[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / lld / ELF / Arch / AArch64.cpp
blob048f0ec30ebd283508aca7f55d875d649da16737
1 //===- AArch64.cpp --------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "InputFiles.h"
10 #include "OutputSections.h"
11 #include "Symbols.h"
12 #include "SyntheticSections.h"
13 #include "Target.h"
14 #include "lld/Common/ErrorHandler.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/Support/Endian.h"
18 using namespace llvm;
19 using namespace llvm::support::endian;
20 using namespace llvm::ELF;
21 using namespace lld;
22 using namespace lld::elf;
24 // Page(Expr) is the page address of the expression Expr, defined
25 // as (Expr & ~0xFFF). (This applies even if the machine page size
26 // supported by the platform has a different value.)
27 uint64_t elf::getAArch64Page(uint64_t expr) {
28 return expr & ~static_cast<uint64_t>(0xFFF);
31 namespace {
32 class AArch64 : public TargetInfo {
33 public:
34 AArch64();
35 RelExpr getRelExpr(RelType type, const Symbol &s,
36 const uint8_t *loc) const override;
37 RelType getDynRel(RelType type) const override;
38 int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
39 void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
40 void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
41 void writePltHeader(uint8_t *buf) const override;
42 void writePlt(uint8_t *buf, const Symbol &sym,
43 uint64_t pltEntryAddr) const override;
44 bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
45 uint64_t branchAddr, const Symbol &s,
46 int64_t a) const override;
47 uint32_t getThunkSectionSpacing() const override;
48 bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
49 bool usesOnlyLowPageBits(RelType type) const override;
50 void relocate(uint8_t *loc, const Relocation &rel,
51 uint64_t val) const override;
52 RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override;
53 void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override;
55 private:
56 void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
57 void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
58 void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
61 struct AArch64Relaxer {
62 bool safeToRelaxAdrpLdr = false;
64 AArch64Relaxer(ArrayRef<Relocation> relocs);
65 bool tryRelaxAdrpAdd(const Relocation &adrpRel, const Relocation &addRel,
66 uint64_t secAddr, uint8_t *buf) const;
67 bool tryRelaxAdrpLdr(const Relocation &adrpRel, const Relocation &ldrRel,
68 uint64_t secAddr, uint8_t *buf) const;
70 } // namespace
72 AArch64::AArch64() {
73 copyRel = R_AARCH64_COPY;
74 relativeRel = R_AARCH64_RELATIVE;
75 iRelativeRel = R_AARCH64_IRELATIVE;
76 gotRel = R_AARCH64_GLOB_DAT;
77 pltRel = R_AARCH64_JUMP_SLOT;
78 symbolicRel = R_AARCH64_ABS64;
79 tlsDescRel = R_AARCH64_TLSDESC;
80 tlsGotRel = R_AARCH64_TLS_TPREL64;
81 pltHeaderSize = 32;
82 pltEntrySize = 16;
83 ipltEntrySize = 16;
84 defaultMaxPageSize = 65536;
86 // Align to the 2 MiB page size (known as a superpage or huge page).
87 // FreeBSD automatically promotes 2 MiB-aligned allocations.
88 defaultImageBase = 0x200000;
90 needsThunks = true;
93 RelExpr AArch64::getRelExpr(RelType type, const Symbol &s,
94 const uint8_t *loc) const {
95 switch (type) {
96 case R_AARCH64_ABS16:
97 case R_AARCH64_ABS32:
98 case R_AARCH64_ABS64:
99 case R_AARCH64_ADD_ABS_LO12_NC:
100 case R_AARCH64_LDST128_ABS_LO12_NC:
101 case R_AARCH64_LDST16_ABS_LO12_NC:
102 case R_AARCH64_LDST32_ABS_LO12_NC:
103 case R_AARCH64_LDST64_ABS_LO12_NC:
104 case R_AARCH64_LDST8_ABS_LO12_NC:
105 case R_AARCH64_MOVW_SABS_G0:
106 case R_AARCH64_MOVW_SABS_G1:
107 case R_AARCH64_MOVW_SABS_G2:
108 case R_AARCH64_MOVW_UABS_G0:
109 case R_AARCH64_MOVW_UABS_G0_NC:
110 case R_AARCH64_MOVW_UABS_G1:
111 case R_AARCH64_MOVW_UABS_G1_NC:
112 case R_AARCH64_MOVW_UABS_G2:
113 case R_AARCH64_MOVW_UABS_G2_NC:
114 case R_AARCH64_MOVW_UABS_G3:
115 return R_ABS;
116 case R_AARCH64_TLSDESC_ADR_PAGE21:
117 return R_AARCH64_TLSDESC_PAGE;
118 case R_AARCH64_TLSDESC_LD64_LO12:
119 case R_AARCH64_TLSDESC_ADD_LO12:
120 return R_TLSDESC;
121 case R_AARCH64_TLSDESC_CALL:
122 return R_TLSDESC_CALL;
123 case R_AARCH64_TLSLE_ADD_TPREL_HI12:
124 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
125 case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
126 case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
127 case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
128 case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
129 case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC:
130 case R_AARCH64_TLSLE_MOVW_TPREL_G0:
131 case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
132 case R_AARCH64_TLSLE_MOVW_TPREL_G1:
133 case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
134 case R_AARCH64_TLSLE_MOVW_TPREL_G2:
135 return R_TPREL;
136 case R_AARCH64_CALL26:
137 case R_AARCH64_CONDBR19:
138 case R_AARCH64_JUMP26:
139 case R_AARCH64_TSTBR14:
