1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/MC/MCAssembler.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Statistic.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/MC/MCAsmBackend.h"
17 #include "llvm/MC/MCAsmInfo.h"
18 #include "llvm/MC/MCAsmLayout.h"
19 #include "llvm/MC/MCCodeEmitter.h"
20 #include "llvm/MC/MCCodeView.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDwarf.h"
23 #include "llvm/MC/MCExpr.h"
24 #include "llvm/MC/MCFixup.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCFragment.h"
27 #include "llvm/MC/MCInst.h"
28 #include "llvm/MC/MCObjectWriter.h"
29 #include "llvm/MC/MCSection.h"
30 #include "llvm/MC/MCSymbol.h"
31 #include "llvm/MC/MCValue.h"
32 #include "llvm/Support/Alignment.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/EndianStream.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/LEB128.h"
38 #include "llvm/Support/raw_ostream.h"
47 class MCSubtargetInfo
;
50 #define DEBUG_TYPE "assembler"
55 STATISTIC(EmittedFragments
, "Number of emitted assembler fragments - total");
56 STATISTIC(EmittedRelaxableFragments
,
57 "Number of emitted assembler fragments - relaxable");
58 STATISTIC(EmittedDataFragments
,
59 "Number of emitted assembler fragments - data");
60 STATISTIC(EmittedCompactEncodedInstFragments
,
61 "Number of emitted assembler fragments - compact encoded inst");
62 STATISTIC(EmittedAlignFragments
,
63 "Number of emitted assembler fragments - align");
64 STATISTIC(EmittedFillFragments
,
65 "Number of emitted assembler fragments - fill");
66 STATISTIC(EmittedNopsFragments
, "Number of emitted assembler fragments - nops");
67 STATISTIC(EmittedOrgFragments
, "Number of emitted assembler fragments - org");
68 STATISTIC(evaluateFixup
, "Number of evaluated fixups");
69 STATISTIC(FragmentLayouts
, "Number of fragment layouts");
70 STATISTIC(ObjectBytes
, "Number of emitted object file bytes");
71 STATISTIC(RelaxationSteps
, "Number of assembler layout and relaxation steps");
72 STATISTIC(RelaxedInstructions
, "Number of relaxed instructions");
74 } // end namespace stats
75 } // end anonymous namespace
77 // FIXME FIXME FIXME: There are number of places in this file where we convert
78 // what is a 64-bit assembler value used for computation into a value in the
79 // object file, which may truncate it. We should detect that truncation where
80 // invalid and report errors back.
84 MCAssembler::MCAssembler(MCContext
&Context
,
85 std::unique_ptr
<MCAsmBackend
> Backend
,
86 std::unique_ptr
<MCCodeEmitter
> Emitter
,
87 std::unique_ptr
<MCObjectWriter
> Writer
)
88 : Context(Context
), Backend(std::move(Backend
)),
89 Emitter(std::move(Emitter
)), Writer(std::move(Writer
)),
90 BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
91 IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
92 VersionInfo
.Major
= 0; // Major version == 0 for "none specified"
93 DarwinTargetVariantVersionInfo
.Major
= 0;
96 MCAssembler::~MCAssembler() = default;
98 void MCAssembler::reset() {
101 IndirectSymbols
.clear();
103 LinkerOptions
.clear();
108 SubsectionsViaSymbols
= false;
109 IncrementalLinkerCompatible
= false;
111 LOHContainer
.reset();
112 VersionInfo
.Major
= 0;
113 VersionInfo
.SDKVersion
= VersionTuple();
114 DarwinTargetVariantVersionInfo
.Major
= 0;
115 DarwinTargetVariantVersionInfo
.SDKVersion
= VersionTuple();
117 // reset objects owned by us
119 getBackendPtr()->reset();
121 getEmitterPtr()->reset();
123 getWriterPtr()->reset();
124 getLOHContainer().reset();
127 bool MCAssembler::registerSection(MCSection
&Section
) {
128 if (Section
.isRegistered())
130 Sections
.push_back(&Section
);
131 Section
.setIsRegistered(true);
135 bool MCAssembler::isThumbFunc(const MCSymbol
*Symbol
) const {
136 if (ThumbFuncs
.count(Symbol
))
139 if (!Symbol
->isVariable())
142 const MCExpr
*Expr
= Symbol
->getVariableValue();
145 if (!Expr
->evaluateAsRelocatable(V
, nullptr, nullptr))
148 if (V
.getSymB() || V
.getRefKind() != MCSymbolRefExpr::VK_None
)
151 const MCSymbolRefExpr
*Ref
= V
.getSymA();
155 if (Ref
->getKind() != MCSymbolRefExpr::VK_None
)
158 const MCSymbol
&Sym
= Ref
->getSymbol();
159 if (!isThumbFunc(&Sym
))
162 ThumbFuncs
.insert(Symbol
); // Cache it.
166 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol
&Symbol
) const {
167 // Non-temporary labels should always be visible to the linker.
168 if (!Symbol
.isTemporary())
171 if (Symbol
.isUsedInReloc())
177 const MCSymbol
*MCAssembler::getAtom(const MCSymbol
&S
) const {
178 // Linker visible symbols define atoms.
179 if (isSymbolLinkerVisible(S
))
182 // Absolute and undefined symbols have no defining atom.
183 if (!S
.isInSection())
186 // Non-linker visible symbols in sections which can't be atomized have no
188 if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
189 *S
.getFragment()->getParent()))
192 // Otherwise, return the atom for the containing fragment.
193 return S
.getFragment()->getAtom();
196 bool MCAssembler::evaluateFixup(const MCAsmLayout
&Layout
,
197 const MCFixup
&Fixup
, const MCFragment
*DF
,
198 MCValue
&Target
, uint64_t &Value
,
199 bool &WasForced
) const {
200 ++stats::evaluateFixup
;
202 // FIXME: This code has some duplication with recordRelocation. We should
203 // probably merge the two into a single callback that tries to evaluate a
204 // fixup and records a relocation if one is needed.
206 // On error claim to have completely evaluated the fixup, to prevent any
207 // further processing from being done.
