumentedModules(true);
241 libignore()->OnLibraryLoaded(0);
244 // The following two hooks can be used by for cooperative scheduling when
246 #ifdef TSAN_EXTERNAL_HOOKS
247 void OnPotentiallyBlockingRegionBegin();
248 void OnPotentiallyBlockingRegionEnd();
250 SANITIZER_WEAK_CXX_DEFAULT_IMPL
void OnPotentiallyBlockingRegionBegin() {}
251 SANITIZER_WEAK_CXX_DEFAULT_IMPL
void OnPotentiallyBlockingRegionEnd() {}
254 } // namespace __tsan
256 static ThreadSignalContext
*SigCtx(ThreadState
*thr
) {
257 // This function may be called reentrantly if it is interrupted by a signal
258 // handler. Use CAS to handle the race.
259 uptr ctx
= atomic_load(&thr
->signal_ctx
, memory_order_relaxed
);
260 if (ctx
== 0 && !thr
->is_dead
) {
262 (uptr
)MmapOrDie(sizeof(ThreadSignalContext
), "ThreadSignalContext");
263 MemoryResetRange(thr
, (uptr
)&SigCtx
, pctx
, sizeof(ThreadSignalContext
));
264 if (atomic_compare_exchange_strong(&thr
->signal_ctx
, &ctx
, pctx
,
265 memory_order_relaxed
)) {
268 UnmapOrDie((ThreadSignalContext
*)pctx
, sizeof(ThreadSignalContext
));
271 return (ThreadSignalContext
*)ctx
;
274 ScopedInterceptor::ScopedInterceptor(ThreadState
*thr
, const char *fname
,
278 if (UNLIKELY(atomic_load(&thr
->in_blocking_func
, memory_order_relaxed
))) {
279 // pthread_join is marked as blocking, but it's also known to call other
280 // intercepted functions (mmap, free). If we don't reset in_blocking_func
281 // we can get deadlocks and memory corruptions if we deliver a synchronous
282 // signal inside of an mmap/free interceptor.
283 // So reset it and restore it back in the destructor.
284 // See https://github.com/google/sanitizers/issues/1540
285 atomic_store(&thr
->in_blocking_func
, 0, memory_order_relaxed
);
286 in_blocking_func_
= true;
288 if (!thr_
->is_inited
) return;
289 if (!thr_
->ignore_interceptors
) FuncEntry(thr
, pc
);
290 DPrintf("#%d: intercept %s()\n", thr_
->tid
, fname
);
292 !thr_
->in_ignored_lib
&& (flags()->ignore_interceptors_accesses
||
293 libignore()->IsIgnored(pc
, &in_ignored_lib_
));
297 ScopedInterceptor::~ScopedInterceptor() {
298 if (!thr_
->is_inited
) return;
300 if (UNLIKELY(in_blocking_func_
))
301 EnterBlockingFunc(thr_
);
302 if (!thr_
->ignore_interceptors
) {
303 ProcessPendingSignals(thr_
);
305 CheckedMutex::CheckNoLocks();
310 void ScopedInterceptor::EnableIgnoresImpl() {
311 ThreadIgnoreBegin(thr_
, 0);
312 if (flags()->ignore_noninstrumented_modules
)
313 thr_
->suppress_reports
++;
314 if (in_ignored_lib_
) {
315 DCHECK(!thr_
->in_ignored_lib
);
316 thr_
->in_ignored_lib
= true;
321 void ScopedInterceptor::DisableIgnoresImpl() {
322 ThreadIgnoreEnd(thr_
);
323 if (flags()->ignore_noninstrumented_modules
)
324 thr_
->suppress_reports
--;
325 if (in_ignored_lib_
) {
326 DCHECK(thr_
->in_ignored_lib
);
327 thr_
->in_ignored_lib
= false;
331 #define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
332 #if SANITIZER_FREEBSD || SANITIZER_NETBSD
333 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
335 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
337 #if SANITIZER_FREEBSD
338 # define TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(func) \
339 INTERCEPT_FUNCTION(_pthread_##func)
341 # define TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(func)
344 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func) \
345 INTERCEPT_FUNCTION(__libc_##func)
346 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func) \
347 INTERCEPT_FUNCTION(__libc_thr_##func)
349 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
350 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
353 #define READ_STRING_OF_LEN(thr, pc, s, len, n) \
354 MemoryAccessRange((thr), (pc), (uptr)(s), \
355 common_flags()->strict_string_checks ? (len) + 1 : (n), false)
357 #define READ_STRING(thr, pc, s, n) \
358 READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n))
360 #define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
362 struct BlockingCall
{
363 explicit BlockingCall(ThreadState
*thr
)
365 EnterBlockingFunc(thr
);
366 // When we are in a "blocking call", we process signals asynchronously
367 // (right when they arrive). In this context we do not expect to be
368 // executing any user/runtime code. The known interceptor sequence when
369 // this is not true is: pthread_join -> munmap(stack). It's fine
370 // to ignore munmap in this case -- we handle stack shadow separately.
371 thr
->ignore_interceptors
++;
375 thr
->ignore_interceptors
--;
376 atomic_store(&thr
->in_blocking_func
, 0, memory_order_relaxed
);
382 TSAN_INTERCEPTOR(unsigned, sleep
, unsigned sec
) {
383 SCOPED_TSAN_INTERCEPTOR(sleep
, sec
);
384 unsigned res
= BLOCK_REAL(sleep
)(sec
);
389 TSAN_INTERCEPTOR(int, usleep
, long_t usec
) {
390 SCOPED_TSAN_INTERCEPTOR(usleep
, usec
);
391 int res
= BLOCK_REAL(usleep
)(usec
);
396 TSAN_INTERCEPTOR(int, nanosleep
, void *req
, void *rem
) {
397 SCOPED_TSAN_INTERCEPTOR(nanosleep
, req
, rem
);
398 int res
= BLOCK_REAL(nanosleep
)(req
, rem
);
403 TSAN_INTERCEPTOR(int, pause
, int fake
) {
404 SCOPED_TSAN_INTERCEPTOR(pause
, fake
);
405 return BLOCK_REAL(pause
)(fake
);
408 // Note: we specifically call the function in such strange way
409 // with "installed_at" because in reports it will appear between
410 // callback frames and the frame that installed the callback.
411 static void at_exit_callback_installed_at() {
414 // Ensure thread-safety.
415 Lock
l(&interceptor_ctx()->atexit_mu
);
417 // Pop AtExitCtx from the top of the stack of callback functions
418 uptr element
= interceptor_ctx()->AtExitStack
.Size() - 1;
419 ctx
= interceptor_ctx()->AtExitStack
[element
];
420 interceptor_ctx()->AtExitStack
.PopBack();
423 ThreadState
*thr
= cur_thread();
424 Acquire(thr
, ctx
->pc
, (uptr
)ctx
);
425 FuncEntry(thr
, ctx
->pc
);
426 ((void(*)())ctx
->f
)();
431 static void cxa_at_exit_callback_installed_at(void *arg
) {
432 ThreadState
*thr
= cur_thread();
433 AtExitCtx
*ctx
= (AtExitCtx
*)arg
;
434 Acquire(thr
, ctx
->pc
, (uptr
)arg
);
435 FuncEntry(thr
, ctx
->pc
);
436 ((void(*)(void *arg
))ctx
->f
)(ctx
->arg
);
441 static int setup_at_exit_wrapper(ThreadState
*thr
, uptr pc
, void(*f
)(),
442 void *arg
, void *dso
);
444 #if !SANITIZER_ANDROID
445 TSAN_INTERCEPTOR(int, atexit
, void (*f
)()) {
448 // We want to setup the atexit callback even if we are in ignored lib
450 SCOPED_INTERCEPTOR_RAW(atexit
, f
);
451 return setup_at_exit_wrapper(thr
, GET_CALLER_PC(), (void (*)())f
, 0, 0);
455 TSAN_INTERCEPTOR(int, __cxa_atexit
, void (*f
)(void *a
), void *arg
, void *dso
) {
458 SCOPED_TSAN_INTERCEPTOR(__cxa_atexit
, f
, arg
, dso
);
459 return setup_at_exit_wrapper(thr
, GET_CALLER_PC(), (void (*)())f
, arg
, dso
);
462 static int setup_at_exit_wrapper(ThreadState
*thr
, uptr pc
, void(*f
)(),
463 void *arg
, void *dso
) {
464 auto *ctx
= New
<AtExitCtx
>();
468 Release(thr
, pc
, (uptr
)ctx
);
469 // Memory allocation in __cxa_atexit will race with free during exit,
470 // because we do not see synchronization around atexit callback list.
471 ThreadIgnoreBegin(thr
, pc
);
474 // NetBSD does not preserve the 2nd argument if dso is equal to 0
475 // Store ctx in a local stack-like structure
477 // Ensure thread-safety.
478 Lock
l(&interceptor_ctx()->atexit_mu
);
479 // __cxa_atexit calls calloc. If we don't ignore interceptors, we will fail
480 // due to atexit_mu held on exit from the calloc interceptor.
481 ScopedIgnoreInterceptors ignore
;
483 res
= REAL(__cxa_atexit
)((void (*)(void *a
))at_exit_callback_installed_at
,
485 // Push AtExitCtx on the top of the stack of callback functions
487 interceptor_ctx()->AtExitStack
.PushBack(ctx
);
490 res
= REAL(__cxa_atexit
)(cxa_at_exit_callback_installed_at
, ctx
, dso
);
492 ThreadIgnoreEnd(thr
);
496 #if !SANITIZER_APPLE && !SANITIZER_NETBSD
497 static void on_exit_callback_installed_at(int status
, void *arg
) {
498 ThreadState
*thr
= cur_thread();
499 AtExitCtx
*ctx
= (AtExitCtx
*)arg
;
500 Acquire(thr
, ctx
->pc
, (uptr
)arg
);
501 FuncEntry(thr
, ctx
->pc
);
502 ((void(*)(int status
, void *arg
))ctx
->f
)(status
, ctx
->arg
);
507 TSAN_INTERCEPTOR(int, on_exit
, void(*f
)(int, void*), void *arg
) {
510 SCOPED_TSAN_INTERCEPTOR(on_exit
, f
, arg
);
511 auto *ctx
= New
<AtExitCtx
>();
512 ctx
->f
= (void(*)())f
;
514 ctx
->pc
= GET_CALLER_PC();
515 Release(thr
, pc
, (uptr
)ctx
);
516 // Memory allocation in __cxa_atexit will race with free during exit,
517 // because we do not see synchronization around atexit callback list.
518 ThreadIgnoreBegin(thr
, pc
);
519 int res
= REAL(on_exit
)(on_exit_callback_installed_at
, ctx
);
520 ThreadIgnoreEnd(thr
);
523 #define TSAN_MAYBE_INTERCEPT_ON_EXIT TSAN_INTERCEPT(on_exit)
525 #define TSAN_MAYBE_INTERCEPT_ON_EXIT
529 static void JmpBufGarbageCollect(ThreadState
*thr
, uptr sp
) {
530 for (uptr i
= 0; i
< thr
->jmp_bufs
.Size(); i
++) {
531 JmpBuf
*buf
= &thr
->jmp_bufs
[i
];
533 uptr sz
= thr
->jmp_bufs
.Size();
534 internal_memcpy(buf
, &thr
->jmp_bufs
[sz
- 1], sizeof(*buf
));
535 thr
->jmp_bufs
.PopBack();
541 static void SetJmp(ThreadState
*thr
, uptr sp
) {
542 if (!thr
->is_inited
) // called from libc guts during bootstrap
545 JmpBufGarbageCollect(thr
, sp
);
547 JmpBuf
*buf
= thr
->jmp_bufs
.PushBack();
549 buf
->shadow_stack_pos
= thr
->shadow_stack_pos
;
550 ThreadSignalContext
*sctx
= SigCtx(thr
);
551 buf
->int_signal_send
= sctx
? sctx
->int_signal_send
: 0;
552 buf
->in_blocking_func
= atomic_load(&thr
->in_blocking_func
, memory_order_relaxed
);
553 buf
->in_signal_handler
= atomic_load(&thr
->in_signal_handler
,
554 memory_order_relaxed
);
557 static void LongJmp(ThreadState
*thr
, uptr
*env
) {
558 uptr sp
= ExtractLongJmpSp(env
);
559 // Find the saved buf with matching sp.
560 for (uptr i
= 0; i
< thr
->jmp_bufs
.Size(); i
++) {
561 JmpBuf
*buf
= &thr
->jmp_bufs
[i
];
563 CHECK_GE(thr
->shadow_stack_pos
, buf
->shadow_stack_pos
);
565 while (thr
->shadow_stack_pos
> buf
->shadow_stack_pos
)
567 ThreadSignalContext
*sctx
= SigCtx(thr
);
569 sctx
->int_signal_send
= buf
->int_signal_send
;
570 atomic_store(&thr
->in_blocking_func
, buf
->in_blocking_func
,
571 memory_order_relaxed
);
572 atomic_store(&thr
->in_signal_handler
, buf
->in_signal_handler
,
573 memory_order_relaxed
);
574 JmpBufGarbageCollect(thr
, buf
->sp
- 1); // do not collect buf->sp
578 Printf("ThreadSanitizer: can't find longjmp buf\n");
582 // FIXME: put everything below into a common extern "C" block?
583 extern "C" void __tsan_setjmp(uptr sp
) { SetJmp(cur_thread_init(), sp
); }
586 TSAN_INTERCEPTOR(int, setjmp
, void *env
);
587 TSAN_INTERCEPTOR(int, _setjmp
, void *env
);
588 TSAN_INTERCEPTOR(int, sigsetjmp
, void *env
);
589 #else // SANITIZER_APPLE
592 #define setjmp_symname __setjmp14
593 #define sigsetjmp_symname __sigsetjmp14
595 #define setjmp_symname setjmp
596 #define sigsetjmp_symname sigsetjmp
599 DEFINE_REAL(int, setjmp_symname
, void *env
)
600 DEFINE_REAL(int, _setjmp
, void *env
)
601 DEFINE_REAL(int, sigsetjmp_symname
, void *env
)
602 #if !SANITIZER_NETBSD
603 DEFINE_REAL(int, __sigsetjmp
, void *env
)
606 // The real interceptor for setjmp is special, and implemented in pure asm. We
607 // just need to initialize the REAL functions so that they can be used in asm.
