[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / mlir / tools / mlir-tblgen / OpDefinitionsGen.cpp
bloba620265b3dd880912ac5ea44bf1d9193f30c93da
1 //===- OpDefinitionsGen.cpp - MLIR op definitions generator ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // OpDefinitionsGen uses the description of operations to generate C++
10 // definitions for ops.
12 //===----------------------------------------------------------------------===//
14 #include "OpClass.h"
15 #include "OpFormatGen.h"
16 #include "OpGenHelpers.h"
17 #include "mlir/TableGen/Argument.h"
18 #include "mlir/TableGen/Attribute.h"
19 #include "mlir/TableGen/Class.h"
20 #include "mlir/TableGen/CodeGenHelpers.h"
21 #include "mlir/TableGen/Format.h"
22 #include "mlir/TableGen/GenInfo.h"
23 #include "mlir/TableGen/Interfaces.h"
24 #include "mlir/TableGen/Operator.h"
25 #include "mlir/TableGen/Property.h"
26 #include "mlir/TableGen/SideEffects.h"
27 #include "mlir/TableGen/Trait.h"
28 #include "llvm/ADT/BitVector.h"
29 #include "llvm/ADT/MapVector.h"
30 #include "llvm/ADT/Sequence.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/ADT/StringSet.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/Signals.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/TableGen/Error.h"
39 #include "llvm/TableGen/Record.h"
40 #include "llvm/TableGen/TableGenBackend.h"
42 #define DEBUG_TYPE "mlir-tblgen-opdefgen"
44 using namespace llvm;
45 using namespace mlir;
46 using namespace mlir::tblgen;
48 static const char *const tblgenNamePrefix = "tblgen_";
49 static const char *const generatedArgName = "odsArg";
50 static const char *const odsBuilder = "odsBuilder";
51 static const char *const builderOpState = "odsState";
52 static const char *const propertyStorage = "propStorage";
53 static const char *const propertyValue = "propValue";
54 static const char *const propertyAttr = "propAttr";
55 static const char *const propertyDiag = "emitError";
57 /// The names of the implicit attributes that contain variadic operand and
58 /// result segment sizes.
59 static const char *const operandSegmentAttrName = "operandSegmentSizes";
60 static const char *const resultSegmentAttrName = "resultSegmentSizes";
62 /// Code for an Op to lookup an attribute. Uses cached identifiers and subrange
63 /// lookup.
64 ///
65 /// {0}: Code snippet to get the attribute's name or identifier.
66 /// {1}: The lower bound on the sorted subrange.
67 /// {2}: The upper bound on the sorted subrange.
68 /// {3}: Code snippet to get the array of named attributes.
69 /// {4}: "Named" to get the named attribute.
70 static const char *const subrangeGetAttr =
71 "::mlir::impl::get{4}AttrFromSortedRange({3}.begin() + {1}, {3}.end() - "
72 "{2}, {0})";
74 /// The logic to calculate the actual value range for a declared operand/result
75 /// of an op with variadic operands/results. Note that this logic is not for
76 /// general use; it assumes all variadic operands/results must have the same
77 /// number of values.
78 ///
79 /// {0}: The list of whether each declared operand/result is variadic.
80 /// {1}: The total number of non-variadic operands/results.
81 /// {2}: The total number of variadic operands/results.
82 /// {3}: The total number of actual values.
83 /// {4}: "operand" or "result".
84 static const char *const sameVariadicSizeValueRangeCalcCode = R"(
85 bool isVariadic[] = {{{0}};
86 int prevVariadicCount = 0;
87 for (unsigned i = 0; i < index; ++i)
88 if (isVariadic[i]) ++prevVariadicCount;
90 // Calculate how many dynamic values a static variadic {4} corresponds to.
91 // This assumes all static variadic {4}s have the same dynamic value count.
92 int variadicSize = ({3} - {1}) / {2};
93 // `index` passed in as the parameter is the static index which counts each
94 // {4} (variadic or not) as size 1. So here for each previous static variadic
95 // {4}, we need to offset by (variadicSize - 1) to get where the dynamic
96 // value pack for this static {4} starts.
97 int start = index + (variadicSize - 1) * prevVariadicCount;
98 int size = isVariadic[index] ? variadicSize : 1;
99 return {{start, size};
102 /// The logic to calculate the actual value range for a declared operand/result
103 /// of an op with variadic operands/results. Note that this logic is assumes
104 /// the op has an attribute specifying the size of each operand/result segment
105 /// (variadic or not).
106 static const char *const attrSizedSegmentValueRangeCalcCode = R"(
107 unsigned start = 0;
108 for (unsigned i = 0; i < index; ++i)
109 start += sizeAttr[i];
110 return {start, sizeAttr[index]};
112 /// The code snippet to initialize the sizes for the value range calculation.
114 /// {0}: The code to get the attribute.
115 static const char *const adapterSegmentSizeAttrInitCode = R"(
116 assert({0} && "missing segment size attribute for op");
117 auto sizeAttr = ::llvm::cast<::mlir::DenseI32ArrayAttr>({0});
119 static const char *const adapterSegmentSizeAttrInitCodeProperties = R"(
120 ::llvm::ArrayRef<int32_t> sizeAttr = {0};
123 /// The code snippet to initialize the sizes for the value range calculation.
125 /// {0}: The code to get the attribute.
126 static const char *const opSegmentSizeAttrInitCode = R"(
127 auto sizeAttr = ::llvm::cast<::mlir::DenseI32ArrayAttr>({0});
130 /// The logic to calculate the actual value range for a declared operand
131 /// of an op with variadic of variadic operands within the OpAdaptor.
133 /// {0}: The name of the segment attribute.
134 /// {1}: The index of the main operand.
135 /// {2}: The range type of adaptor.
136 static const char *const variadicOfVariadicAdaptorCalcCode = R"(
137 auto tblgenTmpOperands = getODSOperands({1});
138 auto sizes = {0}();
140 ::llvm::SmallVector<{2}> tblgenTmpOperandGroups;
141 for (int i = 0, e = sizes.size(); i < e; ++i) {{
142 tblgenTmpOperandGroups.push_back(tblgenTmpOperands.take_front(sizes[i]));
143 tblgenTmpOperands = tblgenTmpOperands.drop_front(sizes[i]);
145 return tblgenTmpOperandGroups;
148 /// The logic to build a range of either operand or result values.
150 /// {0}: The begin iterator of the actual values.
151 /// {1}: The call to generate the start and length of the value range.
152 static const char *const valueRangeReturnCode = R"(
153 auto valueRange = {1};
154 return {{std::next({0}, valueRange.first),
155 std::next({0}, valueRange.first + valueRange.second)};
158 /// Read operand/result segment_size from bytecode.
159 static const char *const readBytecodeSegmentSizeNative = R"(
160 if ($_reader.getBytecodeVersion() >= /*kNativePropertiesODSSegmentSize=*/6)
161 return $_reader.readSparseArray(::llvm::MutableArrayRef($_storage));
164 static const char *const readBytecodeSegmentSizeLegacy = R"(
165 if ($_reader.getBytecodeVersion() < /*kNativePropertiesODSSegmentSize=*/6) {
166 auto &$_storage = prop.$_propName;
167 ::mlir::DenseI32ArrayAttr attr;
168 if (::mlir::failed($_reader.readAttribute(attr))) return ::mlir::failure();
169 if (attr.size() > static_cast<int64_t>(sizeof($_storage) / sizeof(int32_t))) {
170 $_reader.emitError("size mismatch for operand/result_segment_size");
171 return ::mlir::failure();
173 ::llvm::copy(::llvm::ArrayRef<int32_t>(attr), $_storage.begin());
177 /// Write operand/result segment_size to bytecode.
178 static const char *const writeBytecodeSegmentSizeNative = R"(
179 if ($_writer.getBytecodeVersion() >= /*kNativePropertiesODSSegmentSize=*/6)
180 $_writer.writeSparseArray(::llvm::ArrayRef($_storage));
183 /// Write operand/result segment_size to bytecode.
184 static const char *const writeBytecodeSegmentSizeLegacy = R"(
185 if ($_writer.getBytecodeVersion() < /*kNativePropertiesODSSegmentSize=*/6) {
186 auto &$_storage = prop.$_propName;
187 $_writer.writeAttribute(::mlir::DenseI32ArrayAttr::get($_ctxt, $_storage));
191 /// A header for indicating code sections.
193 /// {0}: Some text, or a class name.
194 /// {1}: Some text.
195 static const char *const opCommentHeader = R"(
196 //===----------------------------------------------------------------------===//
197 // {0} {1}
198 //===----------------------------------------------------------------------===//
202 //===----------------------------------------------------------------------===//
203 // Utility structs and functions
204 //===----------------------------------------------------------------------===//
206 // Replaces all occurrences of `match` in `str` with `substitute`.
207 static std::string replaceAllSubstrs(std::string str, const std::string &match,
208 const std::string &substitute) {
209 std::string::size_type scanLoc = 0, matchLoc = std::string::npos;
210 while ((matchLoc = str.find(match, scanLoc)) != std::string::npos) {
211 str = str.replace(matchLoc, match.size(), substitute);
212 scanLoc = matchLoc + substitute.size();
214 return str;
217 // Returns whether the record has a value of the given name that can be returned
218 // via getValueAsString.
219 static inline bool hasStringAttribute(const Record &record,
220 StringRef fieldName) {
221 auto *valueInit = record.getValueInit(fieldName);
222 return isa<StringInit>(valueInit);
225 static std::string getArgumentName(const Operator &op, int index) {
226 const auto &operand = op.getOperand(index);
227 if (!operand.name.empty())
228 return std::string(operand.name);
229 return std::string(formatv("{0}_{1}", generatedArgName, index));
232 // Returns true if we can use unwrapped value for the given `attr` in builders.
233 static bool canUseUnwrappedRawValue(const tblgen::Attribute &attr) {
234 return attr.getReturnType() != attr.getStorageType() &&
235 // We need to wrap the raw value into an attribute in the builder impl
236 // so we need to make sure that the attribute specifies how to do that.
237 !attr.getConstBuilderTemplate().empty();
240 /// Build an attribute from a parameter value using the constant builder.
241 static std::string constBuildAttrFromParam(const tblgen::Attribute &attr,
242 FmtContext &fctx,
243 StringRef paramName) {
244 std::string builderTemplate = attr.getConstBuilderTemplate().str();
246 // For StringAttr, its constant builder call will wrap the input in
247 // quotes, which is correct for normal string literals, but incorrect
248 // here given we use function arguments. So we need to strip the
249 // wrapping quotes.
250 if (StringRef(builderTemplate).contains("\"$0\""))
251 builderTemplate = replaceAllSubstrs(builderTemplate, "\"$0\"", "$0");
253 return tgfmt(builderTemplate, &fctx, paramName).str();
256 namespace {
257 /// Metadata on a registered attribute. Given that attributes are stored in
258 /// sorted order on operations, we can use information from ODS to deduce the
259 /// number of required attributes less and and greater than each attribute,
260 /// allowing us to search only a subrange of the attributes in ODS-generated
261 /// getters.
262 struct AttributeMetadata {
263 /// The attribute name.
264 StringRef attrName;
265 /// Whether the attribute is required.
266 bool isRequired;
267 /// The ODS attribute constraint. Not present for implicit attributes.
268 std::optional<Attribute> constraint;
269 /// The number of required attributes less than this attribute.
270 unsigned lowerBound = 0;
271 /// The number of required attributes greater than this attribute.
272 unsigned upperBound = 0;
275 /// Helper class to select between OpAdaptor and Op code templates.
276 class OpOrAdaptorHelper {
277 public:
278 OpOrAdaptorHelper(const Operator &op, bool emitForOp)
279 : op(op), emitForOp(emitForOp) {
280 computeAttrMetadata();
283 /// Object that wraps a functor in a stream operator for interop with
284 /// llvm::formatv.
285 class Formatter {
286 public:
287 template <typename Functor>
288 Formatter(Functor &&func) : func(std::forward<Functor>(func)) {}
290 std::string str() const {
291 std::string result;
292 llvm::raw_string_ostream os(result);
293 os << *this;
294 return os.str();
297 private:
298 std::function<raw_ostream &(raw_ostream &)> func;
300 friend raw_ostream &operator<<(raw_ostream &os, const Formatter &fmt) {
301 return fmt.func(os);
305 // Generate code for getting an attribute.
306 Formatter getAttr(StringRef attrName, bool isNamed = false) const {
307 assert(attrMetadata.count(attrName) && "expected attribute metadata");
308 return [this, attrName, isNamed](raw_ostream &os) -> raw_ostream & {
309 const AttributeMetadata &attr = attrMetadata.find(attrName)->second;
310 if (hasProperties()) {
311 assert(!isNamed);
312 return os << "getProperties()." << attrName;
314 return os << formatv(subrangeGetAttr, getAttrName(attrName),
315 attr.lowerBound, attr.upperBound, getAttrRange(),
316 isNamed ? "Named" : "");
320 // Generate code for getting the name of an attribute.
321 Formatter getAttrName(StringRef attrName) const {
322 return [this, attrName](raw_ostream &os) -> raw_ostream & {
323 if (emitForOp)
324 return os << op.getGetterName(attrName) << "AttrName()";
325 return os << formatv("{0}::{1}AttrName(*odsOpName)", op.getCppClassName(),
326 op.getGetterName(attrName));
330 // Get the code snippet for getting the named attribute range.
331 StringRef getAttrRange() const {
332 return emitForOp ? "(*this)->getAttrs()" : "odsAttrs";
335 // Get the prefix code for emitting an error.
336 Formatter emitErrorPrefix() const {
337 return [this](raw_ostream &os) -> raw_ostream & {
338 if (emitForOp)
339 return os << "emitOpError(";
340 return os << formatv("emitError(loc, \"'{0}' op \"",
341 op.getOperationName());
345 // Get the call to get an operand or segment of operands.
346 Formatter getOperand(unsigned index) const {
347 return [this, index](raw_ostream &os) -> raw_ostream & {
348 return os << formatv(op.getOperand(index).isVariadic()
349 ? "this->getODSOperands({0})"
350 : "(*this->getODSOperands({0}).begin())",
351 index);
355 // Get the call to get a result of segment of results.
356 Formatter getResult(unsigned index) const {
357 return [this, index](raw_ostream &os) -> raw_ostream & {
358 if (!emitForOp)
359 return os << "<no results should be generated>";
360 return os << formatv(op.getResult(index).isVariadic()
361 ? "this->getODSResults({0})"
362 : "(*this->getODSResults({0}).begin())",
363 index);
367 // Return whether an op instance is available.
368 bool isEmittingForOp() const { return emitForOp; }
370 // Return the ODS operation wrapper.
371 const Operator &getOp() const { return op; }
373 // Get the attribute metadata sorted by name.
374 const llvm::MapVector<StringRef, AttributeMetadata> &getAttrMetadata() const {
375 return attrMetadata;
378 /// Returns whether to emit a `Properties` struct for this operation or not.
379 bool hasProperties() const {
380 if (!op.getProperties().empty())
381 return true;
382 if (!op.getDialect().usePropertiesForAttributes())
383 return false;
384 if (op.getTrait("::mlir::OpTrait::AttrSizedOperandSegments") ||
385 op.getTrait("::mlir::OpTrait::AttrSizedResultSegments"))
386 return true;
387 return llvm::any_of(getAttrMetadata(),
388 [](const std::pair<StringRef, AttributeMetadata> &it) {
389 return !it.second.constraint ||
390 !it.second.constraint->isDerivedAttr();
394 std::optional<NamedProperty> &getOperandSegmentsSize() {
395 return operandSegmentsSize;
398 std::optional<NamedProperty> &getResultSegmentsSize() {
399 return resultSegmentsSize;
402 uint32_t getOperandSegmentSizesLegacyIndex() {
403 return operandSegmentSizesLegacyIndex;
406 uint32_t getResultSegmentSizesLegacyIndex() {
407 return resultSegmentSizesLegacyIndex;
410 private:
411 // Compute the attribute metadata.
412 void computeAttrMetadata();
414 // The operation ODS wrapper.
415 const Operator &op;
416 // True if code is being generate for an op. False for an adaptor.
417 const bool emitForOp;
419 // The attribute metadata, mapped by name.
420 llvm::MapVector<StringRef, AttributeMetadata> attrMetadata;
422 // Property
423 std::optional<NamedProperty> operandSegmentsSize;
424 std::string operandSegmentsSizeStorage;
425 std::optional<NamedProperty> resultSegmentsSize;
426 std::string resultSegmentsSizeStorage;
428 // Indices to store the position in the emission order of the operand/result
429 // segment sizes attribute if emitted as part of the properties for legacy
430 // bytecode encodings, i.e. versions less than 6.
431 uint32_t operandSegmentSizesLegacyIndex = 0;
432 uint32_t resultSegmentSizesLegacyIndex = 0;
434 // The number of required attributes.
435 unsigned numRequired;
438 } // namespace
440 void OpOrAdaptorHelper::computeAttrMetadata() {
441 // Enumerate the attribute names of this op, ensuring the attribute names are
442 // unique in case implicit attributes are explicitly registered.
443 for (const NamedAttribute &namedAttr : op.getAttributes()) {
444 Attribute attr = namedAttr.attr;
445 bool isOptional =
446 attr.hasDefaultValue() || attr.isOptional() || attr.isDerivedAttr();
447 attrMetadata.insert(
448 {namedAttr.name, AttributeMetadata{namedAttr.name, !isOptional, attr}});
451 auto makeProperty = [&](StringRef storageType) {
452 return Property(
453 /*storageType=*/storageType,
454 /*interfaceType=*/"::llvm::ArrayRef<int32_t>",
455 /*convertFromStorageCall=*/"$_storage",
456 /*assignToStorageCall=*/
457 "::llvm::copy($_value, $_storage.begin())",
458 /*convertToAttributeCall=*/
459 "::mlir::DenseI32ArrayAttr::get($_ctxt, $_storage)",
460 /*convertFromAttributeCall=*/
461 "return convertFromAttribute($_storage, $_attr, $_diag);",
462 /*readFromMlirBytecodeCall=*/readBytecodeSegmentSizeNative,
463 /*writeToMlirBytecodeCall=*/writeBytecodeSegmentSizeNative,
464 /*hashPropertyCall=*/
465 "::llvm::hash_combine_range(std::begin($_storage), "
466 "std::end($_storage));",
467 /*StringRef defaultValue=*/"");
469 // Include key attributes from several traits as implicitly registered.
470 if (op.getTrait("::mlir::OpTrait::AttrSizedOperandSegments")) {
471 if (op.getDialect().usePropertiesForAttributes()) {
472 operandSegmentsSizeStorage =
473 llvm::formatv("std::array<int32_t, {0}>", op.getNumOperands());
474 operandSegmentsSize = {"operandSegmentSizes",
475 makeProperty(operandSegmentsSizeStorage)};
476 } else {
477 attrMetadata.insert(
478 {operandSegmentAttrName, AttributeMetadata{operandSegmentAttrName,
479 /*isRequired=*/true,
480 /*attr=*/std::nullopt}});
483 if (op.getTrait("::mlir::OpTrait::AttrSizedResultSegments")) {
484 if (op.getDialect().usePropertiesForAttributes()) {
485 resultSegmentsSizeStorage =
486 llvm::formatv("std::array<int32_t, {0}>", op.getNumResults());
487 resultSegmentsSize = {"resultSegmentSizes",
488 makeProperty(resultSegmentsSizeStorage)};
489 } else {
490 attrMetadata.insert(
491 {resultSegmentAttrName,
492 AttributeMetadata{resultSegmentAttrName, /*isRequired=*/true,
493 /*attr=*/std::nullopt}});
497 // Store the metadata in sorted order.
498 SmallVector<AttributeMetadata> sortedAttrMetadata =
499 llvm::to_vector(llvm::make_second_range(attrMetadata.takeVector()));
500 llvm::sort(sortedAttrMetadata,
501 [](const AttributeMetadata &lhs, const AttributeMetadata &rhs) {
502 return lhs.attrName < rhs.attrName;
505 // Store the position of the legacy operand_segment_sizes /
506 // result_segment_sizes so we can emit a backward compatible property readers
507 // and writers.
508 StringRef legacyOperandSegmentSizeName =
509 StringLiteral("operand_segment_sizes");
510 StringRef legacyResultSegmentSizeName = StringLiteral("result_segment_sizes");
511 operandSegmentSizesLegacyIndex = 0;
512 resultSegmentSizesLegacyIndex = 0;
513 for (auto item : sortedAttrMetadata) {
514 if (item.attrName < legacyOperandSegmentSizeName)
515 ++operandSegmentSizesLegacyIndex;
516 if (item.attrName < legacyResultSegmentSizeName)
517 ++resultSegmentSizesLegacyIndex;
520 // Compute the subrange bounds for each attribute.
521 numRequired = 0;
522 for (AttributeMetadata &attr : sortedAttrMetadata) {
523 attr.lowerBound = numRequired;
524 numRequired += attr.isRequired;
526 for (AttributeMetadata &attr : sortedAttrMetadata)
527 attr.upperBound = numRequired - attr.lowerBound - attr.isRequired;
529 // Store the results back into the map.
530 for (const AttributeMetadata &attr : sortedAttrMetadata)
531 attrMetadata.insert({attr.attrName, attr});
534 //===----------------------------------------------------------------------===//
535 // Op emitter
536 //===----------------------------------------------------------------------===//
538 namespace {
539 // Helper class to emit a record into the given output stream.
540 class OpEmitter {
541 using ConstArgument =
542 llvm::PointerUnion<const AttributeMetadata *, const NamedProperty *>;
544 public:
545 static void
546 emitDecl(const Operator &op, raw_ostream &os,
547 const StaticVerifierFunctionEmitter &staticVerifierEmitter);
548 static void
549 emitDef(const Operator &op, raw_ostream &os,
550 const StaticVerifierFunctionEmitter &staticVerifierEmitter);
552 private:
553 OpEmitter(const Operator &op,
554 const StaticVerifierFunctionEmitter &staticVerifierEmitter);
556 void emitDecl(raw_ostream &os);
557 void emitDef(raw_ostream &os);
559 // Generate methods for accessing the attribute names of this operation.
560 void genAttrNameGetters();
562 // Generates the OpAsmOpInterface for this operation if possible.
563 void genOpAsmInterface();
565 // Generates the `getOperationName` method for this op.
566 void genOpNameGetter();
568 // Generates code to manage the properties, if any!
569 void genPropertiesSupport();
571 // Generates code to manage the encoding of properties to bytecode.
572 void
573 genPropertiesSupportForBytecode(ArrayRef<ConstArgument> attrOrProperties);
575 // Generates getters for the attributes.
576 void genAttrGetters();
578 // Generates setter for the attributes.
579 void genAttrSetters();
581 // Generates removers for optional attributes.