208 const MCExpr
*Expr
= Fixup
.getValue();
209 MCContext
&Ctx
= getContext();
212 if (!Expr
->evaluateAsRelocatable(Target
, &Layout
, &Fixup
)) {
213 Ctx
.reportError(Fixup
.getLoc(), "expected relocatable expression");
216 if (const MCSymbolRefExpr
*RefB
= Target
.getSymB()) {
217 if (RefB
->getKind() != MCSymbolRefExpr::VK_None
) {
218 Ctx
.reportError(Fixup
.getLoc(),
219 "unsupported subtraction of qualified symbol");
224 assert(getBackendPtr() && "Expected assembler backend");
225 bool IsTarget
= getBackendPtr()->getFixupKindInfo(Fixup
.getKind()).Flags
&
226 MCFixupKindInfo::FKF_IsTarget
;
229 return getBackend().evaluateTargetFixup(*this, Layout
, Fixup
, DF
, Target
,
232 unsigned FixupFlags
= getBackendPtr()->getFixupKindInfo(Fixup
.getKind()).Flags
;
233 bool IsPCRel
= getBackendPtr()->getFixupKindInfo(Fixup
.getKind()).Flags
&
234 MCFixupKindInfo::FKF_IsPCRel
;
236 bool IsResolved
= false;
238 if (Target
.getSymB()) {
240 } else if (!Target
.getSymA()) {
243 const MCSymbolRefExpr
*A
= Target
.getSymA();
244 const MCSymbol
&SA
= A
->getSymbol();
245 if (A
->getKind() != MCSymbolRefExpr::VK_None
|| SA
.isUndefined()) {
247 } else if (auto *Writer
= getWriterPtr()) {
248 IsResolved
= (FixupFlags
& MCFixupKindInfo::FKF_Constant
) ||
249 Writer
->isSymbolRefDifferenceFullyResolvedImpl(
250 *this, SA
, *DF
, false, true);
254 IsResolved
= Target
.isAbsolute();
257 Value
= Target
.getConstant();
259 if (const MCSymbolRefExpr
*A
= Target
.getSymA()) {
260 const MCSymbol
&Sym
= A
->getSymbol();
262 Value
+= Layout
.getSymbolOffset(Sym
);
264 if (const MCSymbolRefExpr
*B
= Target
.getSymB()) {
265 const MCSymbol
&Sym
= B
->getSymbol();
267 Value
-= Layout
.getSymbolOffset(Sym
);
270 bool ShouldAlignPC
= getBackend().getFixupKindInfo(Fixup
.getKind()).Flags
&
271 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
;
272 assert((ShouldAlignPC
? IsPCRel
: true) &&
273 "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
276 uint64_t Offset
= Layout
.getFragmentOffset(DF
) + Fixup
.getOffset();
278 // A number of ARM fixups in Thumb mode require that the effective PC
279 // address be determined as the 32-bit aligned version of the actual offset.
280 if (ShouldAlignPC
) Offset
&= ~0x3;
284 // Let the backend force a relocation if needed.
285 if (IsResolved
&& getBackend().shouldForceRelocation(*this, Fixup
, Target
)) {
290 // A linker relaxation target may emit ADD/SUB relocations for A-B+C. Let
291 // recordRelocation handle non-VK_None cases like A@plt-B+C.
292 if (!IsResolved
&& Target
.getSymA() && Target
.getSymB() &&
293 Target
.getSymA()->getKind() == MCSymbolRefExpr::VK_None
&&
294 getBackend().handleAddSubRelocations(Layout
, *DF
, Fixup
, Target
, Value
))
300 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout
&Layout
,
301 const MCFragment
&F
) const {
302 assert(getBackendPtr() && "Requires assembler backend");
303 switch (F
.getKind()) {
304 case MCFragment::FT_Data
:
305 return cast
<MCDataFragment
>(F
).getContents().size();
306 case MCFragment::FT_Relaxable
:
307 return cast
<MCRelaxableFragment
>(F
).getContents().size();
308 case MCFragment::FT_CompactEncodedInst
:
309 return cast
<MCCompactEncodedInstFragment
>(F
).getContents().size();
310 case MCFragment::FT_Fill
: {
311 auto &FF
= cast
<MCFillFragment
>(F
);
312 int64_t NumValues
= 0;
313 if (!FF
.getNumValues().evaluateKnownAbsolute(NumValues
, Layout
)) {
314 getContext().reportError(FF
.getLoc(),
315 "expected assembly-time absolute expression");
318 int64_t Size
= NumValues
* FF
.getValueSize();
320 getContext().reportError(FF
.getLoc(), "invalid number of bytes");
326 case MCFragment::FT_Nops
:
327 return cast
<MCNopsFragment
>(F
).getNumBytes();
329 case MCFragment::FT_LEB
:
330 return cast
<MCLEBFragment
>(F
).getContents().size();
332 case MCFragment::FT_BoundaryAlign
:
333 return cast
<MCBoundaryAlignFragment
>(F
).getSize();
335 case MCFragment::FT_SymbolId
:
338 case MCFragment::FT_Align
: {
339 const MCAlignFragment
&AF
= cast
<MCAlignFragment
>(F
);
340 unsigned Offset
= Layout
.getFragmentOffset(&AF
);
341 unsigned Size
= offsetToAlignment(Offset
, AF
.getAlignment());
343 // Insert extra Nops for code alignment if the target define
344 // shouldInsertExtraNopBytesForCodeAlign target hook.
