1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file "describes" induction and recurrence variables.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/IVDescriptors.h"
14 #include "llvm/Analysis/DemandedBits.h"
15 #include "llvm/Analysis/LoopInfo.h"
16 #include "llvm/Analysis/ScalarEvolution.h"
17 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/PatternMatch.h"
23 #include "llvm/IR/ValueHandle.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/KnownBits.h"
30 using namespace llvm::PatternMatch
;
32 #define DEBUG_TYPE "iv-descriptors"
34 bool RecurrenceDescriptor::areAllUsesIn(Instruction
*I
,
35 SmallPtrSetImpl
<Instruction
*> &Set
) {
36 for (const Use
&Use
: I
->operands())
37 if (!Set
.count(dyn_cast
<Instruction
>(Use
)))
42 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind
) {
55 case RecurKind::IAnyOf
:
56 case RecurKind::FAnyOf
:
62 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind
) {
63 return (Kind
!= RecurKind::None
) && !isIntegerRecurrenceKind(Kind
);
66 /// Determines if Phi may have been type-promoted. If Phi has a single user
67 /// that ANDs the Phi with a type mask, return the user. RT is updated to
68 /// account for the narrower bit width represented by the mask, and the AND
69 /// instruction is added to CI.
70 static Instruction
*lookThroughAnd(PHINode
*Phi
, Type
*&RT
,
71 SmallPtrSetImpl
<Instruction
*> &Visited
,
72 SmallPtrSetImpl
<Instruction
*> &CI
) {
73 if (!Phi
->hasOneUse())
76 const APInt
*M
= nullptr;
77 Instruction
*I
, *J
= cast
<Instruction
>(Phi
->use_begin()->getUser());
79 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
80 // with a new integer type of the corresponding bit width.
81 if (match(J
, m_c_And(m_Instruction(I
), m_APInt(M
)))) {
82 int32_t Bits
= (*M
+ 1).exactLogBase2();
84 RT
= IntegerType::get(Phi
->getContext(), Bits
);
93 /// Compute the minimal bit width needed to represent a reduction whose exit
94 /// instruction is given by Exit.
95 static std::pair
<Type
*, bool> computeRecurrenceType(Instruction
*Exit
,
99 bool IsSigned
= false;
100 const DataLayout
&DL
= Exit
->getModule()->getDataLayout();
101 uint64_t MaxBitWidth
= DL
.getTypeSizeInBits(Exit
->getType());
104 // Use the demanded bits analysis to determine the bits that are live out
105 // of the exit instruction, rounding up to the nearest power of two. If the
106 // use of demanded bits results in a smaller bit width, we know the value
107 // must be positive (i.e., IsSigned = false), because if this were not the
108 // case, the sign bit would have been demanded.
109 auto Mask
= DB
->getDemandedBits(Exit
);
110 MaxBitWidth
= Mask
.getBitWidth() - Mask
.countl_zero();
113 if (MaxBitWidth
== DL
.getTypeSizeInBits(Exit
->getType()) && AC
&& DT
) {
114 // If demanded bits wasn't able to limit the bit width, we can try to use
115 // value tracking instead. This can be the case, for example, if the value
117 auto NumSignBits
= ComputeNumSignBits(Exit
, DL
, 0, AC
, nullptr, DT
);
118 auto NumTypeBits
= DL
.getTypeSizeInBits(Exit
->getType());
119 MaxBitWidth
= NumTypeBits
- NumSignBits
;
120 KnownBits Bits
= computeKnownBits(Exit
, DL
);
121 if (!Bits
.isNonNegative()) {
122 // If the value is not known to be non-negative, we set IsSigned to true,
123 // meaning that we will use sext instructions instead of zext
124 // instructions to restore the original type.
126 // Make sure at least one sign bit is included in the result, so it
127 // will get properly sign-extended.
131 MaxBitWidth
= llvm::bit_ceil(MaxBitWidth
);
133 return std::make_pair(Type::getIntNTy(Exit
->getContext(), MaxBitWidth
),
137 /// Collect cast instructions that can be ignored in the vectorizer's cost
138 /// model, given a reduction exit value and the minimal type in which the
139 // reduction can be represented. Also search casts to the recurrence type
140 // to find the minimum width used by the recurrence.
141 static void collectCastInstrs(Loop
*TheLoop
, Instruction
*Exit
,
142 Type
*RecurrenceType
,
143 SmallPtrSetImpl
<Instruction
*> &Casts
,
144 unsigned &MinWidthCastToRecurTy
) {
146 SmallVector
<Instruction
*, 8> Worklist
;
147 SmallPtrSet
<Instruction
*, 8> Visited
;
148 Worklist
.push_back(Exit
);
149 MinWidthCastToRecurTy
= -1U;
151 while (!Worklist
.empty()) {
152 Instruction
*Val
= Worklist
.pop_back_val();
154 if (auto *Cast
= dyn_cast
<CastInst
>(Val
)) {
155 if (Cast
->getSrcTy() == RecurrenceType
) {
156 // If the source type of a cast instruction is equal to the recurrence
157 // type, it will be eliminated, and should be ignored in the vectorizer
162 if (Cast
->getDestTy() == RecurrenceType
) {
163 // The minimum width used by the recurrence is found by checking for
164 // casts on its operands. The minimum width is used by the vectorizer
165 // when finding the widest type for in-loop reductions without any
167 MinWidthCastToRecurTy
= std::min
<unsigned>(
168 MinWidthCastToRecurTy
, Cast
->getSrcTy()->getScalarSizeInBits());
172 // Add all operands to the work list if they are loop-varying values that
173 // we haven't yet visited.
174 for (Value
*O
: cast
<User
>(Val
)->operands())
175 if (auto *I
= dyn_cast
<Instruction
>(O
))
176 if (TheLoop
->contains(I
) && !Visited
.count(I
))
177 Worklist
.push_back(I
);
181 // Check if a given Phi node can be recognized as an ordered reduction for
182 // vectorizing floating point operations without unsafe math.
183 static bool checkOrderedReduction(RecurKind Kind
, Instruction
*ExactFPMathInst
,
184 Instruction
*Exit
, PHINode
*Phi
) {
185 // Currently only FAdd and FMulAdd are supported.
186 if (Kind
!= RecurKind::FAdd
&& Kind
!= RecurKind::FMulAdd
)
189 if (Kind
== RecurKind::FAdd
&& Exit
->getOpcode() != Instruction::FAdd
)
192 if (Kind
== RecurKind::FMulAdd
&&
193 !RecurrenceDescriptor::isFMulAddIntrinsic(Exit
))
196 // Ensure the exit instruction has only one user other than the reduction PHI
197 if (Exit
!= ExactFPMathInst
|| Exit
->hasNUsesOrMore(3))
200 // The only pattern accepted is the one in which the reduction PHI
201 // is used as one of the operands of the exit instruction
202 auto *Op0
= Exit
->getOperand(0);
203 auto *Op1
= Exit
->getOperand(1);
204 if (Kind
== RecurKind::FAdd
&& Op0
!= Phi
&& Op1
!= Phi
)
206 if (Kind
== RecurKind::FMulAdd
&& Exit
->getOperand(2) != Phi
)
209 LLVM_DEBUG(dbgs() << "LV: Found an ordered reduction: Phi: " << *Phi
210 << ", ExitInst: " << *Exit
<< "\n");
215 bool RecurrenceDescriptor::AddReductionVar(
216 PHINode
*Phi
, RecurKind Kind
, Loop
*TheLoop
, FastMathFlags FuncFMF
,
217 RecurrenceDescriptor
&RedDes
, DemandedBits
*DB
, AssumptionCache
*AC
,
218 DominatorTree
*DT
, ScalarEvolution
*SE
) {
219 if (Phi
->getNumIncomingValues() != 2)
222 // Reduction variables are only found in the loop header block.
223 if (Phi
->getParent() != TheLoop
->getHeader())
226 // Obtain the reduction start value from the value that comes from the loop
228 Value
*RdxStart
= Phi
->getIncomingValueForBlock(TheLoop
->getLoopPreheader());
230 // ExitInstruction is the single value which is used outside the loop.