608 static void InitializeSetjmpInterceptors() {
609 // We can not use TSAN_INTERCEPT to get setjmp addr, because it does &setjmp and
610 // setjmp is not present in some versions of libc.
611 using __interception::InterceptFunction
;
612 InterceptFunction(SANITIZER_STRINGIFY(setjmp_symname
), (uptr
*)&REAL(setjmp_symname
), 0, 0);
613 InterceptFunction("_setjmp", (uptr
*)&REAL(_setjmp
), 0, 0);
614 InterceptFunction(SANITIZER_STRINGIFY(sigsetjmp_symname
), (uptr
*)&REAL(sigsetjmp_symname
), 0,
616 #if !SANITIZER_NETBSD
617 InterceptFunction("__sigsetjmp", (uptr
*)&REAL(__sigsetjmp
), 0, 0);
620 #endif // SANITIZER_APPLE
623 #define longjmp_symname __longjmp14
624 #define siglongjmp_symname __siglongjmp14
626 #define longjmp_symname longjmp
627 #define siglongjmp_symname siglongjmp
630 TSAN_INTERCEPTOR(void, longjmp_symname
, uptr
*env
, int val
) {
631 // Note: if we call REAL(longjmp) in the context of ScopedInterceptor,
632 // bad things will happen. We will jump over ScopedInterceptor dtor and can
633 // leave thr->in_ignored_lib set.
635 SCOPED_INTERCEPTOR_RAW(longjmp_symname
, env
, val
);
637 LongJmp(cur_thread(), env
);
638 REAL(longjmp_symname
)(env
, val
);
641 TSAN_INTERCEPTOR(void, siglongjmp_symname
, uptr
*env
, int val
) {
643 SCOPED_INTERCEPTOR_RAW(siglongjmp_symname
, env
, val
);
645 LongJmp(cur_thread(), env
);
646 REAL(siglongjmp_symname
)(env
, val
);
650 TSAN_INTERCEPTOR(void, _longjmp
, uptr
*env
, int val
) {
652 SCOPED_INTERCEPTOR_RAW(_longjmp
, env
, val
);
654 LongJmp(cur_thread(), env
);
655 REAL(_longjmp
)(env
, val
);
660 TSAN_INTERCEPTOR(void*, malloc
, uptr size
) {
662 return InternalAlloc(size
);
665 SCOPED_INTERCEPTOR_RAW(malloc
, size
);
666 p
= user_alloc(thr
, pc
, size
);
668 invoke_malloc_hook(p
, size
);
672 // In glibc<2.25, dynamic TLS blocks are allocated by __libc_memalign. Intercept
673 // __libc_memalign so that (1) we can detect races (2) free will not be called
674 // on libc internally allocated blocks.
675 TSAN_INTERCEPTOR(void*, __libc_memalign
, uptr align
, uptr sz
) {
676 SCOPED_INTERCEPTOR_RAW(__libc_memalign
, align
, sz
);
677 return user_memalign(thr
, pc
, align
, sz
);
680 TSAN_INTERCEPTOR(void*, calloc
, uptr size
, uptr n
) {
682 return InternalCalloc(size
, n
);
685 SCOPED_INTERCEPTOR_RAW(calloc
, size
, n
);
686 p
= user_calloc(thr
, pc
, size
, n
);
688 invoke_malloc_hook(p
, n
* size
);
692 TSAN_INTERCEPTOR(void*, realloc
, void *p
, uptr size
) {
694 return InternalRealloc(p
, size
);
698 SCOPED_INTERCEPTOR_RAW(realloc
, p
, size
);
699 p
= user_realloc(thr
, pc
, p
, size
);
701 invoke_malloc_hook(p
, size
);
705 TSAN_INTERCEPTOR(void*, reallocarray
, void *p
, uptr size
, uptr n
) {
707 return InternalReallocArray(p
, size
, n
);
711 SCOPED_INTERCEPTOR_RAW(reallocarray
, p
, size
, n
);
712 p
= user_reallocarray(thr
, pc
, p
, size
, n
);
714 invoke_malloc_hook(p
, size
);
718 TSAN_INTERCEPTOR(void, free
, void *p
) {
722 return InternalFree(p
);
724 SCOPED_INTERCEPTOR_RAW(free
, p
);
725 user_free(thr
, pc
, p
);
728 TSAN_INTERCEPTOR(void, cfree
, void *p
) {
732 return InternalFree(p
);
734 SCOPED_INTERCEPTOR_RAW(cfree
, p
);
735 user_free(thr
, pc
, p
);
738 TSAN_INTERCEPTOR(uptr
, malloc_usable_size
, void *p
) {
739 SCOPED_INTERCEPTOR_RAW(malloc_usable_size
, p
);
740 return user_alloc_usable_size(p
);
744 TSAN_INTERCEPTOR(char *, strcpy
, char *dst
, const char *src
) {
745 SCOPED_TSAN_INTERCEPTOR(strcpy
, dst
, src
);
746 uptr srclen
= internal_strlen(src
);
747 MemoryAccessRange(thr
, pc
, (uptr
)dst
, srclen
+ 1, true);
748 MemoryAccessRange(thr
, pc
, (uptr
)src
, srclen
+ 1, false);
749 return REAL(strcpy
)(dst
, src
);
752 TSAN_INTERCEPTOR(char*, strncpy
, char *dst
, char *src
, uptr n
) {
753 SCOPED_TSAN_INTERCEPTOR(strncpy
, dst
, src
, n
);
754 uptr srclen
= internal_strnlen(src
, n
);
755 MemoryAccessRange(thr
, pc
, (uptr
)dst
, n
, true);
756 MemoryAccessRange(thr
, pc
, (uptr
)src
, min(srclen
+ 1, n
), false);
757 return REAL(strncpy
)(dst
, src
, n
);
760 TSAN_INTERCEPTOR(char*, strdup
, const char *str
) {
761 SCOPED_TSAN_INTERCEPTOR(strdup
, str
);
762 // strdup will call malloc, so no instrumentation is required here.
763 return REAL(strdup
)(str
);
766 // Zero out addr if it points into shadow memory and was provided as a hint
767 // only, i.e., MAP_FIXED is not set.
768 static bool fix_mmap_addr(void **addr
, long_t sz
, int flags
) {
770 if (!IsAppMem((uptr
)*addr
) || !IsAppMem((uptr
)*addr
+ sz
- 1)) {
771 if (flags
& MAP_FIXED
) {
772 errno
= errno_EINVAL
;
782 template <class Mmap
>
783 static void *mmap_interceptor(ThreadState
*thr
, uptr pc
, Mmap real_mmap
,
784 void *addr
, SIZE_T sz
, int prot
, int flags
,
785 int fd
, OFF64_T off
) {
786 if (!fix_mmap_addr(&addr
, sz
, flags
)) return MAP_FAILED
;
787 void *res
= real_mmap(addr
, sz
, prot
, flags
, fd
, off
);
788 if (res
!= MAP_FAILED
) {
789 if (!IsAppMem((uptr
)res
) || !IsAppMem((uptr
)res
+ sz
- 1)) {
790 Report("ThreadSanitizer: mmap at bad address: addr=%p size=%p res=%p\n",
791 addr
, (void*)sz
, res
);
794 if (fd
> 0) FdAccess(thr
, pc
, fd
);
795 MemoryRangeImitateWriteOrResetRange(thr
, pc
, (uptr
)res
, sz
);
800 template <class Munmap
>
801 static int munmap_interceptor(ThreadState
*thr
, uptr pc
, Munmap real_munmap
,
802 void *addr
, SIZE_T sz
) {
803 UnmapShadow(thr
, (uptr
)addr
, sz
);
804 int res
= real_munmap(addr
, sz
);
809 TSAN_INTERCEPTOR(void*, memalign
, uptr align
, uptr sz
) {
810 SCOPED_INTERCEPTOR_RAW(memalign
, align
, sz
);
811 return user_memalign(thr
, pc
, align
, sz
);
813 #define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
815 #define TSAN_MAYBE_INTERCEPT_MEMALIGN
819 TSAN_INTERCEPTOR(void*, aligned_alloc
, uptr align
, uptr sz
) {
821 return InternalAlloc(sz
, nullptr, align
);
822 SCOPED_INTERCEPTOR_RAW(aligned_alloc
, align
, sz
);
823 return user_aligned_alloc(thr
, pc
, align
, sz
);
826 TSAN_INTERCEPTOR(void*, valloc
, uptr sz
) {
828 return InternalAlloc(sz
, nullptr, GetPageSizeCached());
829 SCOPED_INTERCEPTOR_RAW(valloc
, sz
);
830 return user_valloc(thr
, pc
, sz
);
835 TSAN_INTERCEPTOR(void*, pvalloc
, uptr sz
) {
836 if (in_symbolizer()) {
837 uptr PageSize
= GetPageSizeCached();
838 sz
= sz
? RoundUpTo(sz
, PageSize
) : PageSize
;
839 return InternalAlloc(sz
, nullptr, PageSize
);
841 SCOPED_INTERCEPTOR_RAW(pvalloc
, sz
);
842 return user_pvalloc(thr
, pc
, sz
);
844 #define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
846 #define TSAN_MAYBE_INTERCEPT_PVALLOC
850 TSAN_INTERCEPTOR(int, posix_memalign
, void **memptr
, uptr align
, uptr sz
) {
851 if (in_symbolizer()) {
852 void *p
= InternalAlloc(sz
, nullptr, align
);
858 SCOPED_INTERCEPTOR_RAW(posix_memalign
, memptr
, align
, sz
);
859 return user_posix_memalign(thr
, pc
, memptr
, align
, sz
);
863 // Both __cxa_guard_acquire and pthread_once 0-initialize
864 // the object initially. pthread_once does not have any
865 // other ABI requirements. __cxa_guard_acquire assumes
866 // that any non-0 value in the first byte means that
867 // initialization is completed. Contents of the remaining
868 // bytes are up to us.
869 constexpr u32 kGuardInit
= 0;
870 constexpr u32 kGuardDone
= 1;
871 constexpr u32 kGuardRunning
= 1 << 16;
872 constexpr u32 kGuardWaiter
= 1 << 17;
874 static int guard_acquire(ThreadState
*thr
, uptr pc
, atomic_uint32_t
*g
,
875 bool blocking_hooks
= true) {
877 OnPotentiallyBlockingRegionBegin();
878 auto on_exit
= at_scope_exit([blocking_hooks
] {
880 OnPotentiallyBlockingRegionEnd();
884 u32 cmp
= atomic_load(g
, memory_order_acquire
);
885 if (cmp
== kGuardInit
) {
886 if (atomic_compare_exchange_strong(g
, &cmp
, kGuardRunning
,
887 memory_order_relaxed
))
889 } else if (cmp
== kGuardDone
) {
890 if (!thr
->in_ignored_lib
)
891 Acquire(thr
, pc
, (uptr
)g
);
894 if ((cmp
& kGuardWaiter
) ||
895 atomic_compare_exchange_strong(g
, &cmp
, cmp
| kGuardWaiter
,
896 memory_order_relaxed
))
897 FutexWait(g
, cmp
| kGuardWaiter
);
902 static void guard_release(ThreadState
*thr
, uptr pc
, atomic_uint32_t
*g
,
904 if (!thr
->in_ignored_lib
)
905 Release(thr
, pc
, (uptr
)g
);
906 u32 old
= atomic_exchange(g
, v
, memory_order_release
);
907 if (old
& kGuardWaiter
)
908 FutexWake(g
, 1 << 30);
911 // __cxa_guard_acquire and friends need to be intercepted in a special way -
912 // regular interceptors will break statically-linked libstdc++. Linux
913 // interceptors are especially defined as weak functions (so that they don't
914 // cause link errors when user defines them as well). So they silently
915 // auto-disable themselves when such symbol is already present in the binary. If
916 // we link libstdc++ statically, it will bring own __cxa_guard_acquire which
917 // will silently replace our interceptor. That's why on Linux we simply export
918 // these interceptors with INTERFACE_ATTRIBUTE.
919 // On OS X, we don't support statically linking, so we just use a regular
922 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
924 #define STDCXX_INTERCEPTOR(rettype, name, ...) \
925 extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__)
928 // Used in thread-safe function static initialization.
929 STDCXX_INTERCEPTOR(int, __cxa_guard_acquire
, atomic_uint32_t
*g
) {
930 SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire
, g
);
931 return guard_acquire(thr
, pc
, g
);
934 STDCXX_INTERCEPTOR(void, __cxa_guard_release
, atomic_uint32_t
*g
) {
935 SCOPED_INTERCEPTOR_RAW(__cxa_guard_release
, g
);
936 guard_release(thr
, pc
, g
, kGuardDone
);
939 STDCXX_INTERCEPTOR(void, __cxa_guard_abort
, atomic_uint32_t
*g
) {
940 SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort
, g
);
941 guard_release(thr
, pc
, g
, kGuardInit
);
945 void DestroyThreadState() {
946 ThreadState
*thr
= cur_thread();
947 Processor
*proc
= thr
->proc();
949 ProcUnwire(proc
, thr
);
952 cur_thread_finalize();
955 void PlatformCleanUpThreadState(ThreadState
*thr
) {
956 ThreadSignalContext
*sctx
= (ThreadSignalContext
*)atomic_load(
957 &thr
->signal_ctx
, memory_order_relaxed
);
959 atomic_store(&thr
->signal_ctx
, 0, memory_order_relaxed
);
960 UnmapOrDie(sctx
, sizeof(*sctx
));
963 } // namespace __tsan
965 #if !SANITIZER_APPLE && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
966 static void thread_finalize(void *v
) {
969 if (pthread_setspecific(interceptor_ctx()->finalize_key
,
970 (void*)(iter
- 1))) {
971 Printf("ThreadSanitizer: failed to set thread key\n");
976 DestroyThreadState();
982 void* (*callback
)(void *arg
);
989 extern "C" void *__tsan_thread_start_func(void *arg
) {
990 ThreadParam
*p
= (ThreadParam
*)arg
;
991 void* (*callback
)(void *arg
) = p
->callback
;
992 void *param
= p
->param
;
994 ThreadState
*thr
= cur_thread_init();
995 // Thread-local state is not initialized yet.
