[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / flang / runtime / time-intrinsic.cpp
blob68d63253139f18a9261183467d809bd80834ce52
1 //===-- runtime/time-intrinsic.cpp ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 // Implements time-related intrinsic subroutines.
11 #include "flang/Runtime/time-intrinsic.h"
12 #include "terminator.h"
13 #include "tools.h"
14 #include "flang/Runtime/cpp-type.h"
15 #include "flang/Runtime/descriptor.h"
16 #include <algorithm>
17 #include <cstdint>
18 #include <cstdio>
19 #include <cstdlib>
20 #include <cstring>
21 #include <ctime>
22 #ifndef _WIN32
23 #include <sys/time.h> // gettimeofday
24 #endif
26 // CPU_TIME (Fortran 2018 16.9.57)
27 // SYSTEM_CLOCK (Fortran 2018 16.9.168)
29 // We can use std::clock() from the <ctime> header as a fallback implementation
30 // that should be available everywhere. This may not provide the best resolution
31 // and is particularly troublesome on (some?) POSIX systems where CLOCKS_PER_SEC
32 // is defined as 10^6 regardless of the actual precision of std::clock().
33 // Therefore, we will usually prefer platform-specific alternatives when they
34 // are available.
36 // We can use SFINAE to choose a platform-specific alternative. To do so, we
37 // introduce a helper function template, whose overload set will contain only
38 // implementations relying on interfaces which are actually available. Each
39 // overload will have a dummy parameter whose type indicates whether or not it
40 // should be preferred. Any other parameters required for SFINAE should have
41 // default values provided.
42 namespace {
43 // Types for the dummy parameter indicating the priority of a given overload.
44 // We will invoke our helper with an integer literal argument, so the overload
45 // with the highest priority should have the type int.
46 using fallback_implementation = double;
47 using preferred_implementation = int;
49 // This is the fallback implementation, which should work everywhere.
50 template <typename Unused = void> double GetCpuTime(fallback_implementation) {
51 std::clock_t timestamp{std::clock()};
52 if (timestamp != static_cast<std::clock_t>(-1)) {
53 return static_cast<double>(timestamp) / CLOCKS_PER_SEC;
55 // Return some negative value to represent failure.
56 return -1.0;
59 #if defined __MINGW32__
60 // clock_gettime is implemented in the pthread library for MinGW.
61 // Using it here would mean that all programs that link libFortranRuntime are
62 // required to also link to pthread. Instead, don't use the function.
63 #undef CLOCKID
64 #elif defined CLOCK_PROCESS_CPUTIME_ID
65 #define CLOCKID CLOCK_PROCESS_CPUTIME_ID
66 #elif defined CLOCK_THREAD_CPUTIME_ID
67 #define CLOCKID CLOCK_THREAD_CPUTIME_ID
68 #elif defined CLOCK_MONOTONIC
69 #define CLOCKID CLOCK_MONOTONIC
70 #elif defined CLOCK_REALTIME
71 #define CLOCKID CLOCK_REALTIME
72 #else
73 #undef CLOCKID
74 #endif
76 #ifdef CLOCKID
77 // POSIX implementation using clock_gettime. This is only enabled where
78 // clock_gettime is available.
79 template <typename T = int, typename U = struct timespec>
80 double GetCpuTime(preferred_implementation,
81 // We need some dummy parameters to pass to decltype(clock_gettime).
82 T ClockId = 0, U *Timespec = nullptr,
83 decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
84 struct timespec tspec;
85 if (clock_gettime(CLOCKID, &tspec) == 0) {
86 return tspec.tv_nsec * 1.0e-9 + tspec.tv_sec;
88 // Return some negative value to represent failure.
89 return -1.0;
91 #endif
93 using count_t = std::int64_t;
94 using unsigned_count_t = std::uint64_t;
96 // Computes HUGE(INT(0,kind)) as an unsigned integer value.
97 static constexpr inline unsigned_count_t GetHUGE(int kind) {
98 if (kind > 8) {
99 kind = 8;
101 return (unsigned_count_t{1} << ((8 * kind) - 1)) - 1;
104 // This is the fallback implementation, which should work everywhere. Note that
105 // in general we can't recover after std::clock has reached its maximum value.