231 // We only allow for a single reduction value to be used outside the loop.
232 // This includes users of the reduction, variables (which form a cycle
233 // which ends in the phi node).
234 Instruction
*ExitInstruction
= nullptr;
236 // Variable to keep last visited store instruction. By the end of the
237 // algorithm this variable will be either empty or having intermediate
238 // reduction value stored in invariant address.
239 StoreInst
*IntermediateStore
= nullptr;
241 // Indicates that we found a reduction operation in our scan.
242 bool FoundReduxOp
= false;
244 // We start with the PHI node and scan for all of the users of this
245 // instruction. All users must be instructions that can be used as reduction
246 // variables (such as ADD). We must have a single out-of-block user. The cycle
247 // must include the original PHI.
248 bool FoundStartPHI
= false;
250 // To recognize min/max patterns formed by a icmp select sequence, we store
251 // the number of instruction we saw from the recognized min/max pattern,
252 // to make sure we only see exactly the two instructions.
253 unsigned NumCmpSelectPatternInst
= 0;
254 InstDesc
ReduxDesc(false, nullptr);
256 // Data used for determining if the recurrence has been type-promoted.
257 Type
*RecurrenceType
= Phi
->getType();
258 SmallPtrSet
<Instruction
*, 4> CastInsts
;
259 unsigned MinWidthCastToRecurrenceType
;
260 Instruction
*Start
= Phi
;
261 bool IsSigned
= false;
263 SmallPtrSet
<Instruction
*, 8> VisitedInsts
;
264 SmallVector
<Instruction
*, 8> Worklist
;
266 // Return early if the recurrence kind does not match the type of Phi. If the
267 // recurrence kind is arithmetic, we attempt to look through AND operations
268 // resulting from the type promotion performed by InstCombine. Vector
269 // operations are not limited to the legal integer widths, so we may be able
270 // to evaluate the reduction in the narrower width.
271 if (RecurrenceType
->isFloatingPointTy()) {
272 if (!isFloatingPointRecurrenceKind(Kind
))
274 } else if (RecurrenceType
->isIntegerTy()) {
275 if (!isIntegerRecurrenceKind(Kind
))
277 if (!isMinMaxRecurrenceKind(Kind
))
278 Start
= lookThroughAnd(Phi
, RecurrenceType
, VisitedInsts
, CastInsts
);
280 // Pointer min/max may exist, but it is not supported as a reduction op.
284 Worklist
.push_back(Start
);
285 VisitedInsts
.insert(Start
);
287 // Start with all flags set because we will intersect this with the reduction
288 // flags from all the reduction operations.
289 FastMathFlags FMF
= FastMathFlags::getFast();
291 // The first instruction in the use-def chain of the Phi node that requires
292 // exact floating point operations.
293 Instruction
*ExactFPMathInst
= nullptr;
295 // A value in the reduction can be used:
296 // - By the reduction:
297 // - Reduction operation:
298 // - One use of reduction value (safe).
299 // - Multiple use of reduction value (not safe).
301 // - All uses of the PHI must be the reduction (safe).
302 // - Otherwise, not safe.
303 // - By instructions outside of the loop (safe).
304 // * One value may have several outside users, but all outside
305 // uses must be of the same value.
306 // - By store instructions with a loop invariant address (safe with
307 // the following restrictions):
308 // * If there are several stores, all must have the same address.
309 // * Final value should be stored in that loop invariant address.
310 // - By an instruction that is not part of the reduction (not safe).
312 // * An instruction type other than PHI or the reduction operation.
313 // * A PHI in the header other than the initial PHI.
314 while (!Worklist
.empty()) {
315 Instruction
*Cur
= Worklist
.pop_back_val();
317 // Store instructions are allowed iff it is the store of the reduction
318 // value to the same loop invariant memory location.
319 if (auto *SI
= dyn_cast
<StoreInst
>(Cur
)) {
321 LLVM_DEBUG(dbgs() << "Store instructions are not processed without "
322 << "Scalar Evolution Analysis\n");
326 const SCEV
*PtrScev
= SE
->getSCEV(SI
->getPointerOperand());
327 // Check it is the same address as previous stores
328 if (IntermediateStore
) {
329 const SCEV
*OtherScev
=
330 SE
->getSCEV(IntermediateStore
->getPointerOperand());
332 if (OtherScev
!= PtrScev
) {
333 LLVM_DEBUG(dbgs() << "Storing reduction value to different addresses "
334 << "inside the loop: " << *SI
->getPointerOperand()
336 << *IntermediateStore
->getPointerOperand() << '\n');
341 // Check the pointer is loop invariant
342 if (!SE
->isLoopInvariant(PtrScev
, TheLoop
)) {
343 LLVM_DEBUG(dbgs() << "Storing reduction value to non-uniform address "
344 << "inside the loop: " << *SI
->getPointerOperand()
349 // IntermediateStore is always the last store in the loop.
350 IntermediateStore
= SI
;
355 // If the instruction has no users then this is a broken chain and can't be
356 // a reduction variable.
357 if (Cur
->use_empty())
360 bool IsAPhi
= isa
<PHINode
>(Cur
);
362 // A header PHI use other than the original PHI.
363 if (Cur
!= Phi
&& IsAPhi
&& Cur
->getParent() == Phi
->getParent())
366 // Reductions of instructions such as Div, and Sub is only possible if the
367 // LHS is the reduction variable.
368 if (!Cur
->isCommutative() && !IsAPhi
&& !isa
<SelectInst
>(Cur
) &&
369 !isa
<ICmpInst
>(Cur
) && !isa
<FCmpInst
>(Cur
) &&
370 !VisitedInsts
.count(dyn_cast
<Instruction
>(Cur
->getOperand(0))))
373 // Any reduction instruction must be of one of the allowed kinds. We ignore
374 // the starting value (the Phi or an AND instruction if the Phi has been
378 isRecurrenceInstr(TheLoop
, Phi
, Cur
, Kind
, ReduxDesc
, FuncFMF
);
379 ExactFPMathInst
= ExactFPMathInst
== nullptr
380 ? ReduxDesc
.getExactFPMathInst()
382 if (!ReduxDesc
.isRecurrence())
384 // FIXME: FMF is allowed on phi, but propagation is not handled correctly.
385 if (isa
<FPMathOperator
>(ReduxDesc
.getPatternInst()) && !IsAPhi
) {
386 FastMathFlags CurFMF
= ReduxDesc
.getPatternInst()->getFastMathFlags();
387 if (auto *Sel
= dyn_cast
<SelectInst
>(ReduxDesc
.getPatternInst())) {
388 // Accept FMF on either fcmp or select of a min/max idiom.
389 // TODO: This is a hack to work-around the fact that FMF may not be
390 // assigned/propagated correctly. If that problem is fixed or we
391 // standardize on fmin/fmax via intrinsics, this can be removed.
392 if (auto *FCmp
= dyn_cast
<FCmpInst
>(Sel
->getCondition()))
393 CurFMF
|= FCmp
->getFastMathFlags();
397 // Update this reduction kind if we matched a new instruction.
398 // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind'
399 // state accurate while processing the worklist?
400 if (ReduxDesc
.getRecKind() != RecurKind::None
)
401 Kind
= ReduxDesc
.getRecKind();
404 bool IsASelect
= isa
<SelectInst
>(Cur
);
406 // A conditional reduction operation must only have 2 or less uses in
408 if (IsASelect
&& (Kind
== RecurKind::FAdd
|| Kind
== RecurKind::FMul
) &&
409 hasMultipleUsesOf(Cur
, VisitedInsts
, 2))
412 // A reduction operation must only have one use of the reduction value.
413 if (!IsAPhi
&& !IsASelect
&& !isMinMaxRecurrenceKind(Kind
) &&
414 !isAnyOfRecurrenceKind(Kind
) && hasMultipleUsesOf(Cur
, VisitedInsts
, 1))
417 // All inputs to a PHI node must be a reduction value.
