1 <!--===- docs/Intrinsics.md
3 Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 See https://llvm.org/LICENSE.txt for license information.
5 SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
9 # A categorization of standard (2018) and extended Fortran intrinsic procedures
17 This note attempts to group the intrinsic procedures of Fortran into categories
18 of functions or subroutines with similar interfaces as an aid to
19 comprehension beyond that which might be gained from the standard's
22 A brief status of intrinsic procedure support in f18 is also given at the end.
24 Few procedures are actually described here apart from their interfaces; see the
25 Fortran 2018 standard (section 16) for the complete story.
27 Intrinsic modules are not covered here.
31 1. The value of any intrinsic function's `KIND` actual argument, if present,
32 must be a scalar constant integer expression, of any kind, whose value
33 resolves to some supported kind of the function's result type.
34 If optional and absent, the kind of the function's result is
35 either the default kind of that category or to the kind of an argument
37 1. Procedures are summarized with a non-Fortran syntax for brevity.
38 Wherever a function has a short definition, it appears after an
39 equal sign as if it were a statement function. Any functions referenced
40 in these short summaries are intrinsic.
41 1. Unless stated otherwise, an actual argument may have any supported kind
42 of a particular intrinsic type. Sometimes a pattern variable
43 can appear in a description (e.g., `REAL(k)`) when the kind of an
44 actual argument's type must match the kind of another argument, or
45 determines the kind type parameter of the function result.
46 1. When an intrinsic type name appears without a kind (e.g., `REAL`),
47 it refers to the default kind of that type. Sometimes the word
48 `default` will appear for clarity.
49 1. The names of the dummy arguments actually matter because they can
50 be used as keywords for actual arguments.
51 1. All standard intrinsic functions are pure, even when not elemental.
52 1. Assumed-rank arguments may not appear as actual arguments unless
54 1. When an argument is described with a default value, e.g. `KIND=KIND(0)`,
55 it is an optional argument. Optional arguments without defaults,
56 e.g. `DIM` on many transformationals, are wrapped in `[]` brackets
57 as in the Fortran standard. When an intrinsic has optional arguments
58 with and without default values, the arguments with default values
59 may appear within the brackets to preserve the order of arguments
62 ## Elemental intrinsic functions
64 Pure elemental semantics apply to these functions, to wit: when one or more of
65 the actual arguments are arrays, the arguments must be conformable, and
66 the result is also an array.
67 Scalar arguments are expanded when the arguments are not all scalars.
69 ### Elemental intrinsic functions that may have unrestricted specific procedures
71 When an elemental intrinsic function is documented here as having an
72 _unrestricted specific name_, that name may be passed as an actual
73 argument, used as the target of a procedure pointer, appear in
74 a generic interface, and be otherwise used as if it were an external
76 An `INTRINSIC` statement or attribute may have to be applied to an
77 unrestricted specific name to enable such usage.
79 When a name is being used as a specific procedure for any purpose other
80 than that of a called function, the specific instance of the function
81 that accepts and returns values of the default kinds of the intrinsic
83 A Fortran `INTERFACE` could be written to define each of
84 these unrestricted specific intrinsic function names.
86 Calls to dummy arguments and procedure pointers that correspond to these
87 specific names must pass only scalar actual argument values.
89 No other intrinsic function name can be passed as an actual argument,
90 used as a pointer target, appear in a generic interface, or be otherwise
91 used except as the name of a called function.
92 Some of these _restricted specific intrinsic functions_, e.g. `FLOAT`,
93 provide a means for invoking a corresponding generic (`REAL` in the case of `FLOAT`)
94 with forced argument and result kinds.
95 Others, viz. `CHAR`, `ICHAR`, `INT`, `REAL`, and the lexical comparisons like `LGE`,
96 have the same name as their generic functions, and it is not clear what purpose
97 is accomplished by the standard by defining them as specific functions.
99 ### Trigonometric elemental intrinsic functions, generic and (mostly) specific
100 All of these functions can be used as unrestricted specific names.
103 ACOS(REAL(k) X) -> REAL(k)
104 ASIN(REAL(k) X) -> REAL(k)
105 ATAN(REAL(k) X) -> REAL(k)
106 ATAN(REAL(k) Y, REAL(k) X) -> REAL(k) = ATAN2(Y, X)
107 ATAN2(REAL(k) Y, REAL(k) X) -> REAL(k)
108 COS(REAL(k) X) -> REAL(k)
109 COSH(REAL(k) X) -> REAL(k)
110 SIN(REAL(k) X) -> REAL(k)
111 SINH(REAL(k) X) -> REAL(k)
112 TAN(REAL(k) X) -> REAL(k)
113 TANH(REAL(k) X) -> REAL(k)
116 These `COMPLEX` versions of some of those functions, and the
117 inverse hyperbolic functions, cannot be used as specific names.
