1 //===- DependenceInfo.cpp - Calculate dependency information for a Scop. --===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Calculate the data dependency relations for a Scop using ISL.
11 // The integer set library (ISL) from Sven, has a integrated dependency analysis
12 // to calculate data dependences. This pass takes advantage of this and
13 // calculate those dependences a Scop.
15 // The dependences in this pass are exact in terms that for a specific read
16 // statement instance only the last write statement instance is returned. In
17 // case of may writes a set of possible write instances is returned. This
18 // analysis will never produce redundant dependences.
20 //===----------------------------------------------------------------------===//
22 #include "polly/DependenceInfo.h"
23 #include "polly/LinkAllPasses.h"
24 #include "polly/Options.h"
25 #include "polly/ScopInfo.h"
26 #include "polly/Support/GICHelper.h"
27 #include "polly/Support/ISLTools.h"
28 #include "llvm/ADT/Sequence.h"
29 #include "llvm/Support/Debug.h"
34 #include "isl/schedule.h"
36 #include "isl/union_map.h"
37 #include "isl/union_set.h"
39 using namespace polly
;
42 #define DEBUG_TYPE "polly-dependence"
44 static cl::opt
<int> OptComputeOut(
45 "polly-dependences-computeout",
46 cl::desc("Bound the dependence analysis by a maximal amount of "
47 "computational steps (0 means no bound)"),
48 cl::Hidden
, cl::init(500000), cl::cat(PollyCategory
));
51 LegalityCheckDisabled("disable-polly-legality",
52 cl::desc("Disable polly legality check"), cl::Hidden
,
53 cl::cat(PollyCategory
));
56 UseReductions("polly-dependences-use-reductions",
57 cl::desc("Exploit reductions in dependence analysis"),
58 cl::Hidden
, cl::init(true), cl::cat(PollyCategory
));
60 enum AnalysisType
{ VALUE_BASED_ANALYSIS
, MEMORY_BASED_ANALYSIS
};
62 static cl::opt
<enum AnalysisType
> OptAnalysisType(
63 "polly-dependences-analysis-type",
64 cl::desc("The kind of dependence analysis to use"),
65 cl::values(clEnumValN(VALUE_BASED_ANALYSIS
, "value-based",
66 "Exact dependences without transitive dependences"),
67 clEnumValN(MEMORY_BASED_ANALYSIS
, "memory-based",
68 "Overapproximation of dependences")),
69 cl::Hidden
, cl::init(VALUE_BASED_ANALYSIS
), cl::cat(PollyCategory
));
71 static cl::opt
<Dependences::AnalysisLevel
> OptAnalysisLevel(
72 "polly-dependences-analysis-level",
73 cl::desc("The level of dependence analysis"),
74 cl::values(clEnumValN(Dependences::AL_Statement
, "statement-wise",
75 "Statement-level analysis"),
76 clEnumValN(Dependences::AL_Reference
, "reference-wise",
77 "Memory reference level analysis that distinguish"
78 " accessed references in the same statement"),
79 clEnumValN(Dependences::AL_Access
, "access-wise",
80 "Memory reference level analysis that distinguish"
81 " access instructions in the same statement")),
82 cl::Hidden
, cl::init(Dependences::AL_Statement
), cl::cat(PollyCategory
));
84 //===----------------------------------------------------------------------===//
86 /// Tag the @p Relation domain with @p TagId
87 static __isl_give isl_map
*tag(__isl_take isl_map
*Relation
,
88 __isl_take isl_id
*TagId
) {
89 isl_space
*Space
= isl_map_get_space(Relation
);
90 Space
= isl_space_drop_dims(Space
, isl_dim_out
, 0,
91 isl_map_dim(Relation
, isl_dim_out
));
92 Space
= isl_space_set_tuple_id(Space
, isl_dim_out
, TagId
);
93 isl_multi_aff
*Tag
= isl_multi_aff_domain_map(Space
);
94 Relation
= isl_map_preimage_domain_multi_aff(Relation
, Tag
);
98 /// Tag the @p Relation domain with either MA->getArrayId() or
99 /// MA->getId() based on @p TagLevel
100 static __isl_give isl_map
*tag(__isl_take isl_map
*Relation
, MemoryAccess
*MA
,
101 Dependences::AnalysisLevel TagLevel
) {
102 if (TagLevel
== Dependences::AL_Reference
)
103 return tag(Relation
, MA
->getArrayId().release());
105 if (TagLevel
== Dependences::AL_Access
)
106 return tag(Relation
, MA
->getId().release());
108 // No need to tag at the statement level.
112 /// Collect information about the SCoP @p S.
113 static void collectInfo(Scop
&S
, isl_union_map
*&Read
,
114 isl_union_map
*&MustWrite
, isl_union_map
*&MayWrite
,
115 isl_union_map
*&ReductionTagMap
,
116 isl_union_set
*&TaggedStmtDomain
,
117 Dependences::AnalysisLevel Level
) {
118 isl_space
*Space
= S
.getParamSpace().release();
119 Read
= isl_union_map_empty(isl_space_copy(Space
));
120 MustWrite
= isl_union_map_empty(isl_space_copy(Space
));
121 MayWrite
= isl_union_map_empty(isl_space_copy(Space
));
122 ReductionTagMap
= isl_union_map_empty(isl_space_copy(Space
));
123 isl_union_map
*StmtSchedule
= isl_union_map_empty(Space
);
125 SmallPtrSet
<const ScopArrayInfo
*, 8> ReductionArrays
;
127 for (ScopStmt
&Stmt
: S
)
128 for (MemoryAccess
*MA
: Stmt
)
129 if (MA
->isReductionLike())
130 ReductionArrays
.insert(MA
->getScopArrayInfo());
132 for (ScopStmt
&Stmt
: S
) {
133 for (MemoryAccess
*MA
: Stmt
) {
134 isl_set
*domcp
= Stmt
.getDomain().release();
135 isl_map
*accdom
= MA
->getAccessRelation().release();
137 accdom
= isl_map_intersect_domain(accdom
, domcp
);
139 if (ReductionArrays
.count(MA
->getScopArrayInfo())) {
140 // Wrap the access domain and adjust the schedule accordingly.