418 if (IsAPhi
&& Cur
!= Phi
&& !areAllUsesIn(Cur
, VisitedInsts
))
421 if ((isIntMinMaxRecurrenceKind(Kind
) || Kind
== RecurKind::IAnyOf
) &&
422 (isa
<ICmpInst
>(Cur
) || isa
<SelectInst
>(Cur
)))
423 ++NumCmpSelectPatternInst
;
424 if ((isFPMinMaxRecurrenceKind(Kind
) || Kind
== RecurKind::FAnyOf
) &&
425 (isa
<FCmpInst
>(Cur
) || isa
<SelectInst
>(Cur
)))
426 ++NumCmpSelectPatternInst
;
428 // Check whether we found a reduction operator.
429 FoundReduxOp
|= !IsAPhi
&& Cur
!= Start
;
431 // Process users of current instruction. Push non-PHI nodes after PHI nodes
432 // onto the stack. This way we are going to have seen all inputs to PHI
433 // nodes once we get to them.
434 SmallVector
<Instruction
*, 8> NonPHIs
;
435 SmallVector
<Instruction
*, 8> PHIs
;
436 for (User
*U
: Cur
->users()) {
437 Instruction
*UI
= cast
<Instruction
>(U
);
439 // If the user is a call to llvm.fmuladd then the instruction can only be
440 // the final operand.
441 if (isFMulAddIntrinsic(UI
))
442 if (Cur
== UI
->getOperand(0) || Cur
== UI
->getOperand(1))
445 // Check if we found the exit user.
446 BasicBlock
*Parent
= UI
->getParent();
447 if (!TheLoop
->contains(Parent
)) {
448 // If we already know this instruction is used externally, move on to
450 if (ExitInstruction
== Cur
)
453 // Exit if you find multiple values used outside or if the header phi
454 // node is being used. In this case the user uses the value of the
455 // previous iteration, in which case we would loose "VF-1" iterations of
456 // the reduction operation if we vectorize.
457 if (ExitInstruction
!= nullptr || Cur
== Phi
)
460 // The instruction used by an outside user must be the last instruction
461 // before we feed back to the reduction phi. Otherwise, we loose VF-1
462 // operations on the value.
463 if (!is_contained(Phi
->operands(), Cur
))
466 ExitInstruction
= Cur
;
470 // Process instructions only once (termination). Each reduction cycle
471 // value must only be used once, except by phi nodes and min/max
472 // reductions which are represented as a cmp followed by a select.
473 InstDesc
IgnoredVal(false, nullptr);
474 if (VisitedInsts
.insert(UI
).second
) {
475 if (isa
<PHINode
>(UI
)) {
478 StoreInst
*SI
= dyn_cast
<StoreInst
>(UI
);
479 if (SI
&& SI
->getPointerOperand() == Cur
) {
480 // Reduction variable chain can only be stored somewhere but it
481 // can't be used as an address.
484 NonPHIs
.push_back(UI
);
486 } else if (!isa
<PHINode
>(UI
) &&
487 ((!isa
<FCmpInst
>(UI
) && !isa
<ICmpInst
>(UI
) &&
488 !isa
<SelectInst
>(UI
)) ||
489 (!isConditionalRdxPattern(Kind
, UI
).isRecurrence() &&
490 !isAnyOfPattern(TheLoop
, Phi
, UI
, IgnoredVal
)
492 !isMinMaxPattern(UI
, Kind
, IgnoredVal
).isRecurrence())))
495 // Remember that we completed the cycle.
497 FoundStartPHI
= true;
499 Worklist
.append(PHIs
.begin(), PHIs
.end());
500 Worklist
.append(NonPHIs
.begin(), NonPHIs
.end());
503 // This means we have seen one but not the other instruction of the
504 // pattern or more than just a select and cmp. Zero implies that we saw a
505 // llvm.min/max intrinsic, which is always OK.
506 if (isMinMaxRecurrenceKind(Kind
) && NumCmpSelectPatternInst
!= 2 &&
507 NumCmpSelectPatternInst
!= 0)
510 if (isAnyOfRecurrenceKind(Kind
) && NumCmpSelectPatternInst
!= 1)
513 if (IntermediateStore
) {
514 // Check that stored value goes to the phi node again. This way we make sure
515 // that the value stored in IntermediateStore is indeed the final reduction
517 if (!is_contained(Phi
->operands(), IntermediateStore
->getValueOperand())) {
518 LLVM_DEBUG(dbgs() << "Not a final reduction value stored: "
519 << *IntermediateStore
<< '\n');
523 // If there is an exit instruction it's value should be stored in
525 if (ExitInstruction
&&
526 IntermediateStore
->getValueOperand() != ExitInstruction
) {
527 LLVM_DEBUG(dbgs() << "Last store Instruction of reduction value does not "
528 "store last calculated value of the reduction: "
529 << *IntermediateStore
<< '\n');
533 // If all uses are inside the loop (intermediate stores), then the
534 // reduction value after the loop will be the one used in the last store.
535 if (!ExitInstruction
)
536 ExitInstruction
= cast
<Instruction
>(IntermediateStore
->getValueOperand());
539 if (!FoundStartPHI
|| !FoundReduxOp
|| !ExitInstruction
)
542 const bool IsOrdered
=
543 checkOrderedReduction(Kind
, ExactFPMathInst
, ExitInstruction
, Phi
);
546 // If the starting value is not the same as the phi node, we speculatively
547 // looked through an 'and' instruction when evaluating a potential
548 // arithmetic reduction to determine if it may have been type-promoted.
550 // We now compute the minimal bit width that is required to represent the
551 // reduction. If this is the same width that was indicated by the 'and', we
552 // can represent the reduction in the smaller type. The 'and' instruction
553 // will be eliminated since it will essentially be a cast instruction that
554 // can be ignore in the cost model. If we compute a different type than we
555 // did when evaluating the 'and', the 'and' will not be eliminated, and we
556 // will end up with different kinds of operations in the recurrence
557 // expression (e.g., IntegerAND, IntegerADD). We give up if this is
560 // The vectorizer relies on InstCombine to perform the actual
561 // type-shrinking. It does this by inserting instructions to truncate the
562 // exit value of the reduction to the width indicated by RecurrenceType and
563 // then extend this value back to the original width. If IsSigned is false,
564 // a 'zext' instruction will be generated; otherwise, a 'sext' will be
567 // TODO: We should not rely on InstCombine to rewrite the reduction in the
568 // smaller type. We should just generate a correctly typed expression
571 std::tie(ComputedType
, IsSigned
) =
572 computeRecurrenceType(ExitInstruction
, DB
, AC
, DT
);
573 if (ComputedType
!= RecurrenceType
)
577 // Collect cast instructions and the minimum width used by the recurrence.
578 // If the starting value is not the same as the phi node and the computed
579 // recurrence type is equal to the recurrence type, the recurrence expression
580 // will be represented in a narrower or wider type. If there are any cast
581 // instructions that will be unnecessary, collect them in CastsFromRecurTy.
582 // Note that the 'and' instruction was already included in this list.
584 // TODO: A better way to represent this may be to tag in some way all the
585 // instructions that are a part of the reduction. The vectorizer cost
586 // model could then apply the recurrence type to these instructions,
587 // without needing a white list of instructions to ignore.
588 // This may also be useful for the inloop reductions, if it can be
589 // kept simple enough.
590 collectCastInstrs(TheLoop
, ExitInstruction
, RecurrenceType
, CastInsts
,
591 MinWidthCastToRecurrenceType
);
593 // We found a reduction var if we have reached the original phi node and we
594 // only have a single instruction with out-of-loop users.
596 // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
597 // is saved as part of the RecurrenceDescriptor.
599 // Save the description of this reduction variable.
600 RecurrenceDescriptor
RD(RdxStart
, ExitInstruction
, IntermediateStore
, Kind
,
601 FMF
, ExactFPMathInst
, RecurrenceType
, IsSigned
,
602 IsOrdered
, CastInsts
, MinWidthCastToRecurrenceType
);
608 // We are looking for loops that do something like this:
610 // for (int i = 0; i < n; i++) {
614 // where the reduction value (r) only has two states, in this example 0 or 3.