996 ScopedIgnoreInterceptors ignore
;
997 #if !SANITIZER_APPLE && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
998 ThreadIgnoreBegin(thr
, 0);
999 if (pthread_setspecific(interceptor_ctx()->finalize_key
,
1000 (void *)GetPthreadDestructorIterations())) {
1001 Printf("ThreadSanitizer: failed to set thread key\n");
1004 ThreadIgnoreEnd(thr
);
1007 Processor
*proc
= ProcCreate();
1008 ProcWire(proc
, thr
);
1009 ThreadStart(thr
, p
->tid
, GetTid(), ThreadType::Regular
);
1012 void *res
= callback(param
);
1013 // Prevent the callback from being tail called,
1014 // it mixes up stack traces.
1015 volatile int foo
= 42;
1020 TSAN_INTERCEPTOR(int, pthread_create
,
1021 void *th
, void *attr
, void *(*callback
)(void*), void * param
) {
1022 SCOPED_INTERCEPTOR_RAW(pthread_create
, th
, attr
, callback
, param
);
1024 MaybeSpawnBackgroundThread();
1026 if (ctx
->after_multithreaded_fork
) {
1027 if (flags()->die_after_fork
) {
1028 Report("ThreadSanitizer: starting new threads after multi-threaded "
1029 "fork is not supported. Dying (set die_after_fork=0 to override)\n");
1033 "ThreadSanitizer: starting new threads after multi-threaded "
1034 "fork is not supported (pid %lu). Continuing because of "
1035 "die_after_fork=0, but you are on your own\n",
1039 __sanitizer_pthread_attr_t myattr
;
1041 pthread_attr_init(&myattr
);
1045 REAL(pthread_attr_getdetachstate
)(attr
, &detached
);
1046 AdjustStackSize(attr
);
1049 p
.callback
= callback
;
1054 // Otherwise we see false positives in pthread stack manipulation.
1055 ScopedIgnoreInterceptors ignore
;
1056 ThreadIgnoreBegin(thr
, pc
);
1057 res
= REAL(pthread_create
)(th
, attr
, __tsan_thread_start_func
, &p
);
1058 ThreadIgnoreEnd(thr
);
1061 p
.tid
= ThreadCreate(thr
, pc
, *(uptr
*)th
, IsStateDetached(detached
));
1062 CHECK_NE(p
.tid
, kMainTid
);
1063 // Synchronization on p.tid serves two purposes:
1064 // 1. ThreadCreate must finish before the new thread starts.
1065 // Otherwise the new thread can call pthread_detach, but the pthread_t
1066 // identifier is not yet registered in ThreadRegistry by ThreadCreate.
1067 // 2. ThreadStart must finish before this thread continues.
1068 // Otherwise, this thread can call pthread_detach and reset thr->sync
1069 // before the new thread got a chance to acquire from it in ThreadStart.
1073 if (attr
== &myattr
)
1074 pthread_attr_destroy(&myattr
);
1078 TSAN_INTERCEPTOR(int, pthread_join
, void *th
, void **ret
) {
1079 SCOPED_INTERCEPTOR_RAW(pthread_join
, th
, ret
);
1080 Tid tid
= ThreadConsumeTid(thr
, pc
, (uptr
)th
);
1081 ThreadIgnoreBegin(thr
, pc
);
1082 int res
= BLOCK_REAL(pthread_join
)(th
, ret
);
1083 ThreadIgnoreEnd(thr
);
1085 ThreadJoin(thr
, pc
, tid
);
1090 DEFINE_REAL_PTHREAD_FUNCTIONS
1092 TSAN_INTERCEPTOR(int, pthread_detach
, void *th
) {
1093 SCOPED_INTERCEPTOR_RAW(pthread_detach
, th
);
1094 Tid tid
= ThreadConsumeTid(thr
, pc
, (uptr
)th
);
1095 int res
= REAL(pthread_detach
)(th
);
1097 ThreadDetach(thr
, pc
, tid
);
1102 TSAN_INTERCEPTOR(void, pthread_exit
, void *retval
) {
1104 SCOPED_INTERCEPTOR_RAW(pthread_exit
, retval
);
1105 #if !SANITIZER_APPLE && !SANITIZER_ANDROID
1106 CHECK_EQ(thr
, &cur_thread_placeholder
);
1109 REAL(pthread_exit
)(retval
);
1113 TSAN_INTERCEPTOR(int, pthread_tryjoin_np
, void *th
, void **ret
) {
1114 SCOPED_INTERCEPTOR_RAW(pthread_tryjoin_np
, th
, ret
);
1115 Tid tid
= ThreadConsumeTid(thr
, pc
, (uptr
)th
);
1116 ThreadIgnoreBegin(thr
, pc
);
1117 int res
= REAL(pthread_tryjoin_np
)(th
, ret
);
1118 ThreadIgnoreEnd(thr
);
1120 ThreadJoin(thr
, pc
, tid
);
1122 ThreadNotJoined(thr
, pc
, tid
, (uptr
)th
);
1126 TSAN_INTERCEPTOR(int, pthread_timedjoin_np
, void *th
, void **ret
,
1127 const struct timespec
*abstime
) {
1128 SCOPED_INTERCEPTOR_RAW(pthread_timedjoin_np
, th
, ret
, abstime
);
1129 Tid tid
= ThreadConsumeTid(thr
, pc
, (uptr
)th
);
1130 ThreadIgnoreBegin(thr
, pc
);
1131 int res
= BLOCK_REAL(pthread_timedjoin_np
)(th
, ret
, abstime
);
1132 ThreadIgnoreEnd(thr
);
1134 ThreadJoin(thr
, pc
, tid
);
1136 ThreadNotJoined(thr
, pc
, tid
, (uptr
)th
);
1142 // NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
1143 // pthread_cond_t has different size in the different versions.
1144 // If call new REAL functions for old pthread_cond_t, they will corrupt memory
1145 // after pthread_cond_t (old cond is smaller).
1146 // If we call old REAL functions for new pthread_cond_t, we will lose some
1147 // functionality (e.g. old functions do not support waiting against
1149 // Proper handling would require to have 2 versions of interceptors as well.
1150 // But this is messy, in particular requires linker scripts when sanitizer
1151 // runtime is linked into a shared library.
1152 // Instead we assume we don't have dynamic libraries built against old
1153 // pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
1154 // that allows to work with old libraries (but this mode does not support
1155 // some features, e.g. pthread_condattr_getpshared).
1156 static void *init_cond(void *c
, bool force
= false) {
1157 // sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
1158 // So we allocate additional memory on the side large enough to hold
1159 // any pthread_cond_t object. Always call new REAL functions, but pass
1160 // the aux object to them.
1161 // Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
1162 // first word of pthread_cond_t to zero.
1163 // It's all relevant only for linux.
1164 if (!common_flags()->legacy_pthread_cond
)
1166 atomic_uintptr_t
*p
= (atomic_uintptr_t
*)c
;
1167 uptr cond
= atomic_load(p
, memory_order_acquire
);
1168 if (!force
&& cond
!= 0)
1170 void *newcond
= WRAP(malloc
)(pthread_cond_t_sz
);
1171 internal_memset(newcond
, 0, pthread_cond_t_sz
);
1172 if (atomic_compare_exchange_strong(p
, &cond
, (uptr
)newcond
,
1173 memory_order_acq_rel
))
1175 WRAP(free
)(newcond
);
1182 struct CondMutexUnlockCtx
{
1183 ScopedInterceptor
*si
;
1190 int Cancel() const { return fn(); }
1191 void Unlock() const;
1195 void CondMutexUnlockCtx
<Fn
>::Unlock() const {
1196 // pthread_cond_wait interceptor has enabled async signal delivery
1197 // (see BlockingCall below). Disable async signals since we are running
1198 // tsan code. Also ScopedInterceptor and BlockingCall destructors won't run
1199 // since the thread is cancelled, so we have to manually execute them
1200 // (the thread still can run some user code due to pthread_cleanup_push).
1201 CHECK_EQ(atomic_load(&thr
->in_blocking_func
, memory_order_relaxed
), 1);
1202 atomic_store(&thr
->in_blocking_func
, 0, memory_order_relaxed
);
1203 MutexPostLock(thr
, pc
, (uptr
)m
, MutexFlagDoPreLockOnPostLock
);
1204 // Undo BlockingCall ctor effects.
1205 thr
->ignore_interceptors
--;
1206 si
->~ScopedInterceptor();
1210 INTERCEPTOR(int, pthread_cond_init
, void *c
, void *a
) {
1211 void *cond
= init_cond(c
, true);
1212 SCOPED_TSAN_INTERCEPTOR(pthread_cond_init
, cond
, a
);
1213 MemoryAccessRange(thr
, pc
, (uptr
)c
, sizeof(uptr
), true);
1214 return REAL(pthread_cond_init
)(cond
, a
);
1218 int cond_wait(ThreadState
*thr
, uptr pc
, ScopedInterceptor
*si
, const Fn
&fn
,
1220 MemoryAccessRange(thr
, pc
, (uptr
)c
, sizeof(uptr
), false);
1221 MutexUnlock(thr
, pc
, (uptr
)m
);
1223 // This ensures that we handle mutex lock even in case of pthread_cancel.
1224 // See test/tsan/cond_cancel.cpp.
1226 // Enable signal delivery while the thread is blocked.
1227 BlockingCall
bc(thr
);
1228 CondMutexUnlockCtx
<Fn
> arg
= {si
, thr
, pc
, m
, c
, fn
};
1229 res
= call_pthread_cancel_with_cleanup(
1230 [](void *arg
) -> int {
1231 return ((const CondMutexUnlockCtx
<Fn
> *)arg
)->Cancel();
1233 [](void *arg
) { ((const CondMutexUnlockCtx
<Fn
> *)arg
)->Unlock(); },
1236 if (res
== errno_EOWNERDEAD
) MutexRepair(thr
, pc
, (uptr
)m
);
1237 MutexPostLock(thr
, pc
, (uptr
)m
, MutexFlagDoPreLockOnPostLock
);
1241 INTERCEPTOR(int, pthread_cond_wait
, void *c
, void *m
) {
1242 void *cond
= init_cond(c
);
1243 SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait
, cond
, m
);
1245 thr
, pc
, &si
, [=]() { return REAL(pthread_cond_wait
)(cond
, m
); }, cond
,
1249 INTERCEPTOR(int, pthread_cond_timedwait
, void *c
, void *m
, void *abstime
) {
1250 void *cond
= init_cond(c
);
1251 SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait
, cond
, m
, abstime
);
1254 [=]() { return REAL(pthread_cond_timedwait
)(cond
, m
, abstime
); }, cond
,
1259 INTERCEPTOR(int, pthread_cond_clockwait
, void *c
, void *m
,
1260 __sanitizer_clockid_t clock
, void *abstime
) {
1261 void *cond
= init_cond(c
);
1262 SCOPED_TSAN_INTERCEPTOR(pthread_cond_clockwait
, cond
, m
, clock
, abstime
);
1265 [=]() { return REAL(pthread_cond_clockwait
)(cond
, m
, clock
, abstime
); },
1268 #define TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT TSAN_INTERCEPT(pthread_cond_clockwait)
1270 #define TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT
1274 INTERCEPTOR(int, pthread_cond_timedwait_relative_np
, void *c
, void *m
,
1276 void *cond
= init_cond(c
);
1277 SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait_relative_np
, cond
, m
, reltime
);
1281 return REAL(pthread_cond_timedwait_relative_np
)(cond
, m
, reltime
);
1287 INTERCEPTOR(int, pthread_cond_signal
, void *c
) {
1288 void *cond
= init_cond(c
);
1289 SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal
, cond
);
1290 MemoryAccessRange(thr
, pc
, (uptr
)c
, sizeof(uptr
), false);
1291 return REAL(pthread_cond_signal
)(cond
);
1294 INTERCEPTOR(int, pthread_cond_broadcast
, void *c
) {
1295 void *cond
= init_cond(c
);
1296 SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast
, cond
);
1297 MemoryAccessRange(thr
, pc
, (uptr
)c
, sizeof(uptr
), false);
1298 return REAL(pthread_cond_broadcast
)(cond
);
1301 INTERCEPTOR(int, pthread_cond_destroy
, void *c
) {
1302 void *cond
= init_cond(c
);
1303 SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy
, cond
);
1304 MemoryAccessRange(thr
, pc
, (uptr
)c
, sizeof(uptr
), true);
1305 int res
= REAL(pthread_cond_destroy
)(cond
);
1306 if (common_flags()->legacy_pthread_cond
) {
1307 // Free our aux cond and zero the pointer to not leave dangling pointers.
1309 atomic_store((atomic_uintptr_t
*)c
, 0, memory_order_relaxed
);
1314 TSAN_INTERCEPTOR(int, pthread_mutex_init
, void *m
, void *a
) {
1315 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init
, m
, a
);
1316 int res
= REAL(pthread_mutex_init
)(m
, a
);
1321 if (REAL(pthread_mutexattr_gettype
)(a
, &type
) == 0)
1322 if (type
== PTHREAD_MUTEX_RECURSIVE
||
1323 type
== PTHREAD_MUTEX_RECURSIVE_NP
)
1324 flagz
|= MutexFlagWriteReentrant
;
1326 MutexCreate(thr
, pc
, (uptr
)m
, flagz
);
1331 TSAN_INTERCEPTOR(int, pthread_mutex_destroy
, void *m
) {
1332 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy
, m
);
1333 int res
= REAL(pthread_mutex_destroy
)(m
);
1334 if (res
== 0 || res
== errno_EBUSY
) {
1335 MutexDestroy(thr
, pc
, (uptr
)m
);
1340 TSAN_INTERCEPTOR(int, pthread_mutex_lock
, void *m
) {
1341 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_lock
, m
);
1342 MutexPreLock(thr
, pc
, (uptr
)m
);
1343 int res
= REAL(pthread_mutex_lock
)(m
);
1344 if (res
== errno_EOWNERDEAD
)
1345 MutexRepair(thr
, pc
, (uptr
)m
);
1346 if (res
== 0 || res
== errno_EOWNERDEAD
)
1347 MutexPostLock(thr
, pc
, (uptr
)m
);
1348 if (res
== errno_EINVAL
)
1349 MutexInvalidAccess(thr
, pc
, (uptr
)m
);
1353 TSAN_INTERCEPTOR(int, pthread_mutex_trylock
, void *m
) {
1354 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock
, m
);
1355 int res
= REAL(pthread_mutex_trylock
)(m
);
1356 if (res
== errno_EOWNERDEAD
)
1357 MutexRepair(thr
, pc
, (uptr
)m
);
1358 if (res
== 0 || res
== errno_EOWNERDEAD
)
1359 MutexPostLock(thr
, pc
, (uptr
)m
, MutexFlagTryLock
);
1363 #if !SANITIZER_APPLE
1364 TSAN_INTERCEPTOR(int, pthread_mutex_timedlock
, void *m
, void *abstime
) {
1365 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock
, m
, abstime
);
1366 int res
= REAL(pthread_mutex_timedlock
)(m
, abstime
);
1368 MutexPostLock(thr
, pc
, (uptr
)m
, MutexFlagTryLock
);
1374 TSAN_INTERCEPTOR(int, pthread_mutex_unlock
, void *m
) {
1375 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_unlock
, m
);
1376 MutexUnlock(thr
, pc
, (uptr
)m
);
1377 int res
= REAL(pthread_mutex_unlock
)(m
);
1378 if (res
== errno_EINVAL
)
1379 MutexInvalidAccess(thr
, pc
, (uptr
)m
);
1384 # if !__GLIBC_PREREQ(2, 34)
1385 // glibc 2.34 applies a non-default version for the two functions. They are no
1386 // longer expected to be intercepted by programs.