142 // An access domain like
143 // Stmt[i0, i1] -> MemAcc_A[i0 + i1]
144 // will be transformed into
145 // [Stmt[i0, i1] -> MemAcc_A[i0 + i1]] -> MemAcc_A[i0 + i1]
147 // We collect all the access domains in the ReductionTagMap.
148 // This is used in Dependences::calculateDependences to create
149 // a tagged Schedule tree.
152 isl_union_map_add_map(ReductionTagMap
, isl_map_copy(accdom
));
153 accdom
= isl_map_range_map(accdom
);
155 accdom
= tag(accdom
, MA
, Level
);
156 if (Level
> Dependences::AL_Statement
) {
157 isl_map
*StmtScheduleMap
= Stmt
.getSchedule().release();
158 assert(StmtScheduleMap
&&
159 "Schedules that contain extension nodes require special "
161 isl_map
*Schedule
= tag(StmtScheduleMap
, MA
, Level
);
162 StmtSchedule
= isl_union_map_add_map(StmtSchedule
, Schedule
);
167 Read
= isl_union_map_add_map(Read
, accdom
);
168 else if (MA
->isMayWrite())
169 MayWrite
= isl_union_map_add_map(MayWrite
, accdom
);
171 MustWrite
= isl_union_map_add_map(MustWrite
, accdom
);
174 if (!ReductionArrays
.empty() && Level
== Dependences::AL_Statement
)
176 isl_union_map_add_map(StmtSchedule
, Stmt
.getSchedule().release());
179 StmtSchedule
= isl_union_map_intersect_params(
180 StmtSchedule
, S
.getAssumedContext().release());
181 TaggedStmtDomain
= isl_union_map_domain(StmtSchedule
);
183 ReductionTagMap
= isl_union_map_coalesce(ReductionTagMap
);
184 Read
= isl_union_map_coalesce(Read
);
185 MustWrite
= isl_union_map_coalesce(MustWrite
);
186 MayWrite
= isl_union_map_coalesce(MayWrite
);
189 /// Fix all dimension of @p Zero to 0 and add it to @p user
190 static void fixSetToZero(isl::set Zero
, isl::union_set
*User
) {
191 for (auto i
: rangeIslSize(0, Zero
.tuple_dim()))
192 Zero
= Zero
.fix_si(isl::dim::set
, i
, 0);
193 *User
= User
->unite(Zero
);
196 /// Compute the privatization dependences for a given dependency @p Map
198 /// Privatization dependences are widened original dependences which originate
199 /// or end in a reduction access. To compute them we apply the transitive close
200 /// of the reduction dependences (which maps each iteration of a reduction
201 /// statement to all following ones) on the RAW/WAR/WAW dependences. The
202 /// dependences which start or end at a reduction statement will be extended to
203 /// depend on all following reduction statement iterations as well.
204 /// Note: "Following" here means according to the reduction dependences.
209 /// for (int i = 0; i < 1024; i++)
211 /// S2: *sum = *sum * 3;
213 /// we have the following dependences before we add privatization dependences:
216 /// { S0[] -> S1[0]; S1[1023] -> S2[] }
220 /// { S0[] -> S1[0]; S1[1024] -> S2[] }
222 /// { S1[i0] -> S1[1 + i0] : i0 >= 0 and i0 <= 1022 }
227 /// { S0[] -> S1[i0] : i0 >= 0 and i0 <= 1023;
228 /// S1[i0] -> S2[] : i0 >= 0 and i0 <= 1023}
232 /// { S0[] -> S1[i0] : i0 >= 0 and i0 <= 1023;
233 /// S1[i0] -> S2[] : i0 >= 0 and i0 <= 1023}
235 /// { S1[i0] -> S1[1 + i0] : i0 >= 0 and i0 <= 1022 }
237 /// Note: This function also computes the (reverse) transitive closure of the
238 /// reduction dependences.
239 void Dependences::addPrivatizationDependences() {
240 isl_union_map
*PrivRAW
, *PrivWAW
, *PrivWAR
;
242 // The transitive closure might be over approximated, thus could lead to
243 // dependency cycles in the privatization dependences. To make sure this
244 // will not happen we remove all negative dependences after we computed
245 // the transitive closure.
246 TC_RED
= isl_union_map_transitive_closure(isl_union_map_copy(RED
), nullptr);
248 // FIXME: Apply the current schedule instead of assuming the identity schedule
249 // here. The current approach is only valid as long as we compute the
250 // dependences only with the initial (identity schedule). Any other
251 // schedule could change "the direction of the backward dependences" we
252 // want to eliminate here.