119 ACOS(COMPLEX(k) X) -> COMPLEX(k)
120 ASIN(COMPLEX(k) X) -> COMPLEX(k)
121 ATAN(COMPLEX(k) X) -> COMPLEX(k)
122 ACOSH(REAL(k) X) -> REAL(k)
123 ACOSH(COMPLEX(k) X) -> COMPLEX(k)
124 ASINH(REAL(k) X) -> REAL(k)
125 ASINH(COMPLEX(k) X) -> COMPLEX(k)
126 ATANH(REAL(k) X) -> REAL(k)
127 ATANH(COMPLEX(k) X) -> COMPLEX(k)
128 COS(COMPLEX(k) X) -> COMPLEX(k)
129 COSH(COMPLEX(k) X) -> COMPLEX(k)
130 SIN(COMPLEX(k) X) -> COMPLEX(k)
131 SINH(COMPLEX(k) X) -> COMPLEX(k)
132 TAN(COMPLEX(k) X) -> COMPLEX(k)
133 TANH(COMPLEX(k) X) -> COMPLEX(k)
136 ### Non-trigonometric elemental intrinsic functions, generic and specific
137 These functions *can* be used as unrestricted specific names.
139 ABS(REAL(k) A) -> REAL(k) = SIGN(A, 0.0)
140 AIMAG(COMPLEX(k) Z) -> REAL(k) = Z%IM
141 AINT(REAL(k) A, KIND=k) -> REAL(KIND)
142 ANINT(REAL(k) A, KIND=k) -> REAL(KIND)
143 CONJG(COMPLEX(k) Z) -> COMPLEX(k) = CMPLX(Z%RE, -Z%IM)
144 DIM(REAL(k) X, REAL(k) Y) -> REAL(k) = X-MIN(X,Y)
145 DPROD(default REAL X, default REAL Y) -> DOUBLE PRECISION = DBLE(X)*DBLE(Y)
146 EXP(REAL(k) X) -> REAL(k)
147 INDEX(CHARACTER(k) STRING, CHARACTER(k) SUBSTRING, LOGICAL(any) BACK=.FALSE., KIND=KIND(0)) -> INTEGER(KIND)
148 LEN(CHARACTER(k,n) STRING, KIND=KIND(0)) -> INTEGER(KIND) = n
149 LOG(REAL(k) X) -> REAL(k)
150 LOG10(REAL(k) X) -> REAL(k)
151 MOD(INTEGER(k) A, INTEGER(k) P) -> INTEGER(k) = A-P*INT(A/P)
152 NINT(REAL(k) A, KIND=KIND(0)) -> INTEGER(KIND)
153 SIGN(REAL(k) A, REAL(k) B) -> REAL(k)
154 SQRT(REAL(k) X) -> REAL(k) = X ** 0.5
157 These variants, however *cannot* be used as specific names without recourse to an alias
158 from the following section:
160 ABS(INTEGER(k) A) -> INTEGER(k) = SIGN(A, 0)
161 ABS(COMPLEX(k) A) -> REAL(k) = HYPOT(A%RE, A%IM)
162 DIM(INTEGER(k) X, INTEGER(k) Y) -> INTEGER(k) = X-MIN(X,Y)
163 EXP(COMPLEX(k) X) -> COMPLEX(k)
164 LOG(COMPLEX(k) X) -> COMPLEX(k)
165 MOD(REAL(k) A, REAL(k) P) -> REAL(k) = A-P*INT(A/P)
166 SIGN(INTEGER(k) A, INTEGER(k) B) -> INTEGER(k)
167 SQRT(COMPLEX(k) X) -> COMPLEX(k)
170 ### Unrestricted specific aliases for some elemental intrinsic functions with distinct names
173 ALOG(REAL X) -> REAL = LOG(X)
174 ALOG10(REAL X) -> REAL = LOG10(X)
175 AMOD(REAL A, REAL P) -> REAL = MOD(A, P)
176 CABS(COMPLEX A) = ABS(A)
177 CCOS(COMPLEX X) = COS(X)
178 CEXP(COMPLEX A) -> COMPLEX = EXP(A)
179 CLOG(COMPLEX X) -> COMPLEX = LOG(X)
180 CSIN(COMPLEX X) -> COMPLEX = SIN(X)
181 CSQRT(COMPLEX X) -> COMPLEX = SQRT(X)
182 CTAN(COMPLEX X) -> COMPLEX = TAN(X)
183 DABS(DOUBLE PRECISION A) -> DOUBLE PRECISION = ABS(A)
184 DACOS(DOUBLE PRECISION X) -> DOUBLE PRECISION = ACOS(X)
185 DASIN(DOUBLE PRECISION X) -> DOUBLE PRECISION = ASIN(X)
186 DATAN(DOUBLE PRECISION X) -> DOUBLE PRECISION = ATAN(X)
187 DATAN2(DOUBLE PRECISION Y, DOUBLE PRECISION X) -> DOUBLE PRECISION = ATAN2(Y, X)
188 DCOS(DOUBLE PRECISION X) -> DOUBLE PRECISION = COS(X)
189 DCOSH(DOUBLE PRECISION X) -> DOUBLE PRECISION = COSH(X)
190 DDIM(DOUBLE PRECISION X, DOUBLE PRECISION Y) -> DOUBLE PRECISION = X-MIN(X,Y)
191 DEXP(DOUBLE PRECISION X) -> DOUBLE PRECISION = EXP(X)
192 DINT(DOUBLE PRECISION A) -> DOUBLE PRECISION = AINT(A)
193 DLOG(DOUBLE PRECISION X) -> DOUBLE PRECISION = LOG(X)
194 DLOG10(DOUBLE PRECISION X) -> DOUBLE PRECISION = LOG10(X)
195 DMOD(DOUBLE PRECISION A, DOUBLE PRECISION P) -> DOUBLE PRECISION = MOD(A, P)
196 DNINT(DOUBLE PRECISION A) -> DOUBLE PRECISION = ANINT(A)
197 DSIGN(DOUBLE PRECISION A, DOUBLE PRECISION B) -> DOUBLE PRECISION = SIGN(A, B)
198 DSIN(DOUBLE PRECISION X) -> DOUBLE PRECISION = SIN(X)
199 DSINH(DOUBLE PRECISION X) -> DOUBLE PRECISION = SINH(X)
200 DSQRT(DOUBLE PRECISION X) -> DOUBLE PRECISION = SQRT(X)
201 DTAN(DOUBLE PRECISION X) -> DOUBLE PRECISION = TAN(X)
202 DTANH(DOUBLE PRECISION X) -> DOUBLE PRECISION = TANH(X)
203 IABS(INTEGER A) -> INTEGER = ABS(A)
204 IDIM(INTEGER X, INTEGER Y) -> INTEGER = X-MIN(X,Y)
205 IDNINT(DOUBLE PRECISION A) -> INTEGER = NINT(A)
206 ISIGN(INTEGER A, INTEGER B) -> INTEGER = SIGN(A, B)
209 ## Generic elemental intrinsic functions without specific names
211 (No procedures after this point can be passed as actual arguments, used as
212 pointer targets, or appear as specific procedures in generic interfaces.)
214 ### Elemental conversions
217 ACHAR(INTEGER(k) I, KIND=KIND('')) -> CHARACTER(KIND,LEN=1)
218 CEILING(REAL() A, KIND=KIND(0)) -> INTEGER(KIND)
219 CHAR(INTEGER(any) I, KIND=KIND('')) -> CHARACTER(KIND,LEN=1)
220 CMPLX(COMPLEX(k) X, KIND=KIND(0.0D0)) -> COMPLEX(KIND)
221 CMPLX(INTEGER or REAL or BOZ X, INTEGER or REAL or BOZ Y=0, KIND=KIND((0,0))) -> COMPLEX(KIND)
222 DBLE(INTEGER or REAL or COMPLEX or BOZ A) = REAL(A, KIND=KIND(0.0D0))
223 EXPONENT(REAL(any) X) -> default INTEGER
224 FLOOR(REAL(any) A, KIND=KIND(0)) -> INTEGER(KIND)
225 IACHAR(CHARACTER(KIND=k,LEN=1) C, KIND=KIND(0)) -> INTEGER(KIND)
226 ICHAR(CHARACTER(KIND=k,LEN=1) C, KIND=KIND(0)) -> INTEGER(KIND)
227 INT(INTEGER or REAL or COMPLEX or BOZ A, KIND=KIND(0)) -> INTEGER(KIND)
228 LOGICAL(LOGICAL(any) L, KIND=KIND(.TRUE.)) -> LOGICAL(KIND)
229 REAL(INTEGER or REAL or COMPLEX or BOZ A, KIND=KIND(0.0)) -> REAL(KIND)
232 ### Other generic elemental intrinsic functions without specific names
233 N.B. `BESSEL_JN(N1, N2, X)` and `BESSEL_YN(N1, N2, X)` are categorized
234 below with the _transformational_ intrinsic functions.
