[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / mlir / lib / IR / Block.cpp
blob82ea303cf0171f37b96bc38903884175c0ba0c83
1 //===- Block.cpp - MLIR Block Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "mlir/IR/Block.h"
10 #include "mlir/IR/Builders.h"
11 #include "mlir/IR/Operation.h"
12 #include "llvm/ADT/BitVector.h"
13 using namespace mlir;
15 //===----------------------------------------------------------------------===//
16 // Block
17 //===----------------------------------------------------------------------===//
19 Block::~Block() {
20 assert(!verifyOpOrder() && "Expected valid operation ordering.");
21 clear();
22 for (BlockArgument arg : arguments)
23 arg.destroy();
26 Region *Block::getParent() const { return parentValidOpOrderPair.getPointer(); }
28 /// Returns the closest surrounding operation that contains this block or
29 /// nullptr if this block is unlinked.
30 Operation *Block::getParentOp() {
31 return getParent() ? getParent()->getParentOp() : nullptr;
34 /// Return if this block is the entry block in the parent region.
35 bool Block::isEntryBlock() { return this == &getParent()->front(); }
37 /// Insert this block (which must not already be in a region) right before the
38 /// specified block.
39 void Block::insertBefore(Block *block) {
40 assert(!getParent() && "already inserted into a block!");
41 assert(block->getParent() && "cannot insert before a block without a parent");
42 block->getParent()->getBlocks().insert(block->getIterator(), this);
45 void Block::insertAfter(Block *block) {
46 assert(!getParent() && "already inserted into a block!");
47 assert(block->getParent() && "cannot insert before a block without a parent");
48 block->getParent()->getBlocks().insertAfter(block->getIterator(), this);
51 /// Unlink this block from its current region and insert it right before the
52 /// specific block.
53 void Block::moveBefore(Block *block) {
54 assert(block->getParent() && "cannot insert before a block without a parent");
55 block->getParent()->getBlocks().splice(
56 block->getIterator(), getParent()->getBlocks(), getIterator());
59 /// Unlink this Block from its parent Region and delete it.
60 void Block::erase() {
61 assert(getParent() && "Block has no parent");
62 getParent()->getBlocks().erase(this);
65 /// Returns 'op' if 'op' lies in this block, or otherwise finds the
66 /// ancestor operation of 'op' that lies in this block. Returns nullptr if
67 /// the latter fails.
68 Operation *Block::findAncestorOpInBlock(Operation &op) {
69 // Traverse up the operation hierarchy starting from the owner of operand to
70 // find the ancestor operation that resides in the block of 'forOp'.
71 auto *currOp = &op;
72 while (currOp->getBlock() != this) {
73 currOp = currOp->getParentOp();
74 if (!currOp)
75 return nullptr;
77 return currOp;
80 /// This drops all operand uses from operations within this block, which is
81 /// an essential step in breaking cyclic dependences between references when
82 /// they are to be deleted.
83 void Block::dropAllReferences() {
84 for (Operation &i : *this)
85 i.dropAllReferences();
88 void Block::dropAllDefinedValueUses() {
89 for (auto arg : getArguments())
90 arg.dropAllUses();
91 for (auto &op : *this)
92 op.dropAllDefinedValueUses();
93 dropAllUses();
96 /// Returns true if the ordering of the child operations is valid, false
97 /// otherwise.
98 bool Block::isOpOrderValid() { return parentValidOpOrderPair.getInt(); }
100 /// Invalidates the current ordering of operations.
101 void Block::invalidateOpOrder() {
102 // Validate the current ordering.
103 assert(!verifyOpOrder());
104 parentValidOpOrderPair.setInt(false);
107 /// Verifies the current ordering of child operations. Returns false if the
108 /// order is valid, true otherwise.
109 bool Block::verifyOpOrder() {
110 // The order is already known to be invalid.
111 if (!isOpOrderValid())
112 return false;
113 // The order is valid if there are less than 2 operations.
114 if (operations.empty() || std::next(operations.begin()) == operations.end())
115 return false;
117 Operation *prev = nullptr;
118 for (auto &i : *this) {
119 // The previous operation must have a smaller order index than the next as
120 // it appears earlier in the list.
121 if (prev && prev->orderIndex != Operation::kInvalidOrderIdx &&
122 prev->orderIndex >= i.orderIndex)
123 return true;
124 prev = &i;
126 return false;
129 /// Recomputes the ordering of child operations within the block.
