1 //===---- Reduction.cpp - OpenMP device reduction implementation - C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the implementation of reduction with KMPC interface.
11 //===----------------------------------------------------------------------===//
14 #include "Interface.h"
17 #include "Synchronization.h"
25 #pragma omp begin declare target device_type(nohost)
27 void gpu_regular_warp_reduce(void *reduce_data
, ShuffleReductFnTy shflFct
) {
28 for (uint32_t mask
= mapping::getWarpSize() / 2; mask
> 0; mask
/= 2) {
29 shflFct(reduce_data
, /*LaneId - not used= */ 0,
30 /*Offset = */ mask
, /*AlgoVersion=*/0);
34 void gpu_irregular_warp_reduce(void *reduce_data
, ShuffleReductFnTy shflFct
,
35 uint32_t size
, uint32_t tid
) {
41 shflFct(reduce_data
, /*LaneId = */ tid
, /*Offset=*/mask
, /*AlgoVersion=*/1);
42 curr_size
= (curr_size
+ 1) / 2;
47 #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 700
48 static uint32_t gpu_irregular_simd_reduce(void *reduce_data
,
49 ShuffleReductFnTy shflFct
) {
50 uint32_t size
, remote_id
, physical_lane_id
;
51 physical_lane_id
= mapping::getThreadIdInBlock() % mapping::getWarpSize();
52 __kmpc_impl_lanemask_t lanemask_lt
= mapping::lanemaskLT();
53 __kmpc_impl_lanemask_t Liveness
= mapping::activemask();
54 uint32_t logical_lane_id
= utils::popc(Liveness
& lanemask_lt
) * 2;
55 __kmpc_impl_lanemask_t lanemask_gt
= mapping::lanemaskGT();
57 Liveness
= mapping::activemask();
58 remote_id
= utils::ffs(Liveness
& lanemask_gt
);
59 size
= utils::popc(Liveness
);
61 shflFct(reduce_data
, /*LaneId =*/logical_lane_id
,
62 /*Offset=*/remote_id
- 1 - physical_lane_id
, /*AlgoVersion=*/2);
63 } while (logical_lane_id
% 2 == 0 && size
> 1);
64 return (logical_lane_id
== 0);
68 static int32_t nvptx_parallel_reduce_nowait(int32_t TId
, int32_t num_vars
,
71 ShuffleReductFnTy shflFct
,
72 InterWarpCopyFnTy cpyFct
,
73 bool isSPMDExecutionMode
, bool) {
74 uint32_t BlockThreadId
= mapping::getThreadIdInBlock();
75 if (mapping::isMainThreadInGenericMode(/* IsSPMD */ false))
77 uint32_t NumThreads
= omp_get_num_threads();
81 * This reduce function handles reduction within a team. It handles
82 * parallel regions in both L1 and L2 parallelism levels. It also
83 * supports Generic, SPMD, and NoOMP modes.
85 * 1. Reduce within a warp.
86 * 2. Warp master copies value to warp 0 via shared memory.
87 * 3. Warp 0 reduces to a single value.
88 * 4. The reduced value is available in the thread that returns 1.
91 #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700
92 uint32_t WarpsNeeded
=
93 (NumThreads
+ mapping::getWarpSize() - 1) / mapping::getWarpSize();
94 uint32_t WarpId
= mapping::getWarpIdInBlock();
96 // Volta execution model:
97 // For the Generic execution mode a parallel region either has 1 thread and
98 // beyond that, always a multiple of 32. For the SPMD execution mode we may
99 // have any number of threads.
100 if ((NumThreads
% mapping::getWarpSize() == 0) || (WarpId
< WarpsNeeded
- 1))
101 gpu_regular_warp_reduce(reduce_data
, shflFct
);
102 else if (NumThreads
> 1) // Only SPMD execution mode comes thru this case.
103 gpu_irregular_warp_reduce(reduce_data
, shflFct
,
104 /*LaneCount=*/NumThreads
% mapping::getWarpSize(),
105 /*LaneId=*/mapping::getThreadIdInBlock() %
106 mapping::getWarpSize());
108 // When we have more than [mapping::getWarpSize()] number of threads
109 // a block reduction is performed here.