237 BESSEL_J0(REAL(k) X) -> REAL(k)
238 BESSEL_J1(REAL(k) X) -> REAL(k)
239 BESSEL_JN(INTEGER(n) N, REAL(k) X) -> REAL(k)
240 BESSEL_Y0(REAL(k) X) -> REAL(k)
241 BESSEL_Y1(REAL(k) X) -> REAL(k)
242 BESSEL_YN(INTEGER(n) N, REAL(k) X) -> REAL(k)
243 ERF(REAL(k) X) -> REAL(k)
244 ERFC(REAL(k) X) -> REAL(k)
245 ERFC_SCALED(REAL(k) X) -> REAL(k)
246 FRACTION(REAL(k) X) -> REAL(k)
247 GAMMA(REAL(k) X) -> REAL(k)
248 HYPOT(REAL(k) X, REAL(k) Y) -> REAL(k) = SQRT(X*X+Y*Y) without spurious overflow
249 IMAGE_STATUS(INTEGER(any) IMAGE [, scalar TEAM_TYPE TEAM ]) -> default INTEGER
250 IS_IOSTAT_END(INTEGER(any) I) -> default LOGICAL
251 IS_IOSTAT_EOR(INTEGER(any) I) -> default LOGICAL
252 LOG_GAMMA(REAL(k) X) -> REAL(k)
253 MAX(INTEGER(k) ...) -> INTEGER(k)
254 MAX(REAL(k) ...) -> REAL(k)
255 MAX(CHARACTER(KIND=k) ...) -> CHARACTER(KIND=k,LEN=MAX(LEN(...)))
256 MERGE(any type TSOURCE, same type FSOURCE, LOGICAL(any) MASK) -> type of FSOURCE
257 MIN(INTEGER(k) ...) -> INTEGER(k)
258 MIN(REAL(k) ...) -> REAL(k)
259 MIN(CHARACTER(KIND=k) ...) -> CHARACTER(KIND=k,LEN=MAX(LEN(...)))
260 MODULO(INTEGER(k) A, INTEGER(k) P) -> INTEGER(k); P*result >= 0
261 MODULO(REAL(k) A, REAL(k) P) -> REAL(k) = A - P*FLOOR(A/P)
262 NEAREST(REAL(k) X, REAL(any) S) -> REAL(k)
263 OUT_OF_RANGE(INTEGER(any) X, scalar INTEGER or REAL(k) MOLD) -> default LOGICAL
264 OUT_OF_RANGE(REAL(any) X, scalar REAL(k) MOLD) -> default LOGICAL
265 OUT_OF_RANGE(REAL(any) X, scalar INTEGER(any) MOLD, scalar LOGICAL(any) ROUND=.FALSE.) -> default LOGICAL
266 RRSPACING(REAL(k) X) -> REAL(k)
267 SCALE(REAL(k) X, INTEGER(any) I) -> REAL(k)
268 SET_EXPONENT(REAL(k) X, INTEGER(any) I) -> REAL(k)
269 SPACING(REAL(k) X) -> REAL(k)
272 ### Restricted specific aliases for elemental conversions &/or extrema with default intrinsic types
275 AMAX0(INTEGER ...) = REAL(MAX(...))
276 AMAX1(REAL ...) = MAX(...)
277 AMIN0(INTEGER...) = REAL(MIN(...))
278 AMIN1(REAL ...) = MIN(...)
279 DMAX1(DOUBLE PRECISION ...) = MAX(...)
280 DMIN1(DOUBLE PRECISION ...) = MIN(...)
281 FLOAT(INTEGER I) = REAL(I)
282 IDINT(DOUBLE PRECISION A) = INT(A)
283 IFIX(REAL A) = INT(A)
284 MAX0(INTEGER ...) = MAX(...)
285 MAX1(REAL ...) = INT(MAX(...))
286 MIN0(INTEGER ...) = MIN(...)
287 MIN1(REAL ...) = INT(MIN(...))
288 SNGL(DOUBLE PRECISION A) = REAL(A)
291 ### Generic elemental bit manipulation intrinsic functions
292 Many of these accept a typeless "BOZ" literal as an actual argument.
293 It is interpreted as having the kind of intrinsic `INTEGER` type
294 as another argument, as if the typeless were implicitly wrapped
295 in a call to `INT()`.
296 When multiple arguments can be either `INTEGER` values or typeless
297 constants, it is forbidden for *all* of them to be typeless
298 constants if the result of the function is `INTEGER`
299 (i.e., only `BGE`, `BGT`, `BLE`, and `BLT` can have multiple
303 BGE(INTEGER(n1) or BOZ I, INTEGER(n2) or BOZ J) -> default LOGICAL
304 BGT(INTEGER(n1) or BOZ I, INTEGER(n2) or BOZ J) -> default LOGICAL
305 BLE(INTEGER(n1) or BOZ I, INTEGER(n2) or BOZ J) -> default LOGICAL
306 BLT(INTEGER(n1) or BOZ I, INTEGER(n2) or BOZ J) -> default LOGICAL
307 BTEST(INTEGER(n1) I, INTEGER(n2) POS) -> default LOGICAL
308 DSHIFTL(INTEGER(k) I, INTEGER(k) or BOZ J, INTEGER(any) SHIFT) -> INTEGER(k)
309 DSHIFTL(BOZ I, INTEGER(k), INTEGER(any) SHIFT) -> INTEGER(k)
310 DSHIFTR(INTEGER(k) I, INTEGER(k) or BOZ J, INTEGER(any) SHIFT) -> INTEGER(k)
311 DSHIFTR(BOZ I, INTEGER(k), INTEGER(any) SHIFT) -> INTEGER(k)
312 IAND(INTEGER(k) I, INTEGER(k) or BOZ J) -> INTEGER(k)
313 IAND(BOZ I, INTEGER(k) J) -> INTEGER(k)
314 IBCLR(INTEGER(k) I, INTEGER(any) POS) -> INTEGER(k)
315 IBITS(INTEGER(k) I, INTEGER(n1) POS, INTEGER(n2) LEN) -> INTEGER(k)
316 IBSET(INTEGER(k) I, INTEGER(any) POS) -> INTEGER(k)
317 IEOR(INTEGER(k) I, INTEGER(k) or BOZ J) -> INTEGER(k)
318 IEOR(BOZ I, INTEGER(k) J) -> INTEGER(k)
319 IOR(INTEGER(k) I, INTEGER(k) or BOZ J) -> INTEGER(k)
320 IOR(BOZ I, INTEGER(k) J) -> INTEGER(k)
321 ISHFT(INTEGER(k) I, INTEGER(any) SHIFT) -> INTEGER(k)
322 ISHFTC(INTEGER(k) I, INTEGER(n1) SHIFT, INTEGER(n2) SIZE=BIT_SIZE(I)) -> INTEGER(k)
323 LEADZ(INTEGER(any) I) -> default INTEGER
324 MASKL(INTEGER(any) I, KIND=KIND(0)) -> INTEGER(KIND)
325 MASKR(INTEGER(any) I, KIND=KIND(0)) -> INTEGER(KIND)
326 MERGE_BITS(INTEGER(k) I, INTEGER(k) or BOZ J, INTEGER(k) or BOZ MASK) = IOR(IAND(I,MASK),IAND(J,NOT(MASK)))
327 MERGE_BITS(BOZ I, INTEGER(k) J, INTEGER(k) or BOZ MASK) = IOR(IAND(I,MASK),IAND(J,NOT(MASK)))
328 NOT(INTEGER(k) I) -> INTEGER(k)
329 POPCNT(INTEGER(any) I) -> default INTEGER
330 POPPAR(INTEGER(any) I) -> default INTEGER = IAND(POPCNT(I), Z'1')
331 SHIFTA(INTEGER(k) I, INTEGER(any) SHIFT) -> INTEGER(k)
332 SHIFTL(INTEGER(k) I, INTEGER(any) SHIFT) -> INTEGER(k)
333 SHIFTR(INTEGER(k) I, INTEGER(any) SHIFT) -> INTEGER(k)
334 TRAILZ(INTEGER(any) I) -> default INTEGER
337 ### Character elemental intrinsic functions
338 See also `INDEX` and `LEN` above among the elemental intrinsic functions with
339 unrestricted specific names.
