[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / mlir / lib / Analysis / DataFlow / DeadCodeAnalysis.cpp
blob64df74e78915ff4699b21981b4d19d2a0142fa7e
1 //===- DeadCodeAnalysis.cpp - Dead code analysis --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "mlir/Analysis/DataFlow/DeadCodeAnalysis.h"
10 #include "mlir/Analysis/DataFlow/ConstantPropagationAnalysis.h"
11 #include "mlir/Analysis/DataFlow/SparseAnalysis.h"
12 #include "mlir/Analysis/DataFlowFramework.h"
13 #include "mlir/IR/Attributes.h"
14 #include "mlir/IR/Block.h"
15 #include "mlir/IR/Diagnostics.h"
16 #include "mlir/IR/Location.h"
17 #include "mlir/IR/Operation.h"
18 #include "mlir/IR/SymbolTable.h"
19 #include "mlir/IR/Value.h"
20 #include "mlir/IR/ValueRange.h"
21 #include "mlir/Interfaces/CallInterfaces.h"
22 #include "mlir/Interfaces/ControlFlowInterfaces.h"
23 #include "mlir/Support/LLVM.h"
24 #include "mlir/Support/LogicalResult.h"
25 #include "llvm/Support/Casting.h"
26 #include <cassert>
27 #include <optional>
29 using namespace mlir;
30 using namespace mlir::dataflow;
32 //===----------------------------------------------------------------------===//
33 // Executable
34 //===----------------------------------------------------------------------===//
36 ChangeResult Executable::setToLive() {
37 if (live)
38 return ChangeResult::NoChange;
39 live = true;
40 return ChangeResult::Change;
43 void Executable::print(raw_ostream &os) const {
44 os << (live ? "live" : "dead");
47 void Executable::onUpdate(DataFlowSolver *solver) const {
48 AnalysisState::onUpdate(solver);
50 if (auto *block = llvm::dyn_cast_if_present<Block *>(point)) {
51 // Re-invoke the analyses on the block itself.
52 for (DataFlowAnalysis *analysis : subscribers)
53 solver->enqueue({block, analysis});
54 // Re-invoke the analyses on all operations in the block.
55 for (DataFlowAnalysis *analysis : subscribers)
56 for (Operation &op : *block)
57 solver->enqueue({&op, analysis});
58 } else if (auto *programPoint = llvm::dyn_cast_if_present<GenericProgramPoint *>(point)) {
59 // Re-invoke the analysis on the successor block.
60 if (auto *edge = dyn_cast<CFGEdge>(programPoint)) {
61 for (DataFlowAnalysis *analysis : subscribers)
62 solver->enqueue({edge->getTo(), analysis});
67 //===----------------------------------------------------------------------===//
68 // PredecessorState
69 //===----------------------------------------------------------------------===//
71 void PredecessorState::print(raw_ostream &os) const {
72 if (allPredecessorsKnown())
73 os << "(all) ";
74 os << "predecessors:\n";
75 for (Operation *op : getKnownPredecessors())
76 os << " " << *op << "\n";
79 ChangeResult PredecessorState::join(Operation *predecessor) {
80 return knownPredecessors.insert(predecessor) ? ChangeResult::Change
81 : ChangeResult::NoChange;
84 ChangeResult PredecessorState::join(Operation *predecessor, ValueRange inputs) {
85 ChangeResult result = join(predecessor);
86 if (!inputs.empty()) {
87 ValueRange &curInputs = successorInputs[predecessor];
88 if (curInputs != inputs) {
89 curInputs = inputs;
90 result |= ChangeResult::Change;
93 return result;
96 //===----------------------------------------------------------------------===//
97 // CFGEdge
98 //===----------------------------------------------------------------------===//
100 Location CFGEdge::getLoc() const {
101 return FusedLoc::get(
102 getFrom()->getParent()->getContext(),
103 {getFrom()->getParent()->getLoc(), getTo()->getParent()->getLoc()});
106 void CFGEdge::print(raw_ostream &os) const {
107 getFrom()->print(os);
108 os << "\n -> \n";
109 getTo()->print(os);
112 //===----------------------------------------------------------------------===//
113 // DeadCodeAnalysis
114 //===----------------------------------------------------------------------===//
116 DeadCodeAnalysis::DeadCodeAnalysis(DataFlowSolver &solver)
117 : DataFlowAnalysis(solver) {
118 registerPointKind<CFGEdge>();
121 LogicalResult DeadCodeAnalysis::initialize(Operation *top) {
122 // Mark the top-level blocks as executable.