253 isl_union_set
*UDeltas
= isl_union_map_deltas(isl_union_map_copy(TC_RED
));
254 isl_union_set
*Universe
= isl_union_set_universe(isl_union_set_copy(UDeltas
));
255 isl::union_set Zero
=
256 isl::manage(isl_union_set_empty(isl_union_set_get_space(Universe
)));
258 for (isl::set Set
: isl::manage_copy(Universe
).get_set_list())
259 fixSetToZero(Set
, &Zero
);
261 isl_union_map
*NonPositive
=
262 isl_union_set_lex_le_union_set(UDeltas
, Zero
.release());
264 TC_RED
= isl_union_map_subtract(TC_RED
, NonPositive
);
266 TC_RED
= isl_union_map_union(
267 TC_RED
, isl_union_map_reverse(isl_union_map_copy(TC_RED
)));
268 TC_RED
= isl_union_map_coalesce(TC_RED
);
270 isl_union_map
**Maps
[] = {&RAW
, &WAW
, &WAR
};
271 isl_union_map
**PrivMaps
[] = {&PrivRAW
, &PrivWAW
, &PrivWAR
};
272 for (unsigned u
= 0; u
< 3; u
++) {
273 isl_union_map
**Map
= Maps
[u
], **PrivMap
= PrivMaps
[u
];
275 *PrivMap
= isl_union_map_apply_range(isl_union_map_copy(*Map
),
276 isl_union_map_copy(TC_RED
));
277 *PrivMap
= isl_union_map_union(
278 *PrivMap
, isl_union_map_apply_range(isl_union_map_copy(TC_RED
),
279 isl_union_map_copy(*Map
)));
281 *Map
= isl_union_map_union(*Map
, *PrivMap
);
284 isl_union_set_free(Universe
);
287 static __isl_give isl_union_flow
*buildFlow(__isl_keep isl_union_map
*Snk
,
288 __isl_keep isl_union_map
*Src
,
289 __isl_keep isl_union_map
*MaySrc
,
290 __isl_keep isl_union_map
*Kill
,
291 __isl_keep isl_schedule
*Schedule
) {
292 isl_union_access_info
*AI
;
294 AI
= isl_union_access_info_from_sink(isl_union_map_copy(Snk
));
296 AI
= isl_union_access_info_set_may_source(AI
, isl_union_map_copy(MaySrc
));
298 AI
= isl_union_access_info_set_must_source(AI
, isl_union_map_copy(Src
));
300 AI
= isl_union_access_info_set_kill(AI
, isl_union_map_copy(Kill
));
301 AI
= isl_union_access_info_set_schedule(AI
, isl_schedule_copy(Schedule
));
302 auto Flow
= isl_union_access_info_compute_flow(AI
);
303 LLVM_DEBUG(if (!Flow
) dbgs()
305 << isl_ctx_last_error(isl_schedule_get_ctx(Schedule
))
310 void Dependences::calculateDependences(Scop
&S
) {
311 isl_union_map
*Read
, *MustWrite
, *MayWrite
, *ReductionTagMap
;
312 isl_schedule
*Schedule
;
313 isl_union_set
*TaggedStmtDomain
;
315 LLVM_DEBUG(dbgs() << "Scop: \n" << S
<< "\n");
317 collectInfo(S
, Read
, MustWrite
, MayWrite
, ReductionTagMap
, TaggedStmtDomain
,
320 bool HasReductions
= !isl_union_map_is_empty(ReductionTagMap
);
322 LLVM_DEBUG(dbgs() << "Read: " << Read
<< '\n';
323 dbgs() << "MustWrite: " << MustWrite
<< '\n';
324 dbgs() << "MayWrite: " << MayWrite
<< '\n';
325 dbgs() << "ReductionTagMap: " << ReductionTagMap
<< '\n';
326 dbgs() << "TaggedStmtDomain: " << TaggedStmtDomain
<< '\n';);
328 Schedule
= S
.getScheduleTree().release();
330 if (!HasReductions
) {
331 isl_union_map_free(ReductionTagMap
);
332 // Tag the schedule tree if we want fine-grain dependence info
333 if (Level
> AL_Statement
) {
335 isl_union_set_unwrap(isl_union_set_copy(TaggedStmtDomain
));
336 auto Tags
= isl_union_map_domain_map_union_pw_multi_aff(TaggedMap
);
337 Schedule
= isl_schedule_pullback_union_pw_multi_aff(Schedule
, Tags
);
340 isl_union_map
*IdentityMap
;
341 isl_union_pw_multi_aff
*ReductionTags
, *IdentityTags
, *Tags
;
343 // Extract Reduction tags from the combined access domains in the given
344 // SCoP. The result is a map that maps each tagged element in the domain to
345 // the memory location it accesses. ReductionTags = {[Stmt[i] ->
346 // Array[f(i)]] -> Stmt[i] }
348 isl_union_map_domain_map_union_pw_multi_aff(ReductionTagMap
);
350 // Compute an identity map from each statement in domain to itself.
351 // IdentityTags = { [Stmt[i] -> Stmt[i] }
352 IdentityMap
= isl_union_set_identity(isl_union_set_copy(TaggedStmtDomain
));
353 IdentityTags
= isl_union_pw_multi_aff_from_union_map(IdentityMap
);
355 Tags
= isl_union_pw_multi_aff_union_add(ReductionTags
, IdentityTags
);
357 // By pulling back Tags from Schedule, we have a schedule tree that can
358 // be used to compute normal dependences, as well as 'tagged' reduction
360 Schedule
= isl_schedule_pullback_union_pw_multi_aff(Schedule
, Tags
);
363 LLVM_DEBUG(dbgs() << "Read: " << Read
<< "\n";
364 dbgs() << "MustWrite: " << MustWrite
<< "\n";
365 dbgs() << "MayWrite: " << MayWrite
<< "\n";
366 dbgs() << "Schedule: " << Schedule
<< "\n");
368 isl_union_map
*StrictWAW
= nullptr;
370 IslMaxOperationsGuard
MaxOpGuard(IslCtx
.get(), OptComputeOut
);
372 RAW
= WAW
= WAR
= RED
= nullptr;
373 isl_union_map
*Write
= isl_union_map_union(isl_union_map_copy(MustWrite
),
374 isl_union_map_copy(MayWrite
));
376 // We are interested in detecting reductions that do not have intermediate
377 // computations that are captured by other statements.