615 // The generated LLVM IR for this type of loop will be like this:
617 // %r = phi i32 [ %spec.select, %for.body ], [ 0, %entry ]
619 // %cmp = icmp sgt i32 %5, 3
620 // %spec.select = select i1 %cmp, i32 3, i32 %r
622 // In general we can support vectorization of loops where 'r' flips between
623 // any two non-constants, provided they are loop invariant. The only thing
624 // we actually care about at the end of the loop is whether or not any lane
625 // in the selected vector is different from the start value. The final
626 // across-vector reduction after the loop simply involves choosing the start
627 // value if nothing changed (0 in the example above) or the other selected
628 // value (3 in the example above).
629 RecurrenceDescriptor::InstDesc
630 RecurrenceDescriptor::isAnyOfPattern(Loop
*Loop
, PHINode
*OrigPhi
,
631 Instruction
*I
, InstDesc
&Prev
) {
632 // We must handle the select(cmp(),x,y) as a single instruction. Advance to
634 CmpInst::Predicate Pred
;
635 if (match(I
, m_OneUse(m_Cmp(Pred
, m_Value(), m_Value())))) {
636 if (auto *Select
= dyn_cast
<SelectInst
>(*I
->user_begin()))
637 return InstDesc(Select
, Prev
.getRecKind());
640 // Only match select with single use cmp condition.
641 if (!match(I
, m_Select(m_OneUse(m_Cmp(Pred
, m_Value(), m_Value())), m_Value(),
643 return InstDesc(false, I
);
645 SelectInst
*SI
= cast
<SelectInst
>(I
);
646 Value
*NonPhi
= nullptr;
648 if (OrigPhi
== dyn_cast
<PHINode
>(SI
->getTrueValue()))
649 NonPhi
= SI
->getFalseValue();
650 else if (OrigPhi
== dyn_cast
<PHINode
>(SI
->getFalseValue()))
651 NonPhi
= SI
->getTrueValue();
653 return InstDesc(false, I
);
655 // We are looking for selects of the form:
656 // select(cmp(), phi, loop_invariant) or
657 // select(cmp(), loop_invariant, phi)
658 if (!Loop
->isLoopInvariant(NonPhi
))
659 return InstDesc(false, I
);
661 return InstDesc(I
, isa
<ICmpInst
>(I
->getOperand(0)) ? RecurKind::IAnyOf
662 : RecurKind::FAnyOf
);
665 RecurrenceDescriptor::InstDesc
666 RecurrenceDescriptor::isMinMaxPattern(Instruction
*I
, RecurKind Kind
,
667 const InstDesc
&Prev
) {
668 assert((isa
<CmpInst
>(I
) || isa
<SelectInst
>(I
) || isa
<CallInst
>(I
)) &&
669 "Expected a cmp or select or call instruction");
670 if (!isMinMaxRecurrenceKind(Kind
))
671 return InstDesc(false, I
);
673 // We must handle the select(cmp()) as a single instruction. Advance to the
675 CmpInst::Predicate Pred
;
676 if (match(I
, m_OneUse(m_Cmp(Pred
, m_Value(), m_Value())))) {
677 if (auto *Select
= dyn_cast
<SelectInst
>(*I
->user_begin()))
678 return InstDesc(Select
, Prev
.getRecKind());
681 // Only match select with single use cmp condition, or a min/max intrinsic.
682 if (!isa
<IntrinsicInst
>(I
) &&
683 !match(I
, m_Select(m_OneUse(m_Cmp(Pred
, m_Value(), m_Value())), m_Value(),
685 return InstDesc(false, I
);
687 // Look for a min/max pattern.
688 if (match(I
, m_UMin(m_Value(), m_Value())))
689 return InstDesc(Kind
== RecurKind::UMin
, I
);
690 if (match(I
, m_UMax(m_Value(), m_Value())))
691 return InstDesc(Kind
== RecurKind::UMax
, I
);
692 if (match(I
, m_SMax(m_Value(), m_Value())))
693 return InstDesc(Kind
== RecurKind::SMax
, I
);
694 if (match(I
, m_SMin(m_Value(), m_Value())))
695 return InstDesc(Kind
== RecurKind::SMin
, I
);
696 if (match(I
, m_OrdFMin(m_Value(), m_Value())))
697 return InstDesc(Kind
== RecurKind::FMin
, I
);
698 if (match(I
, m_OrdFMax(m_Value(), m_Value())))
699 return InstDesc(Kind
== RecurKind::FMax
, I
);
700 if (match(I
, m_UnordFMin(m_Value(), m_Value())))
701 return InstDesc(Kind
== RecurKind::FMin
, I
);
702 if (match(I
, m_UnordFMax(m_Value(), m_Value())))
703 return InstDesc(Kind
== RecurKind::FMax
, I
);
704 if (match(I
, m_Intrinsic
<Intrinsic::minnum
>(m_Value(), m_Value())))
705 return InstDesc(Kind
== RecurKind::FMin
, I
);
706 if (match(I
, m_Intrinsic
<Intrinsic::maxnum
>(m_Value(), m_Value())))
707 return InstDesc(Kind
== RecurKind::FMax
, I
);
708 if (match(I
, m_Intrinsic
<Intrinsic::minimum
>(m_Value(), m_Value())))
709 return InstDesc(Kind
== RecurKind::FMinimum
, I
);
710 if (match(I
, m_Intrinsic
<Intrinsic::maximum
>(m_Value(), m_Value())))
711 return InstDesc(Kind
== RecurKind::FMaximum
, I
);
713 return InstDesc(false, I
);
716 /// Returns true if the select instruction has users in the compare-and-add
717 /// reduction pattern below. The select instruction argument is the last one
722 /// %cmp = fcmp pred %0, %CFP
723 /// %add = fadd %0, %sum.1
724 /// %sum.2 = select %cmp, %add, %sum.1
725 RecurrenceDescriptor::InstDesc
726 RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind
, Instruction
*I
) {
727 SelectInst
*SI
= dyn_cast
<SelectInst
>(I
);
729 return InstDesc(false, I
);
731 CmpInst
*CI
= dyn_cast
<CmpInst
>(SI
->getCondition());
732 // Only handle single use cases for now.
