[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / polly / lib / Analysis / DependenceInfo.cpp
blob69257c603877ea411edc3beb4ef5e6b8dbbbbe59
1 //===- DependenceInfo.cpp - Calculate dependency information for a Scop. --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Calculate the data dependency relations for a Scop using ISL.
11 // The integer set library (ISL) from Sven, has a integrated dependency analysis
12 // to calculate data dependences. This pass takes advantage of this and
13 // calculate those dependences a Scop.
15 // The dependences in this pass are exact in terms that for a specific read
16 // statement instance only the last write statement instance is returned. In
17 // case of may writes a set of possible write instances is returned. This
18 // analysis will never produce redundant dependences.
20 //===----------------------------------------------------------------------===//
22 #include "polly/DependenceInfo.h"
23 #include "polly/LinkAllPasses.h"
24 #include "polly/Options.h"
25 #include "polly/ScopInfo.h"
26 #include "polly/Support/GICHelper.h"
27 #include "polly/Support/ISLTools.h"
28 #include "llvm/ADT/Sequence.h"
29 #include "llvm/Support/Debug.h"
30 #include "isl/aff.h"
31 #include "isl/ctx.h"
32 #include "isl/flow.h"
33 #include "isl/map.h"
34 #include "isl/schedule.h"
35 #include "isl/set.h"
36 #include "isl/union_map.h"
37 #include "isl/union_set.h"
39 using namespace polly;
40 using namespace llvm;
42 #define DEBUG_TYPE "polly-dependence"
44 static cl::opt<int> OptComputeOut(
45 "polly-dependences-computeout",
46 cl::desc("Bound the dependence analysis by a maximal amount of "
47 "computational steps (0 means no bound)"),
48 cl::Hidden, cl::init(500000), cl::cat(PollyCategory));
50 static cl::opt<bool>
51 LegalityCheckDisabled("disable-polly-legality",
52 cl::desc("Disable polly legality check"), cl::Hidden,
53 cl::cat(PollyCategory));
55 static cl::opt<bool>
56 UseReductions("polly-dependences-use-reductions",
57 cl::desc("Exploit reductions in dependence analysis"),
58 cl::Hidden, cl::init(true), cl::cat(PollyCategory));
60 enum AnalysisType { VALUE_BASED_ANALYSIS, MEMORY_BASED_ANALYSIS };
62 static cl::opt<enum AnalysisType> OptAnalysisType(
63 "polly-dependences-analysis-type",
64 cl::desc("The kind of dependence analysis to use"),
65 cl::values(clEnumValN(VALUE_BASED_ANALYSIS, "value-based",
66 "Exact dependences without transitive dependences"),
67 clEnumValN(MEMORY_BASED_ANALYSIS, "memory-based",
68 "Overapproximation of dependences")),
69 cl::Hidden, cl::init(VALUE_BASED_ANALYSIS), cl::cat(PollyCategory));
71 static cl::opt<Dependences::AnalysisLevel> OptAnalysisLevel(
72 "polly-dependences-analysis-level",
73 cl::desc("The level of dependence analysis"),
74 cl::values(clEnumValN(Dependences::AL_Statement, "statement-wise",
75 "Statement-level analysis"),
76 clEnumValN(Dependences::AL_Reference, "reference-wise",
77 "Memory reference level analysis that distinguish"
78 " accessed references in the same statement"),
79 clEnumValN(Dependences::AL_Access, "access-wise",
80 "Memory reference level analysis that distinguish"
81 " access instructions in the same statement")),
82 cl::Hidden, cl::init(Dependences::AL_Statement), cl::cat(PollyCategory));
84 //===----------------------------------------------------------------------===//
86 /// Tag the @p Relation domain with @p TagId
87 static __isl_give isl_map *tag(__isl_take isl_map *Relation,
88 __isl_take isl_id *TagId) {
89 isl_space *Space = isl_map_get_space(Relation);
90 Space = isl_space_drop_dims(Space, isl_dim_out, 0,
91 isl_map_dim(Relation, isl_dim_out));
92 Space = isl_space_set_tuple_id(Space, isl_dim_out, TagId);
93 isl_multi_aff *Tag = isl_multi_aff_domain_map(Space);
94 Relation = isl_map_preimage_domain_multi_aff(Relation, Tag);
95 return Relation;
98 /// Tag the @p Relation domain with either MA->getArrayId() or
99 /// MA->getId() based on @p TagLevel
100 static __isl_give isl_map *tag(__isl_take isl_map *Relation, MemoryAccess *MA,
101 Dependences::AnalysisLevel TagLevel) {
102 if (TagLevel == Dependences::AL_Reference)
103 return tag(Relation, MA->getArrayId().release());
105 if (TagLevel == Dependences::AL_Access)
106 return tag(Relation, MA->getId().release());
108 // No need to tag at the statement level.
109 return Relation;
112 /// Collect information about the SCoP @p S.
113 static void collectInfo(Scop &S, isl_union_map *&Read,
114 isl_union_map *&MustWrite, isl_union_map *&MayWrite,
115 isl_union_map *&ReductionTagMap,
116 isl_union_set *&TaggedStmtDomain,
117 Dependences::AnalysisLevel Level) {
118 isl_space *Space = S.getParamSpace().release();
119 Read = isl_union_map_empty(isl_space_copy(Space));
120 MustWrite = isl_union_map_empty(isl_space_copy(Space));
121 MayWrite = isl_union_map_empty(isl_space_copy(Space));
122 ReductionTagMap = isl_union_map_empty(isl_space_copy(Space));
123 isl_union_map *StmtSchedule = isl_union_map_empty(Space);
125 SmallPtrSet<const ScopArrayInfo *, 8> ReductionArrays;
126 if (UseReductions)
127 for (ScopStmt &Stmt : S)
128 for (MemoryAccess *MA : Stmt)
129 if (MA->isReductionLike())
130 ReductionArrays.insert(MA->getScopArrayInfo());
132 for (ScopStmt &Stmt : S) {
133 for (MemoryAccess *MA : Stmt) {
134 isl_set *domcp = Stmt.getDomain().release();
135 isl_map *accdom = MA->getAccessRelation().release();
137 accdom = isl_map_intersect_domain(accdom, domcp);
139 if (ReductionArrays.count(MA->getScopArrayInfo())) {
140 // Wrap the access domain and adjust the schedule accordingly.