123 for (Region &region : top->getRegions()) {
124 if (region.empty())
125 continue;
126 auto *state = getOrCreate<Executable>(&region.front());
127 propagateIfChanged(state, state->setToLive());
130 // Mark as overdefined the predecessors of symbol callables with potentially
131 // unknown predecessors.
132 initializeSymbolCallables(top);
134 return initializeRecursively(top);
137 void DeadCodeAnalysis::initializeSymbolCallables(Operation *top) {
138 analysisScope = top;
139 auto walkFn = [&](Operation *symTable, bool allUsesVisible) {
140 Region &symbolTableRegion = symTable->getRegion(0);
141 Block *symbolTableBlock = &symbolTableRegion.front();
143 bool foundSymbolCallable = false;
144 for (auto callable : symbolTableBlock->getOps<CallableOpInterface>()) {
145 Region *callableRegion = callable.getCallableRegion();
146 if (!callableRegion)
147 continue;
148 auto symbol = dyn_cast<SymbolOpInterface>(callable.getOperation());
149 if (!symbol)
150 continue;
152 // Public symbol callables or those for which we can't see all uses have
153 // potentially unknown callsites.
154 if (symbol.isPublic() || (!allUsesVisible && symbol.isNested())) {
155 auto *state = getOrCreate<PredecessorState>(callable);
156 propagateIfChanged(state, state->setHasUnknownPredecessors());
158 foundSymbolCallable = true;
161 // Exit early if no eligible symbol callables were found in the table.
162 if (!foundSymbolCallable)
163 return;
165 // Walk the symbol table to check for non-call uses of symbols.
166 std::optional<SymbolTable::UseRange> uses =
167 SymbolTable::getSymbolUses(&symbolTableRegion);
168 if (!uses) {
169 // If we couldn't gather the symbol uses, conservatively assume that
170 // we can't track information for any nested symbols.
171 return top->walk([&](CallableOpInterface callable) {
172 auto *state = getOrCreate<PredecessorState>(callable);
173 propagateIfChanged(state, state->setHasUnknownPredecessors());
177 for (const SymbolTable::SymbolUse &use : *uses) {
178 if (isa<CallOpInterface>(use.getUser()))
179 continue;
180 // If a callable symbol has a non-call use, then we can't be guaranteed to
181 // know all callsites.
182 Operation *symbol = symbolTable.lookupSymbolIn(top, use.getSymbolRef());
183 auto *state = getOrCreate<PredecessorState>(symbol);
184 propagateIfChanged(state, state->setHasUnknownPredecessors());
187 SymbolTable::walkSymbolTables(top, /*allSymUsesVisible=*/!top->getBlock(),
188 walkFn);
191 /// Returns true if the operation is a returning terminator in region
192 /// control-flow or the terminator of a callable region.
193 static bool isRegionOrCallableReturn(Operation *op) {
194 return !op->getNumSuccessors() &&
195 isa<RegionBranchOpInterface, CallableOpInterface>(op->getParentOp()) &&
196 op->getBlock()->getTerminator() == op;
199 LogicalResult DeadCodeAnalysis::initializeRecursively(Operation *op) {
200 // Initialize the analysis by visiting every op with control-flow semantics.
201 if (op->getNumRegions() || op->getNumSuccessors() ||
202 isRegionOrCallableReturn(op) || isa<CallOpInterface>(op)) {
203 // When the liveness of the parent block changes, make sure to re-invoke the
204 // analysis on the op.
205 if (op->getBlock())
206 getOrCreate<Executable>(op->getBlock())->blockContentSubscribe(this);
207 // Visit the op.
208 if (failed(visit(op)))
209 return failure();
211 // Recurse on nested operations.