582 void genOptionalAttrRemovers();
584 // Generates getters for named operands.
585 void genNamedOperandGetters();
587 // Generates setters for named operands.
588 void genNamedOperandSetters();
590 // Generates getters for named results.
591 void genNamedResultGetters();
593 // Generates getters for named regions.
594 void genNamedRegionGetters();
596 // Generates getters for named successors.
597 void genNamedSuccessorGetters();
599 // Generates the method to populate default attributes.
600 void genPopulateDefaultAttributes();
602 // Generates builder methods for the operation.
603 void genBuilder();
605 // Generates the build() method that takes each operand/attribute
606 // as a stand-alone parameter.
607 void genSeparateArgParamBuilder();
609 // Generates the build() method that takes each operand/attribute as a
610 // stand-alone parameter. The generated build() method uses first operand's
611 // type as all results' types.
612 void genUseOperandAsResultTypeSeparateParamBuilder();
614 // Generates the build() method that takes all operands/attributes
615 // collectively as one parameter. The generated build() method uses first
616 // operand's type as all results' types.
617 void genUseOperandAsResultTypeCollectiveParamBuilder();
619 // Generates the build() method that takes aggregate operands/attributes
620 // parameters. This build() method uses inferred types as result types.
621 // Requires: The type needs to be inferable via InferTypeOpInterface.
622 void genInferredTypeCollectiveParamBuilder();
624 // Generates the build() method that takes each operand/attribute as a
625 // stand-alone parameter. The generated build() method uses first attribute's
626 // type as all result's types.
627 void genUseAttrAsResultTypeBuilder();
629 // Generates the build() method that takes all result types collectively as
630 // one parameter. Similarly for operands and attributes.
631 void genCollectiveParamBuilder();
633 // The kind of parameter to generate for result types in builders.
634 enum class TypeParamKind {
635 None, // No result type in parameter list.
636 Separate, // A separate parameter for each result type.
637 Collective, // An ArrayRef<Type> for all result types.
640 // The kind of parameter to generate for attributes in builders.
641 enum class AttrParamKind {
642 WrappedAttr, // A wrapped MLIR Attribute instance.
643 UnwrappedValue, // A raw value without MLIR Attribute wrapper.
646 // Builds the parameter list for build() method of this op. This method writes
647 // to `paramList` the comma-separated parameter list and updates
648 // `resultTypeNames` with the names for parameters for specifying result
649 // types. `inferredAttributes` is populated with any attributes that are
650 // elided from the build list. The given `typeParamKind` and `attrParamKind`
651 // controls how result types and attributes are placed in the parameter list.
652 void buildParamList(SmallVectorImpl<MethodParameter> &paramList,
653 llvm::StringSet<> &inferredAttributes,
654 SmallVectorImpl<std::string> &resultTypeNames,
655 TypeParamKind typeParamKind,
656 AttrParamKind attrParamKind = AttrParamKind::WrappedAttr);
658 // Adds op arguments and regions into operation state for build() methods.
659 void
660 genCodeForAddingArgAndRegionForBuilder(MethodBody &body,
661 llvm::StringSet<> &inferredAttributes,
662 bool isRawValueAttr = false);
664 // Generates canonicalizer declaration for the operation.
665 void genCanonicalizerDecls();
667 // Generates the folder declaration for the operation.
668 void genFolderDecls();
670 // Generates the parser for the operation.
671 void genParser();
673 // Generates the printer for the operation.
674 void genPrinter();
676 // Generates verify method for the operation.
677 void genVerifier();
679 // Generates custom verify methods for the operation.
680 void genCustomVerifier();
682 // Generates verify statements for operands and results in the operation.
683 // The generated code will be attached to `body`.
684 void genOperandResultVerifier(MethodBody &body,
685 Operator::const_value_range values,
686 StringRef valueKind);
688 // Generates verify statements for regions in the operation.
689 // The generated code will be attached to `body`.
690 void genRegionVerifier(MethodBody &body);
692 // Generates verify statements for successors in the operation.
693 // The generated code will be attached to `body`.
694 void genSuccessorVerifier(MethodBody &body);
696 // Generates the traits used by the object.
697 void genTraits();
699 // Generate the OpInterface methods for all interfaces.
700 void genOpInterfaceMethods();
702 // Generate op interface methods for the given interface.
703 void genOpInterfaceMethods(const tblgen::InterfaceTrait *trait);
705 // Generate op interface method for the given interface method. If
706 // 'declaration' is true, generates a declaration, else a definition.
707 Method *genOpInterfaceMethod(const tblgen::InterfaceMethod &method,
708 bool declaration = true);
710 // Generate the side effect interface methods.
711 void genSideEffectInterfaceMethods();
713 // Generate the type inference interface methods.
714 void genTypeInterfaceMethods();
716 private:
717 // The TableGen record for this op.
718 // TODO: OpEmitter should not have a Record directly,
719 // it should rather go through the Operator for better abstraction.
720 const Record &def;
722 // The wrapper operator class for querying information from this op.
723 const Operator &op;
725 // The C++ code builder for this op
726 OpClass opClass;
728 // The format context for verification code generation.
729 FmtContext verifyCtx;
731 // The emitter containing all of the locally emitted verification functions.
732 const StaticVerifierFunctionEmitter &staticVerifierEmitter;
734 // Helper for emitting op code.
735 OpOrAdaptorHelper emitHelper;
738 } // namespace
740 // Populate the format context `ctx` with substitutions of attributes, operands
741 // and results.
742 static void populateSubstitutions(const OpOrAdaptorHelper &emitHelper,
743 FmtContext &ctx) {
744 // Populate substitutions for attributes.
745 auto &op = emitHelper.getOp();
746 for (const auto &namedAttr : op.getAttributes())
747 ctx.addSubst(namedAttr.name,
748 emitHelper.getOp().getGetterName(namedAttr.name) + "()");
750 // Populate substitutions for named operands.
751 for (int i = 0, e = op.getNumOperands(); i < e; ++i) {
752 auto &value = op.getOperand(i);
753 if (!value.name.empty())
754 ctx.addSubst(value.name, emitHelper.getOperand(i).str());
757 // Populate substitutions for results.
758 for (int i = 0, e = op.getNumResults(); i < e; ++i) {
759 auto &value = op.getResult(i);
760 if (!value.name.empty())
761 ctx.addSubst(value.name, emitHelper.getResult(i).str());
765 /// Generate verification on native traits requiring attributes.
766 static void genNativeTraitAttrVerifier(MethodBody &body,
767 const OpOrAdaptorHelper &emitHelper) {
768 // Check that the variadic segment sizes attribute exists and contains the
769 // expected number of elements.
771 // {0}: Attribute name.
772 // {1}: Expected number of elements.
773 // {2}: "operand" or "result".
774 // {3}: Emit error prefix.
775 const char *const checkAttrSizedValueSegmentsCode = R"(
777 auto sizeAttr = ::llvm::cast<::mlir::DenseI32ArrayAttr>(tblgen_{0});
778 auto numElements = sizeAttr.asArrayRef().size();
779 if (numElements != {1})
780 return {3}"'{0}' attribute for specifying {2} segments must have {1} "
781 "elements, but got ") << numElements;
785 // Verify a few traits first so that we can use getODSOperands() and
786 // getODSResults() in the rest of the verifier.
787 auto &op = emitHelper.getOp();
788 if (!op.getDialect().usePropertiesForAttributes()) {
789 if (op.getTrait("::mlir::OpTrait::AttrSizedOperandSegments")) {
790 body << formatv(checkAttrSizedValueSegmentsCode, operandSegmentAttrName,
791 op.getNumOperands(), "operand",
792 emitHelper.emitErrorPrefix());
794 if (op.getTrait("::mlir::OpTrait::AttrSizedResultSegments")) {
795 body << formatv(checkAttrSizedValueSegmentsCode, resultSegmentAttrName,
796 op.getNumResults(), "result",
797 emitHelper.emitErrorPrefix());
802 // Return true if a verifier can be emitted for the attribute: it is not a
803 // derived attribute, it has a predicate, its condition is not empty, and, for
804 // adaptors, the condition does not reference the op.
805 static bool canEmitAttrVerifier(Attribute attr, bool isEmittingForOp) {
806 if (attr.isDerivedAttr())
807 return false;
808 Pred pred = attr.getPredicate();
809 if (pred.isNull())
810 return false;
811 std::string condition = pred.getCondition();
812 return !condition.empty() &&
813 (!StringRef(condition).contains("$_op") || isEmittingForOp);
816 // Generate attribute verification. If an op instance is not available, then
817 // attribute checks that require one will not be emitted.
819 // Attribute verification is performed as follows:
821 // 1. Verify that all required attributes are present in sorted order. This
822 // ensures that we can use subrange lookup even with potentially missing
823 // attributes.
824 // 2. Verify native trait attributes so that other attributes may call methods
825 // that depend on the validity of these attributes, e.g. segment size attributes
826 // and operand or result getters.
827 // 3. Verify the constraints on all present attributes.
828 static void
829 genAttributeVerifier(const OpOrAdaptorHelper &emitHelper, FmtContext &ctx,
830 MethodBody &body,
831 const StaticVerifierFunctionEmitter &staticVerifierEmitter,
832 bool useProperties) {
833 if (emitHelper.getAttrMetadata().empty())
834 return;
836 // Verify the attribute if it is present. This assumes that default values
837 // are valid. This code snippet pastes the condition inline.
839 // TODO: verify the default value is valid (perhaps in debug mode only).
841 // {0}: Attribute variable name.
842 // {1}: Attribute condition code.
843 // {2}: Emit error prefix.
844 // {3}: Attribute name.
845 // {4}: Attribute/constraint description.
846 const char *const verifyAttrInline = R"(
847 if ({0} && !({1}))
848 return {2}"attribute '{3}' failed to satisfy constraint: {4}");
850 // Verify the attribute using a uniqued constraint. Can only be used within
851 // the context of an op.
853 // {0}: Unique constraint name.
854 // {1}: Attribute variable name.
855 // {2}: Attribute name.
856 const char *const verifyAttrUnique = R"(
857 if (::mlir::failed({0}(*this, {1}, "{2}")))
858 return ::mlir::failure();
861 // Traverse the array until the required attribute is found. Return an error
862 // if the traversal reached the end.
864 // {0}: Code to get the name of the attribute.
865 // {1}: The emit error prefix.
866 // {2}: The name of the attribute.
867 const char *const findRequiredAttr = R"(
868 while (true) {{
869 if (namedAttrIt == namedAttrRange.end())
870 return {1}"requires attribute '{2}'");
871 if (namedAttrIt->getName() == {0}) {{
872 tblgen_{2} = namedAttrIt->getValue();
873 break;
874 })";
876 // Emit a check to see if the iteration has encountered an optional attribute.
878 // {0}: Code to get the name of the attribute.
879 // {1}: The name of the attribute.
880 const char *const checkOptionalAttr = R"(
881 else if (namedAttrIt->getName() == {0}) {{
882 tblgen_{1} = namedAttrIt->getValue();
883 })";
885 // Emit the start of the loop for checking trailing attributes.
886 const char *const checkTrailingAttrs = R"(while (true) {
887 if (namedAttrIt == namedAttrRange.end()) {
888 break;
889 })";
891 // Emit the verifier for the attribute.
892 const auto emitVerifier = [&](Attribute attr, StringRef attrName,
893 StringRef varName) {
894 std::string condition = attr.getPredicate().getCondition();
896 std::optional<StringRef> constraintFn;
897 if (emitHelper.isEmittingForOp() &&
898 (constraintFn = staticVerifierEmitter.getAttrConstraintFn(attr))) {
899 body << formatv(verifyAttrUnique, *constraintFn, varName, attrName);
900 } else {
901 body << formatv(verifyAttrInline, varName,
902 tgfmt(condition, &ctx.withSelf(varName)),
903 emitHelper.emitErrorPrefix(), attrName,
904 escapeString(attr.getSummary()));
908 // Prefix variables with `tblgen_` to avoid hiding the attribute accessor.
909 const auto getVarName = [&](StringRef attrName) {
910 return (tblgenNamePrefix + attrName).str();
913 body.indent();
914 if (useProperties) {
915 for (const std::pair<StringRef, AttributeMetadata> &it :
916 emitHelper.getAttrMetadata()) {
917 const AttributeMetadata &metadata = it.second;
918 if (metadata.constraint && metadata.constraint->isDerivedAttr())
919 continue;
920 body << formatv(
921 "auto tblgen_{0} = getProperties().{0}; (void)tblgen_{0};\n",
922 it.first);
923 if (metadata.isRequired)
924 body << formatv(
925 "if (!tblgen_{0}) return {1}\"requires attribute '{0}'\");\n",
926 it.first, emitHelper.emitErrorPrefix());
928 } else {
929 body << formatv("auto namedAttrRange = {0};\n", emitHelper.getAttrRange());
930 body << "auto namedAttrIt = namedAttrRange.begin();\n";
932 // Iterate over the attributes in sorted order. Keep track of the optional
933 // attributes that may be encountered along the way.
934 SmallVector<const AttributeMetadata *> optionalAttrs;
936 for (const std::pair<StringRef, AttributeMetadata> &it :
937 emitHelper.getAttrMetadata()) {
938 const AttributeMetadata &metadata = it.second;
939 if (!metadata.isRequired) {
940 optionalAttrs.push_back(&metadata);
941 continue;
944 body << formatv("::mlir::Attribute {0};\n", getVarName(it.first));
945 for (const AttributeMetadata *optional : optionalAttrs) {
946 body << formatv("::mlir::Attribute {0};\n",
947 getVarName(optional->attrName));
949 body << formatv(findRequiredAttr, emitHelper.getAttrName(it.first),
950 emitHelper.emitErrorPrefix(), it.first);
951 for (const AttributeMetadata *optional : optionalAttrs) {
952 body << formatv(checkOptionalAttr,
953 emitHelper.getAttrName(optional->attrName),
954 optional->attrName);
956 body << "\n ++namedAttrIt;\n}\n";
957 optionalAttrs.clear();
959 // Get trailing optional attributes.
960 if (!optionalAttrs.empty()) {
961 for (const AttributeMetadata *optional : optionalAttrs) {
962 body << formatv("::mlir::Attribute {0};\n",
963 getVarName(optional->attrName));
965 body << checkTrailingAttrs;
966 for (const AttributeMetadata *optional : optionalAttrs) {
967 body << formatv(checkOptionalAttr,
968 emitHelper.getAttrName(optional->attrName),
969 optional->attrName);
971 body << "\n ++namedAttrIt;\n}\n";
974 body.unindent();
976 // Emit the checks for segment attributes first so that the other
977 // constraints can call operand and result getters.
978 genNativeTraitAttrVerifier(body, emitHelper);
980 bool isEmittingForOp = emitHelper.isEmittingForOp();
981 for (const auto &namedAttr : emitHelper.getOp().getAttributes())
982 if (canEmitAttrVerifier(namedAttr.attr, isEmittingForOp))
983 emitVerifier(namedAttr.attr, namedAttr.name, getVarName(namedAttr.name));
986 /// Include declarations specified on NativeTrait
987 static std::string formatExtraDeclarations(const Operator &op) {
988 SmallVector<StringRef> extraDeclarations;
989 // Include extra class declarations from NativeTrait
990 for (const auto &trait : op.getTraits()) {
991 if (auto *opTrait = dyn_cast<tblgen::NativeTrait>(&trait)) {
992 StringRef value = opTrait->getExtraConcreteClassDeclaration();
993 if (value.empty())
994 continue;
995 extraDeclarations.push_back(value);
998 extraDeclarations.push_back(op.getExtraClassDeclaration());
999 return llvm::join(extraDeclarations, "\n");
1002 /// Op extra class definitions have a `$cppClass` substitution that is to be
1003 /// replaced by the C++ class name.
1004 /// Include declarations specified on NativeTrait
1005 static std::string formatExtraDefinitions(const Operator &op) {
1006 SmallVector<StringRef> extraDefinitions;
1007 // Include extra class definitions from NativeTrait
1008 for (const auto &trait : op.getTraits()) {
1009 if (auto *opTrait = dyn_cast<tblgen::NativeTrait>(&trait)) {
1010 StringRef value = opTrait->getExtraConcreteClassDefinition();
1011 if (value.empty())
1012 continue;
1013 extraDefinitions.push_back(value);
1016 extraDefinitions.push_back(op.getExtraClassDefinition());
1017 FmtContext ctx = FmtContext().addSubst("cppClass", op.getCppClassName());
1018 return tgfmt(llvm::join(extraDefinitions, "\n"), &ctx).str();
1021 OpEmitter::OpEmitter(const Operator &op,
1022 const StaticVerifierFunctionEmitter &staticVerifierEmitter)
1023 : def(op.getDef()), op(op),
1024 opClass(op.getCppClassName(), formatExtraDeclarations(op),
1025 formatExtraDefinitions(op)),
1026 staticVerifierEmitter(staticVerifierEmitter),
1027 emitHelper(op, /*emitForOp=*/true) {
1028 verifyCtx.addSubst("_op", "(*this->getOperation())");
1029 verifyCtx.addSubst("_ctxt", "this->getOperation()->getContext()");
1031 genTraits();
1033 // Generate C++ code for various op methods. The order here determines the
1034 // methods in the generated file.
1035 genAttrNameGetters();
1036 genOpAsmInterface();
1037 genOpNameGetter();
1038 genNamedOperandGetters();
1039 genNamedOperandSetters();
1040 genNamedResultGetters();
1041 genNamedRegionGetters();
1042 genNamedSuccessorGetters();
1043 genPropertiesSupport();
1044 genAttrGetters();
1045 genAttrSetters();
1046 genOptionalAttrRemovers();
1047 genBuilder();
1048 genPopulateDefaultAttributes();
1049 genParser();
1050 genPrinter();
1051 genVerifier();
1052 genCustomVerifier();
1053 genCanonicalizerDecls();
1054 genFolderDecls();
1055 genTypeInterfaceMethods();
1056 genOpInterfaceMethods();
1057 generateOpFormat(op, opClass);
1058 genSideEffectInterfaceMethods();
1060 void OpEmitter::emitDecl(
1061 const Operator &op, raw_ostream &os,
1062 const StaticVerifierFunctionEmitter &staticVerifierEmitter) {
1063 OpEmitter(op, staticVerifierEmitter).emitDecl(os);
1066 void OpEmitter::emitDef(
1067 const Operator &op, raw_ostream &os,
1068 const StaticVerifierFunctionEmitter &staticVerifierEmitter) {
1069 OpEmitter(op, staticVerifierEmitter).emitDef(os);
1072 void OpEmitter::emitDecl(raw_ostream &os) {
1073 opClass.finalize();
1074 opClass.writeDeclTo(os);
1077 void OpEmitter::emitDef(raw_ostream &os) {
1078 opClass.finalize();
1079 opClass.writeDefTo(os);
1082 static void errorIfPruned(size_t line, Method *m, const Twine &methodName,
1083 const Operator &op) {
1084 if (m)
1085 return;
1086 PrintFatalError(op.getLoc(), "Unexpected overlap when generating `" +
1087 methodName + "` for " +
1088 op.getOperationName() + " (from line " +
1089 Twine(line) + ")");
1092 #define ERROR_IF_PRUNED(M, N, O) errorIfPruned(__LINE__, M, N, O)
1094 void OpEmitter::genAttrNameGetters() {
1095 const llvm::MapVector<StringRef, AttributeMetadata> &attributes =
1096 emitHelper.getAttrMetadata();
1097 bool hasOperandSegmentsSize =
1098 op.getDialect().usePropertiesForAttributes() &&
1099 op.getTrait("::mlir::OpTrait::AttrSizedOperandSegments");
1100 // Emit the getAttributeNames method.
1102 auto *method = opClass.addStaticInlineMethod(
1103 "::llvm::ArrayRef<::llvm::StringRef>", "getAttributeNames");
1104 ERROR_IF_PRUNED(method, "getAttributeNames", op);
1105 auto &body = method->body();
1106 if (!hasOperandSegmentsSize && attributes.empty()) {
1107 body << " return {};";
1108 // Nothing else to do if there are no registered attributes. Exit early.
1109 return;
1111 body << " static ::llvm::StringRef attrNames[] = {";
1112 llvm::interleaveComma(llvm::make_first_range(attributes), body,
1113 [&](StringRef attrName) {
1114 body << "::llvm::StringRef(\"" << attrName << "\")";
1116 if (hasOperandSegmentsSize) {
1117 if (!attributes.empty())
1118 body << ", ";
1119 body << "::llvm::StringRef(\"" << operandSegmentAttrName << "\")";
1121 body << "};\n return ::llvm::ArrayRef(attrNames);";
1124 // Emit the getAttributeNameForIndex methods.
1126 auto *method = opClass.addInlineMethod<Method::Private>(
1127 "::mlir::StringAttr", "getAttributeNameForIndex",
1128 MethodParameter("unsigned", "index"));
1129 ERROR_IF_PRUNED(method, "getAttributeNameForIndex", op);
1130 method->body()
1131 << " return getAttributeNameForIndex((*this)->getName(), index);";
1134 auto *method = opClass.addStaticInlineMethod<Method::Private>(
1135 "::mlir::StringAttr", "getAttributeNameForIndex",
1136 MethodParameter("::mlir::OperationName", "name"),
1137 MethodParameter("unsigned", "index"));
1138 ERROR_IF_PRUNED(method, "getAttributeNameForIndex", op);
1140 if (attributes.empty()) {
1141 method->body() << " return {};";
1142 } else {
1143 const char *const getAttrName = R"(
1144 assert(index < {0} && "invalid attribute index");
1145 assert(name.getStringRef() == getOperationName() && "invalid operation name");
1146 return name.getAttributeNames()[index];
1148 method->body() << formatv(getAttrName, attributes.size());
1152 // Generate the <attr>AttrName methods, that expose the attribute names to
1153 // users.
1154 const char *attrNameMethodBody = " return getAttributeNameForIndex({0});";
1155 for (auto [index, attr] :
1156 llvm::enumerate(llvm::make_first_range(attributes))) {
1157 std::string name = op.getGetterName(attr);
1158 std::string methodName = name + "AttrName";
1160 // Generate the non-static variant.
1162 auto *method = opClass.addInlineMethod("::mlir::StringAttr", methodName);
1163 ERROR_IF_PRUNED(method, methodName, op);
1164 method->body() << llvm::formatv(attrNameMethodBody, index);
1167 // Generate the static variant.
1169 auto *method = opClass.addStaticInlineMethod(
1170 "::mlir::StringAttr", methodName,
1171 MethodParameter("::mlir::OperationName", "name"));
1172 ERROR_IF_PRUNED(method, methodName, op);
1173 method->body() << llvm::formatv(attrNameMethodBody,
1174 "name, " + Twine(index));
1177 if (hasOperandSegmentsSize) {
1178 std::string name = op.getGetterName(operandSegmentAttrName);
1179 std::string methodName = name + "AttrName";
1180 // Generate the non-static variant.
