[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / polly / lib / CodeGen / IslNodeBuilder.cpp
bloba226cc2a1b25065f8834f1505d3fbab3fefbc9e2
1 //===- IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the IslNodeBuilder, a class to translate an isl AST into
10 // a LLVM-IR AST.
12 //===----------------------------------------------------------------------===//
14 #include "polly/CodeGen/IslNodeBuilder.h"
15 #include "polly/CodeGen/BlockGenerators.h"
16 #include "polly/CodeGen/CodeGeneration.h"
17 #include "polly/CodeGen/IslAst.h"
18 #include "polly/CodeGen/IslExprBuilder.h"
19 #include "polly/CodeGen/LoopGeneratorsGOMP.h"
20 #include "polly/CodeGen/LoopGeneratorsKMP.h"
21 #include "polly/CodeGen/RuntimeDebugBuilder.h"
22 #include "polly/Options.h"
23 #include "polly/ScopInfo.h"
24 #include "polly/Support/ISLTools.h"
25 #include "polly/Support/SCEVValidator.h"
26 #include "polly/Support/ScopHelper.h"
27 #include "polly/Support/VirtualInstruction.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/PostOrderIterator.h"
30 #include "llvm/ADT/SetVector.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/RegionInfo.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
53 #include "isl/aff.h"
54 #include "isl/aff_type.h"
55 #include "isl/ast.h"
56 #include "isl/ast_build.h"
57 #include "isl/isl-noexceptions.h"
58 #include "isl/map.h"
59 #include "isl/set.h"
60 #include "isl/union_map.h"
61 #include "isl/union_set.h"
62 #include "isl/val.h"
63 #include <algorithm>
64 #include <cassert>
65 #include <cstdint>
66 #include <cstring>
67 #include <string>
68 #include <utility>
69 #include <vector>
71 using namespace llvm;
72 using namespace polly;
74 #define DEBUG_TYPE "polly-codegen"
76 STATISTIC(VersionedScops, "Number of SCoPs that required versioning.");
78 STATISTIC(SequentialLoops, "Number of generated sequential for-loops");
79 STATISTIC(ParallelLoops, "Number of generated parallel for-loops");
80 STATISTIC(IfConditions, "Number of generated if-conditions");
82 /// OpenMP backend options
83 enum class OpenMPBackend { GNU, LLVM };
85 static cl::opt<bool> PollyGenerateRTCPrint(
86 "polly-codegen-emit-rtc-print",
87 cl::desc("Emit code that prints the runtime check result dynamically."),
88 cl::Hidden, cl::cat(PollyCategory));
90 // If this option is set we always use the isl AST generator to regenerate
91 // memory accesses. Without this option set we regenerate expressions using the
92 // original SCEV expressions and only generate new expressions in case the
93 // access relation has been changed and consequently must be regenerated.
94 static cl::opt<bool> PollyGenerateExpressions(
95 "polly-codegen-generate-expressions",
96 cl::desc("Generate AST expressions for unmodified and modified accesses"),
97 cl::Hidden, cl::cat(PollyCategory));
99 static cl::opt<int> PollyTargetFirstLevelCacheLineSize(
100 "polly-target-first-level-cache-line-size",
101 cl::desc("The size of the first level cache line size specified in bytes."),
102 cl::Hidden, cl::init(64), cl::cat(PollyCategory));
104 static cl::opt<OpenMPBackend> PollyOmpBackend(
105 "polly-omp-backend", cl::desc("Choose the OpenMP library to use:"),
106 cl::values(clEnumValN(OpenMPBackend::GNU, "GNU", "GNU OpenMP"),
107 clEnumValN(OpenMPBackend::LLVM, "LLVM", "LLVM OpenMP")),
108 cl::Hidden, cl::init(OpenMPBackend::GNU), cl::cat(PollyCategory));
110 isl::ast_expr IslNodeBuilder::getUpperBound(isl::ast_node_for For,
111 ICmpInst::Predicate &Predicate) {
112 isl::ast_expr Cond = For.cond();
113 isl::ast_expr Iterator = For.iterator();
114 assert(isl_ast_expr_get_type(Cond.get()) == isl_ast_expr_op &&
115 "conditional expression is not an atomic upper bound");
117 isl_ast_op_type OpType = isl_ast_expr_get_op_type(Cond.get());
119 switch (OpType) {
120 case isl_ast_op_le:
121 Predicate = ICmpInst::ICMP_SLE;
122 break;
123 case isl_ast_op_lt:
124 Predicate = ICmpInst::ICMP_SLT;
125 break;
126 default:
127 llvm_unreachable("Unexpected comparison type in loop condition");
130 isl::ast_expr Arg0 = Cond.get_op_arg(0);
132 assert(isl_ast_expr_get_type(Arg0.get()) == isl_ast_expr_id &&
133 "conditional expression is not an atomic upper bound");
135 isl::id UBID = Arg0.get_id();
137 assert(isl_ast_expr_get_type(Iterator.get()) == isl_ast_expr_id &&
138 "Could not get the iterator");
140 isl::id IteratorID = Iterator.get_id();
142 assert(UBID.get() == IteratorID.get() &&
143 "conditional expression is not an atomic upper bound");
145 return Cond.get_op_arg(1);
148 int IslNodeBuilder::getNumberOfIterations(isl::ast_node_for For) {
149 assert(isl_ast_node_get_type(For.get()) == isl_ast_node_for);
150 isl::ast_node Body = For.body();
152 // First, check if we can actually handle this code.
