[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / openmp / runtime / src / kmp_lock.cpp
blob85c54f4cdc7e96592e3f547a1970aa0b0ac92f49
1 /*
2 * kmp_lock.cpp -- lock-related functions
3 */
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //===----------------------------------------------------------------------===//
13 #include <stddef.h>
14 #include <atomic>
16 #include "kmp.h"
17 #include "kmp_i18n.h"
18 #include "kmp_io.h"
19 #include "kmp_itt.h"
20 #include "kmp_lock.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
24 #if KMP_USE_FUTEX
25 #include <sys/syscall.h>
26 #include <unistd.h>
27 // We should really include <futex.h>, but that causes compatibility problems on
28 // different Linux* OS distributions that either require that you include (or
29 // break when you try to include) <pci/types.h>. Since all we need is the two
30 // macros below (which are part of the kernel ABI, so can't change) we just
31 // define the constants here and don't include <futex.h>
32 #ifndef FUTEX_WAIT
33 #define FUTEX_WAIT 0
34 #endif
35 #ifndef FUTEX_WAKE
36 #define FUTEX_WAKE 1
37 #endif
38 #endif
40 /* Implement spin locks for internal library use. */
41 /* The algorithm implemented is Lamport's bakery lock [1974]. */
43 void __kmp_validate_locks(void) {
44 int i;
45 kmp_uint32 x, y;
47 /* Check to make sure unsigned arithmetic does wraps properly */
48 x = ~((kmp_uint32)0) - 2;
49 y = x - 2;
51 for (i = 0; i < 8; ++i, ++x, ++y) {
52 kmp_uint32 z = (x - y);
53 KMP_ASSERT(z == 2);
56 KMP_ASSERT(offsetof(kmp_base_queuing_lock, tail_id) % 8 == 0);
59 /* ------------------------------------------------------------------------ */
60 /* test and set locks */
62 // For the non-nested locks, we can only assume that the first 4 bytes were
63 // allocated, since gcc only allocates 4 bytes for omp_lock_t, and the Intel
64 // compiler only allocates a 4 byte pointer on IA-32 architecture. On
65 // Windows* OS on Intel(R) 64, we can assume that all 8 bytes were allocated.
67 // gcc reserves >= 8 bytes for nested locks, so we can assume that the
68 // entire 8 bytes were allocated for nested locks on all 64-bit platforms.
70 static kmp_int32 __kmp_get_tas_lock_owner(kmp_tas_lock_t *lck) {
71 return KMP_LOCK_STRIP(KMP_ATOMIC_LD_RLX(&lck->lk.poll)) - 1;
74 static inline bool __kmp_is_tas_lock_nestable(kmp_tas_lock_t *lck) {
75 return lck->lk.depth_locked != -1;
78 __forceinline static int
79 __kmp_acquire_tas_lock_timed_template(kmp_tas_lock_t *lck, kmp_int32 gtid) {
80 KMP_MB();
82 #ifdef USE_LOCK_PROFILE
83 kmp_uint32 curr = KMP_LOCK_STRIP(lck->lk.poll);
84 if ((curr != 0) && (curr != gtid + 1))
85 __kmp_printf("LOCK CONTENTION: %p\n", lck);
86 /* else __kmp_printf( "." );*/
87 #endif /* USE_LOCK_PROFILE */
89 kmp_int32 tas_free = KMP_LOCK_FREE(tas);
90 kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas);
92 if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == tas_free &&
93 __kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)) {
94 KMP_FSYNC_ACQUIRED(lck);
95 return KMP_LOCK_ACQUIRED_FIRST;
98 kmp_uint32 spins;
99 kmp_uint64 time;
100 KMP_FSYNC_PREPARE(lck);
101 KMP_INIT_YIELD(spins);
102 KMP_INIT_BACKOFF(time);
103 kmp_backoff_t backoff = __kmp_spin_backoff_params;
104 do {
105 #if !KMP_HAVE_UMWAIT
106 __kmp_spin_backoff(&backoff);
107 #else
108 if (!__kmp_tpause_enabled)
109 __kmp_spin_backoff(&backoff);
110 #endif
111 KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time);
112 } while (KMP_ATOMIC_LD_RLX(&lck->lk.poll) != tas_free ||
113 !__kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy));
114 KMP_FSYNC_ACQUIRED(lck);
115 return KMP_LOCK_ACQUIRED_FIRST;
118 int __kmp_acquire_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
119 int retval = __kmp_acquire_tas_lock_timed_template(lck, gtid);
120 return retval;
123 static int __kmp_acquire_tas_lock_with_checks(kmp_tas_lock_t *lck,
124 kmp_int32 gtid) {
125 char const *const func = "omp_set_lock";
126 if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
127 __kmp_is_tas_lock_nestable(lck)) {
128 KMP_FATAL(LockNestableUsedAsSimple, func);
130 if ((gtid >= 0) && (__kmp_get_tas_lock_owner(lck) == gtid)) {
131 KMP_FATAL(LockIsAlreadyOwned, func);
133 return __kmp_acquire_tas_lock(lck, gtid);
136 int __kmp_test_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
137 kmp_int32 tas_free = KMP_LOCK_FREE(tas);
138 kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas);
139 if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == tas_free &&
140 __kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)) {
141 KMP_FSYNC_ACQUIRED(lck);
142 return TRUE;
144 return FALSE;
147 static int __kmp_test_tas_lock_with_checks(kmp_tas_lock_t *lck,
148 kmp_int32 gtid) {
149 char const *const func = "omp_test_lock";
150 if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
151 __kmp_is_tas_lock_nestable(lck)) {
152 KMP_FATAL(LockNestableUsedAsSimple, func);
154 return __kmp_test_tas_lock(lck, gtid);
157 int __kmp_release_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
158 KMP_MB(); /* Flush all pending memory write invalidates. */
160 KMP_FSYNC_RELEASING(lck);
161 KMP_ATOMIC_ST_REL(&lck->lk.poll, KMP_LOCK_FREE(tas));
162 KMP_MB(); /* Flush all pending memory write invalidates. */
164 KMP_YIELD_OVERSUB();
165 return KMP_LOCK_RELEASED;
168 static int __kmp_release_tas_lock_with_checks(kmp_tas_lock_t *lck,
169 kmp_int32 gtid) {
170 char const *const func = "omp_unset_lock";
171 KMP_MB(); /* in case another processor initialized lock */
172 if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
173 __kmp_is_tas_lock_nestable(lck)) {
174 KMP_FATAL(LockNestableUsedAsSimple, func);
176 if (__kmp_get_tas_lock_owner(lck) == -1) {
177 KMP_FATAL(LockUnsettingFree, func);
179 if ((gtid >= 0) && (__kmp_get_tas_lock_owner(lck) >= 0) &&
180 (__kmp_get_tas_lock_owner(lck) != gtid)) {
181 KMP_FATAL(LockUnsettingSetByAnother, func);
183 return __kmp_release_tas_lock(lck, gtid);
186 void __kmp_init_tas_lock(kmp_tas_lock_t *lck) {
187 lck->lk.poll = KMP_LOCK_FREE(tas);
190 void __kmp_destroy_tas_lock(kmp_tas_lock_t *lck) { lck->lk.poll = 0; }
192 static void __kmp_destroy_tas_lock_with_checks(kmp_tas_lock_t *lck) {
193 char const *const func = "omp_destroy_lock";
194 if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
195 __kmp_is_tas_lock_nestable(lck)) {
196 KMP_FATAL(LockNestableUsedAsSimple, func);
198 if (__kmp_get_tas_lock_owner(lck) != -1) {
199 KMP_FATAL(LockStillOwned, func);
201 __kmp_destroy_tas_lock(lck);
204 // nested test and set locks
206 int __kmp_acquire_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
207 KMP_DEBUG_ASSERT(gtid >= 0);
209 if (__kmp_get_tas_lock_owner(lck) == gtid) {
210 lck->lk.depth_locked += 1;
211 return KMP_LOCK_ACQUIRED_NEXT;
212 } else {
213 __kmp_acquire_tas_lock_timed_template(lck, gtid);
214 lck->lk.depth_locked = 1;
215 return KMP_LOCK_ACQUIRED_FIRST;
219 static int __kmp_acquire_nested_tas_lock_with_checks(kmp_tas_lock_t *lck,
220 kmp_int32 gtid) {
221 char const *const func = "omp_set_nest_lock";
222 if (!__kmp_is_tas_lock_nestable(lck)) {
223 KMP_FATAL(LockSimpleUsedAsNestable, func);
225 return __kmp_acquire_nested_tas_lock(lck, gtid);
228 int __kmp_test_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
229 int retval;
231 KMP_DEBUG_ASSERT(gtid >= 0);
233 if (__kmp_get_tas_lock_owner(lck) == gtid) {
234 retval = ++lck->lk.depth_locked;
235 } else if (!__kmp_test_tas_lock(lck, gtid)) {
236 retval = 0;
237 } else {
238 KMP_MB();
239 retval = lck->lk.depth_locked = 1;
241 return retval;
244 static int __kmp_test_nested_tas_lock_with_checks(kmp_tas_lock_t *lck,
245 kmp_int32 gtid) {
246 char const *const func = "omp_test_nest_lock";
247 if (!__kmp_is_tas_lock_nestable(lck)) {
248 KMP_FATAL(LockSimpleUsedAsNestable, func);
250 return __kmp_test_nested_tas_lock(lck, gtid);
253 int __kmp_release_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
254 KMP_DEBUG_ASSERT(gtid >= 0);
256 KMP_MB();
257 if (--(lck->lk.depth_locked) == 0) {
258 __kmp_release_tas_lock(lck, gtid);
259 return KMP_LOCK_RELEASED;
261 return KMP_LOCK_STILL_HELD;
264 static int __kmp_release_nested_tas_lock_with_checks(kmp_tas_lock_t *lck,
265 kmp_int32 gtid) {
266 char const *const func = "omp_unset_nest_lock";
267 KMP_MB(); /* in case another processor initialized lock */
268 if (!__kmp_is_tas_lock_nestable(lck)) {
269 KMP_FATAL(LockSimpleUsedAsNestable, func);
271 if (__kmp_get_tas_lock_owner(lck) == -1) {
272 KMP_FATAL(LockUnsettingFree, func);
274 if (__kmp_get_tas_lock_owner(lck) != gtid) {
275 KMP_FATAL(LockUnsettingSetByAnother, func);
277 return __kmp_release_nested_tas_lock(lck, gtid);
280 void __kmp_init_nested_tas_lock(kmp_tas_lock_t *lck) {
281 __kmp_init_tas_lock(lck);
282 lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
285 void __kmp_destroy_nested_tas_lock(kmp_tas_lock_t *lck) {
286 __kmp_destroy_tas_lock(lck);
287 lck->lk.depth_locked = 0;
290 static void __kmp_destroy_nested_tas_lock_with_checks(kmp_tas_lock_t *lck) {
291 char const *const func = "omp_destroy_nest_lock";
292 if (!__kmp_is_tas_lock_nestable(lck)) {
293 KMP_FATAL(LockSimpleUsedAsNestable, func);
295 if (__kmp_get_tas_lock_owner(lck) != -1) {
296 KMP_FATAL(LockStillOwned, func);
298 __kmp_destroy_nested_tas_lock(lck);
301 #if KMP_USE_FUTEX
303 /* ------------------------------------------------------------------------ */
304 /* futex locks */
306 // futex locks are really just test and set locks, with a different method
307 // of handling contention. They take the same amount of space as test and
308 // set locks, and are allocated the same way (i.e. use the area allocated by
309 // the compiler for non-nested locks / allocate nested locks on the heap).
311 static kmp_int32 __kmp_get_futex_lock_owner(kmp_futex_lock_t *lck) {
312 return KMP_LOCK_STRIP((TCR_4(lck->lk.poll) >> 1)) - 1;
315 static inline bool __kmp_is_futex_lock_nestable(kmp_futex_lock_t *lck) {
316 return lck->lk.depth_locked != -1;
319 __forceinline static int
320 __kmp_acquire_futex_lock_timed_template(kmp_futex_lock_t *lck, kmp_int32 gtid) {
321 kmp_int32 gtid_code = (gtid + 1) << 1;
323 KMP_MB();
325 #ifdef USE_LOCK_PROFILE
326 kmp_uint32 curr = KMP_LOCK_STRIP(TCR_4(lck->lk.poll));
327 if ((curr != 0) && (curr != gtid_code))
328 __kmp_printf("LOCK CONTENTION: %p\n", lck);
329 /* else __kmp_printf( "." );*/
330 #endif /* USE_LOCK_PROFILE */
332 KMP_FSYNC_PREPARE(lck);
333 KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d entering\n",
334 lck, lck->lk.poll, gtid));
336 kmp_int32 poll_val;
338 while ((poll_val = KMP_COMPARE_AND_STORE_RET32(
339 &(lck->lk.poll), KMP_LOCK_FREE(futex),
340 KMP_LOCK_BUSY(gtid_code, futex))) != KMP_LOCK_FREE(futex)) {
342 kmp_int32 cond = KMP_LOCK_STRIP(poll_val) & 1;
343 KA_TRACE(
344 1000,
345 ("__kmp_acquire_futex_lock: lck:%p, T#%d poll_val = 0x%x cond = 0x%x\n",
346 lck, gtid, poll_val, cond));
348 // NOTE: if you try to use the following condition for this branch
350 // if ( poll_val & 1 == 0 )
352 // Then the 12.0 compiler has a bug where the following block will
353 // always be skipped, regardless of the value of the LSB of poll_val.
354 if (!cond) {
355 // Try to set the lsb in the poll to indicate to the owner
356 // thread that they need to wake this thread up.
357 if (!KMP_COMPARE_AND_STORE_REL32(&(lck->lk.poll), poll_val,
358 poll_val | KMP_LOCK_BUSY(1, futex))) {
359 KA_TRACE(
360 1000,
361 ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d can't set bit 0\n",
362 lck, lck->lk.poll, gtid));
363 continue;
365 poll_val |= KMP_LOCK_BUSY(1, futex);
367 KA_TRACE(1000,
368 ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d bit 0 set\n", lck,
369 lck->lk.poll, gtid));
372 KA_TRACE(
373 1000,
374 ("__kmp_acquire_futex_lock: lck:%p, T#%d before futex_wait(0x%x)\n",
375 lck, gtid, poll_val));
377 long rc;
378 if ((rc = syscall(__NR_futex, &(lck->lk.poll), FUTEX_WAIT, poll_val, NULL,
379 NULL, 0)) != 0) {
380 KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p, T#%d futex_wait(0x%x) "
381 "failed (rc=%ld errno=%d)\n",
382 lck, gtid, poll_val, rc, errno));
383 continue;
386 KA_TRACE(1000,
387 ("__kmp_acquire_futex_lock: lck:%p, T#%d after futex_wait(0x%x)\n",
388 lck, gtid, poll_val));
389 // This thread has now done a successful futex wait call and was entered on
390 // the OS futex queue. We must now perform a futex wake call when releasing
391 // the lock, as we have no idea how many other threads are in the queue.