345 if (AF
.getParent()->useCodeAlign() && AF
.hasEmitNops() &&
346 getBackend().shouldInsertExtraNopBytesForCodeAlign(AF
, Size
))
349 // If we are padding with nops, force the padding to be larger than the
351 if (Size
> 0 && AF
.hasEmitNops()) {
352 while (Size
% getBackend().getMinimumNopSize())
353 Size
+= AF
.getAlignment().value();
355 if (Size
> AF
.getMaxBytesToEmit())
360 case MCFragment::FT_Org
: {
361 const MCOrgFragment
&OF
= cast
<MCOrgFragment
>(F
);
363 if (!OF
.getOffset().evaluateAsValue(Value
, Layout
)) {
364 getContext().reportError(OF
.getLoc(),
365 "expected assembly-time absolute expression");
369 uint64_t FragmentOffset
= Layout
.getFragmentOffset(&OF
);
370 int64_t TargetLocation
= Value
.getConstant();
371 if (const MCSymbolRefExpr
*A
= Value
.getSymA()) {
373 if (!Layout
.getSymbolOffset(A
->getSymbol(), Val
)) {
374 getContext().reportError(OF
.getLoc(), "expected absolute expression");
377 TargetLocation
+= Val
;
379 int64_t Size
= TargetLocation
- FragmentOffset
;
380 if (Size
< 0 || Size
>= 0x40000000) {
381 getContext().reportError(
382 OF
.getLoc(), "invalid .org offset '" + Twine(TargetLocation
) +
383 "' (at offset '" + Twine(FragmentOffset
) + "')");
389 case MCFragment::FT_Dwarf
:
390 return cast
<MCDwarfLineAddrFragment
>(F
).getContents().size();
391 case MCFragment::FT_DwarfFrame
:
392 return cast
<MCDwarfCallFrameFragment
>(F
).getContents().size();
393 case MCFragment::FT_CVInlineLines
:
394 return cast
<MCCVInlineLineTableFragment
>(F
).getContents().size();
395 case MCFragment::FT_CVDefRange
:
396 return cast
<MCCVDefRangeFragment
>(F
).getContents().size();
397 case MCFragment::FT_PseudoProbe
:
398 return cast
<MCPseudoProbeAddrFragment
>(F
).getContents().size();
399 case MCFragment::FT_Dummy
:
400 llvm_unreachable("Should not have been added");
403 llvm_unreachable("invalid fragment kind");
406 void MCAsmLayout::layoutFragment(MCFragment
*F
) {
407 MCFragment
*Prev
= F
->getPrevNode();
409 // We should never try to recompute something which is valid.
410 assert(!isFragmentValid(F
) && "Attempt to recompute a valid fragment!");
411 // We should never try to compute the fragment layout if its predecessor
413 assert((!Prev
|| isFragmentValid(Prev
)) &&
414 "Attempt to compute fragment before its predecessor!");
416 assert(!F
->IsBeingLaidOut
&& "Already being laid out!");
417 F
->IsBeingLaidOut
= true;
419 ++stats::FragmentLayouts
;
421 // Compute fragment offset and size.
423 F
->Offset
= Prev
->Offset
+ getAssembler().computeFragmentSize(*this, *Prev
);
426 F
->IsBeingLaidOut
= false;
427 LastValidFragment
[F
->getParent()] = F
;
429 // If bundling is enabled and this fragment has instructions in it, it has to
430 // obey the bundling restrictions. With padding, we'll have:
435 // -------------------------------------
436 // Prev |##########| F |
437 // -------------------------------------
442 // The fragment's offset will point to after the padding, and its computed
443 // size won't include the padding.
445 // When the -mc-relax-all flag is used, we optimize bundling by writting the
446 // padding directly into fragments when the instructions are emitted inside
447 // the streamer. When the fragment is larger than the bundle size, we need to
448 // ensure that it's bundle aligned. This means that if we end up with
449 // multiple fragments, we must emit bundle padding between fragments.
451 // ".align N" is an example of a directive that introduces multiple
452 // fragments. We could add a special case to handle ".align N" by emitting
453 // within-fragment padding (which would produce less padding when N is less
454 // than the bundle size), but for now we don't.
456 if (Assembler
.isBundlingEnabled() && F
->hasInstructions()) {
457 assert(isa
<MCEncodedFragment
>(F
) &&
458 "Only MCEncodedFragment implementations have instructions");
459 MCEncodedFragment
*EF
= cast
<MCEncodedFragment
>(F
);
460 uint64_t FSize
= Assembler
.computeFragmentSize(*this, *EF
);
462 if (!Assembler
.getRelaxAll() && FSize
> Assembler
.getBundleAlignSize())
463 report_fatal_error("Fragment can't be larger than a bundle size");
465 uint64_t RequiredBundlePadding
=
466 computeBundlePadding(Assembler
, EF
, EF
->Offset
, FSize
);
467 if (RequiredBundlePadding
> UINT8_MAX
)
468 report_fatal_error("Padding cannot exceed 255 bytes");
469 EF
->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding
));
470 EF
->Offset
+= RequiredBundlePadding
;
474 bool MCAssembler::registerSymbol(const MCSymbol
&Symbol
) {
475 bool Changed
= !Symbol
.isRegistered();
477 Symbol
.setIsRegistered(true);
478 Symbols
.push_back(&Symbol
);
483 void MCAssembler::writeFragmentPadding(raw_ostream
&OS
,
484 const MCEncodedFragment
&EF
,
485 uint64_t FSize
) const {
486 assert(getBackendPtr() && "Expected assembler backend");
487 // Should NOP padding be written out before this fragment?
488 unsigned BundlePadding
= EF
.getBundlePadding();
489 if (BundlePadding
> 0) {
490 assert(isBundlingEnabled() &&
491 "Writing bundle padding with disabled bundling");
492 assert(EF
.hasInstructions() &&
493 "Writing bundle padding for a fragment without instructions");
495 unsigned TotalLength
= BundlePadding
+ static_cast<unsigned>(FSize
);
496 const MCSubtargetInfo
*STI
= EF
.getSubtargetInfo();
497 if (EF
.alignToBundleEnd() && TotalLength
> getBundleAlignSize()) {
498 // If the padding itself crosses a bundle boundary, it must be emitted
499 // in 2 pieces, since even nop instructions must not cross boundaries.
500 // v--------------v <- BundleAlignSize
501 // v---------v <- BundlePadding
502 // ----------------------------
503 // | Prev |####|####| F |
504 // ----------------------------
505 // ^-------------------^ <- TotalLength
506 unsigned DistanceToBoundary
= TotalLength
- getBundleAlignSize();
507 if (!getBackend().writeNopData(OS
, DistanceToBoundary
, STI
))
508 report_fatal_error("unable to write NOP sequence of " +
509 Twine(DistanceToBoundary
) + " bytes");
510 BundlePadding
-= DistanceToBoundary
;
512 if (!getBackend().writeNopData(OS
, BundlePadding
, STI
))
513 report_fatal_error("unable to write NOP sequence of " +
514 Twine(BundlePadding
) + " bytes");
518 /// Write the fragment \p F to the output file.