153 switch (isl_ast_node_get_type(Body.get())) {
154 case isl_ast_node_user:
155 break;
156 case isl_ast_node_block: {
157 isl::ast_node_block BodyBlock = Body.as<isl::ast_node_block>();
158 isl::ast_node_list List = BodyBlock.children();
159 for (isl::ast_node Node : List) {
160 isl_ast_node_type NodeType = isl_ast_node_get_type(Node.get());
161 if (NodeType != isl_ast_node_user)
162 return -1;
164 break;
166 default:
167 return -1;
170 isl::ast_expr Init = For.init();
171 if (!Init.isa<isl::ast_expr_int>() || !Init.val().is_zero())
172 return -1;
173 isl::ast_expr Inc = For.inc();
174 if (!Inc.isa<isl::ast_expr_int>() || !Inc.val().is_one())
175 return -1;
176 CmpInst::Predicate Predicate;
177 isl::ast_expr UB = getUpperBound(For, Predicate);
178 if (!UB.isa<isl::ast_expr_int>())
179 return -1;
180 isl::val UpVal = UB.get_val();
181 int NumberIterations = UpVal.get_num_si();
182 if (NumberIterations < 0)
183 return -1;
184 if (Predicate == CmpInst::ICMP_SLT)
185 return NumberIterations;
186 else
187 return NumberIterations + 1;
190 static void findReferencesByUse(Value *SrcVal, ScopStmt *UserStmt,
191 Loop *UserScope, const ValueMapT &GlobalMap,
192 SetVector<Value *> &Values,
193 SetVector<const SCEV *> &SCEVs) {
194 VirtualUse VUse = VirtualUse::create(UserStmt, UserScope, SrcVal, true);
195 switch (VUse.getKind()) {
196 case VirtualUse::Constant:
197 // When accelerator-offloading, GlobalValue is a host address whose content
198 // must still be transferred to the GPU.
199 if (isa<GlobalValue>(SrcVal))
200 Values.insert(SrcVal);
201 break;
203 case VirtualUse::Synthesizable:
204 SCEVs.insert(VUse.getScevExpr());
205 return;
207 case VirtualUse::Block:
208 case VirtualUse::ReadOnly:
209 case VirtualUse::Hoisted:
210 case VirtualUse::Intra:
211 case VirtualUse::Inter:
212 break;
215 if (Value *NewVal = GlobalMap.lookup(SrcVal))
216 Values.insert(NewVal);
219 static void findReferencesInInst(Instruction *Inst, ScopStmt *UserStmt,
220 Loop *UserScope, const ValueMapT &GlobalMap,
221 SetVector<Value *> &Values,
222 SetVector<const SCEV *> &SCEVs) {
223 for (Use &U : Inst->operands())
224 findReferencesByUse(U.get(), UserStmt, UserScope, GlobalMap, Values, SCEVs);
227 static void findReferencesInStmt(ScopStmt *Stmt, SetVector<Value *> &Values,
228 ValueMapT &GlobalMap,
229 SetVector<const SCEV *> &SCEVs) {
230 LoopInfo *LI = Stmt->getParent()->getLI();
232 BasicBlock *BB = Stmt->getBasicBlock();
233 Loop *Scope = LI->getLoopFor(BB);
234 for (Instruction *Inst : Stmt->getInstructions())
235 findReferencesInInst(Inst, Stmt, Scope, GlobalMap, Values, SCEVs);
237 if (Stmt->isRegionStmt()) {
238 for (BasicBlock *BB : Stmt->getRegion()->blocks()) {
239 Loop *Scope = LI->getLoopFor(BB);
240 for (Instruction &Inst : *BB)
241 findReferencesInInst(&Inst, Stmt, Scope, GlobalMap, Values, SCEVs);
246 void polly::addReferencesFromStmt(ScopStmt *Stmt, void *UserPtr,
247 bool CreateScalarRefs) {
248 auto &References = *static_cast<SubtreeReferences *>(UserPtr);
250 findReferencesInStmt(Stmt, References.Values, References.GlobalMap,
251 References.SCEVs);
253 for (auto &Access : *Stmt) {
254 if (References.ParamSpace) {
255 isl::space ParamSpace = Access->getLatestAccessRelation().get_space();
256 (*References.ParamSpace) =
257 References.ParamSpace->align_params(ParamSpace);
260 if (Access->isLatestArrayKind()) {
261 auto *BasePtr = Access->getLatestScopArrayInfo()->getBasePtr();
262 if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr))
263 if (Stmt->getParent()->contains(OpInst))
264 continue;
266 References.Values.insert(BasePtr);
267 continue;
270 if (CreateScalarRefs)
271 References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access));
275 /// Extract the out-of-scop values and SCEVs referenced from a set describing
276 /// a ScopStmt.
278 /// This includes the SCEVUnknowns referenced by the SCEVs used in the
279 /// statement and the base pointers of the memory accesses. For scalar
280 /// statements we force the generation of alloca memory locations and list
281 /// these locations in the set of out-of-scop values as well.
283 /// @param Set A set which references the ScopStmt we are interested in.
284 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences
285 /// structure.
286 static void addReferencesFromStmtSet(isl::set Set, SubtreeReferences *UserPtr) {
287 isl::id Id = Set.get_tuple_id();
288 auto *Stmt = static_cast<ScopStmt *>(Id.get_user());
289 addReferencesFromStmt(Stmt, UserPtr);
292 /// Extract the out-of-scop values and SCEVs referenced from a union set
293 /// referencing multiple ScopStmts.
295 /// This includes the SCEVUnknowns referenced by the SCEVs used in the
296 /// statement and the base pointers of the memory accesses. For scalar
297 /// statements we force the generation of alloca memory locations and list
298 /// these locations in the set of out-of-scop values as well.
300 /// @param USet A union set referencing the ScopStmts we are interested
301 /// in.
302 /// @param References The SubtreeReferences data structure through which
303 /// results are returned and further information is
304 /// provided.
305 static void addReferencesFromStmtUnionSet(isl::union_set USet,
306 SubtreeReferences &References) {
308 for (isl::set Set : USet.get_set_list())
309 addReferencesFromStmtSet(Set, &References);
312 isl::union_map
313 IslNodeBuilder::getScheduleForAstNode(const isl::ast_node &Node) {
314 return IslAstInfo::getSchedule(Node);
317 void IslNodeBuilder::getReferencesInSubtree(const isl::ast_node &For,
318 SetVector<Value *> &Values,
319 SetVector<const Loop *> &Loops) {
320 SetVector<const SCEV *> SCEVs;
321 SubtreeReferences References = {
322 LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator(), nullptr};
324 for (const auto &I : IDToValue)
325 Values.insert(I.second);
327 // NOTE: this is populated in IslNodeBuilder::addParameters
328 for (const auto &I : OutsideLoopIterations)
329 Values.insert(cast<SCEVUnknown>(I.second)->getValue());
331 isl::union_set Schedule = getScheduleForAstNode(For).domain();
332 addReferencesFromStmtUnionSet(Schedule, References);
334 for (const SCEV *Expr : SCEVs) {
335 findValues(Expr, SE, Values);
336 findLoops(Expr, Loops);
339 Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); });
341 /// Note: Code generation of induction variables of loops outside Scops
343 /// Remove loops that contain the scop or that are part of the scop, as they
344 /// are considered local. This leaves only loops that are before the scop, but
345 /// do not contain the scop itself.