130 void Block::recomputeOpOrder() {
131 parentValidOpOrderPair.setInt(true);
133 unsigned orderIndex = 0;
134 for (auto &op : *this)
135 op.orderIndex = (orderIndex += Operation::kOrderStride);
138 //===----------------------------------------------------------------------===//
139 // Argument list management.
140 //===----------------------------------------------------------------------===//
142 /// Return a range containing the types of the arguments for this block.
143 auto Block::getArgumentTypes() -> ValueTypeRange<BlockArgListType> {
144 return ValueTypeRange<BlockArgListType>(getArguments());
147 BlockArgument Block::addArgument(Type type, Location loc) {
148 BlockArgument arg = BlockArgument::create(type, this, arguments.size(), loc);
149 arguments.push_back(arg);
150 return arg;
153 /// Add one argument to the argument list for each type specified in the list.
154 auto Block::addArguments(TypeRange types, ArrayRef<Location> locs)
155 -> iterator_range<args_iterator> {
156 assert(types.size() == locs.size() &&
157 "incorrect number of block argument locations");
158 size_t initialSize = arguments.size();
159 arguments.reserve(initialSize + types.size());
161 for (auto typeAndLoc : llvm::zip(types, locs))
162 addArgument(std::get<0>(typeAndLoc), std::get<1>(typeAndLoc));
163 return {arguments.data() + initialSize, arguments.data() + arguments.size()};
166 BlockArgument Block::insertArgument(unsigned index, Type type, Location loc) {
167 assert(index <= arguments.size() && "invalid insertion index");
169 auto arg = BlockArgument::create(type, this, index, loc);
170 arguments.insert(arguments.begin() + index, arg);
171 // Update the cached position for all the arguments after the newly inserted
172 // one.
173 ++index;
174 for (BlockArgument arg : llvm::drop_begin(arguments, index))
175 arg.setArgNumber(index++);
176 return arg;
179 /// Insert one value to the given position of the argument list. The existing
180 /// arguments are shifted. The block is expected not to have predecessors.
181 BlockArgument Block::insertArgument(args_iterator it, Type type, Location loc) {
182 assert(getPredecessors().empty() &&
183 "cannot insert arguments to blocks with predecessors");
184 return insertArgument(it->getArgNumber(), type, loc);
187 void Block::eraseArgument(unsigned index) {
188 assert(index < arguments.size());
189 arguments[index].destroy();
190 arguments.erase(arguments.begin() + index);
191 for (BlockArgument arg : llvm::drop_begin(arguments, index))
192 arg.setArgNumber(index++);
195 void Block::eraseArguments(unsigned start, unsigned num) {
196 assert(start + num <= arguments.size());
197 for (unsigned i = 0; i < num; ++i)
198 arguments[start + i].destroy();
199 arguments.erase(arguments.begin() + start, arguments.begin() + start + num);
200 for (BlockArgument arg : llvm::drop_begin(arguments, start))
201 arg.setArgNumber(start++);
204 void Block::eraseArguments(const BitVector &eraseIndices) {
205 eraseArguments(
206 [&](BlockArgument arg) { return eraseIndices.test(arg.getArgNumber()); });
209 void Block::eraseArguments(function_ref<bool(BlockArgument)> shouldEraseFn) {
210 auto firstDead = llvm::find_if(arguments, shouldEraseFn);
211 if (firstDead == arguments.end())
212 return;
214 // Destroy the first dead argument, this avoids reapplying the predicate to
215 // it.
216 unsigned index = firstDead->getArgNumber();
217 firstDead->destroy();
219 // Iterate the remaining arguments to remove any that are now dead.
220 for (auto it = std::next(firstDead), e = arguments.end(); it != e; ++it) {
221 // Destroy dead arguments, and shift those that are still live.
222 if (shouldEraseFn(*it)) {
223 it->destroy();
224 } else {
225 it->setArgNumber(index++);
226 *firstDead++ = *it;
229 arguments.erase(firstDead, arguments.end());
232 //===----------------------------------------------------------------------===//
233 // Terminator management
234 //===----------------------------------------------------------------------===//
236 /// Get the terminator operation of this block. This function asserts that
237 /// the block might have a valid terminator operation.
238 Operation *Block::getTerminator() {
239 assert(mightHaveTerminator());
240 return &back();
243 /// Check whether this block might have a terminator.
244 bool Block::mightHaveTerminator() {
245 return !empty() && back().mightHaveTrait<OpTrait::IsTerminator>();
248 // Indexed successor access.