106 template <typename Unused = void>
107 count_t GetSystemClockCount(int kind, fallback_implementation) {
108 std::clock_t timestamp{std::clock()};
109 if (timestamp == static_cast<std::clock_t>(-1)) {
110 // Return -HUGE(COUNT) to represent failure.
111 return -static_cast<count_t>(GetHUGE(kind));
113 // Convert the timestamp to std::uint64_t with wrap-around. The timestamp is
114 // most likely a floating-point value (since C'11), so compute the modulus
115 // carefully when one is required.
116 constexpr auto maxUnsignedCount{std::numeric_limits<unsigned_count_t>::max()};
117 if constexpr (std::numeric_limits<std::clock_t>::max() > maxUnsignedCount) {
118 timestamp -= maxUnsignedCount * std::floor(timestamp / maxUnsignedCount);
120 unsigned_count_t unsignedCount{static_cast<unsigned_count_t>(timestamp)};
121 // Return the modulus of the unsigned integral count with HUGE(COUNT)+1.
122 // The result is a signed integer but never negative.
123 return static_cast<count_t>(unsignedCount % (GetHUGE(kind) + 1));
126 template <typename Unused = void>
127 count_t GetSystemClockCountRate(int kind, fallback_implementation) {
128 return CLOCKS_PER_SEC;
131 template <typename Unused = void>
132 count_t GetSystemClockCountMax(int kind, fallback_implementation) {
133 constexpr auto max_clock_t{std::numeric_limits<std::clock_t>::max()};
134 unsigned_count_t maxCount{GetHUGE(kind)};
135 return max_clock_t <= maxCount ? static_cast<count_t>(max_clock_t)
136 : static_cast<count_t>(maxCount);
139 // POSIX implementation using clock_gettime where available. The clock_gettime
140 // result is in nanoseconds, which is converted as necessary to
141 // - deciseconds for kind 1
142 // - milliseconds for kinds 2, 4
143 // - nanoseconds for kinds 8, 16
144 constexpr unsigned_count_t DS_PER_SEC{10u};
145 constexpr unsigned_count_t MS_PER_SEC{1'000u};
146 constexpr unsigned_count_t NS_PER_SEC{1'000'000'000u};
148 #ifdef CLOCKID
149 template <typename T = int, typename U = struct timespec>
150 count_t GetSystemClockCount(int kind, preferred_implementation,
151 // We need some dummy parameters to pass to decltype(clock_gettime).
152 T ClockId = 0, U *Timespec = nullptr,
153 decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
154 struct timespec tspec;
155 const unsigned_count_t huge{GetHUGE(kind)};
156 if (clock_gettime(CLOCKID, &tspec) != 0) {
157 return -huge; // failure
159 unsigned_count_t sec{static_cast<unsigned_count_t>(tspec.tv_sec)};
160 unsigned_count_t nsec{static_cast<unsigned_count_t>(tspec.tv_nsec)};
161 if (kind >= 8) {
162 return (sec * NS_PER_SEC + nsec) % (huge + 1);
163 } else if (kind >= 2) {
164 return (sec * MS_PER_SEC + (nsec / (NS_PER_SEC / MS_PER_SEC))) % (huge + 1);
165 } else { // kind == 1
166 return (sec * DS_PER_SEC + (nsec / (NS_PER_SEC / DS_PER_SEC))) % (huge + 1);
169 #endif
171 template <typename T = int, typename U = struct timespec>
172 count_t GetSystemClockCountRate(int kind, preferred_implementation,
173 // We need some dummy parameters to pass to decltype(clock_gettime).
174 T ClockId = 0, U *Timespec = nullptr,
175 decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
176 return kind >= 8 ? NS_PER_SEC : kind >= 2 ? MS_PER_SEC : DS_PER_SEC;
179 template <typename T = int, typename U = struct timespec>
180 count_t GetSystemClockCountMax(int kind, preferred_implementation,
181 // We need some dummy parameters to pass to decltype(clock_gettime).
