[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / openmp / libomptarget / DeviceRTL / src / Reduction.cpp
blobefa09cafa879ec10dd50b122266e8b09ef912b8a
1 //===---- Reduction.cpp - OpenMP device reduction implementation - C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of reduction with KMPC interface.
11 //===----------------------------------------------------------------------===//
13 #include "Debug.h"
14 #include "Interface.h"
15 #include "Mapping.h"
16 #include "State.h"
17 #include "Synchronization.h"
18 #include "Types.h"
19 #include "Utils.h"
21 using namespace ompx;
23 namespace {
25 #pragma omp begin declare target device_type(nohost)
27 void gpu_regular_warp_reduce(void *reduce_data, ShuffleReductFnTy shflFct) {
28 for (uint32_t mask = mapping::getWarpSize() / 2; mask > 0; mask /= 2) {
29 shflFct(reduce_data, /*LaneId - not used= */ 0,
30 /*Offset = */ mask, /*AlgoVersion=*/0);
34 void gpu_irregular_warp_reduce(void *reduce_data, ShuffleReductFnTy shflFct,
35 uint32_t size, uint32_t tid) {
36 uint32_t curr_size;
37 uint32_t mask;
38 curr_size = size;
39 mask = curr_size / 2;
40 while (mask > 0) {
41 shflFct(reduce_data, /*LaneId = */ tid, /*Offset=*/mask, /*AlgoVersion=*/1);
42 curr_size = (curr_size + 1) / 2;
43 mask = curr_size / 2;
47 #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 700
48 static uint32_t gpu_irregular_simd_reduce(void *reduce_data,
49 ShuffleReductFnTy shflFct) {
50 uint32_t size, remote_id, physical_lane_id;
51 physical_lane_id = mapping::getThreadIdInBlock() % mapping::getWarpSize();
52 __kmpc_impl_lanemask_t lanemask_lt = mapping::lanemaskLT();
53 __kmpc_impl_lanemask_t Liveness = mapping::activemask();
54 uint32_t logical_lane_id = utils::popc(Liveness & lanemask_lt) * 2;
55 __kmpc_impl_lanemask_t lanemask_gt = mapping::lanemaskGT();
56 do {
57 Liveness = mapping::activemask();
58 remote_id = utils::ffs(Liveness & lanemask_gt);
59 size = utils::popc(Liveness);
60 logical_lane_id /= 2;
61 shflFct(reduce_data, /*LaneId =*/logical_lane_id,
62 /*Offset=*/remote_id - 1 - physical_lane_id, /*AlgoVersion=*/2);
63 } while (logical_lane_id % 2 == 0 && size > 1);
64 return (logical_lane_id == 0);
66 #endif
68 static int32_t nvptx_parallel_reduce_nowait(int32_t TId, int32_t num_vars,
69 uint64_t reduce_size,
70 void *reduce_data,
71 ShuffleReductFnTy shflFct,
72 InterWarpCopyFnTy cpyFct,
73 bool isSPMDExecutionMode, bool) {
74 uint32_t BlockThreadId = mapping::getThreadIdInBlock();
75 if (mapping::isMainThreadInGenericMode(/* IsSPMD */ false))
76 BlockThreadId = 0;
77 uint32_t NumThreads = omp_get_num_threads();
78 if (NumThreads == 1)
79 return 1;
81 * This reduce function handles reduction within a team. It handles
82 * parallel regions in both L1 and L2 parallelism levels. It also
83 * supports Generic, SPMD, and NoOMP modes.
85 * 1. Reduce within a warp.
86 * 2. Warp master copies value to warp 0 via shared memory.
87 * 3. Warp 0 reduces to a single value.
88 * 4. The reduced value is available in the thread that returns 1.
91 #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700
92 uint32_t WarpsNeeded =
93 (NumThreads + mapping::getWarpSize() - 1) / mapping::getWarpSize();
94 uint32_t WarpId = mapping::getWarpIdInBlock();
96 // Volta execution model:
97 // For the Generic execution mode a parallel region either has 1 thread and
98 // beyond that, always a multiple of 32. For the SPMD execution mode we may
99 // have any number of threads.
100 if ((NumThreads % mapping::getWarpSize() == 0) || (WarpId < WarpsNeeded - 1))
101 gpu_regular_warp_reduce(reduce_data, shflFct);
102 else if (NumThreads > 1) // Only SPMD execution mode comes thru this case.