1387 TSAN_INTERCEPTOR(int, __pthread_mutex_lock
, void *m
) {
1388 SCOPED_TSAN_INTERCEPTOR(__pthread_mutex_lock
, m
);
1389 MutexPreLock(thr
, pc
, (uptr
)m
);
1390 int res
= REAL(__pthread_mutex_lock
)(m
);
1391 if (res
== errno_EOWNERDEAD
)
1392 MutexRepair(thr
, pc
, (uptr
)m
);
1393 if (res
== 0 || res
== errno_EOWNERDEAD
)
1394 MutexPostLock(thr
, pc
, (uptr
)m
);
1395 if (res
== errno_EINVAL
)
1396 MutexInvalidAccess(thr
, pc
, (uptr
)m
);
1400 TSAN_INTERCEPTOR(int, __pthread_mutex_unlock
, void *m
) {
1401 SCOPED_TSAN_INTERCEPTOR(__pthread_mutex_unlock
, m
);
1402 MutexUnlock(thr
, pc
, (uptr
)m
);
1403 int res
= REAL(__pthread_mutex_unlock
)(m
);
1404 if (res
== errno_EINVAL
)
1405 MutexInvalidAccess(thr
, pc
, (uptr
)m
);
1411 #if !SANITIZER_APPLE
1412 TSAN_INTERCEPTOR(int, pthread_spin_init
, void *m
, int pshared
) {
1413 SCOPED_TSAN_INTERCEPTOR(pthread_spin_init
, m
, pshared
);
1414 int res
= REAL(pthread_spin_init
)(m
, pshared
);
1416 MutexCreate(thr
, pc
, (uptr
)m
);
1421 TSAN_INTERCEPTOR(int, pthread_spin_destroy
, void *m
) {
1422 SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy
, m
);
1423 int res
= REAL(pthread_spin_destroy
)(m
);
1425 MutexDestroy(thr
, pc
, (uptr
)m
);
1430 TSAN_INTERCEPTOR(int, pthread_spin_lock
, void *m
) {
1431 SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock
, m
);
1432 MutexPreLock(thr
, pc
, (uptr
)m
);
1433 int res
= REAL(pthread_spin_lock
)(m
);
1435 MutexPostLock(thr
, pc
, (uptr
)m
);
1440 TSAN_INTERCEPTOR(int, pthread_spin_trylock
, void *m
) {
1441 SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock
, m
);
1442 int res
= REAL(pthread_spin_trylock
)(m
);
1444 MutexPostLock(thr
, pc
, (uptr
)m
, MutexFlagTryLock
);
1449 TSAN_INTERCEPTOR(int, pthread_spin_unlock
, void *m
) {
1450 SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock
, m
);
1451 MutexUnlock(thr
, pc
, (uptr
)m
);
1452 int res
= REAL(pthread_spin_unlock
)(m
);
1457 TSAN_INTERCEPTOR(int, pthread_rwlock_init
, void *m
, void *a
) {
1458 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init
, m
, a
);
1459 int res
= REAL(pthread_rwlock_init
)(m
, a
);
1461 MutexCreate(thr
, pc
, (uptr
)m
);
1466 TSAN_INTERCEPTOR(int, pthread_rwlock_destroy
, void *m
) {
1467 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy
, m
);
1468 int res
= REAL(pthread_rwlock_destroy
)(m
);
1470 MutexDestroy(thr
, pc
, (uptr
)m
);
1475 TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock
, void *m
) {
1476 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock
, m
);
1477 MutexPreReadLock(thr
, pc
, (uptr
)m
);
1478 int res
= REAL(pthread_rwlock_rdlock
)(m
);
1480 MutexPostReadLock(thr
, pc
, (uptr
)m
);
1485 TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock
, void *m
) {
1486 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock
, m
);
1487 int res
= REAL(pthread_rwlock_tryrdlock
)(m
);
1489 MutexPostReadLock(thr
, pc
, (uptr
)m
, MutexFlagTryLock
);
1494 #if !SANITIZER_APPLE
1495 TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock
, void *m
, void *abstime
) {
1496 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock
, m
, abstime
);
1497 int res
= REAL(pthread_rwlock_timedrdlock
)(m
, abstime
);
1499 MutexPostReadLock(thr
, pc
, (uptr
)m
);
1505 TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock
, void *m
) {
1506 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock
, m
);
1507 MutexPreLock(thr
, pc
, (uptr
)m
);
1508 int res
= REAL(pthread_rwlock_wrlock
)(m
);
1510 MutexPostLock(thr
, pc
, (uptr
)m
);
1515 TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock
, void *m
) {
1516 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock
, m
);
1517 int res
= REAL(pthread_rwlock_trywrlock
)(m
);
1519 MutexPostLock(thr
, pc
, (uptr
)m
, MutexFlagTryLock
);
1524 #if !SANITIZER_APPLE
1525 TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock
, void *m
, void *abstime
) {
1526 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock
, m
, abstime
);
1527 int res
= REAL(pthread_rwlock_timedwrlock
)(m
, abstime
);
1529 MutexPostLock(thr
, pc
, (uptr
)m
, MutexFlagTryLock
);
1535 TSAN_INTERCEPTOR(int, pthread_rwlock_unlock
, void *m
) {
1536 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock
, m
);
1537 MutexReadOrWriteUnlock(thr
, pc
, (uptr
)m
);
1538 int res
= REAL(pthread_rwlock_unlock
)(m
);
1542 #if !SANITIZER_APPLE
1543 TSAN_INTERCEPTOR(int, pthread_barrier_init
, void *b
, void *a
, unsigned count
) {
1544 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init
, b
, a
, count
);
1545 MemoryAccess(thr
, pc
, (uptr
)b
, 1, kAccessWrite
);
1546 int res
= REAL(pthread_barrier_init
)(b
, a
, count
);
1550 TSAN_INTERCEPTOR(int, pthread_barrier_destroy
, void *b
) {
1551 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy
, b
);
1552 MemoryAccess(thr
, pc
, (uptr
)b
, 1, kAccessWrite
);
1553 int res
= REAL(pthread_barrier_destroy
)(b
);
1557 TSAN_INTERCEPTOR(int, pthread_barrier_wait
, void *b
) {
1558 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait
, b
);
1559 Release(thr
, pc
, (uptr
)b
);
1560 MemoryAccess(thr
, pc
, (uptr
)b
, 1, kAccessRead
);
1561 int res
= REAL(pthread_barrier_wait
)(b
);
1562 MemoryAccess(thr
, pc
, (uptr
)b
, 1, kAccessRead
);
1563 if (res
== 0 || res
== PTHREAD_BARRIER_SERIAL_THREAD
) {
1564 Acquire(thr
, pc
, (uptr
)b
);
1570 TSAN_INTERCEPTOR(int, pthread_once
, void *o
, void (*f
)()) {
1571 SCOPED_INTERCEPTOR_RAW(pthread_once
, o
, f
);
1572 if (o
== 0 || f
== 0)
1573 return errno_EINVAL
;
1576 if (SANITIZER_APPLE
)
1577 a
= static_cast<atomic_uint32_t
*>((void *)((char *)o
+ sizeof(long_t
)));
1578 else if (SANITIZER_NETBSD
)
1579 a
= static_cast<atomic_uint32_t
*>
1580 ((void *)((char *)o
+ __sanitizer::pthread_mutex_t_sz
));
1582 a
= static_cast<atomic_uint32_t
*>(o
);
1584 // Mac OS X appears to use pthread_once() where calling BlockingRegion hooks
1585 // result in crashes due to too little stack space.
1586 if (guard_acquire(thr
, pc
, a
, !SANITIZER_APPLE
)) {
1588 guard_release(thr
, pc
, a
, kGuardDone
);
1594 TSAN_INTERCEPTOR(int, __fxstat
, int version
, int fd
, void *buf
) {
1595 SCOPED_TSAN_INTERCEPTOR(__fxstat
, version
, fd
, buf
);
1597 FdAccess(thr
, pc
, fd
);
1598 return REAL(__fxstat
)(version
, fd
, buf
);
1600 #define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat)
1602 #define TSAN_MAYBE_INTERCEPT___FXSTAT
1605 TSAN_INTERCEPTOR(int, fstat
, int fd
, void *buf
) {
1607 SCOPED_TSAN_INTERCEPTOR(__fxstat
, 0, fd
, buf
);
1609 FdAccess(thr
, pc
, fd
);
1610 return REAL(__fxstat
)(0, fd
, buf
);
1612 SCOPED_TSAN_INTERCEPTOR(fstat
, fd
, buf
);
1614 FdAccess(thr
, pc
, fd
);
1615 return REAL(fstat
)(fd
, buf
);
1620 TSAN_INTERCEPTOR(int, __fxstat64
, int version
, int fd
, void *buf
) {
1621 SCOPED_TSAN_INTERCEPTOR(__fxstat64
, version
, fd
, buf
);
1623 FdAccess(thr
, pc
, fd
);
1624 return REAL(__fxstat64
)(version
, fd
, buf
);
1626 #define TSAN_MAYBE_INTERCEPT___FXSTAT64 TSAN_INTERCEPT(__fxstat64)
1628 #define TSAN_MAYBE_INTERCEPT___FXSTAT64
1632 TSAN_INTERCEPTOR(int, fstat64
, int fd
, void *buf
) {
1633 SCOPED_TSAN_INTERCEPTOR(__fxstat64
, 0, fd
, buf
);
1635 FdAccess(thr
, pc
, fd
);
1636 return REAL(__fxstat64
)(0, fd
, buf
);
1638 #define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
1640 #define TSAN_MAYBE_INTERCEPT_FSTAT64
1643 TSAN_INTERCEPTOR(int, open
, const char *name
, int oflag
, ...) {
1645 va_start(ap
, oflag
);
1646 mode_t mode
= va_arg(ap
, int);
1648 SCOPED_TSAN_INTERCEPTOR(open
, name
, oflag
, mode
);
1649 READ_STRING(thr
, pc
, name
, 0);
1650 int fd
= REAL(open
)(name
, oflag
, mode
);
1652 FdFileCreate(thr
, pc
, fd
);
1657 TSAN_INTERCEPTOR(int, open64
, const char *name
, int oflag
, ...) {
1659 va_start(ap
, oflag
);
1660 mode_t mode
= va_arg(ap
, int);
1662 SCOPED_TSAN_INTERCEPTOR(open64
, name
, oflag
, mode
);
1663 READ_STRING(thr
, pc
, name
, 0);
1664 int fd
= REAL(open64
)(name
, oflag
, mode
);
1666 FdFileCreate(thr
, pc
, fd
);
1669 #define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
1671 #define TSAN_MAYBE_INTERCEPT_OPEN64
1674 TSAN_INTERCEPTOR(int, creat
, const char *name
, int mode
) {
1675 SCOPED_TSAN_INTERCEPTOR(creat
, name
, mode
);
1676 READ_STRING(thr
, pc
, name
, 0);
1677 int fd
= REAL(creat
)(name
, mode
);
1679 FdFileCreate(thr
, pc
, fd
);
1684 TSAN_INTERCEPTOR(int, creat64
, const char *name
, int mode
) {
1685 SCOPED_TSAN_INTERCEPTOR(creat64
, name
, mode
);
1686 READ_STRING(thr
, pc
, name
, 0);
1687 int fd
= REAL(creat64
)(name
, mode
);
1689 FdFileCreate(thr
, pc
, fd
);
1692 #define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
1694 #define TSAN_MAYBE_INTERCEPT_CREAT64
1697 TSAN_INTERCEPTOR(int, dup
, int oldfd
) {
1698 SCOPED_TSAN_INTERCEPTOR(dup
, oldfd
);
1699 int newfd
= REAL(dup
)(oldfd
);
1700 if (oldfd
>= 0 && newfd
>= 0 && newfd
!= oldfd
)
1701 FdDup(thr
, pc
, oldfd
, newfd
, true);
1705 TSAN_INTERCEPTOR(int, dup2
, int oldfd
, int newfd
) {
1706 SCOPED_TSAN_INTERCEPTOR(dup2
, oldfd
, newfd
);
1707 int newfd2
= REAL(dup2
)(oldfd
, newfd
);
1708 if (oldfd
>= 0 && newfd2
>= 0 && newfd2
!= oldfd
)
1709 FdDup(thr
, pc
, oldfd
, newfd2
, false);
1713 #if !SANITIZER_APPLE
1714 TSAN_INTERCEPTOR(int, dup3
, int oldfd
, int newfd
, int flags
) {
1715 SCOPED_TSAN_INTERCEPTOR(dup3
, oldfd
, newfd
, flags
);
1716 int newfd2
= REAL(dup3
)(oldfd
, newfd
, flags
);
1717 if (oldfd
>= 0 && newfd2
>= 0 && newfd2
!= oldfd
)
1718 FdDup(thr
, pc
, oldfd
, newfd2
, false);
1724 TSAN_INTERCEPTOR(int, eventfd
, unsigned initval
, int flags
) {
1725 SCOPED_TSAN_INTERCEPTOR(eventfd
, initval
, flags
);
1726 int fd
= REAL(eventfd
)(initval
, flags
);
1728 FdEventCreate(thr
, pc
, fd
);
1731 #define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
1733 #define TSAN_MAYBE_INTERCEPT_EVENTFD
1737 TSAN_INTERCEPTOR(int, signalfd
, int fd
, void *mask
, int flags
) {
1738 SCOPED_INTERCEPTOR_RAW(signalfd
, fd
, mask
, flags
);
1739 FdClose(thr
, pc
, fd
);
1740 fd
= REAL(signalfd
)(fd
, mask
, flags
);
1741 if (!MustIgnoreInterceptor(thr
))
1742 FdSignalCreate(thr
, pc
, fd
);