111 // Only L1 parallel region can enter this if condition.
112 if (NumThreads
> mapping::getWarpSize()) {
113 // Gather all the reduced values from each warp
114 // to the first warp.
115 cpyFct(reduce_data
, WarpsNeeded
);
118 gpu_irregular_warp_reduce(reduce_data
, shflFct
, WarpsNeeded
,
121 return BlockThreadId
== 0;
123 __kmpc_impl_lanemask_t Liveness
= mapping::activemask();
124 if (Liveness
== lanes::All
) // Full warp
125 gpu_regular_warp_reduce(reduce_data
, shflFct
);
126 else if (!(Liveness
& (Liveness
+ 1))) // Partial warp but contiguous lanes
127 gpu_irregular_warp_reduce(reduce_data
, shflFct
,
128 /*LaneCount=*/utils::popc(Liveness
),
129 /*LaneId=*/mapping::getThreadIdInBlock() %
130 mapping::getWarpSize());
131 else { // Dispersed lanes. Only threads in L2
132 // parallel region may enter here; return
134 return gpu_irregular_simd_reduce(reduce_data
, shflFct
);
137 // When we have more than [mapping::getWarpSize()] number of threads
138 // a block reduction is performed here.
140 // Only L1 parallel region can enter this if condition.
141 if (NumThreads
> mapping::getWarpSize()) {
142 uint32_t WarpsNeeded
=
143 (NumThreads
+ mapping::getWarpSize() - 1) / mapping::getWarpSize();
144 // Gather all the reduced values from each warp
145 // to the first warp.
146 cpyFct(reduce_data
, WarpsNeeded
);
148 uint32_t WarpId
= BlockThreadId
/ mapping::getWarpSize();
150 gpu_irregular_warp_reduce(reduce_data
, shflFct
, WarpsNeeded
,
153 return BlockThreadId
== 0;
156 // Get the OMP thread Id. This is different from BlockThreadId in the case of
157 // an L2 parallel region.
159 #endif // __CUDA_ARCH__ >= 700
162 uint32_t roundToWarpsize(uint32_t s
) {
163 if (s
< mapping::getWarpSize())
165 return (s
& ~(unsigned)(mapping::getWarpSize() - 1));
168 uint32_t kmpcMin(uint32_t x
, uint32_t y
) { return x
< y
? x
: y
; }
173 int32_t __kmpc_nvptx_parallel_reduce_nowait_v2(
174 IdentTy
*Loc
, int32_t TId
, int32_t num_vars
, uint64_t reduce_size
,
175 void *reduce_data
, ShuffleReductFnTy shflFct
, InterWarpCopyFnTy cpyFct
) {
176 return nvptx_parallel_reduce_nowait(TId
, num_vars
, reduce_size
, reduce_data
,
177 shflFct
, cpyFct
, mapping::isSPMDMode(),
181 int32_t __kmpc_nvptx_teams_reduce_nowait_v2(
182 IdentTy
*Loc
, int32_t TId
, void *GlobalBuffer
, uint32_t num_of_records
,
183 void *reduce_data
, ShuffleReductFnTy shflFct
, InterWarpCopyFnTy cpyFct
,
184 ListGlobalFnTy lgcpyFct
, ListGlobalFnTy lgredFct
, ListGlobalFnTy glcpyFct
,
185 ListGlobalFnTy glredFct
) {
186 // Terminate all threads in non-SPMD mode except for the master thread.
187 uint32_t ThreadId
= mapping::getThreadIdInBlock();
188 if (mapping::isGenericMode()) {
189 if (!mapping::isMainThreadInGenericMode())
194 uint32_t &IterCnt
= state::getKernelLaunchEnvironment().ReductionIterCnt
;
195 uint32_t &Cnt
= state::getKernelLaunchEnvironment().ReductionCnt
;
197 // In non-generic mode all workers participate in the teams reduction.
198 // In generic mode only the team master participates in the teams
199 // reduction because the workers are waiting for parallel work.