380 // void f(int *A, int *B) {
381 // for(int i = 0; i <= 100; i++) {
383 // *-WAR (S0[i] -> S0[i + 1] 0 <= i <= 100)------------*
385 // *-WAW (S0[i] -> S0[i + 1] 0 <= i <= 100)------------*
388 // S0: *A += i; >------------------*-----------------------*
390 // if (i >= 98) { WAR (S0[i] -> S1[i]) 98 <= i <= 100
392 // S1: *B = *A; <--------------*
397 // S0[0 <= i <= 100] has a reduction. However, the values in
398 // S0[98 <= i <= 100] is captured in S1[98 <= i <= 100].
399 // Since we allow free reordering on our reduction dependences, we need to
400 // remove all instances of a reduction statement that have data dependences
401 // originating from them.
402 // In the case of the example, we need to remove S0[98 <= i <= 100] from
403 // our reduction dependences.
405 // When we build up the WAW dependences that are used to detect reductions,
406 // we consider only **Writes that have no intermediate Reads**.
408 // `isl_union_flow_get_must_dependence` gives us dependences of the form:
409 // (sink <- must_source).
411 // It *will not give* dependences of the form:
412 // 1. (sink <- ... <- may_source <- ... <- must_source)
413 // 2. (sink <- ... <- must_source <- ... <- must_source)
415 // For a detailed reference on ISL's flow analysis, see:
416 // "Presburger Formulas and Polyhedral Compilation" - Approximate Dataflow
419 // Since we set "Write" as a must-source, "Read" as a may-source, and ask
420 // for must dependences, we get all Writes to Writes that **do not flow
423 // ScopInfo::checkForReductions makes sure that if something captures
424 // the reduction variable in the same basic block, then it is rejected
425 // before it is even handed here. This makes sure that there is exactly
426 // one read and one write to a reduction variable in a Statement.
428 // void f(int *sum, int A[N], int B[N]) {
429 // for (int i = 0; i < N; i++) {
430 // *sum += A[i]; < the store and the load is not tagged as a
431 // B[i] = *sum; < reduction-like access due to the overlap.
435 isl_union_flow
*Flow
= buildFlow(Write
, Write
, Read
, nullptr, Schedule
);
436 StrictWAW
= isl_union_flow_get_must_dependence(Flow
);
437 isl_union_flow_free(Flow
);
439 if (OptAnalysisType
== VALUE_BASED_ANALYSIS
) {
440 Flow
= buildFlow(Read
, MustWrite
, MayWrite
, nullptr, Schedule
);
441 RAW
= isl_union_flow_get_may_dependence(Flow
);
442 isl_union_flow_free(Flow
);
444 Flow
= buildFlow(Write
, MustWrite
, MayWrite
, nullptr, Schedule
);
445 WAW
= isl_union_flow_get_may_dependence(Flow
);
446 isl_union_flow_free(Flow
);
448 // ISL now supports "kills" in approximate dataflow analysis, we can
449 // specify the MustWrite as kills, Read as source and Write as sink.
450 Flow
= buildFlow(Write
, nullptr, Read
, MustWrite
, Schedule
);
451 WAR
= isl_union_flow_get_may_dependence(Flow
);
452 isl_union_flow_free(Flow
);
454 Flow
= buildFlow(Read
, nullptr, Write
, nullptr, Schedule
);
455 RAW
= isl_union_flow_get_may_dependence(Flow
);
456 isl_union_flow_free(Flow
);
458 Flow
= buildFlow(Write
, nullptr, Read
, nullptr, Schedule
);
459 WAR
= isl_union_flow_get_may_dependence(Flow
);
460 isl_union_flow_free(Flow
);
462 Flow
= buildFlow(Write
, nullptr, Write
, nullptr, Schedule
);
463 WAW
= isl_union_flow_get_may_dependence(Flow
);
464 isl_union_flow_free(Flow
);
467 isl_union_map_free(Write
);
468 isl_union_map_free(MustWrite
);
469 isl_union_map_free(MayWrite
);
470 isl_union_map_free(Read
);
471 isl_schedule_free(Schedule
);
473 RAW
= isl_union_map_coalesce(RAW
);
474 WAW
= isl_union_map_coalesce(WAW
);
475 WAR
= isl_union_map_coalesce(WAR
);
477 // End of max_operations scope.
480 if (isl_ctx_last_error(IslCtx
.get()) == isl_error_quota
) {
481 isl_union_map_free(RAW
);
482 isl_union_map_free(WAW
);
483 isl_union_map_free(WAR
);
484 isl_union_map_free(StrictWAW
);
485 RAW
= WAW
= WAR
= StrictWAW
= nullptr;
486 isl_ctx_reset_error(IslCtx
.get());
489 // Drop out early, as the remaining computations are only needed for
490 // reduction dependences or dependences that are finer than statement
491 // level dependences.
492 if (!HasReductions
&& Level
== AL_Statement
) {
493 RED
= isl_union_map_empty(isl_union_map_get_space(RAW
));
494 TC_RED
= isl_union_map_empty(isl_union_set_get_space(TaggedStmtDomain
));
495 isl_union_set_free(TaggedStmtDomain
);
496 isl_union_map_free(StrictWAW
);
500 isl_union_map
*STMT_RAW
, *STMT_WAW
, *STMT_WAR
;
501 STMT_RAW
= isl_union_map_intersect_domain(
502 isl_union_map_copy(RAW
), isl_union_set_copy(TaggedStmtDomain
));
503 STMT_WAW
= isl_union_map_intersect_domain(
504 isl_union_map_copy(WAW
), isl_union_set_copy(TaggedStmtDomain
));
506 isl_union_map_intersect_domain(isl_union_map_copy(WAR
), TaggedStmtDomain
);
508 dbgs() << "Wrapped Dependences:\n";
513 // To handle reduction dependences we proceed as follows:
514 // 1) Aggregate all possible reduction dependences, namely all self
515 // dependences on reduction like statements.