392 gtid_code |= 1;
395 KMP_FSYNC_ACQUIRED(lck);
396 KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d exiting\n", lck,
397 lck->lk.poll, gtid));
398 return KMP_LOCK_ACQUIRED_FIRST;
401 int __kmp_acquire_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
402 int retval = __kmp_acquire_futex_lock_timed_template(lck, gtid);
403 return retval;
406 static int __kmp_acquire_futex_lock_with_checks(kmp_futex_lock_t *lck,
407 kmp_int32 gtid) {
408 char const *const func = "omp_set_lock";
409 if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) &&
410 __kmp_is_futex_lock_nestable(lck)) {
411 KMP_FATAL(LockNestableUsedAsSimple, func);
413 if ((gtid >= 0) && (__kmp_get_futex_lock_owner(lck) == gtid)) {
414 KMP_FATAL(LockIsAlreadyOwned, func);
416 return __kmp_acquire_futex_lock(lck, gtid);
419 int __kmp_test_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
420 if (KMP_COMPARE_AND_STORE_ACQ32(&(lck->lk.poll), KMP_LOCK_FREE(futex),
421 KMP_LOCK_BUSY((gtid + 1) << 1, futex))) {
422 KMP_FSYNC_ACQUIRED(lck);
423 return TRUE;
425 return FALSE;
428 static int __kmp_test_futex_lock_with_checks(kmp_futex_lock_t *lck,
429 kmp_int32 gtid) {
430 char const *const func = "omp_test_lock";
431 if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) &&
432 __kmp_is_futex_lock_nestable(lck)) {
433 KMP_FATAL(LockNestableUsedAsSimple, func);
435 return __kmp_test_futex_lock(lck, gtid);
438 int __kmp_release_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
439 KMP_MB(); /* Flush all pending memory write invalidates. */
441 KA_TRACE(1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d entering\n",
442 lck, lck->lk.poll, gtid));
444 KMP_FSYNC_RELEASING(lck);
446 kmp_int32 poll_val = KMP_XCHG_FIXED32(&(lck->lk.poll), KMP_LOCK_FREE(futex));
448 KA_TRACE(1000,
449 ("__kmp_release_futex_lock: lck:%p, T#%d released poll_val = 0x%x\n",
450 lck, gtid, poll_val));
452 if (KMP_LOCK_STRIP(poll_val) & 1) {
453 KA_TRACE(1000,
454 ("__kmp_release_futex_lock: lck:%p, T#%d futex_wake 1 thread\n",
455 lck, gtid));
456 syscall(__NR_futex, &(lck->lk.poll), FUTEX_WAKE, KMP_LOCK_BUSY(1, futex),
457 NULL, NULL, 0);
460 KMP_MB(); /* Flush all pending memory write invalidates. */
462 KA_TRACE(1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d exiting\n", lck,
463 lck->lk.poll, gtid));
465 KMP_YIELD_OVERSUB();
466 return KMP_LOCK_RELEASED;
469 static int __kmp_release_futex_lock_with_checks(kmp_futex_lock_t *lck,
470 kmp_int32 gtid) {
471 char const *const func = "omp_unset_lock";
472 KMP_MB(); /* in case another processor initialized lock */
473 if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) &&
474 __kmp_is_futex_lock_nestable(lck)) {
475 KMP_FATAL(LockNestableUsedAsSimple, func);
477 if (__kmp_get_futex_lock_owner(lck) == -1) {
478 KMP_FATAL(LockUnsettingFree, func);
480 if ((gtid >= 0) && (__kmp_get_futex_lock_owner(lck) >= 0) &&
481 (__kmp_get_futex_lock_owner(lck) != gtid)) {
482 KMP_FATAL(LockUnsettingSetByAnother, func);
484 return __kmp_release_futex_lock(lck, gtid);
487 void __kmp_init_futex_lock(kmp_futex_lock_t *lck) {
488 TCW_4(lck->lk.poll, KMP_LOCK_FREE(futex));
491 void __kmp_destroy_futex_lock(kmp_futex_lock_t *lck) { lck->lk.poll = 0; }
493 static void __kmp_destroy_futex_lock_with_checks(kmp_futex_lock_t *lck) {
494 char const *const func = "omp_destroy_lock";
495 if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) &&
496 __kmp_is_futex_lock_nestable(lck)) {
497 KMP_FATAL(LockNestableUsedAsSimple, func);
499 if (__kmp_get_futex_lock_owner(lck) != -1) {
500 KMP_FATAL(LockStillOwned, func);
502 __kmp_destroy_futex_lock(lck);
505 // nested futex locks
507 int __kmp_acquire_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
508 KMP_DEBUG_ASSERT(gtid >= 0);
510 if (__kmp_get_futex_lock_owner(lck) == gtid) {
511 lck->lk.depth_locked += 1;
512 return KMP_LOCK_ACQUIRED_NEXT;
513 } else {
514 __kmp_acquire_futex_lock_timed_template(lck, gtid);
515 lck->lk.depth_locked = 1;
516 return KMP_LOCK_ACQUIRED_FIRST;
520 static int __kmp_acquire_nested_futex_lock_with_checks(kmp_futex_lock_t *lck,
521 kmp_int32 gtid) {
522 char const *const func = "omp_set_nest_lock";
523 if (!__kmp_is_futex_lock_nestable(lck)) {
524 KMP_FATAL(LockSimpleUsedAsNestable, func);
526 return __kmp_acquire_nested_futex_lock(lck, gtid);
529 int __kmp_test_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
530 int retval;
532 KMP_DEBUG_ASSERT(gtid >= 0);
534 if (__kmp_get_futex_lock_owner(lck) == gtid) {
535 retval = ++lck->lk.depth_locked;
536 } else if (!__kmp_test_futex_lock(lck, gtid)) {
537 retval = 0;
538 } else {
539 KMP_MB();
540 retval = lck->lk.depth_locked = 1;
542 return retval;
545 static int __kmp_test_nested_futex_lock_with_checks(kmp_futex_lock_t *lck,
546 kmp_int32 gtid) {
547 char const *const func = "omp_test_nest_lock";
548 if (!__kmp_is_futex_lock_nestable(lck)) {
549 KMP_FATAL(LockSimpleUsedAsNestable, func);
551 return __kmp_test_nested_futex_lock(lck, gtid);
554 int __kmp_release_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
555 KMP_DEBUG_ASSERT(gtid >= 0);
557 KMP_MB();
558 if (--(lck->lk.depth_locked) == 0) {
559 __kmp_release_futex_lock(lck, gtid);
560 return KMP_LOCK_RELEASED;
562 return KMP_LOCK_STILL_HELD;
565 static int __kmp_release_nested_futex_lock_with_checks(kmp_futex_lock_t *lck,
566 kmp_int32 gtid) {
567 char const *const func = "omp_unset_nest_lock";
568 KMP_MB(); /* in case another processor initialized lock */
569 if (!__kmp_is_futex_lock_nestable(lck)) {
570 KMP_FATAL(LockSimpleUsedAsNestable, func);
572 if (__kmp_get_futex_lock_owner(lck) == -1) {
573 KMP_FATAL(LockUnsettingFree, func);
575 if (__kmp_get_futex_lock_owner(lck) != gtid) {
576 KMP_FATAL(LockUnsettingSetByAnother, func);
578 return __kmp_release_nested_futex_lock(lck, gtid);
581 void __kmp_init_nested_futex_lock(kmp_futex_lock_t *lck) {
582 __kmp_init_futex_lock(lck);
583 lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
586 void __kmp_destroy_nested_futex_lock(kmp_futex_lock_t *lck) {
587 __kmp_destroy_futex_lock(lck);
588 lck->lk.depth_locked = 0;
591 static void __kmp_destroy_nested_futex_lock_with_checks(kmp_futex_lock_t *lck) {
592 char const *const func = "omp_destroy_nest_lock";
593 if (!__kmp_is_futex_lock_nestable(lck)) {
594 KMP_FATAL(LockSimpleUsedAsNestable, func);
596 if (__kmp_get_futex_lock_owner(lck) != -1) {
597 KMP_FATAL(LockStillOwned, func);
599 __kmp_destroy_nested_futex_lock(lck);
602 #endif // KMP_USE_FUTEX
604 /* ------------------------------------------------------------------------ */
605 /* ticket (bakery) locks */
607 static kmp_int32 __kmp_get_ticket_lock_owner(kmp_ticket_lock_t *lck) {
608 return std::atomic_load_explicit(&lck->lk.owner_id,
609 std::memory_order_relaxed) -
613 static inline bool __kmp_is_ticket_lock_nestable(kmp_ticket_lock_t *lck) {
614 return std::atomic_load_explicit(&lck->lk.depth_locked,
615 std::memory_order_relaxed) != -1;
618 static kmp_uint32 __kmp_bakery_check(void *now_serving, kmp_uint32 my_ticket) {
619 return std::atomic_load_explicit((std::atomic<unsigned> *)now_serving,
620 std::memory_order_acquire) == my_ticket;
623 __forceinline static int
624 __kmp_acquire_ticket_lock_timed_template(kmp_ticket_lock_t *lck,
625 kmp_int32 gtid) {
626 kmp_uint32 my_ticket = std::atomic_fetch_add_explicit(
627 &lck->lk.next_ticket, 1U, std::memory_order_relaxed);
629 #ifdef USE_LOCK_PROFILE
630 if (std::atomic_load_explicit(&lck->lk.now_serving,
631 std::memory_order_relaxed) != my_ticket)
632 __kmp_printf("LOCK CONTENTION: %p\n", lck);
633 /* else __kmp_printf( "." );*/
634 #endif /* USE_LOCK_PROFILE */
636 if (std::atomic_load_explicit(&lck->lk.now_serving,
637 std::memory_order_acquire) == my_ticket) {
638 return KMP_LOCK_ACQUIRED_FIRST;
640 KMP_WAIT_PTR(&lck->lk.now_serving, my_ticket, __kmp_bakery_check, lck);
641 return KMP_LOCK_ACQUIRED_FIRST;
644 int __kmp_acquire_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
645 int retval = __kmp_acquire_ticket_lock_timed_template(lck, gtid);
646 return retval;
649 static int __kmp_acquire_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
650 kmp_int32 gtid) {
651 char const *const func = "omp_set_lock";
653 if (!std::atomic_load_explicit(&lck->lk.initialized,
654 std::memory_order_relaxed)) {
655 KMP_FATAL(LockIsUninitialized, func);
657 if (lck->lk.self != lck) {
658 KMP_FATAL(LockIsUninitialized, func);
660 if (__kmp_is_ticket_lock_nestable(lck)) {
661 KMP_FATAL(LockNestableUsedAsSimple, func);
663 if ((gtid >= 0) && (__kmp_get_ticket_lock_owner(lck) == gtid)) {
664 KMP_FATAL(LockIsAlreadyOwned, func);
667 __kmp_acquire_ticket_lock(lck, gtid);
669 std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1,
670 std::memory_order_relaxed);
671 return KMP_LOCK_ACQUIRED_FIRST;
674 int __kmp_test_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
675 kmp_uint32 my_ticket = std::atomic_load_explicit(&lck->lk.next_ticket,
676 std::memory_order_relaxed);
678 if (std::atomic_load_explicit(&lck->lk.now_serving,
679 std::memory_order_relaxed) == my_ticket) {
680 kmp_uint32 next_ticket = my_ticket + 1;
681 if (std::atomic_compare_exchange_strong_explicit(
682 &lck->lk.next_ticket, &my_ticket, next_ticket,
683 std::memory_order_acquire, std::memory_order_acquire)) {
684 return TRUE;
687 return FALSE;
690 static int __kmp_test_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
691 kmp_int32 gtid) {
692 char const *const func = "omp_test_lock";
694 if (!std::atomic_load_explicit(&lck->lk.initialized,
695 std::memory_order_relaxed)) {
696 KMP_FATAL(LockIsUninitialized, func);
698 if (lck->lk.self != lck) {
699 KMP_FATAL(LockIsUninitialized, func);
701 if (__kmp_is_ticket_lock_nestable(lck)) {
702 KMP_FATAL(LockNestableUsedAsSimple, func);
705 int retval = __kmp_test_ticket_lock(lck, gtid);
707 if (retval) {
708 std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1,
709 std::memory_order_relaxed);
711 return retval;
714 int __kmp_release_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
715 kmp_uint32 distance = std::atomic_load_explicit(&lck->lk.next_ticket,
716 std::memory_order_relaxed) -
717 std::atomic_load_explicit(&lck->lk.now_serving,
718 std::memory_order_relaxed);
720 std::atomic_fetch_add_explicit(&lck->lk.now_serving, 1U,
721 std::memory_order_release);
723 KMP_YIELD(distance >
724 (kmp_uint32)(__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc));
725 return KMP_LOCK_RELEASED;
728 static int __kmp_release_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
729 kmp_int32 gtid) {
730 char const *const func = "omp_unset_lock";
732 if (!std::atomic_load_explicit(&lck->lk.initialized,
733 std::memory_order_relaxed)) {
734 KMP_FATAL(LockIsUninitialized, func);
736 if (lck->lk.self != lck) {
737 KMP_FATAL(LockIsUninitialized, func);
739 if (__kmp_is_ticket_lock_nestable(lck)) {
740 KMP_FATAL(LockNestableUsedAsSimple, func);
742 if (__kmp_get_ticket_lock_owner(lck) == -1) {
743 KMP_FATAL(LockUnsettingFree, func);
745 if ((gtid >= 0) && (__kmp_get_ticket_lock_owner(lck) >= 0) &&
746 (__kmp_get_ticket_lock_owner(lck) != gtid)) {
747 KMP_FATAL(LockUnsettingSetByAnother, func);
749 std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed);
750 return __kmp_release_ticket_lock(lck, gtid);
753 void __kmp_init_ticket_lock(kmp_ticket_lock_t *lck) {
754 lck->lk.location = NULL;
755 lck->lk.self = lck;
756 std::atomic_store_explicit(&lck->lk.next_ticket, 0U,
757 std::memory_order_relaxed);
758 std::atomic_store_explicit(&lck->lk.now_serving, 0U,
759 std::memory_order_relaxed);
760 std::atomic_store_explicit(
761 &lck->lk.owner_id, 0,
762 std::memory_order_relaxed); // no thread owns the lock.
763 std::atomic_store_explicit(
764 &lck->lk.depth_locked, -1,
765 std::memory_order_relaxed); // -1 => not a nested lock.
766 std::atomic_store_explicit(&lck->lk.initialized, true,
767 std::memory_order_release);
770 void __kmp_destroy_ticket_lock(kmp_ticket_lock_t *lck) {
771 std::atomic_store_explicit(&lck->lk.initialized, false,
772 std::memory_order_release);
773 lck->lk.self = NULL;
774 lck->lk.location = NULL;
775 std::atomic_store_explicit(&lck->lk.next_ticket, 0U,
776 std::memory_order_relaxed);
777 std::atomic_store_explicit(&lck->lk.now_serving, 0U,
778 std::memory_order_relaxed);
779 std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed);
780 std::atomic_store_explicit(&lck->lk.depth_locked, -1,
781 std::memory_order_relaxed);
784 static void __kmp_destroy_ticket_lock_with_checks(kmp_ticket_lock_t *lck) {
785 char const *const func = "omp_destroy_lock";
787 if (!std::atomic_load_explicit(&lck->lk.initialized,
788 std::memory_order_relaxed)) {
789 KMP_FATAL(LockIsUninitialized, func);
791 if (lck->lk.self != lck) {
792 KMP_FATAL(LockIsUninitialized, func);
794 if (__kmp_is_ticket_lock_nestable(lck)) {
795 KMP_FATAL(LockNestableUsedAsSimple, func);
797 if (__kmp_get_ticket_lock_owner(lck) != -1) {
798 KMP_FATAL(LockStillOwned, func);
800 __kmp_destroy_ticket_lock(lck);
803 // nested ticket locks
805 int __kmp_acquire_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
806 KMP_DEBUG_ASSERT(gtid >= 0);
808 if (__kmp_get_ticket_lock_owner(lck) == gtid) {
809 std::atomic_fetch_add_explicit(&lck->lk.depth_locked, 1,
810 std::memory_order_relaxed);
811 return KMP_LOCK_ACQUIRED_NEXT;
812 } else {
813 __kmp_acquire_ticket_lock_timed_template(lck, gtid);
814 std::atomic_store_explicit(&lck->lk.depth_locked, 1,
815 std::memory_order_relaxed);
816 std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1,
817 std::memory_order_relaxed);
818 return KMP_LOCK_ACQUIRED_FIRST;
822 static int __kmp_acquire_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
823 kmp_int32 gtid) {
824 char const *const func = "omp_set_nest_lock";
826 if (!std::atomic_load_explicit(&lck->lk.initialized,
827 std::memory_order_relaxed)) {
828 KMP_FATAL(LockIsUninitialized, func);
830 if (lck->lk.self != lck) {
831 KMP_FATAL(LockIsUninitialized, func);
833 if (!__kmp_is_ticket_lock_nestable(lck)) {
834 KMP_FATAL(LockSimpleUsedAsNestable, func);
836 return __kmp_acquire_nested_ticket_lock(lck, gtid);
839 int __kmp_test_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
840 int retval;
842 KMP_DEBUG_ASSERT(gtid >= 0);
844 if (__kmp_get_ticket_lock_owner(lck) == gtid) {
845 retval = std::atomic_fetch_add_explicit(&lck->lk.depth_locked, 1,
846 std::memory_order_relaxed) +
848 } else if (!__kmp_test_ticket_lock(lck, gtid)) {
849 retval = 0;
850 } else {
851 std::atomic_store_explicit(&lck->lk.depth_locked, 1,
852 std::memory_order_relaxed);
853 std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1,
854 std::memory_order_relaxed);
855 retval = 1;
857 return retval;
860 static int __kmp_test_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
861 kmp_int32 gtid) {
862 char const *const func = "omp_test_nest_lock";
864 if (!std::atomic_load_explicit(&lck->lk.initialized,
865 std::memory_order_relaxed)) {
866 KMP_FATAL(LockIsUninitialized, func);
868 if (lck->lk.self != lck) {
869 KMP_FATAL(LockIsUninitialized, func);
871 if (!__kmp_is_ticket_lock_nestable(lck)) {
872 KMP_FATAL(LockSimpleUsedAsNestable, func);
874 return __kmp_test_nested_ticket_lock(lck, gtid);
877 int __kmp_release_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
878 KMP_DEBUG_ASSERT(gtid >= 0);
880 if ((std::atomic_fetch_add_explicit(&lck->lk.depth_locked, -1,
881 std::memory_order_relaxed) -
882 1) == 0) {
883 std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed);
884 __kmp_release_ticket_lock(lck, gtid);
885 return KMP_LOCK_RELEASED;
887 return KMP_LOCK_STILL_HELD;
890 static int __kmp_release_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
891 kmp_int32 gtid) {
892 char const *const func = "omp_unset_nest_lock";
894 if (!std::atomic_load_explicit(&lck->lk.initialized,
895 std::memory_order_relaxed)) {
896 KMP_FATAL(LockIsUninitialized, func);
898 if (lck->lk.self != lck) {
899 KMP_FATAL(LockIsUninitialized, func);
901 if (!__kmp_is_ticket_lock_nestable(lck)) {
902 KMP_FATAL(LockSimpleUsedAsNestable, func);
904 if (__kmp_get_ticket_lock_owner(lck) == -1) {
905 KMP_FATAL(LockUnsettingFree, func);
907 if (__kmp_get_ticket_lock_owner(lck) != gtid) {
908 KMP_FATAL(LockUnsettingSetByAnother, func);
910 return __kmp_release_nested_ticket_lock(lck, gtid);
913 void __kmp_init_nested_ticket_lock(kmp_ticket_lock_t *lck) {
914 __kmp_init_ticket_lock(lck);
915 std::atomic_store_explicit(&lck->lk.depth_locked, 0,
916 std::memory_order_relaxed);
917 // >= 0 for nestable locks, -1 for simple locks
920 void __kmp_destroy_nested_ticket_lock(kmp_ticket_lock_t *lck) {
921 __kmp_destroy_ticket_lock(lck);
922 std::atomic_store_explicit(&lck->lk.depth_locked, 0,
923 std::memory_order_relaxed);
926 static void
927 __kmp_destroy_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck) {
928 char const *const func = "omp_destroy_nest_lock";
930 if (!std::atomic_load_explicit(&lck->lk.initialized,
931 std::memory_order_relaxed)) {
932 KMP_FATAL(LockIsUninitialized, func);
934 if (lck->lk.self != lck) {
935 KMP_FATAL(LockIsUninitialized, func);
937 if (!__kmp_is_ticket_lock_nestable(lck)) {
938 KMP_FATAL(LockSimpleUsedAsNestable, func);
940 if (__kmp_get_ticket_lock_owner(lck) != -1) {
941 KMP_FATAL(LockStillOwned, func);
943 __kmp_destroy_nested_ticket_lock(lck);
946 // access functions to fields which don't exist for all lock kinds.