519 static void writeFragment(raw_ostream
&OS
, const MCAssembler
&Asm
,
520 const MCAsmLayout
&Layout
, const MCFragment
&F
) {
521 // FIXME: Embed in fragments instead?
522 uint64_t FragmentSize
= Asm
.computeFragmentSize(Layout
, F
);
524 llvm::endianness Endian
= Asm
.getBackend().Endian
;
526 if (const MCEncodedFragment
*EF
= dyn_cast
<MCEncodedFragment
>(&F
))
527 Asm
.writeFragmentPadding(OS
, *EF
, FragmentSize
);
529 // This variable (and its dummy usage) is to participate in the assert at
530 // the end of the function.
531 uint64_t Start
= OS
.tell();
534 ++stats::EmittedFragments
;
536 switch (F
.getKind()) {
537 case MCFragment::FT_Align
: {
538 ++stats::EmittedAlignFragments
;
539 const MCAlignFragment
&AF
= cast
<MCAlignFragment
>(F
);
540 assert(AF
.getValueSize() && "Invalid virtual align in concrete fragment!");
542 uint64_t Count
= FragmentSize
/ AF
.getValueSize();
544 // FIXME: This error shouldn't actually occur (the front end should emit
545 // multiple .align directives to enforce the semantics it wants), but is
546 // severe enough that we want to report it. How to handle this?
547 if (Count
* AF
.getValueSize() != FragmentSize
)
548 report_fatal_error("undefined .align directive, value size '" +
549 Twine(AF
.getValueSize()) +
550 "' is not a divisor of padding size '" +
551 Twine(FragmentSize
) + "'");
553 // See if we are aligning with nops, and if so do that first to try to fill
554 // the Count bytes. Then if that did not fill any bytes or there are any
555 // bytes left to fill use the Value and ValueSize to fill the rest.
556 // If we are aligning with nops, ask that target to emit the right data.
557 if (AF
.hasEmitNops()) {
558 if (!Asm
.getBackend().writeNopData(OS
, Count
, AF
.getSubtargetInfo()))
559 report_fatal_error("unable to write nop sequence of " +
560 Twine(Count
) + " bytes");
564 // Otherwise, write out in multiples of the value size.
565 for (uint64_t i
= 0; i
!= Count
; ++i
) {
566 switch (AF
.getValueSize()) {
567 default: llvm_unreachable("Invalid size!");
568 case 1: OS
<< char(AF
.getValue()); break;
570 support::endian::write
<uint16_t>(OS
, AF
.getValue(), Endian
);
573 support::endian::write
<uint32_t>(OS
, AF
.getValue(), Endian
);
576 support::endian::write
<uint64_t>(OS
, AF
.getValue(), Endian
);
583 case MCFragment::FT_Data
:
584 ++stats::EmittedDataFragments
;
585 OS
<< cast
<MCDataFragment
>(F
).getContents();
588 case MCFragment::FT_Relaxable
:
589 ++stats::EmittedRelaxableFragments
;
590 OS
<< cast
<MCRelaxableFragment
>(F
).getContents();
593 case MCFragment::FT_CompactEncodedInst
:
594 ++stats::EmittedCompactEncodedInstFragments
;
595 OS
<< cast
<MCCompactEncodedInstFragment
>(F
).getContents();
598 case MCFragment::FT_Fill
: {
599 ++stats::EmittedFillFragments
;
600 const MCFillFragment
&FF
= cast
<MCFillFragment
>(F
);
601 uint64_t V
= FF
.getValue();
602 unsigned VSize
= FF
.getValueSize();
603 const unsigned MaxChunkSize
= 16;
604 char Data
[MaxChunkSize
];
605 assert(0 < VSize
&& VSize
<= MaxChunkSize
&& "Illegal fragment fill size");
606 // Duplicate V into Data as byte vector to reduce number of
607 // writes done. As such, do endian conversion here.
608 for (unsigned I
= 0; I
!= VSize
; ++I
) {
609 unsigned index
= Endian
== llvm::endianness::little
? I
: (VSize
- I
- 1);
610 Data
[I
] = uint8_t(V
>> (index
* 8));
612 for (unsigned I
= VSize
; I
< MaxChunkSize
; ++I
)
613 Data
[I
] = Data
[I
- VSize
];
615 // Set to largest multiple of VSize in Data.
616 const unsigned NumPerChunk
= MaxChunkSize
/ VSize
;
617 // Set ChunkSize to largest multiple of VSize in Data
618 const unsigned ChunkSize
= VSize
* NumPerChunk
;
620 // Do copies by chunk.
621 StringRef
Ref(Data
, ChunkSize
);
622 for (uint64_t I
= 0, E
= FragmentSize
/ ChunkSize
; I
!= E
; ++I
)
625 // do remainder if needed.