1182 auto *method = opClass.addInlineMethod("::mlir::StringAttr", methodName);
1183 ERROR_IF_PRUNED(method, methodName, op);
1184 method->body()
1185 << " return (*this)->getName().getAttributeNames().back();";
1188 // Generate the static variant.
1190 auto *method = opClass.addStaticInlineMethod(
1191 "::mlir::StringAttr", methodName,
1192 MethodParameter("::mlir::OperationName", "name"));
1193 ERROR_IF_PRUNED(method, methodName, op);
1194 method->body() << " return name.getAttributeNames().back();";
1199 // Emit the getter for an attribute with the return type specified.
1200 // It is templated to be shared between the Op and the adaptor class.
1201 template <typename OpClassOrAdaptor>
1202 static void emitAttrGetterWithReturnType(FmtContext &fctx,
1203 OpClassOrAdaptor &opClass,
1204 const Operator &op, StringRef name,
1205 Attribute attr) {
1206 auto *method = opClass.addMethod(attr.getReturnType(), name);
1207 ERROR_IF_PRUNED(method, name, op);
1208 auto &body = method->body();
1209 body << " auto attr = " << name << "Attr();\n";
1210 if (attr.hasDefaultValue() && attr.isOptional()) {
1211 // Returns the default value if not set.
1212 // TODO: this is inefficient, we are recreating the attribute for every
1213 // call. This should be set instead.
1214 if (!attr.isConstBuildable()) {
1215 PrintFatalError("DefaultValuedAttr of type " + attr.getAttrDefName() +
1216 " must have a constBuilder");
1218 std::string defaultValue = std::string(
1219 tgfmt(attr.getConstBuilderTemplate(), &fctx, attr.getDefaultValue()));
1220 body << " if (!attr)\n return "
1221 << tgfmt(attr.getConvertFromStorageCall(),
1222 &fctx.withSelf(defaultValue))
1223 << ";\n";
1225 body << " return "
1226 << tgfmt(attr.getConvertFromStorageCall(), &fctx.withSelf("attr"))
1227 << ";\n";
1230 void OpEmitter::genPropertiesSupport() {
1231 if (!emitHelper.hasProperties())
1232 return;
1234 SmallVector<ConstArgument> attrOrProperties;
1235 for (const std::pair<StringRef, AttributeMetadata> &it :
1236 emitHelper.getAttrMetadata()) {
1237 if (!it.second.constraint || !it.second.constraint->isDerivedAttr())
1238 attrOrProperties.push_back(&it.second);
1240 for (const NamedProperty &prop : op.getProperties())
1241 attrOrProperties.push_back(&prop);
1242 if (emitHelper.getOperandSegmentsSize())
1243 attrOrProperties.push_back(&emitHelper.getOperandSegmentsSize().value());
1244 if (emitHelper.getResultSegmentsSize())
1245 attrOrProperties.push_back(&emitHelper.getResultSegmentsSize().value());
1246 if (attrOrProperties.empty())
1247 return;
1248 auto &setPropMethod =
1249 opClass
1250 .addStaticMethod(
1251 "::mlir::LogicalResult", "setPropertiesFromAttr",
1252 MethodParameter("Properties &", "prop"),
1253 MethodParameter("::mlir::Attribute", "attr"),
1254 MethodParameter(
1255 "::llvm::function_ref<::mlir::InFlightDiagnostic()>",
1256 "emitError"))
1257 ->body();
1258 auto &getPropMethod =
1259 opClass
1260 .addStaticMethod("::mlir::Attribute", "getPropertiesAsAttr",
1261 MethodParameter("::mlir::MLIRContext *", "ctx"),
1262 MethodParameter("const Properties &", "prop"))
1263 ->body();
1264 auto &hashMethod =
1265 opClass
1266 .addStaticMethod("llvm::hash_code", "computePropertiesHash",
1267 MethodParameter("const Properties &", "prop"))
1268 ->body();
1269 auto &getInherentAttrMethod =
1270 opClass
1271 .addStaticMethod("std::optional<mlir::Attribute>", "getInherentAttr",
1272 MethodParameter("::mlir::MLIRContext *", "ctx"),
1273 MethodParameter("const Properties &", "prop"),
1274 MethodParameter("llvm::StringRef", "name"))
1275 ->body();
1276 auto &setInherentAttrMethod =
1277 opClass
1278 .addStaticMethod("void", "setInherentAttr",
1279 MethodParameter("Properties &", "prop"),
1280 MethodParameter("llvm::StringRef", "name"),
1281 MethodParameter("mlir::Attribute", "value"))
1282 ->body();
1283 auto &populateInherentAttrsMethod =
1284 opClass
1285 .addStaticMethod("void", "populateInherentAttrs",
1286 MethodParameter("::mlir::MLIRContext *", "ctx"),
1287 MethodParameter("const Properties &", "prop"),
1288 MethodParameter("::mlir::NamedAttrList &", "attrs"))
1289 ->body();
1290 auto &verifyInherentAttrsMethod =
1291 opClass
1292 .addStaticMethod(
1293 "::mlir::LogicalResult", "verifyInherentAttrs",
1294 MethodParameter("::mlir::OperationName", "opName"),
1295 MethodParameter("::mlir::NamedAttrList &", "attrs"),
1296 MethodParameter(
1297 "llvm::function_ref<::mlir::InFlightDiagnostic()>",
1298 "emitError"))
1299 ->body();
1301 opClass.declare<UsingDeclaration>("Properties", "FoldAdaptor::Properties");
1303 // Convert the property to the attribute form.
1305 setPropMethod << R"decl(
1306 ::mlir::DictionaryAttr dict = ::llvm::dyn_cast<::mlir::DictionaryAttr>(attr);
1307 if (!dict) {
1308 emitError() << "expected DictionaryAttr to set properties";
1309 return ::mlir::failure();
1311 )decl";
1312 // TODO: properties might be optional as well.
1313 const char *propFromAttrFmt = R"decl(;
1315 auto setFromAttr = [] (auto &propStorage, ::mlir::Attribute propAttr,
1316 ::llvm::function_ref<::mlir::InFlightDiagnostic()> emitError) {{
1317 {0};
1319 {2};
1320 if (!attr) {{
1321 emitError() << "expected key entry for {1} in DictionaryAttr to set "
1322 "Properties.";
1323 return ::mlir::failure();
1325 if (::mlir::failed(setFromAttr(prop.{1}, attr, emitError)))
1326 return ::mlir::failure();
1328 )decl";
1330 for (const auto &attrOrProp : attrOrProperties) {
1331 if (const auto *namedProperty =
1332 llvm::dyn_cast_if_present<const NamedProperty *>(attrOrProp)) {
1333 StringRef name = namedProperty->name;
1334 auto &prop = namedProperty->prop;
1335 FmtContext fctx;
1337 std::string getAttr;
1338 llvm::raw_string_ostream os(getAttr);
1339 os << " auto attr = dict.get(\"" << name << "\");";
1340 if (name == operandSegmentAttrName) {
1341 // Backward compat for now, TODO: Remove at some point.
1342 os << " if (!attr) attr = dict.get(\"operand_segment_sizes\");";
1344 if (name == resultSegmentAttrName) {
1345 // Backward compat for now, TODO: Remove at some point.
1346 os << " if (!attr) attr = dict.get(\"result_segment_sizes\");";
1348 os.flush();
1350 setPropMethod << formatv(propFromAttrFmt,
1351 tgfmt(prop.getConvertFromAttributeCall(),
1352 &fctx.addSubst("_attr", propertyAttr)
1353 .addSubst("_storage", propertyStorage)
1354 .addSubst("_diag", propertyDiag)),
1355 name, getAttr);
1357 } else {
1358 const auto *namedAttr =
1359 llvm::dyn_cast_if_present<const AttributeMetadata *>(attrOrProp);
1360 StringRef name = namedAttr->attrName;
1361 std::string getAttr;
1362 llvm::raw_string_ostream os(getAttr);
1363 os << " auto attr = dict.get(\"" << name << "\");";
1364 if (name == operandSegmentAttrName) {
1365 // Backward compat for now
1366 os << " if (!attr) attr = dict.get(\"operand_segment_sizes\");";
1368 if (name == resultSegmentAttrName) {
1369 // Backward compat for now
1370 os << " if (!attr) attr = dict.get(\"result_segment_sizes\");";
1372 os.flush();
1374 setPropMethod << formatv(R"decl(
1376 auto &propStorage = prop.{0};
1378 if (attr || /*isRequired=*/{1}) {{
1379 if (!attr) {{
1380 emitError() << "expected key entry for {0} in DictionaryAttr to set "
1381 "Properties.";
1382 return ::mlir::failure();
1384 auto convertedAttr = ::llvm::dyn_cast<std::remove_reference_t<decltype(propStorage)>>(attr);
1385 if (convertedAttr) {{
1386 propStorage = convertedAttr;
1387 } else {{
1388 emitError() << "Invalid attribute `{0}` in property conversion: " << attr;
1389 return ::mlir::failure();
1393 )decl",
1394 name, namedAttr->isRequired, getAttr);
1397 setPropMethod << " return ::mlir::success();\n";
1399 // Convert the attribute form to the property.
1401 getPropMethod << " ::mlir::SmallVector<::mlir::NamedAttribute> attrs;\n"
1402 << " ::mlir::Builder odsBuilder{ctx};\n";
1403 const char *propToAttrFmt = R"decl(
1405 const auto &propStorage = prop.{0};
1406 attrs.push_back(odsBuilder.getNamedAttr("{0}",
1407 {1}));
1409 )decl";
1410 for (const auto &attrOrProp : attrOrProperties) {
1411 if (const auto *namedProperty =
1412 llvm::dyn_cast_if_present<const NamedProperty *>(attrOrProp)) {
1413 StringRef name = namedProperty->name;
1414 auto &prop = namedProperty->prop;
1415 FmtContext fctx;
1416 getPropMethod << formatv(
1417 propToAttrFmt, name,
1418 tgfmt(prop.getConvertToAttributeCall(),
1419 &fctx.addSubst("_ctxt", "ctx")
1420 .addSubst("_storage", propertyStorage)));
1421 continue;
1423 const auto *namedAttr =
1424 llvm::dyn_cast_if_present<const AttributeMetadata *>(attrOrProp);
1425 StringRef name = namedAttr->attrName;
1426 getPropMethod << formatv(R"decl(
1428 const auto &propStorage = prop.{0};
1429 if (propStorage)
1430 attrs.push_back(odsBuilder.getNamedAttr("{0}",
1431 propStorage));
1433 )decl",
1434 name);
1436 getPropMethod << R"decl(
1437 if (!attrs.empty())
1438 return odsBuilder.getDictionaryAttr(attrs);
1439 return {};
1440 )decl";
1442 // Hashing for the property
1444 const char *propHashFmt = R"decl(
1445 auto hash_{0} = [] (const auto &propStorage) -> llvm::hash_code {
1446 return {1};
1448 )decl";
1449 for (const auto &attrOrProp : attrOrProperties) {
1450 if (const auto *namedProperty =
1451 llvm::dyn_cast_if_present<const NamedProperty *>(attrOrProp)) {
1452 StringRef name = namedProperty->name;
1453 auto &prop = namedProperty->prop;
1454 FmtContext fctx;
1455 hashMethod << formatv(propHashFmt, name,
1456 tgfmt(prop.getHashPropertyCall(),
1457 &fctx.addSubst("_storage", propertyStorage)));
1460 hashMethod << " return llvm::hash_combine(";
1461 llvm::interleaveComma(
1462 attrOrProperties, hashMethod, [&](const ConstArgument &attrOrProp) {
1463 if (const auto *namedProperty =
1464 llvm::dyn_cast_if_present<const NamedProperty *>(attrOrProp)) {
1465 hashMethod << "\n hash_" << namedProperty->name << "(prop."
1466 << namedProperty->name << ")";
1467 return;
1469 const auto *namedAttr =
1470 llvm::dyn_cast_if_present<const AttributeMetadata *>(attrOrProp);
1471 StringRef name = namedAttr->attrName;
1472 hashMethod << "\n llvm::hash_value(prop." << name
1473 << ".getAsOpaquePointer())";
1475 hashMethod << ");\n";
1477 const char *getInherentAttrMethodFmt = R"decl(
1478 if (name == "{0}")
1479 return prop.{0};
1480 )decl";
1481 const char *setInherentAttrMethodFmt = R"decl(
1482 if (name == "{0}") {{
1483 prop.{0} = ::llvm::dyn_cast_or_null<std::remove_reference_t<decltype(prop.{0})>>(value);
1484 return;
1486 )decl";
1487 const char *populateInherentAttrsMethodFmt = R"decl(
1488 if (prop.{0}) attrs.append("{0}", prop.{0});
1489 )decl";
1490 for (const auto &attrOrProp : attrOrProperties) {
1491 if (const auto *namedAttr =
1492 llvm::dyn_cast_if_present<const AttributeMetadata *>(attrOrProp)) {
1493 StringRef name = namedAttr->attrName;
1494 getInherentAttrMethod << formatv(getInherentAttrMethodFmt, name);
1495 setInherentAttrMethod << formatv(setInherentAttrMethodFmt, name);
1496 populateInherentAttrsMethod
1497 << formatv(populateInherentAttrsMethodFmt, name);
1498 continue;
1500 // The ODS segment size property is "special": we expose it as an attribute
1501 // even though it is a native property.
1502 const auto *namedProperty = cast<const NamedProperty *>(attrOrProp);
1503 StringRef name = namedProperty->name;
1504 if (name != operandSegmentAttrName && name != resultSegmentAttrName)
1505 continue;
1506 auto &prop = namedProperty->prop;
1507 FmtContext fctx;
1508 fctx.addSubst("_ctxt", "ctx");
1509 fctx.addSubst("_storage", Twine("prop.") + name);
1510 if (name == operandSegmentAttrName) {
1511 getInherentAttrMethod
1512 << formatv(" if (name == \"operand_segment_sizes\" || name == "
1513 "\"{0}\") return ",
1514 operandSegmentAttrName);
1515 } else {
1516 getInherentAttrMethod
1517 << formatv(" if (name == \"result_segment_sizes\" || name == "
1518 "\"{0}\") return ",
1519 resultSegmentAttrName);
1521 getInherentAttrMethod << tgfmt(prop.getConvertToAttributeCall(), &fctx)
1522 << ";\n";
1524 if (name == operandSegmentAttrName) {
1525 setInherentAttrMethod
1526 << formatv(" if (name == \"operand_segment_sizes\" || name == "
1527 "\"{0}\") {{",
1528 operandSegmentAttrName);
1529 } else {
1530 setInherentAttrMethod
1531 << formatv(" if (name == \"result_segment_sizes\" || name == "
1532 "\"{0}\") {{",
1533 resultSegmentAttrName);
1535 setInherentAttrMethod << formatv(R"decl(
1536 auto arrAttr = ::llvm::dyn_cast_or_null<::mlir::DenseI32ArrayAttr>(value);
1537 if (!arrAttr) return;
1538 if (arrAttr.size() != sizeof(prop.{0}) / sizeof(int32_t))
1539 return;
1540 llvm::copy(arrAttr.asArrayRef(), prop.{0}.begin());
1541 return;
1543 )decl",
1544 name);
1545 if (name == operandSegmentAttrName) {
1546 populateInherentAttrsMethod
1547 << formatv(" attrs.append(\"{0}\", {1});\n", operandSegmentAttrName,
1548 tgfmt(prop.getConvertToAttributeCall(), &fctx));
1549 } else {
1550 populateInherentAttrsMethod
1551 << formatv(" attrs.append(\"{0}\", {1});\n", resultSegmentAttrName,
1552 tgfmt(prop.getConvertToAttributeCall(), &fctx));
1555 getInherentAttrMethod << " return std::nullopt;\n";
1557 // Emit the verifiers method for backward compatibility with the generic
1558 // syntax. This method verifies the constraint on the properties attributes
1559 // before they are set, since dyn_cast<> will silently omit failures.
1560 for (const auto &attrOrProp : attrOrProperties) {
1561 const auto *namedAttr =
1562 llvm::dyn_cast_if_present<const AttributeMetadata *>(attrOrProp);
1563 if (!namedAttr || !namedAttr->constraint)
1564 continue;
1565 Attribute attr = *namedAttr->constraint;
1566 std::optional<StringRef> constraintFn =
1567 staticVerifierEmitter.getAttrConstraintFn(attr);
1568 if (!constraintFn)
1569 continue;
1570 if (canEmitAttrVerifier(attr,
1571 /*isEmittingForOp=*/false)) {
1572 std::string name = op.getGetterName(namedAttr->attrName);
1573 verifyInherentAttrsMethod
1574 << formatv(R"(
1576 ::mlir::Attribute attr = attrs.get({0}AttrName(opName));
1577 if (attr && ::mlir::failed({1}(attr, "{2}", emitError)))
1578 return ::mlir::failure();
1581 name, constraintFn, namedAttr->attrName);
1584 verifyInherentAttrsMethod << " return ::mlir::success();";
1586 // Generate methods to interact with bytecode.
1587 genPropertiesSupportForBytecode(attrOrProperties);
1590 void OpEmitter::genPropertiesSupportForBytecode(
1591 ArrayRef<ConstArgument> attrOrProperties) {
1592 if (op.useCustomPropertiesEncoding()) {
1593 opClass.declareStaticMethod(
1594 "::mlir::LogicalResult", "readProperties",
1595 MethodParameter("::mlir::DialectBytecodeReader &", "reader"),
1596 MethodParameter("::mlir::OperationState &", "state"));
1597 opClass.declareMethod(
1598 "void", "writeProperties",
1599 MethodParameter("::mlir::DialectBytecodeWriter &", "writer"));
1600 return;
1603 auto &readPropertiesMethod =
1604 opClass
1605 .addStaticMethod(
1606 "::mlir::LogicalResult", "readProperties",
1607 MethodParameter("::mlir::DialectBytecodeReader &", "reader"),
1608 MethodParameter("::mlir::OperationState &", "state"))
1609 ->body();
1611 auto &writePropertiesMethod =
1612 opClass
1613 .addMethod(
1614 "void", "writeProperties",
1615 MethodParameter("::mlir::DialectBytecodeWriter &", "writer"))
1616 ->body();
1618 // Populate bytecode serialization logic.
1619 readPropertiesMethod
1620 << " auto &prop = state.getOrAddProperties<Properties>(); (void)prop;";
1621 writePropertiesMethod << " auto &prop = getProperties(); (void)prop;\n";
1622 for (const auto &item : llvm::enumerate(attrOrProperties)) {
1623 auto &attrOrProp = item.value();
1624 FmtContext fctx;
1625 fctx.addSubst("_reader", "reader")
1626 .addSubst("_writer", "writer")
1627 .addSubst("_storage", propertyStorage)
1628 .addSubst("_ctxt", "this->getContext()");
1629 // If the op emits operand/result segment sizes as a property, emit the
1630 // legacy reader/writer in the appropriate order to allow backward
1631 // compatibility and back deployment.
1632 if (emitHelper.getOperandSegmentsSize().has_value() &&
1633 item.index() == emitHelper.getOperandSegmentSizesLegacyIndex()) {
1634 FmtContext fmtCtxt(fctx);
1635 fmtCtxt.addSubst("_propName", operandSegmentAttrName);
1636 readPropertiesMethod << tgfmt(readBytecodeSegmentSizeLegacy, &fmtCtxt);
1637 writePropertiesMethod << tgfmt(writeBytecodeSegmentSizeLegacy, &fmtCtxt);
1639 if (emitHelper.getResultSegmentsSize().has_value() &&
1640 item.index() == emitHelper.getResultSegmentSizesLegacyIndex()) {
1641 FmtContext fmtCtxt(fctx);
1642 fmtCtxt.addSubst("_propName", resultSegmentAttrName);
1643 readPropertiesMethod << tgfmt(readBytecodeSegmentSizeLegacy, &fmtCtxt);
1644 writePropertiesMethod << tgfmt(writeBytecodeSegmentSizeLegacy, &fmtCtxt);
1646 if (const auto *namedProperty =
1647 attrOrProp.dyn_cast<const NamedProperty *>()) {
1648 StringRef name = namedProperty->name;
1649 readPropertiesMethod << formatv(
1652 auto &propStorage = prop.{0};
1653 auto readProp = [&]() {
1654 {1};
1655 return ::mlir::success();
1657 if (::mlir::failed(readProp()))
1658 return ::mlir::failure();
1661 name,
1662 tgfmt(namedProperty->prop.getReadFromMlirBytecodeCall(), &fctx));
1663 writePropertiesMethod << formatv(
1666 auto &propStorage = prop.{0};
1667 {1};
1670 name, tgfmt(namedProperty->prop.getWriteToMlirBytecodeCall(), &fctx));
1671 continue;
1673 const auto *namedAttr = attrOrProp.dyn_cast<const AttributeMetadata *>();
1674 StringRef name = namedAttr->attrName;
1675 if (namedAttr->isRequired) {
1676 readPropertiesMethod << formatv(R"(
1677 if (::mlir::failed(reader.readAttribute(prop.{0})))
1678 return ::mlir::failure();
1680 name);
1681 writePropertiesMethod
1682 << formatv(" writer.writeAttribute(prop.{0});\n", name);
1683 } else {
1684 readPropertiesMethod << formatv(R"(
1685 if (::mlir::failed(reader.readOptionalAttribute(prop.{0})))
1686 return ::mlir::failure();
1688 name);
1689 writePropertiesMethod << formatv(R"(
1690 writer.writeOptionalAttribute(prop.{0});
1692 name);
1695 readPropertiesMethod << " return ::mlir::success();";
1698 void OpEmitter::genAttrGetters() {
1699 FmtContext fctx;
1700 fctx.withBuilder("::mlir::Builder((*this)->getContext())");
1702 // Emit the derived attribute body.
1703 auto emitDerivedAttr = [&](StringRef name, Attribute attr) {
1704 if (auto *method = opClass.addMethod(attr.getReturnType(), name))
1705 method->body() << " " << attr.getDerivedCodeBody() << "\n";
1708 // Generate named accessor with Attribute return type. This is a wrapper
1709 // class that allows referring to the attributes via accessors instead of
1710 // having to use the string interface for better compile time verification.