346 /// We ignore loops perfectly contained in the Scop because these are already
347 /// generated at `IslNodeBuilder::addParameters`. These `Loops` are loops
348 /// whose induction variables are referred to by the Scop, but the Scop is not
349 /// fully contained in these Loops. Since there can be many of these,
350 /// we choose to codegen these on-demand.
351 /// @see IslNodeBuilder::materializeNonScopLoopInductionVariable.
352 Loops.remove_if([this](const Loop *L) {
353 return S.contains(L) || L->contains(S.getEntry());
356 // Contains Values that may need to be replaced with other values
357 // due to replacements from the ValueMap. We should make sure
358 // that we return correctly remapped values.
359 // NOTE: this code path is tested by:
360 // 1. test/Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll
361 // 2. test/Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll
362 SetVector<Value *> ReplacedValues;
363 for (Value *V : Values) {
364 ReplacedValues.insert(getLatestValue(V));
366 Values = ReplacedValues;
369 void IslNodeBuilder::updateValues(ValueMapT &NewValues) {
370 SmallPtrSet<Value *, 5> Inserted;
372 for (const auto &I : IDToValue) {
373 IDToValue[I.first] = NewValues[I.second];
374 Inserted.insert(I.second);
377 for (const auto &I : NewValues) {
378 if (Inserted.count(I.first))
379 continue;
381 ValueMap[I.first] = I.second;
385 Value *IslNodeBuilder::getLatestValue(Value *Original) const {
386 auto It = ValueMap.find(Original);
387 if (It == ValueMap.end())
388 return Original;
389 return It->second;
392 void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) {
393 auto *Id = isl_ast_node_mark_get_id(Node);
394 auto Child = isl_ast_node_mark_get_node(Node);
395 isl_ast_node_free(Node);
396 // If a child node of a 'SIMD mark' is a loop that has a single iteration,
397 // it will be optimized away and we should skip it.
398 if (strcmp(isl_id_get_name(Id), "SIMD") == 0 &&
399 isl_ast_node_get_type(Child) == isl_ast_node_for) {
400 createForSequential(isl::manage(Child).as<isl::ast_node_for>(), true);
401 isl_id_free(Id);
402 return;
405 BandAttr *ChildLoopAttr = getLoopAttr(isl::manage_copy(Id));
406 BandAttr *AncestorLoopAttr;
407 if (ChildLoopAttr) {
408 // Save current LoopAttr environment to restore again when leaving this
409 // subtree. This means there was no loop between the ancestor LoopAttr and
410 // this mark, i.e. the ancestor LoopAttr did not directly mark a loop. This
411 // can happen e.g. if the AST build peeled or unrolled the loop.
412 AncestorLoopAttr = Annotator.getStagingAttrEnv();
414 Annotator.getStagingAttrEnv() = ChildLoopAttr;
417 create(Child);
419 if (ChildLoopAttr) {
420 assert(Annotator.getStagingAttrEnv() == ChildLoopAttr &&
421 "Nest must not overwrite loop attr environment");
422 Annotator.getStagingAttrEnv() = AncestorLoopAttr;
425 isl_id_free(Id);
428 /// Restore the initial ordering of dimensions of the band node
430 /// In case the band node represents all the dimensions of the iteration
431 /// domain, recreate the band node to restore the initial ordering of the
432 /// dimensions.
434 /// @param Node The band node to be modified.
435 /// @return The modified schedule node.
436 static bool IsLoopVectorizerDisabled(isl::ast_node_for Node) {
437 assert(isl_ast_node_get_type(Node.get()) == isl_ast_node_for);
438 isl::ast_node Body = Node.body();
439 if (isl_ast_node_get_type(Body.get()) != isl_ast_node_mark)
440 return false;
442 isl::ast_node_mark BodyMark = Body.as<isl::ast_node_mark>();
443 auto Id = BodyMark.id();
444 if (strcmp(Id.get_name().c_str(), "Loop Vectorizer Disabled") == 0)
445 return true;
446 return false;
449 void IslNodeBuilder::createForSequential(isl::ast_node_for For,
450 bool MarkParallel) {
451 Value *ValueLB, *ValueUB, *ValueInc;
452 Type *MaxType;
453 BasicBlock *ExitBlock;
454 Value *IV;
455 CmpInst::Predicate Predicate;
457 bool LoopVectorizerDisabled = IsLoopVectorizerDisabled(For);
459 isl::ast_node Body = For.body();
461 // isl_ast_node_for_is_degenerate(For)
463 // TODO: For degenerated loops we could generate a plain assignment.
464 // However, for now we just reuse the logic for normal loops, which will
465 // create a loop with a single iteration.
467 isl::ast_expr Init = For.init();
468 isl::ast_expr Inc = For.inc();
469 isl::ast_expr Iterator = For.iterator();
470 isl::id IteratorID = Iterator.get_id();
471 isl::ast_expr UB = getUpperBound(For, Predicate);
473 ValueLB = ExprBuilder.create(Init.release());
474 ValueUB = ExprBuilder.create(UB.release());
475 ValueInc = ExprBuilder.create(Inc.release());
477 MaxType = ExprBuilder.getType(Iterator.get());
478 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
479 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
480 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
482 if (MaxType != ValueLB->getType())
483 ValueLB = Builder.CreateSExt(ValueLB, MaxType);
484 if (MaxType != ValueUB->getType())
485 ValueUB = Builder.CreateSExt(ValueUB, MaxType);
486 if (MaxType != ValueInc->getType())
487 ValueInc = Builder.CreateSExt(ValueInc, MaxType);
489 // If we can show that LB <Predicate> UB holds at least once, we can
490 // omit the GuardBB in front of the loop.
491 bool UseGuardBB =
492 !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB));
493 IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, LI, DT, ExitBlock,
494 Predicate, &Annotator, MarkParallel, UseGuardBB,
495 LoopVectorizerDisabled);
496 IDToValue[IteratorID.get()] = IV;
498 create(Body.release());
500 Annotator.popLoop(MarkParallel);
502 IDToValue.erase(IDToValue.find(IteratorID.get()));
504 Builder.SetInsertPoint(&ExitBlock->front());
506 SequentialLoops++;
509 /// Remove the BBs contained in a (sub)function from the dominator tree.