249 unsigned Block::getNumSuccessors() {
250 return empty() ? 0 : back().getNumSuccessors();
253 Block *Block::getSuccessor(unsigned i) {
254 assert(i < getNumSuccessors());
255 return getTerminator()->getSuccessor(i);
258 /// If this block has exactly one predecessor, return it. Otherwise, return
259 /// null.
261 /// Note that multiple edges from a single block (e.g. if you have a cond
262 /// branch with the same block as the true/false destinations) is not
263 /// considered to be a single predecessor.
264 Block *Block::getSinglePredecessor() {
265 auto it = pred_begin();
266 if (it == pred_end())
267 return nullptr;
268 auto *firstPred = *it;
269 ++it;
270 return it == pred_end() ? firstPred : nullptr;
273 /// If this block has a unique predecessor, i.e., all incoming edges originate
274 /// from one block, return it. Otherwise, return null.
275 Block *Block::getUniquePredecessor() {
276 auto it = pred_begin(), e = pred_end();
277 if (it == e)
278 return nullptr;
280 // Check for any conflicting predecessors.
281 auto *firstPred = *it;
282 for (++it; it != e; ++it)
283 if (*it != firstPred)
284 return nullptr;
285 return firstPred;
288 //===----------------------------------------------------------------------===//
289 // Other
290 //===----------------------------------------------------------------------===//
292 /// Split the block into two blocks before the specified operation or
293 /// iterator.
295 /// Note that all operations BEFORE the specified iterator stay as part of
296 /// the original basic block, and the rest of the operations in the original
297 /// block are moved to the new block, including the old terminator. The
298 /// original block is left without a terminator.
300 /// The newly formed Block is returned, and the specified iterator is
301 /// invalidated.
302 Block *Block::splitBlock(iterator splitBefore) {
303 // Start by creating a new basic block, and insert it immediate after this
304 // one in the containing region.
305 auto *newBB = new Block();
306 getParent()->getBlocks().insert(std::next(Region::iterator(this)), newBB);
308 // Move all of the operations from the split point to the end of the region
309 // into the new block.
310 newBB->getOperations().splice(newBB->end(), getOperations(), splitBefore,
311 end());
312 return newBB;
315 //===----------------------------------------------------------------------===//
316 // Predecessors
317 //===----------------------------------------------------------------------===//
319 Block *PredecessorIterator::unwrap(BlockOperand &value) {
320 return value.getOwner()->getBlock();
323 /// Get the successor number in the predecessor terminator.
324 unsigned PredecessorIterator::getSuccessorIndex() const {
325 return I->getOperandNumber();
328 //===----------------------------------------------------------------------===//
329 // SuccessorRange
330 //===----------------------------------------------------------------------===//
332 SuccessorRange::SuccessorRange() : SuccessorRange(nullptr, 0) {}
334 SuccessorRange::SuccessorRange(Block *block) : SuccessorRange() {
335 if (block->empty() || llvm::hasSingleElement(*block->getParent()))
336 return;
337 Operation *term = &block->back();
338 if ((count = term->getNumSuccessors()))
339 base = term->getBlockOperands().data();
342 SuccessorRange::SuccessorRange(Operation *term) : SuccessorRange() {
343 if ((count = term->getNumSuccessors()))
344 base = term->getBlockOperands().data();
347 //===----------------------------------------------------------------------===//
348 // BlockRange
349 //===----------------------------------------------------------------------===//
351 BlockRange::BlockRange(ArrayRef<Block *> blocks) : BlockRange(nullptr, 0) {
352 if ((count = blocks.size()))
353 base = blocks.data();
356 BlockRange::BlockRange(SuccessorRange successors)
357 : BlockRange(successors.begin().getBase(), successors.size()) {}
359 /// See `llvm::detail::indexed_accessor_range_base` for details.
360 BlockRange::OwnerT BlockRange::offset_base(OwnerT object, ptrdiff_t index) {
361 if (auto *operand = llvm::dyn_cast_if_present<BlockOperand *>(object))
362 return {operand + index};
363 return {llvm::dyn_cast_if_present<Block *const *>(object) + index};
366 /// See `llvm::detail::indexed_accessor_range_base` for details.
367 Block *BlockRange::dereference_iterator(OwnerT object, ptrdiff_t index) {
368 if (const auto *operand = llvm::dyn_cast_if_present<BlockOperand *>(object))
369 return operand[index].get();
370 return llvm::dyn_cast_if_present<Block *const *>(object)[index];