626 unsigned TrailingCount
= FragmentSize
% ChunkSize
;
628 OS
.write(Data
, TrailingCount
);
632 case MCFragment::FT_Nops
: {
633 ++stats::EmittedNopsFragments
;
634 const MCNopsFragment
&NF
= cast
<MCNopsFragment
>(F
);
636 int64_t NumBytes
= NF
.getNumBytes();
637 int64_t ControlledNopLength
= NF
.getControlledNopLength();
638 int64_t MaximumNopLength
=
639 Asm
.getBackend().getMaximumNopSize(*NF
.getSubtargetInfo());
641 assert(NumBytes
> 0 && "Expected positive NOPs fragment size");
642 assert(ControlledNopLength
>= 0 && "Expected non-negative NOP size");
644 if (ControlledNopLength
> MaximumNopLength
) {
645 Asm
.getContext().reportError(NF
.getLoc(),
646 "illegal NOP size " +
647 std::to_string(ControlledNopLength
) +
648 ". (expected within [0, " +
649 std::to_string(MaximumNopLength
) + "])");
650 // Clamp the NOP length as reportError does not stop the execution
652 ControlledNopLength
= MaximumNopLength
;
655 // Use maximum value if the size of each NOP is not specified
656 if (!ControlledNopLength
)
657 ControlledNopLength
= MaximumNopLength
;
660 uint64_t NumBytesToEmit
=
661 (uint64_t)std::min(NumBytes
, ControlledNopLength
);
662 assert(NumBytesToEmit
&& "try to emit empty NOP instruction");
663 if (!Asm
.getBackend().writeNopData(OS
, NumBytesToEmit
,
664 NF
.getSubtargetInfo())) {
665 report_fatal_error("unable to write nop sequence of the remaining " +
666 Twine(NumBytesToEmit
) + " bytes");
669 NumBytes
-= NumBytesToEmit
;
674 case MCFragment::FT_LEB
: {
675 const MCLEBFragment
&LF
= cast
<MCLEBFragment
>(F
);
676 OS
<< LF
.getContents();
680 case MCFragment::FT_BoundaryAlign
: {
681 const MCBoundaryAlignFragment
&BF
= cast
<MCBoundaryAlignFragment
>(F
);
682 if (!Asm
.getBackend().writeNopData(OS
, FragmentSize
, BF
.getSubtargetInfo()))
683 report_fatal_error("unable to write nop sequence of " +
684 Twine(FragmentSize
) + " bytes");
688 case MCFragment::FT_SymbolId
: {
689 const MCSymbolIdFragment
&SF
= cast
<MCSymbolIdFragment
>(F
);
690 support::endian::write
<uint32_t>(OS
, SF
.getSymbol()->getIndex(), Endian
);
694 case MCFragment::FT_Org
: {
695 ++stats::EmittedOrgFragments
;
696 const MCOrgFragment
&OF
= cast
<MCOrgFragment
>(F
);
698 for (uint64_t i
= 0, e
= FragmentSize
; i
!= e
; ++i
)
699 OS
<< char(OF
.getValue());
704 case MCFragment::FT_Dwarf
: {
705 const MCDwarfLineAddrFragment
&OF
= cast
<MCDwarfLineAddrFragment
>(F
);
706 OS
<< OF
.getContents();
709 case MCFragment::FT_DwarfFrame
: {
710 const MCDwarfCallFrameFragment
&CF
= cast
<MCDwarfCallFrameFragment
>(F
);
711 OS
<< CF
.getContents();
714 case MCFragment::FT_CVInlineLines
: {
715 const auto &OF
= cast
<MCCVInlineLineTableFragment
>(F
);
716 OS
<< OF
.getContents();
719 case MCFragment::FT_CVDefRange
: {
720 const auto &DRF
= cast
<MCCVDefRangeFragment
>(F
);
721 OS
<< DRF
.getContents();
724 case MCFragment::FT_PseudoProbe
: {
725 const MCPseudoProbeAddrFragment
&PF
= cast
<MCPseudoProbeAddrFragment
>(F
);
726 OS
<< PF
.getContents();
729 case MCFragment::FT_Dummy
:
730 llvm_unreachable("Should not have been added");
733 assert(OS
.tell() - Start
== FragmentSize
&&
734 "The stream should advance by fragment size");
737 void MCAssembler::writeSectionData(raw_ostream
&OS
, const MCSection
*Sec
,
738 const MCAsmLayout
&Layout
) const {
739 assert(getBackendPtr() && "Expected assembler backend");
741 // Ignore virtual sections.
742 if (Sec
->isVirtualSection()) {
743 assert(Layout
.getSectionFileSize(Sec
) == 0 && "Invalid size for section!");
745 // Check that contents are only things legal inside a virtual section.
746 for (const MCFragment
&F
: *Sec
) {
747 switch (F
.getKind()) {
748 default: llvm_unreachable("Invalid fragment in virtual section!");
749 case MCFragment::FT_Data
: {
750 // Check that we aren't trying to write a non-zero contents (or fixups)
751 // into a virtual section. This is to support clients which use standard
752 // directives to fill the contents of virtual sections.
753 const MCDataFragment
&DF
= cast
<MCDataFragment
>(F
);
754 if (DF
.fixup_begin() != DF
.fixup_end())
755 getContext().reportError(SMLoc(), Sec
->getVirtualSectionKind() +
756 " section '" + Sec
->getName() +
757 "' cannot have fixups");
758 for (unsigned i
= 0, e
= DF
.getContents().size(); i
!= e
; ++i
)
759 if (DF
.getContents()[i
]) {
760 getContext().reportError(SMLoc(),
761 Sec
->getVirtualSectionKind() +
762 " section '" + Sec
->getName() +
763 "' cannot have non-zero initializers");
768 case MCFragment::FT_Align
:
769 // Check that we aren't trying to write a non-zero value into a virtual
771 assert((cast
<MCAlignFragment
>(F
).getValueSize() == 0 ||
772 cast
<MCAlignFragment
>(F
).getValue() == 0) &&
773 "Invalid align in virtual section!");
775 case MCFragment::FT_Fill
:
776 assert((cast
<MCFillFragment
>(F
).getValue() == 0) &&
777 "Invalid fill in virtual section!");
779 case MCFragment::FT_Org
:
787 uint64_t Start
= OS
.tell();
790 for (const MCFragment
&F
: *Sec
)
791 writeFragment(OS
, *this, Layout
, F
);
793 assert(getContext().hadError() ||
794 OS
.tell() - Start
== Layout
.getSectionAddressSize(Sec
));
797 std::tuple
<MCValue
, uint64_t, bool>
798 MCAssembler::handleFixup(const MCAsmLayout
&Layout
, MCFragment
&F
,
799 const MCFixup
&Fixup
) {
800 // Evaluate the fixup.
804 bool IsResolved
= evaluateFixup(Layout
, Fixup
, &F
, Target
, FixedValue
,
807 // The fixup was unresolved, we need a relocation. Inform the object
808 // writer of the relocation, and give it an opportunity to adjust the
809 // fixup value if need be.
810 getWriter().recordRelocation(*this, Layout
, &F
, Fixup
, Target
, FixedValue
);
812 return std::make_tuple(Target
, FixedValue
, IsResolved
);
815 void MCAssembler::layout(MCAsmLayout
&Layout
) {
816 assert(getBackendPtr() && "Expected assembler backend");
817 DEBUG_WITH_TYPE("mc-dump", {
818 errs() << "assembler backend - pre-layout\n--\n";
821 // Create dummy fragments and assign section ordinals.