341 ADJUSTL(CHARACTER(k,LEN=n) STRING) -> CHARACTER(k,LEN=n)
342 ADJUSTR(CHARACTER(k,LEN=n) STRING) -> CHARACTER(k,LEN=n)
343 LEN_TRIM(CHARACTER(k,n) STRING, KIND=KIND(0)) -> INTEGER(KIND) = n
344 LGE(CHARACTER(k,n1) STRING_A, CHARACTER(k,n2) STRING_B) -> default LOGICAL
345 LGT(CHARACTER(k,n1) STRING_A, CHARACTER(k,n2) STRING_B) -> default LOGICAL
346 LLE(CHARACTER(k,n1) STRING_A, CHARACTER(k,n2) STRING_B) -> default LOGICAL
347 LLT(CHARACTER(k,n1) STRING_A, CHARACTER(k,n2) STRING_B) -> default LOGICAL
348 SCAN(CHARACTER(k,n) STRING, CHARACTER(k,m) SET, LOGICAL(any) BACK=.FALSE., KIND=KIND(0)) -> INTEGER(KIND)
349 VERIFY(CHARACTER(k,n) STRING, CHARACTER(k,m) SET, LOGICAL(any) BACK=.FALSE., KIND=KIND(0)) -> INTEGER(KIND)
352 `SCAN` returns the index of the first (or last, if `BACK=.TRUE.`) character in `STRING`
353 that is present in `SET`, or zero if none is.
355 `VERIFY` is essentially the opposite: it returns the index of the first (or last) character
356 in `STRING` that is *not* present in `SET`, or zero if all are.
358 ## Transformational intrinsic functions
360 This category comprises a large collection of intrinsic functions that
361 are collected together because they somehow transform their arguments
362 in a way that prevents them from being elemental.
363 All of them are pure, however.
365 Some general rules apply to the transformational intrinsic functions:
367 1. `DIM` arguments are optional; if present, the actual argument must be
368 a scalar integer of any kind.
369 1. When an optional `DIM` argument is absent, or an `ARRAY` or `MASK`
370 argument is a vector, the result of the function is scalar; otherwise,
371 the result is an array of the same shape as the `ARRAY` or `MASK`
372 argument with the dimension `DIM` removed from the shape.
373 1. When a function takes an optional `MASK` argument, it must be conformable
374 with its `ARRAY` argument if it is present, and the mask can be any kind
375 of `LOGICAL`. It can be scalar.
376 1. The type `numeric` here can be any kind of `INTEGER`, `REAL`, or `COMPLEX`.
377 1. The type `relational` here can be any kind of `INTEGER`, `REAL`, or `CHARACTER`.
378 1. The type `any` here denotes any intrinsic or derived type.
379 1. The notation `(..)` denotes an array of any rank (but not an assumed-rank array).
381 ### Logical reduction transformational intrinsic functions
383 ALL(LOGICAL(k) MASK(..) [, DIM ]) -> LOGICAL(k)
384 ANY(LOGICAL(k) MASK(..) [, DIM ]) -> LOGICAL(k)
385 COUNT(LOGICAL(any) MASK(..) [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND)
386 PARITY(LOGICAL(k) MASK(..) [, DIM ]) -> LOGICAL(k)
389 ### Numeric reduction transformational intrinsic functions
391 IALL(INTEGER(k) ARRAY(..) [, DIM, MASK ]) -> INTEGER(k)
392 IANY(INTEGER(k) ARRAY(..) [, DIM, MASK ]) -> INTEGER(k)
393 IPARITY(INTEGER(k) ARRAY(..) [, DIM, MASK ]) -> INTEGER(k)
394 NORM2(REAL(k) X(..) [, DIM ]) -> REAL(k)
395 PRODUCT(numeric ARRAY(..) [, DIM, MASK ]) -> numeric
396 SUM(numeric ARRAY(..) [, DIM, MASK ]) -> numeric
399 `NORM2` generalizes `HYPOT` by computing `SQRT(SUM(X*X))` while avoiding spurious overflows.
401 ### Extrema reduction transformational intrinsic functions
403 MAXVAL(relational(k) ARRAY(..) [, DIM, MASK ]) -> relational(k)
404 MINVAL(relational(k) ARRAY(..) [, DIM, MASK ]) -> relational(k)
407 ### Locational transformational intrinsic functions
408 When the optional `DIM` argument is absent, the result is an `INTEGER(KIND)`
409 vector whose length is the rank of `ARRAY`.
410 When the optional `DIM` argument is present, the result is an `INTEGER(KIND)`
411 array of rank `RANK(ARRAY)-1` and shape equal to that of `ARRAY` with
412 the dimension `DIM` removed.
414 The optional `BACK` argument is a scalar LOGICAL value of any kind.
415 When present and `.TRUE.`, it causes the function to return the index
416 of the *last* occurence of the target or extreme value.
418 For `FINDLOC`, `ARRAY` may have any of the five intrinsic types, and `VALUE`
419 must a scalar value of a type for which `ARRAY==VALUE` or `ARRAY .EQV. VALUE`
420 is an acceptable expression.