142 // An access domain like
143 // Stmt[i0, i1] -> MemAcc_A[i0 + i1]
144 // will be transformed into
145 // [Stmt[i0, i1] -> MemAcc_A[i0 + i1]] -> MemAcc_A[i0 + i1]
147 // We collect all the access domains in the ReductionTagMap.
148 // This is used in Dependences::calculateDependences to create
149 // a tagged Schedule tree.
151 ReductionTagMap =
152 isl_union_map_add_map(ReductionTagMap, isl_map_copy(accdom));
153 accdom = isl_map_range_map(accdom);
154 } else {
155 accdom = tag(accdom, MA, Level);
156 if (Level > Dependences::AL_Statement) {
157 isl_map *StmtScheduleMap = Stmt.getSchedule().release();
158 assert(StmtScheduleMap &&
159 "Schedules that contain extension nodes require special "
160 "handling.");
161 isl_map *Schedule = tag(StmtScheduleMap, MA, Level);
162 StmtSchedule = isl_union_map_add_map(StmtSchedule, Schedule);
166 if (MA->isRead())
167 Read = isl_union_map_add_map(Read, accdom);
168 else if (MA->isMayWrite())
169 MayWrite = isl_union_map_add_map(MayWrite, accdom);
170 else
171 MustWrite = isl_union_map_add_map(MustWrite, accdom);
174 if (!ReductionArrays.empty() && Level == Dependences::AL_Statement)
175 StmtSchedule =
176 isl_union_map_add_map(StmtSchedule, Stmt.getSchedule().release());
179 StmtSchedule = isl_union_map_intersect_params(
180 StmtSchedule, S.getAssumedContext().release());
181 TaggedStmtDomain = isl_union_map_domain(StmtSchedule);
183 ReductionTagMap = isl_union_map_coalesce(ReductionTagMap);
184 Read = isl_union_map_coalesce(Read);
185 MustWrite = isl_union_map_coalesce(MustWrite);
186 MayWrite = isl_union_map_coalesce(MayWrite);
189 /// Fix all dimension of @p Zero to 0 and add it to @p user
190 static void fixSetToZero(isl::set Zero, isl::union_set *User) {
191 for (auto i : rangeIslSize(0, Zero.tuple_dim()))
192 Zero = Zero.fix_si(isl::dim::set, i, 0);
193 *User = User->unite(Zero);
196 /// Compute the privatization dependences for a given dependency @p Map
198 /// Privatization dependences are widened original dependences which originate
199 /// or end in a reduction access. To compute them we apply the transitive close
200 /// of the reduction dependences (which maps each iteration of a reduction
201 /// statement to all following ones) on the RAW/WAR/WAW dependences. The
202 /// dependences which start or end at a reduction statement will be extended to
203 /// depend on all following reduction statement iterations as well.
204 /// Note: "Following" here means according to the reduction dependences.
206 /// For the input:
208 /// S0: *sum = 0;
209 /// for (int i = 0; i < 1024; i++)
210 /// S1: *sum += i;
211 /// S2: *sum = *sum * 3;
213 /// we have the following dependences before we add privatization dependences:
215 /// RAW:
216 /// { S0[] -> S1[0]; S1[1023] -> S2[] }
217 /// WAR:
218 /// { }
219 /// WAW:
220 /// { S0[] -> S1[0]; S1[1024] -> S2[] }
221 /// RED:
222 /// { S1[i0] -> S1[1 + i0] : i0 >= 0 and i0 <= 1022 }
224 /// and afterwards:
226 /// RAW:
227 /// { S0[] -> S1[i0] : i0 >= 0 and i0 <= 1023;
228 /// S1[i0] -> S2[] : i0 >= 0 and i0 <= 1023}
229 /// WAR:
230 /// { }
231 /// WAW:
232 /// { S0[] -> S1[i0] : i0 >= 0 and i0 <= 1023;
233 /// S1[i0] -> S2[] : i0 >= 0 and i0 <= 1023}
234 /// RED:
235 /// { S1[i0] -> S1[1 + i0] : i0 >= 0 and i0 <= 1022 }
237 /// Note: This function also computes the (reverse) transitive closure of the
238 /// reduction dependences.
239 void Dependences::addPrivatizationDependences() {
240 isl_union_map *PrivRAW, *PrivWAW, *PrivWAR;
242 // The transitive closure might be over approximated, thus could lead to
243 // dependency cycles in the privatization dependences. To make sure this
244 // will not happen we remove all negative dependences after we computed
245 // the transitive closure.
246 TC_RED = isl_union_map_transitive_closure(isl_union_map_copy(RED), nullptr);
248 // FIXME: Apply the current schedule instead of assuming the identity schedule
249 // here. The current approach is only valid as long as we compute the
250 // dependences only with the initial (identity schedule). Any other
251 // schedule could change "the direction of the backward dependences" we
252 // want to eliminate here.