1711 auto emitAttrWithStorageType = [&](StringRef name, StringRef attrName,
1712 Attribute attr) {
1713 auto *method = opClass.addMethod(attr.getStorageType(), name + "Attr");
1714 if (!method)
1715 return;
1716 method->body() << formatv(
1717 " return ::llvm::{1}<{2}>({0});", emitHelper.getAttr(attrName),
1718 attr.isOptional() || attr.hasDefaultValue() ? "dyn_cast_or_null"
1719 : "cast",
1720 attr.getStorageType());
1723 for (const NamedAttribute &namedAttr : op.getAttributes()) {
1724 std::string name = op.getGetterName(namedAttr.name);
1725 if (namedAttr.attr.isDerivedAttr()) {
1726 emitDerivedAttr(name, namedAttr.attr);
1727 } else {
1728 emitAttrWithStorageType(name, namedAttr.name, namedAttr.attr);
1729 emitAttrGetterWithReturnType(fctx, opClass, op, name, namedAttr.attr);
1733 auto derivedAttrs = make_filter_range(op.getAttributes(),
1734 [](const NamedAttribute &namedAttr) {
1735 return namedAttr.attr.isDerivedAttr();
1737 if (derivedAttrs.empty())
1738 return;
1740 opClass.addTrait("::mlir::DerivedAttributeOpInterface::Trait");
1741 // Generate helper method to query whether a named attribute is a derived
1742 // attribute. This enables, for example, avoiding adding an attribute that
1743 // overlaps with a derived attribute.
1745 auto *method =
1746 opClass.addStaticMethod("bool", "isDerivedAttribute",
1747 MethodParameter("::llvm::StringRef", "name"));
1748 ERROR_IF_PRUNED(method, "isDerivedAttribute", op);
1749 auto &body = method->body();
1750 for (auto namedAttr : derivedAttrs)
1751 body << " if (name == \"" << namedAttr.name << "\") return true;\n";
1752 body << " return false;";
1754 // Generate method to materialize derived attributes as a DictionaryAttr.
1756 auto *method = opClass.addMethod("::mlir::DictionaryAttr",
1757 "materializeDerivedAttributes");
1758 ERROR_IF_PRUNED(method, "materializeDerivedAttributes", op);
1759 auto &body = method->body();
1761 auto nonMaterializable =
1762 make_filter_range(derivedAttrs, [](const NamedAttribute &namedAttr) {
1763 return namedAttr.attr.getConvertFromStorageCall().empty();
1765 if (!nonMaterializable.empty()) {
1766 std::string attrs;
1767 llvm::raw_string_ostream os(attrs);
1768 interleaveComma(nonMaterializable, os, [&](const NamedAttribute &attr) {
1769 os << op.getGetterName(attr.name);
1771 PrintWarning(
1772 op.getLoc(),
1773 formatv(
1774 "op has non-materializable derived attributes '{0}', skipping",
1775 os.str()));
1776 body << formatv(" emitOpError(\"op has non-materializable derived "
1777 "attributes '{0}'\");\n",
1778 attrs);
1779 body << " return nullptr;";
1780 return;
1783 body << " ::mlir::MLIRContext* ctx = getContext();\n";
1784 body << " ::mlir::Builder odsBuilder(ctx); (void)odsBuilder;\n";
1785 body << " return ::mlir::DictionaryAttr::get(";
1786 body << " ctx, {\n";
1787 interleave(
1788 derivedAttrs, body,
1789 [&](const NamedAttribute &namedAttr) {
1790 auto tmpl = namedAttr.attr.getConvertFromStorageCall();
1791 std::string name = op.getGetterName(namedAttr.name);
1792 body << " {" << name << "AttrName(),\n"
1793 << tgfmt(tmpl, &fctx.withSelf(name + "()")
1794 .withBuilder("odsBuilder")
1795 .addSubst("_ctxt", "ctx")
1796 .addSubst("_storage", "ctx"))
1797 << "}";
1799 ",\n");
1800 body << "});";
1804 void OpEmitter::genAttrSetters() {
1805 // Generate raw named setter type. This is a wrapper class that allows setting
1806 // to the attributes via setters instead of having to use the string interface
1807 // for better compile time verification.
1808 auto emitAttrWithStorageType = [&](StringRef setterName, StringRef getterName,
1809 Attribute attr) {
1810 auto *method =
1811 opClass.addMethod("void", setterName + "Attr",
1812 MethodParameter(attr.getStorageType(), "attr"));
1813 if (method)
1814 method->body() << formatv(" (*this)->setAttr({0}AttrName(), attr);",
1815 getterName);
1818 // Generate a setter that accepts the underlying C++ type as opposed to the
1819 // attribute type.
1820 auto emitAttrWithReturnType = [&](StringRef setterName, StringRef getterName,
1821 Attribute attr) {
1822 Attribute baseAttr = attr.getBaseAttr();
1823 if (!canUseUnwrappedRawValue(baseAttr))
1824 return;
1825 FmtContext fctx;
1826 fctx.withBuilder("::mlir::Builder((*this)->getContext())");
1827 bool isUnitAttr = attr.getAttrDefName() == "UnitAttr";
1828 bool isOptional = attr.isOptional();
1830 auto createMethod = [&](const Twine &paramType) {
1831 return opClass.addMethod("void", setterName,
1832 MethodParameter(paramType.str(), "attrValue"));
1835 // Build the method using the correct parameter type depending on
1836 // optionality.
1837 Method *method = nullptr;
1838 if (isUnitAttr)
1839 method = createMethod("bool");
1840 else if (isOptional)
1841 method =
1842 createMethod("::std::optional<" + baseAttr.getReturnType() + ">");
1843 else
1844 method = createMethod(attr.getReturnType());
1845 if (!method)
1846 return;
1848 // If the value isn't optional, just set it directly.
1849 if (!isOptional) {
1850 method->body() << formatv(
1851 " (*this)->setAttr({0}AttrName(), {1});", getterName,
1852 constBuildAttrFromParam(attr, fctx, "attrValue"));
1853 return;
1856 // Otherwise, we only set if the provided value is valid. If it isn't, we
1857 // remove the attribute.
1859 // TODO: Handle unit attr parameters specially, given that it is treated as
1860 // optional but not in the same way as the others (i.e. it uses bool over
1861 // std::optional<>).
1862 StringRef paramStr = isUnitAttr ? "attrValue" : "*attrValue";
1863 const char *optionalCodeBody = R"(
1864 if (attrValue)
1865 return (*this)->setAttr({0}AttrName(), {1});
1866 (*this)->removeAttr({0}AttrName());)";
1867 method->body() << formatv(
1868 optionalCodeBody, getterName,
1869 constBuildAttrFromParam(baseAttr, fctx, paramStr));
1872 for (const NamedAttribute &namedAttr : op.getAttributes()) {
1873 if (namedAttr.attr.isDerivedAttr())
1874 continue;
1875 std::string setterName = op.getSetterName(namedAttr.name);
1876 std::string getterName = op.getGetterName(namedAttr.name);
1877 emitAttrWithStorageType(setterName, getterName, namedAttr.attr);
1878 emitAttrWithReturnType(setterName, getterName, namedAttr.attr);
1882 void OpEmitter::genOptionalAttrRemovers() {
1883 // Generate methods for removing optional attributes, instead of having to
1884 // use the string interface. Enables better compile time verification.
1885 auto emitRemoveAttr = [&](StringRef name, bool useProperties) {
1886 auto upperInitial = name.take_front().upper();
1887 auto *method = opClass.addMethod("::mlir::Attribute",
1888 op.getRemoverName(name) + "Attr");
1889 if (!method)
1890 return;
1891 if (useProperties) {
1892 method->body() << formatv(R"(
1893 auto &attr = getProperties().{0};
1894 attr = {{};
1895 return attr;
1897 name);
1898 return;
1900 method->body() << formatv("return (*this)->removeAttr({0}AttrName());",
1901 op.getGetterName(name));
1904 for (const NamedAttribute &namedAttr : op.getAttributes())
1905 if (namedAttr.attr.isOptional())
1906 emitRemoveAttr(namedAttr.name,
1907 op.getDialect().usePropertiesForAttributes());
1910 // Generates the code to compute the start and end index of an operand or result
1911 // range.
1912 template <typename RangeT>
1913 static void generateValueRangeStartAndEnd(
1914 Class &opClass, bool isGenericAdaptorBase, StringRef methodName,
1915 int numVariadic, int numNonVariadic, StringRef rangeSizeCall,
1916 bool hasAttrSegmentSize, StringRef sizeAttrInit, RangeT &&odsValues) {
1918 SmallVector<MethodParameter> parameters{MethodParameter("unsigned", "index")};
1919 if (isGenericAdaptorBase) {
1920 parameters.emplace_back("unsigned", "odsOperandsSize");
1921 // The range size is passed per parameter for generic adaptor bases as
1922 // using the rangeSizeCall would require the operands, which are not
1923 // accessible in the base class.
1924 rangeSizeCall = "odsOperandsSize";
1927 auto *method = opClass.addMethod("std::pair<unsigned, unsigned>", methodName,
1928 parameters);
1929 if (!method)
1930 return;
1931 auto &body = method->body();
1932 if (numVariadic == 0) {
1933 body << " return {index, 1};\n";
1934 } else if (hasAttrSegmentSize) {
1935 body << sizeAttrInit << attrSizedSegmentValueRangeCalcCode;
1936 } else {
1937 // Because the op can have arbitrarily interleaved variadic and non-variadic
1938 // operands, we need to embed a list in the "sink" getter method for
1939 // calculation at run-time.
1940 SmallVector<StringRef, 4> isVariadic;
1941 isVariadic.reserve(llvm::size(odsValues));
1942 for (auto &it : odsValues)
1943 isVariadic.push_back(it.isVariableLength() ? "true" : "false");
1944 std::string isVariadicList = llvm::join(isVariadic, ", ");
1945 body << formatv(sameVariadicSizeValueRangeCalcCode, isVariadicList,
1946 numNonVariadic, numVariadic, rangeSizeCall, "operand");
1950 static std::string generateTypeForGetter(const NamedTypeConstraint &value) {
1951 std::string str = "::mlir::Value";
1952 /// If the CPPClassName is not a fully qualified type. Uses of types
1953 /// across Dialect fail because they are not in the correct namespace. So we
1954 /// dont generate TypedValue unless the type is fully qualified.
1955 /// getCPPClassName doesn't return the fully qualified path for
1956 /// `mlir::pdl::OperationType` see
1957 /// https://github.com/llvm/llvm-project/issues/57279.
1958 /// Adaptor will have values that are not from the type of their operation and
1959 /// this is expected, so we dont generate TypedValue for Adaptor
1960 if (value.constraint.getCPPClassName() != "::mlir::Type" &&
1961 StringRef(value.constraint.getCPPClassName()).startswith("::"))
1962 str = llvm::formatv("::mlir::TypedValue<{0}>",
1963 value.constraint.getCPPClassName())
1964 .str();
1965 return str;
1968 // Generates the named operand getter methods for the given Operator `op` and
1969 // puts them in `opClass`. Uses `rangeType` as the return type of getters that
1970 // return a range of operands (individual operands are `Value ` and each
1971 // element in the range must also be `Value `); use `rangeBeginCall` to get
1972 // an iterator to the beginning of the operand range; use `rangeSizeCall` to
1973 // obtain the number of operands. `getOperandCallPattern` contains the code
1974 // necessary to obtain a single operand whose position will be substituted
1975 // instead of
1976 // "{0}" marker in the pattern. Note that the pattern should work for any kind
1977 // of ops, in particular for one-operand ops that may not have the
1978 // `getOperand(unsigned)` method.
1979 static void
1980 generateNamedOperandGetters(const Operator &op, Class &opClass,
1981 Class *genericAdaptorBase, StringRef sizeAttrInit,
1982 StringRef rangeType, StringRef rangeElementType,
1983 StringRef rangeBeginCall, StringRef rangeSizeCall,
1984 StringRef getOperandCallPattern) {
1985 const int numOperands = op.getNumOperands();
1986 const int numVariadicOperands = op.getNumVariableLengthOperands();
1987 const int numNormalOperands = numOperands - numVariadicOperands;
1989 const auto *sameVariadicSize =
1990 op.getTrait("::mlir::OpTrait::SameVariadicOperandSize");
1991 const auto *attrSizedOperands =
1992 op.getTrait("::mlir::OpTrait::AttrSizedOperandSegments");
1994 if (numVariadicOperands > 1 && !sameVariadicSize && !attrSizedOperands) {
1995 PrintFatalError(op.getLoc(), "op has multiple variadic operands but no "
1996 "specification over their sizes");
1999 if (numVariadicOperands < 2 && attrSizedOperands) {
2000 PrintFatalError(op.getLoc(), "op must have at least two variadic operands "
2001 "to use 'AttrSizedOperandSegments' trait");
2004 if (attrSizedOperands && sameVariadicSize) {
2005 PrintFatalError(op.getLoc(),
2006 "op cannot have both 'AttrSizedOperandSegments' and "
2007 "'SameVariadicOperandSize' traits");
2010 // First emit a few "sink" getter methods upon which we layer all nicer named
2011 // getter methods.
2012 // If generating for an adaptor, the method is put into the non-templated
2013 // generic base class, to not require being defined in the header.
2014 // Since the operand size can't be determined from the base class however,
2015 // it has to be passed as an additional argument. The trampoline below
2016 // generates the function with the same signature as the Op in the generic
2017 // adaptor.
2018 bool isGenericAdaptorBase = genericAdaptorBase != nullptr;
2019 generateValueRangeStartAndEnd(
2020 /*opClass=*/isGenericAdaptorBase ? *genericAdaptorBase : opClass,
2021 isGenericAdaptorBase,
2022 /*methodName=*/"getODSOperandIndexAndLength", numVariadicOperands,
2023 numNormalOperands, rangeSizeCall, attrSizedOperands, sizeAttrInit,
2024 const_cast<Operator &>(op).getOperands());
2025 if (isGenericAdaptorBase) {
2026 // Generate trampoline for calling 'getODSOperandIndexAndLength' with just
2027 // the index. This just calls the implementation in the base class but
2028 // passes the operand size as parameter.
2029 Method *method = opClass.addMethod("std::pair<unsigned, unsigned>",
2030 "getODSOperandIndexAndLength",
2031 MethodParameter("unsigned", "index"));
2032 ERROR_IF_PRUNED(method, "getODSOperandIndexAndLength", op);
2033 MethodBody &body = method->body();
2034 body.indent() << formatv(
2035 "return Base::getODSOperandIndexAndLength(index, {0});", rangeSizeCall);
2038 auto *m = opClass.addMethod(rangeType, "getODSOperands",
2039 MethodParameter("unsigned", "index"));
2040 ERROR_IF_PRUNED(m, "getODSOperands", op);
2041 auto &body = m->body();
2042 body << formatv(valueRangeReturnCode, rangeBeginCall,
2043 "getODSOperandIndexAndLength(index)");
2045 // Then we emit nicer named getter methods by redirecting to the "sink" getter
2046 // method.
2047 for (int i = 0; i != numOperands; ++i) {
2048 const auto &operand = op.getOperand(i);
2049 if (operand.name.empty())
2050 continue;
2051 std::string name = op.getGetterName(operand.name);
2052 if (operand.isOptional()) {
2053 m = opClass.addMethod(isGenericAdaptorBase
2054 ? rangeElementType
2055 : generateTypeForGetter(operand),
2056 name);
2057 ERROR_IF_PRUNED(m, name, op);
2058 m->body().indent() << formatv("auto operands = getODSOperands({0});\n"
2059 "return operands.empty() ? {1}{{} : ",
2060 i, m->getReturnType());
2061 if (!isGenericAdaptorBase)
2062 m->body() << llvm::formatv("::llvm::cast<{0}>", m->getReturnType());
2063 m->body() << "(*operands.begin());";
2064 } else if (operand.isVariadicOfVariadic()) {
2065 std::string segmentAttr = op.getGetterName(
2066 operand.constraint.getVariadicOfVariadicSegmentSizeAttr());
2067 if (genericAdaptorBase) {
2068 m = opClass.addMethod("::llvm::SmallVector<" + rangeType + ">", name);
2069 ERROR_IF_PRUNED(m, name, op);
2070 m->body() << llvm::formatv(variadicOfVariadicAdaptorCalcCode,
2071 segmentAttr, i, rangeType);
2072 continue;
2075 m = opClass.addMethod("::mlir::OperandRangeRange", name);
2076 ERROR_IF_PRUNED(m, name, op);
2077 m->body() << " return getODSOperands(" << i << ").split(" << segmentAttr
2078 << "Attr());";
2079 } else if (operand.isVariadic()) {
2080 m = opClass.addMethod(rangeType, name);
2081 ERROR_IF_PRUNED(m, name, op);
2082 m->body() << " return getODSOperands(" << i << ");";
2083 } else {
2084 m = opClass.addMethod(isGenericAdaptorBase
2085 ? rangeElementType
2086 : generateTypeForGetter(operand),
2087 name);
2088 ERROR_IF_PRUNED(m, name, op);
2089 m->body().indent() << "return ";
2090 if (!isGenericAdaptorBase)
2091 m->body() << llvm::formatv("::llvm::cast<{0}>", m->getReturnType());
2092 m->body() << llvm::formatv("(*getODSOperands({0}).begin());", i);
2097 void OpEmitter::genNamedOperandGetters() {
2098 // Build the code snippet used for initializing the operand_segment_size)s
2099 // array.
2100 std::string attrSizeInitCode;
2101 if (op.getTrait("::mlir::OpTrait::AttrSizedOperandSegments")) {
2102 if (op.getDialect().usePropertiesForAttributes())
2103 attrSizeInitCode = formatv(adapterSegmentSizeAttrInitCodeProperties,
2104 "getProperties().operandSegmentSizes");
2106 else
2107 attrSizeInitCode = formatv(opSegmentSizeAttrInitCode,
2108 emitHelper.getAttr(operandSegmentAttrName));
2111 generateNamedOperandGetters(
2112 op, opClass,
2113 /*genericAdaptorBase=*/nullptr,
2114 /*sizeAttrInit=*/attrSizeInitCode,
2115 /*rangeType=*/"::mlir::Operation::operand_range",
2116 /*rangeElementType=*/"::mlir::Value",
2117 /*rangeBeginCall=*/"getOperation()->operand_begin()",
2118 /*rangeSizeCall=*/"getOperation()->getNumOperands()",
2119 /*getOperandCallPattern=*/"getOperation()->getOperand({0})");
2122 void OpEmitter::genNamedOperandSetters() {
2123 auto *attrSizedOperands =
2124 op.getTrait("::mlir::OpTrait::AttrSizedOperandSegments");
2125 for (int i = 0, e = op.getNumOperands(); i != e; ++i) {
2126 const auto &operand = op.getOperand(i);
2127 if (operand.name.empty())
2128 continue;
2129 std::string name = op.getGetterName(operand.name);
2131 StringRef returnType;
2132 if (operand.isVariadicOfVariadic()) {
2133 returnType = "::mlir::MutableOperandRangeRange";
2134 } else if (operand.isVariableLength()) {
2135 returnType = "::mlir::MutableOperandRange";
2136 } else {
2137 returnType = "::mlir::OpOperand &";
2139 auto *m = opClass.addMethod(returnType, name + "Mutable");
2140 ERROR_IF_PRUNED(m, name, op);
2141 auto &body = m->body();
2142 body << " auto range = getODSOperandIndexAndLength(" << i << ");\n";
2144 if (!operand.isVariadicOfVariadic() && !operand.isVariableLength()) {
2145 // In case of a single operand, return a single OpOperand.
2146 body << " return getOperation()->getOpOperand(range.first);\n";
2147 continue;
2150 body << " auto mutableRange = "
2151 "::mlir::MutableOperandRange(getOperation(), "
2152 "range.first, range.second";
2153 if (attrSizedOperands) {
2154 if (emitHelper.hasProperties())
2155 body << formatv(", ::mlir::MutableOperandRange::OperandSegment({0}u, "
2156 "{{getOperandSegmentSizesAttrName(), "
2157 "::mlir::DenseI32ArrayAttr::get(getContext(), "
2158 "getProperties().operandSegmentSizes)})",
2160 else
2161 body << formatv(
2162 ", ::mlir::MutableOperandRange::OperandSegment({0}u, *{1})", i,
2163 emitHelper.getAttr(operandSegmentAttrName, /*isNamed=*/true));
2165 body << ");\n";
2167 // If this operand is a nested variadic, we split the range into a
2168 // MutableOperandRangeRange that provides a range over all of the
2169 // sub-ranges.
2170 if (operand.isVariadicOfVariadic()) {
2171 body << " return "
2172 "mutableRange.split(*(*this)->getAttrDictionary().getNamed("
2173 << op.getGetterName(
2174 operand.constraint.getVariadicOfVariadicSegmentSizeAttr())
2175 << "AttrName()));\n";
2176 } else {
2177 // Otherwise, we use the full range directly.
2178 body << " return mutableRange;\n";
2183 void OpEmitter::genNamedResultGetters() {
2184 const int numResults = op.getNumResults();
2185 const int numVariadicResults = op.getNumVariableLengthResults();
2186 const int numNormalResults = numResults - numVariadicResults;
2188 // If we have more than one variadic results, we need more complicated logic
2189 // to calculate the value range for each result.
2191 const auto *sameVariadicSize =
2192 op.getTrait("::mlir::OpTrait::SameVariadicResultSize");
2193 const auto *attrSizedResults =
2194 op.getTrait("::mlir::OpTrait::AttrSizedResultSegments");
2196 if (numVariadicResults > 1 && !sameVariadicSize && !attrSizedResults) {
2197 PrintFatalError(op.getLoc(), "op has multiple variadic results but no "
2198 "specification over their sizes");
2201 if (numVariadicResults < 2 && attrSizedResults) {
2202 PrintFatalError(op.getLoc(), "op must have at least two variadic results "
2203 "to use 'AttrSizedResultSegments' trait");
2206 if (attrSizedResults && sameVariadicSize) {
2207 PrintFatalError(op.getLoc(),
2208 "op cannot have both 'AttrSizedResultSegments' and "
2209 "'SameVariadicResultSize' traits");
2212 // Build the initializer string for the result segment size attribute.