1745 #define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
1747 #define TSAN_MAYBE_INTERCEPT_SIGNALFD
1751 TSAN_INTERCEPTOR(int, inotify_init
, int fake
) {
1752 SCOPED_TSAN_INTERCEPTOR(inotify_init
, fake
);
1753 int fd
= REAL(inotify_init
)(fake
);
1755 FdInotifyCreate(thr
, pc
, fd
);
1758 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
1760 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
1764 TSAN_INTERCEPTOR(int, inotify_init1
, int flags
) {
1765 SCOPED_TSAN_INTERCEPTOR(inotify_init1
, flags
);
1766 int fd
= REAL(inotify_init1
)(flags
);
1768 FdInotifyCreate(thr
, pc
, fd
);
1771 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
1773 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
1776 TSAN_INTERCEPTOR(int, socket
, int domain
, int type
, int protocol
) {
1777 SCOPED_TSAN_INTERCEPTOR(socket
, domain
, type
, protocol
);
1778 int fd
= REAL(socket
)(domain
, type
, protocol
);
1780 FdSocketCreate(thr
, pc
, fd
);
1784 TSAN_INTERCEPTOR(int, socketpair
, int domain
, int type
, int protocol
, int *fd
) {
1785 SCOPED_TSAN_INTERCEPTOR(socketpair
, domain
, type
, protocol
, fd
);
1786 int res
= REAL(socketpair
)(domain
, type
, protocol
, fd
);
1787 if (res
== 0 && fd
[0] >= 0 && fd
[1] >= 0)
1788 FdPipeCreate(thr
, pc
, fd
[0], fd
[1]);
1792 TSAN_INTERCEPTOR(int, connect
, int fd
, void *addr
, unsigned addrlen
) {
1793 SCOPED_TSAN_INTERCEPTOR(connect
, fd
, addr
, addrlen
);
1794 FdSocketConnecting(thr
, pc
, fd
);
1795 int res
= REAL(connect
)(fd
, addr
, addrlen
);
1796 if (res
== 0 && fd
>= 0)
1797 FdSocketConnect(thr
, pc
, fd
);
1801 TSAN_INTERCEPTOR(int, bind
, int fd
, void *addr
, unsigned addrlen
) {
1802 SCOPED_TSAN_INTERCEPTOR(bind
, fd
, addr
, addrlen
);
1803 int res
= REAL(bind
)(fd
, addr
, addrlen
);
1804 if (fd
> 0 && res
== 0)
1805 FdAccess(thr
, pc
, fd
);
1809 TSAN_INTERCEPTOR(int, listen
, int fd
, int backlog
) {
1810 SCOPED_TSAN_INTERCEPTOR(listen
, fd
, backlog
);
1811 int res
= REAL(listen
)(fd
, backlog
);
1812 if (fd
> 0 && res
== 0)
1813 FdAccess(thr
, pc
, fd
);
1817 TSAN_INTERCEPTOR(int, close
, int fd
) {
1818 SCOPED_INTERCEPTOR_RAW(close
, fd
);
1819 if (!in_symbolizer())
1820 FdClose(thr
, pc
, fd
);
1821 return REAL(close
)(fd
);
1825 TSAN_INTERCEPTOR(int, __close
, int fd
) {
1826 SCOPED_INTERCEPTOR_RAW(__close
, fd
);
1827 FdClose(thr
, pc
, fd
);
1828 return REAL(__close
)(fd
);
1830 #define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
1832 #define TSAN_MAYBE_INTERCEPT___CLOSE
1836 #if SANITIZER_LINUX && !SANITIZER_ANDROID
1837 TSAN_INTERCEPTOR(void, __res_iclose
, void *state
, bool free_addr
) {
1838 SCOPED_INTERCEPTOR_RAW(__res_iclose
, state
, free_addr
);
1840 int cnt
= ExtractResolvFDs(state
, fds
, ARRAY_SIZE(fds
));
1841 for (int i
= 0; i
< cnt
; i
++) FdClose(thr
, pc
, fds
[i
]);
1842 REAL(__res_iclose
)(state
, free_addr
);
1844 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
1846 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
1849 TSAN_INTERCEPTOR(int, pipe
, int *pipefd
) {
1850 SCOPED_TSAN_INTERCEPTOR(pipe
, pipefd
);
1851 int res
= REAL(pipe
)(pipefd
);
1852 if (res
== 0 && pipefd
[0] >= 0 && pipefd
[1] >= 0)
1853 FdPipeCreate(thr
, pc
, pipefd
[0], pipefd
[1]);
1857 #if !SANITIZER_APPLE
1858 TSAN_INTERCEPTOR(int, pipe2
, int *pipefd
, int flags
) {
1859 SCOPED_TSAN_INTERCEPTOR(pipe2
, pipefd
, flags
);
1860 int res
= REAL(pipe2
)(pipefd
, flags
);
1861 if (res
== 0 && pipefd
[0] >= 0 && pipefd
[1] >= 0)
1862 FdPipeCreate(thr
, pc
, pipefd
[0], pipefd
[1]);
1867 TSAN_INTERCEPTOR(int, unlink
, char *path
) {
1868 SCOPED_TSAN_INTERCEPTOR(unlink
, path
);
1869 Release(thr
, pc
, File2addr(path
));
1870 int res
= REAL(unlink
)(path
);
1874 TSAN_INTERCEPTOR(void*, tmpfile
, int fake
) {
1875 SCOPED_TSAN_INTERCEPTOR(tmpfile
, fake
);
1876 void *res
= REAL(tmpfile
)(fake
);
1878 int fd
= fileno_unlocked(res
);
1880 FdFileCreate(thr
, pc
, fd
);
1886 TSAN_INTERCEPTOR(void*, tmpfile64
, int fake
) {
1887 SCOPED_TSAN_INTERCEPTOR(tmpfile64
, fake
);
1888 void *res
= REAL(tmpfile64
)(fake
);
1890 int fd
= fileno_unlocked(res
);
1892 FdFileCreate(thr
, pc
, fd
);
1896 #define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
1898 #define TSAN_MAYBE_INTERCEPT_TMPFILE64
1901 static void FlushStreams() {
1902 // Flushing all the streams here may freeze the process if a child thread is
1903 // performing file stream operations at the same time.
1904 REAL(fflush
)(stdout
);
1905 REAL(fflush
)(stderr
);
1908 TSAN_INTERCEPTOR(void, abort
, int fake
) {
1909 SCOPED_TSAN_INTERCEPTOR(abort
, fake
);
1914 TSAN_INTERCEPTOR(int, rmdir
, char *path
) {
1915 SCOPED_TSAN_INTERCEPTOR(rmdir
, path
);
1916 Release(thr
, pc
, Dir2addr(path
));
1917 int res
= REAL(rmdir
)(path
);
1921 TSAN_INTERCEPTOR(int, closedir
, void *dirp
) {
1922 SCOPED_INTERCEPTOR_RAW(closedir
, dirp
);
1924 int fd
= dirfd(dirp
);
1925 FdClose(thr
, pc
, fd
);
1927 return REAL(closedir
)(dirp
);
1931 TSAN_INTERCEPTOR(int, epoll_create
, int size
) {
1932 SCOPED_TSAN_INTERCEPTOR(epoll_create
, size
);
1933 int fd
= REAL(epoll_create
)(size
);
1935 FdPollCreate(thr
, pc
, fd
);
1939 TSAN_INTERCEPTOR(int, epoll_create1
, int flags
) {
1940 SCOPED_TSAN_INTERCEPTOR(epoll_create1
, flags
);
1941 int fd
= REAL(epoll_create1
)(flags
);
1943 FdPollCreate(thr
, pc
, fd
);
1947 TSAN_INTERCEPTOR(int, epoll_ctl
, int epfd
, int op
, int fd
, void *ev
) {
1948 SCOPED_TSAN_INTERCEPTOR(epoll_ctl
, epfd
, op
, fd
, ev
);
1950 FdAccess(thr
, pc
, epfd
);
1951 if (epfd
>= 0 && fd
>= 0)
1952 FdAccess(thr
, pc
, fd
);
1953 if (op
== EPOLL_CTL_ADD
&& epfd
>= 0) {
1954 FdPollAdd(thr
, pc
, epfd
, fd
);
1955 FdRelease(thr
, pc
, epfd
);
1957 int res
= REAL(epoll_ctl
)(epfd
, op
, fd
, ev
);
1961 TSAN_INTERCEPTOR(int, epoll_wait
, int epfd
, void *ev
, int cnt
, int timeout
) {
1962 SCOPED_TSAN_INTERCEPTOR(epoll_wait
, epfd
, ev
, cnt
, timeout
);
1964 FdAccess(thr
, pc
, epfd
);
1965 int res
= BLOCK_REAL(epoll_wait
)(epfd
, ev
, cnt
, timeout
);
1966 if (res
> 0 && epfd
>= 0)
1967 FdAcquire(thr
, pc
, epfd
);
1971 TSAN_INTERCEPTOR(int, epoll_pwait
, int epfd
, void *ev
, int cnt
, int timeout
,
1973 SCOPED_TSAN_INTERCEPTOR(epoll_pwait
, epfd
, ev
, cnt
, timeout
, sigmask
);
1975 FdAccess(thr
, pc
, epfd
);
1976 int res
= BLOCK_REAL(epoll_pwait
)(epfd
, ev
, cnt
, timeout
, sigmask
);
1977 if (res
> 0 && epfd
>= 0)
1978 FdAcquire(thr
, pc
, epfd
);
1982 TSAN_INTERCEPTOR(int, epoll_pwait2
, int epfd
, void *ev
, int cnt
, void *timeout
,
1984 SCOPED_INTERCEPTOR_RAW(epoll_pwait2
, epfd
, ev
, cnt
, timeout
, sigmask
);
1985 // This function is new and may not be present in libc and/or kernel.
1986 // Since we effectively add it to libc (as will be probed by the program
1987 // using dlsym or a weak function pointer) we need to handle the case
1988 // when it's not present in the actual libc.
1989 if (!REAL(epoll_pwait2
)) {
1990 errno
= errno_ENOSYS
;
1993 if (MustIgnoreInterceptor(thr
))
1994 REAL(epoll_pwait2
)(epfd
, ev
, cnt
, timeout
, sigmask
);
1996 FdAccess(thr
, pc
, epfd
);
1997 int res
= BLOCK_REAL(epoll_pwait2
)(epfd
, ev
, cnt
, timeout
, sigmask
);
1998 if (res
> 0 && epfd
>= 0)
1999 FdAcquire(thr
, pc
, epfd
);
2003 # define TSAN_MAYBE_INTERCEPT_EPOLL \
2004 TSAN_INTERCEPT(epoll_create); \
2005 TSAN_INTERCEPT(epoll_create1); \
2006 TSAN_INTERCEPT(epoll_ctl); \
2007 TSAN_INTERCEPT(epoll_wait); \
2008 TSAN_INTERCEPT(epoll_pwait); \
2009 TSAN_INTERCEPT(epoll_pwait2)
2011 #define TSAN_MAYBE_INTERCEPT_EPOLL
2014 // The following functions are intercepted merely to process pending signals.
2015 // If program blocks signal X, we must deliver the signal before the function
2016 // returns. Similarly, if program unblocks a signal (or returns from sigsuspend)
2017 // it's better to deliver the signal straight away.
2018 TSAN_INTERCEPTOR(int, sigsuspend
, const __sanitizer_sigset_t
*mask
) {
2019 SCOPED_TSAN_INTERCEPTOR(sigsuspend
, mask
);
2020 return REAL(sigsuspend
)(mask
);
2023 TSAN_INTERCEPTOR(int, sigblock
, int mask
) {
2024 SCOPED_TSAN_INTERCEPTOR(sigblock
, mask
);
2025 return REAL(sigblock
)(mask
);
2028 TSAN_INTERCEPTOR(int, sigsetmask
, int mask
) {
2029 SCOPED_TSAN_INTERCEPTOR(sigsetmask
, mask
);
2030 return REAL(sigsetmask
)(mask
);
2033 TSAN_INTERCEPTOR(int, pthread_sigmask
, int how
, const __sanitizer_sigset_t
*set
,
2034 __sanitizer_sigset_t
*oldset
) {
2035 SCOPED_TSAN_INTERCEPTOR(pthread_sigmask
, how
, set
, oldset
);
2036 return REAL(pthread_sigmask
)(how
, set
, oldset
);
2041 static void ReportErrnoSpoiling(ThreadState
*thr
, uptr pc
, int sig
) {
2042 VarSizeStackTrace stack
;
2043 // StackTrace::GetNestInstructionPc(pc) is used because return address is
2044 // expected, OutputReport() will undo this.
2045 ObtainCurrentStack(thr
, StackTrace::GetNextInstructionPc(pc
), &stack
);
2046 ThreadRegistryLock
l(&ctx
->thread_registry
);
2047 ScopedReport
rep(ReportTypeErrnoInSignal
);
2049 if (!IsFiredSuppression(ctx
, ReportTypeErrnoInSignal
, stack
)) {
2050 rep
.AddStack(stack
, true);
2051 OutputReport(thr
, rep
);
2055 static void CallUserSignalHandler(ThreadState
*thr
, bool sync
, bool acquire
,
2056 int sig
, __sanitizer_siginfo
*info
,
2059 __sanitizer_sigaction
*sigactions
= interceptor_ctx()->sigactions
;
2061 Acquire(thr
, 0, (uptr
)&sigactions
[sig
]);
2062 // Signals are generally asynchronous, so if we receive a signals when
2063 // ignores are enabled we should disable ignores. This is critical for sync
2064 // and interceptors, because otherwise we can miss synchronization and report
2066 int ignore_reads_and_writes
= thr
->ignore_reads_and_writes
;
2067 int ignore_interceptors
= thr
->ignore_interceptors
;
2068 int ignore_sync
= thr
->ignore_sync
;
2069 // For symbolizer we only process SIGSEGVs synchronously
2070 // (bug in symbolizer or in tsan). But we want to reset
2071 // in_symbolizer to fail gracefully. Symbolizer and user code
2072 // use different memory allocators, so if we don't reset
2073 // in_symbolizer we can get memory allocated with one being
2074 // feed with another, which can cause more crashes.