253 isl_union_set *UDeltas = isl_union_map_deltas(isl_union_map_copy(TC_RED));
254 isl_union_set *Universe = isl_union_set_universe(isl_union_set_copy(UDeltas));
255 isl::union_set Zero =
256 isl::manage(isl_union_set_empty(isl_union_set_get_space(Universe)));
258 for (isl::set Set : isl::manage_copy(Universe).get_set_list())
259 fixSetToZero(Set, &Zero);
261 isl_union_map *NonPositive =
262 isl_union_set_lex_le_union_set(UDeltas, Zero.release());
264 TC_RED = isl_union_map_subtract(TC_RED, NonPositive);
266 TC_RED = isl_union_map_union(
267 TC_RED, isl_union_map_reverse(isl_union_map_copy(TC_RED)));
268 TC_RED = isl_union_map_coalesce(TC_RED);
270 isl_union_map **Maps[] = {&RAW, &WAW, &WAR};
271 isl_union_map **PrivMaps[] = {&PrivRAW, &PrivWAW, &PrivWAR};
272 for (unsigned u = 0; u < 3; u++) {
273 isl_union_map **Map = Maps[u], **PrivMap = PrivMaps[u];
275 *PrivMap = isl_union_map_apply_range(isl_union_map_copy(*Map),
276 isl_union_map_copy(TC_RED));
277 *PrivMap = isl_union_map_union(
278 *PrivMap, isl_union_map_apply_range(isl_union_map_copy(TC_RED),
279 isl_union_map_copy(*Map)));
281 *Map = isl_union_map_union(*Map, *PrivMap);
284 isl_union_set_free(Universe);
287 static __isl_give isl_union_flow *buildFlow(__isl_keep isl_union_map *Snk,
288 __isl_keep isl_union_map *Src,
289 __isl_keep isl_union_map *MaySrc,
290 __isl_keep isl_union_map *Kill,
291 __isl_keep isl_schedule *Schedule) {
292 isl_union_access_info *AI;
294 AI = isl_union_access_info_from_sink(isl_union_map_copy(Snk));
295 if (MaySrc)
296 AI = isl_union_access_info_set_may_source(AI, isl_union_map_copy(MaySrc));
297 if (Src)
298 AI = isl_union_access_info_set_must_source(AI, isl_union_map_copy(Src));
299 if (Kill)
300 AI = isl_union_access_info_set_kill(AI, isl_union_map_copy(Kill));
301 AI = isl_union_access_info_set_schedule(AI, isl_schedule_copy(Schedule));
302 auto Flow = isl_union_access_info_compute_flow(AI);
303 LLVM_DEBUG(if (!Flow) dbgs()
304 << "last error: "
305 << isl_ctx_last_error(isl_schedule_get_ctx(Schedule))
306 << '\n';);
307 return Flow;
310 void Dependences::calculateDependences(Scop &S) {
311 isl_union_map *Read, *MustWrite, *MayWrite, *ReductionTagMap;
312 isl_schedule *Schedule;
313 isl_union_set *TaggedStmtDomain;
315 LLVM_DEBUG(dbgs() << "Scop: \n" << S << "\n");
317 collectInfo(S, Read, MustWrite, MayWrite, ReductionTagMap, TaggedStmtDomain,
318 Level);
320 bool HasReductions = !isl_union_map_is_empty(ReductionTagMap);
322 LLVM_DEBUG(dbgs() << "Read: " << Read << '\n';
323 dbgs() << "MustWrite: " << MustWrite << '\n';
324 dbgs() << "MayWrite: " << MayWrite << '\n';
325 dbgs() << "ReductionTagMap: " << ReductionTagMap << '\n';
326 dbgs() << "TaggedStmtDomain: " << TaggedStmtDomain << '\n';);
328 Schedule = S.getScheduleTree().release();
330 if (!HasReductions) {
331 isl_union_map_free(ReductionTagMap);
332 // Tag the schedule tree if we want fine-grain dependence info
333 if (Level > AL_Statement) {
334 auto TaggedMap =
335 isl_union_set_unwrap(isl_union_set_copy(TaggedStmtDomain));
336 auto Tags = isl_union_map_domain_map_union_pw_multi_aff(TaggedMap);
337 Schedule = isl_schedule_pullback_union_pw_multi_aff(Schedule, Tags);
339 } else {
340 isl_union_map *IdentityMap;
341 isl_union_pw_multi_aff *ReductionTags, *IdentityTags, *Tags;
343 // Extract Reduction tags from the combined access domains in the given
344 // SCoP. The result is a map that maps each tagged element in the domain to
345 // the memory location it accesses. ReductionTags = {[Stmt[i] ->
346 // Array[f(i)]] -> Stmt[i] }
347 ReductionTags =
348 isl_union_map_domain_map_union_pw_multi_aff(ReductionTagMap);
350 // Compute an identity map from each statement in domain to itself.
351 // IdentityTags = { [Stmt[i] -> Stmt[i] }
352 IdentityMap = isl_union_set_identity(isl_union_set_copy(TaggedStmtDomain));
353 IdentityTags = isl_union_pw_multi_aff_from_union_map(IdentityMap);
355 Tags = isl_union_pw_multi_aff_union_add(ReductionTags, IdentityTags);
357 // By pulling back Tags from Schedule, we have a schedule tree that can
358 // be used to compute normal dependences, as well as 'tagged' reduction
359 // dependences.
360 Schedule = isl_schedule_pullback_union_pw_multi_aff(Schedule, Tags);
363 LLVM_DEBUG(dbgs() << "Read: " << Read << "\n";
364 dbgs() << "MustWrite: " << MustWrite << "\n";
365 dbgs() << "MayWrite: " << MayWrite << "\n";
366 dbgs() << "Schedule: " << Schedule << "\n");
368 isl_union_map *StrictWAW = nullptr;
370 IslMaxOperationsGuard MaxOpGuard(IslCtx.get(), OptComputeOut);
372 RAW = WAW = WAR = RED = nullptr;
373 isl_union_map *Write = isl_union_map_union(isl_union_map_copy(MustWrite),
374 isl_union_map_copy(MayWrite));
376 // We are interested in detecting reductions that do not have intermediate
377 // computations that are captured by other statements.