2213 std::string attrSizeInitCode;
2214 if (attrSizedResults) {
2215 if (op.getDialect().usePropertiesForAttributes())
2216 attrSizeInitCode = formatv(adapterSegmentSizeAttrInitCodeProperties,
2217 "getProperties().resultSegmentSizes");
2219 else
2220 attrSizeInitCode = formatv(opSegmentSizeAttrInitCode,
2221 emitHelper.getAttr(resultSegmentAttrName));
2224 generateValueRangeStartAndEnd(
2225 opClass, /*isGenericAdaptorBase=*/false, "getODSResultIndexAndLength",
2226 numVariadicResults, numNormalResults, "getOperation()->getNumResults()",
2227 attrSizedResults, attrSizeInitCode, op.getResults());
2229 auto *m =
2230 opClass.addMethod("::mlir::Operation::result_range", "getODSResults",
2231 MethodParameter("unsigned", "index"));
2232 ERROR_IF_PRUNED(m, "getODSResults", op);
2233 m->body() << formatv(valueRangeReturnCode, "getOperation()->result_begin()",
2234 "getODSResultIndexAndLength(index)");
2236 for (int i = 0; i != numResults; ++i) {
2237 const auto &result = op.getResult(i);
2238 if (result.name.empty())
2239 continue;
2240 std::string name = op.getGetterName(result.name);
2241 if (result.isOptional()) {
2242 m = opClass.addMethod(generateTypeForGetter(result), name);
2243 ERROR_IF_PRUNED(m, name, op);
2244 m->body() << " auto results = getODSResults(" << i << ");\n"
2245 << llvm::formatv(" return results.empty()"
2246 " ? {0}()"
2247 " : ::llvm::cast<{0}>(*results.begin());",
2248 m->getReturnType());
2249 } else if (result.isVariadic()) {
2250 m = opClass.addMethod("::mlir::Operation::result_range", name);
2251 ERROR_IF_PRUNED(m, name, op);
2252 m->body() << " return getODSResults(" << i << ");";
2253 } else {
2254 m = opClass.addMethod(generateTypeForGetter(result), name);
2255 ERROR_IF_PRUNED(m, name, op);
2256 m->body() << llvm::formatv(
2257 " return ::llvm::cast<{0}>(*getODSResults({1}).begin());",
2258 m->getReturnType(), i);
2263 void OpEmitter::genNamedRegionGetters() {
2264 unsigned numRegions = op.getNumRegions();
2265 for (unsigned i = 0; i < numRegions; ++i) {
2266 const auto &region = op.getRegion(i);
2267 if (region.name.empty())
2268 continue;
2269 std::string name = op.getGetterName(region.name);
2271 // Generate the accessors for a variadic region.
2272 if (region.isVariadic()) {
2273 auto *m =
2274 opClass.addMethod("::mlir::MutableArrayRef<::mlir::Region>", name);
2275 ERROR_IF_PRUNED(m, name, op);
2276 m->body() << formatv(" return (*this)->getRegions().drop_front({0});",
2278 continue;
2281 auto *m = opClass.addMethod("::mlir::Region &", name);
2282 ERROR_IF_PRUNED(m, name, op);
2283 m->body() << formatv(" return (*this)->getRegion({0});", i);
2287 void OpEmitter::genNamedSuccessorGetters() {
2288 unsigned numSuccessors = op.getNumSuccessors();
2289 for (unsigned i = 0; i < numSuccessors; ++i) {
2290 const NamedSuccessor &successor = op.getSuccessor(i);
2291 if (successor.name.empty())
2292 continue;
2293 std::string name = op.getGetterName(successor.name);
2294 // Generate the accessors for a variadic successor list.
2295 if (successor.isVariadic()) {
2296 auto *m = opClass.addMethod("::mlir::SuccessorRange", name);
2297 ERROR_IF_PRUNED(m, name, op);
2298 m->body() << formatv(
2299 " return {std::next((*this)->successor_begin(), {0}), "
2300 "(*this)->successor_end()};",
2302 continue;
2305 auto *m = opClass.addMethod("::mlir::Block *", name);
2306 ERROR_IF_PRUNED(m, name, op);
2307 m->body() << formatv(" return (*this)->getSuccessor({0});", i);
2311 static bool canGenerateUnwrappedBuilder(const Operator &op) {
2312 // If this op does not have native attributes at all, return directly to avoid
2313 // redefining builders.
2314 if (op.getNumNativeAttributes() == 0)
2315 return false;
2317 bool canGenerate = false;
2318 // We are generating builders that take raw values for attributes. We need to
2319 // make sure the native attributes have a meaningful "unwrapped" value type
2320 // different from the wrapped mlir::Attribute type to avoid redefining
2321 // builders. This checks for the op has at least one such native attribute.
2322 for (int i = 0, e = op.getNumNativeAttributes(); i < e; ++i) {
2323 const NamedAttribute &namedAttr = op.getAttribute(i);
2324 if (canUseUnwrappedRawValue(namedAttr.attr)) {
2325 canGenerate = true;
2326 break;
2329 return canGenerate;
2332 static bool canInferType(const Operator &op) {
2333 return op.getTrait("::mlir::InferTypeOpInterface::Trait");
2336 void OpEmitter::genSeparateArgParamBuilder() {
2337 SmallVector<AttrParamKind, 2> attrBuilderType;
2338 attrBuilderType.push_back(AttrParamKind::WrappedAttr);
2339 if (canGenerateUnwrappedBuilder(op))
2340 attrBuilderType.push_back(AttrParamKind::UnwrappedValue);
2342 // Emit with separate builders with or without unwrapped attributes and/or
2343 // inferring result type.
2344 auto emit = [&](AttrParamKind attrType, TypeParamKind paramKind,
2345 bool inferType) {
2346 SmallVector<MethodParameter> paramList;
2347 SmallVector<std::string, 4> resultNames;
2348 llvm::StringSet<> inferredAttributes;
2349 buildParamList(paramList, inferredAttributes, resultNames, paramKind,
2350 attrType);
2352 auto *m = opClass.addStaticMethod("void", "build", std::move(paramList));
2353 // If the builder is redundant, skip generating the method.
2354 if (!m)
2355 return;
2356 auto &body = m->body();
2357 genCodeForAddingArgAndRegionForBuilder(body, inferredAttributes,
2358 /*isRawValueAttr=*/attrType ==
2359 AttrParamKind::UnwrappedValue);
2361 // Push all result types to the operation state
2363 if (inferType) {
2364 // Generate builder that infers type too.
2365 // TODO: Subsume this with general checking if type can be
2366 // inferred automatically.
2367 body << formatv(R"(
2368 ::llvm::SmallVector<::mlir::Type, 2> inferredReturnTypes;
2369 if (::mlir::succeeded({0}::inferReturnTypes(odsBuilder.getContext(),
2370 {1}.location, {1}.operands,
2371 {1}.attributes.getDictionary({1}.getContext()),
2372 {1}.getRawProperties(),
2373 {1}.regions, inferredReturnTypes)))
2374 {1}.addTypes(inferredReturnTypes);
2375 else
2376 ::llvm::report_fatal_error("Failed to infer result type(s).");)",
2377 opClass.getClassName(), builderOpState);
2378 return;
2381 switch (paramKind) {
2382 case TypeParamKind::None:
2383 return;
2384 case TypeParamKind::Separate:
2385 for (int i = 0, e = op.getNumResults(); i < e; ++i) {
2386 if (op.getResult(i).isOptional())
2387 body << " if (" << resultNames[i] << ")\n ";
2388 body << " " << builderOpState << ".addTypes(" << resultNames[i]
2389 << ");\n";
2392 // Automatically create the 'resultSegmentSizes' attribute using
2393 // the length of the type ranges.
2394 if (op.getTrait("::mlir::OpTrait::AttrSizedResultSegments")) {
2395 if (op.getDialect().usePropertiesForAttributes()) {
2396 body << " ::llvm::copy(::llvm::ArrayRef<int32_t>({";
2397 } else {
2398 std::string getterName = op.getGetterName(resultSegmentAttrName);
2399 body << " " << builderOpState << ".addAttribute(" << getterName
2400 << "AttrName(" << builderOpState << ".name), "
2401 << "odsBuilder.getDenseI32ArrayAttr({";
2403 interleaveComma(
2404 llvm::seq<int>(0, op.getNumResults()), body, [&](int i) {
2405 const NamedTypeConstraint &result = op.getResult(i);
2406 if (!result.isVariableLength()) {
2407 body << "1";
2408 } else if (result.isOptional()) {
2409 body << "(" << resultNames[i] << " ? 1 : 0)";
2410 } else {
2411 // VariadicOfVariadic of results are currently unsupported in
2412 // MLIR, hence it can only be a simple variadic.
2413 // TODO: Add implementation for VariadicOfVariadic results here
2414 // once supported.
2415 assert(result.isVariadic());
2416 body << "static_cast<int32_t>(" << resultNames[i] << ".size())";
2419 if (op.getDialect().usePropertiesForAttributes()) {
2420 body << "}), " << builderOpState
2421 << ".getOrAddProperties<Properties>()."
2422 "resultSegmentSizes.begin());\n";
2423 } else {
2424 body << "}));\n";
2428 return;
2429 case TypeParamKind::Collective: {
2430 int numResults = op.getNumResults();
2431 int numVariadicResults = op.getNumVariableLengthResults();
2432 int numNonVariadicResults = numResults - numVariadicResults;
2433 bool hasVariadicResult = numVariadicResults != 0;
2435 // Avoid emitting "resultTypes.size() >= 0u" which is always true.
2436 if (!hasVariadicResult || numNonVariadicResults != 0)
2437 body << " "
2438 << "assert(resultTypes.size() "
2439 << (hasVariadicResult ? ">=" : "==") << " "
2440 << numNonVariadicResults
2441 << "u && \"mismatched number of results\");\n";
2442 body << " " << builderOpState << ".addTypes(resultTypes);\n";
2444 return;
2446 llvm_unreachable("unhandled TypeParamKind");
2449 // Some of the build methods generated here may be ambiguous, but TableGen's
2450 // ambiguous function detection will elide those ones.
2451 for (auto attrType : attrBuilderType) {
2452 emit(attrType, TypeParamKind::Separate, /*inferType=*/false);
2453 if (canInferType(op))
2454 emit(attrType, TypeParamKind::None, /*inferType=*/true);
2455 emit(attrType, TypeParamKind::Collective, /*inferType=*/false);
2459 void OpEmitter::genUseOperandAsResultTypeCollectiveParamBuilder() {
2460 int numResults = op.getNumResults();
2462 // Signature
2463 SmallVector<MethodParameter> paramList;
2464 paramList.emplace_back("::mlir::OpBuilder &", "odsBuilder");
2465 paramList.emplace_back("::mlir::OperationState &", builderOpState);
2466 paramList.emplace_back("::mlir::ValueRange", "operands");
2467 // Provide default value for `attributes` when its the last parameter
2468 StringRef attributesDefaultValue = op.getNumVariadicRegions() ? "" : "{}";
2469 paramList.emplace_back("::llvm::ArrayRef<::mlir::NamedAttribute>",
2470 "attributes", attributesDefaultValue);
2471 if (op.getNumVariadicRegions())
2472 paramList.emplace_back("unsigned", "numRegions");
2474 auto *m = opClass.addStaticMethod("void", "build", std::move(paramList));
2475 // If the builder is redundant, skip generating the method
2476 if (!m)
2477 return;
2478 auto &body = m->body();
2480 // Operands
2481 body << " " << builderOpState << ".addOperands(operands);\n";
2483 // Attributes
2484 body << " " << builderOpState << ".addAttributes(attributes);\n";
2486 // Create the correct number of regions
2487 if (int numRegions = op.getNumRegions()) {
2488 body << llvm::formatv(
2489 " for (unsigned i = 0; i != {0}; ++i)\n",
2490 (op.getNumVariadicRegions() ? "numRegions" : Twine(numRegions)));
2491 body << " (void)" << builderOpState << ".addRegion();\n";
2494 // Result types
2495 SmallVector<std::string, 2> resultTypes(numResults, "operands[0].getType()");
2496 body << " " << builderOpState << ".addTypes({"
2497 << llvm::join(resultTypes, ", ") << "});\n\n";
2500 void OpEmitter::genPopulateDefaultAttributes() {
2501 // All done if no attributes, except optional ones, have default values.
2502 if (llvm::all_of(op.getAttributes(), [](const NamedAttribute &named) {
2503 return !named.attr.hasDefaultValue() || named.attr.isOptional();
2505 return;
2507 if (op.getDialect().usePropertiesForAttributes()) {
2508 SmallVector<MethodParameter> paramList;
2509 paramList.emplace_back("::mlir::OperationName", "opName");
2510 paramList.emplace_back("Properties &", "properties");
2511 auto *m =
2512 opClass.addStaticMethod("void", "populateDefaultProperties", paramList);
2513 ERROR_IF_PRUNED(m, "populateDefaultProperties", op);
2514 auto &body = m->body();
2515 body.indent();
2516 body << "::mlir::Builder " << odsBuilder << "(opName.getContext());\n";
2517 for (const NamedAttribute &namedAttr : op.getAttributes()) {
2518 auto &attr = namedAttr.attr;
2519 if (!attr.hasDefaultValue() || attr.isOptional())
2520 continue;
2521 StringRef name = namedAttr.name;
2522 FmtContext fctx;
2523 fctx.withBuilder(odsBuilder);
2524 body << "if (!properties." << name << ")\n"
2525 << " properties." << name << " = "
2526 << std::string(tgfmt(attr.getConstBuilderTemplate(), &fctx,
2527 tgfmt(attr.getDefaultValue(), &fctx)))
2528 << ";\n";
2530 return;
2533 SmallVector<MethodParameter> paramList;
2534 paramList.emplace_back("const ::mlir::OperationName &", "opName");
2535 paramList.emplace_back("::mlir::NamedAttrList &", "attributes");
2536 auto *m = opClass.addStaticMethod("void", "populateDefaultAttrs", paramList);
2537 ERROR_IF_PRUNED(m, "populateDefaultAttrs", op);
2538 auto &body = m->body();
2539 body.indent();
2541 // Set default attributes that are unset.
2542 body << "auto attrNames = opName.getAttributeNames();\n";
2543 body << "::mlir::Builder " << odsBuilder
2544 << "(attrNames.front().getContext());\n";
2545 StringMap<int> attrIndex;
2546 for (const auto &it : llvm::enumerate(emitHelper.getAttrMetadata())) {
2547 attrIndex[it.value().first] = it.index();
2549 for (const NamedAttribute &namedAttr : op.getAttributes()) {
2550 auto &attr = namedAttr.attr;
2551 if (!attr.hasDefaultValue() || attr.isOptional())
2552 continue;
2553 auto index = attrIndex[namedAttr.name];
2554 body << "if (!attributes.get(attrNames[" << index << "])) {\n";
2555 FmtContext fctx;
2556 fctx.withBuilder(odsBuilder);
2558 std::string defaultValue =
2559 std::string(tgfmt(attr.getConstBuilderTemplate(), &fctx,
2560 tgfmt(attr.getDefaultValue(), &fctx)));
2561 body.indent() << formatv("attributes.append(attrNames[{0}], {1});\n", index,
2562 defaultValue);
2563 body.unindent() << "}\n";
2567 void OpEmitter::genInferredTypeCollectiveParamBuilder() {
2568 SmallVector<MethodParameter> paramList;
2569 paramList.emplace_back("::mlir::OpBuilder &", "odsBuilder");
2570 paramList.emplace_back("::mlir::OperationState &", builderOpState);
2571 paramList.emplace_back("::mlir::ValueRange", "operands");
2572 StringRef attributesDefaultValue = op.getNumVariadicRegions() ? "" : "{}";
2573 paramList.emplace_back("::llvm::ArrayRef<::mlir::NamedAttribute>",
2574 "attributes", attributesDefaultValue);
2575 if (op.getNumVariadicRegions())
2576 paramList.emplace_back("unsigned", "numRegions");
2578 auto *m = opClass.addStaticMethod("void", "build", std::move(paramList));
2579 // If the builder is redundant, skip generating the method
2580 if (!m)
2581 return;
2582 auto &body = m->body();
2584 int numResults = op.getNumResults();
2585 int numVariadicResults = op.getNumVariableLengthResults();
2586 int numNonVariadicResults = numResults - numVariadicResults;
2588 int numOperands = op.getNumOperands();
2589 int numVariadicOperands = op.getNumVariableLengthOperands();
2590 int numNonVariadicOperands = numOperands - numVariadicOperands;
2592 // Operands
2593 if (numVariadicOperands == 0 || numNonVariadicOperands != 0)
2594 body << " assert(operands.size()"
2595 << (numVariadicOperands != 0 ? " >= " : " == ")
2596 << numNonVariadicOperands
2597 << "u && \"mismatched number of parameters\");\n";
2598 body << " " << builderOpState << ".addOperands(operands);\n";
2599 body << " " << builderOpState << ".addAttributes(attributes);\n";
2601 // Create the correct number of regions
2602 if (int numRegions = op.getNumRegions()) {
2603 body << llvm::formatv(
2604 " for (unsigned i = 0; i != {0}; ++i)\n",
2605 (op.getNumVariadicRegions() ? "numRegions" : Twine(numRegions)));
2606 body << " (void)" << builderOpState << ".addRegion();\n";
2609 // Result types
2610 body << formatv(R"(
2611 ::llvm::SmallVector<::mlir::Type, 2> inferredReturnTypes;
2612 if (::mlir::succeeded({0}::inferReturnTypes(odsBuilder.getContext(),
2613 {1}.location, operands,
2614 {1}.attributes.getDictionary({1}.getContext()),
2615 {1}.getRawProperties(),
2616 {1}.regions, inferredReturnTypes))) {{)",
2617 opClass.getClassName(), builderOpState);
2618 if (numVariadicResults == 0 || numNonVariadicResults != 0)
2619 body << "\n assert(inferredReturnTypes.size()"
2620 << (numVariadicResults != 0 ? " >= " : " == ") << numNonVariadicResults
2621 << "u && \"mismatched number of return types\");";
2622 body << "\n " << builderOpState << ".addTypes(inferredReturnTypes);";
2624 body << formatv(R"(
2625 } else {{
2626 ::llvm::report_fatal_error("Failed to infer result type(s).");
2627 })",
2628 opClass.getClassName(), builderOpState);
2631 void OpEmitter::genUseOperandAsResultTypeSeparateParamBuilder() {
2632 auto emit = [&](AttrParamKind attrType) {
2633 SmallVector<MethodParameter> paramList;
2634 SmallVector<std::string, 4> resultNames;
2635 llvm::StringSet<> inferredAttributes;
2636 buildParamList(paramList, inferredAttributes, resultNames,
2637 TypeParamKind::None, attrType);
2639 auto *m = opClass.addStaticMethod("void", "build", std::move(paramList));
2640 // If the builder is redundant, skip generating the method
2641 if (!m)
2642 return;
2643 auto &body = m->body();
2644 genCodeForAddingArgAndRegionForBuilder(body, inferredAttributes,
2645 /*isRawValueAttr=*/attrType ==
2646 AttrParamKind::UnwrappedValue);
2648 auto numResults = op.getNumResults();
2649 if (numResults == 0)
2650 return;
2652 // Push all result types to the operation state
2653 const char *index = op.getOperand(0).isVariadic() ? ".front()" : "";
2654 std::string resultType =
2655 formatv("{0}{1}.getType()", getArgumentName(op, 0), index).str();
2656 body << " " << builderOpState << ".addTypes({" << resultType;
2657 for (int i = 1; i != numResults; ++i)
2658 body << ", " << resultType;
2659 body << "});\n\n";
2662 emit(AttrParamKind::WrappedAttr);
2663 // Generate additional builder(s) if any attributes can be "unwrapped"
2664 if (canGenerateUnwrappedBuilder(op))
2665 emit(AttrParamKind::UnwrappedValue);
2668 void OpEmitter::genUseAttrAsResultTypeBuilder() {
2669 SmallVector<MethodParameter> paramList;
2670 paramList.emplace_back("::mlir::OpBuilder &", "odsBuilder");
2671 paramList.emplace_back("::mlir::OperationState &", builderOpState);
2672 paramList.emplace_back("::mlir::ValueRange", "operands");
2673 paramList.emplace_back("::llvm::ArrayRef<::mlir::NamedAttribute>",
2674 "attributes", "{}");
2675 auto *m = opClass.addStaticMethod("void", "build", std::move(paramList));
2676 // If the builder is redundant, skip generating the method
2677 if (!m)
2678 return;
2680 auto &body = m->body();
2682 // Push all result types to the operation state
2683 std::string resultType;
2684 const auto &namedAttr = op.getAttribute(0);
2686 body << " auto attrName = " << op.getGetterName(namedAttr.name)
2687 << "AttrName(" << builderOpState
2688 << ".name);\n"
2689 " for (auto attr : attributes) {\n"
2690 " if (attr.getName() != attrName) continue;\n";
2691 if (namedAttr.attr.isTypeAttr()) {
2692 resultType = "::llvm::cast<::mlir::TypeAttr>(attr.getValue()).getValue()";
2693 } else {
2694 resultType = "::llvm::cast<::mlir::TypedAttr>(attr.getValue()).getType()";
2697 // Operands
2698 body << " " << builderOpState << ".addOperands(operands);\n";
2700 // Attributes
2701 body << " " << builderOpState << ".addAttributes(attributes);\n";
2703 // Result types
2704 SmallVector<std::string, 2> resultTypes(op.getNumResults(), resultType);
2705 body << " " << builderOpState << ".addTypes({"
2706 << llvm::join(resultTypes, ", ") << "});\n";
2707 body << " }\n";
2710 /// Returns a signature of the builder. Updates the context `fctx` to enable
2711 /// replacement of $_builder and $_state in the body.
2712 static SmallVector<MethodParameter>
2713 getBuilderSignature(const Builder &builder) {
2714 ArrayRef<Builder::Parameter> params(builder.getParameters());
2716 // Inject builder and state arguments.
2717 SmallVector<MethodParameter> arguments;
2718 arguments.reserve(params.size() + 2);
2719 arguments.emplace_back("::mlir::OpBuilder &", odsBuilder);
2720 arguments.emplace_back("::mlir::OperationState &", builderOpState);
2722 for (unsigned i = 0, e = params.size(); i < e; ++i) {
2723 // If no name is provided, generate one.
2724 std::optional<StringRef> paramName = params[i].getName();
2725 std::string name =
2726 paramName ? paramName->str() : "odsArg" + std::to_string(i);
2728 StringRef defaultValue;
2729 if (std::optional<StringRef> defaultParamValue =
2730 params[i].getDefaultValue())
2731 defaultValue = *defaultParamValue;
2733 arguments.emplace_back(params[i].getCppType(), std::move(name),
2734 defaultValue);
2737 return arguments;
2740 void OpEmitter::genBuilder() {
2741 // Handle custom builders if provided.
2742 for (const Builder &builder : op.getBuilders()) {
2743 SmallVector<MethodParameter> arguments = getBuilderSignature(builder);
2745 std::optional<StringRef> body = builder.getBody();
2746 auto properties = body ? Method::Static : Method::StaticDeclaration;
2747 auto *method =
2748 opClass.addMethod("void", "build", properties, std::move(arguments));
2749 if (body)
2750 ERROR_IF_PRUNED(method, "build", op);
2752 if (method)
2753 method->setDeprecated(builder.getDeprecatedMessage());
2755 FmtContext fctx;
2756 fctx.withBuilder(odsBuilder);
2757 fctx.addSubst("_state", builderOpState);
2758 if (body)
2759 method->body() << tgfmt(*body, &fctx);
2762 // Generate default builders that requires all result type, operands, and
2763 // attributes as parameters.