423 FINDLOC(intrinsic ARRAY(..), scalar VALUE [, DIM, MASK, KIND=KIND(0), BACK=.FALSE. ])
424 MAXLOC(relational ARRAY(..) [, DIM, MASK, KIND=KIND(0), BACK=.FALSE. ])
425 MINLOC(relational ARRAY(..) [, DIM, MASK, KIND=KIND(0), BACK=.FALSE. ])
428 ### Data rearrangement transformational intrinsic functions
429 The optional `DIM` argument to these functions must be a scalar integer of
430 any kind, and it takes a default value of 1 when absent.
433 CSHIFT(any ARRAY(..), INTEGER(any) SHIFT(..) [, DIM ]) -> same type/kind/shape as ARRAY
435 Either `SHIFT` is scalar or `RANK(SHIFT) == RANK(ARRAY) - 1` and `SHAPE(SHIFT)` is that of `SHAPE(ARRAY)` with element `DIM` removed.
438 EOSHIFT(any ARRAY(..), INTEGER(any) SHIFT(..) [, BOUNDARY, DIM ]) -> same type/kind/shape as ARRAY
440 * `SHIFT` is scalar or `RANK(SHIFT) == RANK(ARRAY) - 1` and `SHAPE(SHIFT)` is that of `SHAPE(ARRAY)` with element `DIM` removed.
441 * If `BOUNDARY` is present, it must have the same type and parameters as `ARRAY`.
442 * If `BOUNDARY` is absent, `ARRAY` must be of an intrinsic type, and the default `BOUNDARY` is the obvious `0`, `' '`, or `.FALSE.` value of `KIND(ARRAY)`.
443 * If `BOUNDARY` is present, either it is scalar, or `RANK(BOUNDARY) == RANK(ARRAY) - 1` and `SHAPE(BOUNDARY)` is that of `SHAPE(ARRAY)` with element `DIM`
447 PACK(any ARRAY(..), LOGICAL(any) MASK(..)) -> vector of same type and kind as ARRAY
449 * `MASK` is conformable with `ARRAY` and may be scalar.
450 * The length of the result vector is `COUNT(MASK)` if `MASK` is an array, else `SIZE(ARRAY)` if `MASK` is `.TRUE.`, else zero.
453 PACK(any ARRAY(..), LOGICAL(any) MASK(..), any VECTOR(n)) -> vector of same type, kind, and size as VECTOR
455 * `MASK` is conformable with `ARRAY` and may be scalar.
456 * `VECTOR` has the same type and kind as `ARRAY`.
457 * `VECTOR` must not be smaller than result of `PACK` with no `VECTOR` argument.
458 * The leading elements of `VECTOR` are replaced with elements from `ARRAY` as
459 if `PACK` had been invoked without `VECTOR`.
462 RESHAPE(any SOURCE(..), INTEGER(k) SHAPE(n) [, PAD(..), INTEGER(k2) ORDER(n) ]) -> SOURCE array with shape SHAPE
464 * If `ORDER` is present, it is a vector of the same size as `SHAPE`, and
465 contains a permutation.
466 * The element(s) of `PAD` are used to fill out the result once `SOURCE`
470 SPREAD(any SOURCE, DIM, scalar INTEGER(any) NCOPIES) -> same type as SOURCE, rank=RANK(SOURCE)+1
471 TRANSFER(any SOURCE, any MOLD) -> scalar if MOLD is scalar, else vector; same type and kind as MOLD
472 TRANSFER(any SOURCE, any MOLD, scalar INTEGER(any) SIZE) -> vector(SIZE) of type and kind of MOLD
473 TRANSPOSE(any MATRIX(n,m)) -> matrix(m,n) of same type and kind as MATRIX
476 The shape of the result of `SPREAD` is the same as that of `SOURCE`, with `NCOPIES` inserted
480 UNPACK(any VECTOR(n), LOGICAL(any) MASK(..), FIELD) -> type and kind of VECTOR, shape of MASK
482 `FIELD` has same type and kind as `VECTOR` and is conformable with `MASK`.
484 ### Other transformational intrinsic functions
486 BESSEL_JN(INTEGER(n1) N1, INTEGER(n2) N2, REAL(k) X) -> REAL(k) vector (MAX(N2-N1+1,0))
487 BESSEL_YN(INTEGER(n1) N1, INTEGER(n2) N2, REAL(k) X) -> REAL(k) vector (MAX(N2-N1+1,0))
488 COMMAND_ARGUMENT_COUNT() -> scalar default INTEGER
489 DOT_PRODUCT(LOGICAL(k) VECTOR_A(n), LOGICAL(k) VECTOR_B(n)) -> LOGICAL(k) = ANY(VECTOR_A .AND. VECTOR_B)
490 DOT_PRODUCT(COMPLEX(any) VECTOR_A(n), numeric VECTOR_B(n)) = SUM(CONJG(VECTOR_A) * VECTOR_B)
491 DOT_PRODUCT(INTEGER(any) or REAL(any) VECTOR_A(n), numeric VECTOR_B(n)) = SUM(VECTOR_A * VECTOR_B)
492 MATMUL(numeric ARRAY_A(j), numeric ARRAY_B(j,k)) -> numeric vector(k)
493 MATMUL(numeric ARRAY_A(j,k), numeric ARRAY_B(k)) -> numeric vector(j)
494 MATMUL(numeric ARRAY_A(j,k), numeric ARRAY_B(k,m)) -> numeric matrix(j,m)
495 MATMUL(LOGICAL(n1) ARRAY_A(j), LOGICAL(n2) ARRAY_B(j,k)) -> LOGICAL vector(k)
496 MATMUL(LOGICAL(n1) ARRAY_A(j,k), LOGICAL(n2) ARRAY_B(k)) -> LOGICAL vector(j)
497 MATMUL(LOGICAL(n1) ARRAY_A(j,k), LOGICAL(n2) ARRAY_B(k,m)) -> LOGICAL matrix(j,m)
498 NULL([POINTER/ALLOCATABLE MOLD]) -> POINTER
499 REDUCE(any ARRAY(..), function OPERATION [, DIM, LOGICAL(any) MASK(..), IDENTITY, LOGICAL ORDERED=.FALSE. ])
500 REPEAT(CHARACTER(k,n) STRING, INTEGER(any) NCOPIES) -> CHARACTER(k,n*NCOPIES)
501 SELECTED_CHAR_KIND('DEFAULT' or 'ASCII' or 'ISO_10646' or ...) -> scalar default INTEGER
502 SELECTED_INT_KIND(scalar INTEGER(any) R) -> scalar default INTEGER
503 SELECTED_REAL_KIND([scalar INTEGER(any) P, scalar INTEGER(any) R, scalar INTEGER(any) RADIX]) -> scalar default INTEGER
504 SHAPE(SOURCE, KIND=KIND(0)) -> INTEGER(KIND)(RANK(SOURCE))
505 TRIM(CHARACTER(k,n) STRING) -> CHARACTER(k)
508 The type and kind of the result of a numeric `MATMUL` is the same as would result from
509 a multiplication of an element of ARRAY_A and an element of ARRAY_B.