733 if (!CI
|| !CI
->hasOneUse())
734 return InstDesc(false, I
);
736 Value
*TrueVal
= SI
->getTrueValue();
737 Value
*FalseVal
= SI
->getFalseValue();
738 // Handle only when either of operands of select instruction is a PHI
740 if ((isa
<PHINode
>(*TrueVal
) && isa
<PHINode
>(*FalseVal
)) ||
741 (!isa
<PHINode
>(*TrueVal
) && !isa
<PHINode
>(*FalseVal
)))
742 return InstDesc(false, I
);
745 isa
<PHINode
>(*TrueVal
) ? dyn_cast
<Instruction
>(FalseVal
)
746 : dyn_cast
<Instruction
>(TrueVal
);
747 if (!I1
|| !I1
->isBinaryOp())
748 return InstDesc(false, I
);
751 if (!(((m_FAdd(m_Value(Op1
), m_Value(Op2
)).match(I1
) ||
752 m_FSub(m_Value(Op1
), m_Value(Op2
)).match(I1
)) &&
754 (m_FMul(m_Value(Op1
), m_Value(Op2
)).match(I1
) && (I1
->isFast())) ||
755 ((m_Add(m_Value(Op1
), m_Value(Op2
)).match(I1
) ||
756 m_Sub(m_Value(Op1
), m_Value(Op2
)).match(I1
))) ||
757 (m_Mul(m_Value(Op1
), m_Value(Op2
)).match(I1
))))
758 return InstDesc(false, I
);
760 Instruction
*IPhi
= isa
<PHINode
>(*Op1
) ? dyn_cast
<Instruction
>(Op1
)
761 : dyn_cast
<Instruction
>(Op2
);
762 if (!IPhi
|| IPhi
!= FalseVal
)
763 return InstDesc(false, I
);
765 return InstDesc(true, SI
);
768 RecurrenceDescriptor::InstDesc
769 RecurrenceDescriptor::isRecurrenceInstr(Loop
*L
, PHINode
*OrigPhi
,
770 Instruction
*I
, RecurKind Kind
,
771 InstDesc
&Prev
, FastMathFlags FuncFMF
) {
772 assert(Prev
.getRecKind() == RecurKind::None
|| Prev
.getRecKind() == Kind
);
773 switch (I
->getOpcode()) {
775 return InstDesc(false, I
);
776 case Instruction::PHI
:
777 return InstDesc(I
, Prev
.getRecKind(), Prev
.getExactFPMathInst());
778 case Instruction::Sub
:
779 case Instruction::Add
:
780 return InstDesc(Kind
== RecurKind::Add
, I
);
781 case Instruction::Mul
:
782 return InstDesc(Kind
== RecurKind::Mul
, I
);
783 case Instruction::And
:
784 return InstDesc(Kind
== RecurKind::And
, I
);
785 case Instruction::Or
:
786 return InstDesc(Kind
== RecurKind::Or
, I
);
787 case Instruction::Xor
:
788 return InstDesc(Kind
== RecurKind::Xor
, I
);
789 case Instruction::FDiv
:
790 case Instruction::FMul
:
791 return InstDesc(Kind
== RecurKind::FMul
, I
,
792 I
->hasAllowReassoc() ? nullptr : I
);
793 case Instruction::FSub
:
794 case Instruction::FAdd
:
795 return InstDesc(Kind
== RecurKind::FAdd
, I
,
796 I
->hasAllowReassoc() ? nullptr : I
);
797 case Instruction::Select
:
798 if (Kind
== RecurKind::FAdd
|| Kind
== RecurKind::FMul
||
799 Kind
== RecurKind::Add
|| Kind
== RecurKind::Mul
)
800 return isConditionalRdxPattern(Kind
, I
);
802 case Instruction::FCmp
:
803 case Instruction::ICmp
:
804 case Instruction::Call
:
805 if (isAnyOfRecurrenceKind(Kind
))
806 return isAnyOfPattern(L
, OrigPhi
, I
, Prev
);
807 auto HasRequiredFMF
= [&]() {
808 if (FuncFMF
.noNaNs() && FuncFMF
.noSignedZeros())
810 if (isa
<FPMathOperator
>(I
) && I
->hasNoNaNs() && I
->hasNoSignedZeros())
812 // minimum and maximum intrinsics do not require nsz and nnan flags since
813 // NaN and signed zeroes are propagated in the intrinsic implementation.
814 return match(I
, m_Intrinsic
<Intrinsic::minimum
>(m_Value(), m_Value())) ||
815 match(I
, m_Intrinsic
<Intrinsic::maximum
>(m_Value(), m_Value()));
817 if (isIntMinMaxRecurrenceKind(Kind
) ||
818 (HasRequiredFMF() && isFPMinMaxRecurrenceKind(Kind
)))
819 return isMinMaxPattern(I
, Kind
, Prev
);
820 else if (isFMulAddIntrinsic(I
))
821 return InstDesc(Kind
== RecurKind::FMulAdd
, I
,
822 I
->hasAllowReassoc() ? nullptr : I
);
823 return InstDesc(false, I
);
827 bool RecurrenceDescriptor::hasMultipleUsesOf(
828 Instruction
*I
, SmallPtrSetImpl
<Instruction
*> &Insts
,
829 unsigned MaxNumUses
) {
830 unsigned NumUses
= 0;
831 for (const Use
&U
: I
->operands()) {
832 if (Insts
.count(dyn_cast
<Instruction
>(U
)))
834 if (NumUses
> MaxNumUses
)
841 bool RecurrenceDescriptor::isReductionPHI(PHINode
*Phi
, Loop
*TheLoop
,
842 RecurrenceDescriptor
&RedDes
,
843 DemandedBits
*DB
, AssumptionCache
*AC
,
845 ScalarEvolution
*SE
) {
846 BasicBlock
*Header
= TheLoop
->getHeader();
847 Function
&F
= *Header
->getParent();
850 F
.getFnAttribute("no-nans-fp-math").getValueAsBool());
851 FMF
.setNoSignedZeros(
852 F
.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool());
854 if (AddReductionVar(Phi
, RecurKind::Add
, TheLoop
, FMF
, RedDes
, DB
, AC
, DT
,
856 LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi
<< "\n");
859 if (AddReductionVar(Phi
, RecurKind::Mul
, TheLoop
, FMF
, RedDes
, DB
, AC
, DT
,
861 LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi
<< "\n");
864 if (AddReductionVar(Phi
, RecurKind::Or
, TheLoop
, FMF
, RedDes
, DB
, AC
, DT
,
866 LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi
<< "\n");
869 if (AddReductionVar(Phi
, RecurKind::And
, TheLoop
, FMF
, RedDes
, DB
, AC
, DT
,
871 LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi
<< "\n");
874 if (AddReductionVar(Phi
, RecurKind::Xor
, TheLoop
, FMF
, RedDes
, DB
, AC
, DT
,
876 LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi
<< "\n");
879 if (AddReductionVar(Phi
, RecurKind::SMax
, TheLoop
, FMF
, RedDes
, DB
, AC
, DT
,
881 LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi
<< "\n");
884 if (AddReductionVar(Phi
, RecurKind::SMin
, TheLoop
, FMF
, RedDes
, DB
, AC
, DT
,
886 LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi
<< "\n");
889 if (AddReductionVar(Phi
, RecurKind::UMax
, TheLoop
, FMF
, RedDes
, DB
, AC
, DT
,
891 LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi
<< "\n");
894 if (AddReductionVar(Phi
, RecurKind::UMin
, TheLoop
, FMF
, RedDes
, DB
, AC
, DT
,
896 LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi
<< "\n");
899 if (AddReductionVar(Phi
, RecurKind::IAnyOf
, TheLoop
, FMF
, RedDes
, DB
, AC
, DT
,
901 LLVM_DEBUG(dbgs() << "Found an integer conditional select reduction PHI."
905 if (AddReductionVar(Phi
, RecurKind::FMul
, TheLoop
, FMF
, RedDes
, DB
, AC
, DT
,
907 LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi
<< "\n");
910 if (AddReductionVar(Phi
, RecurKind::FAdd
, TheLoop
, FMF
, RedDes
, DB
, AC
, DT
,
912 LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi
<< "\n");
915 if (AddReductionVar(Phi
, RecurKind::FMax
, TheLoop
, FMF
, RedDes
, DB
, AC
, DT
,
917 LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi
<< "\n");
920 if (AddReductionVar(Phi
, RecurKind::FMin
, TheLoop
, FMF
, RedDes
, DB
, AC
, DT
,
922 LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi
<< "\n");
925 if (AddReductionVar(Phi
, RecurKind::FAnyOf
, TheLoop
, FMF
, RedDes
, DB
, AC
, DT
,
927 LLVM_DEBUG(dbgs() << "Found a float conditional select reduction PHI."
928 << " PHI." << *Phi
<< "\n");
931 if (AddReductionVar(Phi
, RecurKind::FMulAdd
, TheLoop
, FMF
, RedDes
, DB
, AC
, DT
,
933 LLVM_DEBUG(dbgs() << "Found an FMulAdd reduction PHI." << *Phi
<< "\n");
936 if (AddReductionVar(Phi
, RecurKind::FMaximum
, TheLoop
, FMF
, RedDes
, DB
, AC
, DT
,
938 LLVM_DEBUG(dbgs() << "Found a float MAXIMUM reduction PHI." << *Phi
<< "\n");
941 if (AddReductionVar(Phi
, RecurKind::FMinimum
, TheLoop
, FMF
, RedDes
, DB
, AC
, DT
,
943 LLVM_DEBUG(dbgs() << "Found a float MINIMUM reduction PHI." << *Phi
<< "\n");
946 // Not a reduction of known type.