511 /// This function removes the basic blocks that are part of a subfunction from
512 /// the dominator tree. Specifically, when generating code it may happen that at
513 /// some point the code generation continues in a new sub-function (e.g., when
514 /// generating OpenMP code). The basic blocks that are created in this
515 /// sub-function are then still part of the dominator tree of the original
516 /// function, such that the dominator tree reaches over function boundaries.
517 /// This is not only incorrect, but also causes crashes. This function now
518 /// removes from the dominator tree all basic blocks that are dominated (and
519 /// consequently reachable) from the entry block of this (sub)function.
521 /// FIXME: A LLVM (function or region) pass should not touch anything outside of
522 /// the function/region it runs on. Hence, the pure need for this function shows
523 /// that we do not comply to this rule. At the moment, this does not cause any
524 /// issues, but we should be aware that such issues may appear. Unfortunately
525 /// the current LLVM pass infrastructure does not allow to make Polly a module
526 /// or call-graph pass to solve this issue, as such a pass would not have access
527 /// to the per-function analyses passes needed by Polly. A future pass manager
528 /// infrastructure is supposed to enable such kind of access possibly allowing
529 /// us to create a cleaner solution here.
531 /// FIXME: Instead of adding the dominance information and then dropping it
532 /// later on, we should try to just not add it in the first place. This requires
533 /// some careful testing to make sure this does not break in interaction with
534 /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or
535 /// which may try to update it.
537 /// @param F The function which contains the BBs to removed.
538 /// @param DT The dominator tree from which to remove the BBs.
539 static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) {
540 DomTreeNode *N = DT.getNode(&F->getEntryBlock());
541 std::vector<BasicBlock *> Nodes;
543 // We can only remove an element from the dominator tree, if all its children
544 // have been removed. To ensure this we obtain the list of nodes to remove
545 // using a post-order tree traversal.
546 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I)
547 Nodes.push_back(I->getBlock());
549 for (BasicBlock *BB : Nodes)
550 DT.eraseNode(BB);
553 void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) {
554 isl_ast_node *Body;
555 isl_ast_expr *Init, *Inc, *Iterator, *UB;
556 isl_id *IteratorID;
557 Value *ValueLB, *ValueUB, *ValueInc;
558 Type *MaxType;
559 Value *IV;
560 CmpInst::Predicate Predicate;
562 // The preamble of parallel code interacts different than normal code with
563 // e.g., scalar initialization. Therefore, we ensure the parallel code is
564 // separated from the last basic block.
565 BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(),
566 &*Builder.GetInsertPoint(), &DT, &LI);
567 ParBB->setName("polly.parallel.for");
568 Builder.SetInsertPoint(&ParBB->front());
570 Body = isl_ast_node_for_get_body(For);
571 Init = isl_ast_node_for_get_init(For);
572 Inc = isl_ast_node_for_get_inc(For);
573 Iterator = isl_ast_node_for_get_iterator(For);
574 IteratorID = isl_ast_expr_get_id(Iterator);
575 UB = getUpperBound(isl::manage_copy(For).as<isl::ast_node_for>(), Predicate)
576 .release();
578 ValueLB = ExprBuilder.create(Init);
579 ValueUB = ExprBuilder.create(UB);
580 ValueInc = ExprBuilder.create(Inc);
582 // OpenMP always uses SLE. In case the isl generated AST uses a SLT
583 // expression, we need to adjust the loop bound by one.
584 if (Predicate == CmpInst::ICMP_SLT)
585 ValueUB = Builder.CreateAdd(
586 ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType()));
588 MaxType = ExprBuilder.getType(Iterator);
589 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
590 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
591 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
593 if (MaxType != ValueLB->getType())
594 ValueLB = Builder.CreateSExt(ValueLB, MaxType);
595 if (MaxType != ValueUB->getType())
596 ValueUB = Builder.CreateSExt(ValueUB, MaxType);
597 if (MaxType != ValueInc->getType())
598 ValueInc = Builder.CreateSExt(ValueInc, MaxType);
600 BasicBlock::iterator LoopBody;
602 SetVector<Value *> SubtreeValues;
603 SetVector<const Loop *> Loops;
605 getReferencesInSubtree(isl::manage_copy(For), SubtreeValues, Loops);
607 // Create for all loops we depend on values that contain the current loop
608 // iteration. These values are necessary to generate code for SCEVs that
609 // depend on such loops. As a result we need to pass them to the subfunction.
610 // See [Code generation of induction variables of loops outside Scops]
611 for (const Loop *L : Loops) {
612 Value *LoopInductionVar = materializeNonScopLoopInductionVariable(L);
613 SubtreeValues.insert(LoopInductionVar);
616 ValueMapT NewValues;
618 std::unique_ptr<ParallelLoopGenerator> ParallelLoopGenPtr;
620 switch (PollyOmpBackend) {
621 case OpenMPBackend::GNU:
622 ParallelLoopGenPtr.reset(
623 new ParallelLoopGeneratorGOMP(Builder, LI, DT, DL));
624 break;
625 case OpenMPBackend::LLVM:
626 ParallelLoopGenPtr.reset(new ParallelLoopGeneratorKMP(Builder, LI, DT, DL));
627 break;
630 IV = ParallelLoopGenPtr->createParallelLoop(
631 ValueLB, ValueUB, ValueInc, SubtreeValues, NewValues, &LoopBody);
632 BasicBlock::iterator AfterLoop = Builder.GetInsertPoint();
633 Builder.SetInsertPoint(&*LoopBody);
635 // Remember the parallel subfunction
636 ParallelSubfunctions.push_back(LoopBody->getFunction());
638 // Save the current values.
639 auto ValueMapCopy = ValueMap;
640 IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue;
642 updateValues(NewValues);
643 IDToValue[IteratorID] = IV;
645 ValueMapT NewValuesReverse;
647 for (auto P : NewValues)
648 NewValuesReverse[P.second] = P.first;
650 Annotator.addAlternativeAliasBases(NewValuesReverse);
652 create(Body);
654 Annotator.resetAlternativeAliasBases();
655 // Restore the original values.