2075 int in_symbolizer
= thr
->in_symbolizer
;
2076 if (!ctx
->after_multithreaded_fork
) {
2077 thr
->ignore_reads_and_writes
= 0;
2078 thr
->fast_state
.ClearIgnoreBit();
2079 thr
->ignore_interceptors
= 0;
2080 thr
->ignore_sync
= 0;
2081 thr
->in_symbolizer
= 0;
2083 // Ensure that the handler does not spoil errno.
2084 const int saved_errno
= errno
;
2086 // This code races with sigaction. Be careful to not read sa_sigaction twice.
2087 // Also need to remember pc for reporting before the call,
2088 // because the handler can reset it.
2089 volatile uptr pc
= (sigactions
[sig
].sa_flags
& SA_SIGINFO
)
2090 ? (uptr
)sigactions
[sig
].sigaction
2091 : (uptr
)sigactions
[sig
].handler
;
2092 if (pc
!= sig_dfl
&& pc
!= sig_ign
) {
2093 // The callback can be either sa_handler or sa_sigaction.
2094 // They have different signatures, but we assume that passing
2095 // additional arguments to sa_handler works and is harmless.
2096 ((__sanitizer_sigactionhandler_ptr
)pc
)(sig
, info
, uctx
);
2098 if (!ctx
->after_multithreaded_fork
) {
2099 thr
->ignore_reads_and_writes
= ignore_reads_and_writes
;
2100 if (ignore_reads_and_writes
)
2101 thr
->fast_state
.SetIgnoreBit();
2102 thr
->ignore_interceptors
= ignore_interceptors
;
2103 thr
->ignore_sync
= ignore_sync
;
2104 thr
->in_symbolizer
= in_symbolizer
;
2106 // We do not detect errno spoiling for SIGTERM,
2107 // because some SIGTERM handlers do spoil errno but reraise SIGTERM,
2108 // tsan reports false positive in such case.
2109 // It's difficult to properly detect this situation (reraise),
2110 // because in async signal processing case (when handler is called directly
2111 // from rtl_generic_sighandler) we have not yet received the reraised
2112 // signal; and it looks too fragile to intercept all ways to reraise a signal.
2113 if (ShouldReport(thr
, ReportTypeErrnoInSignal
) && !sync
&& sig
!= SIGTERM
&&
2115 ReportErrnoSpoiling(thr
, pc
, sig
);
2116 errno
= saved_errno
;
2119 void ProcessPendingSignalsImpl(ThreadState
*thr
) {
2120 atomic_store(&thr
->pending_signals
, 0, memory_order_relaxed
);
2121 ThreadSignalContext
*sctx
= SigCtx(thr
);
2124 atomic_fetch_add(&thr
->in_signal_handler
, 1, memory_order_relaxed
);
2125 internal_sigfillset(&sctx
->emptyset
);
2126 int res
= REAL(pthread_sigmask
)(SIG_SETMASK
, &sctx
->emptyset
, &sctx
->oldset
);
2128 for (int sig
= 0; sig
< kSigCount
; sig
++) {
2129 SignalDesc
*signal
= &sctx
->pending_signals
[sig
];
2130 if (signal
->armed
) {
2131 signal
->armed
= false;
2132 CallUserSignalHandler(thr
, false, true, sig
, &signal
->siginfo
,
2136 res
= REAL(pthread_sigmask
)(SIG_SETMASK
, &sctx
->oldset
, 0);
2138 atomic_fetch_add(&thr
->in_signal_handler
, -1, memory_order_relaxed
);
2141 } // namespace __tsan
2143 static bool is_sync_signal(ThreadSignalContext
*sctx
, int sig
,
2144 __sanitizer_siginfo
*info
) {
2145 // If we are sending signal to ourselves, we must process it now.
2146 if (sctx
&& sig
== sctx
->int_signal_send
)
2148 #if SANITIZER_HAS_SIGINFO
2149 // POSIX timers can be configured to send any kind of signal; however, it
2150 // doesn't make any sense to consider a timer signal as synchronous!
2151 if (info
->si_code
== SI_TIMER
)
2154 return sig
== SIGSEGV
|| sig
== SIGBUS
|| sig
== SIGILL
|| sig
== SIGTRAP
||
2155 sig
== SIGABRT
|| sig
== SIGFPE
|| sig
== SIGPIPE
|| sig
== SIGSYS
;
2158 void sighandler(int sig
, __sanitizer_siginfo
*info
, void *ctx
) {
2159 ThreadState
*thr
= cur_thread_init();
2160 ThreadSignalContext
*sctx
= SigCtx(thr
);
2161 if (sig
< 0 || sig
>= kSigCount
) {
2162 VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig
);
2165 // Don't mess with synchronous signals.
2166 const bool sync
= is_sync_signal(sctx
, sig
, info
);
2168 // If we are in blocking function, we can safely process it now
2169 // (but check if we are in a recursive interceptor,
2170 // i.e. pthread_join()->munmap()).
2171 atomic_load(&thr
->in_blocking_func
, memory_order_relaxed
)) {
2172 atomic_fetch_add(&thr
->in_signal_handler
, 1, memory_order_relaxed
);
2173 if (atomic_load(&thr
->in_blocking_func
, memory_order_relaxed
)) {
2174 atomic_store(&thr
->in_blocking_func
, 0, memory_order_relaxed
);
2175 CallUserSignalHandler(thr
, sync
, true, sig
, info
, ctx
);
2176 atomic_store(&thr
->in_blocking_func
, 1, memory_order_relaxed
);
2178 // Be very conservative with when we do acquire in this case.
2179 // It's unsafe to do acquire in async handlers, because ThreadState
2180 // can be in inconsistent state.
2181 // SIGSYS looks relatively safe -- it's synchronous and can actually
2182 // need some global state.
2183 bool acq
= (sig
== SIGSYS
);
2184 CallUserSignalHandler(thr
, sync
, acq
, sig
, info
, ctx
);
2186 atomic_fetch_add(&thr
->in_signal_handler
, -1, memory_order_relaxed
);
2192 SignalDesc
*signal
= &sctx
->pending_signals
[sig
];
2193 if (signal
->armed
== false) {
2194 signal
->armed
= true;
2195 internal_memcpy(&signal
->siginfo
, info
, sizeof(*info
));
2196 internal_memcpy(&signal
->ctx
, ctx
, sizeof(signal
->ctx
));
2197 atomic_store(&thr
->pending_signals
, 1, memory_order_relaxed
);
2201 TSAN_INTERCEPTOR(int, raise
, int sig
) {
2202 SCOPED_TSAN_INTERCEPTOR(raise
, sig
);
2203 ThreadSignalContext
*sctx
= SigCtx(thr
);
2205 int prev
= sctx
->int_signal_send
;
2206 sctx
->int_signal_send
= sig
;
2207 int res
= REAL(raise
)(sig
);
2208 CHECK_EQ(sctx
->int_signal_send
, sig
);
2209 sctx
->int_signal_send
= prev
;
2213 TSAN_INTERCEPTOR(int, kill
, int pid
, int sig
) {
2214 SCOPED_TSAN_INTERCEPTOR(kill
, pid
, sig
);
2215 ThreadSignalContext
*sctx
= SigCtx(thr
);
2217 int prev
= sctx
->int_signal_send
;
2218 if (pid
== (int)internal_getpid()) {
2219 sctx
->int_signal_send
= sig
;
2221 int res
= REAL(kill
)(pid
, sig
);
2222 if (pid
== (int)internal_getpid()) {
2223 CHECK_EQ(sctx
->int_signal_send
, sig
);
2224 sctx
->int_signal_send
= prev
;
2229 TSAN_INTERCEPTOR(int, pthread_kill
, void *tid
, int sig
) {
2230 SCOPED_TSAN_INTERCEPTOR(pthread_kill
, tid
, sig
);
2231 ThreadSignalContext
*sctx
= SigCtx(thr
);
2233 int prev
= sctx
->int_signal_send
;
2234 bool self
= pthread_equal(tid
, pthread_self());
2236 sctx
->int_signal_send
= sig
;
2237 int res
= REAL(pthread_kill
)(tid
, sig
);
2239 CHECK_EQ(sctx
->int_signal_send
, sig
);
2240 sctx
->int_signal_send
= prev
;
2245 TSAN_INTERCEPTOR(int, gettimeofday
, void *tv
, void *tz
) {
2246 SCOPED_TSAN_INTERCEPTOR(gettimeofday
, tv
, tz
);
2247 // It's intercepted merely to process pending signals.
2248 return REAL(gettimeofday
)(tv
, tz
);
2251 TSAN_INTERCEPTOR(int, getaddrinfo
, void *node
, void *service
,
2252 void *hints
, void *rv
) {
2253 SCOPED_TSAN_INTERCEPTOR(getaddrinfo
, node
, service
, hints
, rv
);
2254 // We miss atomic synchronization in getaddrinfo,
2255 // and can report false race between malloc and free
2256 // inside of getaddrinfo. So ignore memory accesses.
2257 ThreadIgnoreBegin(thr
, pc
);
2258 int res
= REAL(getaddrinfo
)(node
, service
, hints
, rv
);
2259 ThreadIgnoreEnd(thr
);
2263 TSAN_INTERCEPTOR(int, fork
, int fake
) {
2264 if (in_symbolizer())
2265 return REAL(fork
)(fake
);
2266 SCOPED_INTERCEPTOR_RAW(fork
, fake
);
2267 return REAL(fork
)(fake
);
2270 void atfork_prepare() {
2271 if (in_symbolizer())
2273 ThreadState
*thr
= cur_thread();
2274 const uptr pc
= StackTrace::GetCurrentPc();
2275 ForkBefore(thr
, pc
);
2278 void atfork_parent() {
2279 if (in_symbolizer())
2281 ThreadState
*thr
= cur_thread();
2282 const uptr pc
= StackTrace::GetCurrentPc();
2283 ForkParentAfter(thr
, pc
);
2286 void atfork_child() {
2287 if (in_symbolizer())
2289 ThreadState
*thr
= cur_thread();
2290 const uptr pc
= StackTrace::GetCurrentPc();
2291 ForkChildAfter(thr
, pc
, true);
2296 TSAN_INTERCEPTOR(int, vfork
, int fake
) {
2297 // Some programs (e.g. openjdk) call close for all file descriptors
2298 // in the child process. Under tsan it leads to false positives, because
2299 // address space is shared, so the parent process also thinks that
2300 // the descriptors are closed (while they are actually not).
2301 // This leads to false positives due to missed synchronization.
2302 // Strictly saying this is undefined behavior, because vfork child is not
2303 // allowed to call any functions other than exec/exit. But this is what
2304 // openjdk does, so we want to handle it.
2305 // We could disable interceptors in the child process. But it's not possible
2306 // to simply intercept and wrap vfork, because vfork child is not allowed
2307 // to return from the function that calls vfork, and that's exactly what
2308 // we would do. So this would require some assembly trickery as well.
2309 // Instead we simply turn vfork into fork.
2310 return WRAP(fork
)(fake
);
2315 TSAN_INTERCEPTOR(int, clone
, int (*fn
)(void *), void *stack
, int flags
,
2316 void *arg
, int *parent_tid
, void *tls
, pid_t
*child_tid
) {
2317 SCOPED_INTERCEPTOR_RAW(clone
, fn
, stack
, flags
, arg
, parent_tid
, tls
,
2323 auto wrapper
= +[](void *p
) -> int {
2324 auto *thr
= cur_thread();
2325 uptr pc
= GET_CURRENT_PC();
2326 // Start the background thread for fork, but not for clone.
2327 // For fork we did this always and it's known to work (or user code has
2328 // adopted). But if we do this for the new clone interceptor some code
2329 // (sandbox2) fails. So model we used to do for years and don't start the
2330 // background thread after clone.
2331 ForkChildAfter(thr
, pc
, false);
2333 auto *arg
= static_cast<Arg
*>(p
);
2334 return arg
->fn(arg
->arg
);
2336 ForkBefore(thr
, pc
);
2337 Arg arg_wrapper
= {fn
, arg
};
2338 int pid
= REAL(clone
)(wrapper
, stack
, flags
, &arg_wrapper
, parent_tid
, tls
,
2340 ForkParentAfter(thr
, pc
);
2345 #if !SANITIZER_APPLE && !SANITIZER_ANDROID
2346 typedef int (*dl_iterate_phdr_cb_t
)(__sanitizer_dl_phdr_info
*info
, SIZE_T size
,
2348 struct dl_iterate_phdr_data
{
2351 dl_iterate_phdr_cb_t cb
;
2355 static bool IsAppNotRodata(uptr addr
) {
2356 return IsAppMem(addr
) && *MemToShadow(addr
) != Shadow::kRodata
;
2359 static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info
*info
, SIZE_T size
,
2361 dl_iterate_phdr_data
*cbdata
= (dl_iterate_phdr_data
*)data
;
2362 // dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later
2363 // accessible in dl_iterate_phdr callback. But we don't see synchronization
2364 // inside of dynamic linker, so we "unpoison" it here in order to not
2365 // produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough
2366 // because some libc functions call __libc_dlopen.
2367 if (info
&& IsAppNotRodata((uptr
)info
->dlpi_name
))
2368 MemoryResetRange(cbdata
->thr
, cbdata
->pc
, (uptr
)info
->dlpi_name
,
2369 internal_strlen(info
->dlpi_name
));
2370 int res
= cbdata
->cb(info
, size
, cbdata
->data
);
2371 // Perform the check one more time in case info->dlpi_name was overwritten
2372 // by user callback.
2373 if (info
&& IsAppNotRodata((uptr
)info
->dlpi_name
))
2374 MemoryResetRange(cbdata
->thr
, cbdata
->pc
, (uptr
)info
->dlpi_name
,
2375 internal_strlen(info
->dlpi_name
));
2379 TSAN_INTERCEPTOR(int, dl_iterate_phdr
, dl_iterate_phdr_cb_t cb
, void *data
) {
2380 SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr
, cb
, data
);
2381 dl_iterate_phdr_data cbdata
;
2386 int res
= REAL(dl_iterate_phdr
)(dl_iterate_phdr_cb
, &cbdata
);
2391 static int OnExit(ThreadState
*thr
) {
2392 int status
= Finalize(thr
);
2397 #if !SANITIZER_APPLE
2398 static void HandleRecvmsg(ThreadState
*thr
, uptr pc
,
2399 __sanitizer_msghdr
*msg
) {
2401 int cnt
= ExtractRecvmsgFDs(msg
, fds
, ARRAY_SIZE(fds
));
2402 for (int i
= 0; i
< cnt
; i
++)
2403 FdEventCreate(thr
, pc
, fds
[i
]);
2407 #include "sanitizer_common/sanitizer_platform_interceptors.h"
2408 // Causes interceptor recursion (getaddrinfo() and fopen())
2409 #undef SANITIZER_INTERCEPT_GETADDRINFO
2410 // We define our own.