2764 if (op.skipDefaultBuilders())
2765 return;
2767 // We generate three classes of builders here:
2768 // 1. one having a stand-alone parameter for each operand / attribute, and
2769 genSeparateArgParamBuilder();
2770 // 2. one having an aggregated parameter for all result types / operands /
2771 // attributes, and
2772 genCollectiveParamBuilder();
2773 // 3. one having a stand-alone parameter for each operand and attribute,
2774 // use the first operand or attribute's type as all result types
2775 // to facilitate different call patterns.
2776 if (op.getNumVariableLengthResults() == 0) {
2777 if (op.getTrait("::mlir::OpTrait::SameOperandsAndResultType")) {
2778 genUseOperandAsResultTypeSeparateParamBuilder();
2779 genUseOperandAsResultTypeCollectiveParamBuilder();
2781 if (op.getTrait("::mlir::OpTrait::FirstAttrDerivedResultType"))
2782 genUseAttrAsResultTypeBuilder();
2786 void OpEmitter::genCollectiveParamBuilder() {
2787 int numResults = op.getNumResults();
2788 int numVariadicResults = op.getNumVariableLengthResults();
2789 int numNonVariadicResults = numResults - numVariadicResults;
2791 int numOperands = op.getNumOperands();
2792 int numVariadicOperands = op.getNumVariableLengthOperands();
2793 int numNonVariadicOperands = numOperands - numVariadicOperands;
2795 SmallVector<MethodParameter> paramList;
2796 paramList.emplace_back("::mlir::OpBuilder &", "");
2797 paramList.emplace_back("::mlir::OperationState &", builderOpState);
2798 paramList.emplace_back("::mlir::TypeRange", "resultTypes");
2799 paramList.emplace_back("::mlir::ValueRange", "operands");
2800 // Provide default value for `attributes` when its the last parameter
2801 StringRef attributesDefaultValue = op.getNumVariadicRegions() ? "" : "{}";
2802 paramList.emplace_back("::llvm::ArrayRef<::mlir::NamedAttribute>",
2803 "attributes", attributesDefaultValue);
2804 if (op.getNumVariadicRegions())
2805 paramList.emplace_back("unsigned", "numRegions");
2807 auto *m = opClass.addStaticMethod("void", "build", std::move(paramList));
2808 // If the builder is redundant, skip generating the method
2809 if (!m)
2810 return;
2811 auto &body = m->body();
2813 // Operands
2814 if (numVariadicOperands == 0 || numNonVariadicOperands != 0)
2815 body << " assert(operands.size()"
2816 << (numVariadicOperands != 0 ? " >= " : " == ")
2817 << numNonVariadicOperands
2818 << "u && \"mismatched number of parameters\");\n";
2819 body << " " << builderOpState << ".addOperands(operands);\n";
2821 // Attributes
2822 body << " " << builderOpState << ".addAttributes(attributes);\n";
2824 // Create the correct number of regions
2825 if (int numRegions = op.getNumRegions()) {
2826 body << llvm::formatv(
2827 " for (unsigned i = 0; i != {0}; ++i)\n",
2828 (op.getNumVariadicRegions() ? "numRegions" : Twine(numRegions)));
2829 body << " (void)" << builderOpState << ".addRegion();\n";
2832 // Result types
2833 if (numVariadicResults == 0 || numNonVariadicResults != 0)
2834 body << " assert(resultTypes.size()"
2835 << (numVariadicResults != 0 ? " >= " : " == ") << numNonVariadicResults
2836 << "u && \"mismatched number of return types\");\n";
2837 body << " " << builderOpState << ".addTypes(resultTypes);\n";
2839 // Generate builder that infers type too.
2840 // TODO: Expand to handle successors.
2841 if (canInferType(op) && op.getNumSuccessors() == 0)
2842 genInferredTypeCollectiveParamBuilder();
2845 void OpEmitter::buildParamList(SmallVectorImpl<MethodParameter> &paramList,
2846 llvm::StringSet<> &inferredAttributes,
2847 SmallVectorImpl<std::string> &resultTypeNames,
2848 TypeParamKind typeParamKind,
2849 AttrParamKind attrParamKind) {
2850 resultTypeNames.clear();
2851 auto numResults = op.getNumResults();
2852 resultTypeNames.reserve(numResults);
2854 paramList.emplace_back("::mlir::OpBuilder &", odsBuilder);
2855 paramList.emplace_back("::mlir::OperationState &", builderOpState);
2857 switch (typeParamKind) {
2858 case TypeParamKind::None:
2859 break;
2860 case TypeParamKind::Separate: {
2861 // Add parameters for all return types
2862 for (int i = 0; i < numResults; ++i) {
2863 const auto &result = op.getResult(i);
2864 std::string resultName = std::string(result.name);
2865 if (resultName.empty())
2866 resultName = std::string(formatv("resultType{0}", i));
2868 StringRef type =
2869 result.isVariadic() ? "::mlir::TypeRange" : "::mlir::Type";
2871 paramList.emplace_back(type, resultName, result.isOptional());
2872 resultTypeNames.emplace_back(std::move(resultName));
2874 } break;
2875 case TypeParamKind::Collective: {
2876 paramList.emplace_back("::mlir::TypeRange", "resultTypes");
2877 resultTypeNames.push_back("resultTypes");
2878 } break;
2881 // Add parameters for all arguments (operands and attributes).
2882 int defaultValuedAttrStartIndex = op.getNumArgs();
2883 // Successors and variadic regions go at the end of the parameter list, so no
2884 // default arguments are possible.
2885 bool hasTrailingParams = op.getNumSuccessors() || op.getNumVariadicRegions();
2886 if (attrParamKind == AttrParamKind::UnwrappedValue && !hasTrailingParams) {
2887 // Calculate the start index from which we can attach default values in the
2888 // builder declaration.
2889 for (int i = op.getNumArgs() - 1; i >= 0; --i) {
2890 auto *namedAttr =
2891 llvm::dyn_cast_if_present<tblgen::NamedAttribute *>(op.getArg(i));
2892 if (!namedAttr || !namedAttr->attr.hasDefaultValue())
2893 break;
2895 if (!canUseUnwrappedRawValue(namedAttr->attr))
2896 break;
2898 // Creating an APInt requires us to provide bitwidth, value, and
2899 // signedness, which is complicated compared to others. Similarly
2900 // for APFloat.
2901 // TODO: Adjust the 'returnType' field of such attributes
2902 // to support them.
2903 StringRef retType = namedAttr->attr.getReturnType();
2904 if (retType == "::llvm::APInt" || retType == "::llvm::APFloat")
2905 break;
2907 defaultValuedAttrStartIndex = i;
2911 /// Collect any inferred attributes.
2912 for (const NamedTypeConstraint &operand : op.getOperands()) {
2913 if (operand.isVariadicOfVariadic()) {
2914 inferredAttributes.insert(
2915 operand.constraint.getVariadicOfVariadicSegmentSizeAttr());
2919 for (int i = 0, e = op.getNumArgs(), numOperands = 0; i < e; ++i) {
2920 Argument arg = op.getArg(i);
2921 if (const auto *operand =
2922 llvm::dyn_cast_if_present<NamedTypeConstraint *>(arg)) {
2923 StringRef type;
2924 if (operand->isVariadicOfVariadic())
2925 type = "::llvm::ArrayRef<::mlir::ValueRange>";
2926 else if (operand->isVariadic())
2927 type = "::mlir::ValueRange";
2928 else
2929 type = "::mlir::Value";
2931 paramList.emplace_back(type, getArgumentName(op, numOperands++),
2932 operand->isOptional());
2933 continue;
2935 if ([[maybe_unused]] const auto *operand =
2936 llvm::dyn_cast_if_present<NamedProperty *>(arg)) {
2937 // TODO
2938 continue;
2940 const NamedAttribute &namedAttr = *arg.get<NamedAttribute *>();
2941 const Attribute &attr = namedAttr.attr;
2943 // Inferred attributes don't need to be added to the param list.
2944 if (inferredAttributes.contains(namedAttr.name))
2945 continue;
2947 StringRef type;
2948 switch (attrParamKind) {
2949 case AttrParamKind::WrappedAttr:
2950 type = attr.getStorageType();
2951 break;
2952 case AttrParamKind::UnwrappedValue:
2953 if (canUseUnwrappedRawValue(attr))
2954 type = attr.getReturnType();
2955 else
2956 type = attr.getStorageType();
2957 break;
2960 // Attach default value if requested and possible.
2961 std::string defaultValue;
2962 if (attrParamKind == AttrParamKind::UnwrappedValue &&
2963 i >= defaultValuedAttrStartIndex) {
2964 defaultValue += attr.getDefaultValue();
2966 paramList.emplace_back(type, namedAttr.name, StringRef(defaultValue),
2967 attr.isOptional());
2970 /// Insert parameters for each successor.
2971 for (const NamedSuccessor &succ : op.getSuccessors()) {
2972 StringRef type =
2973 succ.isVariadic() ? "::mlir::BlockRange" : "::mlir::Block *";
2974 paramList.emplace_back(type, succ.name);
2977 /// Insert parameters for variadic regions.
2978 for (const NamedRegion &region : op.getRegions())
2979 if (region.isVariadic())
2980 paramList.emplace_back("unsigned",
2981 llvm::formatv("{0}Count", region.name).str());
2984 void OpEmitter::genCodeForAddingArgAndRegionForBuilder(
2985 MethodBody &body, llvm::StringSet<> &inferredAttributes,
2986 bool isRawValueAttr) {
2987 // Push all operands to the result.
2988 for (int i = 0, e = op.getNumOperands(); i < e; ++i) {
2989 std::string argName = getArgumentName(op, i);
2990 const NamedTypeConstraint &operand = op.getOperand(i);
2991 if (operand.constraint.isVariadicOfVariadic()) {
2992 body << " for (::mlir::ValueRange range : " << argName << ")\n "
2993 << builderOpState << ".addOperands(range);\n";
2995 // Add the segment attribute.
2996 body << " {\n"
2997 << " ::llvm::SmallVector<int32_t> rangeSegments;\n"
2998 << " for (::mlir::ValueRange range : " << argName << ")\n"
2999 << " rangeSegments.push_back(range.size());\n"
3000 << " auto rangeAttr = " << odsBuilder
3001 << ".getDenseI32ArrayAttr(rangeSegments);\n";
3002 if (op.getDialect().usePropertiesForAttributes()) {
3003 body << " " << builderOpState << ".getOrAddProperties<Properties>()."
3004 << operand.constraint.getVariadicOfVariadicSegmentSizeAttr()
3005 << " = rangeAttr;";
3006 } else {
3007 body << " " << builderOpState << ".addAttribute("
3008 << op.getGetterName(
3009 operand.constraint.getVariadicOfVariadicSegmentSizeAttr())
3010 << "AttrName(" << builderOpState << ".name), rangeAttr);";
3012 body << " }\n";
3013 continue;
3016 if (operand.isOptional())
3017 body << " if (" << argName << ")\n ";
3018 body << " " << builderOpState << ".addOperands(" << argName << ");\n";
3021 // If the operation has the operand segment size attribute, add it here.
3022 auto emitSegment = [&]() {
3023 interleaveComma(llvm::seq<int>(0, op.getNumOperands()), body, [&](int i) {
3024 const NamedTypeConstraint &operand = op.getOperand(i);
3025 if (!operand.isVariableLength()) {
3026 body << "1";
3027 return;
3030 std::string operandName = getArgumentName(op, i);
3031 if (operand.isOptional()) {
3032 body << "(" << operandName << " ? 1 : 0)";
3033 } else if (operand.isVariadicOfVariadic()) {
3034 body << llvm::formatv(
3035 "static_cast<int32_t>(std::accumulate({0}.begin(), {0}.end(), 0, "
3036 "[](int32_t curSum, ::mlir::ValueRange range) {{ return curSum + "
3037 "range.size(); }))",
3038 operandName);
3039 } else {
3040 body << "static_cast<int32_t>(" << getArgumentName(op, i) << ".size())";
3044 if (op.getTrait("::mlir::OpTrait::AttrSizedOperandSegments")) {
3045 std::string sizes = op.getGetterName(operandSegmentAttrName);
3046 if (op.getDialect().usePropertiesForAttributes()) {
3047 body << " ::llvm::copy(::llvm::ArrayRef<int32_t>({";
3048 emitSegment();
3049 body << "}), " << builderOpState
3050 << ".getOrAddProperties<Properties>()."
3051 "operandSegmentSizes.begin());\n";
3052 } else {
3053 body << " " << builderOpState << ".addAttribute(" << sizes << "AttrName("
3054 << builderOpState << ".name), "
3055 << "odsBuilder.getDenseI32ArrayAttr({";
3056 emitSegment();
3057 body << "}));\n";
3061 // Push all attributes to the result.
3062 for (const auto &namedAttr : op.getAttributes()) {
3063 auto &attr = namedAttr.attr;
3064 if (attr.isDerivedAttr() || inferredAttributes.contains(namedAttr.name))
3065 continue;
3067 // TODO: The wrapping of optional is different for default or not, so don't
3068 // unwrap for default ones that would fail below.
3069 bool emitNotNullCheck =
3070 (attr.isOptional() && !attr.hasDefaultValue()) ||
3071 (attr.hasDefaultValue() && !isRawValueAttr) ||
3072 // TODO: UnitAttr is optional, not wrapped, but needs to be guarded as
3073 // the constant materialization is only for true case.
3074 (isRawValueAttr && attr.getAttrDefName() == "UnitAttr");
3075 if (emitNotNullCheck)
3076 body.indent() << formatv("if ({0}) ", namedAttr.name) << "{\n";
3078 if (isRawValueAttr && canUseUnwrappedRawValue(attr)) {
3079 // If this is a raw value, then we need to wrap it in an Attribute
3080 // instance.
3081 FmtContext fctx;
3082 fctx.withBuilder("odsBuilder");
3083 if (op.getDialect().usePropertiesForAttributes()) {
3084 body << formatv(" {0}.getOrAddProperties<Properties>().{1} = {2};\n",
3085 builderOpState, namedAttr.name,
3086 constBuildAttrFromParam(attr, fctx, namedAttr.name));
3087 } else {
3088 body << formatv(" {0}.addAttribute({1}AttrName({0}.name), {2});\n",
3089 builderOpState, op.getGetterName(namedAttr.name),
3090 constBuildAttrFromParam(attr, fctx, namedAttr.name));
3092 } else {
3093 if (op.getDialect().usePropertiesForAttributes()) {
3094 body << formatv(" {0}.getOrAddProperties<Properties>().{1} = {1};\n",
3095 builderOpState, namedAttr.name);
3096 } else {
3097 body << formatv(" {0}.addAttribute({1}AttrName({0}.name), {2});\n",
3098 builderOpState, op.getGetterName(namedAttr.name),
3099 namedAttr.name);
3102 if (emitNotNullCheck)
3103 body.unindent() << " }\n";
3106 // Create the correct number of regions.
3107 for (const NamedRegion &region : op.getRegions()) {
3108 if (region.isVariadic())
3109 body << formatv(" for (unsigned i = 0; i < {0}Count; ++i)\n ",
3110 region.name);
3112 body << " (void)" << builderOpState << ".addRegion();\n";
3115 // Push all successors to the result.
3116 for (const NamedSuccessor &namedSuccessor : op.getSuccessors()) {
3117 body << formatv(" {0}.addSuccessors({1});\n", builderOpState,
3118 namedSuccessor.name);
3122 void OpEmitter::genCanonicalizerDecls() {
3123 bool hasCanonicalizeMethod = def.getValueAsBit("hasCanonicalizeMethod");
3124 if (hasCanonicalizeMethod) {
3125 // static LogicResult FooOp::
3126 // canonicalize(FooOp op, PatternRewriter &rewriter);
3127 SmallVector<MethodParameter> paramList;
3128 paramList.emplace_back(op.getCppClassName(), "op");
3129 paramList.emplace_back("::mlir::PatternRewriter &", "rewriter");
3130 auto *m = opClass.declareStaticMethod("::mlir::LogicalResult",
3131 "canonicalize", std::move(paramList));
3132 ERROR_IF_PRUNED(m, "canonicalize", op);
3135 // We get a prototype for 'getCanonicalizationPatterns' if requested directly
3136 // or if using a 'canonicalize' method.
3137 bool hasCanonicalizer = def.getValueAsBit("hasCanonicalizer");
3138 if (!hasCanonicalizeMethod && !hasCanonicalizer)
3139 return;
3141 // We get a body for 'getCanonicalizationPatterns' when using a 'canonicalize'
3142 // method, but not implementing 'getCanonicalizationPatterns' manually.
3143 bool hasBody = hasCanonicalizeMethod && !hasCanonicalizer;
3145 // Add a signature for getCanonicalizationPatterns if implemented by the
3146 // dialect or if synthesized to call 'canonicalize'.
3147 SmallVector<MethodParameter> paramList;
3148 paramList.emplace_back("::mlir::RewritePatternSet &", "results");
3149 paramList.emplace_back("::mlir::MLIRContext *", "context");
3150 auto kind = hasBody ? Method::Static : Method::StaticDeclaration;
3151 auto *method = opClass.addMethod("void", "getCanonicalizationPatterns", kind,
3152 std::move(paramList));
3154 // If synthesizing the method, fill it.
3155 if (hasBody) {
3156 ERROR_IF_PRUNED(method, "getCanonicalizationPatterns", op);
3157 method->body() << " results.add(canonicalize);\n";
3161 void OpEmitter::genFolderDecls() {
3162 if (!op.hasFolder())
3163 return;
3165 SmallVector<MethodParameter> paramList;
3166 paramList.emplace_back("FoldAdaptor", "adaptor");
3168 StringRef retType;
3169 bool hasSingleResult =
3170 op.getNumResults() == 1 && op.getNumVariableLengthResults() == 0;
3171 if (hasSingleResult) {
3172 retType = "::mlir::OpFoldResult";
3173 } else {
3174 paramList.emplace_back("::llvm::SmallVectorImpl<::mlir::OpFoldResult> &",
3175 "results");
3176 retType = "::mlir::LogicalResult";
3179 auto *m = opClass.declareMethod(retType, "fold", std::move(paramList));
3180 ERROR_IF_PRUNED(m, "fold", op);
3183 void OpEmitter::genOpInterfaceMethods(const tblgen::InterfaceTrait *opTrait) {
3184 Interface interface = opTrait->getInterface();
3186 // Get the set of methods that should always be declared.
3187 auto alwaysDeclaredMethodsVec = opTrait->getAlwaysDeclaredMethods();
3188 llvm::StringSet<> alwaysDeclaredMethods;
3189 alwaysDeclaredMethods.insert(alwaysDeclaredMethodsVec.begin(),
3190 alwaysDeclaredMethodsVec.end());
3192 for (const InterfaceMethod &method : interface.getMethods()) {
3193 // Don't declare if the method has a body.
3194 if (method.getBody())
3195 continue;
3196 // Don't declare if the method has a default implementation and the op
3197 // didn't request that it always be declared.
3198 if (method.getDefaultImplementation() &&
3199 !alwaysDeclaredMethods.count(method.getName()))
3200 continue;
3201 // Interface methods are allowed to overlap with existing methods, so don't
3202 // check if pruned.
3203 (void)genOpInterfaceMethod(method);
3207 Method *OpEmitter::genOpInterfaceMethod(const InterfaceMethod &method,
3208 bool declaration) {
3209 SmallVector<MethodParameter> paramList;
3210 for (const InterfaceMethod::Argument &arg : method.getArguments())
3211 paramList.emplace_back(arg.type, arg.name);
3213 auto props = (method.isStatic() ? Method::Static : Method::None) |
3214 (declaration ? Method::Declaration : Method::None);
3215 return opClass.addMethod(method.getReturnType(), method.getName(), props,
3216 std::move(paramList));
3219 void OpEmitter::genOpInterfaceMethods() {
3220 for (const auto &trait : op.getTraits()) {
3221 if (const auto *opTrait = dyn_cast<tblgen::InterfaceTrait>(&trait))
3222 if (opTrait->shouldDeclareMethods())
3223 genOpInterfaceMethods(opTrait);
3227 void OpEmitter::genSideEffectInterfaceMethods() {
3228 enum EffectKind { Operand, Result, Symbol, Static };
3229 struct EffectLocation {
3230 /// The effect applied.
3231 SideEffect effect;
3233 /// The index if the kind is not static.
3234 unsigned index;
3236 /// The kind of the location.
3237 unsigned kind;
3240 StringMap<SmallVector<EffectLocation, 1>> interfaceEffects;
3241 auto resolveDecorators = [&](Operator::var_decorator_range decorators,
3242 unsigned index, unsigned kind) {
3243 for (auto decorator : decorators)
3244 if (SideEffect *effect = dyn_cast<SideEffect>(&decorator)) {
3245 opClass.addTrait(effect->getInterfaceTrait());
3246 interfaceEffects[effect->getBaseEffectName()].push_back(
3247 EffectLocation{*effect, index, kind});
3251 // Collect effects that were specified via:
3252 /// Traits.
3253 for (const auto &trait : op.getTraits()) {
3254 const auto *opTrait = dyn_cast<tblgen::SideEffectTrait>(&trait);
3255 if (!opTrait)
3256 continue;
3257 auto &effects = interfaceEffects[opTrait->getBaseEffectName()];
3258 for (auto decorator : opTrait->getEffects())
3259 effects.push_back(EffectLocation{cast<SideEffect>(decorator),
3260 /*index=*/0, EffectKind::Static});
3262 /// Attributes and Operands.
3263 for (unsigned i = 0, operandIt = 0, e = op.getNumArgs(); i != e; ++i) {
3264 Argument arg = op.getArg(i);
3265 if (arg.is<NamedTypeConstraint *>()) {
3266 resolveDecorators(op.getArgDecorators(i), operandIt, EffectKind::Operand);
3267 ++operandIt;
3268 continue;
3270 if (arg.is<NamedProperty *>())
3271 continue;
3272 const NamedAttribute *attr = arg.get<NamedAttribute *>();
3273 if (attr->attr.getBaseAttr().isSymbolRefAttr())
3274 resolveDecorators(op.getArgDecorators(i), i, EffectKind::Symbol);
3276 /// Results.
3277 for (unsigned i = 0, e = op.getNumResults(); i != e; ++i)
3278 resolveDecorators(op.getResultDecorators(i), i, EffectKind::Result);
3280 // The code used to add an effect instance.
3281 // {0}: The effect class.
3282 // {1}: Optional value or symbol reference.
3283 // {2}: The side effect stage.
3284 // {3}: Does this side effect act on every single value of resource.
3285 // {4}: The resource class.