182 T ClockId = 0, U *Timespec = nullptr,
183 decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
184 return GetHUGE(kind);
187 // DATE_AND_TIME (Fortran 2018 16.9.59)
189 // Helper to set an integer value to -HUGE
190 template <int KIND> struct StoreNegativeHugeAt {
191 void operator()(
192 const Fortran::runtime::Descriptor &result, std::size_t at) const {
193 *result.ZeroBasedIndexedElement<Fortran::runtime::CppTypeFor<
194 Fortran::common::TypeCategory::Integer, KIND>>(at) =
195 -std::numeric_limits<Fortran::runtime::CppTypeFor<
196 Fortran::common::TypeCategory::Integer, KIND>>::max();
200 // Default implementation when date and time information is not available (set
201 // strings to blanks and values to -HUGE as defined by the standard).
202 static void DateAndTimeUnavailable(Fortran::runtime::Terminator &terminator,
203 char *date, std::size_t dateChars, char *time, std::size_t timeChars,
204 char *zone, std::size_t zoneChars,
205 const Fortran::runtime::Descriptor *values) {
206 if (date) {
207 std::memset(date, static_cast<int>(' '), dateChars);
209 if (time) {
210 std::memset(time, static_cast<int>(' '), timeChars);
212 if (zone) {
213 std::memset(zone, static_cast<int>(' '), zoneChars);
215 if (values) {
216 auto typeCode{values->type().GetCategoryAndKind()};
217 RUNTIME_CHECK(terminator,
218 values->rank() == 1 && values->GetDimension(0).Extent() >= 8 &&
219 typeCode &&
220 typeCode->first == Fortran::common::TypeCategory::Integer);
221 // DATE_AND_TIME values argument must have decimal range > 4. Do not accept
222 // KIND 1 here.
223 int kind{typeCode->second};
224 RUNTIME_CHECK(terminator, kind != 1);
225 for (std::size_t i = 0; i < 8; ++i) {
226 Fortran::runtime::ApplyIntegerKind<StoreNegativeHugeAt, void>(
227 kind, terminator, *values, i);
232 #ifndef _WIN32
234 // SFINAE helper to return the struct tm.tm_gmtoff which is not a POSIX standard
235 // field.
236 template <int KIND, typename TM = struct tm>
237 Fortran::runtime::CppTypeFor<Fortran::common::TypeCategory::Integer, KIND>
238 GetGmtOffset(const TM &tm, preferred_implementation,
239 decltype(tm.tm_gmtoff) *Enabled = nullptr) {
240 // Returns the GMT offset in minutes.
241 return tm.tm_gmtoff / 60;
243 template <int KIND, typename TM = struct tm>
244 Fortran::runtime::CppTypeFor<Fortran::common::TypeCategory::Integer, KIND>
245 GetGmtOffset(const TM &tm, fallback_implementation) {
246 // tm.tm_gmtoff is not available, there may be platform dependent alternatives
247 // (such as using timezone from <time.h> when available), but so far just
248 // return -HUGE to report that this information is not available.
249 return -std::numeric_limits<Fortran::runtime::CppTypeFor<
250 Fortran::common::TypeCategory::Integer, KIND>>::max();
252 template <typename TM = struct tm> struct GmtOffsetHelper {
253 template <int KIND> struct StoreGmtOffset {
254 void operator()(const Fortran::runtime::Descriptor &result, std::size_t at,
255 TM &tm) const {
256 *result.ZeroBasedIndexedElement<Fortran::runtime::CppTypeFor<
257 Fortran::common::TypeCategory::Integer, KIND>>(at) =
258 GetGmtOffset<KIND>(tm, 0);
263 // Dispatch to posix implementation where gettimeofday and localtime_r are
264 // available.