948 static const ident_t *__kmp_get_ticket_lock_location(kmp_ticket_lock_t *lck) {
949 return lck->lk.location;
952 static void __kmp_set_ticket_lock_location(kmp_ticket_lock_t *lck,
953 const ident_t *loc) {
954 lck->lk.location = loc;
957 static kmp_lock_flags_t __kmp_get_ticket_lock_flags(kmp_ticket_lock_t *lck) {
958 return lck->lk.flags;
961 static void __kmp_set_ticket_lock_flags(kmp_ticket_lock_t *lck,
962 kmp_lock_flags_t flags) {
963 lck->lk.flags = flags;
966 /* ------------------------------------------------------------------------ */
967 /* queuing locks */
969 /* First the states
970 (head,tail) = 0, 0 means lock is unheld, nobody on queue
971 UINT_MAX or -1, 0 means lock is held, nobody on queue
972 h, h means lock held or about to transition,
973 1 element on queue
974 h, t h <> t, means lock is held or about to
975 transition, >1 elements on queue
977 Now the transitions
978 Acquire(0,0) = -1 ,0
979 Release(0,0) = Error
980 Acquire(-1,0) = h ,h h > 0
981 Release(-1,0) = 0 ,0
982 Acquire(h,h) = h ,t h > 0, t > 0, h <> t
983 Release(h,h) = -1 ,0 h > 0
984 Acquire(h,t) = h ,t' h > 0, t > 0, t' > 0, h <> t, h <> t', t <> t'
985 Release(h,t) = h',t h > 0, t > 0, h <> t, h <> h', h' maybe = t
987 And pictorially
989 +-----+
990 | 0, 0|------- release -------> Error
991 +-----+
993 acquire| |release
997 +-----+
998 |-1, 0|
999 +-----+
1001 acquire| |release
1005 +-----+
1006 | h, h|
1007 +-----+
1009 acquire| |release
1013 +-----+
1014 | h, t|----- acquire, release loopback ---+
1015 +-----+ |
1018 +------------------------------------+
1021 #ifdef DEBUG_QUEUING_LOCKS
1023 /* Stuff for circular trace buffer */
1024 #define TRACE_BUF_ELE 1024
1025 static char traces[TRACE_BUF_ELE][128] = {0};
1026 static int tc = 0;
1027 #define TRACE_LOCK(X, Y) \
1028 KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s\n", X, Y);
1029 #define TRACE_LOCK_T(X, Y, Z) \
1030 KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s%d\n", X, Y, Z);
1031 #define TRACE_LOCK_HT(X, Y, Z, Q) \
1032 KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s %d,%d\n", X, Y, \
1033 Z, Q);
1035 static void __kmp_dump_queuing_lock(kmp_info_t *this_thr, kmp_int32 gtid,
1036 kmp_queuing_lock_t *lck, kmp_int32 head_id,
1037 kmp_int32 tail_id) {
1038 kmp_int32 t, i;
1040 __kmp_printf_no_lock("\n__kmp_dump_queuing_lock: TRACE BEGINS HERE! \n");
1042 i = tc % TRACE_BUF_ELE;
1043 __kmp_printf_no_lock("%s\n", traces[i]);
1044 i = (i + 1) % TRACE_BUF_ELE;
1045 while (i != (tc % TRACE_BUF_ELE)) {
1046 __kmp_printf_no_lock("%s", traces[i]);
1047 i = (i + 1) % TRACE_BUF_ELE;
1049 __kmp_printf_no_lock("\n");
1051 __kmp_printf_no_lock("\n__kmp_dump_queuing_lock: gtid+1:%d, spin_here:%d, "
1052 "next_wait:%d, head_id:%d, tail_id:%d\n",
1053 gtid + 1, this_thr->th.th_spin_here,
1054 this_thr->th.th_next_waiting, head_id, tail_id);
1056 __kmp_printf_no_lock("\t\thead: %d ", lck->lk.head_id);
1058 if (lck->lk.head_id >= 1) {
1059 t = __kmp_threads[lck->lk.head_id - 1]->th.th_next_waiting;
1060 while (t > 0) {
1061 __kmp_printf_no_lock("-> %d ", t);
1062 t = __kmp_threads[t - 1]->th.th_next_waiting;
1065 __kmp_printf_no_lock("; tail: %d ", lck->lk.tail_id);
1066 __kmp_printf_no_lock("\n\n");
1069 #endif /* DEBUG_QUEUING_LOCKS */
1071 static kmp_int32 __kmp_get_queuing_lock_owner(kmp_queuing_lock_t *lck) {
1072 return TCR_4(lck->lk.owner_id) - 1;
1075 static inline bool __kmp_is_queuing_lock_nestable(kmp_queuing_lock_t *lck) {
1076 return lck->lk.depth_locked != -1;
1079 /* Acquire a lock using a the queuing lock implementation */
1080 template <bool takeTime>
1081 /* [TLW] The unused template above is left behind because of what BEB believes
1082 is a potential compiler problem with __forceinline. */
1083 __forceinline static int
1084 __kmp_acquire_queuing_lock_timed_template(kmp_queuing_lock_t *lck,
1085 kmp_int32 gtid) {
1086 kmp_info_t *this_thr = __kmp_thread_from_gtid(gtid);
1087 volatile kmp_int32 *head_id_p = &lck->lk.head_id;
1088 volatile kmp_int32 *tail_id_p = &lck->lk.tail_id;
1089 volatile kmp_uint32 *spin_here_p;
1091 #if OMPT_SUPPORT
1092 ompt_state_t prev_state = ompt_state_undefined;
1093 #endif
1095 KA_TRACE(1000,
1096 ("__kmp_acquire_queuing_lock: lck:%p, T#%d entering\n", lck, gtid));
1098 KMP_FSYNC_PREPARE(lck);
1099 KMP_DEBUG_ASSERT(this_thr != NULL);
1100 spin_here_p = &this_thr->th.th_spin_here;
1102 #ifdef DEBUG_QUEUING_LOCKS
1103 TRACE_LOCK(gtid + 1, "acq ent");
1104 if (*spin_here_p)
1105 __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1106 if (this_thr->th.th_next_waiting != 0)
1107 __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1108 #endif
1109 KMP_DEBUG_ASSERT(!*spin_here_p);
1110 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0);
1112 /* The following st.rel to spin_here_p needs to precede the cmpxchg.acq to
1113 head_id_p that may follow, not just in execution order, but also in
1114 visibility order. This way, when a releasing thread observes the changes to
1115 the queue by this thread, it can rightly assume that spin_here_p has
1116 already been set to TRUE, so that when it sets spin_here_p to FALSE, it is
1117 not premature. If the releasing thread sets spin_here_p to FALSE before
1118 this thread sets it to TRUE, this thread will hang. */
1119 *spin_here_p = TRUE; /* before enqueuing to prevent race */
1121 while (1) {
1122 kmp_int32 enqueued;
1123 kmp_int32 head;
1124 kmp_int32 tail;
1126 head = *head_id_p;
1128 switch (head) {
1130 case -1: {
1131 #ifdef DEBUG_QUEUING_LOCKS
1132 tail = *tail_id_p;
1133 TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail);
1134 #endif
1135 tail = 0; /* to make sure next link asynchronously read is not set
1136 accidentally; this assignment prevents us from entering the
1137 if ( t > 0 ) condition in the enqueued case below, which is not
1138 necessary for this state transition */
1140 /* try (-1,0)->(tid,tid) */
1141 enqueued = KMP_COMPARE_AND_STORE_ACQ64((volatile kmp_int64 *)tail_id_p,
1142 KMP_PACK_64(-1, 0),
1143 KMP_PACK_64(gtid + 1, gtid + 1));
1144 #ifdef DEBUG_QUEUING_LOCKS
1145 if (enqueued)
1146 TRACE_LOCK(gtid + 1, "acq enq: (-1,0)->(tid,tid)");
1147 #endif
1148 } break;
1150 default: {
1151 tail = *tail_id_p;
1152 KMP_DEBUG_ASSERT(tail != gtid + 1);
1154 #ifdef DEBUG_QUEUING_LOCKS
1155 TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail);
1156 #endif
1158 if (tail == 0) {
1159 enqueued = FALSE;
1160 } else {
1161 /* try (h,t) or (h,h)->(h,tid) */
1162 enqueued = KMP_COMPARE_AND_STORE_ACQ32(tail_id_p, tail, gtid + 1);
1164 #ifdef DEBUG_QUEUING_LOCKS
1165 if (enqueued)
1166 TRACE_LOCK(gtid + 1, "acq enq: (h,t)->(h,tid)");
1167 #endif
1169 } break;
1171 case 0: /* empty queue */
1173 kmp_int32 grabbed_lock;
1175 #ifdef DEBUG_QUEUING_LOCKS
1176 tail = *tail_id_p;
1177 TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail);
1178 #endif
1179 /* try (0,0)->(-1,0) */
1181 /* only legal transition out of head = 0 is head = -1 with no change to
1182 * tail */
1183 grabbed_lock = KMP_COMPARE_AND_STORE_ACQ32(head_id_p, 0, -1);
1185 if (grabbed_lock) {
1187 *spin_here_p = FALSE;
1189 KA_TRACE(
1190 1000,
1191 ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: no queuing\n",
1192 lck, gtid));
1193 #ifdef DEBUG_QUEUING_LOCKS
1194 TRACE_LOCK_HT(gtid + 1, "acq exit: ", head, 0);
1195 #endif
1197 #if OMPT_SUPPORT
1198 if (ompt_enabled.enabled && prev_state != ompt_state_undefined) {
1199 /* change the state before clearing wait_id */
1200 this_thr->th.ompt_thread_info.state = prev_state;
1201 this_thr->th.ompt_thread_info.wait_id = 0;
1203 #endif
1205 KMP_FSYNC_ACQUIRED(lck);
1206 return KMP_LOCK_ACQUIRED_FIRST; /* lock holder cannot be on queue */
1208 enqueued = FALSE;
1209 } break;
1212 #if OMPT_SUPPORT
1213 if (ompt_enabled.enabled && prev_state == ompt_state_undefined) {
1214 /* this thread will spin; set wait_id before entering wait state */
1215 prev_state = this_thr->th.ompt_thread_info.state;
1216 this_thr->th.ompt_thread_info.wait_id = (uint64_t)lck;
1217 this_thr->th.ompt_thread_info.state = ompt_state_wait_lock;
1219 #endif
1221 if (enqueued) {
1222 if (tail > 0) {
1223 kmp_info_t *tail_thr = __kmp_thread_from_gtid(tail - 1);
1224 KMP_ASSERT(tail_thr != NULL);
1225 tail_thr->th.th_next_waiting = gtid + 1;
1226 /* corresponding wait for this write in release code */
1228 KA_TRACE(1000,
1229 ("__kmp_acquire_queuing_lock: lck:%p, T#%d waiting for lock\n",
1230 lck, gtid));
1232 KMP_MB();
1233 // ToDo: Use __kmp_wait_sleep or similar when blocktime != inf
1234 KMP_WAIT(spin_here_p, FALSE, KMP_EQ, lck);
1235 // Synchronize writes to both runtime thread structures
1236 // and writes in user code.
1237 KMP_MB();
1239 #ifdef DEBUG_QUEUING_LOCKS
1240 TRACE_LOCK(gtid + 1, "acq spin");
1242 if (this_thr->th.th_next_waiting != 0)
1243 __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1244 #endif
1245 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0);
1246 KA_TRACE(1000, ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: after "
1247 "waiting on queue\n",
1248 lck, gtid));
1250 #ifdef DEBUG_QUEUING_LOCKS
1251 TRACE_LOCK(gtid + 1, "acq exit 2");
1252 #endif
1254 #if OMPT_SUPPORT
1255 /* change the state before clearing wait_id */
1256 this_thr->th.ompt_thread_info.state = prev_state;
1257 this_thr->th.ompt_thread_info.wait_id = 0;
1258 #endif
1260 /* got lock, we were dequeued by the thread that released lock */
1261 return KMP_LOCK_ACQUIRED_FIRST;
1264 /* Yield if number of threads > number of logical processors */
1265 /* ToDo: Not sure why this should only be in oversubscription case,
1266 maybe should be traditional YIELD_INIT/YIELD_WHEN loop */
1267 KMP_YIELD_OVERSUB();
1269 #ifdef DEBUG_QUEUING_LOCKS
1270 TRACE_LOCK(gtid + 1, "acq retry");
1271 #endif
1273 KMP_ASSERT2(0, "should not get here");
1274 return KMP_LOCK_ACQUIRED_FIRST;
1277 int __kmp_acquire_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1278 KMP_DEBUG_ASSERT(gtid >= 0);
1280 int retval = __kmp_acquire_queuing_lock_timed_template<false>(lck, gtid);
1281 return retval;
1284 static int __kmp_acquire_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1285 kmp_int32 gtid) {
1286 char const *const func = "omp_set_lock";
1287 if (lck->lk.initialized != lck) {
1288 KMP_FATAL(LockIsUninitialized, func);
1290 if (__kmp_is_queuing_lock_nestable(lck)) {
1291 KMP_FATAL(LockNestableUsedAsSimple, func);
1293 if (__kmp_get_queuing_lock_owner(lck) == gtid) {
1294 KMP_FATAL(LockIsAlreadyOwned, func);
1297 __kmp_acquire_queuing_lock(lck, gtid);
1299 lck->lk.owner_id = gtid + 1;
1300 return KMP_LOCK_ACQUIRED_FIRST;
1303 int __kmp_test_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1304 volatile kmp_int32 *head_id_p = &lck->lk.head_id;
1305 kmp_int32 head;
1306 #ifdef KMP_DEBUG
1307 kmp_info_t *this_thr;
1308 #endif
1310 KA_TRACE(1000, ("__kmp_test_queuing_lock: T#%d entering\n", gtid));
1311 KMP_DEBUG_ASSERT(gtid >= 0);
1312 #ifdef KMP_DEBUG
1313 this_thr = __kmp_thread_from_gtid(gtid);
1314 KMP_DEBUG_ASSERT(this_thr != NULL);
1315 KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here);
1316 #endif
1318 head = *head_id_p;
1320 if (head == 0) { /* nobody on queue, nobody holding */
1321 /* try (0,0)->(-1,0) */
1322 if (KMP_COMPARE_AND_STORE_ACQ32(head_id_p, 0, -1)) {
1323 KA_TRACE(1000,
1324 ("__kmp_test_queuing_lock: T#%d exiting: holding lock\n", gtid));
1325 KMP_FSYNC_ACQUIRED(lck);
1326 return TRUE;
1330 KA_TRACE(1000,
1331 ("__kmp_test_queuing_lock: T#%d exiting: without lock\n", gtid));
1332 return FALSE;
1335 static int __kmp_test_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1336 kmp_int32 gtid) {
1337 char const *const func = "omp_test_lock";
1338 if (lck->lk.initialized != lck) {
1339 KMP_FATAL(LockIsUninitialized, func);
1341 if (__kmp_is_queuing_lock_nestable(lck)) {
1342 KMP_FATAL(LockNestableUsedAsSimple, func);
1345 int retval = __kmp_test_queuing_lock(lck, gtid);
1347 if (retval) {
1348 lck->lk.owner_id = gtid + 1;
1350 return retval;
1353 int __kmp_release_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1354 volatile kmp_int32 *head_id_p = &lck->lk.head_id;
1355 volatile kmp_int32 *tail_id_p = &lck->lk.tail_id;
1357 KA_TRACE(1000,
1358 ("__kmp_release_queuing_lock: lck:%p, T#%d entering\n", lck, gtid));
1359 KMP_DEBUG_ASSERT(gtid >= 0);
1360 #if KMP_DEBUG || DEBUG_QUEUING_LOCKS
1361 kmp_info_t *this_thr = __kmp_thread_from_gtid(gtid);
1362 #endif
1363 KMP_DEBUG_ASSERT(this_thr != NULL);
1364 #ifdef DEBUG_QUEUING_LOCKS
1365 TRACE_LOCK(gtid + 1, "rel ent");
1367 if (this_thr->th.th_spin_here)
1368 __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1369 if (this_thr->th.th_next_waiting != 0)
1370 __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1371 #endif
1372 KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here);
1373 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0);
1375 KMP_FSYNC_RELEASING(lck);
1377 while (1) {
1378 kmp_int32 dequeued;
1379 kmp_int32 head;
1380 kmp_int32 tail;
1382 head = *head_id_p;
1384 #ifdef DEBUG_QUEUING_LOCKS
1385 tail = *tail_id_p;
1386 TRACE_LOCK_HT(gtid + 1, "rel read: ", head, tail);
1387 if (head == 0)
1388 __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail);
1389 #endif
1390 KMP_DEBUG_ASSERT(head !=
1391 0); /* holding the lock, head must be -1 or queue head */
1393 if (head == -1) { /* nobody on queue */
1394 /* try (-1,0)->(0,0) */
1395 if (KMP_COMPARE_AND_STORE_REL32(head_id_p, -1, 0)) {
1396 KA_TRACE(
1397 1000,
1398 ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: queue empty\n",
1399 lck, gtid));
1400 #ifdef DEBUG_QUEUING_LOCKS
1401 TRACE_LOCK_HT(gtid + 1, "rel exit: ", 0, 0);
1402 #endif
1404 #if OMPT_SUPPORT
1405 /* nothing to do - no other thread is trying to shift blame */
1406 #endif
1407 return KMP_LOCK_RELEASED;
1409 dequeued = FALSE;
1410 } else {
1411 KMP_MB();
1412 tail = *tail_id_p;
1413 if (head == tail) { /* only one thread on the queue */
1414 #ifdef DEBUG_QUEUING_LOCKS
1415 if (head <= 0)
1416 __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail);
1417 #endif
1418 KMP_DEBUG_ASSERT(head > 0);
1420 /* try (h,h)->(-1,0) */
1421 dequeued = KMP_COMPARE_AND_STORE_REL64(
1422 RCAST(volatile kmp_int64 *, tail_id_p), KMP_PACK_64(head, head),
1423 KMP_PACK_64(-1, 0));
1424 #ifdef DEBUG_QUEUING_LOCKS
1425 TRACE_LOCK(gtid + 1, "rel deq: (h,h)->(-1,0)");
1426 #endif
1428 } else {
1429 volatile kmp_int32 *waiting_id_p;
1430 kmp_info_t *head_thr = __kmp_thread_from_gtid(head - 1);
1431 KMP_DEBUG_ASSERT(head_thr != NULL);
1432 waiting_id_p = &head_thr->th.th_next_waiting;
1434 /* Does this require synchronous reads? */
1435 #ifdef DEBUG_QUEUING_LOCKS
1436 if (head <= 0 || tail <= 0)
1437 __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail);
1438 #endif
1439 KMP_DEBUG_ASSERT(head > 0 && tail > 0);
1441 /* try (h,t)->(h',t) or (t,t) */
1442 KMP_MB();
1443 /* make sure enqueuing thread has time to update next waiting thread
1444 * field */
1445 *head_id_p =
1446 KMP_WAIT((volatile kmp_uint32 *)waiting_id_p, 0, KMP_NEQ, NULL);
1447 #ifdef DEBUG_QUEUING_LOCKS
1448 TRACE_LOCK(gtid + 1, "rel deq: (h,t)->(h',t)");
1449 #endif
1450 dequeued = TRUE;
1454 if (dequeued) {
1455 kmp_info_t *head_thr = __kmp_thread_from_gtid(head - 1);
1456 KMP_DEBUG_ASSERT(head_thr != NULL);
1458 /* Does this require synchronous reads? */
1459 #ifdef DEBUG_QUEUING_LOCKS
1460 if (head <= 0 || tail <= 0)
1461 __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail);
1462 #endif
1463 KMP_DEBUG_ASSERT(head > 0 && tail > 0);
1465 /* For clean code only. Thread not released until next statement prevents
1466 race with acquire code. */
1467 head_thr->th.th_next_waiting = 0;
1468 #ifdef DEBUG_QUEUING_LOCKS
1469 TRACE_LOCK_T(gtid + 1, "rel nw=0 for t=", head);
1470 #endif
1472 KMP_MB();
1473 /* reset spin value */
1474 head_thr->th.th_spin_here = FALSE;
1476 KA_TRACE(1000, ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: after "
1477 "dequeuing\n",
1478 lck, gtid));
1479 #ifdef DEBUG_QUEUING_LOCKS
1480 TRACE_LOCK(gtid + 1, "rel exit 2");
1481 #endif
1482 return KMP_LOCK_RELEASED;
1484 /* KMP_CPU_PAUSE(); don't want to make releasing thread hold up acquiring
1485 threads */
1487 #ifdef DEBUG_QUEUING_LOCKS
1488 TRACE_LOCK(gtid + 1, "rel retry");
1489 #endif
1491 } /* while */
1492 KMP_ASSERT2(0, "should not get here");
1493 return KMP_LOCK_RELEASED;
1496 static int __kmp_release_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1497 kmp_int32 gtid) {
1498 char const *const func = "omp_unset_lock";
1499 KMP_MB(); /* in case another processor initialized lock */
1500 if (lck->lk.initialized != lck) {
1501 KMP_FATAL(LockIsUninitialized, func);
1503 if (__kmp_is_queuing_lock_nestable(lck)) {
1504 KMP_FATAL(LockNestableUsedAsSimple, func);
1506 if (__kmp_get_queuing_lock_owner(lck) == -1) {
1507 KMP_FATAL(LockUnsettingFree, func);
1509 if (__kmp_get_queuing_lock_owner(lck) != gtid) {
1510 KMP_FATAL(LockUnsettingSetByAnother, func);
1512 lck->lk.owner_id = 0;
1513 return __kmp_release_queuing_lock(lck, gtid);
1516 void __kmp_init_queuing_lock(kmp_queuing_lock_t *lck) {
1517 lck->lk.location = NULL;
1518 lck->lk.head_id = 0;
1519 lck->lk.tail_id = 0;
1520 lck->lk.next_ticket = 0;
1521 lck->lk.now_serving = 0;
1522 lck->lk.owner_id = 0; // no thread owns the lock.
1523 lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks.
1524 lck->lk.initialized = lck;
1526 KA_TRACE(1000, ("__kmp_init_queuing_lock: lock %p initialized\n", lck));
1529 void __kmp_destroy_queuing_lock(kmp_queuing_lock_t *lck) {
1530 lck->lk.initialized = NULL;
1531 lck->lk.location = NULL;
1532 lck->lk.head_id = 0;
1533 lck->lk.tail_id = 0;
1534 lck->lk.next_ticket = 0;
1535 lck->lk.now_serving = 0;
1536 lck->lk.owner_id = 0;
1537 lck->lk.depth_locked = -1;
1540 static void __kmp_destroy_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
1541 char const *const func = "omp_destroy_lock";
1542 if (lck->lk.initialized != lck) {
1543 KMP_FATAL(LockIsUninitialized, func);
1545 if (__kmp_is_queuing_lock_nestable(lck)) {
1546 KMP_FATAL(LockNestableUsedAsSimple, func);
1548 if (__kmp_get_queuing_lock_owner(lck) != -1) {
1549 KMP_FATAL(LockStillOwned, func);
1551 __kmp_destroy_queuing_lock(lck);
1554 // nested queuing locks
1556 int __kmp_acquire_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1557 KMP_DEBUG_ASSERT(gtid >= 0);
1559 if (__kmp_get_queuing_lock_owner(lck) == gtid) {
1560 lck->lk.depth_locked += 1;
1561 return KMP_LOCK_ACQUIRED_NEXT;
1562 } else {
1563 __kmp_acquire_queuing_lock_timed_template<false>(lck, gtid);
1564 KMP_MB();
1565 lck->lk.depth_locked = 1;
1566 KMP_MB();
1567 lck->lk.owner_id = gtid + 1;
1568 return KMP_LOCK_ACQUIRED_FIRST;
1572 static int
1573 __kmp_acquire_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1574 kmp_int32 gtid) {
1575 char const *const func = "omp_set_nest_lock";
1576 if (lck->lk.initialized != lck) {
1577 KMP_FATAL(LockIsUninitialized, func);
1579 if (!__kmp_is_queuing_lock_nestable(lck)) {
1580 KMP_FATAL(LockSimpleUsedAsNestable, func);
1582 return __kmp_acquire_nested_queuing_lock(lck, gtid);
1585 int __kmp_test_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1586 int retval;
1588 KMP_DEBUG_ASSERT(gtid >= 0);
1590 if (__kmp_get_queuing_lock_owner(lck) == gtid) {
1591 retval = ++lck->lk.depth_locked;
1592 } else if (!__kmp_test_queuing_lock(lck, gtid)) {
1593 retval = 0;
1594 } else {
1595 KMP_MB();
1596 retval = lck->lk.depth_locked = 1;
1597 KMP_MB();
1598 lck->lk.owner_id = gtid + 1;
1600 return retval;
1603 static int __kmp_test_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1604 kmp_int32 gtid) {
1605 char const *const func = "omp_test_nest_lock";
1606 if (lck->lk.initialized != lck) {
1607 KMP_FATAL(LockIsUninitialized, func);
1609 if (!__kmp_is_queuing_lock_nestable(lck)) {
1610 KMP_FATAL(LockSimpleUsedAsNestable, func);
1612 return __kmp_test_nested_queuing_lock(lck, gtid);
1615 int __kmp_release_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1616 KMP_DEBUG_ASSERT(gtid >= 0);
1618 KMP_MB();
1619 if (--(lck->lk.depth_locked) == 0) {
1620 KMP_MB();
1621 lck->lk.owner_id = 0;
1622 __kmp_release_queuing_lock(lck, gtid);
1623 return KMP_LOCK_RELEASED;
1625 return KMP_LOCK_STILL_HELD;
1628 static int
1629 __kmp_release_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1630 kmp_int32 gtid) {
1631 char const *const func = "omp_unset_nest_lock";
1632 KMP_MB(); /* in case another processor initialized lock */
1633 if (lck->lk.initialized != lck) {
1634 KMP_FATAL(LockIsUninitialized, func);
1636 if (!__kmp_is_queuing_lock_nestable(lck)) {
1637 KMP_FATAL(LockSimpleUsedAsNestable, func);
1639 if (__kmp_get_queuing_lock_owner(lck) == -1) {
1640 KMP_FATAL(LockUnsettingFree, func);
1642 if (__kmp_get_queuing_lock_owner(lck) != gtid) {
1643 KMP_FATAL(LockUnsettingSetByAnother, func);
1645 return __kmp_release_nested_queuing_lock(lck, gtid);
1648 void __kmp_init_nested_queuing_lock(kmp_queuing_lock_t *lck) {
1649 __kmp_init_queuing_lock(lck);
1650 lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
1653 void __kmp_destroy_nested_queuing_lock(kmp_queuing_lock_t *lck) {
1654 __kmp_destroy_queuing_lock(lck);
1655 lck->lk.depth_locked = 0;
1658 static void
1659 __kmp_destroy_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
1660 char const *const func = "omp_destroy_nest_lock";
1661 if (lck->lk.initialized != lck) {
1662 KMP_FATAL(LockIsUninitialized, func);
1664 if (!__kmp_is_queuing_lock_nestable(lck)) {
1665 KMP_FATAL(LockSimpleUsedAsNestable, func);
1667 if (__kmp_get_queuing_lock_owner(lck) != -1) {
1668 KMP_FATAL(LockStillOwned, func);
1670 __kmp_destroy_nested_queuing_lock(lck);
1673 // access functions to fields which don't exist for all lock kinds.