212 for (Region &region : op->getRegions())
213 for (Operation &op : region.getOps())
214 if (failed(initializeRecursively(&op)))
215 return failure();
216 return success();
219 void DeadCodeAnalysis::markEdgeLive(Block *from, Block *to) {
220 auto *state = getOrCreate<Executable>(to);
221 propagateIfChanged(state, state->setToLive());
222 auto *edgeState = getOrCreate<Executable>(getProgramPoint<CFGEdge>(from, to));
223 propagateIfChanged(edgeState, edgeState->setToLive());
226 void DeadCodeAnalysis::markEntryBlocksLive(Operation *op) {
227 for (Region &region : op->getRegions()) {
228 if (region.empty())
229 continue;
230 auto *state = getOrCreate<Executable>(&region.front());
231 propagateIfChanged(state, state->setToLive());
235 LogicalResult DeadCodeAnalysis::visit(ProgramPoint point) {
236 if (point.is<Block *>())
237 return success();
238 auto *op = llvm::dyn_cast_if_present<Operation *>(point);
239 if (!op)
240 return emitError(point.getLoc(), "unknown program point kind");
242 // If the parent block is not executable, there is nothing to do.
243 if (!getOrCreate<Executable>(op->getBlock())->isLive())
244 return success();
246 // We have a live call op. Add this as a live predecessor of the callee.
247 if (auto call = dyn_cast<CallOpInterface>(op))
248 visitCallOperation(call);
250 // Visit the regions.
251 if (op->getNumRegions()) {
252 // Check if we can reason about the region control-flow.
253 if (auto branch = dyn_cast<RegionBranchOpInterface>(op)) {
254 visitRegionBranchOperation(branch);
256 // Check if this is a callable operation.
257 } else if (auto callable = dyn_cast<CallableOpInterface>(op)) {
258 const auto *callsites = getOrCreateFor<PredecessorState>(op, callable);
260 // If the callsites could not be resolved or are known to be non-empty,
261 // mark the callable as executable.
262 if (!callsites->allPredecessorsKnown() ||
263 !callsites->getKnownPredecessors().empty())
264 markEntryBlocksLive(callable);
266 // Otherwise, conservatively mark all entry blocks as executable.
267 } else {
268 markEntryBlocksLive(op);
272 if (isRegionOrCallableReturn(op)) {
273 if (auto branch = dyn_cast<RegionBranchOpInterface>(op->getParentOp())) {
274 // Visit the exiting terminator of a region.
275 visitRegionTerminator(op, branch);
276 } else if (auto callable =
277 dyn_cast<CallableOpInterface>(op->getParentOp())) {
278 // Visit the exiting terminator of a callable.
279 visitCallableTerminator(op, callable);
282 // Visit the successors.
283 if (op->getNumSuccessors()) {
284 // Check if we can reason about the control-flow.
285 if (auto branch = dyn_cast<BranchOpInterface>(op)) {
286 visitBranchOperation(branch);
288 // Otherwise, conservatively mark all successors as exectuable.
289 } else {
290 for (Block *successor : op->getSuccessors())
291 markEdgeLive(op->getBlock(), successor);
295 return success();
298 void DeadCodeAnalysis::visitCallOperation(CallOpInterface call) {
299 Operation *callableOp = call.resolveCallable(&symbolTable);
301 // A call to a externally-defined callable has unknown predecessors.
302 const auto isExternalCallable = [this](Operation *op) {
303 // A callable outside the analysis scope is an external callable.
304 if (!analysisScope->isAncestor(op))
305 return true;
306 // Otherwise, check if the callable region is defined.
307 if (auto callable = dyn_cast<CallableOpInterface>(op))
308 return !callable.getCallableRegion();
309 return false;
312 // TODO: Add support for non-symbol callables when necessary. If the
313 // callable has non-call uses we would mark as having reached pessimistic
314 // fixpoint, otherwise allow for propagating the return values out.
315 if (isa_and_nonnull<SymbolOpInterface>(callableOp) &&
316 !isExternalCallable(callableOp)) {
317 // Add the live callsite.
318 auto *callsites = getOrCreate<PredecessorState>(callableOp);
319 propagateIfChanged(callsites, callsites->join(call));
320 } else {
321 // Mark this call op's predecessors as overdefined.
322 auto *predecessors = getOrCreate<PredecessorState>(call);
323 propagateIfChanged(predecessors, predecessors->setHasUnknownPredecessors());
327 /// Get the constant values of the operands of an operation. If any of the
328 /// constant value lattices are uninitialized, return std::nullopt to indicate
329 /// the analysis should bail out.
330 static std::optional<SmallVector<Attribute>> getOperandValuesImpl(
331 Operation *op,
332 function_ref<const Lattice<ConstantValue> *(Value)> getLattice) {
333 SmallVector<Attribute> operands;
334 operands.reserve(op->getNumOperands());
335 for (Value operand : op->getOperands()) {
336 const Lattice<ConstantValue> *cv = getLattice(operand);
337 // If any of the operands' values are uninitialized, bail out.