200 uint32_t NumThreads
= omp_get_num_threads();
201 uint32_t TeamId
= omp_get_team_num();
202 uint32_t NumTeams
= omp_get_num_teams();
203 static unsigned SHARED(Bound
);
204 static unsigned SHARED(ChunkTeamCount
);
206 // Block progress for teams greater than the current upper
207 // limit. We always only allow a number of teams less or equal
208 // to the number of slots in the buffer.
209 bool IsMaster
= (ThreadId
== 0);
211 Bound
= atomic::load(&IterCnt
, atomic::aquire
);
212 if (TeamId
< Bound
+ num_of_records
)
217 int ModBockId
= TeamId
% num_of_records
;
218 if (TeamId
< num_of_records
) {
219 lgcpyFct(GlobalBuffer
, ModBockId
, reduce_data
);
221 lgredFct(GlobalBuffer
, ModBockId
, reduce_data
);
223 // Increment team counter.
224 // This counter is incremented by all teams in the current
225 // BUFFER_SIZE chunk.
226 ChunkTeamCount
= atomic::inc(&Cnt
, num_of_records
- 1u, atomic::seq_cst
,
227 atomic::MemScopeTy::device
);
230 if (mapping::isSPMDMode())
231 synchronize::threadsAligned(atomic::acq_rel
);
233 fence::kernel(atomic::acq_rel
);
235 // reduce_data is global or shared so before being reduced within the
236 // warp we need to bring it in local memory:
237 // local_reduce_data = reduce_data[i]
239 // Example for 3 reduction variables a, b, c (of potentially different
242 // buffer layout (struct of arrays):
243 // a, a, ..., a, b, b, ... b, c, c, ... c
247 // local_data_reduce layout (struct):
250 // Each thread will have a local struct containing the values to be
252 // 1. do reduction within each warp.
253 // 2. do reduction across warps.
254 // 3. write the final result to the main reduction variable
255 // by returning 1 in the thread holding the reduction result.
257 // Check if this is the very last team.
258 unsigned NumRecs
= kmpcMin(NumTeams
, uint32_t(num_of_records
));
259 if (ChunkTeamCount
== NumTeams
- Bound
- 1) {
261 // Last team processing.
263 if (ThreadId
>= NumRecs
)
265 NumThreads
= roundToWarpsize(kmpcMin(NumThreads
, NumRecs
));
266 if (ThreadId
>= NumThreads
)
269 // Load from buffer and reduce.
270 glcpyFct(GlobalBuffer
, ThreadId
, reduce_data
);
271 for (uint32_t i
= NumThreads
+ ThreadId
; i
< NumRecs
; i
+= NumThreads
)
272 glredFct(GlobalBuffer
, i
, reduce_data
);
274 // Reduce across warps to the warp master.
275 if (NumThreads
> 1) {
276 gpu_regular_warp_reduce(reduce_data
, shflFct
);
278 // When we have more than [mapping::getWarpSize()] number of threads
279 // a block reduction is performed here.
280 uint32_t ActiveThreads
= kmpcMin(NumRecs
, NumThreads
);
281 if (ActiveThreads
> mapping::getWarpSize()) {
282 uint32_t WarpsNeeded
= (ActiveThreads
+ mapping::getWarpSize() - 1) /
283 mapping::getWarpSize();
284 // Gather all the reduced values from each warp
285 // to the first warp.
286 cpyFct(reduce_data
, WarpsNeeded
);
288 uint32_t WarpId
= ThreadId
/ mapping::getWarpSize();
290 gpu_irregular_warp_reduce(reduce_data
, shflFct
, WarpsNeeded
,
302 if (IsMaster
&& ChunkTeamCount
== num_of_records
- 1) {
303 // Allow SIZE number of teams to proceed writing their
304 // intermediate results to the global buffer.
305 atomic::add(&IterCnt
, uint32_t(num_of_records
), atomic::seq_cst
);
311 void __kmpc_nvptx_end_reduce(int32_t TId
) {}
313 void __kmpc_nvptx_end_reduce_nowait(int32_t TId
) {}
316 void *__kmpc_reduction_get_fixed_buffer() {
317 return state::getKernelLaunchEnvironment().ReductionBuffer
;
320 #pragma omp end declare target