822 unsigned SectionIndex
= 0;
823 for (MCSection
&Sec
: *this) {
824 // Create dummy fragments to eliminate any empty sections, this simplifies
826 if (Sec
.getFragmentList().empty())
827 new MCDataFragment(&Sec
);
829 Sec
.setOrdinal(SectionIndex
++);
832 // Assign layout order indices to sections and fragments.
833 for (unsigned i
= 0, e
= Layout
.getSectionOrder().size(); i
!= e
; ++i
) {
834 MCSection
*Sec
= Layout
.getSectionOrder()[i
];
835 Sec
->setLayoutOrder(i
);
837 unsigned FragmentIndex
= 0;
838 for (MCFragment
&Frag
: *Sec
)
839 Frag
.setLayoutOrder(FragmentIndex
++);
842 // Layout until everything fits.
843 while (layoutOnce(Layout
)) {
844 if (getContext().hadError())
846 // Size of fragments in one section can depend on the size of fragments in
847 // another. If any fragment has changed size, we have to re-layout (and
848 // as a result possibly further relax) all.
849 for (MCSection
&Sec
: *this)
850 Layout
.invalidateFragmentsFrom(&*Sec
.begin());
853 DEBUG_WITH_TYPE("mc-dump", {
854 errs() << "assembler backend - post-relaxation\n--\n";
857 // Finalize the layout, including fragment lowering.
858 finishLayout(Layout
);
860 DEBUG_WITH_TYPE("mc-dump", {
861 errs() << "assembler backend - final-layout\n--\n";
864 // Allow the object writer a chance to perform post-layout binding (for
865 // example, to set the index fields in the symbol data).
866 getWriter().executePostLayoutBinding(*this, Layout
);
868 // Evaluate and apply the fixups, generating relocation entries as necessary.
869 for (MCSection
&Sec
: *this) {
870 for (MCFragment
&Frag
: Sec
) {
871 ArrayRef
<MCFixup
> Fixups
;
872 MutableArrayRef
<char> Contents
;
873 const MCSubtargetInfo
*STI
= nullptr;
875 // Process MCAlignFragment and MCEncodedFragmentWithFixups here.
876 switch (Frag
.getKind()) {
879 case MCFragment::FT_Align
: {
880 MCAlignFragment
&AF
= cast
<MCAlignFragment
>(Frag
);
881 // Insert fixup type for code alignment if the target define
882 // shouldInsertFixupForCodeAlign target hook.
883 if (Sec
.useCodeAlign() && AF
.hasEmitNops())
884 getBackend().shouldInsertFixupForCodeAlign(*this, Layout
, AF
);
887 case MCFragment::FT_Data
: {
888 MCDataFragment
&DF
= cast
<MCDataFragment
>(Frag
);
889 Fixups
= DF
.getFixups();
890 Contents
= DF
.getContents();
891 STI
= DF
.getSubtargetInfo();
892 assert(!DF
.hasInstructions() || STI
!= nullptr);
895 case MCFragment::FT_Relaxable
: {
896 MCRelaxableFragment
&RF
= cast
<MCRelaxableFragment
>(Frag
);
897 Fixups
= RF
.getFixups();
898 Contents
= RF
.getContents();
899 STI
= RF
.getSubtargetInfo();
900 assert(!RF
.hasInstructions() || STI
!= nullptr);
903 case MCFragment::FT_CVDefRange
: {
904 MCCVDefRangeFragment
&CF
= cast
<MCCVDefRangeFragment
>(Frag
);
905 Fixups
= CF
.getFixups();
906 Contents
= CF
.getContents();
909 case MCFragment::FT_Dwarf
: {
910 MCDwarfLineAddrFragment
&DF
= cast
<MCDwarfLineAddrFragment
>(Frag
);
911 Fixups
= DF
.getFixups();
912 Contents
= DF
.getContents();
915 case MCFragment::FT_DwarfFrame
: {
916 MCDwarfCallFrameFragment
&DF
= cast
<MCDwarfCallFrameFragment
>(Frag
);
917 Fixups
= DF
.getFixups();
918 Contents
= DF
.getContents();
921 case MCFragment::FT_PseudoProbe
: {
922 MCPseudoProbeAddrFragment
&PF
= cast
<MCPseudoProbeAddrFragment
>(Frag
);
923 Fixups
= PF
.getFixups();
924 Contents
= PF
.getContents();
928 for (const MCFixup
&Fixup
: Fixups
) {
932 std::tie(Target
, FixedValue
, IsResolved
) =
933 handleFixup(Layout
, Frag
, Fixup
);
934 getBackend().applyFixup(*this, Fixup
, Target
, Contents
, FixedValue
,
941 void MCAssembler::Finish() {
942 // Create the layout object.
943 MCAsmLayout
Layout(*this);
946 // Write the object file.
947 stats::ObjectBytes
+= getWriter().writeObject(*this, Layout
);
950 bool MCAssembler::fixupNeedsRelaxation(const MCFixup
&Fixup
,
951 const MCRelaxableFragment
*DF
,
952 const MCAsmLayout
&Layout
) const {
953 assert(getBackendPtr() && "Expected assembler backend");
957 bool Resolved
= evaluateFixup(Layout
, Fixup
, DF
, Target
, Value
, WasForced
);
958 if (Target
.getSymA() &&
959 Target
.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8
&&
960 Fixup
.getKind() == FK_Data_1
)
962 return getBackend().fixupNeedsRelaxationAdvanced(Fixup
, Resolved
, Value
, DF
,
966 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment
*F
,
967 const MCAsmLayout
&Layout
) const {
968 assert(getBackendPtr() && "Expected assembler backend");
969 // If this inst doesn't ever need relaxation, ignore it. This occurs when we
970 // are intentionally pushing out inst fragments, or because we relaxed a
971 // previous instruction to one that doesn't need relaxation.