656 ValueMap = ValueMapCopy;
657 IDToValue = IDToValueCopy;
659 Builder.SetInsertPoint(&*AfterLoop);
660 removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT);
662 for (const Loop *L : Loops)
663 OutsideLoopIterations.erase(L);
665 isl_ast_node_free(For);
666 isl_ast_expr_free(Iterator);
667 isl_id_free(IteratorID);
669 ParallelLoops++;
672 void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) {
673 if (IslAstInfo::isExecutedInParallel(isl::manage_copy(For))) {
674 createForParallel(For);
675 return;
677 bool Parallel = (IslAstInfo::isParallel(isl::manage_copy(For)) &&
678 !IslAstInfo::isReductionParallel(isl::manage_copy(For)));
679 createForSequential(isl::manage(For).as<isl::ast_node_for>(), Parallel);
682 void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) {
683 isl_ast_expr *Cond = isl_ast_node_if_get_cond(If);
685 Function *F = Builder.GetInsertBlock()->getParent();
686 LLVMContext &Context = F->getContext();
688 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
689 &*Builder.GetInsertPoint(), &DT, &LI);
690 CondBB->setName("polly.cond");
691 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
692 MergeBB->setName("polly.merge");
693 BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F);
694 BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F);
696 DT.addNewBlock(ThenBB, CondBB);
697 DT.addNewBlock(ElseBB, CondBB);
698 DT.changeImmediateDominator(MergeBB, CondBB);
700 Loop *L = LI.getLoopFor(CondBB);
701 if (L) {
702 L->addBasicBlockToLoop(ThenBB, LI);
703 L->addBasicBlockToLoop(ElseBB, LI);
706 CondBB->getTerminator()->eraseFromParent();
708 Builder.SetInsertPoint(CondBB);
709 Value *Predicate = ExprBuilder.create(Cond);
710 Builder.CreateCondBr(Predicate, ThenBB, ElseBB);
711 Builder.SetInsertPoint(ThenBB);
712 Builder.CreateBr(MergeBB);
713 Builder.SetInsertPoint(ElseBB);
714 Builder.CreateBr(MergeBB);
715 Builder.SetInsertPoint(&ThenBB->front());
717 create(isl_ast_node_if_get_then(If));
719 Builder.SetInsertPoint(&ElseBB->front());
721 if (isl_ast_node_if_has_else(If))
722 create(isl_ast_node_if_get_else(If));
724 Builder.SetInsertPoint(&MergeBB->front());
726 isl_ast_node_free(If);
728 IfConditions++;
731 __isl_give isl_id_to_ast_expr *
732 IslNodeBuilder::createNewAccesses(ScopStmt *Stmt,
733 __isl_keep isl_ast_node *Node) {
734 isl::id_to_ast_expr NewAccesses =
735 isl::id_to_ast_expr::alloc(Stmt->getParent()->getIslCtx(), 0);
737 isl::ast_build Build = IslAstInfo::getBuild(isl::manage_copy(Node));
738 assert(!Build.is_null() && "Could not obtain isl_ast_build from user node");
739 Stmt->setAstBuild(Build);
741 for (auto *MA : *Stmt) {
742 if (!MA->hasNewAccessRelation()) {
743 if (PollyGenerateExpressions) {
744 if (!MA->isAffine())
745 continue;
746 if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI())
747 continue;
749 auto *BasePtr =
750 dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr());
751 if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr))
752 continue;
753 } else {
754 continue;
757 assert(MA->isAffine() &&
758 "Only affine memory accesses can be code generated");
760 isl::union_map Schedule = Build.get_schedule();
762 #ifndef NDEBUG
763 if (MA->isRead()) {
764 auto Dom = Stmt->getDomain().release();
765 auto SchedDom = isl_set_from_union_set(Schedule.domain().release());
766 auto AccDom = isl_map_domain(MA->getAccessRelation().release());
767 Dom = isl_set_intersect_params(Dom,
768 Stmt->getParent()->getContext().release());
769 SchedDom = isl_set_intersect_params(
770 SchedDom, Stmt->getParent()->getContext().release());
771 assert(isl_set_is_subset(SchedDom, AccDom) &&
772 "Access relation not defined on full schedule domain");
773 assert(isl_set_is_subset(Dom, AccDom) &&
774 "Access relation not defined on full domain");
775 isl_set_free(AccDom);
776 isl_set_free(SchedDom);
777 isl_set_free(Dom);
779 #endif
781 isl::pw_multi_aff PWAccRel = MA->applyScheduleToAccessRelation(Schedule);
783 // isl cannot generate an index expression for access-nothing accesses.