950 bool RecurrenceDescriptor::isFixedOrderRecurrence(PHINode
*Phi
, Loop
*TheLoop
,
953 // Ensure the phi node is in the loop header and has two incoming values.
954 if (Phi
->getParent() != TheLoop
->getHeader() ||
955 Phi
->getNumIncomingValues() != 2)
958 // Ensure the loop has a preheader and a single latch block. The loop
959 // vectorizer will need the latch to set up the next iteration of the loop.
960 auto *Preheader
= TheLoop
->getLoopPreheader();
961 auto *Latch
= TheLoop
->getLoopLatch();
962 if (!Preheader
|| !Latch
)
965 // Ensure the phi node's incoming blocks are the loop preheader and latch.
966 if (Phi
->getBasicBlockIndex(Preheader
) < 0 ||
967 Phi
->getBasicBlockIndex(Latch
) < 0)
970 // Get the previous value. The previous value comes from the latch edge while
971 // the initial value comes from the preheader edge.
972 auto *Previous
= dyn_cast
<Instruction
>(Phi
->getIncomingValueForBlock(Latch
));
974 // If Previous is a phi in the header, go through incoming values from the
975 // latch until we find a non-phi value. Use this as the new Previous, all uses
976 // in the header will be dominated by the original phi, but need to be moved
977 // after the non-phi previous value.
978 SmallPtrSet
<PHINode
*, 4> SeenPhis
;
979 while (auto *PrevPhi
= dyn_cast_or_null
<PHINode
>(Previous
)) {
980 if (PrevPhi
->getParent() != Phi
->getParent())
982 if (!SeenPhis
.insert(PrevPhi
).second
)
984 Previous
= dyn_cast
<Instruction
>(PrevPhi
->getIncomingValueForBlock(Latch
));
987 if (!Previous
|| !TheLoop
->contains(Previous
) || isa
<PHINode
>(Previous
))
990 // Ensure every user of the phi node (recursively) is dominated by the
991 // previous value. The dominance requirement ensures the loop vectorizer will
992 // not need to vectorize the initial value prior to the first iteration of the
994 // TODO: Consider extending this sinking to handle memory instructions.
996 SmallPtrSet
<Value
*, 8> Seen
;
997 BasicBlock
*PhiBB
= Phi
->getParent();
998 SmallVector
<Instruction
*, 8> WorkList
;
999 auto TryToPushSinkCandidate
= [&](Instruction
*SinkCandidate
) {
1000 // Cyclic dependence.
1001 if (Previous
== SinkCandidate
)
1004 if (!Seen
.insert(SinkCandidate
).second
)
1006 if (DT
->dominates(Previous
,
1007 SinkCandidate
)) // We already are good w/o sinking.
1010 if (SinkCandidate
->getParent() != PhiBB
||
1011 SinkCandidate
->mayHaveSideEffects() ||
1012 SinkCandidate
->mayReadFromMemory() || SinkCandidate
->isTerminator())
1015 // If we reach a PHI node that is not dominated by Previous, we reached a
1016 // header PHI. No need for sinking.
1017 if (isa
<PHINode
>(SinkCandidate
))
1020 // Sink User tentatively and check its users
1021 WorkList
.push_back(SinkCandidate
);
1025 WorkList
.push_back(Phi
);
1026 // Try to recursively sink instructions and their users after Previous.
1027 while (!WorkList
.empty()) {
1028 Instruction
*Current
= WorkList
.pop_back_val();
1029 for (User
*User
: Current
->users()) {
1030 if (!TryToPushSinkCandidate(cast
<Instruction
>(User
)))
1038 /// This function returns the identity element (or neutral element) for
1039 /// the operation K.
1040 Value
*RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K
, Type
*Tp
,
1041 FastMathFlags FMF
) const {
1043 case RecurKind::Xor
:
1044 case RecurKind::Add
:
1046 // Adding, Xoring, Oring zero to a number does not change it.
1047 return ConstantInt::get(Tp
, 0);
1048 case RecurKind::Mul
:
1049 // Multiplying a number by 1 does not change it.
1050 return ConstantInt::get(Tp
, 1);
1051 case RecurKind::And
:
1052 // AND-ing a number with an all-1 value does not change it.
1053 return ConstantInt::get(Tp
, -1, true);
1054 case RecurKind::FMul
:
1055 // Multiplying a number by 1 does not change it.
1056 return ConstantFP::get(Tp
, 1.0L);
1057 case RecurKind::FMulAdd
:
1058 case RecurKind::FAdd
:
1059 // Adding zero to a number does not change it.
1060 // FIXME: Ideally we should not need to check FMF for FAdd and should always
1061 // use -0.0. However, this will currently result in mixed vectors of 0.0/-0.0.
1062 // Instead, we should ensure that 1) the FMF from FAdd are propagated to the PHI
1063 // nodes where possible, and 2) PHIs with the nsz flag + -0.0 use 0.0. This would
1064 // mean we can then remove the check for noSignedZeros() below (see D98963).
1065 if (FMF
.noSignedZeros())
1066 return ConstantFP::get(Tp
, 0.0L);
1067 return ConstantFP::get(Tp
, -0.0L);
1068 case RecurKind::UMin
:
1069 return ConstantInt::get(Tp
, -1, true);
1070 case RecurKind::UMax
:
1071 return ConstantInt::get(Tp
, 0);
1072 case RecurKind::SMin
:
1073 return ConstantInt::get(Tp
,
1074 APInt::getSignedMaxValue(Tp
->getIntegerBitWidth()));
1075 case RecurKind::SMax
:
1076 return ConstantInt::get(Tp
,
1077 APInt::getSignedMinValue(Tp
->getIntegerBitWidth()));
1078 case RecurKind::FMin
:
1079 assert((FMF
.noNaNs() && FMF
.noSignedZeros()) &&
1080 "nnan, nsz is expected to be set for FP min reduction.");
1081 return ConstantFP::getInfinity(Tp
, false /*Negative*/);
1082 case RecurKind::FMax
:
1083 assert((FMF
.noNaNs() && FMF
.noSignedZeros()) &&
1084 "nnan, nsz is expected to be set for FP max reduction.");
1085 return ConstantFP::getInfinity(Tp
, true /*Negative*/);
1086 case RecurKind::FMinimum
:
1087 return ConstantFP::getInfinity(Tp
, false /*Negative*/);
1088 case RecurKind::FMaximum
:
1089 return ConstantFP::getInfinity(Tp
, true /*Negative*/);
1090 case RecurKind::IAnyOf
:
1091 case RecurKind::FAnyOf
:
1092 return getRecurrenceStartValue();
1095 llvm_unreachable("Unknown recurrence kind");
1099 unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind
) {
1101 case RecurKind::Add
:
1102 return Instruction::Add
;
1103 case RecurKind::Mul
:
1104 return Instruction::Mul
;
1106 return Instruction::Or
;
1107 case RecurKind::And
:
1108 return Instruction::And
;
1109 case RecurKind::Xor
:
1110 return Instruction::Xor
;
1111 case RecurKind::FMul
:
1112 return Instruction::FMul
;
1113 case RecurKind::FMulAdd
:
1114 case RecurKind::FAdd
:
1115 return Instruction::FAdd
;
1116 case RecurKind::SMax
:
1117 case RecurKind::SMin
:
1118 case RecurKind::UMax
:
1119 case RecurKind::UMin
:
1120 case RecurKind::IAnyOf
:
1121 return Instruction::ICmp
;
1122 case RecurKind::FMax
:
1123 case RecurKind::FMin
:
1124 case RecurKind::FMaximum
:
1125 case RecurKind::FMinimum
:
1126 case RecurKind::FAnyOf
:
1127 return Instruction::FCmp
;
1129 llvm_unreachable("Unknown recurrence operation");
1133 SmallVector
<Instruction
*, 4>
1134 RecurrenceDescriptor::getReductionOpChain(PHINode
*Phi
, Loop
*L
) const {
1135 SmallVector
<Instruction
*, 4> ReductionOperations
;
1136 unsigned RedOp
= getOpcode(Kind
);
1138 // Search down from the Phi to the LoopExitInstr, looking for instructions
1139 // with a single user of the correct type for the reduction.