516 // 2) Intersect them with the actual RAW & WAW dependences to the get the
517 // actual reduction dependences. This will ensure the load/store memory
518 // addresses were __identical__ in the two iterations of the statement.
519 // 3) Relax the original RAW, WAW and WAR dependences by subtracting the
520 // actual reduction dependences. Binary reductions (sum += A[i]) cause
521 // the same, RAW, WAW and WAR dependences.
522 // 4) Add the privatization dependences which are widened versions of
523 // already present dependences. They model the effect of manual
524 // privatization at the outermost possible place (namely after the last
525 // write and before the first access to a reduction location).
528 RED
= isl_union_map_empty(isl_union_map_get_space(RAW
));
529 for (ScopStmt
&Stmt
: S
) {
530 for (MemoryAccess
*MA
: Stmt
) {
531 if (!MA
->isReductionLike())
533 isl_set
*AccDomW
= isl_map_wrap(MA
->getAccessRelation().release());
535 isl_map_from_domain_and_range(isl_set_copy(AccDomW
), AccDomW
);
536 RED
= isl_union_map_add_map(RED
, Identity
);
541 RED
= isl_union_map_intersect(RED
, isl_union_map_copy(RAW
));
542 RED
= isl_union_map_intersect(RED
, StrictWAW
);
544 if (!isl_union_map_is_empty(RED
)) {
547 RAW
= isl_union_map_subtract(RAW
, isl_union_map_copy(RED
));
548 WAW
= isl_union_map_subtract(WAW
, isl_union_map_copy(RED
));
549 WAR
= isl_union_map_subtract(WAR
, isl_union_map_copy(RED
));
552 addPrivatizationDependences();
554 TC_RED
= isl_union_map_empty(isl_union_map_get_space(RED
));
557 dbgs() << "Final Wrapped Dependences:\n";
562 // RED_SIN is used to collect all reduction dependences again after we
563 // split them according to the causing memory accesses. The current assumption
564 // is that our method of splitting will not have any leftovers. In the end
565 // we validate this assumption until we have more confidence in this method.
566 isl_union_map
*RED_SIN
= isl_union_map_empty(isl_union_map_get_space(RAW
));
568 // For each reduction like memory access, check if there are reduction
569 // dependences with the access relation of the memory access as a domain
570 // (wrapped space!). If so these dependences are caused by this memory access.
571 // We then move this portion of reduction dependences back to the statement ->
572 // statement space and add a mapping from the memory access to these
574 for (ScopStmt
&Stmt
: S
) {
575 for (MemoryAccess
*MA
: Stmt
) {
576 if (!MA
->isReductionLike())
579 isl_set
*AccDomW
= isl_map_wrap(MA
->getAccessRelation().release());
580 isl_union_map
*AccRedDepU
= isl_union_map_intersect_domain(
581 isl_union_map_copy(TC_RED
), isl_union_set_from_set(AccDomW
));
582 if (isl_union_map_is_empty(AccRedDepU
)) {
583 isl_union_map_free(AccRedDepU
);
587 isl_map
*AccRedDep
= isl_map_from_union_map(AccRedDepU
);
588 RED_SIN
= isl_union_map_add_map(RED_SIN
, isl_map_copy(AccRedDep
));
589 AccRedDep
= isl_map_zip(AccRedDep
);
590 AccRedDep
= isl_set_unwrap(isl_map_domain(AccRedDep
));
591 setReductionDependences(MA
, AccRedDep
);
595 assert(isl_union_map_is_equal(RED_SIN
, TC_RED
) &&
596 "Intersecting the reduction dependence domain with the wrapped access "
597 "relation is not enough, we need to loosen the access relation also");
598 isl_union_map_free(RED_SIN
);
600 RAW
= isl_union_map_zip(RAW
);
601 WAW
= isl_union_map_zip(WAW
);
602 WAR
= isl_union_map_zip(WAR
);
603 RED
= isl_union_map_zip(RED
);
604 TC_RED
= isl_union_map_zip(TC_RED
);
607 dbgs() << "Zipped Dependences:\n";
612 RAW
= isl_union_set_unwrap(isl_union_map_domain(RAW
));
613 WAW
= isl_union_set_unwrap(isl_union_map_domain(WAW
));
614 WAR
= isl_union_set_unwrap(isl_union_map_domain(WAR
));
615 RED
= isl_union_set_unwrap(isl_union_map_domain(RED
));
616 TC_RED
= isl_union_set_unwrap(isl_union_map_domain(TC_RED
));
619 dbgs() << "Unwrapped Dependences:\n";
624 RAW
= isl_union_map_union(RAW
, STMT_RAW
);
625 WAW
= isl_union_map_union(WAW
, STMT_WAW
);
626 WAR
= isl_union_map_union(WAR
, STMT_WAR
);
628 RAW
= isl_union_map_coalesce(RAW
);
629 WAW
= isl_union_map_coalesce(WAW
);
630 WAR
= isl_union_map_coalesce(WAR
);
631 RED
= isl_union_map_coalesce(RED
);
632 TC_RED
= isl_union_map_coalesce(TC_RED
);
637 bool Dependences::isValidSchedule(Scop
&S
, isl::schedule NewSched
) const {
638 // TODO: Also check permutable/coincident flags as well.