511 The kind of the `LOGICAL` result of a `LOGICAL` `MATMUL` is the same as would result
512 from an intrinsic `.AND.` operation between an element of `ARRAY_A` and an element
515 Note that `DOT_PRODUCT` with a `COMPLEX` first argument operates on its complex conjugate,
516 but that `MATMUL` with a `COMPLEX` argument does not.
518 The `MOLD` argument to `NULL` may be omitted only in a context where the type of the pointer is known,
519 such as an initializer or pointer assignment statement.
521 At least one argument must be present in a call to `SELECTED_REAL_KIND`.
523 An assumed-rank array may be passed to `SHAPE`, and if it is associated with an assumed-size array,
524 the last element of the result will be -1.
526 ### Coarray transformational intrinsic functions
528 FAILED_IMAGES([scalar TEAM_TYPE TEAM, KIND=KIND(0)]) -> INTEGER(KIND) vector
529 GET_TEAM([scalar INTEGER(?) LEVEL]) -> scalar TEAM_TYPE
530 IMAGE_INDEX(COARRAY, INTEGER(any) SUB(n) [, scalar TEAM_TYPE TEAM ]) -> scalar default INTEGER
531 IMAGE_INDEX(COARRAY, INTEGER(any) SUB(n), scalar INTEGER(any) TEAM_NUMBER) -> scalar default INTEGER
532 NUM_IMAGES([scalar TEAM_TYPE TEAM]) -> scalar default INTEGER
533 NUM_IMAGES(scalar INTEGER(any) TEAM_NUMBER) -> scalar default INTEGER
534 STOPPED_IMAGES([scalar TEAM_TYPE TEAM, KIND=KIND(0)]) -> INTEGER(KIND) vector
535 TEAM_NUMBER([scalar TEAM_TYPE TEAM]) -> scalar default INTEGER
536 THIS_IMAGE([COARRAY, DIM, scalar TEAM_TYPE TEAM]) -> default INTEGER
538 The result of `THIS_IMAGE` is a scalar if `DIM` is present or if `COARRAY` is absent,
539 and a vector whose length is the corank of `COARRAY` otherwise.
541 ## Inquiry intrinsic functions
542 These are neither elemental nor transformational; all are pure.
544 ### Type inquiry intrinsic functions
545 All of these functions return constants.
546 The value of the argument is not used, and may well be undefined.
548 BIT_SIZE(INTEGER(k) I(..)) -> INTEGER(k)
549 DIGITS(INTEGER or REAL X(..)) -> scalar default INTEGER
550 EPSILON(REAL(k) X(..)) -> scalar REAL(k)
551 HUGE(INTEGER(k) X(..)) -> scalar INTEGER(k)
552 HUGE(REAL(k) X(..)) -> scalar of REAL(k)
553 KIND(intrinsic X(..)) -> scalar default INTEGER
554 MAXEXPONENT(REAL(k) X(..)) -> scalar default INTEGER
555 MINEXPONENT(REAL(k) X(..)) -> scalar default INTEGER
556 NEW_LINE(CHARACTER(k,n) A(..)) -> scalar CHARACTER(k,1) = CHAR(10)
557 PRECISION(REAL(k) or COMPLEX(k) X(..)) -> scalar default INTEGER
558 RADIX(INTEGER(k) or REAL(k) X(..)) -> scalar default INTEGER, always 2
559 RANGE(INTEGER(k) or REAL(k) or COMPLEX(k) X(..)) -> scalar default INTEGER
560 TINY(REAL(k) X(..)) -> scalar REAL(k)
563 ### Bound and size inquiry intrinsic functions
564 The results are scalar when `DIM` is present, and a vector of length=(co)rank(`(CO)ARRAY`)
565 when `DIM` is absent.
567 LBOUND(any ARRAY(..) [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND)
568 LCOBOUND(any COARRAY [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND)
569 SIZE(any ARRAY(..) [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND)
570 UBOUND(any ARRAY(..) [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND)
571 UCOBOUND(any COARRAY [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND)
574 Assumed-rank arrays may be used with `LBOUND`, `SIZE`, and `UBOUND`.
576 ### Object characteristic inquiry intrinsic functions
578 ALLOCATED(any type ALLOCATABLE ARRAY) -> scalar default LOGICAL
579 ALLOCATED(any type ALLOCATABLE SCALAR) -> scalar default LOGICAL
580 ASSOCIATED(any type POINTER POINTER [, same type TARGET]) -> scalar default LOGICAL
581 COSHAPE(COARRAY, KIND=KIND(0)) -> INTEGER(KIND) vector of length corank(COARRAY)
582 EXTENDS_TYPE_OF(A, MOLD) -> default LOGICAL
583 IS_CONTIGUOUS(any data ARRAY(..)) -> scalar default LOGICAL
584 PRESENT(OPTIONAL A) -> scalar default LOGICAL
585 RANK(any data A) -> scalar default INTEGER = 0 if A is scalar, SIZE(SHAPE(A)) if A is an array, rank if assumed-rank
586 SAME_TYPE_AS(A, B) -> scalar default LOGICAL
587 STORAGE_SIZE(any data A, KIND=KIND(0)) -> INTEGER(KIND)
589 The arguments to `EXTENDS_TYPE_OF` must be of extensible derived types or be unlimited polymorphic.
591 An assumed-rank array may be used with `IS_CONTIGUOUS` and `RANK`.
593 ## Intrinsic subroutines
595 (*TODO*: complete these descriptions)
597 ### One elemental intrinsic subroutine
600 SUBROUTINE MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)
601 INTEGER(k1) :: FROM, TO
604 INTEGER(k2), INTENT(IN) :: FROMPOS
605 INTEGER(k3), INTENT(IN) :: LEN
606 INTEGER(k4), INTENT(IN) :: TOPOS
611 ### Non-elemental intrinsic subroutines
613 CALL CPU_TIME(REAL INTENT(OUT) TIME)
615 The kind of `TIME` is not specified in the standard.
618 CALL DATE_AND_TIME([DATE, TIME, ZONE, VALUES])
620 * All arguments are `OPTIONAL` and `INTENT(OUT)`.
621 * `DATE`, `TIME`, and `ZONE` are scalar default `CHARACTER`.
622 * `VALUES` is a vector of at least 8 elements of `INTEGER(KIND >= 2)`.