379 // Example:
380 // void f(int *A, int *B) {
381 // for(int i = 0; i <= 100; i++) {
383 // *-WAR (S0[i] -> S0[i + 1] 0 <= i <= 100)------------*
384 // | |
385 // *-WAW (S0[i] -> S0[i + 1] 0 <= i <= 100)------------*
386 // | |
387 // v |
388 // S0: *A += i; >------------------*-----------------------*
389 // |
390 // if (i >= 98) { WAR (S0[i] -> S1[i]) 98 <= i <= 100
391 // |
392 // S1: *B = *A; <--------------*
393 // }
394 // }
395 // }
397 // S0[0 <= i <= 100] has a reduction. However, the values in
398 // S0[98 <= i <= 100] is captured in S1[98 <= i <= 100].
399 // Since we allow free reordering on our reduction dependences, we need to
400 // remove all instances of a reduction statement that have data dependences
401 // originating from them.
402 // In the case of the example, we need to remove S0[98 <= i <= 100] from
403 // our reduction dependences.
405 // When we build up the WAW dependences that are used to detect reductions,
406 // we consider only **Writes that have no intermediate Reads**.
408 // `isl_union_flow_get_must_dependence` gives us dependences of the form:
409 // (sink <- must_source).
411 // It *will not give* dependences of the form:
412 // 1. (sink <- ... <- may_source <- ... <- must_source)
413 // 2. (sink <- ... <- must_source <- ... <- must_source)
415 // For a detailed reference on ISL's flow analysis, see:
416 // "Presburger Formulas and Polyhedral Compilation" - Approximate Dataflow
417 // Analysis.
419 // Since we set "Write" as a must-source, "Read" as a may-source, and ask
420 // for must dependences, we get all Writes to Writes that **do not flow
421 // through a Read**.
423 // ScopInfo::checkForReductions makes sure that if something captures
424 // the reduction variable in the same basic block, then it is rejected
425 // before it is even handed here. This makes sure that there is exactly
426 // one read and one write to a reduction variable in a Statement.
427 // Example:
428 // void f(int *sum, int A[N], int B[N]) {
429 // for (int i = 0; i < N; i++) {
430 // *sum += A[i]; < the store and the load is not tagged as a
431 // B[i] = *sum; < reduction-like access due to the overlap.
432 // }
433 // }
435 isl_union_flow *Flow = buildFlow(Write, Write, Read, nullptr, Schedule);
436 StrictWAW = isl_union_flow_get_must_dependence(Flow);
437 isl_union_flow_free(Flow);
439 if (OptAnalysisType == VALUE_BASED_ANALYSIS) {
440 Flow = buildFlow(Read, MustWrite, MayWrite, nullptr, Schedule);
441 RAW = isl_union_flow_get_may_dependence(Flow);
442 isl_union_flow_free(Flow);
444 Flow = buildFlow(Write, MustWrite, MayWrite, nullptr, Schedule);
445 WAW = isl_union_flow_get_may_dependence(Flow);
446 isl_union_flow_free(Flow);
448 // ISL now supports "kills" in approximate dataflow analysis, we can
449 // specify the MustWrite as kills, Read as source and Write as sink.
450 Flow = buildFlow(Write, nullptr, Read, MustWrite, Schedule);
451 WAR = isl_union_flow_get_may_dependence(Flow);
452 isl_union_flow_free(Flow);
453 } else {
454 Flow = buildFlow(Read, nullptr, Write, nullptr, Schedule);
455 RAW = isl_union_flow_get_may_dependence(Flow);
456 isl_union_flow_free(Flow);
458 Flow = buildFlow(Write, nullptr, Read, nullptr, Schedule);
459 WAR = isl_union_flow_get_may_dependence(Flow);
460 isl_union_flow_free(Flow);
462 Flow = buildFlow(Write, nullptr, Write, nullptr, Schedule);
463 WAW = isl_union_flow_get_may_dependence(Flow);
464 isl_union_flow_free(Flow);
467 isl_union_map_free(Write);
468 isl_union_map_free(MustWrite);
469 isl_union_map_free(MayWrite);
470 isl_union_map_free(Read);
471 isl_schedule_free(Schedule);
473 RAW = isl_union_map_coalesce(RAW);
474 WAW = isl_union_map_coalesce(WAW);
475 WAR = isl_union_map_coalesce(WAR);
477 // End of max_operations scope.
480 if (isl_ctx_last_error(IslCtx.get()) == isl_error_quota) {
481 isl_union_map_free(RAW);
482 isl_union_map_free(WAW);
483 isl_union_map_free(WAR);
484 isl_union_map_free(StrictWAW);
485 RAW = WAW = WAR = StrictWAW = nullptr;
486 isl_ctx_reset_error(IslCtx.get());
489 // Drop out early, as the remaining computations are only needed for
490 // reduction dependences or dependences that are finer than statement
491 // level dependences.
492 if (!HasReductions && Level == AL_Statement) {
493 RED = isl_union_map_empty(isl_union_map_get_space(RAW));
494 TC_RED = isl_union_map_empty(isl_union_set_get_space(TaggedStmtDomain));
495 isl_union_set_free(TaggedStmtDomain);
496 isl_union_map_free(StrictWAW);
497 return;
500 isl_union_map *STMT_RAW, *STMT_WAW, *STMT_WAR;
501 STMT_RAW = isl_union_map_intersect_domain(
502 isl_union_map_copy(RAW), isl_union_set_copy(TaggedStmtDomain));
503 STMT_WAW = isl_union_map_intersect_domain(
504 isl_union_map_copy(WAW), isl_union_set_copy(TaggedStmtDomain));
505 STMT_WAR =
506 isl_union_map_intersect_domain(isl_union_map_copy(WAR), TaggedStmtDomain);
507 LLVM_DEBUG({
508 dbgs() << "Wrapped Dependences:\n";
509 dump();
510 dbgs() << "\n";
513 // To handle reduction dependences we proceed as follows:
514 // 1) Aggregate all possible reduction dependences, namely all self
515 // dependences on reduction like statements.