972 if (!getBackend().mayNeedRelaxation(F
->getInst(), *F
->getSubtargetInfo()))
975 for (const MCFixup
&Fixup
: F
->getFixups())
976 if (fixupNeedsRelaxation(Fixup
, F
, Layout
))
982 bool MCAssembler::relaxInstruction(MCAsmLayout
&Layout
,
983 MCRelaxableFragment
&F
) {
984 assert(getEmitterPtr() &&
985 "Expected CodeEmitter defined for relaxInstruction");
986 if (!fragmentNeedsRelaxation(&F
, Layout
))
989 ++stats::RelaxedInstructions
;
991 // FIXME-PERF: We could immediately lower out instructions if we can tell
992 // they are fully resolved, to avoid retesting on later passes.
994 // Relax the fragment.
996 MCInst Relaxed
= F
.getInst();
997 getBackend().relaxInstruction(Relaxed
, *F
.getSubtargetInfo());
999 // Encode the new instruction.
1001 F
.getFixups().clear();
1002 F
.getContents().clear();
1003 getEmitter().encodeInstruction(Relaxed
, F
.getContents(), F
.getFixups(),
1004 *F
.getSubtargetInfo());
1008 bool MCAssembler::relaxLEB(MCAsmLayout
&Layout
, MCLEBFragment
&LF
) {
1009 uint64_t OldSize
= LF
.getContents().size();
1011 bool Abs
= LF
.getValue().evaluateKnownAbsolute(Value
, Layout
);
1013 getContext().reportError(LF
.getValue().getLoc(),
1014 Twine(LF
.isSigned() ? ".s" : ".u") +
1015 "leb128 expression is not absolute");
1017 SmallString
<8> &Data
= LF
.getContents();
1019 raw_svector_ostream
OSE(Data
);
1020 // The compiler can generate EH table assembly that is impossible to assemble
1021 // without either adding padding to an LEB fragment or adding extra padding
1022 // to a later alignment fragment. To accommodate such tables, relaxation can
1023 // only increase an LEB fragment size here, not decrease it. See PR35809.
1025 encodeSLEB128(Value
, OSE
, OldSize
);
1027 encodeULEB128(Value
, OSE
, OldSize
);
1028 return OldSize
!= LF
.getContents().size();
1031 /// Check if the branch crosses the boundary.
1033 /// \param StartAddr start address of the fused/unfused branch.
1034 /// \param Size size of the fused/unfused branch.
1035 /// \param BoundaryAlignment alignment requirement of the branch.
1036 /// \returns true if the branch cross the boundary.
1037 static bool mayCrossBoundary(uint64_t StartAddr
, uint64_t Size
,
1038 Align BoundaryAlignment
) {
1039 uint64_t EndAddr
= StartAddr
+ Size
;
1040 return (StartAddr
>> Log2(BoundaryAlignment
)) !=
1041 ((EndAddr
- 1) >> Log2(BoundaryAlignment
));
1044 /// Check if the branch is against the boundary.
1046 /// \param StartAddr start address of the fused/unfused branch.
1047 /// \param Size size of the fused/unfused branch.
1048 /// \param BoundaryAlignment alignment requirement of the branch.
1049 /// \returns true if the branch is against the boundary.
1050 static bool isAgainstBoundary(uint64_t StartAddr
, uint64_t Size
,
1051 Align BoundaryAlignment
) {
1052 uint64_t EndAddr
= StartAddr
+ Size
;
1053 return (EndAddr
& (BoundaryAlignment
.value() - 1)) == 0;
1056 /// Check if the branch needs padding.
1058 /// \param StartAddr start address of the fused/unfused branch.
1059 /// \param Size size of the fused/unfused branch.
1060 /// \param BoundaryAlignment alignment requirement of the branch.
1061 /// \returns true if the branch needs padding.
1062 static bool needPadding(uint64_t StartAddr
, uint64_t Size
,
1063 Align BoundaryAlignment
) {
1064 return mayCrossBoundary(StartAddr
, Size
, BoundaryAlignment
) ||
1065 isAgainstBoundary(StartAddr
, Size
, BoundaryAlignment
);
1068 bool MCAssembler::relaxBoundaryAlign(MCAsmLayout
&Layout
,
1069 MCBoundaryAlignFragment
&BF
) {
1070 // BoundaryAlignFragment that doesn't need to align any fragment should not be
1072 if (!BF
.getLastFragment())
1075 uint64_t AlignedOffset
= Layout
.getFragmentOffset(&BF
);
1076 uint64_t AlignedSize
= 0;
1077 for (const MCFragment
*F
= BF
.getLastFragment(); F
!= &BF
;
1078 F
= F
->getPrevNode())
1079 AlignedSize
+= computeFragmentSize(Layout
, *F
);
1081 Align BoundaryAlignment
= BF
.getAlignment();
1082 uint64_t NewSize
= needPadding(AlignedOffset
, AlignedSize
, BoundaryAlignment
)
1083 ? offsetToAlignment(AlignedOffset
, BoundaryAlignment
)
1085 if (NewSize
== BF
.getSize())
1087 BF
.setSize(NewSize
);
1088 Layout
.invalidateFragmentsFrom(&BF
);
1092 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout
&Layout
,
1093 MCDwarfLineAddrFragment
&DF
) {
1096 if (getBackend().relaxDwarfLineAddr(DF
, Layout
, WasRelaxed
))
1099 MCContext
&Context
= Layout
.getAssembler().getContext();
1100 uint64_t OldSize
= DF
.getContents().size();
1102 bool Abs
= DF
.getAddrDelta().evaluateKnownAbsolute(AddrDelta
, Layout
);
1103 assert(Abs
&& "We created a line delta with an invalid expression");
1106 LineDelta
= DF
.getLineDelta();
1107 SmallVectorImpl
<char> &Data
= DF
.getContents();
1109 DF
.getFixups().clear();
1111 MCDwarfLineAddr::encode(Context
, getDWARFLinetableParams(), LineDelta
,
1113 return OldSize
!= Data
.size();