103 gpu_irregular_warp_reduce(reduce_data, shflFct,
104 /*LaneCount=*/NumThreads % mapping::getWarpSize(),
105 /*LaneId=*/mapping::getThreadIdInBlock() %
106 mapping::getWarpSize());
108 // When we have more than [mapping::getWarpSize()] number of threads
109 // a block reduction is performed here.
111 // Only L1 parallel region can enter this if condition.
112 if (NumThreads > mapping::getWarpSize()) {
113 // Gather all the reduced values from each warp
114 // to the first warp.
115 cpyFct(reduce_data, WarpsNeeded);
117 if (WarpId == 0)
118 gpu_irregular_warp_reduce(reduce_data, shflFct, WarpsNeeded,
119 BlockThreadId);
121 return BlockThreadId == 0;
122 #else
123 __kmpc_impl_lanemask_t Liveness = mapping::activemask();
124 if (Liveness == lanes::All) // Full warp
125 gpu_regular_warp_reduce(reduce_data, shflFct);
126 else if (!(Liveness & (Liveness + 1))) // Partial warp but contiguous lanes
127 gpu_irregular_warp_reduce(reduce_data, shflFct,
128 /*LaneCount=*/utils::popc(Liveness),
129 /*LaneId=*/mapping::getThreadIdInBlock() %
130 mapping::getWarpSize());
131 else { // Dispersed lanes. Only threads in L2
132 // parallel region may enter here; return
133 // early.
134 return gpu_irregular_simd_reduce(reduce_data, shflFct);
137 // When we have more than [mapping::getWarpSize()] number of threads
138 // a block reduction is performed here.
140 // Only L1 parallel region can enter this if condition.
141 if (NumThreads > mapping::getWarpSize()) {
142 uint32_t WarpsNeeded =
143 (NumThreads + mapping::getWarpSize() - 1) / mapping::getWarpSize();
144 // Gather all the reduced values from each warp
145 // to the first warp.
146 cpyFct(reduce_data, WarpsNeeded);
148 uint32_t WarpId = BlockThreadId / mapping::getWarpSize();
149 if (WarpId == 0)
150 gpu_irregular_warp_reduce(reduce_data, shflFct, WarpsNeeded,
151 BlockThreadId);
153 return BlockThreadId == 0;
156 // Get the OMP thread Id. This is different from BlockThreadId in the case of
157 // an L2 parallel region.
158 return TId == 0;
159 #endif // __CUDA_ARCH__ >= 700
162 uint32_t roundToWarpsize(uint32_t s) {
163 if (s < mapping::getWarpSize())
164 return 1;
165 return (s & ~(unsigned)(mapping::getWarpSize() - 1));
168 uint32_t kmpcMin(uint32_t x, uint32_t y) { return x < y ? x : y; }
170 } // namespace
172 extern "C" {
173 int32_t __kmpc_nvptx_parallel_reduce_nowait_v2(
174 IdentTy *Loc, int32_t TId, int32_t num_vars, uint64_t reduce_size,
175 void *reduce_data, ShuffleReductFnTy shflFct, InterWarpCopyFnTy cpyFct) {
176 return nvptx_parallel_reduce_nowait(TId, num_vars, reduce_size, reduce_data,
177 shflFct, cpyFct, mapping::isSPMDMode(),
178 false);
181 int32_t __kmpc_nvptx_teams_reduce_nowait_v2(
182 IdentTy *Loc, int32_t TId, void *GlobalBuffer, uint32_t num_of_records,
183 void *reduce_data, ShuffleReductFnTy shflFct, InterWarpCopyFnTy cpyFct,
184 ListGlobalFnTy lgcpyFct, ListGlobalFnTy lgredFct, ListGlobalFnTy glcpyFct,
185 ListGlobalFnTy glredFct) {
186 // Terminate all threads in non-SPMD mode except for the master thread.
187 uint32_t ThreadId = mapping::getThreadIdInBlock();
188 if (mapping::isGenericMode()) {
189 if (!mapping::isMainThreadInGenericMode())
190 return 0;
191 ThreadId = 0;
194 uint32_t &IterCnt = state::getKernelLaunchEnvironment().ReductionIterCnt;
195 uint32_t &Cnt = state::getKernelLaunchEnvironment().ReductionCnt;
197 // In non-generic mode all workers participate in the teams reduction.
198 // In generic mode only the team master participates in the teams
199 // reduction because the workers are waiting for parallel work.