516 // 2) Intersect them with the actual RAW & WAW dependences to the get the
517 // actual reduction dependences. This will ensure the load/store memory
518 // addresses were __identical__ in the two iterations of the statement.
519 // 3) Relax the original RAW, WAW and WAR dependences by subtracting the
520 // actual reduction dependences. Binary reductions (sum += A[i]) cause
521 // the same, RAW, WAW and WAR dependences.
522 // 4) Add the privatization dependences which are widened versions of
523 // already present dependences. They model the effect of manual
524 // privatization at the outermost possible place (namely after the last
525 // write and before the first access to a reduction location).
527 // Step 1)
528 RED = isl_union_map_empty(isl_union_map_get_space(RAW));
529 for (ScopStmt &Stmt : S) {
530 for (MemoryAccess *MA : Stmt) {
531 if (!MA->isReductionLike())
532 continue;
533 isl_set *AccDomW = isl_map_wrap(MA->getAccessRelation().release());
534 isl_map *Identity =
535 isl_map_from_domain_and_range(isl_set_copy(AccDomW), AccDomW);
536 RED = isl_union_map_add_map(RED, Identity);
540 // Step 2)
541 RED = isl_union_map_intersect(RED, isl_union_map_copy(RAW));
542 RED = isl_union_map_intersect(RED, StrictWAW);
544 if (!isl_union_map_is_empty(RED)) {
546 // Step 3)
547 RAW = isl_union_map_subtract(RAW, isl_union_map_copy(RED));
548 WAW = isl_union_map_subtract(WAW, isl_union_map_copy(RED));
549 WAR = isl_union_map_subtract(WAR, isl_union_map_copy(RED));
551 // Step 4)
552 addPrivatizationDependences();
553 } else
554 TC_RED = isl_union_map_empty(isl_union_map_get_space(RED));
556 LLVM_DEBUG({
557 dbgs() << "Final Wrapped Dependences:\n";
558 dump();
559 dbgs() << "\n";
562 // RED_SIN is used to collect all reduction dependences again after we
563 // split them according to the causing memory accesses. The current assumption
564 // is that our method of splitting will not have any leftovers. In the end
565 // we validate this assumption until we have more confidence in this method.
566 isl_union_map *RED_SIN = isl_union_map_empty(isl_union_map_get_space(RAW));
568 // For each reduction like memory access, check if there are reduction
569 // dependences with the access relation of the memory access as a domain
570 // (wrapped space!). If so these dependences are caused by this memory access.
571 // We then move this portion of reduction dependences back to the statement ->
572 // statement space and add a mapping from the memory access to these
573 // dependences.
574 for (ScopStmt &Stmt : S) {
575 for (MemoryAccess *MA : Stmt) {
576 if (!MA->isReductionLike())
577 continue;
579 isl_set *AccDomW = isl_map_wrap(MA->getAccessRelation().release());
580 isl_union_map *AccRedDepU = isl_union_map_intersect_domain(
581 isl_union_map_copy(TC_RED), isl_union_set_from_set(AccDomW));
582 if (isl_union_map_is_empty(AccRedDepU)) {
583 isl_union_map_free(AccRedDepU);
584 continue;
587 isl_map *AccRedDep = isl_map_from_union_map(AccRedDepU);
588 RED_SIN = isl_union_map_add_map(RED_SIN, isl_map_copy(AccRedDep));
589 AccRedDep = isl_map_zip(AccRedDep);
590 AccRedDep = isl_set_unwrap(isl_map_domain(AccRedDep));
591 setReductionDependences(MA, AccRedDep);
595 assert(isl_union_map_is_equal(RED_SIN, TC_RED) &&
596 "Intersecting the reduction dependence domain with the wrapped access "
597 "relation is not enough, we need to loosen the access relation also");
598 isl_union_map_free(RED_SIN);
600 RAW = isl_union_map_zip(RAW);
601 WAW = isl_union_map_zip(WAW);
602 WAR = isl_union_map_zip(WAR);
603 RED = isl_union_map_zip(RED);
604 TC_RED = isl_union_map_zip(TC_RED);
606 LLVM_DEBUG({
607 dbgs() << "Zipped Dependences:\n";
608 dump();
609 dbgs() << "\n";
612 RAW = isl_union_set_unwrap(isl_union_map_domain(RAW));
613 WAW = isl_union_set_unwrap(isl_union_map_domain(WAW));
614 WAR = isl_union_set_unwrap(isl_union_map_domain(WAR));
615 RED = isl_union_set_unwrap(isl_union_map_domain(RED));
616 TC_RED = isl_union_set_unwrap(isl_union_map_domain(TC_RED));
618 LLVM_DEBUG({
619 dbgs() << "Unwrapped Dependences:\n";
620 dump();
621 dbgs() << "\n";
624 RAW = isl_union_map_union(RAW, STMT_RAW);
625 WAW = isl_union_map_union(WAW, STMT_WAW);
626 WAR = isl_union_map_union(WAR, STMT_WAR);
628 RAW = isl_union_map_coalesce(RAW);
629 WAW = isl_union_map_coalesce(WAW);
630 WAR = isl_union_map_coalesce(WAR);
631 RED = isl_union_map_coalesce(RED);
632 TC_RED = isl_union_map_coalesce(TC_RED);
634 LLVM_DEBUG(dump());
637 bool Dependences::isValidSchedule(Scop &S, isl::schedule NewSched) const {
638 // TODO: Also check permutable/coincident flags as well.