784 isl::set AccDomain = PWAccRel.domain();
785 isl::set Context = S.getContext();
786 AccDomain = AccDomain.intersect_params(Context);
787 if (AccDomain.is_empty())
788 continue;
790 isl::ast_expr AccessExpr = Build.access_from(PWAccRel);
791 NewAccesses = NewAccesses.set(MA->getId(), AccessExpr);
794 return NewAccesses.release();
797 void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr,
798 ScopStmt *Stmt, LoopToScevMapT &LTS) {
799 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
800 "Expression of type 'op' expected");
801 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call &&
802 "Operation of type 'call' expected");
803 for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) {
804 isl_ast_expr *SubExpr;
805 Value *V;
807 SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1);
808 V = ExprBuilder.create(SubExpr);
809 ScalarEvolution *SE = Stmt->getParent()->getSE();
810 LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V);
813 isl_ast_expr_free(Expr);
816 void IslNodeBuilder::createSubstitutionsVector(
817 __isl_take isl_ast_expr *Expr, ScopStmt *Stmt,
818 std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS,
819 __isl_take isl_id *IteratorID) {
820 int i = 0;
822 Value *OldValue = IDToValue[IteratorID];
823 for (Value *IV : IVS) {
824 IDToValue[IteratorID] = IV;
825 createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]);
826 i++;
829 IDToValue[IteratorID] = OldValue;
830 isl_id_free(IteratorID);
831 isl_ast_expr_free(Expr);
834 void IslNodeBuilder::generateCopyStmt(
835 ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
836 assert(Stmt->size() == 2);
837 auto ReadAccess = Stmt->begin();
838 auto WriteAccess = ReadAccess++;
839 assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite());
840 assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() &&
841 "Accesses use the same data type");
842 assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind());
843 auto *AccessExpr =
844 isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId().release());
845 auto *LoadValue = ExprBuilder.create(AccessExpr);
846 AccessExpr =
847 isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId().release());
848 auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr).first;
849 Builder.CreateStore(LoadValue, StoreAddr);
852 Value *IslNodeBuilder::materializeNonScopLoopInductionVariable(const Loop *L) {
853 assert(!OutsideLoopIterations.contains(L) &&
854 "trying to materialize loop induction variable twice");
855 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
856 SE.getUnknown(Builder.getInt64(1)), L,
857 SCEV::FlagAnyWrap);
858 Value *V = generateSCEV(OuterLIV);
859 OutsideLoopIterations[L] = SE.getUnknown(V);
860 return V;
863 void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) {
864 LoopToScevMapT LTS;
865 isl_id *Id;
866 ScopStmt *Stmt;
868 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
869 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
870 Id = isl_ast_expr_get_id(StmtExpr);
871 isl_ast_expr_free(StmtExpr);
873 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end());
875 Stmt = (ScopStmt *)isl_id_get_user(Id);
876 auto *NewAccesses = createNewAccesses(Stmt, User);
877 if (Stmt->isCopyStmt()) {
878 generateCopyStmt(Stmt, NewAccesses);
879 isl_ast_expr_free(Expr);
880 } else {
881 createSubstitutions(Expr, Stmt, LTS);
883 if (Stmt->isBlockStmt())
884 BlockGen.copyStmt(*Stmt, LTS, NewAccesses);
885 else
886 RegionGen.copyStmt(*Stmt, LTS, NewAccesses);
889 isl_id_to_ast_expr_free(NewAccesses);
890 isl_ast_node_free(User);
891 isl_id_free(Id);
894 void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) {
895 isl_ast_node_list *List = isl_ast_node_block_get_children(Block);
897 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
898 create(isl_ast_node_list_get_ast_node(List, i));
900 isl_ast_node_free(Block);
901 isl_ast_node_list_free(List);
904 void IslNodeBuilder::create(__isl_take isl_ast_node *Node) {
905 switch (isl_ast_node_get_type(Node)) {
906 case isl_ast_node_error:
907 llvm_unreachable("code generation error");
908 case isl_ast_node_mark:
909 createMark(Node);
910 return;
911 case isl_ast_node_for:
912 createFor(Node);
913 return;
914 case isl_ast_node_if:
915 createIf(Node);
916 return;
917 case isl_ast_node_user:
918 createUser(Node);
919 return;
920 case isl_ast_node_block:
921 createBlock(Node);
922 return;
925 llvm_unreachable("Unknown isl_ast_node type");
928 bool IslNodeBuilder::materializeValue(__isl_take isl_id *Id) {
929 // If the Id is already mapped, skip it.
930 if (!IDToValue.count(Id)) {
931 auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id);
932 Value *V = nullptr;
934 // Parameters could refer to invariant loads that need to be
935 // preloaded before we can generate code for the parameter. Thus,
936 // check if any value referred to in ParamSCEV is an invariant load
937 // and if so make sure its equivalence class is preloaded.
938 SetVector<Value *> Values;
939 findValues(ParamSCEV, SE, Values);
940 for (auto *Val : Values) {
941 // Check if the value is an instruction in a dead block within the SCoP
942 // and if so do not code generate it.
943 if (auto *Inst = dyn_cast<Instruction>(Val)) {
944 if (S.contains(Inst)) {
945 bool IsDead = true;
947 // Check for "undef" loads first, then if there is a statement for
948 // the parent of Inst and lastly if the parent of Inst has an empty
949 // domain. In the first and last case the instruction is dead but if
950 // there is a statement or the domain is not empty Inst is not dead.
951 auto MemInst = MemAccInst::dyn_cast(Inst);
952 auto Address = MemInst ? MemInst.getPointerOperand() : nullptr;
953 if (Address && SE.getUnknown(UndefValue::get(Address->getType())) ==
954 SE.getPointerBase(SE.getSCEV(Address))) {
955 } else if (S.getStmtFor(Inst)) {
956 IsDead = false;
957 } else {
958 auto *Domain = S.getDomainConditions(Inst->getParent()).release();
959 IsDead = isl_set_is_empty(Domain);
960 isl_set_free(Domain);
963 if (IsDead) {
964 V = UndefValue::get(ParamSCEV->getType());
965 break;
970 if (auto *IAClass = S.lookupInvariantEquivClass(Val)) {
971 // Check if this invariant access class is empty, hence if we never
972 // actually added a loads instruction to it. In that case it has no
973 // (meaningful) users and we should not try to code generate it.
974 if (IAClass->InvariantAccesses.empty())
975 V = UndefValue::get(ParamSCEV->getType());
977 if (!preloadInvariantEquivClass(*IAClass)) {
978 isl_id_free(Id);
979 return false;
984 V = V ? V : generateSCEV(ParamSCEV);
985 IDToValue[Id] = V;
988 isl_id_free(Id);
989 return true;
992 bool IslNodeBuilder::materializeParameters(__isl_take isl_set *Set) {
993 for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) {
994 if (!isl_set_involves_dims(Set, isl_dim_param, i, 1))
995 continue;
996 isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i);
997 if (!materializeValue(Id))
998 return false;
1000 return true;
1003 bool IslNodeBuilder::materializeParameters() {
1004 for (const SCEV *Param : S.parameters()) {
1005 isl_id *Id = S.getIdForParam(Param).release();
1006 if (!materializeValue(Id))
1007 return false;
1009 return true;
1012 Value *IslNodeBuilder::preloadUnconditionally(__isl_take isl_set *AccessRange,
1013 isl_ast_build *Build,
1014 Instruction *AccInst) {
1015 isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange);
1016 isl_ast_expr *Access =
1017 isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
1018 auto *Address = isl_ast_expr_address_of(Access);
1019 auto *AddressValue = ExprBuilder.create(Address);
1020 Value *PreloadVal;
1022 // Correct the type as the SAI might have a different type than the user
1023 // expects, especially if the base pointer is a struct.