3286 const char *addEffectCode =
3287 " effects.emplace_back({0}::get(), {1}{2}, {3}, {4}::get());\n";
3289 for (auto &it : interfaceEffects) {
3290 // Generate the 'getEffects' method.
3291 std::string type = llvm::formatv("::llvm::SmallVectorImpl<::mlir::"
3292 "SideEffects::EffectInstance<{0}>> &",
3293 it.first())
3294 .str();
3295 auto *getEffects = opClass.addMethod("void", "getEffects",
3296 MethodParameter(type, "effects"));
3297 ERROR_IF_PRUNED(getEffects, "getEffects", op);
3298 auto &body = getEffects->body();
3300 // Add effect instances for each of the locations marked on the operation.
3301 for (auto &location : it.second) {
3302 StringRef effect = location.effect.getName();
3303 StringRef resource = location.effect.getResource();
3304 int stage = (int)location.effect.getStage();
3305 bool effectOnFullRegion = (int)location.effect.getEffectOnfullRegion();
3306 if (location.kind == EffectKind::Static) {
3307 // A static instance has no attached value.
3308 body << llvm::formatv(addEffectCode, effect, "", stage,
3309 effectOnFullRegion, resource)
3310 .str();
3311 } else if (location.kind == EffectKind::Symbol) {
3312 // A symbol reference requires adding the proper attribute.
3313 const auto *attr = op.getArg(location.index).get<NamedAttribute *>();
3314 std::string argName = op.getGetterName(attr->name);
3315 if (attr->attr.isOptional()) {
3316 body << " if (auto symbolRef = " << argName << "Attr())\n "
3317 << llvm::formatv(addEffectCode, effect, "symbolRef, ", stage,
3318 effectOnFullRegion, resource)
3319 .str();
3320 } else {
3321 body << llvm::formatv(addEffectCode, effect, argName + "Attr(), ",
3322 stage, effectOnFullRegion, resource)
3323 .str();
3325 } else {
3326 // Otherwise this is an operand/result, so we need to attach the Value.
3327 body << " for (::mlir::Value value : getODS"
3328 << (location.kind == EffectKind::Operand ? "Operands" : "Results")
3329 << "(" << location.index << "))\n "
3330 << llvm::formatv(addEffectCode, effect, "value, ", stage,
3331 effectOnFullRegion, resource)
3332 .str();
3338 void OpEmitter::genTypeInterfaceMethods() {
3339 if (!op.allResultTypesKnown())
3340 return;
3341 // Generate 'inferReturnTypes' method declaration using the interface method
3342 // declared in 'InferTypeOpInterface' op interface.
3343 const auto *trait =
3344 cast<InterfaceTrait>(op.getTrait("::mlir::InferTypeOpInterface::Trait"));
3345 Interface interface = trait->getInterface();
3346 Method *method = [&]() -> Method * {
3347 for (const InterfaceMethod &interfaceMethod : interface.getMethods()) {
3348 if (interfaceMethod.getName() == "inferReturnTypes") {
3349 return genOpInterfaceMethod(interfaceMethod, /*declaration=*/false);
3352 assert(0 && "unable to find inferReturnTypes interface method");
3353 return nullptr;
3354 }();
3355 ERROR_IF_PRUNED(method, "inferReturnTypes", op);
3356 auto &body = method->body();
3357 body << " inferredReturnTypes.resize(" << op.getNumResults() << ");\n";
3359 FmtContext fctx;
3360 fctx.withBuilder("odsBuilder");
3361 fctx.addSubst("_ctxt", "context");
3362 body << " ::mlir::Builder odsBuilder(context);\n";
3364 // Process the type inference graph in topological order, starting from types
3365 // that are always fully-inferred: operands and results with constructible
3366 // types. The type inference graph here will always be a DAG, so this gives
3367 // us the correct order for generating the types. -1 is a placeholder to
3368 // indicate the type for a result has not been generated.
3369 SmallVector<int> constructedIndices(op.getNumResults(), -1);
3370 int inferredTypeIdx = 0;
3371 for (int numResults = op.getNumResults(); inferredTypeIdx != numResults;) {
3372 for (int i = 0, e = op.getNumResults(); i != e; ++i) {
3373 if (constructedIndices[i] >= 0)
3374 continue;
3375 const InferredResultType &infer = op.getInferredResultType(i);
3376 std::string typeStr;
3377 if (infer.isArg()) {
3378 // If this is an operand, just index into operand list to access the
3379 // type.
3380 auto arg = op.getArgToOperandOrAttribute(infer.getIndex());
3381 if (arg.kind() == Operator::OperandOrAttribute::Kind::Operand) {
3382 typeStr = ("operands[" + Twine(arg.operandOrAttributeIndex()) +
3383 "].getType()")
3384 .str();
3386 // If this is an attribute, index into the attribute dictionary.
3387 } else {
3388 auto *attr =
3389 op.getArg(arg.operandOrAttributeIndex()).get<NamedAttribute *>();
3390 body << " ::mlir::TypedAttr odsInferredTypeAttr" << inferredTypeIdx
3391 << " = ";
3392 if (op.getDialect().usePropertiesForAttributes()) {
3393 body << "(properties ? properties.as<Properties *>()->"
3394 << attr->name
3395 << " : "
3396 "::llvm::dyn_cast_or_null<::mlir::TypedAttr>(attributes."
3397 "get(\"" +
3398 attr->name + "\")));\n";
3399 } else {
3400 body << "::llvm::dyn_cast_or_null<::mlir::TypedAttr>(attributes."
3401 "get(\"" +
3402 attr->name + "\"));\n";
3404 body << " if (!odsInferredTypeAttr" << inferredTypeIdx
3405 << ") return ::mlir::failure();\n";
3406 typeStr =
3407 ("odsInferredTypeAttr" + Twine(inferredTypeIdx) + ".getType()")
3408 .str();
3410 } else if (std::optional<StringRef> builder =
3411 op.getResult(infer.getResultIndex())
3412 .constraint.getBuilderCall()) {
3413 typeStr = tgfmt(*builder, &fctx).str();
3414 } else if (int index = constructedIndices[infer.getResultIndex()];
3415 index >= 0) {
3416 typeStr = ("odsInferredType" + Twine(index)).str();
3417 } else {
3418 continue;
3420 body << " ::mlir::Type odsInferredType" << inferredTypeIdx++ << " = "
3421 << tgfmt(infer.getTransformer(), &fctx.withSelf(typeStr)) << ";\n";
3422 constructedIndices[i] = inferredTypeIdx - 1;
3425 for (auto [i, index] : llvm::enumerate(constructedIndices))
3426 body << " inferredReturnTypes[" << i << "] = odsInferredType" << index
3427 << ";\n";
3428 body << " return ::mlir::success();";
3431 void OpEmitter::genParser() {
3432 if (hasStringAttribute(def, "assemblyFormat"))
3433 return;
3435 if (!def.getValueAsBit("hasCustomAssemblyFormat"))
3436 return;
3438 SmallVector<MethodParameter> paramList;
3439 paramList.emplace_back("::mlir::OpAsmParser &", "parser");
3440 paramList.emplace_back("::mlir::OperationState &", "result");
3442 auto *method = opClass.declareStaticMethod("::mlir::ParseResult", "parse",
3443 std::move(paramList));
3444 ERROR_IF_PRUNED(method, "parse", op);
3447 void OpEmitter::genPrinter() {
3448 if (hasStringAttribute(def, "assemblyFormat"))
3449 return;
3451 // Check to see if this op uses a c++ format.
3452 if (!def.getValueAsBit("hasCustomAssemblyFormat"))
3453 return;
3454 auto *method = opClass.declareMethod(
3455 "void", "print", MethodParameter("::mlir::OpAsmPrinter &", "p"));
3456 ERROR_IF_PRUNED(method, "print", op);
3459 void OpEmitter::genVerifier() {
3460 auto *implMethod =
3461 opClass.addMethod("::mlir::LogicalResult", "verifyInvariantsImpl");
3462 ERROR_IF_PRUNED(implMethod, "verifyInvariantsImpl", op);
3463 auto &implBody = implMethod->body();
3464 bool useProperties = emitHelper.hasProperties();
3466 populateSubstitutions(emitHelper, verifyCtx);
3467 genAttributeVerifier(emitHelper, verifyCtx, implBody, staticVerifierEmitter,
3468 useProperties);
3469 genOperandResultVerifier(implBody, op.getOperands(), "operand");
3470 genOperandResultVerifier(implBody, op.getResults(), "result");
3472 for (auto &trait : op.getTraits()) {
3473 if (auto *t = dyn_cast<tblgen::PredTrait>(&trait)) {
3474 implBody << tgfmt(" if (!($0))\n "
3475 "return emitOpError(\"failed to verify that $1\");\n",
3476 &verifyCtx, tgfmt(t->getPredTemplate(), &verifyCtx),
3477 t->getSummary());
3481 genRegionVerifier(implBody);
3482 genSuccessorVerifier(implBody);
3484 implBody << " return ::mlir::success();\n";
3486 // TODO: Some places use the `verifyInvariants` to do operation verification.
3487 // This may not act as their expectation because this doesn't call any
3488 // verifiers of native/interface traits. Needs to review those use cases and
3489 // see if we should use the mlir::verify() instead.
3490 auto *method = opClass.addMethod("::mlir::LogicalResult", "verifyInvariants");
3491 ERROR_IF_PRUNED(method, "verifyInvariants", op);
3492 auto &body = method->body();
3493 if (def.getValueAsBit("hasVerifier")) {
3494 body << " if(::mlir::succeeded(verifyInvariantsImpl()) && "
3495 "::mlir::succeeded(verify()))\n";
3496 body << " return ::mlir::success();\n";
3497 body << " return ::mlir::failure();";
3498 } else {
3499 body << " return verifyInvariantsImpl();";
3503 void OpEmitter::genCustomVerifier() {
3504 if (def.getValueAsBit("hasVerifier")) {
3505 auto *method = opClass.declareMethod("::mlir::LogicalResult", "verify");
3506 ERROR_IF_PRUNED(method, "verify", op);
3509 if (def.getValueAsBit("hasRegionVerifier")) {
3510 auto *method =
3511 opClass.declareMethod("::mlir::LogicalResult", "verifyRegions");
3512 ERROR_IF_PRUNED(method, "verifyRegions", op);
3516 void OpEmitter::genOperandResultVerifier(MethodBody &body,
3517 Operator::const_value_range values,
3518 StringRef valueKind) {
3519 // Check that an optional value is at most 1 element.
3521 // {0}: Value index.
3522 // {1}: "operand" or "result"
3523 const char *const verifyOptional = R"(
3524 if (valueGroup{0}.size() > 1) {
3525 return emitOpError("{1} group starting at #") << index
3526 << " requires 0 or 1 element, but found " << valueGroup{0}.size();
3529 // Check the types of a range of values.
3531 // {0}: Value index.
3532 // {1}: Type constraint function.
3533 // {2}: "operand" or "result"
3534 const char *const verifyValues = R"(
3535 for (auto v : valueGroup{0}) {
3536 if (::mlir::failed({1}(*this, v.getType(), "{2}", index++)))
3537 return ::mlir::failure();
3541 const auto canSkip = [](const NamedTypeConstraint &value) {
3542 return !value.hasPredicate() && !value.isOptional() &&
3543 !value.isVariadicOfVariadic();
3545 if (values.empty() || llvm::all_of(values, canSkip))
3546 return;
3548 FmtContext fctx;
3550 body << " {\n unsigned index = 0; (void)index;\n";
3552 for (const auto &staticValue : llvm::enumerate(values)) {
3553 const NamedTypeConstraint &value = staticValue.value();
3555 bool hasPredicate = value.hasPredicate();
3556 bool isOptional = value.isOptional();
3557 bool isVariadicOfVariadic = value.isVariadicOfVariadic();
3558 if (!hasPredicate && !isOptional && !isVariadicOfVariadic)
3559 continue;
3560 body << formatv(" auto valueGroup{2} = getODS{0}{1}s({2});\n",
3561 // Capitalize the first letter to match the function name
3562 valueKind.substr(0, 1).upper(), valueKind.substr(1),
3563 staticValue.index());
3565 // If the constraint is optional check that the value group has at most 1
3566 // value.
3567 if (isOptional) {
3568 body << formatv(verifyOptional, staticValue.index(), valueKind);
3569 } else if (isVariadicOfVariadic) {
3570 body << formatv(
3571 " if (::mlir::failed(::mlir::OpTrait::impl::verifyValueSizeAttr("
3572 "*this, \"{0}\", \"{1}\", valueGroup{2}.size())))\n"
3573 " return ::mlir::failure();\n",
3574 value.constraint.getVariadicOfVariadicSegmentSizeAttr(), value.name,
3575 staticValue.index());
3578 // Otherwise, if there is no predicate there is nothing left to do.
3579 if (!hasPredicate)
3580 continue;
3581 // Emit a loop to check all the dynamic values in the pack.
3582 StringRef constraintFn =
3583 staticVerifierEmitter.getTypeConstraintFn(value.constraint);
3584 body << formatv(verifyValues, staticValue.index(), constraintFn, valueKind);
3587 body << " }\n";
3590 void OpEmitter::genRegionVerifier(MethodBody &body) {
3591 /// Code to verify a region.
3593 /// {0}: Getter for the regions.
3594 /// {1}: The region constraint.
3595 /// {2}: The region's name.
3596 /// {3}: The region description.
3597 const char *const verifyRegion = R"(
3598 for (auto &region : {0})
3599 if (::mlir::failed({1}(*this, region, "{2}", index++)))
3600 return ::mlir::failure();
3602 /// Get a single region.
3604 /// {0}: The region's index.
3605 const char *const getSingleRegion =
3606 "::llvm::MutableArrayRef((*this)->getRegion({0}))";
3608 // If we have no regions, there is nothing more to do.
3609 const auto canSkip = [](const NamedRegion &region) {
3610 return region.constraint.getPredicate().isNull();
3612 auto regions = op.getRegions();
3613 if (regions.empty() && llvm::all_of(regions, canSkip))
3614 return;
3616 body << " {\n unsigned index = 0; (void)index;\n";
3617 for (const auto &it : llvm::enumerate(regions)) {
3618 const auto &region = it.value();
3619 if (canSkip(region))
3620 continue;
3622 auto getRegion = region.isVariadic()
3623 ? formatv("{0}()", op.getGetterName(region.name)).str()
3624 : formatv(getSingleRegion, it.index()).str();
3625 auto constraintFn =
3626 staticVerifierEmitter.getRegionConstraintFn(region.constraint);
3627 body << formatv(verifyRegion, getRegion, constraintFn, region.name);
3629 body << " }\n";
3632 void OpEmitter::genSuccessorVerifier(MethodBody &body) {
3633 const char *const verifySuccessor = R"(
3634 for (auto *successor : {0})
3635 if (::mlir::failed({1}(*this, successor, "{2}", index++)))
3636 return ::mlir::failure();
3638 /// Get a single successor.
3640 /// {0}: The successor's name.
3641 const char *const getSingleSuccessor = "::llvm::MutableArrayRef({0}())";
3643 // If we have no successors, there is nothing more to do.
3644 const auto canSkip = [](const NamedSuccessor &successor) {
3645 return successor.constraint.getPredicate().isNull();
3647 auto successors = op.getSuccessors();
3648 if (successors.empty() && llvm::all_of(successors, canSkip))
3649 return;
3651 body << " {\n unsigned index = 0; (void)index;\n";
3653 for (auto it : llvm::enumerate(successors)) {
3654 const auto &successor = it.value();
3655 if (canSkip(successor))
3656 continue;
3658 auto getSuccessor =
3659 formatv(successor.isVariadic() ? "{0}()" : getSingleSuccessor,
3660 successor.name, it.index())
3661 .str();
3662 auto constraintFn =
3663 staticVerifierEmitter.getSuccessorConstraintFn(successor.constraint);
3664 body << formatv(verifySuccessor, getSuccessor, constraintFn,
3665 successor.name);
3667 body << " }\n";
3670 /// Add a size count trait to the given operation class.
3671 static void addSizeCountTrait(OpClass &opClass, StringRef traitKind,
3672 int numTotal, int numVariadic) {
3673 if (numVariadic != 0) {
3674 if (numTotal == numVariadic)
3675 opClass.addTrait("::mlir::OpTrait::Variadic" + traitKind + "s");
3676 else
3677 opClass.addTrait("::mlir::OpTrait::AtLeastN" + traitKind + "s<" +
3678 Twine(numTotal - numVariadic) + ">::Impl");
3679 return;
3681 switch (numTotal) {
3682 case 0:
3683 opClass.addTrait("::mlir::OpTrait::Zero" + traitKind + "s");
3684 break;
3685 case 1:
3686 opClass.addTrait("::mlir::OpTrait::One" + traitKind);
3687 break;
3688 default:
3689 opClass.addTrait("::mlir::OpTrait::N" + traitKind + "s<" + Twine(numTotal) +
3690 ">::Impl");
3691 break;
3695 void OpEmitter::genTraits() {
3696 // Add region size trait.
3697 unsigned numRegions = op.getNumRegions();
3698 unsigned numVariadicRegions = op.getNumVariadicRegions();
3699 addSizeCountTrait(opClass, "Region", numRegions, numVariadicRegions);
3701 // Add result size traits.
3702 int numResults = op.getNumResults();
3703 int numVariadicResults = op.getNumVariableLengthResults();
3704 addSizeCountTrait(opClass, "Result", numResults, numVariadicResults);
3706 // For single result ops with a known specific type, generate a OneTypedResult
3707 // trait.
3708 if (numResults == 1 && numVariadicResults == 0) {
3709 auto cppName = op.getResults().begin()->constraint.getCPPClassName();
3710 opClass.addTrait("::mlir::OpTrait::OneTypedResult<" + cppName + ">::Impl");
3713 // Add successor size trait.
3714 unsigned numSuccessors = op.getNumSuccessors();
3715 unsigned numVariadicSuccessors = op.getNumVariadicSuccessors();
3716 addSizeCountTrait(opClass, "Successor", numSuccessors, numVariadicSuccessors);
3718 // Add variadic size trait and normal op traits.
3719 int numOperands = op.getNumOperands();
3720 int numVariadicOperands = op.getNumVariableLengthOperands();
3722 // Add operand size trait.
3723 addSizeCountTrait(opClass, "Operand", numOperands, numVariadicOperands);
3725 // The op traits defined internal are ensured that they can be verified
3726 // earlier.
3727 for (const auto &trait : op.getTraits()) {
3728 if (auto *opTrait = dyn_cast<tblgen::NativeTrait>(&trait)) {
3729 if (opTrait->isStructuralOpTrait())
3730 opClass.addTrait(opTrait->getFullyQualifiedTraitName());
3734 // OpInvariants wrapps the verifyInvariants which needs to be run before
3735 // native/interface traits and after all the traits with `StructuralOpTrait`.
3736 opClass.addTrait("::mlir::OpTrait::OpInvariants");
3738 if (emitHelper.hasProperties())
3739 opClass.addTrait("::mlir::BytecodeOpInterface::Trait");
3741 // Add the native and interface traits.
3742 for (const auto &trait : op.getTraits()) {
3743 if (auto *opTrait = dyn_cast<tblgen::NativeTrait>(&trait)) {
3744 if (!opTrait->isStructuralOpTrait())
3745 opClass.addTrait(opTrait->getFullyQualifiedTraitName());
3746 } else if (auto *opTrait = dyn_cast<tblgen::InterfaceTrait>(&trait)) {
3747 opClass.addTrait(opTrait->getFullyQualifiedTraitName());
3752 void OpEmitter::genOpNameGetter() {
3753 auto *method = opClass.addStaticMethod<Method::Constexpr>(
3754 "::llvm::StringLiteral", "getOperationName");
3755 ERROR_IF_PRUNED(method, "getOperationName", op);
3756 method->body() << " return ::llvm::StringLiteral(\"" << op.getOperationName()
3757 << "\");";
3760 void OpEmitter::genOpAsmInterface() {
3761 // If the user only has one results or specifically added the Asm trait,
3762 // then don't generate it for them. We specifically only handle multi result
3763 // operations, because the name of a single result in the common case is not
3764 // interesting(generally 'result'/'output'/etc.).
3765 // TODO: We could also add a flag to allow operations to opt in to this
3766 // generation, even if they only have a single operation.
3767 int numResults = op.getNumResults();
3768 if (numResults <= 1 || op.getTrait("::mlir::OpAsmOpInterface::Trait"))
3769 return;
3771 SmallVector<StringRef, 4> resultNames(numResults);
3772 for (int i = 0; i != numResults; ++i)
3773 resultNames[i] = op.getResultName(i);
3775 // Don't add the trait if none of the results have a valid name.
3776 if (llvm::all_of(resultNames, [](StringRef name) { return name.empty(); }))
3777 return;
3778 opClass.addTrait("::mlir::OpAsmOpInterface::Trait");
3780 // Generate the right accessor for the number of results.
3781 auto *method = opClass.addMethod(
3782 "void", "getAsmResultNames",
3783 MethodParameter("::mlir::OpAsmSetValueNameFn", "setNameFn"));
3784 ERROR_IF_PRUNED(method, "getAsmResultNames", op);
3785 auto &body = method->body();
3786 for (int i = 0; i != numResults; ++i) {
3787 body << " auto resultGroup" << i << " = getODSResults(" << i << ");\n"
3788 << " if (!resultGroup" << i << ".empty())\n"
3789 << " setNameFn(*resultGroup" << i << ".begin(), \""
3790 << resultNames[i] << "\");\n";
3794 //===----------------------------------------------------------------------===//
3795 // OpOperandAdaptor emitter
3796 //===----------------------------------------------------------------------===//
3798 namespace {
3799 // Helper class to emit Op operand adaptors to an output stream. Operand
3800 // adaptors are wrappers around random access ranges that provide named operand
3801 // getters identical to those defined in the Op.
3802 // This currently generates 3 classes per Op:
3803 // * A Base class within the 'detail' namespace, which contains all logic and
3804 // members independent of the random access range that is indexed into.
3805 // In other words, it contains all the attribute and region getters.
3806 // * A templated class named '{OpName}GenericAdaptor' with a template parameter
3807 // 'RangeT' that is indexed into by the getters to access the operands.
3808 // It contains all getters to access operands and inherits from the previous
3809 // class.
3810 // * A class named '{OpName}Adaptor', which inherits from the 'GenericAdaptor'
3811 // with 'mlir::ValueRange' as template parameter. It adds a constructor from
3812 // an instance of the op type and a verify function.
3813 class OpOperandAdaptorEmitter {
3814 public:
3815 static void
3816 emitDecl(const Operator &op,
3817 const StaticVerifierFunctionEmitter &staticVerifierEmitter,
3818 raw_ostream &os);
3819 static void
3820 emitDef(const Operator &op,
3821 const StaticVerifierFunctionEmitter &staticVerifierEmitter,
3822 raw_ostream &os);
3824 private:
3825 explicit OpOperandAdaptorEmitter(
3826 const Operator &op,
3827 const StaticVerifierFunctionEmitter &staticVerifierEmitter);
3829 // Add verification function. This generates a verify method for the adaptor
3830 // which verifies all the op-independent attribute constraints.