640 StatementToIslMapTy NewSchedules
;
641 for (auto NewMap
: NewSched
.get_map().get_map_list()) {
642 auto Stmt
= reinterpret_cast<ScopStmt
*>(
643 NewMap
.get_tuple_id(isl::dim::in
).get_user());
644 NewSchedules
[Stmt
] = NewMap
;
647 return isValidSchedule(S
, NewSchedules
);
650 bool Dependences::isValidSchedule(
651 Scop
&S
, const StatementToIslMapTy
&NewSchedule
) const {
652 if (LegalityCheckDisabled
)
655 isl::union_map Dependences
= getDependences(TYPE_RAW
| TYPE_WAW
| TYPE_WAR
);
656 isl::union_map Schedule
= isl::union_map::empty(S
.getIslCtx());
658 isl::space ScheduleSpace
;
660 for (ScopStmt
&Stmt
: S
) {
663 auto Lookup
= NewSchedule
.find(&Stmt
);
664 if (Lookup
== NewSchedule
.end())
665 StmtScat
= Stmt
.getSchedule();
667 StmtScat
= Lookup
->second
;
668 assert(!StmtScat
.is_null() &&
669 "Schedules that contain extension nodes require special handling.");
671 if (ScheduleSpace
.is_null())
672 ScheduleSpace
= StmtScat
.get_space().range();
674 Schedule
= Schedule
.unite(StmtScat
);
677 Dependences
= Dependences
.apply_domain(Schedule
);
678 Dependences
= Dependences
.apply_range(Schedule
);
680 isl::set Zero
= isl::set::universe(ScheduleSpace
);
681 for (auto i
: rangeIslSize(0, Zero
.tuple_dim()))
682 Zero
= Zero
.fix_si(isl::dim::set
, i
, 0);
684 isl::union_set UDeltas
= Dependences
.deltas();
685 isl::set Deltas
= singleton(UDeltas
, ScheduleSpace
);
687 isl::space Space
= Deltas
.get_space();
688 isl::map NonPositive
= isl::map::universe(Space
.map_from_set());
690 NonPositive
.lex_le_at(isl::multi_pw_aff::identity_on_domain(Space
));
691 NonPositive
= NonPositive
.intersect_domain(Deltas
);
692 NonPositive
= NonPositive
.intersect_range(Zero
);
694 return NonPositive
.is_empty();
697 // Check if the current scheduling dimension is parallel.
699 // We check for parallelism by verifying that the loop does not carry any
702 // Parallelism test: if the distance is zero in all outer dimensions, then it
703 // has to be zero in the current dimension as well.
705 // Implementation: first, translate dependences into time space, then force
706 // outer dimensions to be equal. If the distance is zero in the current
707 // dimension, then the loop is parallel. The distance is zero in the current
708 // dimension if it is a subset of a map with equal values for the current
710 bool Dependences::isParallel(__isl_keep isl_union_map
*Schedule
,
711 __isl_take isl_union_map
*Deps
,
712 __isl_give isl_pw_aff
**MinDistancePtr
) const {
713 isl_set
*Deltas
, *Distance
;
714 isl_map
*ScheduleDeps
;
718 Deps
= isl_union_map_apply_range(Deps
, isl_union_map_copy(Schedule
));
719 Deps
= isl_union_map_apply_domain(Deps
, isl_union_map_copy(Schedule
));
721 if (isl_union_map_is_empty(Deps
)) {
722 isl_union_map_free(Deps
);
726 ScheduleDeps
= isl_map_from_union_map(Deps
);
727 Dimension
= isl_map_dim(ScheduleDeps
, isl_dim_out
) - 1;
729 for (unsigned i
= 0; i
< Dimension
; i
++)
730 ScheduleDeps
= isl_map_equate(ScheduleDeps
, isl_dim_out
, i
, isl_dim_in
, i
);
732 Deltas
= isl_map_deltas(ScheduleDeps
);
733 Distance
= isl_set_universe(isl_set_get_space(Deltas
));
735 // [0, ..., 0, +] - All zeros and last dimension larger than zero
736 for (unsigned i
= 0; i
< Dimension
; i
++)
737 Distance
= isl_set_fix_si(Distance
, isl_dim_set
, i
, 0);
739 Distance
= isl_set_lower_bound_si(Distance
, isl_dim_set
, Dimension
, 1);
740 Distance
= isl_set_intersect(Distance
, Deltas
);
742 IsParallel
= isl_set_is_empty(Distance
);
743 if (IsParallel
|| !MinDistancePtr
) {
744 isl_set_free(Distance
);
748 Distance
= isl_set_project_out(Distance
, isl_dim_set
, 0, Dimension
);
749 Distance
= isl_set_coalesce(Distance
);
751 // This last step will compute a expression for the minimal value in the
752 // distance polyhedron Distance with regards to the first (outer most)
754 *MinDistancePtr
= isl_pw_aff_coalesce(isl_set_dim_min(Distance
, 0));
759 static void printDependencyMap(raw_ostream
&OS
, __isl_keep isl_union_map
*DM
) {
766 void Dependences::print(raw_ostream
&OS
) const {
767 OS
<< "\tRAW dependences:\n\t\t";
768 printDependencyMap(OS
, RAW
);
769 OS
<< "\tWAR dependences:\n\t\t";
770 printDependencyMap(OS
, WAR
);
771 OS
<< "\tWAW dependences:\n\t\t";
772 printDependencyMap(OS
, WAW
);
773 OS
<< "\tReduction dependences:\n\t\t";
774 printDependencyMap(OS
, RED
);
775 OS