1116 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout
&Layout
,
1117 MCDwarfCallFrameFragment
&DF
) {
1119 if (getBackend().relaxDwarfCFA(DF
, Layout
, WasRelaxed
))
1122 MCContext
&Context
= Layout
.getAssembler().getContext();
1124 bool Abs
= DF
.getAddrDelta().evaluateAsAbsolute(Value
, Layout
);
1126 getContext().reportError(DF
.getAddrDelta().getLoc(),
1127 "invalid CFI advance_loc expression");
1128 DF
.setAddrDelta(MCConstantExpr::create(0, Context
));
1132 SmallVectorImpl
<char> &Data
= DF
.getContents();
1133 uint64_t OldSize
= Data
.size();
1135 DF
.getFixups().clear();
1137 MCDwarfFrameEmitter::encodeAdvanceLoc(Context
, Value
, Data
);
1138 return OldSize
!= Data
.size();
1141 bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout
&Layout
,
1142 MCCVInlineLineTableFragment
&F
) {
1143 unsigned OldSize
= F
.getContents().size();
1144 getContext().getCVContext().encodeInlineLineTable(Layout
, F
);
1145 return OldSize
!= F
.getContents().size();
1148 bool MCAssembler::relaxCVDefRange(MCAsmLayout
&Layout
,
1149 MCCVDefRangeFragment
&F
) {
1150 unsigned OldSize
= F
.getContents().size();
1151 getContext().getCVContext().encodeDefRange(Layout
, F
);
1152 return OldSize
!= F
.getContents().size();
1155 bool MCAssembler::relaxPseudoProbeAddr(MCAsmLayout
&Layout
,
1156 MCPseudoProbeAddrFragment
&PF
) {
1157 uint64_t OldSize
= PF
.getContents().size();
1159 bool Abs
= PF
.getAddrDelta().evaluateKnownAbsolute(AddrDelta
, Layout
);
1160 assert(Abs
&& "We created a pseudo probe with an invalid expression");
1162 SmallVectorImpl
<char> &Data
= PF
.getContents();
1164 raw_svector_ostream
OSE(Data
);
1165 PF
.getFixups().clear();
1167 // AddrDelta is a signed integer
1168 encodeSLEB128(AddrDelta
, OSE
, OldSize
);
1169 return OldSize
!= Data
.size();
1172 bool MCAssembler::relaxFragment(MCAsmLayout
&Layout
, MCFragment
&F
) {
1173 switch(F
.getKind()) {
1176 case MCFragment::FT_Relaxable
:
1177 assert(!getRelaxAll() &&
1178 "Did not expect a MCRelaxableFragment in RelaxAll mode");
1179 return relaxInstruction(Layout
, cast
<MCRelaxableFragment
>(F
));
1180 case MCFragment::FT_Dwarf
:
1181 return relaxDwarfLineAddr(Layout
, cast
<MCDwarfLineAddrFragment
>(F
));
1182 case MCFragment::FT_DwarfFrame
:
1183 return relaxDwarfCallFrameFragment(Layout
,
1184 cast
<MCDwarfCallFrameFragment
>(F
));
1185 case MCFragment::FT_LEB
:
1186 return relaxLEB(Layout
, cast
<MCLEBFragment
>(F
));
1187 case MCFragment::FT_BoundaryAlign
:
1188 return relaxBoundaryAlign(Layout
, cast
<MCBoundaryAlignFragment
>(F
));
1189 case MCFragment::FT_CVInlineLines
:
1190 return relaxCVInlineLineTable(Layout
, cast
<MCCVInlineLineTableFragment
>(F
));
1191 case MCFragment::FT_CVDefRange
:
1192 return relaxCVDefRange(Layout
, cast
<MCCVDefRangeFragment
>(F
));
1193 case MCFragment::FT_PseudoProbe
:
1194 return relaxPseudoProbeAddr(Layout
, cast
<MCPseudoProbeAddrFragment
>(F
));
1198 bool MCAssembler::layoutSectionOnce(MCAsmLayout
&Layout
, MCSection
&Sec
) {
1199 // Holds the first fragment which needed relaxing during this layout. It will
1200 // remain NULL if none were relaxed.
1201 // When a fragment is relaxed, all the fragments following it should get
1202 // invalidated because their offset is going to change.
1203 MCFragment
*FirstRelaxedFragment
= nullptr;
1205 // Attempt to relax all the fragments in the section.
1206 for (MCFragment
&Frag
: Sec
) {
1207 // Check if this is a fragment that needs relaxation.
1208 bool RelaxedFrag
= relaxFragment(Layout
, Frag
);
1209 if (RelaxedFrag
&& !FirstRelaxedFragment
)
1210 FirstRelaxedFragment
= &Frag
;
1212 if (FirstRelaxedFragment
) {
1213 Layout
.invalidateFragmentsFrom(FirstRelaxedFragment
);
1219 bool MCAssembler::layoutOnce(MCAsmLayout
&Layout
) {
1220 ++stats::RelaxationSteps
;
1222 bool WasRelaxed
= false;
1223 for (MCSection
&Sec
: *this) {
1224 while (layoutSectionOnce(Layout
, Sec
))
1231 void MCAssembler::finishLayout(MCAsmLayout
&Layout
) {
1232 assert(getBackendPtr() && "Expected assembler backend");
1233 // The layout is done. Mark every fragment as valid.
1234 for (unsigned int i
= 0, n
= Layout
.getSectionOrder().size(); i
!= n
; ++i
) {
1235 MCSection
&Section
= *Layout
.getSectionOrder()[i
];
1236 Layout
.getFragmentOffset(&*Section
.getFragmentList().rbegin());
1237 computeFragmentSize(Layout
, *Section
.getFragmentList().rbegin());
1239 getBackend().finishLayout(*this, Layout
);
1242 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1243 LLVM_DUMP_METHOD
void MCAssembler::dump() const{
1244 raw_ostream
&OS
= errs();
1246 OS
<< "<MCAssembler\n";
1247 OS
<< " Sections:[\n ";
1248 for (const_iterator it
= begin(), ie
= end(); it
!= ie
; ++it
) {
1249 if (it
!= begin()) OS
<< ",\n ";
1255 for (const_symbol_iterator it
= symbol_begin(), ie
= symbol_end(); it
!= ie
; ++it
) {
1256 if (it
!= symbol_begin()) OS
<< ",\n ";
1259 OS
<< ", Index:" << it
->getIndex() << ", ";