1675 static const ident_t *__kmp_get_queuing_lock_location(kmp_queuing_lock_t *lck) {
1676 return lck->lk.location;
1679 static void __kmp_set_queuing_lock_location(kmp_queuing_lock_t *lck,
1680 const ident_t *loc) {
1681 lck->lk.location = loc;
1684 static kmp_lock_flags_t __kmp_get_queuing_lock_flags(kmp_queuing_lock_t *lck) {
1685 return lck->lk.flags;
1688 static void __kmp_set_queuing_lock_flags(kmp_queuing_lock_t *lck,
1689 kmp_lock_flags_t flags) {
1690 lck->lk.flags = flags;
1693 #if KMP_USE_ADAPTIVE_LOCKS
1695 /* RTM Adaptive locks */
1697 #if KMP_HAVE_RTM_INTRINSICS
1698 #include <immintrin.h>
1699 #define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT)
1701 #else
1703 // Values from the status register after failed speculation.
1704 #define _XBEGIN_STARTED (~0u)
1705 #define _XABORT_EXPLICIT (1 << 0)
1706 #define _XABORT_RETRY (1 << 1)
1707 #define _XABORT_CONFLICT (1 << 2)
1708 #define _XABORT_CAPACITY (1 << 3)
1709 #define _XABORT_DEBUG (1 << 4)
1710 #define _XABORT_NESTED (1 << 5)
1711 #define _XABORT_CODE(x) ((unsigned char)(((x) >> 24) & 0xFF))
1713 // Aborts for which it's worth trying again immediately
1714 #define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT)
1716 #define STRINGIZE_INTERNAL(arg) #arg
1717 #define STRINGIZE(arg) STRINGIZE_INTERNAL(arg)
1719 // Access to RTM instructions
1720 /*A version of XBegin which returns -1 on speculation, and the value of EAX on
1721 an abort. This is the same definition as the compiler intrinsic that will be
1722 supported at some point. */
1723 static __inline int _xbegin() {
1724 int res = -1;
1726 #if KMP_OS_WINDOWS
1727 #if KMP_ARCH_X86_64
1728 _asm {
1729 _emit 0xC7
1730 _emit 0xF8
1731 _emit 2
1732 _emit 0
1733 _emit 0
1734 _emit 0
1735 jmp L2
1736 mov res, eax
1739 #else /* IA32 */
1740 _asm {
1741 _emit 0xC7
1742 _emit 0xF8
1743 _emit 2
1744 _emit 0
1745 _emit 0
1746 _emit 0
1747 jmp L2
1748 mov res, eax
1751 #endif // KMP_ARCH_X86_64
1752 #else
1753 /* Note that %eax must be noted as killed (clobbered), because the XSR is
1754 returned in %eax(%rax) on abort. Other register values are restored, so
1755 don't need to be killed.
1757 We must also mark 'res' as an input and an output, since otherwise
1758 'res=-1' may be dropped as being dead, whereas we do need the assignment on
1759 the successful (i.e., non-abort) path. */
1760 __asm__ volatile("1: .byte 0xC7; .byte 0xF8;\n"
1761 " .long 1f-1b-6\n"
1762 " jmp 2f\n"
1763 "1: movl %%eax,%0\n"
1764 "2:"
1765 : "+r"(res)::"memory", "%eax");
1766 #endif // KMP_OS_WINDOWS
1767 return res;
1770 /* Transaction end */
1771 static __inline void _xend() {
1772 #if KMP_OS_WINDOWS
1773 __asm {
1774 _emit 0x0f
1775 _emit 0x01
1776 _emit 0xd5
1778 #else
1779 __asm__ volatile(".byte 0x0f; .byte 0x01; .byte 0xd5" ::: "memory");
1780 #endif
1783 /* This is a macro, the argument must be a single byte constant which can be
1784 evaluated by the inline assembler, since it is emitted as a byte into the
1785 assembly code. */
1786 // clang-format off
1787 #if KMP_OS_WINDOWS
1788 #define _xabort(ARG) _asm _emit 0xc6 _asm _emit 0xf8 _asm _emit ARG
1789 #else
1790 #define _xabort(ARG) \
1791 __asm__ volatile(".byte 0xC6; .byte 0xF8; .byte " STRINGIZE(ARG):::"memory");
1792 #endif
1793 // clang-format on
1794 #endif // KMP_COMPILER_ICC && __INTEL_COMPILER >= 1300
1796 // Statistics is collected for testing purpose
1797 #if KMP_DEBUG_ADAPTIVE_LOCKS
1799 // We accumulate speculative lock statistics when the lock is destroyed. We
1800 // keep locks that haven't been destroyed in the liveLocks list so that we can
1801 // grab their statistics too.
1802 static kmp_adaptive_lock_statistics_t destroyedStats;
1804 // To hold the list of live locks.
1805 static kmp_adaptive_lock_info_t liveLocks;
1807 // A lock so we can safely update the list of locks.
1808 static kmp_bootstrap_lock_t chain_lock =
1809 KMP_BOOTSTRAP_LOCK_INITIALIZER(chain_lock);
1811 // Initialize the list of stats.
1812 void __kmp_init_speculative_stats() {
1813 kmp_adaptive_lock_info_t *lck = &liveLocks;
1815 memset(CCAST(kmp_adaptive_lock_statistics_t *, &(lck->stats)), 0,
1816 sizeof(lck->stats));
1817 lck->stats.next = lck;
1818 lck->stats.prev = lck;
1820 KMP_ASSERT(lck->stats.next->stats.prev == lck);
1821 KMP_ASSERT(lck->stats.prev->stats.next == lck);
1823 __kmp_init_bootstrap_lock(&chain_lock);
1826 // Insert the lock into the circular list
1827 static void __kmp_remember_lock(kmp_adaptive_lock_info_t *lck) {
1828 __kmp_acquire_bootstrap_lock(&chain_lock);
1830 lck->stats.next = liveLocks.stats.next;
1831 lck->stats.prev = &liveLocks;
1833 liveLocks.stats.next = lck;
1834 lck->stats.next->stats.prev = lck;
1836 KMP_ASSERT(lck->stats.next->stats.prev == lck);
1837 KMP_ASSERT(lck->stats.prev->stats.next == lck);
1839 __kmp_release_bootstrap_lock(&chain_lock);
1842 static void __kmp_forget_lock(kmp_adaptive_lock_info_t *lck) {
1843 KMP_ASSERT(lck->stats.next->stats.prev == lck);
1844 KMP_ASSERT(lck->stats.prev->stats.next == lck);
1846 kmp_adaptive_lock_info_t *n = lck->stats.next;
1847 kmp_adaptive_lock_info_t *p = lck->stats.prev;
1849 n->stats.prev = p;
1850 p->stats.next = n;
1853 static void __kmp_zero_speculative_stats(kmp_adaptive_lock_info_t *lck) {
1854 memset(CCAST(kmp_adaptive_lock_statistics_t *, &lck->stats), 0,
1855 sizeof(lck->stats));
1856 __kmp_remember_lock(lck);
1859 static void __kmp_add_stats(kmp_adaptive_lock_statistics_t *t,
1860 kmp_adaptive_lock_info_t *lck) {
1861 kmp_adaptive_lock_statistics_t volatile *s = &lck->stats;
1863 t->nonSpeculativeAcquireAttempts += lck->acquire_attempts;
1864 t->successfulSpeculations += s->successfulSpeculations;
1865 t->hardFailedSpeculations += s->hardFailedSpeculations;
1866 t->softFailedSpeculations += s->softFailedSpeculations;
1867 t->nonSpeculativeAcquires += s->nonSpeculativeAcquires;
1868 t->lemmingYields += s->lemmingYields;
1871 static void __kmp_accumulate_speculative_stats(kmp_adaptive_lock_info_t *lck) {
1872 __kmp_acquire_bootstrap_lock(&chain_lock);
1874 __kmp_add_stats(&destroyedStats, lck);
1875 __kmp_forget_lock(lck);
1877 __kmp_release_bootstrap_lock(&chain_lock);
1880 static float percent(kmp_uint32 count, kmp_uint32 total) {
1881 return (total == 0) ? 0.0 : (100.0 * count) / total;
1884 void __kmp_print_speculative_stats() {
1885 kmp_adaptive_lock_statistics_t total = destroyedStats;
1886 kmp_adaptive_lock_info_t *lck;
1888 for (lck = liveLocks.stats.next; lck != &liveLocks; lck = lck->stats.next) {
1889 __kmp_add_stats(&total, lck);
1891 kmp_adaptive_lock_statistics_t *t = &total;
1892 kmp_uint32 totalSections =
1893 t->nonSpeculativeAcquires + t->successfulSpeculations;
1894 kmp_uint32 totalSpeculations = t->successfulSpeculations +
1895 t->hardFailedSpeculations +
1896 t->softFailedSpeculations;
1897 if (totalSections <= 0)
1898 return;
1900 kmp_safe_raii_file_t statsFile;
1901 if (strcmp(__kmp_speculative_statsfile, "-") == 0) {
1902 statsFile.set_stdout();
1903 } else {
1904 size_t buffLen = KMP_STRLEN(__kmp_speculative_statsfile) + 20;
1905 char buffer[buffLen];
1906 KMP_SNPRINTF(&buffer[0], buffLen, __kmp_speculative_statsfile,
1907 (kmp_int32)getpid());
1908 statsFile.open(buffer, "w");
1911 fprintf(statsFile, "Speculative lock statistics (all approximate!)\n");
1912 fprintf(statsFile,
1913 " Lock parameters: \n"
1914 " max_soft_retries : %10d\n"
1915 " max_badness : %10d\n",
1916 __kmp_adaptive_backoff_params.max_soft_retries,
1917 __kmp_adaptive_backoff_params.max_badness);
1918 fprintf(statsFile, " Non-speculative acquire attempts : %10d\n",
1919 t->nonSpeculativeAcquireAttempts);
1920 fprintf(statsFile, " Total critical sections : %10d\n",
1921 totalSections);
1922 fprintf(statsFile, " Successful speculations : %10d (%5.1f%%)\n",
1923 t->successfulSpeculations,
1924 percent(t->successfulSpeculations, totalSections));
1925 fprintf(statsFile, " Non-speculative acquires : %10d (%5.1f%%)\n",
1926 t->nonSpeculativeAcquires,
1927 percent(t->nonSpeculativeAcquires, totalSections));
1928 fprintf(statsFile, " Lemming yields : %10d\n\n",
1929 t->lemmingYields);
1931 fprintf(statsFile, " Speculative acquire attempts : %10d\n",
1932 totalSpeculations);
1933 fprintf(statsFile, " Successes : %10d (%5.1f%%)\n",
1934 t->successfulSpeculations,
1935 percent(t->successfulSpeculations, totalSpeculations));
1936 fprintf(statsFile, " Soft failures : %10d (%5.1f%%)\n",
1937 t->softFailedSpeculations,
1938 percent(t->softFailedSpeculations, totalSpeculations));
1939 fprintf(statsFile, " Hard failures : %10d (%5.1f%%)\n",
1940 t->hardFailedSpeculations,
1941 percent(t->hardFailedSpeculations, totalSpeculations));
1944 #define KMP_INC_STAT(lck, stat) (lck->lk.adaptive.stats.stat++)
1945 #else
1946 #define KMP_INC_STAT(lck, stat)
1948 #endif // KMP_DEBUG_ADAPTIVE_LOCKS
1950 static inline bool __kmp_is_unlocked_queuing_lock(kmp_queuing_lock_t *lck) {
1951 // It is enough to check that the head_id is zero.
1952 // We don't also need to check the tail.
1953 bool res = lck->lk.head_id == 0;
1955 // We need a fence here, since we must ensure that no memory operations
1956 // from later in this thread float above that read.
1957 #if KMP_COMPILER_ICC || KMP_COMPILER_ICX
1958 _mm_mfence();
1959 #else
1960 __sync_synchronize();
1961 #endif
1963 return res;
1966 // Functions for manipulating the badness
1967 static __inline void
1968 __kmp_update_badness_after_success(kmp_adaptive_lock_t *lck) {
1969 // Reset the badness to zero so we eagerly try to speculate again
1970 lck->lk.adaptive.badness = 0;
1971 KMP_INC_STAT(lck, successfulSpeculations);
1974 // Create a bit mask with one more set bit.
1975 static __inline void __kmp_step_badness(kmp_adaptive_lock_t *lck) {
1976 kmp_uint32 newBadness = (lck->lk.adaptive.badness << 1) | 1;
1977 if (newBadness > lck->lk.adaptive.max_badness) {
1978 return;
1979 } else {
1980 lck->lk.adaptive.badness = newBadness;
1984 // Check whether speculation should be attempted.
1985 KMP_ATTRIBUTE_TARGET_RTM
1986 static __inline int __kmp_should_speculate(kmp_adaptive_lock_t *lck,
1987 kmp_int32 gtid) {
1988 kmp_uint32 badness = lck->lk.adaptive.badness;
1989 kmp_uint32 attempts = lck->lk.adaptive.acquire_attempts;
1990 int res = (attempts & badness) == 0;
1991 return res;
1994 // Attempt to acquire only the speculative lock.
1995 // Does not back off to the non-speculative lock.
1996 KMP_ATTRIBUTE_TARGET_RTM
1997 static int __kmp_test_adaptive_lock_only(kmp_adaptive_lock_t *lck,
1998 kmp_int32 gtid) {
1999 int retries = lck->lk.adaptive.max_soft_retries;
2001 // We don't explicitly count the start of speculation, rather we record the
2002 // results (success, hard fail, soft fail). The sum of all of those is the
2003 // total number of times we started speculation since all speculations must
2004 // end one of those ways.
2005 do {
2006 kmp_uint32 status = _xbegin();
2007 // Switch this in to disable actual speculation but exercise at least some
2008 // of the rest of the code. Useful for debugging...
2009 // kmp_uint32 status = _XABORT_NESTED;
2011 if (status == _XBEGIN_STARTED) {
2012 /* We have successfully started speculation. Check that no-one acquired
2013 the lock for real between when we last looked and now. This also gets
2014 the lock cache line into our read-set, which we need so that we'll
2015 abort if anyone later claims it for real. */
2016 if (!__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) {
2017 // Lock is now visibly acquired, so someone beat us to it. Abort the
2018 // transaction so we'll restart from _xbegin with the failure status.
2019 _xabort(0x01);
2020 KMP_ASSERT2(0, "should not get here");
2022 return 1; // Lock has been acquired (speculatively)
2023 } else {
2024 // We have aborted, update the statistics
2025 if (status & SOFT_ABORT_MASK) {
2026 KMP_INC_STAT(lck, softFailedSpeculations);
2027 // and loop round to retry.
2028 } else {
2029 KMP_INC_STAT(lck, hardFailedSpeculations);
2030 // Give up if we had a hard failure.
2031 break;
2034 } while (retries--); // Loop while we have retries, and didn't fail hard.
2036 // Either we had a hard failure or we didn't succeed softly after
2037 // the full set of attempts, so back off the badness.
2038 __kmp_step_badness(lck);
2039 return 0;
2042 // Attempt to acquire the speculative lock, or back off to the non-speculative
2043 // one if the speculative lock cannot be acquired.
2044 // We can succeed speculatively, non-speculatively, or fail.
2045 static int __kmp_test_adaptive_lock(kmp_adaptive_lock_t *lck, kmp_int32 gtid) {
2046 // First try to acquire the lock speculatively
2047 if (__kmp_should_speculate(lck, gtid) &&
2048 __kmp_test_adaptive_lock_only(lck, gtid))
2049 return 1;
2051 // Speculative acquisition failed, so try to acquire it non-speculatively.
2052 // Count the non-speculative acquire attempt
2053 lck->lk.adaptive.acquire_attempts++;
2055 // Use base, non-speculative lock.
2056 if (__kmp_test_queuing_lock(GET_QLK_PTR(lck), gtid)) {
2057 KMP_INC_STAT(lck, nonSpeculativeAcquires);
2058 return 1; // Lock is acquired (non-speculatively)
2059 } else {
2060 return 0; // Failed to acquire the lock, it's already visibly locked.
2064 static int __kmp_test_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck,
2065 kmp_int32 gtid) {
2066 char const *const func = "omp_test_lock";
2067 if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) {
2068 KMP_FATAL(LockIsUninitialized, func);
2071 int retval = __kmp_test_adaptive_lock(lck, gtid);
2073 if (retval) {
2074 lck->lk.qlk.owner_id = gtid + 1;
2076 return retval;
2079 // Block until we can acquire a speculative, adaptive lock. We check whether we
2080 // should be trying to speculate. If we should be, we check the real lock to see
2081 // if it is free, and, if not, pause without attempting to acquire it until it
2082 // is. Then we try the speculative acquire. This means that although we suffer
2083 // from lemmings a little (because all we can't acquire the lock speculatively
2084 // until the queue of threads waiting has cleared), we don't get into a state
2085 // where we can never acquire the lock speculatively (because we force the queue
2086 // to clear by preventing new arrivals from entering the queue). This does mean
2087 // that when we're trying to break lemmings, the lock is no longer fair. However
2088 // OpenMP makes no guarantee that its locks are fair, so this isn't a real
2089 // problem.
2090 static void __kmp_acquire_adaptive_lock(kmp_adaptive_lock_t *lck,
2091 kmp_int32 gtid) {
2092 if (__kmp_should_speculate(lck, gtid)) {
2093 if (__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) {
2094 if (__kmp_test_adaptive_lock_only(lck, gtid))
2095 return;
2096 // We tried speculation and failed, so give up.
2097 } else {
2098 // We can't try speculation until the lock is free, so we pause here
2099 // (without suspending on the queueing lock, to allow it to drain, then
2100 // try again. All other threads will also see the same result for
2101 // shouldSpeculate, so will be doing the same if they try to claim the
2102 // lock from now on.
2103 while (!__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) {
2104 KMP_INC_STAT(lck, lemmingYields);
2105 KMP_YIELD(TRUE);
2108 if (__kmp_test_adaptive_lock_only(lck, gtid))
2109 return;
2113 // Speculative acquisition failed, so acquire it non-speculatively.
2114 // Count the non-speculative acquire attempt
2115 lck->lk.adaptive.acquire_attempts++;
2117 __kmp_acquire_queuing_lock_timed_template<FALSE>(GET_QLK_PTR(lck), gtid);
2118 // We have acquired the base lock, so count that.