640 StatementToIslMapTy NewSchedules;
641 for (auto NewMap : NewSched.get_map().get_map_list()) {
642 auto Stmt = reinterpret_cast<ScopStmt *>(
643 NewMap.get_tuple_id(isl::dim::in).get_user());
644 NewSchedules[Stmt] = NewMap;
647 return isValidSchedule(S, NewSchedules);
650 bool Dependences::isValidSchedule(
651 Scop &S, const StatementToIslMapTy &NewSchedule) const {
652 if (LegalityCheckDisabled)
653 return true;
655 isl::union_map Dependences = getDependences(TYPE_RAW | TYPE_WAW | TYPE_WAR);
656 isl::union_map Schedule = isl::union_map::empty(S.getIslCtx());
658 isl::space ScheduleSpace;
660 for (ScopStmt &Stmt : S) {
661 isl::map StmtScat;
663 auto Lookup = NewSchedule.find(&Stmt);
664 if (Lookup == NewSchedule.end())
665 StmtScat = Stmt.getSchedule();
666 else
667 StmtScat = Lookup->second;
668 assert(!StmtScat.is_null() &&
669 "Schedules that contain extension nodes require special handling.");
671 if (ScheduleSpace.is_null())
672 ScheduleSpace = StmtScat.get_space().range();
674 Schedule = Schedule.unite(StmtScat);
677 Dependences = Dependences.apply_domain(Schedule);
678 Dependences = Dependences.apply_range(Schedule);
680 isl::set Zero = isl::set::universe(ScheduleSpace);
681 for (auto i : rangeIslSize(0, Zero.tuple_dim()))
682 Zero = Zero.fix_si(isl::dim::set, i, 0);
684 isl::union_set UDeltas = Dependences.deltas();
685 isl::set Deltas = singleton(UDeltas, ScheduleSpace);
687 isl::space Space = Deltas.get_space();
688 isl::map NonPositive = isl::map::universe(Space.map_from_set());
689 NonPositive =
690 NonPositive.lex_le_at(isl::multi_pw_aff::identity_on_domain(Space));
691 NonPositive = NonPositive.intersect_domain(Deltas);
692 NonPositive = NonPositive.intersect_range(Zero);
694 return NonPositive.is_empty();
697 // Check if the current scheduling dimension is parallel.
699 // We check for parallelism by verifying that the loop does not carry any
700 // dependences.
702 // Parallelism test: if the distance is zero in all outer dimensions, then it
703 // has to be zero in the current dimension as well.
705 // Implementation: first, translate dependences into time space, then force
706 // outer dimensions to be equal. If the distance is zero in the current
707 // dimension, then the loop is parallel. The distance is zero in the current
708 // dimension if it is a subset of a map with equal values for the current
709 // dimension.
710 bool Dependences::isParallel(__isl_keep isl_union_map *Schedule,
711 __isl_take isl_union_map *Deps,
712 __isl_give isl_pw_aff **MinDistancePtr) const {
713 isl_set *Deltas, *Distance;
714 isl_map *ScheduleDeps;
715 unsigned Dimension;
716 bool IsParallel;
718 Deps = isl_union_map_apply_range(Deps, isl_union_map_copy(Schedule));
719 Deps = isl_union_map_apply_domain(Deps, isl_union_map_copy(Schedule));
721 if (isl_union_map_is_empty(Deps)) {
722 isl_union_map_free(Deps);
723 return true;
726 ScheduleDeps = isl_map_from_union_map(Deps);
727 Dimension = isl_map_dim(ScheduleDeps, isl_dim_out) - 1;
729 for (unsigned i = 0; i < Dimension; i++)
730 ScheduleDeps = isl_map_equate(ScheduleDeps, isl_dim_out, i, isl_dim_in, i);
732 Deltas = isl_map_deltas(ScheduleDeps);
733 Distance = isl_set_universe(isl_set_get_space(Deltas));
735 // [0, ..., 0, +] - All zeros and last dimension larger than zero
736 for (unsigned i = 0; i < Dimension; i++)
737 Distance = isl_set_fix_si(Distance, isl_dim_set, i, 0);
739 Distance = isl_set_lower_bound_si(Distance, isl_dim_set, Dimension, 1);
740 Distance = isl_set_intersect(Distance, Deltas);
742 IsParallel = isl_set_is_empty(Distance);
743 if (IsParallel || !MinDistancePtr) {
744 isl_set_free(Distance);
745 return IsParallel;
748 Distance = isl_set_project_out(Distance, isl_dim_set, 0, Dimension);
749 Distance = isl_set_coalesce(Distance);
751 // This last step will compute a expression for the minimal value in the
752 // distance polyhedron Distance with regards to the first (outer most)
753 // dimension.