3831 void addVerification();
3833 // The operation for which to emit an adaptor.
3834 const Operator &op;
3836 // The generated adaptor classes.
3837 Class genericAdaptorBase;
3838 Class genericAdaptor;
3839 Class adaptor;
3841 // The emitter containing all of the locally emitted verification functions.
3842 const StaticVerifierFunctionEmitter &staticVerifierEmitter;
3844 // Helper for emitting adaptor code.
3845 OpOrAdaptorHelper emitHelper;
3847 } // namespace
3849 OpOperandAdaptorEmitter::OpOperandAdaptorEmitter(
3850 const Operator &op,
3851 const StaticVerifierFunctionEmitter &staticVerifierEmitter)
3852 : op(op), genericAdaptorBase(op.getGenericAdaptorName() + "Base"),
3853 genericAdaptor(op.getGenericAdaptorName()), adaptor(op.getAdaptorName()),
3854 staticVerifierEmitter(staticVerifierEmitter),
3855 emitHelper(op, /*emitForOp=*/false) {
3857 genericAdaptorBase.declare<VisibilityDeclaration>(Visibility::Public);
3858 bool useProperties = emitHelper.hasProperties();
3859 if (useProperties) {
3860 // Define the properties struct with multiple members.
3861 using ConstArgument =
3862 llvm::PointerUnion<const AttributeMetadata *, const NamedProperty *>;
3863 SmallVector<ConstArgument> attrOrProperties;
3864 for (const std::pair<StringRef, AttributeMetadata> &it :
3865 emitHelper.getAttrMetadata()) {
3866 if (!it.second.constraint || !it.second.constraint->isDerivedAttr())
3867 attrOrProperties.push_back(&it.second);
3869 for (const NamedProperty &prop : op.getProperties())
3870 attrOrProperties.push_back(&prop);
3871 if (emitHelper.getOperandSegmentsSize())
3872 attrOrProperties.push_back(&emitHelper.getOperandSegmentsSize().value());
3873 if (emitHelper.getResultSegmentsSize())
3874 attrOrProperties.push_back(&emitHelper.getResultSegmentsSize().value());
3875 assert(!attrOrProperties.empty());
3876 std::string declarations = " struct Properties {\n";
3877 llvm::raw_string_ostream os(declarations);
3878 std::string comparator =
3879 " bool operator==(const Properties &rhs) const {\n"
3880 " return \n";
3881 llvm::raw_string_ostream comparatorOs(comparator);
3882 for (const auto &attrOrProp : attrOrProperties) {
3883 if (const auto *namedProperty =
3884 llvm::dyn_cast_if_present<const NamedProperty *>(attrOrProp)) {
3885 StringRef name = namedProperty->name;
3886 if (name.empty())
3887 report_fatal_error("missing name for property");
3888 std::string camelName =
3889 convertToCamelFromSnakeCase(name, /*capitalizeFirst=*/true);
3890 auto &prop = namedProperty->prop;
3891 // Generate the data member using the storage type.
3892 os << " using " << name << "Ty = " << prop.getStorageType() << ";\n"
3893 << " " << name << "Ty " << name;
3894 if (prop.hasDefaultValue())
3895 os << " = " << prop.getDefaultValue();
3896 comparatorOs << " rhs." << name << " == this->" << name
3897 << " &&\n";
3898 // Emit accessors using the interface type.
3899 const char *accessorFmt = R"decl(;
3900 {0} get{1}() {
3901 auto &propStorage = this->{2};
3902 return {3};
3904 void set{1}(const {0} &propValue) {
3905 auto &propStorage = this->{2};
3906 {4};
3908 )decl";
3909 FmtContext fctx;
3910 os << formatv(accessorFmt, prop.getInterfaceType(), camelName, name,
3911 tgfmt(prop.getConvertFromStorageCall(),
3912 &fctx.addSubst("_storage", propertyStorage)),
3913 tgfmt(prop.getAssignToStorageCall(),
3914 &fctx.addSubst("_value", propertyValue)
3915 .addSubst("_storage", propertyStorage)));
3916 continue;
3918 const auto *namedAttr =
3919 llvm::dyn_cast_if_present<const AttributeMetadata *>(attrOrProp);
3920 const Attribute *attr = nullptr;
3921 if (namedAttr->constraint)
3922 attr = &*namedAttr->constraint;
3923 StringRef name = namedAttr->attrName;
3924 if (name.empty())
3925 report_fatal_error("missing name for property attr");
3926 std::string camelName =
3927 convertToCamelFromSnakeCase(name, /*capitalizeFirst=*/true);
3928 // Generate the data member using the storage type.
3929 StringRef storageType;
3930 if (attr) {
3931 storageType = attr->getStorageType();
3932 } else {
3933 if (name != operandSegmentAttrName && name != resultSegmentAttrName) {
3934 report_fatal_error("unexpected AttributeMetadata");
3936 // TODO: update to use native integers.
3937 storageType = "::mlir::DenseI32ArrayAttr";
3939 os << " using " << name << "Ty = " << storageType << ";\n"
3940 << " " << name << "Ty " << name << ";\n";
3941 comparatorOs << " rhs." << name << " == this->" << name << " &&\n";
3943 // Emit accessors using the interface type.
3944 if (attr) {
3945 const char *accessorFmt = R"decl(
3946 auto get{0}() {
3947 auto &propStorage = this->{1};
3948 return ::llvm::{2}<{3}>(propStorage);
3950 void set{0}(const {3} &propValue) {
3951 this->{1} = propValue;
3953 )decl";
3954 os << formatv(accessorFmt, camelName, name,
3955 attr->isOptional() || attr->hasDefaultValue()
3956 ? "dyn_cast_or_null"
3957 : "cast",
3958 storageType);
3961 comparatorOs << " true;\n }\n"
3962 " bool operator!=(const Properties &rhs) const {\n"
3963 " return !(*this == rhs);\n"
3964 " }\n";
3965 comparatorOs.flush();
3966 os << comparator;
3967 os << " };\n";
3968 os.flush();
3970 genericAdaptorBase.declare<ExtraClassDeclaration>(std::move(declarations));
3972 genericAdaptorBase.declare<VisibilityDeclaration>(Visibility::Protected);
3973 genericAdaptorBase.declare<Field>("::mlir::DictionaryAttr", "odsAttrs");
3974 genericAdaptorBase.declare<Field>("::std::optional<::mlir::OperationName>",
3975 "odsOpName");
3976 if (useProperties)
3977 genericAdaptorBase.declare<Field>("Properties", "properties");
3978 genericAdaptorBase.declare<Field>("::mlir::RegionRange", "odsRegions");
3980 genericAdaptor.addTemplateParam("RangeT");
3981 genericAdaptor.addField("RangeT", "odsOperands");
3982 genericAdaptor.addParent(
3983 ParentClass("detail::" + genericAdaptorBase.getClassName()));
3984 genericAdaptor.declare<UsingDeclaration>(
3985 "ValueT", "::llvm::detail::ValueOfRange<RangeT>");
3986 genericAdaptor.declare<UsingDeclaration>(
3987 "Base", "detail::" + genericAdaptorBase.getClassName());
3989 const auto *attrSizedOperands =
3990 op.getTrait("::mlir::OpTrait::AttrSizedOperandSegments");
3992 SmallVector<MethodParameter> paramList;
3993 paramList.emplace_back("::mlir::DictionaryAttr", "attrs",
3994 attrSizedOperands ? "" : "nullptr");
3995 if (useProperties)
3996 paramList.emplace_back("const Properties &", "properties", "{}");
3997 else
3998 paramList.emplace_back("const ::mlir::EmptyProperties &", "properties",
3999 "{}");
4000 paramList.emplace_back("::mlir::RegionRange", "regions", "{}");
4001 auto *baseConstructor = genericAdaptorBase.addConstructor(paramList);
4002 baseConstructor->addMemberInitializer("odsAttrs", "attrs");
4003 if (useProperties)
4004 baseConstructor->addMemberInitializer("properties", "properties");
4005 baseConstructor->addMemberInitializer("odsRegions", "regions");
4007 MethodBody &body = baseConstructor->body();
4008 body.indent() << "if (odsAttrs)\n";
4009 body.indent() << formatv(
4010 "odsOpName.emplace(\"{0}\", odsAttrs.getContext());\n",
4011 op.getOperationName());
4013 paramList.insert(paramList.begin(), MethodParameter("RangeT", "values"));
4014 auto *constructor = genericAdaptor.addConstructor(paramList);
4015 constructor->addMemberInitializer("Base", "attrs, properties, regions");
4016 constructor->addMemberInitializer("odsOperands", "values");
4018 // Add a forwarding constructor to the previous one that accepts
4019 // OpaqueProperties instead and check for null and perform the cast to the
4020 // actual properties type.
4021 paramList[1] = MethodParameter("::mlir::DictionaryAttr", "attrs");
4022 paramList[2] = MethodParameter("::mlir::OpaqueProperties", "properties");
4023 auto *opaquePropertiesConstructor =
4024 genericAdaptor.addConstructor(std::move(paramList));
4025 if (useProperties) {
4026 opaquePropertiesConstructor->addMemberInitializer(
4027 genericAdaptor.getClassName(),
4028 "values, "
4029 "attrs, "
4030 "(properties ? *properties.as<Properties *>() : Properties{}), "
4031 "regions");
4032 } else {
4033 opaquePropertiesConstructor->addMemberInitializer(
4034 genericAdaptor.getClassName(),
4035 "values, "
4036 "attrs, "
4037 "(properties ? *properties.as<::mlir::EmptyProperties *>() : "
4038 "::mlir::EmptyProperties{}), "
4039 "regions");
4043 // Create constructors constructing the adaptor from an instance of the op.
4044 // This takes the attributes, properties and regions from the op instance
4045 // and the value range from the parameter.
4047 // Base class is in the cpp file and can simply access the members of the op
4048 // class to initialize the template independent fields.
4049 auto *constructor = genericAdaptorBase.addConstructor(
4050 MethodParameter(op.getCppClassName(), "op"));
4051 constructor->addMemberInitializer(
4052 genericAdaptorBase.getClassName(),
4053 llvm::Twine(!useProperties ? "op->getAttrDictionary()"
4054 : "op->getDiscardableAttrDictionary()") +
4055 ", op.getProperties(), op->getRegions()");
4057 // Generic adaptor is templated and therefore defined inline in the header.
4058 // We cannot use the Op class here as it is an incomplete type (we have a
4059 // circular reference between the two).
4060 // Use a template trick to make the constructor be instantiated at call site
4061 // when the op class is complete.
4062 constructor = genericAdaptor.addConstructor(
4063 MethodParameter("RangeT", "values"), MethodParameter("LateInst", "op"));
4064 constructor->addTemplateParam("LateInst = " + op.getCppClassName());
4065 constructor->addTemplateParam(
4066 "= std::enable_if_t<std::is_same_v<LateInst, " + op.getCppClassName() +
4067 ">>");
4068 constructor->addMemberInitializer("Base", "op");
4069 constructor->addMemberInitializer("odsOperands", "values");
4072 std::string sizeAttrInit;
4073 if (op.getTrait("::mlir::OpTrait::AttrSizedOperandSegments")) {
4074 if (op.getDialect().usePropertiesForAttributes())
4075 sizeAttrInit =
4076 formatv(adapterSegmentSizeAttrInitCodeProperties,
4077 llvm::formatv("getProperties().operandSegmentSizes"));
4078 else
4079 sizeAttrInit = formatv(adapterSegmentSizeAttrInitCode,
4080 emitHelper.getAttr(operandSegmentAttrName));
4082 generateNamedOperandGetters(op, genericAdaptor,
4083 /*genericAdaptorBase=*/&genericAdaptorBase,
4084 /*sizeAttrInit=*/sizeAttrInit,
4085 /*rangeType=*/"RangeT",
4086 /*rangeElementType=*/"ValueT",
4087 /*rangeBeginCall=*/"odsOperands.begin()",
4088 /*rangeSizeCall=*/"odsOperands.size()",
4089 /*getOperandCallPattern=*/"odsOperands[{0}]");
4091 // Any invalid overlap for `getOperands` will have been diagnosed before
4092 // here already.
4093 if (auto *m = genericAdaptor.addMethod("RangeT", "getOperands"))
4094 m->body() << " return odsOperands;";
4096 FmtContext fctx;
4097 fctx.withBuilder("::mlir::Builder(odsAttrs.getContext())");
4099 // Generate named accessor with Attribute return type.
4100 auto emitAttrWithStorageType = [&](StringRef name, StringRef emitName,
4101 Attribute attr) {
4102 auto *method =
4103 genericAdaptorBase.addMethod(attr.getStorageType(), emitName + "Attr");
4104 ERROR_IF_PRUNED(method, "Adaptor::" + emitName + "Attr", op);
4105 auto &body = method->body().indent();
4106 if (!useProperties)
4107 body << "assert(odsAttrs && \"no attributes when constructing "
4108 "adapter\");\n";
4109 body << formatv(
4110 "auto attr = ::llvm::{1}<{2}>({0});\n", emitHelper.getAttr(name),
4111 attr.hasDefaultValue() || attr.isOptional() ? "dyn_cast_or_null"
4112 : "cast",
4113 attr.getStorageType());
4115 if (attr.hasDefaultValue() && attr.isOptional()) {
4116 // Use the default value if attribute is not set.
4117 // TODO: this is inefficient, we are recreating the attribute for every
4118 // call. This should be set instead.
4119 std::string defaultValue = std::string(
4120 tgfmt(attr.getConstBuilderTemplate(), &fctx, attr.getDefaultValue()));
4121 body << "if (!attr)\n attr = " << defaultValue << ";\n";
4123 body << "return attr;\n";
4126 if (useProperties) {
4127 auto *m = genericAdaptorBase.addInlineMethod("const Properties &",
4128 "getProperties");
4129 ERROR_IF_PRUNED(m, "Adaptor::getProperties", op);
4130 m->body() << " return properties;";
4133 auto *m =
4134 genericAdaptorBase.addMethod("::mlir::DictionaryAttr", "getAttributes");
4135 ERROR_IF_PRUNED(m, "Adaptor::getAttributes", op);
4136 m->body() << " return odsAttrs;";
4138 for (auto &namedAttr : op.getAttributes()) {
4139 const auto &name = namedAttr.name;
4140 const auto &attr = namedAttr.attr;
4141 if (attr.isDerivedAttr())
4142 continue;
4143 std::string emitName = op.getGetterName(name);
4144 emitAttrWithStorageType(name, emitName, attr);
4145 emitAttrGetterWithReturnType(fctx, genericAdaptorBase, op, emitName, attr);
4148 unsigned numRegions = op.getNumRegions();
4149 for (unsigned i = 0; i < numRegions; ++i) {
4150 const auto &region = op.getRegion(i);
4151 if (region.name.empty())
4152 continue;
4154 // Generate the accessors for a variadic region.
4155 std::string name = op.getGetterName(region.name);
4156 if (region.isVariadic()) {
4157 auto *m = genericAdaptorBase.addMethod("::mlir::RegionRange", name);
4158 ERROR_IF_PRUNED(m, "Adaptor::" + name, op);
4159 m->body() << formatv(" return odsRegions.drop_front({0});", i);
4160 continue;
4163 auto *m = genericAdaptorBase.addMethod("::mlir::Region &", name);
4164 ERROR_IF_PRUNED(m, "Adaptor::" + name, op);
4165 m->body() << formatv(" return *odsRegions[{0}];", i);
4167 if (numRegions > 0) {
4168 // Any invalid overlap for `getRegions` will have been diagnosed before
4169 // here already.
4170 if (auto *m =
4171 genericAdaptorBase.addMethod("::mlir::RegionRange", "getRegions"))
4172 m->body() << " return odsRegions;";
4175 StringRef genericAdaptorClassName = genericAdaptor.getClassName();
4176 adaptor.addParent(ParentClass(genericAdaptorClassName))
4177 .addTemplateParam("::mlir::ValueRange");
4178 adaptor.declare<VisibilityDeclaration>(Visibility::Public);
4179 adaptor.declare<UsingDeclaration>(genericAdaptorClassName +
4180 "::" + genericAdaptorClassName);
4182 // Constructor taking the Op as single parameter.
4183 auto *constructor =
4184 adaptor.addConstructor(MethodParameter(op.getCppClassName(), "op"));
4185 constructor->addMemberInitializer(genericAdaptorClassName,
4186 "op->getOperands(), op");
4189 // Add verification function.
4190 addVerification();
4192 genericAdaptorBase.finalize();
4193 genericAdaptor.finalize();
4194 adaptor.finalize();
4197 void OpOperandAdaptorEmitter::addVerification() {
4198 auto *method = adaptor.addMethod("::mlir::LogicalResult", "verify",
4199 MethodParameter("::mlir::Location", "loc"));
4200 ERROR_IF_PRUNED(method, "verify", op);
4201 auto &body = method->body();
4202 bool useProperties = emitHelper.hasProperties();
4204 FmtContext verifyCtx;
4205 populateSubstitutions(emitHelper, verifyCtx);
4206 genAttributeVerifier(emitHelper, verifyCtx, body, staticVerifierEmitter,
4207 useProperties);
4209 body << " return ::mlir::success();";
4212 void OpOperandAdaptorEmitter::emitDecl(
4213 const Operator &op,
4214 const StaticVerifierFunctionEmitter &staticVerifierEmitter,
4215 raw_ostream &os) {
4216 OpOperandAdaptorEmitter emitter(op, staticVerifierEmitter);
4218 NamespaceEmitter ns(os, "detail");
4219 emitter.genericAdaptorBase.writeDeclTo(os);
4221 emitter.genericAdaptor.writeDeclTo(os);
4222 emitter.adaptor.writeDeclTo(os);
4225 void OpOperandAdaptorEmitter::emitDef(
4226 const Operator &op,
4227 const StaticVerifierFunctionEmitter &staticVerifierEmitter,
4228 raw_ostream &os) {
4229 OpOperandAdaptorEmitter emitter(op, staticVerifierEmitter);
4231 NamespaceEmitter ns(os, "detail");
4232 emitter.genericAdaptorBase.writeDefTo(os);
4234 emitter.genericAdaptor.writeDefTo(os);
4235 emitter.adaptor.writeDefTo(os);
4238 // Emits the opcode enum and op classes.
4239 static void emitOpClasses(const RecordKeeper &recordKeeper,
4240 const std::vector<Record *> &defs, raw_ostream &os,
4241 bool emitDecl) {
4242 // First emit forward declaration for each class, this allows them to refer
4243 // to each others in traits for example.
4244 if (emitDecl) {
4245 os << "#if defined(GET_OP_CLASSES) || defined(GET_OP_FWD_DEFINES)\n";
4246 os << "#undef GET_OP_FWD_DEFINES\n";
4247 for (auto *def : defs) {
4248 Operator op(*def);
4249 NamespaceEmitter emitter(os, op.getCppNamespace());
4250 os << "class " << op.getCppClassName() << ";\n";
4252 os << "#endif\n\n";
4255 IfDefScope scope("GET_OP_CLASSES", os);
4256 if (defs.empty())
4257 return;
4259 // Generate all of the locally instantiated methods first.
4260 StaticVerifierFunctionEmitter staticVerifierEmitter(os, recordKeeper);
4261 os << formatv(opCommentHeader, "Local Utility Method", "Definitions");
4262 staticVerifierEmitter.emitOpConstraints(defs, emitDecl);
4264 for (auto *def : defs) {
4265 Operator op(*def);
4266 if (emitDecl) {
4268 NamespaceEmitter emitter(os, op.getCppNamespace());
4269 os << formatv(opCommentHeader, op.getQualCppClassName(),
4270 "declarations");
4271 OpOperandAdaptorEmitter::emitDecl(op, staticVerifierEmitter, os);
4272 OpEmitter::emitDecl(op, os, staticVerifierEmitter);
4274 // Emit the TypeID explicit specialization to have a single definition.
4275 if (!op.getCppNamespace().empty())
4276 os << "MLIR_DECLARE_EXPLICIT_TYPE_ID(" << op.getCppNamespace()
4277 << "::" << op.getCppClassName() << ")\n\n";
4278 } else {
4280 NamespaceEmitter emitter(os, op.getCppNamespace());
4281 os << formatv(opCommentHeader, op.getQualCppClassName(), "definitions");
4282 OpOperandAdaptorEmitter::emitDef(op, staticVerifierEmitter, os);
4283 OpEmitter::emitDef(op, os, staticVerifierEmitter);
4285 // Emit the TypeID explicit specialization to have a single definition.
4286 if (!op.getCppNamespace().empty())
4287 os << "MLIR_DEFINE_EXPLICIT_TYPE_ID(" << op.getCppNamespace()
4288 << "::" << op.getCppClassName() << ")\n\n";
4293 // Emits a comma-separated list of the ops.
4294 static void emitOpList(const std::vector<Record *> &defs, raw_ostream &os) {
4295 IfDefScope scope("GET_OP_LIST", os);
4297 interleave(
4298 // TODO: We are constructing the Operator wrapper instance just for
4299 // getting it's qualified class name here. Reduce the overhead by having a
4300 // lightweight version of Operator class just for that purpose.
4301 defs, [&os](Record *def) { os << Operator(def).getQualCppClassName(); },
4302 [&os]() { os << ",\n"; });
4305 static bool emitOpDecls(const RecordKeeper &recordKeeper, raw_ostream &os) {
4306 emitSourceFileHeader("Op Declarations", os, recordKeeper);
4308 std::vector<Record *> defs = getRequestedOpDefinitions(recordKeeper);
4309 emitOpClasses(recordKeeper, defs, os, /*emitDecl=*/true);
4311 return false;
4314 static bool emitOpDefs(const RecordKeeper &recordKeeper, raw_ostream &os) {
4315 emitSourceFileHeader("Op Definitions", os, recordKeeper);
4317 std::vector<Record *> defs = getRequestedOpDefinitions(recordKeeper);
4318 emitOpList(defs, os);
4319 emitOpClasses(recordKeeper, defs, os, /*emitDecl=*/false);
4321 return false;
4324 static mlir::GenRegistration
4325 genOpDecls("gen-op-decls", "Generate op declarations",
4326 [](const RecordKeeper &records, raw_ostream &os) {
4327 return emitOpDecls(records, os);
4330 static mlir::GenRegistration genOpDefs("gen-op-defs", "Generate op definitions",
4331 [](const RecordKeeper &records,
4332 raw_ostream &os) {
4333 return emitOpDefs(records, os);