2119 KMP_INC_STAT(lck, nonSpeculativeAcquires);
2122 static void __kmp_acquire_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck,
2123 kmp_int32 gtid) {
2124 char const *const func = "omp_set_lock";
2125 if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) {
2126 KMP_FATAL(LockIsUninitialized, func);
2128 if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) == gtid) {
2129 KMP_FATAL(LockIsAlreadyOwned, func);
2132 __kmp_acquire_adaptive_lock(lck, gtid);
2134 lck->lk.qlk.owner_id = gtid + 1;
2137 KMP_ATTRIBUTE_TARGET_RTM
2138 static int __kmp_release_adaptive_lock(kmp_adaptive_lock_t *lck,
2139 kmp_int32 gtid) {
2140 if (__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(
2141 lck))) { // If the lock doesn't look claimed we must be speculating.
2142 // (Or the user's code is buggy and they're releasing without locking;
2143 // if we had XTEST we'd be able to check that case...)
2144 _xend(); // Exit speculation
2145 __kmp_update_badness_after_success(lck);
2146 } else { // Since the lock *is* visibly locked we're not speculating,
2147 // so should use the underlying lock's release scheme.
2148 __kmp_release_queuing_lock(GET_QLK_PTR(lck), gtid);
2150 return KMP_LOCK_RELEASED;
2153 static int __kmp_release_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck,
2154 kmp_int32 gtid) {
2155 char const *const func = "omp_unset_lock";
2156 KMP_MB(); /* in case another processor initialized lock */
2157 if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) {
2158 KMP_FATAL(LockIsUninitialized, func);
2160 if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) == -1) {
2161 KMP_FATAL(LockUnsettingFree, func);
2163 if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) != gtid) {
2164 KMP_FATAL(LockUnsettingSetByAnother, func);
2166 lck->lk.qlk.owner_id = 0;
2167 __kmp_release_adaptive_lock(lck, gtid);
2168 return KMP_LOCK_RELEASED;
2171 static void __kmp_init_adaptive_lock(kmp_adaptive_lock_t *lck) {
2172 __kmp_init_queuing_lock(GET_QLK_PTR(lck));
2173 lck->lk.adaptive.badness = 0;
2174 lck->lk.adaptive.acquire_attempts = 0; // nonSpeculativeAcquireAttempts = 0;
2175 lck->lk.adaptive.max_soft_retries =
2176 __kmp_adaptive_backoff_params.max_soft_retries;
2177 lck->lk.adaptive.max_badness = __kmp_adaptive_backoff_params.max_badness;
2178 #if KMP_DEBUG_ADAPTIVE_LOCKS
2179 __kmp_zero_speculative_stats(&lck->lk.adaptive);
2180 #endif
2181 KA_TRACE(1000, ("__kmp_init_adaptive_lock: lock %p initialized\n", lck));
2184 static void __kmp_destroy_adaptive_lock(kmp_adaptive_lock_t *lck) {
2185 #if KMP_DEBUG_ADAPTIVE_LOCKS
2186 __kmp_accumulate_speculative_stats(&lck->lk.adaptive);
2187 #endif
2188 __kmp_destroy_queuing_lock(GET_QLK_PTR(lck));
2189 // Nothing needed for the speculative part.
2192 static void __kmp_destroy_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck) {
2193 char const *const func = "omp_destroy_lock";
2194 if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) {
2195 KMP_FATAL(LockIsUninitialized, func);
2197 if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) != -1) {
2198 KMP_FATAL(LockStillOwned, func);
2200 __kmp_destroy_adaptive_lock(lck);
2203 #endif // KMP_USE_ADAPTIVE_LOCKS
2205 /* ------------------------------------------------------------------------ */
2206 /* DRDPA ticket locks */
2207 /* "DRDPA" means Dynamically Reconfigurable Distributed Polling Area */
2209 static kmp_int32 __kmp_get_drdpa_lock_owner(kmp_drdpa_lock_t *lck) {
2210 return lck->lk.owner_id - 1;
2213 static inline bool __kmp_is_drdpa_lock_nestable(kmp_drdpa_lock_t *lck) {
2214 return lck->lk.depth_locked != -1;
2217 __forceinline static int
2218 __kmp_acquire_drdpa_lock_timed_template(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2219 kmp_uint64 ticket = KMP_ATOMIC_INC(&lck->lk.next_ticket);
2220 kmp_uint64 mask = lck->lk.mask; // atomic load
2221 std::atomic<kmp_uint64> *polls = lck->lk.polls;
2223 #ifdef USE_LOCK_PROFILE
2224 if (polls[ticket & mask] != ticket)
2225 __kmp_printf("LOCK CONTENTION: %p\n", lck);
2226 /* else __kmp_printf( "." );*/
2227 #endif /* USE_LOCK_PROFILE */
2229 // Now spin-wait, but reload the polls pointer and mask, in case the
2230 // polling area has been reconfigured. Unless it is reconfigured, the
2231 // reloads stay in L1 cache and are cheap.
2233 // Keep this code in sync with KMP_WAIT, in kmp_dispatch.cpp !!!
2234 // The current implementation of KMP_WAIT doesn't allow for mask
2235 // and poll to be re-read every spin iteration.
2236 kmp_uint32 spins;
2237 kmp_uint64 time;
2238 KMP_FSYNC_PREPARE(lck);
2239 KMP_INIT_YIELD(spins);
2240 KMP_INIT_BACKOFF(time);
2241 while (polls[ticket & mask] < ticket) { // atomic load
2242 KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time);
2243 // Re-read the mask and the poll pointer from the lock structure.
2245 // Make certain that "mask" is read before "polls" !!!
2247 // If another thread picks reconfigures the polling area and updates their
2248 // values, and we get the new value of mask and the old polls pointer, we
2249 // could access memory beyond the end of the old polling area.
2250 mask = lck->lk.mask; // atomic load
2251 polls = lck->lk.polls; // atomic load
2254 // Critical section starts here
2255 KMP_FSYNC_ACQUIRED(lck);
2256 KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld acquired lock %p\n",
2257 ticket, lck));
2258 lck->lk.now_serving = ticket; // non-volatile store
2260 // Deallocate a garbage polling area if we know that we are the last
2261 // thread that could possibly access it.
2263 // The >= check is in case __kmp_test_drdpa_lock() allocated the cleanup
2264 // ticket.
2265 if ((lck->lk.old_polls != NULL) && (ticket >= lck->lk.cleanup_ticket)) {
2266 __kmp_free(lck->lk.old_polls);
2267 lck->lk.old_polls = NULL;
2268 lck->lk.cleanup_ticket = 0;
2271 // Check to see if we should reconfigure the polling area.
2272 // If there is still a garbage polling area to be deallocated from a
2273 // previous reconfiguration, let a later thread reconfigure it.
2274 if (lck->lk.old_polls == NULL) {
2275 bool reconfigure = false;
2276 std::atomic<kmp_uint64> *old_polls = polls;
2277 kmp_uint32 num_polls = TCR_4(lck->lk.num_polls);
2279 if (TCR_4(__kmp_nth) >
2280 (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) {
2281 // We are in oversubscription mode. Contract the polling area
2282 // down to a single location, if that hasn't been done already.
2283 if (num_polls > 1) {
2284 reconfigure = true;
2285 num_polls = TCR_4(lck->lk.num_polls);
2286 mask = 0;
2287 num_polls = 1;
2288 polls = (std::atomic<kmp_uint64> *)__kmp_allocate(num_polls *
2289 sizeof(*polls));
2290 polls[0] = ticket;
2292 } else {
2293 // We are in under/fully subscribed mode. Check the number of
2294 // threads waiting on the lock. The size of the polling area
2295 // should be at least the number of threads waiting.
2296 kmp_uint64 num_waiting = TCR_8(lck->lk.next_ticket) - ticket - 1;
2297 if (num_waiting > num_polls) {
2298 kmp_uint32 old_num_polls = num_polls;
2299 reconfigure = true;
2300 do {
2301 mask = (mask << 1) | 1;
2302 num_polls *= 2;
2303 } while (num_polls <= num_waiting);
2305 // Allocate the new polling area, and copy the relevant portion
2306 // of the old polling area to the new area. __kmp_allocate()
2307 // zeroes the memory it allocates, and most of the old area is
2308 // just zero padding, so we only copy the release counters.
2309 polls = (std::atomic<kmp_uint64> *)__kmp_allocate(num_polls *
2310 sizeof(*polls));
2311 kmp_uint32 i;
2312 for (i = 0; i < old_num_polls; i++) {
2313 polls[i].store(old_polls[i]);
2318 if (reconfigure) {
2319 // Now write the updated fields back to the lock structure.
2321 // Make certain that "polls" is written before "mask" !!!
2323 // If another thread picks up the new value of mask and the old polls
2324 // pointer , it could access memory beyond the end of the old polling
2325 // area.
2327 // On x86, we need memory fences.
2328 KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld reconfiguring "
2329 "lock %p to %d polls\n",
2330 ticket, lck, num_polls));
2332 lck->lk.old_polls = old_polls;
2333 lck->lk.polls = polls; // atomic store
2335 KMP_MB();
2337 lck->lk.num_polls = num_polls;
2338 lck->lk.mask = mask; // atomic store
2340 KMP_MB();
2342 // Only after the new polling area and mask have been flushed
2343 // to main memory can we update the cleanup ticket field.
2345 // volatile load / non-volatile store
2346 lck->lk.cleanup_ticket = lck->lk.next_ticket;
2349 return KMP_LOCK_ACQUIRED_FIRST;
2352 int __kmp_acquire_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2353 int retval = __kmp_acquire_drdpa_lock_timed_template(lck, gtid);
2354 return retval;
2357 static int __kmp_acquire_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2358 kmp_int32 gtid) {
2359 char const *const func = "omp_set_lock";
2360 if (lck->lk.initialized != lck) {
2361 KMP_FATAL(LockIsUninitialized, func);
2363 if (__kmp_is_drdpa_lock_nestable(lck)) {
2364 KMP_FATAL(LockNestableUsedAsSimple, func);
2366 if ((gtid >= 0) && (__kmp_get_drdpa_lock_owner(lck) == gtid)) {
2367 KMP_FATAL(LockIsAlreadyOwned, func);
2370 __kmp_acquire_drdpa_lock(lck, gtid);
2372 lck->lk.owner_id = gtid + 1;
2373 return KMP_LOCK_ACQUIRED_FIRST;
2376 int __kmp_test_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2377 // First get a ticket, then read the polls pointer and the mask.
2378 // The polls pointer must be read before the mask!!! (See above)
2379 kmp_uint64 ticket = lck->lk.next_ticket; // atomic load
2380 std::atomic<kmp_uint64> *polls = lck->lk.polls;
2381 kmp_uint64 mask = lck->lk.mask; // atomic load
2382 if (polls[ticket & mask] == ticket) {
2383 kmp_uint64 next_ticket = ticket + 1;
2384 if (__kmp_atomic_compare_store_acq(&lck->lk.next_ticket, ticket,
2385 next_ticket)) {
2386 KMP_FSYNC_ACQUIRED(lck);
2387 KA_TRACE(1000, ("__kmp_test_drdpa_lock: ticket #%lld acquired lock %p\n",
2388 ticket, lck));
2389 lck->lk.now_serving = ticket; // non-volatile store
2391 // Since no threads are waiting, there is no possibility that we would
2392 // want to reconfigure the polling area. We might have the cleanup ticket
2393 // value (which says that it is now safe to deallocate old_polls), but
2394 // we'll let a later thread which calls __kmp_acquire_lock do that - this
2395 // routine isn't supposed to block, and we would risk blocks if we called
2396 // __kmp_free() to do the deallocation.
2397 return TRUE;
2400 return FALSE;
2403 static int __kmp_test_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2404 kmp_int32 gtid) {
2405 char const *const func = "omp_test_lock";
2406 if (lck->lk.initialized != lck) {
2407 KMP_FATAL(LockIsUninitialized, func);
2409 if (__kmp_is_drdpa_lock_nestable(lck)) {
2410 KMP_FATAL(LockNestableUsedAsSimple, func);
2413 int retval = __kmp_test_drdpa_lock(lck, gtid);
2415 if (retval) {
2416 lck->lk.owner_id = gtid + 1;
2418 return retval;
2421 int __kmp_release_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2422 // Read the ticket value from the lock data struct, then the polls pointer and
2423 // the mask. The polls pointer must be read before the mask!!! (See above)
2424 kmp_uint64 ticket = lck->lk.now_serving + 1; // non-atomic load
2425 std::atomic<kmp_uint64> *polls = lck->lk.polls; // atomic load
2426 kmp_uint64 mask = lck->lk.mask; // atomic load
2427 KA_TRACE(1000, ("__kmp_release_drdpa_lock: ticket #%lld released lock %p\n",
2428 ticket - 1, lck));
2429 KMP_FSYNC_RELEASING(lck);
2430 polls[ticket & mask] = ticket; // atomic store
2431 return KMP_LOCK_RELEASED;
2434 static int __kmp_release_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2435 kmp_int32 gtid) {
2436 char const *const func = "omp_unset_lock";
2437 KMP_MB(); /* in case another processor initialized lock */
2438 if (lck->lk.initialized != lck) {
2439 KMP_FATAL(LockIsUninitialized, func);
2441 if (__kmp_is_drdpa_lock_nestable(lck)) {
2442 KMP_FATAL(LockNestableUsedAsSimple, func);
2444 if (__kmp_get_drdpa_lock_owner(lck) == -1) {
2445 KMP_FATAL(LockUnsettingFree, func);
2447 if ((gtid >= 0) && (__kmp_get_drdpa_lock_owner(lck) >= 0) &&
2448 (__kmp_get_drdpa_lock_owner(lck) != gtid)) {
2449 KMP_FATAL(LockUnsettingSetByAnother, func);
2451 lck->lk.owner_id = 0;
2452 return __kmp_release_drdpa_lock(lck, gtid);
2455 void __kmp_init_drdpa_lock(kmp_drdpa_lock_t *lck) {
2456 lck->lk.location = NULL;
2457 lck->lk.mask = 0;
2458 lck->lk.num_polls = 1;
2459 lck->lk.polls = (std::atomic<kmp_uint64> *)__kmp_allocate(
2460 lck->lk.num_polls * sizeof(*(lck->lk.polls)));
2461 lck->lk.cleanup_ticket = 0;
2462 lck->lk.old_polls = NULL;
2463 lck->lk.next_ticket = 0;
2464 lck->lk.now_serving = 0;
2465 lck->lk.owner_id = 0; // no thread owns the lock.
2466 lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks.
2467 lck->lk.initialized = lck;
2469 KA_TRACE(1000, ("__kmp_init_drdpa_lock: lock %p initialized\n", lck));
2472 void __kmp_destroy_drdpa_lock(kmp_drdpa_lock_t *lck) {
2473 lck->lk.initialized = NULL;
2474 lck->lk.location = NULL;
2475 if (lck->lk.polls.load() != NULL) {
2476 __kmp_free(lck->lk.polls.load());
2477 lck->lk.polls = NULL;
2479 if (lck->lk.old_polls != NULL) {
2480 __kmp_free(lck->lk.old_polls);
2481 lck->lk.old_polls = NULL;
2483 lck->lk.mask = 0;
2484 lck->lk.num_polls = 0;
2485 lck->lk.cleanup_ticket = 0;
2486 lck->lk.next_ticket = 0;
2487 lck->lk.now_serving = 0;
2488 lck->lk.owner_id = 0;
2489 lck->lk.depth_locked = -1;
2492 static void __kmp_destroy_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) {
2493 char const *const func = "omp_destroy_lock";
2494 if (lck->lk.initialized != lck) {
2495 KMP_FATAL(LockIsUninitialized, func);
2497 if (__kmp_is_drdpa_lock_nestable(lck)) {
2498 KMP_FATAL(LockNestableUsedAsSimple, func);
2500 if (__kmp_get_drdpa_lock_owner(lck) != -1) {
2501 KMP_FATAL(LockStillOwned, func);
2503 __kmp_destroy_drdpa_lock(lck);
2506 // nested drdpa ticket locks
2508 int __kmp_acquire_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2509 KMP_DEBUG_ASSERT(gtid >= 0);
2511 if (__kmp_get_drdpa_lock_owner(lck) == gtid) {
2512 lck->lk.depth_locked += 1;
2513 return KMP_LOCK_ACQUIRED_NEXT;
2514 } else {
2515 __kmp_acquire_drdpa_lock_timed_template(lck, gtid);
2516 KMP_MB();
2517 lck->lk.depth_locked = 1;
2518 KMP_MB();
2519 lck->lk.owner_id = gtid + 1;
2520 return KMP_LOCK_ACQUIRED_FIRST;
2524 static void __kmp_acquire_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2525 kmp_int32 gtid) {
2526 char const *const func = "omp_set_nest_lock";
2527 if (lck->lk.initialized != lck) {
2528 KMP_FATAL(LockIsUninitialized, func);
2530 if (!__kmp_is_drdpa_lock_nestable(lck)) {
2531 KMP_FATAL(LockSimpleUsedAsNestable, func);
2533 __kmp_acquire_nested_drdpa_lock(lck, gtid);
2536 int __kmp_test_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2537 int retval;
2539 KMP_DEBUG_ASSERT(gtid >= 0);
2541 if (__kmp_get_drdpa_lock_owner(lck) == gtid) {
2542 retval = ++lck->lk.depth_locked;
2543 } else if (!__kmp_test_drdpa_lock(lck, gtid)) {
2544 retval = 0;
2545 } else {
2546 KMP_MB();
2547 retval = lck->lk.depth_locked = 1;
2548 KMP_MB();
2549 lck->lk.owner_id = gtid + 1;
2551 return retval;
2554 static int __kmp_test_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2555 kmp_int32 gtid) {
2556 char const *const func = "omp_test_nest_lock";
2557 if (lck->lk.initialized != lck) {
2558 KMP_FATAL(LockIsUninitialized, func);
2560 if (!__kmp_is_drdpa_lock_nestable(lck)) {
2561 KMP_FATAL(LockSimpleUsedAsNestable, func);
2563 return __kmp_test_nested_drdpa_lock(lck, gtid);
2566 int __kmp_release_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2567 KMP_DEBUG_ASSERT(gtid >= 0);
2569 KMP_MB();
2570 if (--(lck->lk.depth_locked) == 0) {
2571 KMP_MB();
2572 lck->lk.owner_id = 0;
2573 __kmp_release_drdpa_lock(lck, gtid);
2574 return KMP_LOCK_RELEASED;
2576 return KMP_LOCK_STILL_HELD;
2579 static int __kmp_release_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2580 kmp_int32 gtid) {
2581 char const *const func = "omp_unset_nest_lock";
2582 KMP_MB(); /* in case another processor initialized lock */
2583 if (lck->lk.initialized != lck) {
2584 KMP_FATAL(LockIsUninitialized, func);
2586 if (!__kmp_is_drdpa_lock_nestable(lck)) {
2587 KMP_FATAL(LockSimpleUsedAsNestable, func);
2589 if (__kmp_get_drdpa_lock_owner(lck) == -1) {
2590 KMP_FATAL(LockUnsettingFree, func);
2592 if (__kmp_get_drdpa_lock_owner(lck) != gtid) {
2593 KMP_FATAL(LockUnsettingSetByAnother, func);
2595 return __kmp_release_nested_drdpa_lock(lck, gtid);
2598 void __kmp_init_nested_drdpa_lock(kmp_drdpa_lock_t *lck) {
2599 __kmp_init_drdpa_lock(lck);
2600 lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
2603 void __kmp_destroy_nested_drdpa_lock(kmp_drdpa_lock_t *lck) {
2604 __kmp_destroy_drdpa_lock(lck);
2605 lck->lk.depth_locked = 0;
2608 static void __kmp_destroy_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) {
2609 char const *const func = "omp_destroy_nest_lock";
2610 if (lck->lk.initialized != lck) {
2611 KMP_FATAL(LockIsUninitialized, func);
2613 if (!__kmp_is_drdpa_lock_nestable(lck)) {
2614 KMP_FATAL(LockSimpleUsedAsNestable, func);
2616 if (__kmp_get_drdpa_lock_owner(lck) != -1) {
2617 KMP_FATAL(LockStillOwned, func);
2619 __kmp_destroy_nested_drdpa_lock(lck);
2622 // access functions to fields which don't exist for all lock kinds.