<< "\tTransitive closure of reduction dependences:\n\t\t";
776 printDependencyMap(OS
, TC_RED
);
779 void Dependences::dump() const { print(dbgs()); }
781 void Dependences::releaseMemory() {
782 isl_union_map_free(RAW
);
783 isl_union_map_free(WAR
);
784 isl_union_map_free(WAW
);
785 isl_union_map_free(RED
);
786 isl_union_map_free(TC_RED
);
788 RED
= RAW
= WAR
= WAW
= TC_RED
= nullptr;
790 for (auto &ReductionDeps
: ReductionDependences
)
791 isl_map_free(ReductionDeps
.second
);
792 ReductionDependences
.clear();
795 isl::union_map
Dependences::getDependences(int Kinds
) const {
796 assert(hasValidDependences() && "No valid dependences available");
797 isl::space Space
= isl::manage_copy(RAW
).get_space();
798 isl::union_map Deps
= Deps
.empty(Space
.ctx());
800 if (Kinds
& TYPE_RAW
)
801 Deps
= Deps
.unite(isl::manage_copy(RAW
));
803 if (Kinds
& TYPE_WAR
)
804 Deps
= Deps
.unite(isl::manage_copy(WAR
));
806 if (Kinds
& TYPE_WAW
)
807 Deps
= Deps
.unite(isl::manage_copy(WAW
));
809 if (Kinds
& TYPE_RED
)
810 Deps
= Deps
.unite(isl::manage_copy(RED
));
812 if (Kinds
& TYPE_TC_RED
)
813 Deps
= Deps
.unite(isl::manage_copy(TC_RED
));
815 Deps
= Deps
.coalesce();
816 Deps
= Deps
.detect_equalities();
820 bool Dependences::hasValidDependences() const {
821 return (RAW
!= nullptr) && (WAR
!= nullptr) && (WAW
!= nullptr);
825 Dependences::getReductionDependences(MemoryAccess
*MA
) const {
826 return isl_map_copy(ReductionDependences
.lookup(MA
));
829 void Dependences::setReductionDependences(MemoryAccess
*MA
,
830 __isl_take isl_map
*D
) {
831 assert(ReductionDependences
.count(MA
) == 0 &&
832 "Reduction dependences set twice!");
833 ReductionDependences
[MA
] = D
;
837 DependenceAnalysis::Result::getDependences(Dependences::AnalysisLevel Level
) {
838 if (Dependences
*d
= D
[Level
].get())
841 return recomputeDependences(Level
);
844 const Dependences
&DependenceAnalysis::Result::recomputeDependences(
845 Dependences::AnalysisLevel Level
) {
846 D
[Level
].reset(new Dependences(S
.getSharedIslCtx(), Level
));
847 D
[Level
]->calculateDependences(S
);
851 void DependenceAnalysis::Result::abandonDependences() {
852 for (std::unique_ptr
<Dependences
> &Deps
: D
)
856 DependenceAnalysis::Result
857 DependenceAnalysis::run(Scop
&S
, ScopAnalysisManager
&SAM
,
858 ScopStandardAnalysisResults
&SAR
) {
862 AnalysisKey
DependenceAnalysis::Key
;
865 DependenceInfoPrinterPass::run(Scop
&S
, ScopAnalysisManager
&SAM
,
866 ScopStandardAnalysisResults
&SAR
,
868 auto &DI
= SAM
.getResult
<DependenceAnalysis
>(S
, SAR
);
870 if (auto d
= DI
.D
[OptAnalysisLevel
].get()) {
872 return PreservedAnalyses::all();
875 // Otherwise create the dependences on-the-fly and print them
876 Dependences
D(S
.getSharedIslCtx(), OptAnalysisLevel
);
877 D
.calculateDependences(S
);
880 return PreservedAnalyses::all();
884 DependenceInfo::getDependences(Dependences::AnalysisLevel Level
) {
885 if (Dependences
*d
= D
[Level
].get())
888 return recomputeDependences(Level
);
892 DependenceInfo::recomputeDependences(Dependences::AnalysisLevel Level
) {
893 D
[Level
].reset(new Dependences(S
->getSharedIslCtx(), Level
));
894 D
[Level
]->calculateDependences(*S
);
898 void DependenceInfo::abandonDependences() {
899 for (std::unique_ptr
<Dependences
> &Deps
: D
)
903 bool DependenceInfo::runOnScop(Scop
&ScopVar
) {
908 /// Print the dependences for the given SCoP to @p OS.
910 void polly::DependenceInfo::printScop(raw_ostream
&OS
, Scop
&S
) const {
911 if (auto d
= D
[OptAnalysisLevel
].get()) {
916 // Otherwise create the dependences on-the-fly and print it
917 Dependences
D(S
.getSharedIslCtx(), OptAnalysisLevel
);
918 D
.calculateDependences(S
);
922 void DependenceInfo::getAnalysisUsage(AnalysisUsage
&AU
) const {
923 AU
.addRequiredTransitive
<ScopInfoRegionPass
>();
924 AU
.setPreservesAll();
927 char DependenceInfo::ID
= 0;
929 Pass
*polly::createDependenceInfoPass() { return new DependenceInfo(); }
931 INITIALIZE_PASS_BEGIN(DependenceInfo
, "polly-dependences",
932 "Polly - Calculate dependences", false, false);
933 INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass
);
934 INITIALIZE_PASS_END(DependenceInfo
, "polly-dependences",
935 "Polly - Calculate dependences", false, false)
937 //===----------------------------------------------------------------------===//
940 /// Print result from DependenceAnalysis.