2411 #if SANITIZER_INTERCEPT_TLS_GET_ADDR
2412 #define NEED_TLS_GET_ADDR
2414 #undef SANITIZER_INTERCEPT_TLS_GET_ADDR
2415 #define SANITIZER_INTERCEPT_TLS_GET_OFFSET 1
2416 #undef SANITIZER_INTERCEPT_PTHREAD_SIGMASK
2418 #define COMMON_INTERCEPT_FUNCTION_VER(name, ver) \
2419 INTERCEPT_FUNCTION_VER(name, ver)
2420 #define COMMON_INTERCEPT_FUNCTION_VER_UNVERSIONED_FALLBACK(name, ver) \
2421 (INTERCEPT_FUNCTION_VER(name, ver) || INTERCEPT_FUNCTION(name))
2423 #define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
2424 SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__); \
2425 TsanInterceptorContext _ctx = {thr, pc}; \
2426 ctx = (void *)&_ctx; \
2429 #define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
2431 Acquire(thr, pc, File2addr(path)); \
2433 int fd = fileno_unlocked(file); \
2434 if (fd >= 0) FdFileCreate(thr, pc, fd); \
2437 #define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
2439 int fd = fileno_unlocked(file); \
2440 FdClose(thr, pc, fd); \
2443 #define COMMON_INTERCEPTOR_DLOPEN(filename, flag) \
2445 CheckNoDeepBind(filename, flag); \
2446 ThreadIgnoreBegin(thr, 0); \
2447 void *res = REAL(dlopen)(filename, flag); \
2448 ThreadIgnoreEnd(thr); \
2452 // Ignore interceptors in OnLibraryLoaded()/Unloaded(). These hooks use code
2453 // (ListOfModules::init, MemoryMappingLayout::DumpListOfModules) that make
2454 // intercepted calls, which can cause deadlockes with ReportRace() which also
2456 #define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \
2458 ScopedIgnoreInterceptors ignore_interceptors; \
2459 libignore()->OnLibraryLoaded(filename); \
2462 #define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \
2464 ScopedIgnoreInterceptors ignore_interceptors; \
2465 libignore()->OnLibraryUnloaded(); \
2468 #define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \
2469 Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u)
2471 #define COMMON_INTERCEPTOR_RELEASE(ctx, u) \
2472 Release(((TsanInterceptorContext *) ctx)->thr, pc, u)
2474 #define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \
2475 Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path))
2477 #define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
2478 FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2480 #define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
2481 FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2483 #define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
2484 FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2486 #define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
2487 FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)
2489 #define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
2490 ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)
2492 #define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
2493 if (pthread_equal(pthread_self(), reinterpret_cast<void *>(thread))) \
2494 COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name); \
2496 __tsan::ctx->thread_registry.SetThreadNameByUserId(thread, name)
2498 #define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)
2500 #define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
2501 OnExit(((TsanInterceptorContext *) ctx)->thr)
2503 #define COMMON_INTERCEPTOR_MMAP_IMPL(ctx, mmap, addr, sz, prot, flags, fd, \
2506 return mmap_interceptor(thr, pc, REAL(mmap), addr, sz, prot, flags, fd, \
2510 #define COMMON_INTERCEPTOR_MUNMAP_IMPL(ctx, addr, sz) \
2512 return munmap_interceptor(thr, pc, REAL(munmap), addr, sz); \
2515 #if !SANITIZER_APPLE
2516 #define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
2517 HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
2518 ((TsanInterceptorContext *)ctx)->pc, msg)
2521 #define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end) \
2522 if (TsanThread *t = GetCurrentThread()) { \
2523 *begin = t->tls_begin(); \
2524 *end = t->tls_end(); \
2526 *begin = *end = 0; \
2529 #define COMMON_INTERCEPTOR_USER_CALLBACK_START() \
2530 SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_START()
2532 #define COMMON_INTERCEPTOR_USER_CALLBACK_END() \
2533 SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_END()
2535 #include "sanitizer_common/sanitizer_common_interceptors.inc"
2537 static int sigaction_impl(int sig
, const __sanitizer_sigaction
*act
,
2538 __sanitizer_sigaction
*old
);
2539 static __sanitizer_sighandler_ptr
signal_impl(int sig
,
2540 __sanitizer_sighandler_ptr h
);
2542 #define SIGNAL_INTERCEPTOR_SIGACTION_IMPL(signo, act, oldact) \
2543 { return sigaction_impl(signo, act, oldact); }
2545 #define SIGNAL_INTERCEPTOR_SIGNAL_IMPL(func, signo, handler) \
2546 { return (uptr)signal_impl(signo, (__sanitizer_sighandler_ptr)handler); }
2548 #define SIGNAL_INTERCEPTOR_ENTER() LazyInitialize(cur_thread_init())
2550 #include "sanitizer_common/sanitizer_signal_interceptors.inc"
2552 int sigaction_impl(int sig
, const __sanitizer_sigaction
*act
,
2553 __sanitizer_sigaction
*old
) {
2554 // Note: if we call REAL(sigaction) directly for any reason without proxying
2555 // the signal handler through sighandler, very bad things will happen.
2556 // The handler will run synchronously and corrupt tsan per-thread state.
2557 SCOPED_INTERCEPTOR_RAW(sigaction
, sig
, act
, old
);
2558 if (sig
<= 0 || sig
>= kSigCount
) {
2559 errno
= errno_EINVAL
;
2562 __sanitizer_sigaction
*sigactions
= interceptor_ctx()->sigactions
;
2563 __sanitizer_sigaction old_stored
;
2564 if (old
) internal_memcpy(&old_stored
, &sigactions
[sig
], sizeof(old_stored
));
2565 __sanitizer_sigaction newact
;
2567 // Copy act into sigactions[sig].
2568 // Can't use struct copy, because compiler can emit call to memcpy.
2569 // Can't use internal_memcpy, because it copies byte-by-byte,
2570 // and signal handler reads the handler concurrently. It can read
2571 // some bytes from old value and some bytes from new value.
2572 // Use volatile to prevent insertion of memcpy.
2573 sigactions
[sig
].handler
=
2574 *(volatile __sanitizer_sighandler_ptr
const *)&act
->handler
;
2575 sigactions
[sig
].sa_flags
= *(volatile int const *)&act
->sa_flags
;
2576 internal_memcpy(&sigactions
[sig
].sa_mask
, &act
->sa_mask
,
2577 sizeof(sigactions
[sig
].sa_mask
));
2578 #if !SANITIZER_FREEBSD && !SANITIZER_APPLE && !SANITIZER_NETBSD
2579 sigactions
[sig
].sa_restorer
= act
->sa_restorer
;
2581 internal_memcpy(&newact
, act
, sizeof(newact
));
2582 internal_sigfillset(&newact
.sa_mask
);
2583 if ((act
->sa_flags
& SA_SIGINFO
) ||
2584 ((uptr
)act
->handler
!= sig_ign
&& (uptr
)act
->handler
!= sig_dfl
)) {
2585 newact
.sa_flags
|= SA_SIGINFO
;
2586 newact
.sigaction
= sighandler
;
2588 ReleaseStore(thr
, pc
, (uptr
)&sigactions
[sig
]);
2591 int res
= REAL(sigaction
)(sig
, act
, old
);
2592 if (res
== 0 && old
&& old
->sigaction
== sighandler
)
2593 internal_memcpy(old
, &old_stored
, sizeof(*old
));
2597 static __sanitizer_sighandler_ptr
signal_impl(int sig
,
2598 __sanitizer_sighandler_ptr h
) {
2599 __sanitizer_sigaction act
;
2601 internal_memset(&act
.sa_mask
, -1, sizeof(act
.sa_mask
));
2603 __sanitizer_sigaction old
;
2604 int res
= sigaction_symname(sig
, &act
, &old
);
2605 if (res
) return (__sanitizer_sighandler_ptr
)sig_err
;
2609 #define TSAN_SYSCALL() \
2610 ThreadState *thr = cur_thread(); \
2611 if (thr->ignore_interceptors) \
2613 ScopedSyscall scoped_syscall(thr)
2615 struct ScopedSyscall
{
2618 explicit ScopedSyscall(ThreadState
*thr
) : thr(thr
) { LazyInitialize(thr
); }
2621 ProcessPendingSignals(thr
);
2625 #if !SANITIZER_FREEBSD && !SANITIZER_APPLE
2626 static void syscall_access_range(uptr pc
, uptr p
, uptr s
, bool write
) {
2628 MemoryAccessRange(thr
, pc
, p
, s
, write
);
2631 static USED
void syscall_acquire(uptr pc
, uptr addr
) {
2633 Acquire(thr
, pc
, addr
);
2634 DPrintf("syscall_acquire(0x%zx))\n", addr
);
2637 static USED
void syscall_release(uptr pc
, uptr addr
) {
2639 DPrintf("syscall_release(0x%zx)\n", addr
);
2640 Release(thr
, pc
, addr
);
2643 static void syscall_fd_close(uptr pc
, int fd
) {
2644 auto *thr
= cur_thread();
2645 FdClose(thr
, pc
, fd
);
2648 static USED
void syscall_fd_acquire(uptr pc
, int fd
) {
2650 FdAcquire(thr
, pc
, fd
);
2651 DPrintf("syscall_fd_acquire(%d)\n", fd
);
2654 static USED
void syscall_fd_release(uptr pc
, int fd
) {
2656 DPrintf("syscall_fd_release(%d)\n", fd
);
2657 FdRelease(thr
, pc
, fd
);
2660 static void syscall_pre_fork(uptr pc
) { ForkBefore(cur_thread(), pc
); }
2662 static void syscall_post_fork(uptr pc
, int pid
) {
2663 ThreadState
*thr
= cur_thread();
2666 ForkChildAfter(thr
, pc
, true);
2668 } else if (pid
> 0) {
2670 ForkParentAfter(thr
, pc
);
2673 ForkParentAfter(thr
, pc
);
2678 #define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
2679 syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)
2681 #define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
2682 syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)
2684 #define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
2690 #define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
2696 #define COMMON_SYSCALL_ACQUIRE(addr) \
2697 syscall_acquire(GET_CALLER_PC(), (uptr)(addr))
2699 #define COMMON_SYSCALL_RELEASE(addr) \
2700 syscall_release(GET_CALLER_PC(), (uptr)(addr))
2702 #define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)
2704 #define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)
2706 #define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)
2708 #define COMMON_SYSCALL_PRE_FORK() \
2709 syscall_pre_fork(GET_CALLER_PC())
2711 #define COMMON_SYSCALL_POST_FORK(res) \
2712 syscall_post_fork(GET_CALLER_PC(), res)
2714 #include "sanitizer_common/sanitizer_common_syscalls.inc"
2715 #include "sanitizer_common/sanitizer_syscalls_netbsd.inc"
2717 #ifdef NEED_TLS_GET_ADDR
2719 static void handle_tls_addr(void *arg
, void *res
) {
2720 ThreadState
*thr
= cur_thread();
2723 DTLS::DTV
*dtv
= DTLS_on_tls_get_addr(arg
, res
, thr
->tls_addr
,
2724 thr
->tls_addr
+ thr
->tls_size
);
2727 // New DTLS block has been allocated.
2728 MemoryResetRange(thr
, 0, dtv
->beg
, dtv
->size
);
2732 // Define own interceptor instead of sanitizer_common's for three reasons:
2733 // 1. It must not process pending signals.
2734 // Signal handlers may contain MOVDQA instruction (see below).
2735 // 2. It must be as simple as possible to not contain MOVDQA.
2736 // 3. Sanitizer_common version uses COMMON_INTERCEPTOR_INITIALIZE_RANGE which
2737 // is empty for tsan (meant only for msan).
2738 // Note: __tls_get_addr can be called with mis-aligned stack due to:
2739 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
2740 // So the interceptor must work with mis-aligned stack, in particular, does not
2741 // execute MOVDQA with stack addresses.
2742 TSAN_INTERCEPTOR(void *, __tls_get_addr
, void *arg
) {
2743 void *res
= REAL(__tls_get_addr
)(arg
);
2744 handle_tls_addr(arg
, res
);
2747 #else // SANITIZER_S390
2748 TSAN_INTERCEPTOR(uptr
, __tls_get_addr_internal
, void *arg
) {
2749 uptr res
= __tls_get_offset_wrapper(arg
, REAL(__tls_get_offset
));
2750 char *tp
= static_cast<char *>(__builtin_thread_pointer());
2751 handle_tls_addr(arg
, res
+ tp
);
2757 #if SANITIZER_NETBSD
2758 TSAN_INTERCEPTOR(void, _lwp_exit
) {
2759 SCOPED_TSAN_INTERCEPTOR(_lwp_exit
);
2760 DestroyThreadState();
2763 #define TSAN_MAYBE_INTERCEPT__LWP_EXIT TSAN_INTERCEPT(_lwp_exit)
2765 #define TSAN_MAYBE_INTERCEPT__LWP_EXIT
2768 #if SANITIZER_FREEBSD
2769 TSAN_INTERCEPTOR(void, thr_exit
, tid_t
*state
) {
2770 SCOPED_TSAN_INTERCEPTOR(thr_exit
, state
);
2771 DestroyThreadState();
2772 REAL(thr_exit(state
));
2774 #define TSAN_MAYBE_INTERCEPT_THR_EXIT TSAN_INTERCEPT(thr_exit)
2776 #define TSAN_MAYBE_INTERCEPT_THR_EXIT
2779 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_init
, void *c
, void *a
)
2780 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_destroy
, void *c
)
2781 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_signal
, void *c
)
2782 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_broadcast
, void *c
)
2783 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_wait
, void *c
, void *m
)
2784 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_init
, void *m
, void *a
)
2785 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_destroy
, void *m
)
2786 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_lock
, void *m
)
2787 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_trylock
, void *m
)
2788 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_unlock
, void *m
)
2789 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_init
, void *l
, void *a
)
2790 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_destroy
, void *l
)
2791 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_rdlock
, void *l
)
2792 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_tryrdlock
, void *l
)
2793 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_wrlock
, void *l
)
2794 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_trywrlock
, void *l
)
2795 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_unlock
, void *l
)
2796 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, once
, void *o
, void (*i
)())
2797 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, sigmask
, int f
, void *n
, void *o
)
2799 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_init
, void *c
, void *a
)
2800 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_signal
, void *c
)
2801 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_broadcast
, void *c
)
2802 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_wait
, void *c
, void *m
)
2803 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_destroy
, void *c
)
2804 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_init
, void *m
, void *a
)
2805 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_destroy
, void *m
)
2806 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_lock
, void *m
)
2807 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_trylock
, void *m
)
2808 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_unlock
, void *m
)
2809 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_init
, void *m
, void *a
)
2810 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_destroy
, void *m
)
2811 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_rdlock
, void *m
)
2812 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_tryrdlock
, void *m
)
2813 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_wrlock
, void *m
)
2814 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_trywrlock
, void *m
)
2815 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_unlock
, void *m
)
2816 TSAN_INTERCEPTOR_NETBSD_ALIAS_THR(int, once
, void *o
, void (*f
)())
2817 TSAN_INTERCEPTOR_NETBSD_ALIAS_THR2(int, sigsetmask
, sigmask
, int a
, void *b
,
2822 static void finalize(void *arg
) {
2823 ThreadState
*thr
= cur_thread();
2824 int status
= Finalize(thr
);
2825 // Make sure the output is not lost.