1141 // Note that we check that the type of the operand is correct for each item in
1142 // the chain, including the last (the loop exit value). This can come up from
1143 // sub, which would otherwise be treated as an add reduction. MinMax also need
1144 // to check for a pair of icmp/select, for which we use getNextInstruction and
1145 // isCorrectOpcode functions to step the right number of instruction, and
1146 // check the icmp/select pair.
1147 // FIXME: We also do not attempt to look through Select's yet, which might
1148 // be part of the reduction chain, or attempt to looks through And's to find a
1149 // smaller bitwidth. Subs are also currently not allowed (which are usually
1150 // treated as part of a add reduction) as they are expected to generally be
1151 // more expensive than out-of-loop reductions, and need to be costed more
1153 unsigned ExpectedUses
= 1;
1154 if (RedOp
== Instruction::ICmp
|| RedOp
== Instruction::FCmp
)
1157 auto getNextInstruction
= [&](Instruction
*Cur
) -> Instruction
* {
1158 for (auto *User
: Cur
->users()) {
1159 Instruction
*UI
= cast
<Instruction
>(User
);
1160 if (isa
<PHINode
>(UI
))
1162 if (RedOp
== Instruction::ICmp
|| RedOp
== Instruction::FCmp
) {
1163 // We are expecting a icmp/select pair, which we go to the next select
1164 // instruction if we can. We already know that Cur has 2 uses.
1165 if (isa
<SelectInst
>(UI
))
1173 auto isCorrectOpcode
= [&](Instruction
*Cur
) {
1174 if (RedOp
== Instruction::ICmp
|| RedOp
== Instruction::FCmp
) {
1176 return SelectPatternResult::isMinOrMax(
1177 matchSelectPattern(Cur
, LHS
, RHS
).Flavor
);
1179 // Recognize a call to the llvm.fmuladd intrinsic.
1180 if (isFMulAddIntrinsic(Cur
))
1183 return Cur
->getOpcode() == RedOp
;
1186 // Attempt to look through Phis which are part of the reduction chain
1187 unsigned ExtraPhiUses
= 0;
1188 Instruction
*RdxInstr
= LoopExitInstr
;
1189 if (auto ExitPhi
= dyn_cast
<PHINode
>(LoopExitInstr
)) {
1190 if (ExitPhi
->getNumIncomingValues() != 2)
1193 Instruction
*Inc0
= dyn_cast
<Instruction
>(ExitPhi
->getIncomingValue(0));
1194 Instruction
*Inc1
= dyn_cast
<Instruction
>(ExitPhi
->getIncomingValue(1));
1196 Instruction
*Chain
= nullptr;
1199 else if (Inc1
== Phi
)
1208 // The loop exit instruction we check first (as a quick test) but add last. We
1209 // check the opcode is correct (and dont allow them to be Subs) and that they
1210 // have expected to have the expected number of uses. They will have one use
1211 // from the phi and one from a LCSSA value, no matter the type.
1212 if (!isCorrectOpcode(RdxInstr
) || !LoopExitInstr
->hasNUses(2))
1215 // Check that the Phi has one (or two for min/max) uses, plus an extra use
1216 // for conditional reductions.
1217 if (!Phi
->hasNUses(ExpectedUses
+ ExtraPhiUses
))
1220 Instruction
*Cur
= getNextInstruction(Phi
);
1222 // Each other instruction in the chain should have the expected number of uses
1223 // and be the correct opcode.
1224 while (Cur
!= RdxInstr
) {
1225 if (!Cur
|| !isCorrectOpcode(Cur
) || !Cur
->hasNUses(ExpectedUses
))
1228 ReductionOperations
.push_back(Cur
);
1229 Cur
= getNextInstruction(Cur
);
1232 ReductionOperations
.push_back(Cur
);
1233 return ReductionOperations
;
1236 InductionDescriptor::InductionDescriptor(Value
*Start
, InductionKind K
,
1237 const SCEV
*Step
, BinaryOperator
*BOp
,
1238 SmallVectorImpl
<Instruction
*> *Casts
)
1239 : StartValue(Start
), IK(K
), Step(Step
), InductionBinOp(BOp
) {
1240 assert(IK
!= IK_NoInduction
&& "Not an induction");
1242 // Start value type should match the induction kind and the value
1243 // itself should not be null.
1244 assert(StartValue
&& "StartValue is null");
1245 assert((IK
!= IK_PtrInduction
|| StartValue
->getType()->isPointerTy()) &&
1246 "StartValue is not a pointer for pointer induction");
1247 assert((IK
!= IK_IntInduction
|| StartValue
->getType()->isIntegerTy()) &&
1248 "StartValue is not an integer for integer induction");
1250 // Check the Step Value. It should be non-zero integer value.
1251 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
1252 "Step value is zero");
1254 assert((IK
== IK_FpInduction
|| Step
->getType()->isIntegerTy()) &&
1255 "StepValue is not an integer");
1257 assert((IK
!= IK_FpInduction
|| Step
->getType()->isFloatingPointTy()) &&
1258 "StepValue is not FP for FpInduction");
1259 assert((IK
!= IK_FpInduction
||
1261 (InductionBinOp
->getOpcode() == Instruction::FAdd
||
1262 InductionBinOp
->getOpcode() == Instruction::FSub
))) &&
1263 "Binary opcode should be specified for FP induction");
1266 for (auto &Inst
: *Casts
) {
1267 RedundantCasts
.push_back(Inst
);
1272 ConstantInt
*InductionDescriptor::getConstIntStepValue() const {
1273 if (isa
<SCEVConstant
>(Step
))
1274 return dyn_cast
<ConstantInt
>(cast
<SCEVConstant
>(Step
)->getValue());
1278 bool InductionDescriptor::isFPInductionPHI(PHINode
*Phi
, const Loop
*TheLoop
,
1279 ScalarEvolution
*SE
,
1280 InductionDescriptor
&D
) {
1282 // Here we only handle FP induction variables.
1283 assert(Phi
->getType()->isFloatingPointTy() && "Unexpected Phi type");
1285 if (TheLoop
->getHeader() != Phi
->getParent())
1288 // The loop may have multiple entrances or multiple exits; we can analyze
1289 // this phi if it has a unique entry value and a unique backedge value.
1290 if (Phi
->getNumIncomingValues() != 2)
1292 Value
*BEValue
= nullptr, *StartValue
= nullptr;
1293 if (TheLoop
->contains(Phi
->getIncomingBlock(0))) {
1294 BEValue
= Phi
->getIncomingValue(0);
1295 StartValue
= Phi
->getIncomingValue(1);
1297 assert(TheLoop
->contains(Phi
->getIncomingBlock(1)) &&
1298 "Unexpected Phi node in the loop");
1299 BEValue
= Phi
->getIncomingValue(1);
1300 StartValue
= Phi
->getIncomingValue(0);
1303 BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(BEValue
);
1307 Value
*Addend
= nullptr;
1308 if (BOp
->getOpcode() == Instruction::FAdd
) {
1309 if (BOp
->getOperand(0) == Phi
)
1310 Addend
= BOp
->getOperand(1);
1311 else if (BOp
->getOperand(1) == Phi
)
1312 Addend
= BOp
->getOperand(0);
1313 } else if (BOp
->getOpcode() == Instruction::FSub
)
1314 if (BOp
->getOperand(0) == Phi
)
1315 Addend
= BOp
->getOperand(1);
1320 // The addend should be loop invariant
1321 if (auto *I
= dyn_cast
<Instruction
>(Addend
))
1322 if (TheLoop
->contains(I
))
1325 // FP Step has unknown SCEV
1326 const SCEV
*Step
= SE
->getUnknown(Addend
);
1327 D
= InductionDescriptor(StartValue
, IK_FpInduction
, Step
, BOp
);
1331 /// This function is called when we suspect that the update-chain of a phi node
1332 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
1333 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
1334 /// predicate P under which the SCEV expression for the phi can be the
1335 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
1336 /// cast instructions that are involved in the update-chain of this induction.