2624 static const ident_t *__kmp_get_drdpa_lock_location(kmp_drdpa_lock_t *lck) {
2625 return lck->lk.location;
2628 static void __kmp_set_drdpa_lock_location(kmp_drdpa_lock_t *lck,
2629 const ident_t *loc) {
2630 lck->lk.location = loc;
2633 static kmp_lock_flags_t __kmp_get_drdpa_lock_flags(kmp_drdpa_lock_t *lck) {
2634 return lck->lk.flags;
2637 static void __kmp_set_drdpa_lock_flags(kmp_drdpa_lock_t *lck,
2638 kmp_lock_flags_t flags) {
2639 lck->lk.flags = flags;
2642 // Time stamp counter
2643 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2644 #define __kmp_tsc() __kmp_hardware_timestamp()
2645 // Runtime's default backoff parameters
2646 kmp_backoff_t __kmp_spin_backoff_params = {1, 4096, 100};
2647 #else
2648 // Use nanoseconds for other platforms
2649 extern kmp_uint64 __kmp_now_nsec();
2650 kmp_backoff_t __kmp_spin_backoff_params = {1, 256, 100};
2651 #define __kmp_tsc() __kmp_now_nsec()
2652 #endif
2654 // A useful predicate for dealing with timestamps that may wrap.
2655 // Is a before b? Since the timestamps may wrap, this is asking whether it's
2656 // shorter to go clockwise from a to b around the clock-face, or anti-clockwise.
2657 // Times where going clockwise is less distance than going anti-clockwise
2658 // are in the future, others are in the past. e.g. a = MAX-1, b = MAX+1 (=0),
2659 // then a > b (true) does not mean a reached b; whereas signed(a) = -2,
2660 // signed(b) = 0 captures the actual difference
2661 static inline bool before(kmp_uint64 a, kmp_uint64 b) {
2662 return ((kmp_int64)b - (kmp_int64)a) > 0;
2665 // Truncated binary exponential backoff function
2666 void __kmp_spin_backoff(kmp_backoff_t *boff) {
2667 // We could flatten this loop, but making it a nested loop gives better result
2668 kmp_uint32 i;
2669 for (i = boff->step; i > 0; i--) {
2670 kmp_uint64 goal = __kmp_tsc() + boff->min_tick;
2671 #if KMP_HAVE_UMWAIT
2672 if (__kmp_umwait_enabled) {
2673 __kmp_tpause(0, boff->min_tick);
2674 } else {
2675 #endif
2676 do {
2677 KMP_CPU_PAUSE();
2678 } while (before(__kmp_tsc(), goal));
2679 #if KMP_HAVE_UMWAIT
2681 #endif
2683 boff->step = (boff->step << 1 | 1) & (boff->max_backoff - 1);
2686 #if KMP_USE_DYNAMIC_LOCK
2688 // Direct lock initializers. It simply writes a tag to the low 8 bits of the
2689 // lock word.
2690 static void __kmp_init_direct_lock(kmp_dyna_lock_t *lck,
2691 kmp_dyna_lockseq_t seq) {
2692 TCW_4(*lck, KMP_GET_D_TAG(seq));
2693 KA_TRACE(
2695 ("__kmp_init_direct_lock: initialized direct lock with type#%d\n", seq));
2698 #if KMP_USE_TSX
2700 // HLE lock functions - imported from the testbed runtime.
2701 #define HLE_ACQUIRE ".byte 0xf2;"
2702 #define HLE_RELEASE ".byte 0xf3;"
2704 static inline kmp_uint32 swap4(kmp_uint32 volatile *p, kmp_uint32 v) {
2705 __asm__ volatile(HLE_ACQUIRE "xchg %1,%0" : "+r"(v), "+m"(*p) : : "memory");
2706 return v;
2709 static void __kmp_destroy_hle_lock(kmp_dyna_lock_t *lck) { TCW_4(*lck, 0); }
2711 static void __kmp_destroy_hle_lock_with_checks(kmp_dyna_lock_t *lck) {
2712 TCW_4(*lck, 0);
2715 static void __kmp_acquire_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) {
2716 // Use gtid for KMP_LOCK_BUSY if necessary
2717 if (swap4(lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle)) {
2718 int delay = 1;
2719 do {
2720 while (*(kmp_uint32 volatile *)lck != KMP_LOCK_FREE(hle)) {
2721 for (int i = delay; i != 0; --i)
2722 KMP_CPU_PAUSE();
2723 delay = ((delay << 1) | 1) & 7;
2725 } while (swap4(lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle));
2729 static void __kmp_acquire_hle_lock_with_checks(kmp_dyna_lock_t *lck,
2730 kmp_int32 gtid) {
2731 __kmp_acquire_hle_lock(lck, gtid); // TODO: add checks
2734 static int __kmp_release_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) {
2735 __asm__ volatile(HLE_RELEASE "movl %1,%0"
2736 : "=m"(*lck)
2737 : "r"(KMP_LOCK_FREE(hle))
2738 : "memory");
2739 return KMP_LOCK_RELEASED;
2742 static int __kmp_release_hle_lock_with_checks(kmp_dyna_lock_t *lck,
2743 kmp_int32 gtid) {
2744 return __kmp_release_hle_lock(lck, gtid); // TODO: add checks
2747 static int __kmp_test_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) {
2748 return swap4(lck, KMP_LOCK_BUSY(1, hle)) == KMP_LOCK_FREE(hle);
2751 static int __kmp_test_hle_lock_with_checks(kmp_dyna_lock_t *lck,
2752 kmp_int32 gtid) {
2753 return __kmp_test_hle_lock(lck, gtid); // TODO: add checks
2756 static void __kmp_init_rtm_queuing_lock(kmp_queuing_lock_t *lck) {
2757 __kmp_init_queuing_lock(lck);
2760 static void __kmp_destroy_rtm_queuing_lock(kmp_queuing_lock_t *lck) {
2761 __kmp_destroy_queuing_lock(lck);
2764 static void
2765 __kmp_destroy_rtm_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
2766 __kmp_destroy_queuing_lock_with_checks(lck);
2769 KMP_ATTRIBUTE_TARGET_RTM
2770 static void __kmp_acquire_rtm_queuing_lock(kmp_queuing_lock_t *lck,
2771 kmp_int32 gtid) {
2772 unsigned retries = 3, status;
2773 do {
2774 status = _xbegin();
2775 if (status == _XBEGIN_STARTED) {
2776 if (__kmp_is_unlocked_queuing_lock(lck))
2777 return;
2778 _xabort(0xff);
2780 if ((status & _XABORT_EXPLICIT) && _XABORT_CODE(status) == 0xff) {
2781 // Wait until lock becomes free
2782 while (!__kmp_is_unlocked_queuing_lock(lck)) {
2783 KMP_YIELD(TRUE);
2785 } else if (!(status & _XABORT_RETRY))
2786 break;
2787 } while (retries--);
2789 // Fall-back non-speculative lock (xchg)
2790 __kmp_acquire_queuing_lock(lck, gtid);
2793 static void __kmp_acquire_rtm_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
2794 kmp_int32 gtid) {
2795 __kmp_acquire_rtm_queuing_lock(lck, gtid);
2798 KMP_ATTRIBUTE_TARGET_RTM
2799 static int __kmp_release_rtm_queuing_lock(kmp_queuing_lock_t *lck,
2800 kmp_int32 gtid) {
2801 if (__kmp_is_unlocked_queuing_lock(lck)) {
2802 // Releasing from speculation
2803 _xend();
2804 } else {
2805 // Releasing from a real lock
2806 __kmp_release_queuing_lock(lck, gtid);
2808 return KMP_LOCK_RELEASED;
2811 static int __kmp_release_rtm_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
2812 kmp_int32 gtid) {
2813 return __kmp_release_rtm_queuing_lock(lck, gtid);
2816 KMP_ATTRIBUTE_TARGET_RTM
2817 static int __kmp_test_rtm_queuing_lock(kmp_queuing_lock_t *lck,
2818 kmp_int32 gtid) {
2819 unsigned retries = 3, status;
2820 do {
2821 status = _xbegin();
2822 if (status == _XBEGIN_STARTED && __kmp_is_unlocked_queuing_lock(lck)) {
2823 return 1;
2825 if (!(status & _XABORT_RETRY))
2826 break;
2827 } while (retries--);
2829 return __kmp_test_queuing_lock(lck, gtid);
2832 static int __kmp_test_rtm_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
2833 kmp_int32 gtid) {
2834 return __kmp_test_rtm_queuing_lock(lck, gtid);
2837 // Reuse kmp_tas_lock_t for TSX lock which use RTM with fall-back spin lock.
2838 typedef kmp_tas_lock_t kmp_rtm_spin_lock_t;
2840 static void __kmp_destroy_rtm_spin_lock(kmp_rtm_spin_lock_t *lck) {
2841 KMP_ATOMIC_ST_REL(&lck->lk.poll, 0);
2844 static void __kmp_destroy_rtm_spin_lock_with_checks(kmp_rtm_spin_lock_t *lck) {
2845 __kmp_destroy_rtm_spin_lock(lck);
2848 KMP_ATTRIBUTE_TARGET_RTM
2849 static int __kmp_acquire_rtm_spin_lock(kmp_rtm_spin_lock_t *lck,
2850 kmp_int32 gtid) {
2851 unsigned retries = 3, status;
2852 kmp_int32 lock_free = KMP_LOCK_FREE(rtm_spin);
2853 kmp_int32 lock_busy = KMP_LOCK_BUSY(1, rtm_spin);
2854 do {
2855 status = _xbegin();
2856 if (status == _XBEGIN_STARTED) {
2857 if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == lock_free)
2858 return KMP_LOCK_ACQUIRED_FIRST;
2859 _xabort(0xff);
2861 if ((status & _XABORT_EXPLICIT) && _XABORT_CODE(status) == 0xff) {
2862 // Wait until lock becomes free
2863 while (KMP_ATOMIC_LD_RLX(&lck->lk.poll) != lock_free) {
2864 KMP_YIELD(TRUE);
2866 } else if (!(status & _XABORT_RETRY))
2867 break;
2868 } while (retries--);
2870 // Fall-back spin lock
2871 KMP_FSYNC_PREPARE(lck);
2872 kmp_backoff_t backoff = __kmp_spin_backoff_params;
2873 while (KMP_ATOMIC_LD_RLX(&lck->lk.poll) != lock_free ||
2874 !__kmp_atomic_compare_store_acq(&lck->lk.poll, lock_free, lock_busy)) {
2875 __kmp_spin_backoff(&backoff);
2877 KMP_FSYNC_ACQUIRED(lck);
2878 return KMP_LOCK_ACQUIRED_FIRST;
2881 static int __kmp_acquire_rtm_spin_lock_with_checks(kmp_rtm_spin_lock_t *lck,
2882 kmp_int32 gtid) {
2883 return __kmp_acquire_rtm_spin_lock(lck, gtid);
2886 KMP_ATTRIBUTE_TARGET_RTM
2887 static int __kmp_release_rtm_spin_lock(kmp_rtm_spin_lock_t *lck,
2888 kmp_int32 gtid) {
2889 if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == KMP_LOCK_FREE(rtm_spin)) {
2890 // Releasing from speculation
2891 _xend();
2892 } else {
2893 // Releasing from a real lock
2894 KMP_FSYNC_RELEASING(lck);
2895 KMP_ATOMIC_ST_REL(&lck->lk.poll, KMP_LOCK_FREE(rtm_spin));
2897 return KMP_LOCK_RELEASED;
2900 static int __kmp_release_rtm_spin_lock_with_checks(kmp_rtm_spin_lock_t *lck,
2901 kmp_int32 gtid) {
2902 return __kmp_release_rtm_spin_lock(lck, gtid);
2905 KMP_ATTRIBUTE_TARGET_RTM
2906 static int __kmp_test_rtm_spin_lock(kmp_rtm_spin_lock_t *lck, kmp_int32 gtid) {
2907 unsigned retries = 3, status;
2908 kmp_int32 lock_free = KMP_LOCK_FREE(rtm_spin);
2909 kmp_int32 lock_busy = KMP_LOCK_BUSY(1, rtm_spin);
2910 do {
2911 status = _xbegin();
2912 if (status == _XBEGIN_STARTED &&
2913 KMP_ATOMIC_LD_RLX(&lck->lk.poll) == lock_free) {
2914 return TRUE;
2916 if (!(status & _XABORT_RETRY))
2917 break;
2918 } while (retries--);
2920 if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == lock_free &&
2921 __kmp_atomic_compare_store_acq(&lck->lk.poll, lock_free, lock_busy)) {
2922 KMP_FSYNC_ACQUIRED(lck);
2923 return TRUE;
2925 return FALSE;
2928 static int __kmp_test_rtm_spin_lock_with_checks(kmp_rtm_spin_lock_t *lck,
2929 kmp_int32 gtid) {
2930 return __kmp_test_rtm_spin_lock(lck, gtid);
2933 #endif // KMP_USE_TSX
2935 // Entry functions for indirect locks (first element of direct lock jump tables)
2936 static void __kmp_init_indirect_lock(kmp_dyna_lock_t *l,
2937 kmp_dyna_lockseq_t tag);
2938 static void __kmp_destroy_indirect_lock(kmp_dyna_lock_t *lock);
2939 static int __kmp_set_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32);
2940 static int __kmp_unset_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32);
2941 static int __kmp_test_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32);
2942 static int __kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
2943 kmp_int32);
2944 static int __kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
2945 kmp_int32);
2946 static int __kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
2947 kmp_int32);
2949 // Lock function definitions for the union parameter type
2950 #define KMP_FOREACH_LOCK_KIND(m, a) m(ticket, a) m(queuing, a) m(drdpa, a)
2952 #define expand1(lk, op) \
2953 static void __kmp_##op##_##lk##_##lock(kmp_user_lock_p lock) { \
2954 __kmp_##op##_##lk##_##lock(&lock->lk); \
2956 #define expand2(lk, op) \
2957 static int __kmp_##op##_##lk##_##lock(kmp_user_lock_p lock, \
2958 kmp_int32 gtid) { \
2959 return __kmp_##op##_##lk##_##lock(&lock->lk, gtid); \
2961 #define expand3(lk, op) \
2962 static void __kmp_set_##lk##_##lock_flags(kmp_user_lock_p lock, \
2963 kmp_lock_flags_t flags) { \
2964 __kmp_set_##lk##_lock_flags(&lock->lk, flags); \
2966 #define expand4(lk, op) \
2967 static void __kmp_set_##lk##_##lock_location(kmp_user_lock_p lock, \
2968 const ident_t *loc) { \
2969 __kmp_set_##lk##_lock_location(&lock->lk, loc); \
2972 KMP_FOREACH_LOCK_KIND(expand1, init)
2973 KMP_FOREACH_LOCK_KIND(expand1, init_nested)
2974 KMP_FOREACH_LOCK_KIND(expand1, destroy)
2975 KMP_FOREACH_LOCK_KIND(expand1, destroy_nested)
2976 KMP_FOREACH_LOCK_KIND(expand2, acquire)
2977 KMP_FOREACH_LOCK_KIND(expand2, acquire_nested)
2978 KMP_FOREACH_LOCK_KIND(expand2, release)
2979 KMP_FOREACH_LOCK_KIND(expand2, release_nested)
2980 KMP_FOREACH_LOCK_KIND(expand2, test)
2981 KMP_FOREACH_LOCK_KIND(expand2, test_nested)
2982 KMP_FOREACH_LOCK_KIND(expand3, )
2983 KMP_FOREACH_LOCK_KIND(expand4, )
2985 #undef expand1
2986 #undef expand2
2987 #undef expand3
2988 #undef expand4
2990 // Jump tables for the indirect lock functions
2991 // Only fill in the odd entries, that avoids the need to shift out the low bit
2993 // init functions
2994 #define expand(l, op) 0, __kmp_init_direct_lock,
2995 void (*__kmp_direct_init[])(kmp_dyna_lock_t *, kmp_dyna_lockseq_t) = {
2996 __kmp_init_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, init)};
2997 #undef expand
2999 // destroy functions
3000 #define expand(l, op) 0, (void (*)(kmp_dyna_lock_t *))__kmp_##op##_##l##_lock,
3001 static void (*direct_destroy[])(kmp_dyna_lock_t *) = {
3002 __kmp_destroy_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, destroy)};
3003 #undef expand
3004 #define expand(l, op) \
3005 0, (void (*)(kmp_dyna_lock_t *))__kmp_destroy_##l##_lock_with_checks,
3006 static void (*direct_destroy_check[])(kmp_dyna_lock_t *) = {
3007 __kmp_destroy_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, destroy)};
3008 #undef expand
3010 // set/acquire functions
3011 #define expand(l, op) \
3012 0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock,
3013 static int (*direct_set[])(kmp_dyna_lock_t *, kmp_int32) = {
3014 __kmp_set_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, acquire)};
3015 #undef expand
3016 #define expand(l, op) \
3017 0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks,
3018 static int (*direct_set_check[])(kmp_dyna_lock_t *, kmp_int32) = {
3019 __kmp_set_indirect_lock_with_checks, 0,
3020 KMP_FOREACH_D_LOCK(expand, acquire)};
3021 #undef expand
3023 // unset/release and test functions
3024 #define expand(l, op) \
3025 0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock,
3026 static int (*direct_unset[])(kmp_dyna_lock_t *, kmp_int32) = {
3027 __kmp_unset_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, release)};
3028 static int (*direct_test[])(kmp_dyna_lock_t *, kmp_int32) = {
3029 __kmp_test_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, test)};
3030 #undef expand
3031 #define expand(l, op) \
3032 0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks,
3033 static int (*direct_unset_check[])(kmp_dyna_lock_t *, kmp_int32) = {
3034 __kmp_unset_indirect_lock_with_checks, 0,
3035 KMP_FOREACH_D_LOCK(expand, release)};
3036 static int (*direct_test_check[])(kmp_dyna_lock_t *, kmp_int32) = {
3037 __kmp_test_indirect_lock_with_checks, 0, KMP_FOREACH_D_LOCK(expand, test)};
3038 #undef expand
3040 // Exposes only one set of jump tables (*lock or *lock_with_checks).
3041 void (**__kmp_direct_destroy)(kmp_dyna_lock_t *) = 0;
3042 int (**__kmp_direct_set)(kmp_dyna_lock_t *, kmp_int32) = 0;
3043 int (**__kmp_direct_unset)(kmp_dyna_lock_t *, kmp_int32) = 0;
3044 int (**__kmp_direct_test)(kmp_dyna_lock_t *, kmp_int32) = 0;
3046 // Jump tables for the indirect lock functions
3047 #define expand(l, op) (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock,
3048 void (*__kmp_indirect_init[])(kmp_user_lock_p) = {
3049 KMP_FOREACH_I_LOCK(expand, init)};
3050 #undef expand
3052 #define expand(l, op) (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock,
3053 static void (*indirect_destroy[])(kmp_user_lock_p) = {
3054 KMP_FOREACH_I_LOCK(expand, destroy)};
3055 #undef expand
3056 #define expand(l, op) \
3057 (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock_with_checks,
3058 static void (*indirect_destroy_check[])(kmp_user_lock_p) = {
3059 KMP_FOREACH_I_LOCK(expand, destroy)};
3060 #undef expand
3062 // set/acquire functions
3063 #define expand(l, op) \
3064 (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock,
3065 static int (*indirect_set[])(kmp_user_lock_p,
3066 kmp_int32) = {KMP_FOREACH_I_LOCK(expand, acquire)};
3067 #undef expand
3068 #define expand(l, op) \
3069 (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock_with_checks,
3070 static int (*indirect_set_check[])(kmp_user_lock_p, kmp_int32) = {
3071 KMP_FOREACH_I_LOCK(expand, acquire)};
3072 #undef expand
3074 // unset/release and test functions
3075 #define expand(l, op) \
3076 (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock,
3077 static int (*indirect_unset[])(kmp_user_lock_p, kmp_int32) = {
3078 KMP_FOREACH_I_LOCK(expand, release)};
3079 static int (*indirect_test[])(kmp_user_lock_p,
3080 kmp_int32) = {KMP_FOREACH_I_LOCK(expand, test)};
3081 #undef expand
3082 #define expand(l, op) \
3083 (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock_with_checks,
3084 static int (*indirect_unset_check[])(kmp_user_lock_p, kmp_int32) = {
3085 KMP_FOREACH_I_LOCK(expand, release)};
3086 static int (*indirect_test_check[])(kmp_user_lock_p, kmp_int32) = {
3087 KMP_FOREACH_I_LOCK(expand, test)};
3088 #undef expand
3090 // Exposes only one jump tables (*lock or *lock_with_checks).
3091 void (**__kmp_indirect_destroy)(kmp_user_lock_p) = 0;
3092 int (**__kmp_indirect_set)(kmp_user_lock_p, kmp_int32) = 0;
3093 int (**__kmp_indirect_unset)(kmp_user_lock_p, kmp_int32) = 0;
3094 int (**__kmp_indirect_test)(kmp_user_lock_p, kmp_int32) = 0;
3096 // Lock index table.