624 CALL EVENT_QUERY(EVENT, COUNT [, STAT])
625 CALL EXECUTE_COMMAND_LINE(COMMAND [, WAIT, EXITSTAT, CMDSTAT, CMDMSG ])
626 CALL GET_COMMAND([COMMAND, LENGTH, STATUS, ERRMSG ])
627 CALL GET_COMMAND_ARGUMENT(NUMBER [, VALUE, LENGTH, STATUS, ERRMSG ])
628 CALL GET_ENVIRONMENT_VARIABLE(NAME [, VALUE, LENGTH, STATUS, TRIM_NAME, ERRMSG ])
629 CALL MOVE_ALLOC(ALLOCATABLE INTENT(INOUT) FROM, ALLOCATABLE INTENT(OUT) TO [, STAT, ERRMSG ])
630 CALL RANDOM_INIT(LOGICAL(k1) INTENT(IN) REPEATABLE, LOGICAL(k2) INTENT(IN) IMAGE_DISTINCT)
631 CALL RANDOM_NUMBER(REAL(k) INTENT(OUT) HARVEST(..))
632 CALL RANDOM_SEED([SIZE, PUT, GET])
633 CALL SYSTEM_CLOCK([COUNT, COUNT_RATE, COUNT_MAX])
636 ### Atomic intrinsic subroutines
638 CALL ATOMIC_ADD(ATOM, VALUE [, STAT=])
639 CALL ATOMIC_AND(ATOM, VALUE [, STAT=])
640 CALL ATOMIC_CAS(ATOM, OLD, COMPARE, NEW [, STAT=])
641 CALL ATOMIC_DEFINE(ATOM, VALUE [, STAT=])
642 CALL ATOMIC_FETCH_ADD(ATOM, VALUE, OLD [, STAT=])
643 CALL ATOMIC_FETCH_AND(ATOM, VALUE, OLD [, STAT=])
644 CALL ATOMIC_FETCH_OR(ATOM, VALUE, OLD [, STAT=])
645 CALL ATOMIC_FETCH_XOR(ATOM, VALUE, OLD [, STAT=])
646 CALL ATOMIC_OR(ATOM, VALUE [, STAT=])
647 CALL ATOMIC_REF(VALUE, ATOM [, STAT=])
648 CALL ATOMIC_XOR(ATOM, VALUE [, STAT=])
651 ### Collective intrinsic subroutines
660 ## Non-standard intrinsics
664 LSHIFT, RSHIFT, SHIFT
666 COSD, SIND, TAND, ACOSD, ASIND, ATAND, ATAN2D
677 DCMPLX(X,Y), QCMPLX(X,Y)
678 DREAL(DOUBLE COMPLEX A) -> DOUBLE PRECISION
681 DNUM, INUM, JNUM, KNUM, QNUM, RNUM - scan value from string
684 ILEN(I) = BIT_SIZE(I)
687 COTAN(X) = 1.0/TAN(X)
688 COSD, SIND, TAND, ACOSD, ASIND, ATAND, ATAN2D, COTAND - degrees
691 IBCHNG, ISHA, ISHC, ISHL, IXOR
692 IARG, IARGC, NARGS, NUMARG
694 CACHESIZE, EOF, FP_CLASS, INT_PTR_KIND, ISNAN, LOC
698 ## Intrinsic Procedure Name Resolution
700 When the name of a procedure in a program is the same as the one of an intrinsic
701 procedure, and nothing other than its usage allows to decide whether the procedure
702 is the intrinsic or not (i.e, it does not appear in an INTRINSIC or EXTERNAL attribute
703 statement, is not an use/host associated procedure...), Fortran 2018 standard
704 section 19.5.1.4 point 6 rules that the procedure is established to be intrinsic if it is
705 invoked as an intrinsic procedure.
707 In case the invocation would be an error if the procedure were the intrinsic
708 (e.g. wrong argument number or type), the broad wording of the standard
709 leaves two choices to the compiler: emit an error about the intrinsic invocation,
710 or consider this is an external procedure and emit no error.
712 f18 will always consider this case to be the intrinsic and emit errors, unless the procedure
713 is used as a function (resp. subroutine) and the intrinsic is a subroutine (resp. function).
714 The table below gives some examples of decisions made by Fortran compilers in such case.
716 | What is ACOS ? | Bad intrinsic call | External with warning | External no warning | Other error |
717 | --- | --- | --- | --- | --- |
718 | `print*, ACOS()` | gfortran, nag, xlf, f18 | ifort | nvfortran | |
719 | `print*, ACOS(I)` | gfortran, nag, xlf, f18 | ifort | nvfortran | |
720 | `print*, ACOS(X=I)` | gfortran, nag, xlf, f18 | ifort | | nvfortran (keyword on implicit extrenal )|
721 | `print*, ACOS(X, X)` | gfortran, nag, xlf, f18 | ifort | nvfortran | |
722 | `CALL ACOS(X)` | | | gfortran, nag, xlf, nvfortran, ifort, f18 | |
725 The rationale for f18 behavior is that when referring to a procedure with an
726 argument number or type that does not match the intrinsic specification, it seems safer to block
727 the rather likely case where the user is using the intrinsic the wrong way.
728 In case the user wanted to refer to an external function, he can add an explicit EXTERNAL
729 statement with no other consequences on the program.
730 However, it seems rather unlikely that a user would confuse an intrinsic subroutine for a
731 function and vice versa. Given no compiler is issuing an error here, changing the behavior might
732 affect existing programs that omit the EXTERNAL attribute in such case.
734 Also note that in general, the standard gives the compiler the right to consider
735 any procedure that is not explicitly external as a non standard intrinsic (section 4.2 point 4).
736 So it is highly advised for the programmer to use EXTERNAL statements to prevent any ambiguity.
738 ## Intrinsic Procedure Support in f18
739 This section gives an overview of the support inside f18 libraries for the
740 intrinsic procedures listed above.
741 It may be outdated, refer to f18 code base for the actual support status.
743 ### Semantic Analysis
744 F18 semantic expression analysis phase detects intrinsic procedure references,
745 validates the argument types and deduces the return types.
746 This phase currently supports all the intrinsic procedures listed above but the ones in the table below.
748 | Intrinsic Category | Intrinsic Procedures Lacking Support |
750 | Coarray intrinsic functions | IMAGE_INDEX, COSHAPE |
751 | Object characteristic inquiry functions | ALLOCATED, ASSOCIATED, EXTENDS_TYPE_OF, IS_CONTIGUOUS, PRESENT, RANK, SAME_TYPE, STORAGE_SIZE |
752 | Type inquiry intrinsic functions | BIT_SIZE, DIGITS, EPSILON, HUGE, KIND, MAXEXPONENT, MINEXPONENT, NEW_LINE, PRECISION, RADIX, RANGE, TINY|
753 | Non-standard intrinsic functions | AND, OR, XOR, SHIFT, ZEXT, IZEXT, COSD, SIND, TAND, ACOSD, ASIND, ATAND, ATAN2D, COMPL, EQV, NEQV, INT8, JINT, JNINT, KNINT, QCMPLX, DREAL, DFLOAT, QEXT, QFLOAT, QREAL, DNUM, NUM, JNUM, KNUM, QNUM, RNUM, RAN, RANF, ILEN, SIZEOF, MCLOCK, SECNDS, COTAN, IBCHNG, ISHA, ISHC, ISHL, IXOR, IARG, IARGC, NARGS, NUMARG, BADDRESS, IADDR, CACHESIZE, EOF, FP_CLASS, INT_PTR_KIND, ISNAN, MALLOC |
754 | Intrinsic subroutines |MVBITS (elemental), CPU_TIME, DATE_AND_TIME, EVENT_QUERY, EXECUTE_COMMAND_LINE, GET_COMMAND, GET_COMMAND_ARGUMENT, GET_ENVIRONMENT_VARIABLE, MOVE_ALLOC, RANDOM_INIT, RANDOM_NUMBER, RANDOM_SEED, SYSTEM_CLOCK |
755 | Atomic intrinsic subroutines | ATOMIC_ADD |
756 | Collective intrinsic subroutines | CO_REDUCE |
759 ### Intrinsic Function Folding
760 Fortran Constant Expressions can contain references to a certain number of
761 intrinsic functions (see Fortran 2018 standard section 10.1.12 for more details).