1337 /// A caller that adds the required runtime predicate can be free to drop these
1338 /// cast instructions, and compute the phi using \p AR (instead of some scev
1339 /// expression with casts).
1341 /// For example, without a predicate the scev expression can take the following
1343 /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
1345 /// It corresponds to the following IR sequence:
1347 /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
1348 /// %casted_phi = "ExtTrunc i64 %x"
1349 /// %add = add i64 %casted_phi, %step
1351 /// where %x is given in \p PN,
1352 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
1353 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
1354 /// several forms, for example, such as:
1355 /// ExtTrunc1: %casted_phi = and %x, 2^n-1
1357 /// ExtTrunc2: %t = shl %x, m
1358 /// %casted_phi = ashr %t, m
1360 /// If we are able to find such sequence, we return the instructions
1361 /// we found, namely %casted_phi and the instructions on its use-def chain up
1362 /// to the phi (not including the phi).
1363 static bool getCastsForInductionPHI(PredicatedScalarEvolution
&PSE
,
1364 const SCEVUnknown
*PhiScev
,
1365 const SCEVAddRecExpr
*AR
,
1366 SmallVectorImpl
<Instruction
*> &CastInsts
) {
1368 assert(CastInsts
.empty() && "CastInsts is expected to be empty.");
1369 auto *PN
= cast
<PHINode
>(PhiScev
->getValue());
1370 assert(PSE
.getSCEV(PN
) == AR
&& "Unexpected phi node SCEV expression");
1371 const Loop
*L
= AR
->getLoop();
1373 // Find any cast instructions that participate in the def-use chain of
1374 // PhiScev in the loop.
1375 // FORNOW/TODO: We currently expect the def-use chain to include only
1376 // two-operand instructions, where one of the operands is an invariant.
1377 // createAddRecFromPHIWithCasts() currently does not support anything more
1378 // involved than that, so we keep the search simple. This can be
1379 // extended/generalized as needed.
1381 auto getDef
= [&](const Value
*Val
) -> Value
* {
1382 const BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(Val
);
1385 Value
*Op0
= BinOp
->getOperand(0);
1386 Value
*Op1
= BinOp
->getOperand(1);
1387 Value
*Def
= nullptr;
1388 if (L
->isLoopInvariant(Op0
))
1390 else if (L
->isLoopInvariant(Op1
))
1395 // Look for the instruction that defines the induction via the
1397 BasicBlock
*Latch
= L
->getLoopLatch();
1400 Value
*Val
= PN
->getIncomingValueForBlock(Latch
);
1404 // Follow the def-use chain until the induction phi is reached.
1405 // If on the way we encounter a Value that has the same SCEV Expr as the
1406 // phi node, we can consider the instructions we visit from that point
1407 // as part of the cast-sequence that can be ignored.
1408 bool InCastSequence
= false;
1409 auto *Inst
= dyn_cast
<Instruction
>(Val
);
1411 // If we encountered a phi node other than PN, or if we left the loop,
1413 if (!Inst
|| !L
->contains(Inst
)) {
1416 auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(PSE
.getSCEV(Val
));
1417 if (AddRec
&& PSE
.areAddRecsEqualWithPreds(AddRec
, AR
))
1418 InCastSequence
= true;
1419 if (InCastSequence
) {
1420 // Only the last instruction in the cast sequence is expected to have
1421 // uses outside the induction def-use chain.
1422 if (!CastInsts
.empty())
1423 if (!Inst
->hasOneUse())
1425 CastInsts
.push_back(Inst
);
1430 Inst
= dyn_cast
<Instruction
>(Val
);
1433 return InCastSequence
;
1436 bool InductionDescriptor::isInductionPHI(PHINode
*Phi
, const Loop
*TheLoop
,
1437 PredicatedScalarEvolution
&PSE
,
1438 InductionDescriptor
&D
, bool Assume
) {
1439 Type
*PhiTy
= Phi
->getType();
1441 // Handle integer and pointer inductions variables.
1442 // Now we handle also FP induction but not trying to make a
1443 // recurrent expression from the PHI node in-place.
1445 if (!PhiTy
->isIntegerTy() && !PhiTy
->isPointerTy() && !PhiTy
->isFloatTy() &&
1446 !PhiTy
->isDoubleTy() && !PhiTy
->isHalfTy())
1449 if (PhiTy
->isFloatingPointTy())
1450 return isFPInductionPHI(Phi
, TheLoop
, PSE
.getSE(), D
);
1452 const SCEV
*PhiScev
= PSE
.getSCEV(Phi
);
1453 const auto *AR
= dyn_cast
<SCEVAddRecExpr
>(PhiScev
);
1455 // We need this expression to be an AddRecExpr.
1457 AR
= PSE
.getAsAddRec(Phi
);
1460 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1464 // Record any Cast instructions that participate in the induction update
1465 const auto *SymbolicPhi
= dyn_cast
<SCEVUnknown
>(PhiScev
);
1466 // If we started from an UnknownSCEV, and managed to build an addRecurrence
1467 // only after enabling Assume with PSCEV, this means we may have encountered
1468 // cast instructions that required adding a runtime check in order to
1469 // guarantee the correctness of the AddRecurrence respresentation of the
1471 if (PhiScev
!= AR
&& SymbolicPhi
) {
1472 SmallVector
<Instruction
*, 2> Casts
;
1473 if (getCastsForInductionPHI(PSE
, SymbolicPhi
, AR
, Casts
))
1474 return isInductionPHI(Phi
, TheLoop
, PSE
.getSE(), D
, AR
, &Casts
);
1477 return isInductionPHI(Phi
, TheLoop
, PSE
.getSE(), D
, AR
);
1480 bool InductionDescriptor::isInductionPHI(
1481 PHINode
*Phi
, const Loop
*TheLoop
, ScalarEvolution
*SE
,
1482 InductionDescriptor
&D
, const SCEV
*Expr
,
1483 SmallVectorImpl
<Instruction
*> *CastsToIgnore
) {
1484 Type
*PhiTy
= Phi
->getType();
1485 // We only handle integer and pointer inductions variables.
1486 if (!PhiTy
->isIntegerTy() && !PhiTy
->isPointerTy())
1489 // Check that the PHI is consecutive.
1490 const SCEV
*PhiScev
= Expr
? Expr
: SE
->getSCEV(Phi
);
1491 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(PhiScev
);
1494 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1498 if (AR
->getLoop() != TheLoop
) {
1499 // FIXME: We should treat this as a uniform. Unfortunately, we
1500 // don't currently know how to handled uniform PHIs.
1502 dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1506 // This function assumes that InductionPhi is called only on Phi nodes
1507 // present inside loop headers. Check for the same, and throw an assert if
1508 // the current Phi is not present inside the loop header.
1509 assert(Phi
->getParent() == AR
->getLoop()->getHeader()
1510 && "Invalid Phi node, not present in loop header");
1513 Phi
->getIncomingValueForBlock(AR
->getLoop()->getLoopPreheader());
1515 BasicBlock
*Latch
= AR
->getLoop()->getLoopLatch();
1519 const SCEV
*Step
= AR
->getStepRecurrence(*SE
);
1520 // Calculate the pointer stride and check if it is consecutive.
1521 // The stride may be a constant or a loop invariant integer value.
1522 const SCEVConstant
*ConstStep
= dyn_cast
<SCEVConstant
>(Step
);
1523 if (!ConstStep
&& !SE
->isLoopInvariant(Step
, TheLoop
))
1526 if (PhiTy
->isIntegerTy()) {
1527 BinaryOperator
*BOp
=
1528 dyn_cast
<BinaryOperator
>(Phi
->getIncomingValueForBlock(Latch
));
1529 D
= InductionDescriptor(StartValue
, IK_IntInduction
, Step
, BOp
,
1534 assert(PhiTy
->isPointerTy() && "The PHI must be a pointer");
1536 // This allows induction variables w/non-constant steps.
1537 D
= InductionDescriptor(StartValue
, IK_PtrInduction
, Step
);