140 return R_PLT_PC;
141 case R_AARCH64_PLT32:
142 const_cast<Symbol &>(s).thunkAccessed = true;
143 return R_PLT_PC;
144 case R_AARCH64_PREL16:
145 case R_AARCH64_PREL32:
146 case R_AARCH64_PREL64:
147 case R_AARCH64_ADR_PREL_LO21:
148 case R_AARCH64_LD_PREL_LO19:
149 case R_AARCH64_MOVW_PREL_G0:
150 case R_AARCH64_MOVW_PREL_G0_NC:
151 case R_AARCH64_MOVW_PREL_G1:
152 case R_AARCH64_MOVW_PREL_G1_NC:
153 case R_AARCH64_MOVW_PREL_G2:
154 case R_AARCH64_MOVW_PREL_G2_NC:
155 case R_AARCH64_MOVW_PREL_G3:
156 return R_PC;
157 case R_AARCH64_ADR_PREL_PG_HI21:
158 case R_AARCH64_ADR_PREL_PG_HI21_NC:
159 return R_AARCH64_PAGE_PC;
160 case R_AARCH64_LD64_GOT_LO12_NC:
161 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
162 return R_GOT;
163 case R_AARCH64_LD64_GOTPAGE_LO15:
164 return R_AARCH64_GOT_PAGE;
165 case R_AARCH64_ADR_GOT_PAGE:
166 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
167 return R_AARCH64_GOT_PAGE_PC;
168 case R_AARCH64_NONE:
169 return R_NONE;
170 default:
171 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
172 ") against symbol " + toString(s));
173 return R_NONE;
177 RelExpr AArch64::adjustTlsExpr(RelType type, RelExpr expr) const {
178 if (expr == R_RELAX_TLS_GD_TO_IE) {
179 if (type == R_AARCH64_TLSDESC_ADR_PAGE21)
180 return R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC;
181 return R_RELAX_TLS_GD_TO_IE_ABS;
183 return expr;
186 bool AArch64::usesOnlyLowPageBits(RelType type) const {
187 switch (type) {
188 default:
189 return false;
190 case R_AARCH64_ADD_ABS_LO12_NC:
191 case R_AARCH64_LD64_GOT_LO12_NC:
192 case R_AARCH64_LDST128_ABS_LO12_NC:
193 case R_AARCH64_LDST16_ABS_LO12_NC:
194 case R_AARCH64_LDST32_ABS_LO12_NC:
195 case R_AARCH64_LDST64_ABS_LO12_NC:
196 case R_AARCH64_LDST8_ABS_LO12_NC:
197 case R_AARCH64_TLSDESC_ADD_LO12:
198 case R_AARCH64_TLSDESC_LD64_LO12:
199 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
200 return true;
204 RelType AArch64::getDynRel(RelType type) const {
205 if (type == R_AARCH64_ABS64)
206 return type;
207 return R_AARCH64_NONE;
210 int64_t AArch64::getImplicitAddend(const uint8_t *buf, RelType type) const {
211 switch (type) {
212 case R_AARCH64_TLSDESC:
213 return read64(buf + 8);
214 case R_AARCH64_NONE:
215 case R_AARCH64_GLOB_DAT:
216 case R_AARCH64_JUMP_SLOT:
217 return 0;
218 case R_AARCH64_PREL32:
219 return SignExtend64<32>(read32(buf));
220 case R_AARCH64_ABS64:
221 case R_AARCH64_PREL64:
222 case R_AARCH64_RELATIVE:
223 case R_AARCH64_IRELATIVE:
224 case R_AARCH64_TLS_TPREL64:
225 return read64(buf);
226 default:
227 internalLinkerError(getErrorLocation(buf),
228 "cannot read addend for relocation " + toString(type));
229 return 0;
233 void AArch64::writeGotPlt(uint8_t *buf, const Symbol &) const {
234 write64(buf, in.plt->getVA());
237 void AArch64::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
238 if (config->writeAddends)
239 write64(buf, s.getVA());
242 void AArch64::writePltHeader(uint8_t *buf) const {
243 const uint8_t pltData[] = {
244 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]!
245 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[2]))
246 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[2]))]
247 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[2]))
248 0x20, 0x02, 0x1f, 0xd6, // br x17
249 0x1f, 0x20, 0x03, 0xd5, // nop
250 0x1f, 0x20, 0x03, 0xd5, // nop
251 0x1f, 0x20, 0x03, 0xd5 // nop
253 memcpy(buf, pltData, sizeof(pltData));
255 uint64_t got = in.gotPlt->getVA();
256 uint64_t plt = in.plt->getVA();
257 relocateNoSym(buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
258 getAArch64Page(got + 16) - getAArch64Page(plt + 4));
259 relocateNoSym(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16);
260 relocateNoSym(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16);
263 void AArch64::writePlt(uint8_t *buf, const Symbol &sym,
264 uint64_t pltEntryAddr) const {
265 const uint8_t inst[] = {
266 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[n]))
267 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[n]))]
268 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[n]))
269 0x20, 0x02, 0x1f, 0xd6 // br x17
271 memcpy(buf, inst, sizeof(inst));
273 uint64_t gotPltEntryAddr = sym.getGotPltVA();
274 relocateNoSym(buf, R_AARCH64_ADR_PREL_PG_HI21,
275 getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr));
276 relocateNoSym(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr);
277 relocateNoSym(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr);
280 bool AArch64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
281 uint64_t branchAddr, const Symbol &s,
282 int64_t a) const {
283 // If s is an undefined weak symbol and does not have a PLT entry then it will
284 // be resolved as a branch to the next instruction. If it is hidden, its
285 // binding has been converted to local, so we just check isUndefined() here. A
286 // undefined non-weak symbol will have been errored.