754 *MinDistancePtr = isl_pw_aff_coalesce(isl_set_dim_min(Distance, 0));
756 return false;
759 static void printDependencyMap(raw_ostream &OS, __isl_keep isl_union_map *DM) {
760 if (DM)
761 OS << DM << "\n";
762 else
763 OS << "n/a\n";
766 void Dependences::print(raw_ostream &OS) const {
767 OS << "\tRAW dependences:\n\t\t";
768 printDependencyMap(OS, RAW);
769 OS << "\tWAR dependences:\n\t\t";
770 printDependencyMap(OS, WAR);
771 OS << "\tWAW dependences:\n\t\t";
772 printDependencyMap(OS, WAW);
773 OS << "\tReduction dependences:\n\t\t";
774 printDependencyMap(OS, RED);
775 OS << "\tTransitive closure of reduction dependences:\n\t\t";
776 printDependencyMap(OS, TC_RED);
779 void Dependences::dump() const { print(dbgs()); }
781 void Dependences::releaseMemory() {
782 isl_union_map_free(RAW);
783 isl_union_map_free(WAR);
784 isl_union_map_free(WAW);
785 isl_union_map_free(RED);
786 isl_union_map_free(TC_RED);
788 RED = RAW = WAR = WAW = TC_RED = nullptr;
790 for (auto &ReductionDeps : ReductionDependences)
791 isl_map_free(ReductionDeps.second);
792 ReductionDependences.clear();
795 isl::union_map Dependences::getDependences(int Kinds) const {
796 assert(hasValidDependences() && "No valid dependences available");
797 isl::space Space = isl::manage_copy(RAW).get_space();
798 isl::union_map Deps = Deps.empty(Space.ctx());
800 if (Kinds & TYPE_RAW)
801 Deps = Deps.unite(isl::manage_copy(RAW));
803 if (Kinds & TYPE_WAR)
804 Deps = Deps.unite(isl::manage_copy(WAR));
806 if (Kinds & TYPE_WAW)
807 Deps = Deps.unite(isl::manage_copy(WAW));
809 if (Kinds & TYPE_RED)
810 Deps = Deps.unite(isl::manage_copy(RED));
812 if (Kinds & TYPE_TC_RED)
813 Deps = Deps.unite(isl::manage_copy(TC_RED));
815 Deps = Deps.coalesce();
816 Deps = Deps.detect_equalities();
817 return Deps;
820 bool Dependences::hasValidDependences() const {
821 return (RAW != nullptr) && (WAR != nullptr) && (WAW != nullptr);
824 __isl_give isl_map *
825 Dependences::getReductionDependences(MemoryAccess *MA) const {
826 return isl_map_copy(ReductionDependences.lookup(MA));
829 void Dependences::setReductionDependences(MemoryAccess *MA,
830 __isl_take isl_map *D) {
831 assert(ReductionDependences.count(MA) == 0 &&
832 "Reduction dependences set twice!");
833 ReductionDependences[MA] = D;
836 const Dependences &
837 DependenceAnalysis::Result::getDependences(Dependences::AnalysisLevel Level) {
838 if (Dependences *d = D[Level].get())
839 return *d;
841 return recomputeDependences(Level);
844 const Dependences &DependenceAnalysis::Result::recomputeDependences(
845 Dependences::AnalysisLevel Level) {
846 D[Level].reset(new Dependences(S.getSharedIslCtx(), Level));
847 D[Level]->calculateDependences(S);
848 return *D[Level];
851 void DependenceAnalysis::Result::abandonDependences() {
852 for (std::unique_ptr<Dependences> &Deps : D)
853 Deps.release();
856 DependenceAnalysis::Result
857 DependenceAnalysis::run(Scop &S, ScopAnalysisManager &SAM,
858 ScopStandardAnalysisResults &SAR) {
859 return {S, {}};
862 AnalysisKey DependenceAnalysis::Key;
864 PreservedAnalyses
865 DependenceInfoPrinterPass::run(Scop &S, ScopAnalysisManager &SAM,
866 ScopStandardAnalysisResults &SAR,
867 SPMUpdater &U) {
868 auto &DI = SAM.getResult<DependenceAnalysis>(S, SAR);
870 if (auto d = DI.D[OptAnalysisLevel].get()) {
871 d->print(OS);
872 return PreservedAnalyses::all();
875 // Otherwise create the dependences on-the-fly and print them
876 Dependences D(S.getSharedIslCtx(), OptAnalysisLevel);
877 D.calculateDependences(S);
878 D.print(OS);
880 return PreservedAnalyses::all();
883 const Dependences &
884 DependenceInfo::getDependences(Dependences::AnalysisLevel Level) {
885 if (Dependences *d = D[Level].get())
886 return *d;
888 return recomputeDependences(Level);
891 const Dependences &
892 DependenceInfo::recomputeDependences(Dependences::AnalysisLevel Level) {
893 D[Level].reset(new Dependences(S->getSharedIslCtx(), Level));
894 D[Level]->calculateDependences(*S);
895 return *D[Level];
898 void DependenceInfo::abandonDependences() {
899 for (std::unique_ptr<Dependences> &Deps : D)
900 Deps.release();
903 bool DependenceInfo::runOnScop(Scop &ScopVar) {
904 S = &ScopVar;
905 return false;
908 /// Print the dependences for the given SCoP to @p OS.
910 void polly::DependenceInfo::printScop(raw_ostream &OS, Scop &S) const {
911 if (auto d = D[OptAnalysisLevel].get()) {
912 d->print(OS);
913 return;
916 // Otherwise create the dependences on-the-fly and print it
917 Dependences D(S.getSharedIslCtx(), OptAnalysisLevel);
918 D.calculateDependences(S);
919 D.print(OS);
922 void DependenceInfo::getAnalysisUsage(AnalysisUsage &AU) const {
923 AU.addRequiredTransitive<ScopInfoRegionPass>();
924 AU.setPreservesAll();
927 char DependenceInfo::ID = 0;
929 Pass *polly::createDependenceInfoPass() { return new DependenceInfo(); }
931 INITIALIZE_PASS_BEGIN(DependenceInfo, "polly-dependences",
932 "Polly - Calculate dependences", false, false);
933 INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
934 INITIALIZE_PASS_END(DependenceInfo, "polly-dependences",
935 "Polly - Calculate dependences", false, false)
937 //===----------------------------------------------------------------------===//
939 namespace {
940 /// Print result from DependenceAnalysis.