1024 Type *Ty = AccInst->getType();
1026 auto *Ptr = AddressValue;
1027 auto Name = Ptr->getName();
1028 auto AS = Ptr->getType()->getPointerAddressSpace();
1029 Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(AS), Name + ".cast");
1030 PreloadVal = Builder.CreateLoad(Ty, Ptr, Name + ".load");
1031 if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal))
1032 PreloadInst->setAlignment(cast<LoadInst>(AccInst)->getAlign());
1034 // TODO: This is only a hot fix for SCoP sequences that use the same load
1035 // instruction contained and hoisted by one of the SCoPs.
1036 if (SE.isSCEVable(Ty))
1037 SE.forgetValue(AccInst);
1039 return PreloadVal;
1042 Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA,
1043 __isl_take isl_set *Domain) {
1044 isl_set *AccessRange = isl_map_range(MA.getAddressFunction().release());
1045 AccessRange = isl_set_gist_params(AccessRange, S.getContext().release());
1047 if (!materializeParameters(AccessRange)) {
1048 isl_set_free(AccessRange);
1049 isl_set_free(Domain);
1050 return nullptr;
1053 auto *Build =
1054 isl_ast_build_from_context(isl_set_universe(S.getParamSpace().release()));
1055 isl_set *Universe = isl_set_universe(isl_set_get_space(Domain));
1056 bool AlwaysExecuted = isl_set_is_equal(Domain, Universe);
1057 isl_set_free(Universe);
1059 Instruction *AccInst = MA.getAccessInstruction();
1060 Type *AccInstTy = AccInst->getType();
1062 Value *PreloadVal = nullptr;
1063 if (AlwaysExecuted) {
1064 PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst);
1065 isl_ast_build_free(Build);
1066 isl_set_free(Domain);
1067 return PreloadVal;
1070 if (!materializeParameters(Domain)) {
1071 isl_ast_build_free(Build);
1072 isl_set_free(AccessRange);
1073 isl_set_free(Domain);
1074 return nullptr;
1077 isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain);
1078 Domain = nullptr;
1080 ExprBuilder.setTrackOverflow(true);
1081 Value *Cond = ExprBuilder.create(DomainCond);
1082 Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(),
1083 "polly.preload.cond.overflown");
1084 Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result");
1085 ExprBuilder.setTrackOverflow(false);
1087 if (!Cond->getType()->isIntegerTy(1))
1088 Cond = Builder.CreateIsNotNull(Cond);
1090 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
1091 &*Builder.GetInsertPoint(), &DT, &LI);
1092 CondBB->setName("polly.preload.cond");
1094 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
1095 MergeBB->setName("polly.preload.merge");
1097 Function *F = Builder.GetInsertBlock()->getParent();
1098 LLVMContext &Context = F->getContext();
1099 BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F);
1101 DT.addNewBlock(ExecBB, CondBB);
1102 if (Loop *L = LI.getLoopFor(CondBB))
1103 L->addBasicBlockToLoop(ExecBB, LI);
1105 auto *CondBBTerminator = CondBB->getTerminator();
1106 Builder.SetInsertPoint(CondBBTerminator);
1107 Builder.CreateCondBr(Cond, ExecBB, MergeBB);
1108 CondBBTerminator->eraseFromParent();
1110 Builder.SetInsertPoint(ExecBB);
1111 Builder.CreateBr(MergeBB);
1113 Builder.SetInsertPoint(ExecBB->getTerminator());
1114 Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst);
1115 Builder.SetInsertPoint(MergeBB->getTerminator());
1116 auto *MergePHI = Builder.CreatePHI(
1117 AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge");
1118 PreloadVal = MergePHI;
1120 if (!PreAccInst) {
1121 PreloadVal = nullptr;
1122 PreAccInst = UndefValue::get(AccInstTy);
1125 MergePHI->addIncoming(PreAccInst, ExecBB);
1126 MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB);
1128 isl_ast_build_free(Build);
1129 return PreloadVal;
1132 bool IslNodeBuilder::preloadInvariantEquivClass(
1133 InvariantEquivClassTy &IAClass) {
1134 // For an equivalence class of invariant loads we pre-load the representing
1135 // element with the unified execution context. However, we have to map all
1136 // elements of the class to the one preloaded load as they are referenced
1137 // during the code generation and therefor need to be mapped.
1138 const MemoryAccessList &MAs = IAClass.InvariantAccesses;
1139 if (MAs.empty())
1140 return true;
1142 MemoryAccess *MA = MAs.front();
1143 assert(MA->isArrayKind() && MA->isRead());
1145 // If the access function was already mapped, the preload of this equivalence
1146 // class was triggered earlier already and doesn't need to be done again.
1147 if (ValueMap.count(MA->getAccessInstruction()))
1148 return true;
1150 // Check for recursion which can be caused by additional constraints, e.g.,
1151 // non-finite loop constraints. In such a case we have to bail out and insert
1152 // a "false" runtime check that will cause the original code to be executed.
1153 auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType);
1154 if (!PreloadedPtrs.insert(PtrId).second)
1155 return false;
1157 // The execution context of the IAClass.
1158 isl::set &ExecutionCtx = IAClass.ExecutionContext;
1160 // If the base pointer of this class is dependent on another one we have to
1161 // make sure it was preloaded already.
1162 auto *SAI = MA->getScopArrayInfo();
1163 if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) {
1164 if (!preloadInvariantEquivClass(*BaseIAClass))
1165 return false;
1167 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and
1168 // we need to refine the ExecutionCtx.
1169 isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext;
1170 ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx);
1173 // If the size of a dimension is dependent on another class, make sure it is
1174 // preloaded.
1175 for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) {
1176 const SCEV *Dim = SAI->getDimensionSize(i);
1177 SetVector<Value *> Values;
1178 findValues(Dim, SE, Values);
1179 for (auto *Val : Values) {
1180 if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) {
1181 if (!preloadInvariantEquivClass(*BaseIAClass))
1182 return false;
1184 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx
1185 // and we need to refine the ExecutionCtx.