287 if (s.isUndefined() && !s.isInPlt())
288 return false;
289 // ELF for the ARM 64-bit architecture, section Call and Jump relocations
290 // only permits range extension thunks for R_AARCH64_CALL26 and
291 // R_AARCH64_JUMP26 relocation types.
292 if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 &&
293 type != R_AARCH64_PLT32)
294 return false;
295 uint64_t dst = expr == R_PLT_PC ? s.getPltVA() : s.getVA(a);
296 return !inBranchRange(type, branchAddr, dst);
299 uint32_t AArch64::getThunkSectionSpacing() const {
300 // See comment in Arch/ARM.cpp for a more detailed explanation of
301 // getThunkSectionSpacing(). For AArch64 the only branches we are permitted to
302 // Thunk have a range of +/- 128 MiB
303 return (128 * 1024 * 1024) - 0x30000;
306 bool AArch64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
307 if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 &&
308 type != R_AARCH64_PLT32)
309 return true;
310 // The AArch64 call and unconditional branch instructions have a range of
311 // +/- 128 MiB. The PLT32 relocation supports a range up to +/- 2 GiB.
312 uint64_t range =
313 type == R_AARCH64_PLT32 ? (UINT64_C(1) << 31) : (128 * 1024 * 1024);
314 if (dst > src) {
315 // Immediate of branch is signed.
316 range -= 4;
317 return dst - src <= range;
319 return src - dst <= range;
322 static void write32AArch64Addr(uint8_t *l, uint64_t imm) {
323 uint32_t immLo = (imm & 0x3) << 29;
324 uint32_t immHi = (imm & 0x1FFFFC) << 3;
325 uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3);
326 write32le(l, (read32le(l) & ~mask) | immLo | immHi);
329 // Return the bits [Start, End] from Val shifted Start bits.
330 // For instance, getBits(0xF0, 4, 8) returns 0xF.
331 static uint64_t getBits(uint64_t val, int start, int end) {
332 uint64_t mask = ((uint64_t)1 << (end + 1 - start)) - 1;
333 return (val >> start) & mask;
336 static void or32le(uint8_t *p, int32_t v) { write32le(p, read32le(p) | v); }
338 // Update the immediate field in a AARCH64 ldr, str, and add instruction.
339 static void or32AArch64Imm(uint8_t *l, uint64_t imm) {
340 or32le(l, (imm & 0xFFF) << 10);
343 // Update the immediate field in an AArch64 movk, movn or movz instruction
344 // for a signed relocation, and update the opcode of a movn or movz instruction
345 // to match the sign of the operand.
346 static void writeSMovWImm(uint8_t *loc, uint32_t imm) {
347 uint32_t inst = read32le(loc);
348 // Opcode field is bits 30, 29, with 10 = movz, 00 = movn and 11 = movk.
349 if (!(inst & (1 << 29))) {
350 // movn or movz.
351 if (imm & 0x10000) {
352 // Change opcode to movn, which takes an inverted operand.
353 imm ^= 0xFFFF;
354 inst &= ~(1 << 30);
355 } else {
356 // Change opcode to movz.
357 inst |= 1 << 30;
360 write32le(loc, inst | ((imm & 0xFFFF) << 5));
363 void AArch64::relocate(uint8_t *loc, const Relocation &rel,
364 uint64_t val) const {
365 switch (rel.type) {
366 case R_AARCH64_ABS16:
367 case R_AARCH64_PREL16:
368 checkIntUInt(loc, val, 16, rel);
369 write16(loc, val);
370 break;
371 case R_AARCH64_ABS32:
372 case R_AARCH64_PREL32:
373 checkIntUInt(loc, val, 32, rel);
374 write32(loc, val);
375 break;
376 case R_AARCH64_PLT32:
377 checkInt(loc, val, 32, rel);
378 write32(loc, val);
379 break;
380 case R_AARCH64_ABS64:
381 // AArch64 relocations to tagged symbols have extended semantics, as
382 // described here:
383 // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#841extended-semantics-of-r_aarch64_relative.
384 // tl;dr: encode the symbol's special addend in the place, which is an
385 // offset to the point where the logical tag is derived from. Quick hack, if
386 // the addend is within the symbol's bounds, no need to encode the tag
387 // derivation offset.
388 if (rel.sym && rel.sym->isTagged() &&
389 (rel.addend < 0 ||
390 rel.addend >= static_cast<int64_t>(rel.sym->getSize())))
391 write64(loc, -rel.addend);
392 else
393 write64(loc, val);
394 break;
395 case R_AARCH64_PREL64:
396 write64(loc, val);
397 break;
398 case R_AARCH64_ADD_ABS_LO12_NC:
399 or32AArch64Imm(loc, val);
400 break;
401 case R_AARCH64_ADR_GOT_PAGE:
402 case R_AARCH64_ADR_PREL_PG_HI21:
403 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
404 case R_AARCH64_TLSDESC_ADR_PAGE21:
405 checkInt(loc, val, 33, rel);
406 [[fallthrough]];
407 case R_AARCH64_ADR_PREL_PG_HI21_NC:
408 write32AArch64Addr(loc, val >> 12);
409 break;
410 case R_AARCH64_ADR_PREL_LO21:
411 checkInt(loc, val, 21, rel);
412 write32AArch64Addr(loc, val);
413 break;
414 case R_AARCH64_JUMP26:
415 // Normally we would just write the bits of the immediate field, however
416 // when patching instructions for the cpu errata fix -fix-cortex-a53-843419
417 // we want to replace a non-branch instruction with a branch immediate
418 // instruction. By writing all the bits of the instruction including the
419 // opcode and the immediate (0 001 | 01 imm26) we can do this
420 // transformation by placing a R_AARCH64_JUMP26 relocation at the offset of
421 // the instruction we want to patch.