3097 kmp_indirect_lock_table_t __kmp_i_lock_table;
3099 // Size of indirect locks.
3100 static kmp_uint32 __kmp_indirect_lock_size[KMP_NUM_I_LOCKS] = {0};
3102 // Jump tables for lock accessor/modifier.
3103 void (*__kmp_indirect_set_location[KMP_NUM_I_LOCKS])(kmp_user_lock_p,
3104 const ident_t *) = {0};
3105 void (*__kmp_indirect_set_flags[KMP_NUM_I_LOCKS])(kmp_user_lock_p,
3106 kmp_lock_flags_t) = {0};
3107 const ident_t *(*__kmp_indirect_get_location[KMP_NUM_I_LOCKS])(
3108 kmp_user_lock_p) = {0};
3109 kmp_lock_flags_t (*__kmp_indirect_get_flags[KMP_NUM_I_LOCKS])(
3110 kmp_user_lock_p) = {0};
3112 // Use different lock pools for different lock types.
3113 static kmp_indirect_lock_t *__kmp_indirect_lock_pool[KMP_NUM_I_LOCKS] = {0};
3115 // User lock allocator for dynamically dispatched indirect locks. Every entry of
3116 // the indirect lock table holds the address and type of the allocated indirect
3117 // lock (kmp_indirect_lock_t), and the size of the table doubles when it is
3118 // full. A destroyed indirect lock object is returned to the reusable pool of
3119 // locks, unique to each lock type.
3120 kmp_indirect_lock_t *__kmp_allocate_indirect_lock(void **user_lock,
3121 kmp_int32 gtid,
3122 kmp_indirect_locktag_t tag) {
3123 kmp_indirect_lock_t *lck;
3124 kmp_lock_index_t idx, table_idx;
3126 __kmp_acquire_lock(&__kmp_global_lock, gtid);
3128 if (__kmp_indirect_lock_pool[tag] != NULL) {
3129 // Reuse the allocated and destroyed lock object
3130 lck = __kmp_indirect_lock_pool[tag];
3131 if (OMP_LOCK_T_SIZE < sizeof(void *))
3132 idx = lck->lock->pool.index;
3133 __kmp_indirect_lock_pool[tag] = (kmp_indirect_lock_t *)lck->lock->pool.next;
3134 KA_TRACE(20, ("__kmp_allocate_indirect_lock: reusing an existing lock %p\n",
3135 lck));
3136 } else {
3137 kmp_uint32 row, col;
3138 kmp_indirect_lock_table_t *lock_table = &__kmp_i_lock_table;
3139 idx = 0;
3140 // Find location in list of lock tables to put new lock
3141 while (1) {
3142 table_idx = lock_table->next; // index within this table
3143 idx += lock_table->next; // global index within list of tables
3144 if (table_idx < lock_table->nrow_ptrs * KMP_I_LOCK_CHUNK) {
3145 row = table_idx / KMP_I_LOCK_CHUNK;
3146 col = table_idx % KMP_I_LOCK_CHUNK;
3147 // Allocate a new row of locks if necessary
3148 if (!lock_table->table[row]) {
3149 lock_table->table[row] = (kmp_indirect_lock_t *)__kmp_allocate(
3150 sizeof(kmp_indirect_lock_t) * KMP_I_LOCK_CHUNK);
3152 break;
3154 // Allocate a new lock table if necessary with double the capacity
3155 if (!lock_table->next_table) {
3156 kmp_indirect_lock_table_t *next_table =
3157 (kmp_indirect_lock_table_t *)__kmp_allocate(
3158 sizeof(kmp_indirect_lock_table_t));
3159 next_table->table = (kmp_indirect_lock_t **)__kmp_allocate(
3160 sizeof(kmp_indirect_lock_t *) * 2 * lock_table->nrow_ptrs);
3161 next_table->nrow_ptrs = 2 * lock_table->nrow_ptrs;
3162 next_table->next = 0;
3163 next_table->next_table = nullptr;
3164 lock_table->next_table = next_table;
3166 lock_table = lock_table->next_table;
3167 KMP_ASSERT(lock_table);
3169 lock_table->next++;
3171 lck = &lock_table->table[row][col];
3172 // Allocate a new base lock object
3173 lck->lock = (kmp_user_lock_p)__kmp_allocate(__kmp_indirect_lock_size[tag]);
3174 KA_TRACE(20,
3175 ("__kmp_allocate_indirect_lock: allocated a new lock %p\n", lck));
3178 __kmp_release_lock(&__kmp_global_lock, gtid);
3180 lck->type = tag;
3182 if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3183 *((kmp_lock_index_t *)user_lock) = idx
3184 << 1; // indirect lock word must be even
3185 } else {
3186 *((kmp_indirect_lock_t **)user_lock) = lck;
3189 return lck;
3192 // User lock lookup for dynamically dispatched locks.
3193 static __forceinline kmp_indirect_lock_t *
3194 __kmp_lookup_indirect_lock(void **user_lock, const char *func) {
3195 if (__kmp_env_consistency_check) {
3196 kmp_indirect_lock_t *lck = NULL;
3197 if (user_lock == NULL) {
3198 KMP_FATAL(LockIsUninitialized, func);
3200 if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3201 kmp_lock_index_t idx = KMP_EXTRACT_I_INDEX(user_lock);
3202 lck = __kmp_get_i_lock(idx);
3203 } else {
3204 lck = *((kmp_indirect_lock_t **)user_lock);
3206 if (lck == NULL) {
3207 KMP_FATAL(LockIsUninitialized, func);
3209 return lck;
3210 } else {
3211 if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3212 return __kmp_get_i_lock(KMP_EXTRACT_I_INDEX(user_lock));
3213 } else {
3214 return *((kmp_indirect_lock_t **)user_lock);
3219 static void __kmp_init_indirect_lock(kmp_dyna_lock_t *lock,
3220 kmp_dyna_lockseq_t seq) {
3221 #if KMP_USE_ADAPTIVE_LOCKS
3222 if (seq == lockseq_adaptive && !__kmp_cpuinfo.flags.rtm) {
3223 KMP_WARNING(AdaptiveNotSupported, "kmp_lockseq_t", "adaptive");
3224 seq = lockseq_queuing;
3226 #endif
3227 #if KMP_USE_TSX
3228 if (seq == lockseq_rtm_queuing && !__kmp_cpuinfo.flags.rtm) {
3229 seq = lockseq_queuing;
3231 #endif
3232 kmp_indirect_locktag_t tag = KMP_GET_I_TAG(seq);
3233 kmp_indirect_lock_t *l =
3234 __kmp_allocate_indirect_lock((void **)lock, __kmp_entry_gtid(), tag);
3235 KMP_I_LOCK_FUNC(l, init)(l->lock);
3236 KA_TRACE(
3237 20, ("__kmp_init_indirect_lock: initialized indirect lock with type#%d\n",
3238 seq));
3241 static void __kmp_destroy_indirect_lock(kmp_dyna_lock_t *lock) {
3242 kmp_uint32 gtid = __kmp_entry_gtid();
3243 kmp_indirect_lock_t *l =
3244 __kmp_lookup_indirect_lock((void **)lock, "omp_destroy_lock");
3245 KMP_I_LOCK_FUNC(l, destroy)(l->lock);
3246 kmp_indirect_locktag_t tag = l->type;
3248 __kmp_acquire_lock(&__kmp_global_lock, gtid);
3250 // Use the base lock's space to keep the pool chain.
3251 l->lock->pool.next = (kmp_user_lock_p)__kmp_indirect_lock_pool[tag];
3252 if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3253 l->lock->pool.index = KMP_EXTRACT_I_INDEX(lock);
3255 __kmp_indirect_lock_pool[tag] = l;
3257 __kmp_release_lock(&__kmp_global_lock, gtid);
3260 static int __kmp_set_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) {
3261 kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock);
3262 return KMP_I_LOCK_FUNC(l, set)(l->lock, gtid);
3265 static int __kmp_unset_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) {
3266 kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock);
3267 return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid);
3270 static int __kmp_test_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) {
3271 kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock);
3272 return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid);
3275 static int __kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
3276 kmp_int32 gtid) {
3277 kmp_indirect_lock_t *l =
3278 __kmp_lookup_indirect_lock((void **)lock, "omp_set_lock");
3279 return KMP_I_LOCK_FUNC(l, set)(l->lock, gtid);
3282 static int __kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
3283 kmp_int32 gtid) {
3284 kmp_indirect_lock_t *l =
3285 __kmp_lookup_indirect_lock((void **)lock, "omp_unset_lock");
3286 return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid);
3289 static int __kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
3290 kmp_int32 gtid) {
3291 kmp_indirect_lock_t *l =
3292 __kmp_lookup_indirect_lock((void **)lock, "omp_test_lock");
3293 return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid);
3296 kmp_dyna_lockseq_t __kmp_user_lock_seq = lockseq_queuing;
3298 // This is used only in kmp_error.cpp when consistency checking is on.
3299 kmp_int32 __kmp_get_user_lock_owner(kmp_user_lock_p lck, kmp_uint32 seq) {
3300 switch (seq) {
3301 case lockseq_tas:
3302 case lockseq_nested_tas:
3303 return __kmp_get_tas_lock_owner((kmp_tas_lock_t *)lck);
3304 #if KMP_USE_FUTEX
3305 case lockseq_futex:
3306 case lockseq_nested_futex:
3307 return __kmp_get_futex_lock_owner((kmp_futex_lock_t *)lck);
3308 #endif
3309 case lockseq_ticket:
3310 case lockseq_nested_ticket:
3311 return __kmp_get_ticket_lock_owner((kmp_ticket_lock_t *)lck);
3312 case lockseq_queuing:
3313 case lockseq_nested_queuing:
3314 #if KMP_USE_ADAPTIVE_LOCKS
3315 case lockseq_adaptive:
3316 #endif
3317 return __kmp_get_queuing_lock_owner((kmp_queuing_lock_t *)lck);
3318 case lockseq_drdpa:
3319 case lockseq_nested_drdpa:
3320 return __kmp_get_drdpa_lock_owner((kmp_drdpa_lock_t *)lck);
3321 default:
3322 return 0;
3326 // Initializes data for dynamic user locks.
3327 void __kmp_init_dynamic_user_locks() {
3328 // Initialize jump table for the lock functions
3329 if (__kmp_env_consistency_check) {
3330 __kmp_direct_set = direct_set_check;
3331 __kmp_direct_unset = direct_unset_check;
3332 __kmp_direct_test = direct_test_check;
3333 __kmp_direct_destroy = direct_destroy_check;
3334 __kmp_indirect_set = indirect_set_check;
3335 __kmp_indirect_unset = indirect_unset_check;
3336 __kmp_indirect_test = indirect_test_check;
3337 __kmp_indirect_destroy = indirect_destroy_check;
3338 } else {
3339 __kmp_direct_set = direct_set;
3340 __kmp_direct_unset = direct_unset;
3341 __kmp_direct_test = direct_test;
3342 __kmp_direct_destroy = direct_destroy;
3343 __kmp_indirect_set = indirect_set;
3344 __kmp_indirect_unset = indirect_unset;
3345 __kmp_indirect_test = indirect_test;
3346 __kmp_indirect_destroy = indirect_destroy;
3348 // If the user locks have already been initialized, then return. Allow the
3349 // switch between different KMP_CONSISTENCY_CHECK values, but do not allocate
3350 // new lock tables if they have already been allocated.
3351 if (__kmp_init_user_locks)
3352 return;
3354 // Initialize lock index table
3355 __kmp_i_lock_table.nrow_ptrs = KMP_I_LOCK_TABLE_INIT_NROW_PTRS;
3356 __kmp_i_lock_table.table = (kmp_indirect_lock_t **)__kmp_allocate(
3357 sizeof(kmp_indirect_lock_t *) * KMP_I_LOCK_TABLE_INIT_NROW_PTRS);
3358 *(__kmp_i_lock_table.table) = (kmp_indirect_lock_t *)__kmp_allocate(
3359 KMP_I_LOCK_CHUNK * sizeof(kmp_indirect_lock_t));
3360 __kmp_i_lock_table.next = 0;
3361 __kmp_i_lock_table.next_table = nullptr;
3363 // Indirect lock size
3364 __kmp_indirect_lock_size[locktag_ticket] = sizeof(kmp_ticket_lock_t);
3365 __kmp_indirect_lock_size[locktag_queuing] = sizeof(kmp_queuing_lock_t);
3366 #if KMP_USE_ADAPTIVE_LOCKS
3367 __kmp_indirect_lock_size[locktag_adaptive] = sizeof(kmp_adaptive_lock_t);
3368 #endif
3369 __kmp_indirect_lock_size[locktag_drdpa] = sizeof(kmp_drdpa_lock_t);
3370 #if KMP_USE_TSX
3371 __kmp_indirect_lock_size[locktag_rtm_queuing] = sizeof(kmp_queuing_lock_t);
3372 #endif
3373 __kmp_indirect_lock_size[locktag_nested_tas] = sizeof(kmp_tas_lock_t);
3374 #if KMP_USE_FUTEX
3375 __kmp_indirect_lock_size[locktag_nested_futex] = sizeof(kmp_futex_lock_t);
3376 #endif
3377 __kmp_indirect_lock_size[locktag_nested_ticket] = sizeof(kmp_ticket_lock_t);
3378 __kmp_indirect_lock_size[locktag_nested_queuing] = sizeof(kmp_queuing_lock_t);
3379 __kmp_indirect_lock_size[locktag_nested_drdpa] = sizeof(kmp_drdpa_lock_t);
3381 // Initialize lock accessor/modifier
3382 #define fill_jumps(table, expand, sep) \
3384 table[locktag##sep##ticket] = expand(ticket); \
3385 table[locktag##sep##queuing] = expand(queuing); \
3386 table[locktag##sep##drdpa] = expand(drdpa); \
3389 #if KMP_USE_ADAPTIVE_LOCKS
3390 #define fill_table(table, expand) \
3392 fill_jumps(table, expand, _); \
3393 table[locktag_adaptive] = expand(queuing); \
3394 fill_jumps(table, expand, _nested_); \
3396 #else
3397 #define fill_table(table, expand) \
3399 fill_jumps(table, expand, _); \
3400 fill_jumps(table, expand, _nested_); \
3402 #endif // KMP_USE_ADAPTIVE_LOCKS
3404 #define expand(l) \
3405 (void (*)(kmp_user_lock_p, const ident_t *)) __kmp_set_##l##_lock_location
3406 fill_table(__kmp_indirect_set_location, expand);
3407 #undef expand
3408 #define expand(l) \
3409 (void (*)(kmp_user_lock_p, kmp_lock_flags_t)) __kmp_set_##l##_lock_flags
3410 fill_table(__kmp_indirect_set_flags, expand);
3411 #undef expand
3412 #define expand(l) \
3413 (const ident_t *(*)(kmp_user_lock_p)) __kmp_get_##l##_lock_location
3414 fill_table(__kmp_indirect_get_location, expand);
3415 #undef expand
3416 #define expand(l) \
3417 (kmp_lock_flags_t(*)(kmp_user_lock_p)) __kmp_get_##l##_lock_flags
3418 fill_table(__kmp_indirect_get_flags, expand);
3419 #undef expand
3421 __kmp_init_user_locks = TRUE;
3424 // Clean up the lock table.
3425 void __kmp_cleanup_indirect_user_locks() {
3426 int k;
3428 // Clean up locks in the pools first (they were already destroyed before going
3429 // into the pools).
3430 for (k = 0; k < KMP_NUM_I_LOCKS; ++k) {
3431 kmp_indirect_lock_t *l = __kmp_indirect_lock_pool[k];
3432 while (l != NULL) {
3433 kmp_indirect_lock_t *ll = l;
3434 l = (kmp_indirect_lock_t *)l->lock->pool.next;
3435 KA_TRACE(20, ("__kmp_cleanup_indirect_user_locks: freeing %p from pool\n",
3436 ll));
3437 __kmp_free(ll->lock);
3438 ll->lock = NULL;
3440 __kmp_indirect_lock_pool[k] = NULL;
3442 // Clean up the remaining undestroyed locks.
3443 kmp_indirect_lock_table_t *ptr = &__kmp_i_lock_table;
3444 while (ptr) {
3445 for (kmp_uint32 row = 0; row < ptr->nrow_ptrs; ++row) {
3446 if (!ptr->table[row])
3447 continue;
3448 for (kmp_uint32 col = 0; col < KMP_I_LOCK_CHUNK; ++col) {
3449 kmp_indirect_lock_t *l = &ptr->table[row][col];
3450 if (l->lock) {
3451 // Locks not destroyed explicitly need to be destroyed here.