200 uint32_t NumThreads = omp_get_num_threads();
201 uint32_t TeamId = omp_get_team_num();
202 uint32_t NumTeams = omp_get_num_teams();
203 static unsigned SHARED(Bound);
204 static unsigned SHARED(ChunkTeamCount);
206 // Block progress for teams greater than the current upper
207 // limit. We always only allow a number of teams less or equal
208 // to the number of slots in the buffer.
209 bool IsMaster = (ThreadId == 0);
210 while (IsMaster) {
211 Bound = atomic::load(&IterCnt, atomic::aquire);
212 if (TeamId < Bound + num_of_records)
213 break;
216 if (IsMaster) {
217 int ModBockId = TeamId % num_of_records;
218 if (TeamId < num_of_records) {
219 lgcpyFct(GlobalBuffer, ModBockId, reduce_data);
220 } else
221 lgredFct(GlobalBuffer, ModBockId, reduce_data);
223 // Increment team counter.
224 // This counter is incremented by all teams in the current
225 // BUFFER_SIZE chunk.
226 ChunkTeamCount = atomic::inc(&Cnt, num_of_records - 1u, atomic::seq_cst,
227 atomic::MemScopeTy::device);
229 // Synchronize
230 if (mapping::isSPMDMode())
231 synchronize::threadsAligned(atomic::acq_rel);
232 else
233 fence::kernel(atomic::acq_rel);
235 // reduce_data is global or shared so before being reduced within the
236 // warp we need to bring it in local memory:
237 // local_reduce_data = reduce_data[i]
239 // Example for 3 reduction variables a, b, c (of potentially different
240 // types):
242 // buffer layout (struct of arrays):
243 // a, a, ..., a, b, b, ... b, c, c, ... c
244 // |__________|
245 // num_of_records
247 // local_data_reduce layout (struct):
248 // a, b, c
250 // Each thread will have a local struct containing the values to be
251 // reduced:
252 // 1. do reduction within each warp.
253 // 2. do reduction across warps.
254 // 3. write the final result to the main reduction variable
255 // by returning 1 in the thread holding the reduction result.
257 // Check if this is the very last team.
258 unsigned NumRecs = kmpcMin(NumTeams, uint32_t(num_of_records));
259 if (ChunkTeamCount == NumTeams - Bound - 1) {
261 // Last team processing.
263 if (ThreadId >= NumRecs)
264 return 0;
265 NumThreads = roundToWarpsize(kmpcMin(NumThreads, NumRecs));
266 if (ThreadId >= NumThreads)
267 return 0;
269 // Load from buffer and reduce.
270 glcpyFct(GlobalBuffer, ThreadId, reduce_data);
271 for (uint32_t i = NumThreads + ThreadId; i < NumRecs; i += NumThreads)
272 glredFct(GlobalBuffer, i, reduce_data);
274 // Reduce across warps to the warp master.
275 if (NumThreads > 1) {
276 gpu_regular_warp_reduce(reduce_data, shflFct);
278 // When we have more than [mapping::getWarpSize()] number of threads
279 // a block reduction is performed here.
280 uint32_t ActiveThreads = kmpcMin(NumRecs, NumThreads);
281 if (ActiveThreads > mapping::getWarpSize()) {
282 uint32_t WarpsNeeded = (ActiveThreads + mapping::getWarpSize() - 1) /
283 mapping::getWarpSize();
284 // Gather all the reduced values from each warp
285 // to the first warp.
286 cpyFct(reduce_data, WarpsNeeded);
288 uint32_t WarpId = ThreadId / mapping::getWarpSize();
289 if (WarpId == 0)
290 gpu_irregular_warp_reduce(reduce_data, shflFct, WarpsNeeded,
291 ThreadId);
295 if (IsMaster) {
296 Cnt = 0;
297 IterCnt = 0;
298 return 1;
300 return 0;
302 if (IsMaster && ChunkTeamCount == num_of_records - 1) {
303 // Allow SIZE number of teams to proceed writing their
304 // intermediate results to the global buffer.
305 atomic::add(&IterCnt, uint32_t(num_of_records), atomic::seq_cst);
308 return 0;
311 void __kmpc_nvptx_end_reduce(int32_t TId) {}
313 void __kmpc_nvptx_end_reduce_nowait(int32_t TId) {}
316 void *__kmpc_reduction_get_fixed_buffer() {
317 return state::getKernelLaunchEnvironment().ReductionBuffer;
320 #pragma omp end declare target