422 write32le(loc, 0x14000000);
423 [[fallthrough]];
424 case R_AARCH64_CALL26:
425 checkInt(loc, val, 28, rel);
426 or32le(loc, (val & 0x0FFFFFFC) >> 2);
427 break;
428 case R_AARCH64_CONDBR19:
429 case R_AARCH64_LD_PREL_LO19:
430 checkAlignment(loc, val, 4, rel);
431 checkInt(loc, val, 21, rel);
432 or32le(loc, (val & 0x1FFFFC) << 3);
433 break;
434 case R_AARCH64_LDST8_ABS_LO12_NC:
435 case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
436 or32AArch64Imm(loc, getBits(val, 0, 11));
437 break;
438 case R_AARCH64_LDST16_ABS_LO12_NC:
439 case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
440 checkAlignment(loc, val, 2, rel);
441 or32AArch64Imm(loc, getBits(val, 1, 11));
442 break;
443 case R_AARCH64_LDST32_ABS_LO12_NC:
444 case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
445 checkAlignment(loc, val, 4, rel);
446 or32AArch64Imm(loc, getBits(val, 2, 11));
447 break;
448 case R_AARCH64_LDST64_ABS_LO12_NC:
449 case R_AARCH64_LD64_GOT_LO12_NC:
450 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
451 case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
452 case R_AARCH64_TLSDESC_LD64_LO12:
453 checkAlignment(loc, val, 8, rel);
454 or32AArch64Imm(loc, getBits(val, 3, 11));
455 break;
456 case R_AARCH64_LDST128_ABS_LO12_NC:
457 case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC:
458 checkAlignment(loc, val, 16, rel);
459 or32AArch64Imm(loc, getBits(val, 4, 11));
460 break;
461 case R_AARCH64_LD64_GOTPAGE_LO15:
462 checkAlignment(loc, val, 8, rel);
463 or32AArch64Imm(loc, getBits(val, 3, 14));
464 break;
465 case R_AARCH64_MOVW_UABS_G0:
466 checkUInt(loc, val, 16, rel);
467 [[fallthrough]];
468 case R_AARCH64_MOVW_UABS_G0_NC:
469 or32le(loc, (val & 0xFFFF) << 5);
470 break;
471 case R_AARCH64_MOVW_UABS_G1:
472 checkUInt(loc, val, 32, rel);
473 [[fallthrough]];
474 case R_AARCH64_MOVW_UABS_G1_NC:
475 or32le(loc, (val & 0xFFFF0000) >> 11);
476 break;
477 case R_AARCH64_MOVW_UABS_G2:
478 checkUInt(loc, val, 48, rel);
479 [[fallthrough]];
480 case R_AARCH64_MOVW_UABS_G2_NC:
481 or32le(loc, (val & 0xFFFF00000000) >> 27);
482 break;
483 case R_AARCH64_MOVW_UABS_G3:
484 or32le(loc, (val & 0xFFFF000000000000) >> 43);
485 break;
486 case R_AARCH64_MOVW_PREL_G0:
487 case R_AARCH64_MOVW_SABS_G0:
488 case R_AARCH64_TLSLE_MOVW_TPREL_G0:
489 checkInt(loc, val, 17, rel);
490 [[fallthrough]];
491 case R_AARCH64_MOVW_PREL_G0_NC:
492 case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
493 writeSMovWImm(loc, val);
494 break;
495 case R_AARCH64_MOVW_PREL_G1:
496 case R_AARCH64_MOVW_SABS_G1:
497 case R_AARCH64_TLSLE_MOVW_TPREL_G1:
498 checkInt(loc, val, 33, rel);
499 [[fallthrough]];
500 case R_AARCH64_MOVW_PREL_G1_NC:
501 case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
502 writeSMovWImm(loc, val >> 16);
503 break;
504 case R_AARCH64_MOVW_PREL_G2:
505 case R_AARCH64_MOVW_SABS_G2:
506 case R_AARCH64_TLSLE_MOVW_TPREL_G2:
507 checkInt(loc, val, 49, rel);
508 [[fallthrough]];
509 case R_AARCH64_MOVW_PREL_G2_NC:
510 writeSMovWImm(loc, val >> 32);
511 break;
512 case R_AARCH64_MOVW_PREL_G3:
513 writeSMovWImm(loc, val >> 48);
514 break;
515 case R_AARCH64_TSTBR14:
516 checkInt(loc, val, 16, rel);
517 or32le(loc, (val & 0xFFFC) << 3);
518 break;
519 case R_AARCH64_TLSLE_ADD_TPREL_HI12:
520 checkUInt(loc, val, 24, rel);
521 or32AArch64Imm(loc, val >> 12);
522 break;
523 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
524 case R_AARCH64_TLSDESC_ADD_LO12:
525 or32AArch64Imm(loc, val);
526 break;
527 case R_AARCH64_TLSDESC:
528 // For R_AARCH64_TLSDESC the addend is stored in the second 64-bit word.