2831 #if !SANITIZER_APPLE && !SANITIZER_ANDROID
2832 static void unreachable() {
2833 Report("FATAL: ThreadSanitizer: unreachable called\n");
2838 // Define default implementation since interception of libdispatch is optional.
2839 SANITIZER_WEAK_ATTRIBUTE
void InitializeLibdispatchInterceptors() {}
2841 void InitializeInterceptors() {
2842 #if !SANITIZER_APPLE
2843 // We need to setup it early, because functions like dlsym() can call it.
2844 REAL(memset
) = internal_memset
;
2845 REAL(memcpy
) = internal_memcpy
;
2848 new(interceptor_ctx()) InterceptorContext();
2850 InitializeCommonInterceptors();
2851 InitializeSignalInterceptors();
2852 InitializeLibdispatchInterceptors();
2854 #if !SANITIZER_APPLE
2855 InitializeSetjmpInterceptors();
2858 TSAN_INTERCEPT(longjmp_symname
);
2859 TSAN_INTERCEPT(siglongjmp_symname
);
2860 #if SANITIZER_NETBSD
2861 TSAN_INTERCEPT(_longjmp
);
2864 TSAN_INTERCEPT(malloc
);
2865 TSAN_INTERCEPT(__libc_memalign
);
2866 TSAN_INTERCEPT(calloc
);
2867 TSAN_INTERCEPT(realloc
);
2868 TSAN_INTERCEPT(reallocarray
);
2869 TSAN_INTERCEPT(free
);
2870 TSAN_INTERCEPT(cfree
);
2871 TSAN_INTERCEPT(munmap
);
2872 TSAN_MAYBE_INTERCEPT_MEMALIGN
;
2873 TSAN_INTERCEPT(valloc
);
2874 TSAN_MAYBE_INTERCEPT_PVALLOC
;
2875 TSAN_INTERCEPT(posix_memalign
);
2877 TSAN_INTERCEPT(strcpy
);
2878 TSAN_INTERCEPT(strncpy
);
2879 TSAN_INTERCEPT(strdup
);
2881 TSAN_INTERCEPT(pthread_create
);
2882 TSAN_INTERCEPT(pthread_join
);
2883 TSAN_INTERCEPT(pthread_detach
);
2884 TSAN_INTERCEPT(pthread_exit
);
2886 TSAN_INTERCEPT(pthread_tryjoin_np
);
2887 TSAN_INTERCEPT(pthread_timedjoin_np
);
2890 TSAN_INTERCEPT_VER(pthread_cond_init
, PTHREAD_ABI_BASE
);
2891 TSAN_INTERCEPT_VER(pthread_cond_signal
, PTHREAD_ABI_BASE
);
2892 TSAN_INTERCEPT_VER(pthread_cond_broadcast
, PTHREAD_ABI_BASE
);
2893 TSAN_INTERCEPT_VER(pthread_cond_wait
, PTHREAD_ABI_BASE
);
2894 TSAN_INTERCEPT_VER(pthread_cond_timedwait
, PTHREAD_ABI_BASE
);
2895 TSAN_INTERCEPT_VER(pthread_cond_destroy
, PTHREAD_ABI_BASE
);
2897 TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT
;
2899 TSAN_INTERCEPT(pthread_mutex_init
);
2900 TSAN_INTERCEPT(pthread_mutex_destroy
);
2901 TSAN_INTERCEPT(pthread_mutex_lock
);
2902 TSAN_INTERCEPT(pthread_mutex_trylock
);
2903 TSAN_INTERCEPT(pthread_mutex_timedlock
);
2904 TSAN_INTERCEPT(pthread_mutex_unlock
);
2906 # if !__GLIBC_PREREQ(2, 34)
2907 TSAN_INTERCEPT(__pthread_mutex_lock
);
2908 TSAN_INTERCEPT(__pthread_mutex_unlock
);
2912 TSAN_INTERCEPT(pthread_spin_init
);
2913 TSAN_INTERCEPT(pthread_spin_destroy
);
2914 TSAN_INTERCEPT(pthread_spin_lock
);
2915 TSAN_INTERCEPT(pthread_spin_trylock
);
2916 TSAN_INTERCEPT(pthread_spin_unlock
);
2918 TSAN_INTERCEPT(pthread_rwlock_init
);
2919 TSAN_INTERCEPT(pthread_rwlock_destroy
);
2920 TSAN_INTERCEPT(pthread_rwlock_rdlock
);
2921 TSAN_INTERCEPT(pthread_rwlock_tryrdlock
);
2922 TSAN_INTERCEPT(pthread_rwlock_timedrdlock
);
2923 TSAN_INTERCEPT(pthread_rwlock_wrlock
);
2924 TSAN_INTERCEPT(pthread_rwlock_trywrlock
);
2925 TSAN_INTERCEPT(pthread_rwlock_timedwrlock
);
2926 TSAN_INTERCEPT(pthread_rwlock_unlock
);
2928 TSAN_INTERCEPT(pthread_barrier_init
);
2929 TSAN_INTERCEPT(pthread_barrier_destroy
);
2930 TSAN_INTERCEPT(pthread_barrier_wait
);
2932 TSAN_INTERCEPT(pthread_once
);
2934 TSAN_INTERCEPT(fstat
);
2935 TSAN_MAYBE_INTERCEPT___FXSTAT
;
2936 TSAN_MAYBE_INTERCEPT_FSTAT64
;
2937 TSAN_MAYBE_INTERCEPT___FXSTAT64
;
2938 TSAN_INTERCEPT(open
);
2939 TSAN_MAYBE_INTERCEPT_OPEN64
;
2940 TSAN_INTERCEPT(creat
);
2941 TSAN_MAYBE_INTERCEPT_CREAT64
;
2942 TSAN_INTERCEPT(dup
);
2943 TSAN_INTERCEPT(dup2
);
2944 TSAN_INTERCEPT(dup3
);
2945 TSAN_MAYBE_INTERCEPT_EVENTFD
;
2946 TSAN_MAYBE_INTERCEPT_SIGNALFD
;
2947 TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
;
2948 TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
;
2949 TSAN_INTERCEPT(socket
);
2950 TSAN_INTERCEPT(socketpair
);
2951 TSAN_INTERCEPT(connect
);
2952 TSAN_INTERCEPT(bind
);
2953 TSAN_INTERCEPT(listen
);
2954 TSAN_MAYBE_INTERCEPT_EPOLL
;
2955 TSAN_INTERCEPT(close
);
2956 TSAN_MAYBE_INTERCEPT___CLOSE
;
2957 TSAN_MAYBE_INTERCEPT___RES_ICLOSE
;
2958 TSAN_INTERCEPT(pipe
);
2959 TSAN_INTERCEPT(pipe2
);
2961 TSAN_INTERCEPT(unlink
);
2962 TSAN_INTERCEPT(tmpfile
);
2963 TSAN_MAYBE_INTERCEPT_TMPFILE64
;
2964 TSAN_INTERCEPT(abort
);
2965 TSAN_INTERCEPT(rmdir
);
2966 TSAN_INTERCEPT(closedir
);
2968 TSAN_INTERCEPT(sigsuspend
);
2969 TSAN_INTERCEPT(sigblock
);
2970 TSAN_INTERCEPT(sigsetmask
);
2971 TSAN_INTERCEPT(pthread_sigmask
);
2972 TSAN_INTERCEPT(raise
);
2973 TSAN_INTERCEPT(kill
);
2974 TSAN_INTERCEPT(pthread_kill
);
2975 TSAN_INTERCEPT(sleep
);
2976 TSAN_INTERCEPT(usleep
);
2977 TSAN_INTERCEPT(nanosleep
);
2978 TSAN_INTERCEPT(pause
);
2979 TSAN_INTERCEPT(gettimeofday
);
2980 TSAN_INTERCEPT(getaddrinfo
);
2982 TSAN_INTERCEPT(fork
);
2983 TSAN_INTERCEPT(vfork
);
2985 TSAN_INTERCEPT(clone
);
2987 #if !SANITIZER_ANDROID
2988 TSAN_INTERCEPT(dl_iterate_phdr
);
2990 TSAN_MAYBE_INTERCEPT_ON_EXIT
;
2991 TSAN_INTERCEPT(__cxa_atexit
);
2992 TSAN_INTERCEPT(_exit
);
2994 #ifdef NEED_TLS_GET_ADDR
2996 TSAN_INTERCEPT(__tls_get_addr
);
2998 TSAN_INTERCEPT(__tls_get_addr_internal
);
2999 TSAN_INTERCEPT(__tls_get_offset
);
3003 TSAN_MAYBE_INTERCEPT__LWP_EXIT
;
3004 TSAN_MAYBE_INTERCEPT_THR_EXIT
;
3006 #if !SANITIZER_APPLE && !SANITIZER_ANDROID
3007 // Need to setup it, because interceptors check that the function is resolved.
3008 // But atexit is emitted directly into the module, so can't be resolved.
3009 REAL(atexit
) = (int(*)(void(*)()))unreachable
;
3012 if (REAL(__cxa_atexit
)(&finalize
, 0, 0)) {
3013 Printf("ThreadSanitizer: failed to setup atexit callback\n");
3016 if (pthread_atfork(atfork_prepare
, atfork_parent
, atfork_child
)) {
3017 Printf("ThreadSanitizer: failed to setup atfork callbacks\n");
3021 #if !SANITIZER_APPLE && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
3022 if (pthread_key_create(&interceptor_ctx()->finalize_key
, &thread_finalize
)) {
3023 Printf("ThreadSanitizer: failed to create thread key\n");
3028 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_init
);
3029 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_destroy
);
3030 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_signal
);
3031 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_broadcast
);
3032 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_wait
);
3033 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_init
);
3034 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_destroy
);
3035 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_lock
);
3036 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_trylock
);
3037 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_unlock
);
3038 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_init
);
3039 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_destroy
);
3040 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_rdlock
);
3041 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_tryrdlock
);
3042 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_wrlock
);
3043 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_trywrlock
);
3044 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_unlock
);
3045 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(once
);
3046 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(sigmask
);
3048 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_init
);
3049 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_signal
);
3050 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_broadcast
);
3051 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_wait
);
3052 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_destroy
);
3053 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_init
);
3054 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_destroy
);
3055 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_lock
);
3056 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_trylock
);
3057 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_unlock
);
3058 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_init
);
3059 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_destroy
);
3060 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_rdlock
);
3061 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_tryrdlock
);
3062 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_wrlock
);
3063 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_trywrlock
);
3064 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_unlock
);
3065 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(once
);
3066 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(sigsetmask
);
3071 } // namespace __tsan
3073 // Invisible barrier for tests.
3074 // There were several unsuccessful iterations for this functionality:
3075 // 1. Initially it was implemented in user code using
3076 // REAL(pthread_barrier_wait). But pthread_barrier_wait is not supported on
3077 // MacOS. Futexes are linux-specific for this matter.
3078 // 2. Then we switched to atomics+usleep(10). But usleep produced parasitic
3079 // "as-if synchronized via sleep" messages in reports which failed some
3081 // 3. Then we switched to atomics+sched_yield. But this produced tons of tsan-
3082 // visible events, which lead to "failed to restore stack trace" failures.
3083 // Note that no_sanitize_thread attribute does not turn off atomic interception
3084 // so attaching it to the function defined in user code does not help.
3085 // That's why we now have what we have.
3086 constexpr u32 kBarrierThreadBits
= 10;
3087 constexpr u32 kBarrierThreads
= 1 << kBarrierThreadBits
;
3091 SANITIZER_INTERFACE_ATTRIBUTE
void __tsan_testonly_barrier_init(
3092 atomic_uint32_t
*barrier
, u32 num_threads
) {
3093 if (num_threads
>= kBarrierThreads
) {
3094 Printf("barrier_init: count is too large (%d)\n", num_threads
);
3097 // kBarrierThreadBits lsb is thread count,
3098 // the remaining are count of entered threads.
3099 atomic_store(barrier
, num_threads
, memory_order_relaxed
);
3102 static u32
barrier_epoch(u32 value
) {
3103 return (value
>> kBarrierThreadBits
) / (value
& (kBarrierThreads
- 1));
3106 SANITIZER_INTERFACE_ATTRIBUTE
void __tsan_testonly_barrier_wait(
3107 atomic_uint32_t
*barrier
) {
3108 u32 old
= atomic_fetch_add(barrier
, kBarrierThreads
, memory_order_relaxed
);
3109 u32 old_epoch
= barrier_epoch(old
);
3110 if (barrier_epoch(old
+ kBarrierThreads
) != old_epoch
) {
3111 FutexWake(barrier
, (1 << 30));
3115 u32 cur
= atomic_load(barrier
, memory_order_relaxed
);
3116 if (barrier_epoch(cur
) != old_epoch
)
3118 FutexWait(barrier
, cur
);