3452 KMP_I_LOCK_FUNC(l, destroy)(l->lock);
3453 KA_TRACE(20, ("__kmp_cleanup_indirect_user_locks: destroy/freeing %p "
3454 "from table\n",
3455 l));
3456 __kmp_free(l->lock);
3459 __kmp_free(ptr->table[row]);
3461 kmp_indirect_lock_table_t *next_table = ptr->next_table;
3462 if (ptr != &__kmp_i_lock_table)
3463 __kmp_free(ptr);
3464 ptr = next_table;
3467 __kmp_init_user_locks = FALSE;
3470 enum kmp_lock_kind __kmp_user_lock_kind = lk_default;
3471 int __kmp_num_locks_in_block = 1; // FIXME - tune this value
3473 #else // KMP_USE_DYNAMIC_LOCK
3475 static void __kmp_init_tas_lock_with_checks(kmp_tas_lock_t *lck) {
3476 __kmp_init_tas_lock(lck);
3479 static void __kmp_init_nested_tas_lock_with_checks(kmp_tas_lock_t *lck) {
3480 __kmp_init_nested_tas_lock(lck);
3483 #if KMP_USE_FUTEX
3484 static void __kmp_init_futex_lock_with_checks(kmp_futex_lock_t *lck) {
3485 __kmp_init_futex_lock(lck);
3488 static void __kmp_init_nested_futex_lock_with_checks(kmp_futex_lock_t *lck) {
3489 __kmp_init_nested_futex_lock(lck);
3491 #endif
3493 static int __kmp_is_ticket_lock_initialized(kmp_ticket_lock_t *lck) {
3494 return lck == lck->lk.self;
3497 static void __kmp_init_ticket_lock_with_checks(kmp_ticket_lock_t *lck) {
3498 __kmp_init_ticket_lock(lck);
3501 static void __kmp_init_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck) {
3502 __kmp_init_nested_ticket_lock(lck);
3505 static int __kmp_is_queuing_lock_initialized(kmp_queuing_lock_t *lck) {
3506 return lck == lck->lk.initialized;
3509 static void __kmp_init_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
3510 __kmp_init_queuing_lock(lck);
3513 static void
3514 __kmp_init_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
3515 __kmp_init_nested_queuing_lock(lck);
3518 #if KMP_USE_ADAPTIVE_LOCKS
3519 static void __kmp_init_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck) {
3520 __kmp_init_adaptive_lock(lck);
3522 #endif
3524 static int __kmp_is_drdpa_lock_initialized(kmp_drdpa_lock_t *lck) {
3525 return lck == lck->lk.initialized;
3528 static void __kmp_init_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) {
3529 __kmp_init_drdpa_lock(lck);
3532 static void __kmp_init_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) {
3533 __kmp_init_nested_drdpa_lock(lck);
3536 /* user locks
3537 * They are implemented as a table of function pointers which are set to the
3538 * lock functions of the appropriate kind, once that has been determined. */
3540 enum kmp_lock_kind __kmp_user_lock_kind = lk_default;
3542 size_t __kmp_base_user_lock_size = 0;
3543 size_t __kmp_user_lock_size = 0;
3545 kmp_int32 (*__kmp_get_user_lock_owner_)(kmp_user_lock_p lck) = NULL;
3546 int (*__kmp_acquire_user_lock_with_checks_)(kmp_user_lock_p lck,
3547 kmp_int32 gtid) = NULL;
3549 int (*__kmp_test_user_lock_with_checks_)(kmp_user_lock_p lck,
3550 kmp_int32 gtid) = NULL;
3551 int (*__kmp_release_user_lock_with_checks_)(kmp_user_lock_p lck,
3552 kmp_int32 gtid) = NULL;
3553 void (*__kmp_init_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL;
3554 void (*__kmp_destroy_user_lock_)(kmp_user_lock_p lck) = NULL;
3555 void (*__kmp_destroy_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL;
3556 int (*__kmp_acquire_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
3557 kmp_int32 gtid) = NULL;
3559 int (*__kmp_test_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
3560 kmp_int32 gtid) = NULL;
3561 int (*__kmp_release_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
3562 kmp_int32 gtid) = NULL;
3563 void (*__kmp_init_nested_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL;
3564 void (*__kmp_destroy_nested_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL;
3566 int (*__kmp_is_user_lock_initialized_)(kmp_user_lock_p lck) = NULL;
3567 const ident_t *(*__kmp_get_user_lock_location_)(kmp_user_lock_p lck) = NULL;
3568 void (*__kmp_set_user_lock_location_)(kmp_user_lock_p lck,
3569 const ident_t *loc) = NULL;
3570 kmp_lock_flags_t (*__kmp_get_user_lock_flags_)(kmp_user_lock_p lck) = NULL;
3571 void (*__kmp_set_user_lock_flags_)(kmp_user_lock_p lck,
3572 kmp_lock_flags_t flags) = NULL;
3574 void __kmp_set_user_lock_vptrs(kmp_lock_kind_t user_lock_kind) {
3575 switch (user_lock_kind) {
3576 case lk_default:
3577 default:
3578 KMP_ASSERT(0);
3580 case lk_tas: {
3581 __kmp_base_user_lock_size = sizeof(kmp_base_tas_lock_t);
3582 __kmp_user_lock_size = sizeof(kmp_tas_lock_t);
3584 __kmp_get_user_lock_owner_ =
3585 (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_tas_lock_owner);
3587 if (__kmp_env_consistency_check) {
3588 KMP_BIND_USER_LOCK_WITH_CHECKS(tas);
3589 KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(tas);
3590 } else {
3591 KMP_BIND_USER_LOCK(tas);
3592 KMP_BIND_NESTED_USER_LOCK(tas);
3595 __kmp_destroy_user_lock_ =
3596 (void (*)(kmp_user_lock_p))(&__kmp_destroy_tas_lock);
3598 __kmp_is_user_lock_initialized_ = (int (*)(kmp_user_lock_p))NULL;
3600 __kmp_get_user_lock_location_ = (const ident_t *(*)(kmp_user_lock_p))NULL;
3602 __kmp_set_user_lock_location_ =
3603 (void (*)(kmp_user_lock_p, const ident_t *))NULL;
3605 __kmp_get_user_lock_flags_ = (kmp_lock_flags_t(*)(kmp_user_lock_p))NULL;
3607 __kmp_set_user_lock_flags_ =
3608 (void (*)(kmp_user_lock_p, kmp_lock_flags_t))NULL;
3609 } break;
3611 #if KMP_USE_FUTEX
3613 case lk_futex: {
3614 __kmp_base_user_lock_size = sizeof(kmp_base_futex_lock_t);
3615 __kmp_user_lock_size = sizeof(kmp_futex_lock_t);
3617 __kmp_get_user_lock_owner_ =
3618 (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_futex_lock_owner);
3620 if (__kmp_env_consistency_check) {
3621 KMP_BIND_USER_LOCK_WITH_CHECKS(futex);
3622 KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(futex);
3623 } else {
3624 KMP_BIND_USER_LOCK(futex);
3625 KMP_BIND_NESTED_USER_LOCK(futex);
3628 __kmp_destroy_user_lock_ =
3629 (void (*)(kmp_user_lock_p))(&__kmp_destroy_futex_lock);
3631 __kmp_is_user_lock_initialized_ = (int (*)(kmp_user_lock_p))NULL;
3633 __kmp_get_user_lock_location_ = (const ident_t *(*)(kmp_user_lock_p))NULL;
3635 __kmp_set_user_lock_location_ =
3636 (void (*)(kmp_user_lock_p, const ident_t *))NULL;
3638 __kmp_get_user_lock_flags_ = (kmp_lock_flags_t(*)(kmp_user_lock_p))NULL;
3640 __kmp_set_user_lock_flags_ =
3641 (void (*)(kmp_user_lock_p, kmp_lock_flags_t))NULL;
3642 } break;
3644 #endif // KMP_USE_FUTEX
3646 case lk_ticket: {
3647 __kmp_base_user_lock_size = sizeof(kmp_base_ticket_lock_t);
3648 __kmp_user_lock_size = sizeof(kmp_ticket_lock_t);
3650 __kmp_get_user_lock_owner_ =
3651 (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_owner);
3653 if (__kmp_env_consistency_check) {
3654 KMP_BIND_USER_LOCK_WITH_CHECKS(ticket);
3655 KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(ticket);
3656 } else {
3657 KMP_BIND_USER_LOCK(ticket);
3658 KMP_BIND_NESTED_USER_LOCK(ticket);
3661 __kmp_destroy_user_lock_ =
3662 (void (*)(kmp_user_lock_p))(&__kmp_destroy_ticket_lock);
3664 __kmp_is_user_lock_initialized_ =
3665 (int (*)(kmp_user_lock_p))(&__kmp_is_ticket_lock_initialized);
3667 __kmp_get_user_lock_location_ =
3668 (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_location);
3670 __kmp_set_user_lock_location_ = (void (*)(
3671 kmp_user_lock_p, const ident_t *))(&__kmp_set_ticket_lock_location);
3673 __kmp_get_user_lock_flags_ =
3674 (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_flags);
3676 __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))(
3677 &__kmp_set_ticket_lock_flags);
3678 } break;
3680 case lk_queuing: {
3681 __kmp_base_user_lock_size = sizeof(kmp_base_queuing_lock_t);
3682 __kmp_user_lock_size = sizeof(kmp_queuing_lock_t);
3684 __kmp_get_user_lock_owner_ =
3685 (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_owner);
3687 if (__kmp_env_consistency_check) {
3688 KMP_BIND_USER_LOCK_WITH_CHECKS(queuing);
3689 KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(queuing);
3690 } else {
3691 KMP_BIND_USER_LOCK(queuing);
3692 KMP_BIND_NESTED_USER_LOCK(queuing);
3695 __kmp_destroy_user_lock_ =
3696 (void (*)(kmp_user_lock_p))(&__kmp_destroy_queuing_lock);
3698 __kmp_is_user_lock_initialized_ =
3699 (int (*)(kmp_user_lock_p))(&__kmp_is_queuing_lock_initialized);
3701 __kmp_get_user_lock_location_ =
3702 (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_location);
3704 __kmp_set_user_lock_location_ = (void (*)(
3705 kmp_user_lock_p, const ident_t *))(&__kmp_set_queuing_lock_location);
3707 __kmp_get_user_lock_flags_ =
3708 (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_flags);
3710 __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))(
3711 &__kmp_set_queuing_lock_flags);
3712 } break;
3714 #if KMP_USE_ADAPTIVE_LOCKS
3715 case lk_adaptive: {
3716 __kmp_base_user_lock_size = sizeof(kmp_base_adaptive_lock_t);
3717 __kmp_user_lock_size = sizeof(kmp_adaptive_lock_t);
3719 __kmp_get_user_lock_owner_ =
3720 (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_owner);
3722 if (__kmp_env_consistency_check) {
3723 KMP_BIND_USER_LOCK_WITH_CHECKS(adaptive);
3724 } else {
3725 KMP_BIND_USER_LOCK(adaptive);
3728 __kmp_destroy_user_lock_ =
3729 (void (*)(kmp_user_lock_p))(&__kmp_destroy_adaptive_lock);
3731 __kmp_is_user_lock_initialized_ =
3732 (int (*)(kmp_user_lock_p))(&__kmp_is_queuing_lock_initialized);
3734 __kmp_get_user_lock_location_ =
3735 (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_location);
3737 __kmp_set_user_lock_location_ = (void (*)(
3738 kmp_user_lock_p, const ident_t *))(&__kmp_set_queuing_lock_location);
3740 __kmp_get_user_lock_flags_ =
3741 (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_flags);
3743 __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))(
3744 &__kmp_set_queuing_lock_flags);
3746 } break;
3747 #endif // KMP_USE_ADAPTIVE_LOCKS
3749 case lk_drdpa: {
3750 __kmp_base_user_lock_size = sizeof(kmp_base_drdpa_lock_t);
3751 __kmp_user_lock_size = sizeof(kmp_drdpa_lock_t);
3753 __kmp_get_user_lock_owner_ =
3754 (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_owner);
3756 if (__kmp_env_consistency_check) {
3757 KMP_BIND_USER_LOCK_WITH_CHECKS(drdpa);
3758 KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(drdpa);
3759 } else {
3760 KMP_BIND_USER_LOCK(drdpa);
3761 KMP_BIND_NESTED_USER_LOCK(drdpa);
3764 __kmp_destroy_user_lock_ =
3765 (void (*)(kmp_user_lock_p))(&__kmp_destroy_drdpa_lock);
3767 __kmp_is_user_lock_initialized_ =
3768 (int (*)(kmp_user_lock_p))(&__kmp_is_drdpa_lock_initialized);
3770 __kmp_get_user_lock_location_ =
3771 (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_location);
3773 __kmp_set_user_lock_location_ = (void (*)(
3774 kmp_user_lock_p, const ident_t *))(&__kmp_set_drdpa_lock_location);
3776 __kmp_get_user_lock_flags_ =
3777 (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_flags);
3779 __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))(
3780 &__kmp_set_drdpa_lock_flags);
3781 } break;
3785 // ----------------------------------------------------------------------------
3786 // User lock table & lock allocation
3788 kmp_lock_table_t __kmp_user_lock_table = {1, 0, NULL};
3789 kmp_user_lock_p __kmp_lock_pool = NULL;
3791 // Lock block-allocation support.
3792 kmp_block_of_locks *__kmp_lock_blocks = NULL;
3793 int __kmp_num_locks_in_block = 1; // FIXME - tune this value
3795 static kmp_lock_index_t __kmp_lock_table_insert(kmp_user_lock_p lck) {
3796 // Assume that kmp_global_lock is held upon entry/exit.
3797 kmp_lock_index_t index;
3798 if (__kmp_user_lock_table.used >= __kmp_user_lock_table.allocated) {
3799 kmp_lock_index_t size;
3800 kmp_user_lock_p *table;
3801 // Reallocate lock table.
3802 if (__kmp_user_lock_table.allocated == 0) {
3803 size = 1024;
3804 } else {
3805 size = __kmp_user_lock_table.allocated * 2;
3807 table = (kmp_user_lock_p *)__kmp_allocate(sizeof(kmp_user_lock_p) * size);
3808 KMP_MEMCPY(table + 1, __kmp_user_lock_table.table + 1,
3809 sizeof(kmp_user_lock_p) * (__kmp_user_lock_table.used - 1));
3810 table[0] = (kmp_user_lock_p)__kmp_user_lock_table.table;
3811 // We cannot free the previous table now, since it may be in use by other
3812 // threads. So save the pointer to the previous table in the first
3813 // element of the new table. All the tables will be organized into a list,
3814 // and could be freed when library shutting down.
3815 __kmp_user_lock_table.table = table;
3816 __kmp_user_lock_table.allocated = size;
3818 KMP_DEBUG_ASSERT(__kmp_user_lock_table.used <
3819 __kmp_user_lock_table.allocated);
3820 index = __kmp_user_lock_table.used;
3821 __kmp_user_lock_table.table[index] = lck;
3822 ++__kmp_user_lock_table.used;
3823 return index;
3826 static kmp_user_lock_p __kmp_lock_block_allocate() {
3827 // Assume that kmp_global_lock is held upon entry/exit.
3828 static int last_index = 0;
3829 if ((last_index >= __kmp_num_locks_in_block) || (__kmp_lock_blocks == NULL)) {
3830 // Restart the index.
3831 last_index = 0;
3832 // Need to allocate a new block.
3833 KMP_DEBUG_ASSERT(__kmp_user_lock_size > 0);
3834 size_t space_for_locks = __kmp_user_lock_size * __kmp_num_locks_in_block;
3835 char *buffer =
3836 (char *)__kmp_allocate(space_for_locks + sizeof(kmp_block_of_locks));
3837 // Set up the new block.
3838 kmp_block_of_locks *new_block =
3839 (kmp_block_of_locks *)(&buffer[space_for_locks]);
3840 new_block->next_block = __kmp_lock_blocks;
3841 new_block->locks = (void *)buffer;
3842 // Publish the new block.
3843 KMP_MB();
3844 __kmp_lock_blocks = new_block;
3846 kmp_user_lock_p ret = (kmp_user_lock_p)(&(
3847 ((char *)(__kmp_lock_blocks->locks))[last_index * __kmp_user_lock_size]));
3848 last_index++;
3849 return ret;
3852 // Get memory for a lock. It may be freshly allocated memory or reused memory
3853 // from lock pool.
3854 kmp_user_lock_p __kmp_user_lock_allocate(void **user_lock, kmp_int32 gtid,
3855 kmp_lock_flags_t flags) {
3856 kmp_user_lock_p lck;
3857 kmp_lock_index_t index;
3858 KMP_DEBUG_ASSERT(user_lock);
3860 __kmp_acquire_lock(&__kmp_global_lock, gtid);
3862 if (__kmp_lock_pool == NULL) {
3863 // Lock pool is empty. Allocate new memory.
3865 if (__kmp_num_locks_in_block <= 1) { // Tune this cutoff point.
3866 lck = (kmp_user_lock_p)__kmp_allocate(__kmp_user_lock_size);
3867 } else {
3868 lck = __kmp_lock_block_allocate();
3871 // Insert lock in the table so that it can be freed in __kmp_cleanup,
3872 // and debugger has info on all allocated locks.
3873 index = __kmp_lock_table_insert(lck);
3874 } else {
3875 // Pick up lock from pool.
3876 lck = __kmp_lock_pool;
3877 index = __kmp_lock_pool->pool.index;
3878 __kmp_lock_pool = __kmp_lock_pool->pool.next;
3881 // We could potentially differentiate between nested and regular locks
3882 // here, and do the lock table lookup for regular locks only.
3883 if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3884 *((kmp_lock_index_t *)user_lock) = index;
3885 } else {
3886 *((kmp_user_lock_p *)user_lock) = lck;
3889 // mark the lock if it is critical section lock.
3890 __kmp_set_user_lock_flags(lck, flags);
3892 __kmp_release_lock(&__kmp_global_lock, gtid); // AC: TODO move this line upper
3894 return lck;
3897 // Put lock's memory to pool for reusing.
3898 void __kmp_user_lock_free(void **user_lock, kmp_int32 gtid,
3899 kmp_user_lock_p lck) {
3900 KMP_DEBUG_ASSERT(user_lock != NULL);
3901 KMP_DEBUG_ASSERT(lck != NULL);
3903 __kmp_acquire_lock(&__kmp_global_lock, gtid);
3905 lck->pool.next = __kmp_lock_pool;
3906 __kmp_lock_pool = lck;
3907 if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3908 kmp_lock_index_t index = *((kmp_lock_index_t *)user_lock);
3909 KMP_DEBUG_ASSERT(0 < index && index <= __kmp_user_lock_table.used);
3910 lck->pool.index = index;
3913 __kmp_release_lock(&__kmp_global_lock, gtid);
3916 kmp_user_lock_p __kmp_lookup_user_lock(void **user_lock, char const *func) {
3917 kmp_user_lock_p lck = NULL;
3919 if (__kmp_env_consistency_check) {
3920 if (user_lock == NULL) {
3921 KMP_FATAL(LockIsUninitialized, func);
3925 if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3926 kmp_lock_index_t index = *((kmp_lock_index_t *)user_lock);
3927 if (__kmp_env_consistency_check) {
3928 if (!(0 < index && index < __kmp_user_lock_table.used)) {
3929 KMP_FATAL(LockIsUninitialized, func);
3932 KMP_DEBUG_ASSERT(0 < index && index < __kmp_user_lock_table.used);
3933 KMP_DEBUG_ASSERT(__kmp_user_lock_size > 0);
3934 lck = __kmp_user_lock_table.table[index];
3935 } else {
3936 lck = *((kmp_user_lock_p *)user_lock);
3939 if (__kmp_env_consistency_check) {
3940 if (lck == NULL) {
3941 KMP_FATAL(LockIsUninitialized, func);
3945 return lck;
3948 void __kmp_cleanup_user_locks(void) {
3949 // Reset lock pool. Don't worry about lock in the pool--we will free them when
3950 // iterating through lock table (it includes all the locks, dead or alive).
3951 __kmp_lock_pool = NULL;
3953 #define IS_CRITICAL(lck) \
3954 ((__kmp_get_user_lock_flags_ != NULL) && \
3955 ((*__kmp_get_user_lock_flags_)(lck)&kmp_lf_critical_section))
3957 // Loop through lock table, free all locks.
3958 // Do not free item [0], it is reserved for lock tables list.
3960 // FIXME - we are iterating through a list of (pointers to) objects of type
3961 // union kmp_user_lock, but we have no way of knowing whether the base type is
3962 // currently "pool" or whatever the global user lock type is.
3964 // We are relying on the fact that for all of the user lock types
3965 // (except "tas"), the first field in the lock struct is the "initialized"
3966 // field, which is set to the address of the lock object itself when
3967 // the lock is initialized. When the union is of type "pool", the
3968 // first field is a pointer to the next object in the free list, which
3969 // will not be the same address as the object itself.
3971 // This means that the check (*__kmp_is_user_lock_initialized_)(lck) will fail
3972 // for "pool" objects on the free list. This must happen as the "location"
3973 // field of real user locks overlaps the "index" field of "pool" objects.
3975 // It would be better to run through the free list, and remove all "pool"
3976 // objects from the lock table before executing this loop. However,
3977 // "pool" objects do not always have their index field set (only on
3978 // lin_32e), and I don't want to search the lock table for the address
3979 // of every "pool" object on the free list.
3980 while (__kmp_user_lock_table.used > 1) {
3981 const ident *loc;
3983 // reduce __kmp_user_lock_table.used before freeing the lock,
3984 // so that state of locks is consistent
3985 kmp_user_lock_p lck =
3986 __kmp_user_lock_table.table[--__kmp_user_lock_table.used];
3988 if ((__kmp_is_user_lock_initialized_ != NULL) &&
3989 (*__kmp_is_user_lock_initialized_)(lck)) {
3990 // Issue a warning if: KMP_CONSISTENCY_CHECK AND lock is initialized AND
3991 // it is NOT a critical section (user is not responsible for destroying
3992 // criticals) AND we know source location to report.
3993 if (__kmp_env_consistency_check && (!IS_CRITICAL(lck)) &&
3994 ((loc = __kmp_get_user_lock_location(lck)) != NULL) &&
3995 (loc->psource != NULL)) {
3996 kmp_str_loc_t str_loc = __kmp_str_loc_init(loc->psource, false);
3997 KMP_WARNING(CnsLockNotDestroyed, str_loc.file, str_loc.line);
3998 __kmp_str_loc_free(&str_loc);
4001 #ifdef KMP_DEBUG
4002 if (IS_CRITICAL(lck)) {
4003 KA_TRACE(
4005 ("__kmp_cleanup_user_locks: free critical section lock %p (%p)\n",
4006 lck, *(void **)lck));
4007 } else {
4008 KA_TRACE(20, ("__kmp_cleanup_user_locks: free lock %p (%p)\n", lck,
4009 *(void **)lck));
4011 #endif // KMP_DEBUG
4013 // Cleanup internal lock dynamic resources (for drdpa locks particularly).
4014 __kmp_destroy_user_lock(lck);
4017 // Free the lock if block allocation of locks is not used.
4018 if (__kmp_lock_blocks == NULL) {
4019 __kmp_free(lck);
4023 #undef IS_CRITICAL
4025 // delete lock table(s).
4026 kmp_user_lock_p *table_ptr = __kmp_user_lock_table.table;
4027 __kmp_user_lock_table.table = NULL;
4028 __kmp_user_lock_table.allocated = 0;
4030 while (table_ptr != NULL) {
4031 // In the first element we saved the pointer to the previous
4032 // (smaller) lock table.
4033 kmp_user_lock_p *next = (kmp_user_lock_p *)(table_ptr[0]);
4034 __kmp_free(table_ptr);
4035 table_ptr = next;
4038 // Free buffers allocated for blocks of locks.
4039 kmp_block_of_locks_t *block_ptr = __kmp_lock_blocks;
4040 __kmp_lock_blocks = NULL;
4042 while (block_ptr != NULL) {
4043 kmp_block_of_locks_t *next = block_ptr->next_block;
4044 __kmp_free(block_ptr->locks);
4045 // *block_ptr itself was allocated at the end of the locks vector.
4046 block_ptr = next;
4049 TCW_4(__kmp_init_user_locks, FALSE);
4052 #endif // KMP_USE_DYNAMIC_LOCK