529 write64(loc + 8, val);
530 break;
531 default:
532 llvm_unreachable("unknown relocation");
536 void AArch64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
537 uint64_t val) const {
538 // TLSDESC Global-Dynamic relocation are in the form:
539 // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21]
540 // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12]
541 // add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12]
542 // .tlsdesccall [R_AARCH64_TLSDESC_CALL]
543 // blr x1
544 // And it can optimized to:
545 // movz x0, #0x0, lsl #16
546 // movk x0, #0x10
547 // nop
548 // nop
549 checkUInt(loc, val, 32, rel);
551 switch (rel.type) {
552 case R_AARCH64_TLSDESC_ADD_LO12:
553 case R_AARCH64_TLSDESC_CALL:
554 write32le(loc, 0xd503201f); // nop
555 return;
556 case R_AARCH64_TLSDESC_ADR_PAGE21:
557 write32le(loc, 0xd2a00000 | (((val >> 16) & 0xffff) << 5)); // movz
558 return;
559 case R_AARCH64_TLSDESC_LD64_LO12:
560 write32le(loc, 0xf2800000 | ((val & 0xffff) << 5)); // movk
561 return;
562 default:
563 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
567 void AArch64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
568 uint64_t val) const {
569 // TLSDESC Global-Dynamic relocation are in the form:
570 // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21]
571 // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12]
572 // add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12]
573 // .tlsdesccall [R_AARCH64_TLSDESC_CALL]
574 // blr x1
575 // And it can optimized to:
576 // adrp x0, :gottprel:v
577 // ldr x0, [x0, :gottprel_lo12:v]
578 // nop
579 // nop
581 switch (rel.type) {
582 case R_AARCH64_TLSDESC_ADD_LO12:
583 case R_AARCH64_TLSDESC_CALL:
584 write32le(loc, 0xd503201f); // nop
585 break;
586 case R_AARCH64_TLSDESC_ADR_PAGE21:
587 write32le(loc, 0x90000000); // adrp
588 relocateNoSym(loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, val);
589 break;
590 case R_AARCH64_TLSDESC_LD64_LO12:
591 write32le(loc, 0xf9400000); // ldr
592 relocateNoSym(loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, val);
593 break;
594 default:
595 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
599 void AArch64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
600 uint64_t val) const {
601 checkUInt(loc, val, 32, rel);
603 if (rel.type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) {
604 // Generate MOVZ.
605 uint32_t regNo = read32le(loc) & 0x1f;
606 write32le(loc, (0xd2a00000 | regNo) | (((val >> 16) & 0xffff) << 5));
607 return;
609 if (rel.type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) {
610 // Generate MOVK.
611 uint32_t regNo = read32le(loc) & 0x1f;
612 write32le(loc, (0xf2800000 | regNo) | ((val & 0xffff) << 5));
613 return;
615 llvm_unreachable("invalid relocation for TLS IE to LE relaxation");
618 AArch64Relaxer::AArch64Relaxer(ArrayRef<Relocation> relocs) {
619 if (!config->relax)
620 return;
621 // Check if R_AARCH64_ADR_GOT_PAGE and R_AARCH64_LD64_GOT_LO12_NC
622 // always appear in pairs.
623 size_t i = 0;
624 const size_t size = relocs.size();
625 for (; i != size; ++i) {
626 if (relocs[i].type == R_AARCH64_ADR_GOT_PAGE) {
627 if (i + 1 < size && relocs[i + 1].type == R_AARCH64_LD64_GOT_LO12_NC) {
628 ++i;
629 continue;
631 break;
632 } else if (relocs[i].type == R_AARCH64_LD64_GOT_LO12_NC) {
633 break;
636 safeToRelaxAdrpLdr = i == size;
639 bool AArch64Relaxer::tryRelaxAdrpAdd(const Relocation &adrpRel,
640 const Relocation &addRel, uint64_t secAddr,
641 uint8_t *buf) const {
642 // When the address of sym is within the range of ADR then
643 // we may relax
644 // ADRP xn, sym
645 // ADD xn, xn, :lo12: sym
646 // to
647 // NOP
648 // ADR xn, sym
649 if (!config->relax || adrpRel.type != R_AARCH64_ADR_PREL_PG_HI21 ||
650 addRel.type != R_AARCH64_ADD_ABS_LO12_NC)
651 return false;
652 // Check if the relocations apply to consecutive instructions.
653 if (adrpRel.offset + 4 != addRel.offset)
654 return false;
655 if (adrpRel.sym != addRel.sym)
656 return false;
657 if (adrpRel.addend != 0 || addRel.addend != 0)
658 return false;
660 uint32_t adrpInstr = read32le(buf + adrpRel.offset);
661 uint32_t addInstr = read32le(buf + addRel.offset);
662 // Check if the first instruction is ADRP and the second instruction is ADD.
663 if ((adrpInstr & 0x9f000000) != 0x90000000 ||
664 (addInstr & 0xffc00000) != 0x91000000)
665 return false;
666 uint32_t adrpDestReg = adrpInstr & 0x1f;
667 uint32_t addDestReg = addInstr & 0x1f;
668 uint32_t addSrcReg = (addInstr >> 5) & 0x1f;
669 if (adrpDestReg != addDestReg || adrpDestReg != addSrcReg)
670 return false;
672 Symbol &sym = *adrpRel.sym;
673 // Check if the address difference is within 1MiB range.
674 int64_t val = sym.getVA() - (secAddr + addRel.offset);
675 if (val < -1024 * 1024 || val >= 1024 * 1024)
676 return false;
678 Relocation adrRel = {R_ABS, R_AARCH64_ADR_PREL_LO21, addRel.offset,
679 /*addend=*/0, &sym};
680 // nop
681 write32le(buf + adrpRel.offset, 0xd503201f);
682 // adr x_<dest_reg>
683 write32le(buf + adrRel.offset, 0x10000000 | adrpDestReg);
684 target->relocate(buf + adrRel.offset, adrRel, val);
685 return true;
688 bool AArch64Relaxer::tryRelaxAdrpLdr(const Relocation &adrpRel,
689 const Relocation &ldrRel, uint64_t secAddr,
690 uint8_t *buf) const {
691 if (!safeToRelaxAdrpLdr)
692 return false;
694 // When the definition of sym is not preemptible then we may
695 // be able to relax
696 // ADRP xn, :got: sym
697 // LDR xn, [ xn :got_lo12: sym]
698 // to
699 // ADRP xn, sym
700 // ADD xn, xn, :lo_12: sym
702 if (adrpRel.type != R_AARCH64_ADR_GOT_PAGE ||
703 ldrRel.type != R_AARCH64_LD64_GOT_LO12_NC)
704 return false;
705 // Check if the relocations apply to consecutive instructions.