265 static void GetDateAndTime(Fortran::runtime::Terminator &terminator, char *date,
266 std::size_t dateChars, char *time, std::size_t timeChars, char *zone,
267 std::size_t zoneChars, const Fortran::runtime::Descriptor *values) {
269 timeval t;
270 if (gettimeofday(&t, nullptr) != 0) {
271 DateAndTimeUnavailable(
272 terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
273 return;
275 time_t timer{t.tv_sec};
276 tm localTime;
277 localtime_r(&timer, &localTime);
278 std::intmax_t ms{t.tv_usec / 1000};
280 static constexpr std::size_t buffSize{16};
281 char buffer[buffSize];
282 auto copyBufferAndPad{
283 [&](char *dest, std::size_t destChars, std::size_t len) {
284 auto copyLen{std::min(len, destChars)};
285 std::memcpy(dest, buffer, copyLen);
286 for (auto i{copyLen}; i < destChars; ++i) {
287 dest[i] = ' ';
290 if (date) {
291 auto len = std::strftime(buffer, buffSize, "%Y%m%d", &localTime);
292 copyBufferAndPad(date, dateChars, len);
294 if (time) {
295 auto len{std::snprintf(buffer, buffSize, "%02d%02d%02d.%03jd",
296 localTime.tm_hour, localTime.tm_min, localTime.tm_sec, ms)};
297 copyBufferAndPad(time, timeChars, len);
299 if (zone) {
300 // Note: this may leave the buffer empty on many platforms. Classic flang
301 // has a much more complex way of doing this (see __io_timezone in classic
302 // flang).
303 auto len{std::strftime(buffer, buffSize, "%z", &localTime)};
304 copyBufferAndPad(zone, zoneChars, len);
306 if (values) {
307 auto typeCode{values->type().GetCategoryAndKind()};
308 RUNTIME_CHECK(terminator,
309 values->rank() == 1 && values->GetDimension(0).Extent() >= 8 &&
310 typeCode &&
311 typeCode->first == Fortran::common::TypeCategory::Integer);
312 // DATE_AND_TIME values argument must have decimal range > 4. Do not accept
313 // KIND 1 here.
314 int kind{typeCode->second};
315 RUNTIME_CHECK(terminator, kind != 1);
316 auto storeIntegerAt = [&](std::size_t atIndex, std::int64_t value) {
317 Fortran::runtime::ApplyIntegerKind<Fortran::runtime::StoreIntegerAt,
318 void>(kind, terminator, *values, atIndex, value);
320 storeIntegerAt(0, localTime.tm_year + 1900);
321 storeIntegerAt(1, localTime.tm_mon + 1);
322 storeIntegerAt(2, localTime.tm_mday);
323 Fortran::runtime::ApplyIntegerKind<
324 GmtOffsetHelper<struct tm>::StoreGmtOffset, void>(
325 kind, terminator, *values, 3, localTime);
326 storeIntegerAt(4, localTime.tm_hour);
327 storeIntegerAt(5, localTime.tm_min);
328 storeIntegerAt(6, localTime.tm_sec);
329 storeIntegerAt(7, ms);
333 #else
334 // Fallback implementation where gettimeofday or localtime_r are not both
335 // available (e.g. windows).
336 static void GetDateAndTime(Fortran::runtime::Terminator &terminator, char *date,
337 std::size_t dateChars, char *time, std::size_t timeChars, char *zone,
338 std::size_t zoneChars, const Fortran::runtime::Descriptor *values) {
339 // TODO: An actual implementation for non Posix system should be added.
340 // So far, implement as if the date and time is not available on those
341 // platforms.
342 DateAndTimeUnavailable(
343 terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
345 #endif
346 } // namespace
348 namespace Fortran::runtime {
349 extern "C" {
351 double RTNAME(CpuTime)() { return GetCpuTime(0); }
353 std::int64_t RTNAME(SystemClockCount)(int kind) {
354 return GetSystemClockCount(kind, 0);
357 std::int64_t RTNAME(SystemClockCountRate)(int kind) {
358 return GetSystemClockCountRate(kind, 0);
361 std::int64_t RTNAME(SystemClockCountMax)(int kind) {
362 return GetSystemClockCountMax(kind, 0);
365 void RTNAME(DateAndTime)(char *date, std::size_t dateChars, char *time,
366 std::size_t timeChars, char *zone, std::size_t zoneChars,
367 const char *source, int line, const Descriptor *values) {
368 Fortran::runtime::Terminator terminator{source, line};
369 return GetDateAndTime(
370 terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
373 } // extern "C"
374 } // namespace Fortran::runtime