338 if (cv->getValue().isUninitialized())
339 return {};
340 operands.push_back(cv->getValue().getConstantValue());
342 return operands;
345 std::optional<SmallVector<Attribute>>
346 DeadCodeAnalysis::getOperandValues(Operation *op) {
347 return getOperandValuesImpl(op, [&](Value value) {
348 auto *lattice = getOrCreate<Lattice<ConstantValue>>(value);
349 lattice->useDefSubscribe(this);
350 return lattice;
354 void DeadCodeAnalysis::visitBranchOperation(BranchOpInterface branch) {
355 // Try to deduce a single successor for the branch.
356 std::optional<SmallVector<Attribute>> operands = getOperandValues(branch);
357 if (!operands)
358 return;
360 if (Block *successor = branch.getSuccessorForOperands(*operands)) {
361 markEdgeLive(branch->getBlock(), successor);
362 } else {
363 // Otherwise, mark all successors as executable and outgoing edges.
364 for (Block *successor : branch->getSuccessors())
365 markEdgeLive(branch->getBlock(), successor);
369 void DeadCodeAnalysis::visitRegionBranchOperation(
370 RegionBranchOpInterface branch) {
371 // Try to deduce which regions are executable.
372 std::optional<SmallVector<Attribute>> operands = getOperandValues(branch);
373 if (!operands)
374 return;
376 SmallVector<RegionSuccessor> successors;
377 branch.getEntrySuccessorRegions(*operands, successors);
378 for (const RegionSuccessor &successor : successors) {
379 // The successor can be either an entry block or the parent operation.
380 ProgramPoint point = successor.getSuccessor()
381 ? &successor.getSuccessor()->front()
382 : ProgramPoint(branch);
383 // Mark the entry block as executable.
384 auto *state = getOrCreate<Executable>(point);
385 propagateIfChanged(state, state->setToLive());
386 // Add the parent op as a predecessor.
387 auto *predecessors = getOrCreate<PredecessorState>(point);
388 propagateIfChanged(
389 predecessors,
390 predecessors->join(branch, successor.getSuccessorInputs()));
394 void DeadCodeAnalysis::visitRegionTerminator(Operation *op,
395 RegionBranchOpInterface branch) {
396 std::optional<SmallVector<Attribute>> operands = getOperandValues(op);
397 if (!operands)
398 return;
400 SmallVector<RegionSuccessor> successors;
401 if (auto terminator = dyn_cast<RegionBranchTerminatorOpInterface>(op))
402 terminator.getSuccessorRegions(*operands, successors);
403 else
404 branch.getSuccessorRegions(op->getParentRegion(), successors);
406 // Mark successor region entry blocks as executable and add this op to the
407 // list of predecessors.
408 for (const RegionSuccessor &successor : successors) {
409 PredecessorState *predecessors;
410 if (Region *region = successor.getSuccessor()) {
411 auto *state = getOrCreate<Executable>(&region->front());
412 propagateIfChanged(state, state->setToLive());
413 predecessors = getOrCreate<PredecessorState>(&region->front());
414 } else {
415 // Add this terminator as a predecessor to the parent op.
416 predecessors = getOrCreate<PredecessorState>(branch);
418 propagateIfChanged(predecessors,
419 predecessors->join(op, successor.getSuccessorInputs()));
423 void DeadCodeAnalysis::visitCallableTerminator(Operation *op,
424 CallableOpInterface callable) {
425 // Add as predecessors to all callsites this return op.
426 auto *callsites = getOrCreateFor<PredecessorState>(op, callable);
427 bool canResolve = op->hasTrait<OpTrait::ReturnLike>();
428 for (Operation *predecessor : callsites->getKnownPredecessors()) {
429 assert(isa<CallOpInterface>(predecessor));
430 auto *predecessors = getOrCreate<PredecessorState>(predecessor);
431 if (canResolve) {
432 propagateIfChanged(predecessors, predecessors->join(op));
433 } else {
434 // If the terminator is not a return-like, then conservatively assume we
435 // can't resolve the predecessor.
436 propagateIfChanged(predecessors,
437 predecessors->setHasUnknownPredecessors());