706 if (adrpRel.offset + 4 != ldrRel.offset)
707 return false;
708 // Check if the relocations reference the same symbol and
709 // skip undefined, preemptible and STT_GNU_IFUNC symbols.
710 if (!adrpRel.sym || adrpRel.sym != ldrRel.sym || !adrpRel.sym->isDefined() ||
711 adrpRel.sym->isPreemptible || adrpRel.sym->isGnuIFunc())
712 return false;
713 // Check if the addends of the both relocations are zero.
714 if (adrpRel.addend != 0 || ldrRel.addend != 0)
715 return false;
716 uint32_t adrpInstr = read32le(buf + adrpRel.offset);
717 uint32_t ldrInstr = read32le(buf + ldrRel.offset);
718 // Check if the first instruction is ADRP and the second instruction is LDR.
719 if ((adrpInstr & 0x9f000000) != 0x90000000 ||
720 (ldrInstr & 0x3b000000) != 0x39000000)
721 return false;
722 // Check the value of the sf bit.
723 if (!(ldrInstr >> 31))
724 return false;
725 uint32_t adrpDestReg = adrpInstr & 0x1f;
726 uint32_t ldrDestReg = ldrInstr & 0x1f;
727 uint32_t ldrSrcReg = (ldrInstr >> 5) & 0x1f;
728 // Check if ADPR and LDR use the same register.
729 if (adrpDestReg != ldrDestReg || adrpDestReg != ldrSrcReg)
730 return false;
732 Symbol &sym = *adrpRel.sym;
733 // GOT references to absolute symbols can't be relaxed to use ADRP/ADD in
734 // position-independent code because these instructions produce a relative
735 // address.
736 if (config->isPic && !cast<Defined>(sym).section)
737 return false;
738 // Check if the address difference is within 4GB range.
739 int64_t val =
740 getAArch64Page(sym.getVA()) - getAArch64Page(secAddr + adrpRel.offset);
741 if (val != llvm::SignExtend64(val, 33))
742 return false;
744 Relocation adrpSymRel = {R_AARCH64_PAGE_PC, R_AARCH64_ADR_PREL_PG_HI21,
745 adrpRel.offset, /*addend=*/0, &sym};
746 Relocation addRel = {R_ABS, R_AARCH64_ADD_ABS_LO12_NC, ldrRel.offset,
747 /*addend=*/0, &sym};
749 // adrp x_<dest_reg>
750 write32le(buf + adrpSymRel.offset, 0x90000000 | adrpDestReg);
751 // add x_<dest reg>, x_<dest reg>
752 write32le(buf + addRel.offset, 0x91000000 | adrpDestReg | (adrpDestReg << 5));
754 target->relocate(buf + adrpSymRel.offset, adrpSymRel,
755 SignExtend64(getAArch64Page(sym.getVA()) -
756 getAArch64Page(secAddr + adrpSymRel.offset),
757 64));
758 target->relocate(buf + addRel.offset, addRel, SignExtend64(sym.getVA(), 64));
759 tryRelaxAdrpAdd(adrpSymRel, addRel, secAddr, buf);
760 return true;
763 // Tagged symbols have upper address bits that are added by the dynamic loader,
764 // and thus need the full 64-bit GOT entry. Do not relax such symbols.
765 static bool needsGotForMemtag(const Relocation &rel) {
766 return rel.sym->isTagged() && needsGot(rel.expr);
769 void AArch64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
770 uint64_t secAddr = sec.getOutputSection()->addr;
771 if (auto *s = dyn_cast<InputSection>(&sec))
772 secAddr += s->outSecOff;
773 else if (auto *ehIn = dyn_cast<EhInputSection>(&sec))
774 secAddr += ehIn->getParent()->outSecOff;
775 AArch64Relaxer relaxer(sec.relocs());
776 for (size_t i = 0, size = sec.relocs().size(); i != size; ++i) {
777 const Relocation &rel = sec.relocs()[i];
778 uint8_t *loc = buf + rel.offset;
779 const uint64_t val =
780 sec.getRelocTargetVA(sec.file, rel.type, rel.addend,
781 secAddr + rel.offset, *rel.sym, rel.expr);
783 if (needsGotForMemtag(rel)) {
784 relocate(loc, rel, val);
785 continue;
788 switch (rel.expr) {
789 case R_AARCH64_GOT_PAGE_PC:
790 if (i + 1 < size &&
791 relaxer.tryRelaxAdrpLdr(rel, sec.relocs()[i + 1], secAddr, buf)) {
792 ++i;
793 continue;
795 break;
796 case R_AARCH64_PAGE_PC:
797 if (i + 1 < size &&
798 relaxer.tryRelaxAdrpAdd(rel, sec.relocs()[i + 1], secAddr, buf)) {
799 ++i;
800 continue;
802 break;
803 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
804 case R_RELAX_TLS_GD_TO_IE_ABS:
805 relaxTlsGdToIe(loc, rel, val);
806 continue;
807 case R_RELAX_TLS_GD_TO_LE:
808 relaxTlsGdToLe(loc, rel, val);
809 continue;
810 case R_RELAX_TLS_IE_TO_LE:
811 relaxTlsIeToLe(loc, rel, val);
812 continue;
813 default:
814 break;
816 relocate(loc, rel, val);
820 // AArch64 may use security features in variant PLT sequences. These are:
821 // Pointer Authentication (PAC), introduced in armv8.3-a and Branch Target
822 // Indicator (BTI) introduced in armv8.5-a. The additional instructions used
823 // in the variant Plt sequences are encoded in the Hint space so they can be
824 // deployed on older architectures, which treat the instructions as a nop.