762 Constant Expressions may be used to define kind arguments. Therefore, the semantic
763 expression analysis phase must be able to fold references to intrinsic functions
764 listed in section 10.1.12.
766 F18 intrinsic function folding is either performed by implementations directly
767 operating on f18 scalar types or by using host runtime functions and
768 host hardware types. F18 supports folding elemental intrinsic functions over
769 arrays when an implementation is provided for the scalars (regardless of whether
770 it is using host hardware types or not).
771 The status of intrinsic function folding support is given in the sub-sections below.
773 #### Intrinsic Functions with Host Independent Folding Support
774 Implementations using f18 scalar types enables folding intrinsic functions
775 on any host and with any possible type kind supported by f18. The intrinsic functions
776 listed below are folded using host independent implementations.
778 | Return Type | Intrinsic Functions with Host Independent Folding Support|
780 | INTEGER| ABS(INTEGER(k)), DIM(INTEGER(k), INTEGER(k)), DSHIFTL, DSHIFTR, IAND, IBCLR, IBSET, IEOR, INT, IOR, ISHFT, KIND, LEN, LEADZ, MASKL, MASKR, MERGE_BITS, POPCNT, POPPAR, SHIFTA, SHIFTL, SHIFTR, TRAILZ |
781 | REAL | ABS(REAL(k)), ABS(COMPLEX(k)), AIMAG, AINT, DPROD, REAL |
782 | COMPLEX | CMPLX, CONJG |
783 | LOGICAL | BGE, BGT, BLE, BLT |
785 #### Intrinsic Functions with Host Dependent Folding Support
786 Implementations using the host runtime may not be available for all supported
787 f18 types depending on the host hardware types and the libraries available on the host.
788 The actual support on a host depends on what the host hardware types are.
789 The list below gives the functions that are folded using host runtime and the related C/C++ types.
790 F18 automatically detects if these types match an f18 scalar type. If so,
791 folding of the intrinsic functions will be possible for the related f18 scalar type,
792 otherwise an error message will be produced by f18 when attempting to fold related intrinsic functions.
794 | C/C++ Host Type | Intrinsic Functions with Host Standard C++ Library Based Folding Support |
796 | float, double and long double | ACOS, ACOSH, ASINH, ATAN, ATAN2, ATANH, COS, COSH, ERF, ERFC, EXP, GAMMA, HYPOT, LOG, LOG10, LOG_GAMMA, MOD, SIN, SQRT, SINH, SQRT, TAN, TANH |
797 | std::complex for float, double and long double| ACOS, ACOSH, ASIN, ASINH, ATAN, ATANH, COS, COSH, EXP, LOG, SIN, SINH, SQRT, TAN, TANH |
799 On top of the default usage of C++ standard library functions for folding described
800 in the table above, it is possible to compile f18 evaluate library with
801 [libpgmath](https://github.com/flang-compiler/flang/tree/master/runtime/libpgmath)
802 so that it can be used for folding. To do so, one must have a compiled version
803 of the libpgmath library available on the host and add
804 `-DLIBPGMATH_DIR=<path to the compiled shared libpgmath library>` to the f18 cmake command.
806 Libpgmath comes with real and complex functions that replace C++ standard library
807 float and double functions to fold all the intrinsic functions listed in the table above.
808 It has no long double versions. If the host long double matches an f18 scalar type,
809 C++ standard library functions will still be used for folding expressions with this scalar type.
810 Libpgmath adds the possibility to fold the following functions for f18 real scalar
811 types related to host float and double types.
813 | C/C++ Host Type | Additional Intrinsic Function Folding Support with Libpgmath (Optional) |
815 |float and double| BESSEL_J0, BESSEL_J1, BESSEL_JN (elemental only), BESSEL_Y0, BESSEL_Y1, BESSEL_Yn (elemental only), ERFC_SCALED |
817 Libpgmath comes in three variants (precise, relaxed and fast). So far, only the
818 precise version is used for intrinsic function folding in f18. It guarantees the greatest numerical precision.
820 ### Intrinsic Functions with Missing Folding Support
821 The following intrinsic functions are allowed in constant expressions but f18
822 is not yet able to fold them. Note that there might be constraints on the arguments
823 so that these intrinsics can be used in constant expressions (see section 10.1.12 of Fortran 2018 standard).
825 ALL, ACHAR, ADJUSTL, ADJUSTR, ANINT, ANY, BESSEL_JN (transformational only),
826 BESSEL_YN (transformational only), BTEST, CEILING, CHAR, COUNT, CSHIFT, DOT_PRODUCT,
827 DIM (REAL only), DOT_PRODUCT, EOSHIFT, FINDLOC, FLOOR, FRACTION, HUGE, IACHAR, IALL,
828 IANY, IPARITY, IBITS, ICHAR, IMAGE_STATUS, INDEX, ISHFTC, IS_IOSTAT_END,
829 IS_IOSTAT_EOR, LBOUND, LEN_TRIM, LGE, LGT, LLE, LLT, LOGICAL, MATMUL, MAX, MAXLOC,
830 MAXVAL, MERGE, MIN, MINLOC, MINVAL, MOD (INTEGER only), MODULO, NEAREST, NINT,
831 NORM2, NOT, OUT_OF_RANGE, PACK, PARITY, PRODUCT, REPEAT, REDUCE, RESHAPE,
832 RRSPACING, SCAN, SCALE, SELECTED_CHAR_KIND, SELECTED_INT_KIND, SELECTED_REAL_KIND,
833 SET_EXPONENT, SHAPE, SIGN, SIZE, SPACING, SPREAD, SUM, TINY, TRANSFER, TRANSPOSE,
834 TRIM, UBOUND, UNPACK, VERIFY.
836 Coarray, non standard, IEEE and ISO_C_BINDINGS intrinsic functions that can be
837 used in constant expressions have currently no folding support at all.