941 class DependenceInfoPrinterLegacyPass final : public ScopPass {
942 public:
943 static char ID;
945 DependenceInfoPrinterLegacyPass() : DependenceInfoPrinterLegacyPass(outs()) {}
947 explicit DependenceInfoPrinterLegacyPass(llvm::raw_ostream &OS)
948 : ScopPass(ID), OS(OS) {}
950 bool runOnScop(Scop &S) override {
951 DependenceInfo &P = getAnalysis<DependenceInfo>();
953 OS << "Printing analysis '" << P.getPassName() << "' for " << "region: '"
954 << S.getRegion().getNameStr() << "' in function '"
955 << S.getFunction().getName() << "':\n";
956 P.printScop(OS, S);
958 return false;
961 void getAnalysisUsage(AnalysisUsage &AU) const override {
962 ScopPass::getAnalysisUsage(AU);
963 AU.addRequired<DependenceInfo>();
964 AU.setPreservesAll();
967 private:
968 llvm::raw_ostream &OS;
971 char DependenceInfoPrinterLegacyPass::ID = 0;
972 } // namespace
974 Pass *polly::createDependenceInfoPrinterLegacyPass(raw_ostream &OS) {
975 return new DependenceInfoPrinterLegacyPass(OS);
978 INITIALIZE_PASS_BEGIN(DependenceInfoPrinterLegacyPass,
979 "polly-print-dependences", "Polly - Print dependences",
980 false, false);
981 INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
982 INITIALIZE_PASS_END(DependenceInfoPrinterLegacyPass, "polly-print-dependences",
983 "Polly - Print dependences", false, false)
985 //===----------------------------------------------------------------------===//
987 const Dependences &
988 DependenceInfoWrapperPass::getDependences(Scop *S,
989 Dependences::AnalysisLevel Level) {
990 auto It = ScopToDepsMap.find(S);
991 if (It != ScopToDepsMap.end())
992 if (It->second) {
993 if (It->second->getDependenceLevel() == Level)
994 return *It->second.get();
996 return recomputeDependences(S, Level);
999 const Dependences &DependenceInfoWrapperPass::recomputeDependences(
1000 Scop *S, Dependences::AnalysisLevel Level) {
1001 std::unique_ptr<Dependences> D(new Dependences(S->getSharedIslCtx(), Level));
1002 D->calculateDependences(*S);
1003 auto Inserted = ScopToDepsMap.insert(std::make_pair(S, std::move(D)));
1004 return *Inserted.first->second;
1007 bool DependenceInfoWrapperPass::runOnFunction(Function &F) {
1008 auto &SI = *getAnalysis<ScopInfoWrapperPass>().getSI();
1009 for (auto &It : SI) {
1010 assert(It.second && "Invalid SCoP object!");
1011 recomputeDependences(It.second.get(), Dependences::AL_Access);
1013 return false;
1016 void DependenceInfoWrapperPass::print(raw_ostream &OS, const Module *M) const {
1017 for (auto &It : ScopToDepsMap) {
1018 assert((It.first && It.second) && "Invalid Scop or Dependence object!\n");
1019 It.second->print(OS);
1023 void DependenceInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1024 AU.addRequiredTransitive<ScopInfoWrapperPass>();
1025 AU.setPreservesAll();
1028 char DependenceInfoWrapperPass::ID = 0;
1030 Pass *polly::createDependenceInfoWrapperPassPass() {
1031 return new DependenceInfoWrapperPass();
1034 INITIALIZE_PASS_BEGIN(
1035 DependenceInfoWrapperPass, "polly-function-dependences",
1036 "Polly - Calculate dependences for all the SCoPs of a function", false,
1037 false)
1038 INITIALIZE_PASS_DEPENDENCY(ScopInfoWrapperPass);
1039 INITIALIZE_PASS_END(
1040 DependenceInfoWrapperPass, "polly-function-dependences",
1041 "Polly - Calculate dependences for all the SCoPs of a function", false,
1042 false)
1044 //===----------------------------------------------------------------------===//
1046 namespace {
1047 /// Print result from DependenceInfoWrapperPass.
1048 class DependenceInfoPrinterLegacyFunctionPass final : public FunctionPass {
1049 public:
1050 static char ID;
1052 DependenceInfoPrinterLegacyFunctionPass()
1053 : DependenceInfoPrinterLegacyFunctionPass(outs()) {}
1055 explicit DependenceInfoPrinterLegacyFunctionPass(llvm::raw_ostream &OS)
1056 : FunctionPass(ID), OS(OS) {}
1058 bool runOnFunction(Function &F) override {
1059 DependenceInfoWrapperPass &P = getAnalysis<DependenceInfoWrapperPass>();
1061 OS << "Printing analysis '" << P.getPassName() << "' for function '"
1062 << F.getName() << "':\n";
1063 P.print(OS);
1065 return false;
1068 void getAnalysisUsage(AnalysisUsage &AU) const override {
1069 FunctionPass::getAnalysisUsage(AU);
1070 AU.addRequired<DependenceInfoWrapperPass>();
1071 AU.setPreservesAll();
1074 private:
1075 llvm::raw_ostream &OS;
1078 char DependenceInfoPrinterLegacyFunctionPass::ID = 0;
1079 } // namespace
1081 Pass *polly::createDependenceInfoPrinterLegacyFunctionPass(raw_ostream &OS) {
1082 return new DependenceInfoPrinterLegacyFunctionPass(OS);
1085 INITIALIZE_PASS_BEGIN(
1086 DependenceInfoPrinterLegacyFunctionPass, "polly-print-function-dependences",
1087 "Polly - Print dependences for all the SCoPs of a function", false, false);
1088 INITIALIZE_PASS_DEPENDENCY(DependenceInfoWrapperPass);
1089 INITIALIZE_PASS_END(DependenceInfoPrinterLegacyFunctionPass,
1090 "polly-print-function-dependences",
1091 "Polly - Print dependences for all the SCoPs of a function",
1092 false, false)