825 // PAC and BTI can be combined leading to the following combinations:
826 // writePltHeader
827 // writePltHeaderBti (no PAC Header needed)
828 // writePlt
829 // writePltBti (BTI only)
830 // writePltPac (PAC only)
831 // writePltBtiPac (BTI and PAC)
833 // When PAC is enabled the dynamic loader encrypts the address that it places
834 // in the .got.plt using the pacia1716 instruction which encrypts the value in
835 // x17 using the modifier in x16. The static linker places autia1716 before the
836 // indirect branch to x17 to authenticate the address in x17 with the modifier
837 // in x16. This makes it more difficult for an attacker to modify the value in
838 // the .got.plt.
840 // When BTI is enabled all indirect branches must land on a bti instruction.
841 // The static linker must place a bti instruction at the start of any PLT entry
842 // that may be the target of an indirect branch. As the PLT entries call the
843 // lazy resolver indirectly this must have a bti instruction at start. In
844 // general a bti instruction is not needed for a PLT entry as indirect calls
845 // are resolved to the function address and not the PLT entry for the function.
846 // There are a small number of cases where the PLT address can escape, such as
847 // taking the address of a function or ifunc via a non got-generating
848 // relocation, and a shared library refers to that symbol.
850 // We use the bti c variant of the instruction which permits indirect branches
851 // (br) via x16/x17 and indirect function calls (blr) via any register. The ABI
852 // guarantees that all indirect branches from code requiring BTI protection
853 // will go via x16/x17
855 namespace {
856 class AArch64BtiPac final : public AArch64 {
857 public:
858 AArch64BtiPac();
859 void writePltHeader(uint8_t *buf) const override;
860 void writePlt(uint8_t *buf, const Symbol &sym,
861 uint64_t pltEntryAddr) const override;
863 private:
864 bool btiHeader; // bti instruction needed in PLT Header and Entry
865 bool pacEntry; // autia1716 instruction needed in PLT Entry
867 } // namespace
869 AArch64BtiPac::AArch64BtiPac() {
870 btiHeader = (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI);
871 // A BTI (Branch Target Indicator) Plt Entry is only required if the
872 // address of the PLT entry can be taken by the program, which permits an
873 // indirect jump to the PLT entry. This can happen when the address
874 // of the PLT entry for a function is canonicalised due to the address of
875 // the function in an executable being taken by a shared library, or
876 // non-preemptible ifunc referenced by non-GOT-generating, non-PLT-generating
877 // relocations.
878 // The PAC PLT entries require dynamic loader support and this isn't known
879 // from properties in the objects, so we use the command line flag.
880 pacEntry = config->zPacPlt;
882 if (btiHeader || pacEntry) {
883 pltEntrySize = 24;
884 ipltEntrySize = 24;
888 void AArch64BtiPac::writePltHeader(uint8_t *buf) const {
889 const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c
890 const uint8_t pltData[] = {
891 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]!
892 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[2]))
893 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[2]))]
894 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[2]))
895 0x20, 0x02, 0x1f, 0xd6, // br x17
896 0x1f, 0x20, 0x03, 0xd5, // nop
897 0x1f, 0x20, 0x03, 0xd5 // nop
899 const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop
901 uint64_t got = in.gotPlt->getVA();
902 uint64_t plt = in.plt->getVA();
904 if (btiHeader) {
905 // PltHeader is called indirectly by plt[N]. Prefix pltData with a BTI C
906 // instruction.
907 memcpy(buf, btiData, sizeof(btiData));
908 buf += sizeof(btiData);
909 plt += sizeof(btiData);
911 memcpy(buf, pltData, sizeof(pltData));
913 relocateNoSym(buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
914 getAArch64Page(got + 16) - getAArch64Page(plt + 8));
915 relocateNoSym(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16);
916 relocateNoSym(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16);
917 if (!btiHeader)
918 // We didn't add the BTI c instruction so round out size with NOP.
919 memcpy(buf + sizeof(pltData), nopData, sizeof(nopData));
922 void AArch64BtiPac::writePlt(uint8_t *buf, const Symbol &sym,
923 uint64_t pltEntryAddr) const {
924 // The PLT entry is of the form:
925 // [btiData] addrInst (pacBr | stdBr) [nopData]
926 const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c
927 const uint8_t addrInst[] = {
928 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[n]))
929 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[n]))]
930 0x10, 0x02, 0x00, 0x91 // add x16, x16, Offset(&(.got.plt[n]))
932 const uint8_t pacBr[] = {
933 0x9f, 0x21, 0x03, 0xd5, // autia1716
934 0x20, 0x02, 0x1f, 0xd6 // br x17
936 const uint8_t stdBr[] = {
937 0x20, 0x02, 0x1f, 0xd6, // br x17
938 0x1f, 0x20, 0x03, 0xd5 // nop
940 const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop
942 // NEEDS_COPY indicates a non-ifunc canonical PLT entry whose address may
943 // escape to shared objects. isInIplt indicates a non-preemptible ifunc. Its
944 // address may escape if referenced by a direct relocation. If relative
945 // vtables are used then if the vtable is in a shared object the offsets will
946 // be to the PLT entry. The condition is conservative.