941 class DependenceInfoPrinterLegacyPass final
: public ScopPass
{
945 DependenceInfoPrinterLegacyPass() : DependenceInfoPrinterLegacyPass(outs()) {}
947 explicit DependenceInfoPrinterLegacyPass(llvm::raw_ostream
&OS
)
948 : ScopPass(ID
), OS(OS
) {}
950 bool runOnScop(Scop
&S
) override
{
951 DependenceInfo
&P
= getAnalysis
<DependenceInfo
>();
953 OS
<< "Printing analysis '" << P
.getPassName() << "' for " << "region: '"
954 << S
.getRegion().getNameStr() << "' in function '"
955 << S
.getFunction().getName() << "':\n";
961 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
962 ScopPass::getAnalysisUsage(AU
);
963 AU
.addRequired
<DependenceInfo
>();
964 AU
.setPreservesAll();
968 llvm::raw_ostream
&OS
;
971 char DependenceInfoPrinterLegacyPass::ID
= 0;
974 Pass
*polly::createDependenceInfoPrinterLegacyPass(raw_ostream
&OS
) {
975 return new DependenceInfoPrinterLegacyPass(OS
);
978 INITIALIZE_PASS_BEGIN(DependenceInfoPrinterLegacyPass
,
979 "polly-print-dependences", "Polly - Print dependences",
981 INITIALIZE_PASS_DEPENDENCY(DependenceInfo
);
982 INITIALIZE_PASS_END(DependenceInfoPrinterLegacyPass
, "polly-print-dependences",
983 "Polly - Print dependences", false, false)
985 //===----------------------------------------------------------------------===//
988 DependenceInfoWrapperPass::getDependences(Scop
*S
,
989 Dependences::AnalysisLevel Level
) {
990 auto It
= ScopToDepsMap
.find(S
);
991 if (It
!= ScopToDepsMap
.end())
993 if (It
->second
->getDependenceLevel() == Level
)
994 return *It
->second
.get();
996 return recomputeDependences(S
, Level
);
999 const Dependences
&DependenceInfoWrapperPass::recomputeDependences(
1000 Scop
*S
, Dependences::AnalysisLevel Level
) {
1001 std::unique_ptr
<Dependences
> D(new Dependences(S
->getSharedIslCtx(), Level
));
1002 D
->calculateDependences(*S
);
1003 auto Inserted
= ScopToDepsMap
.insert(std::make_pair(S
, std::move(D
)));
1004 return *Inserted
.first
->second
;
1007 bool DependenceInfoWrapperPass::runOnFunction(Function
&F
) {
1008 auto &SI
= *getAnalysis
<ScopInfoWrapperPass
>().getSI();
1009 for (auto &It
: SI
) {
1010 assert(It
.second
&& "Invalid SCoP object!");
1011 recomputeDependences(It
.second
.get(), Dependences::AL_Access
);
1016 void DependenceInfoWrapperPass::print(raw_ostream
&OS
, const Module
*M
) const {
1017 for (auto &It
: ScopToDepsMap
) {
1018 assert((It
.first
&& It
.second
) && "Invalid Scop or Dependence object!\n");
1019 It
.second
->print(OS
);
1023 void DependenceInfoWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
1024 AU
.addRequiredTransitive
<ScopInfoWrapperPass
>();
1025 AU
.setPreservesAll();
1028 char DependenceInfoWrapperPass::ID
= 0;
1030 Pass
*polly::createDependenceInfoWrapperPassPass() {
1031 return new DependenceInfoWrapperPass();
1034 INITIALIZE_PASS_BEGIN(
1035 DependenceInfoWrapperPass
, "polly-function-dependences",
1036 "Polly - Calculate dependences for all the SCoPs of a function", false,
1038 INITIALIZE_PASS_DEPENDENCY(ScopInfoWrapperPass
);
1039 INITIALIZE_PASS_END(
1040 DependenceInfoWrapperPass
, "polly-function-dependences",
1041 "Polly - Calculate dependences for all the SCoPs of a function", false,
1044 //===----------------------------------------------------------------------===//
1047 /// Print result from DependenceInfoWrapperPass.
1048 class DependenceInfoPrinterLegacyFunctionPass final
: public FunctionPass
{
1052 DependenceInfoPrinterLegacyFunctionPass()
1053 : DependenceInfoPrinterLegacyFunctionPass(outs()) {}
1055 explicit DependenceInfoPrinterLegacyFunctionPass(llvm::raw_ostream
&OS
)
1056 : FunctionPass(ID
), OS(OS
) {}
1058 bool runOnFunction(Function
&F
) override
{
1059 DependenceInfoWrapperPass
&P
= getAnalysis
<DependenceInfoWrapperPass
>();
1061 OS
<< "Printing analysis '" << P
.getPassName() << "' for function '"
1062 << F
.getName() << "':\n";
1068 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1069 FunctionPass::getAnalysisUsage(AU
);
1070 AU
.addRequired
<DependenceInfoWrapperPass
>();
1071 AU
.setPreservesAll();
1075 llvm::raw_ostream
&OS
;
1078 char DependenceInfoPrinterLegacyFunctionPass::ID
= 0;
1081 Pass
*polly::createDependenceInfoPrinterLegacyFunctionPass(raw_ostream
&OS
) {
1082 return new DependenceInfoPrinterLegacyFunctionPass(OS
);
1085 INITIALIZE_PASS_BEGIN(
1086 DependenceInfoPrinterLegacyFunctionPass
, "polly-print-function-dependences",
1087 "Polly - Print dependences for all the SCoPs of a function", false, false);
1088 INITIALIZE_PASS_DEPENDENCY(DependenceInfoWrapperPass
);
1089 INITIALIZE_PASS_END(DependenceInfoPrinterLegacyFunctionPass
,
1090 "polly-print-function-dependences",
1091 "Polly - Print dependences for all the SCoPs of a function",