947 bool hasBti = btiHeader &&
948 (sym.hasFlag(NEEDS_COPY) || sym.isInIplt || sym.thunkAccessed);
949 if (hasBti) {
950 memcpy(buf, btiData, sizeof(btiData));
951 buf += sizeof(btiData);
952 pltEntryAddr += sizeof(btiData);
955 uint64_t gotPltEntryAddr = sym.getGotPltVA();
956 memcpy(buf, addrInst, sizeof(addrInst));
957 relocateNoSym(buf, R_AARCH64_ADR_PREL_PG_HI21,
958 getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr));
959 relocateNoSym(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr);
960 relocateNoSym(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr);
962 if (pacEntry)
963 memcpy(buf + sizeof(addrInst), pacBr, sizeof(pacBr));
964 else
965 memcpy(buf + sizeof(addrInst), stdBr, sizeof(stdBr));
966 if (!hasBti)
967 // We didn't add the BTI c instruction so round out size with NOP.
968 memcpy(buf + sizeof(addrInst) + sizeof(stdBr), nopData, sizeof(nopData));
971 static TargetInfo *getTargetInfo() {
972 if ((config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) ||
973 config->zPacPlt) {
974 static AArch64BtiPac t;
975 return &t;
977 static AArch64 t;
978 return &t;
981 TargetInfo *elf::getAArch64TargetInfo() { return getTargetInfo(); }
983 template <class ELFT>
984 static void
985 addTaggedSymbolReferences(InputSectionBase &sec,
986 DenseMap<Symbol *, unsigned> &referenceCount) {
987 assert(sec.type == SHT_AARCH64_MEMTAG_GLOBALS_STATIC);
989 const RelsOrRelas<ELFT> rels = sec.relsOrRelas<ELFT>();
990 if (rels.areRelocsRel())
991 error("non-RELA relocations are not allowed with memtag globals");
993 for (const typename ELFT::Rela &rel : rels.relas) {
994 Symbol &sym = sec.getFile<ELFT>()->getRelocTargetSym(rel);
995 // Linker-synthesized symbols such as __executable_start may be referenced
996 // as tagged in input objfiles, and we don't want them to be tagged. A
997 // cheap way to exclude them is the type check, but their type is
998 // STT_NOTYPE. In addition, this save us from checking untaggable symbols,
999 // like functions or TLS symbols.
1000 if (sym.type != STT_OBJECT)
1001 continue;
1002 // STB_LOCAL symbols can't be referenced from outside the object file, and
1003 // thus don't need to be checked for references from other object files.
1004 if (sym.binding == STB_LOCAL) {
1005 sym.setIsTagged(true);
1006 continue;
1008 ++referenceCount[&sym];
1010 sec.markDead();
1013 // A tagged symbol must be denoted as being tagged by all references and the
1014 // chosen definition. For simplicity, here, it must also be denoted as tagged
1015 // for all definitions. Otherwise:
1017 // 1. A tagged definition can be used by an untagged declaration, in which case
1018 // the untagged access may be PC-relative, causing a tag mismatch at
1019 // runtime.
1020 // 2. An untagged definition can be used by a tagged declaration, where the
1021 // compiler has taken advantage of the increased alignment of the tagged
1022 // declaration, but the alignment at runtime is wrong, causing a fault.
1024 // Ideally, this isn't a problem, as any TU that imports or exports tagged
1025 // symbols should also be built with tagging. But, to handle these cases, we
1026 // demote the symbol to be untagged.
1027 void lld::elf::createTaggedSymbols(const SmallVector<ELFFileBase *, 0> &files) {
1028 assert(config->emachine == EM_AARCH64 &&
1029 config->androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE);
1031 // First, collect all symbols that are marked as tagged, and count how many
1032 // times they're marked as tagged.
1033 DenseMap<Symbol *, unsigned> taggedSymbolReferenceCount;
1034 for (InputFile* file : files) {
1035 if (file->kind() != InputFile::ObjKind)
1036 continue;
1037 for (InputSectionBase *section : file->getSections()) {
1038 if (!section || section->type != SHT_AARCH64_MEMTAG_GLOBALS_STATIC ||
1039 section == &InputSection::discarded)
1040 continue;
1041 invokeELFT(addTaggedSymbolReferences, *section,
1042 taggedSymbolReferenceCount);
1046 // Now, go through all the symbols. If the number of declarations +
1047 // definitions to a symbol exceeds the amount of times they're marked as
1048 // tagged, it means we have an objfile that uses the untagged variant of the
1049 // symbol.
1050 for (InputFile *file : files) {
1051 if (file->kind() != InputFile::BinaryKind &&
1052 file->kind() != InputFile::ObjKind)
1053 continue;
1055 for (Symbol *symbol : file->getSymbols()) {
1056 // See `addTaggedSymbolReferences` for more details.
1057 if (symbol->type != STT_OBJECT ||
1058 symbol->binding == STB_LOCAL)
1059 continue;
1060 auto it = taggedSymbolReferenceCount.find(symbol);
1061 if (it == taggedSymbolReferenceCount.end()) continue;
1062 unsigned &remainingAllowedTaggedRefs = it->second;
1063 if (remainingAllowedTaggedRefs == 0) {
1064 taggedSymbolReferenceCount.erase(it);
1065 continue;
1067 --remainingAllowedTaggedRefs;
1071 // `addTaggedSymbolReferences` has already checked that we have RELA
1072 // relocations, the only other way to get written addends is with
1073 // --apply-dynamic-relocs.
1074 if (!taggedSymbolReferenceCount.empty() && config->writeAddends)
1075 error("--apply-dynamic-relocs cannot be used with MTE globals");
1077 // Now, `taggedSymbolReferenceCount` should only contain symbols that are
1078 // defined as tagged exactly the same amount as it's referenced, meaning all
1079 // uses are tagged.
1080 for (auto &[symbol, remainingTaggedRefs] : taggedSymbolReferenceCount) {
1081 assert(remainingTaggedRefs == 0 &&
1082 "Symbol is defined as tagged more times than it's used");
1083 symbol->setIsTagged(true);