1186 isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext;
1187 ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx);
1192 Instruction *AccInst = MA->getAccessInstruction();
1193 Type *AccInstTy = AccInst->getType();
1195 Value *PreloadVal = preloadInvariantLoad(*MA, ExecutionCtx.copy());
1196 if (!PreloadVal)
1197 return false;
1199 for (const MemoryAccess *MA : MAs) {
1200 Instruction *MAAccInst = MA->getAccessInstruction();
1201 assert(PreloadVal->getType() == MAAccInst->getType());
1202 ValueMap[MAAccInst] = PreloadVal;
1205 if (SE.isSCEVable(AccInstTy)) {
1206 isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)).release();
1207 if (ParamId)
1208 IDToValue[ParamId] = PreloadVal;
1209 isl_id_free(ParamId);
1212 BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
1213 auto *Alloca = new AllocaInst(AccInstTy, DL.getAllocaAddrSpace(),
1214 AccInst->getName() + ".preload.s2a",
1215 &*EntryBB->getFirstInsertionPt());
1216 Builder.CreateStore(PreloadVal, Alloca);
1217 ValueMapT PreloadedPointer;
1218 PreloadedPointer[PreloadVal] = AccInst;
1219 Annotator.addAlternativeAliasBases(PreloadedPointer);
1221 for (auto *DerivedSAI : SAI->getDerivedSAIs()) {
1222 Value *BasePtr = DerivedSAI->getBasePtr();
1224 for (const MemoryAccess *MA : MAs) {
1225 // As the derived SAI information is quite coarse, any load from the
1226 // current SAI could be the base pointer of the derived SAI, however we
1227 // should only change the base pointer of the derived SAI if we actually
1228 // preloaded it.
1229 if (BasePtr == MA->getOriginalBaseAddr()) {
1230 assert(BasePtr->getType() == PreloadVal->getType());
1231 DerivedSAI->setBasePtr(PreloadVal);
1234 // For scalar derived SAIs we remap the alloca used for the derived value.
1235 if (BasePtr == MA->getAccessInstruction())
1236 ScalarMap[DerivedSAI] = Alloca;
1240 for (const MemoryAccess *MA : MAs) {
1241 Instruction *MAAccInst = MA->getAccessInstruction();
1242 // Use the escape system to get the correct value to users outside the SCoP.
1243 BlockGenerator::EscapeUserVectorTy EscapeUsers;
1244 for (auto *U : MAAccInst->users())
1245 if (Instruction *UI = dyn_cast<Instruction>(U))
1246 if (!S.contains(UI))
1247 EscapeUsers.push_back(UI);
1249 if (EscapeUsers.empty())
1250 continue;
1252 EscapeMap[MA->getAccessInstruction()] =
1253 std::make_pair(Alloca, std::move(EscapeUsers));
1256 return true;
1259 void IslNodeBuilder::allocateNewArrays(BBPair StartExitBlocks) {
1260 for (auto &SAI : S.arrays()) {
1261 if (SAI->getBasePtr())
1262 continue;
1264 assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) &&
1265 "The size of the outermost dimension is used to declare newly "
1266 "created arrays that require memory allocation.");
1268 Type *NewArrayType = nullptr;
1270 // Get the size of the array = size(dim_1)*...*size(dim_n)
1271 uint64_t ArraySizeInt = 1;
1272 for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) {
1273 auto *DimSize = SAI->getDimensionSize(i);
1274 unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize)
1275 ->getAPInt()
1276 .getLimitedValue();
1278 if (!NewArrayType)
1279 NewArrayType = SAI->getElementType();
1281 NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize);
1282 ArraySizeInt *= UnsignedDimSize;
1285 if (SAI->isOnHeap()) {
1286 LLVMContext &Ctx = NewArrayType->getContext();
1288 // Get the IntPtrTy from the Datalayout
1289 auto IntPtrTy = DL.getIntPtrType(Ctx);
1291 // Get the size of the element type in bits
1292 unsigned Size = SAI->getElemSizeInBytes();
1294 // Insert the malloc call at polly.start
1295 Builder.SetInsertPoint(std::get<0>(StartExitBlocks)->getTerminator());
1296 auto *CreatedArray = Builder.CreateMalloc(
1297 IntPtrTy, SAI->getElementType(),
1298 ConstantInt::get(Type::getInt64Ty(Ctx), Size),
1299 ConstantInt::get(Type::getInt64Ty(Ctx), ArraySizeInt), nullptr,
1300 SAI->getName());
1302 SAI->setBasePtr(CreatedArray);
1304 // Insert the free call at polly.exiting
1305 Builder.SetInsertPoint(std::get<1>(StartExitBlocks)->getTerminator());
1306 Builder.CreateFree(CreatedArray);
1307 } else {
1308 auto InstIt = Builder.GetInsertBlock()
1309 ->getParent()
1310 ->getEntryBlock()
1311 .getTerminator();
1313 auto *CreatedArray = new AllocaInst(NewArrayType, DL.getAllocaAddrSpace(),
1314 SAI->getName(), &*InstIt);
1315 if (PollyTargetFirstLevelCacheLineSize)
1316 CreatedArray->setAlignment(Align(PollyTargetFirstLevelCacheLineSize));
1317 SAI->setBasePtr(CreatedArray);
1322 bool IslNodeBuilder::preloadInvariantLoads() {
1323 auto &InvariantEquivClasses = S.getInvariantAccesses();
1324 if (InvariantEquivClasses.empty())
1325 return true;
1327 BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(),
1328 &*Builder.GetInsertPoint(), &DT, &LI);
1329 PreLoadBB->setName("polly.preload.begin");
1330 Builder.SetInsertPoint(&PreLoadBB->front());
1332 for (auto &IAClass : InvariantEquivClasses)
1333 if (!preloadInvariantEquivClass(IAClass))
1334 return false;
1336 return true;
1339 void IslNodeBuilder::addParameters(__isl_take isl_set *Context) {
1340 // Materialize values for the parameters of the SCoP.
1341 materializeParameters();
1343 // Generate values for the current loop iteration for all surrounding loops.
1345 // We may also reference loops outside of the scop which do not contain the
1346 // scop itself, but as the number of such scops may be arbitrarily large we do
1347 // not generate code for them here, but only at the point of code generation
1348 // where these values are needed.
1349 Loop *L = LI.getLoopFor(S.getEntry());
1351 while (L != nullptr && S.contains(L))
1352 L = L->getParentLoop();
1354 while (L != nullptr) {
1355 materializeNonScopLoopInductionVariable(L);
1356 L = L->getParentLoop();
1359 isl_set_free(Context);
1362 Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) {
1363 /// We pass the insert location of our Builder, as Polly ensures during IR
1364 /// generation that there is always a valid CFG into which instructions are
1365 /// inserted. As a result, the insertpoint is known to be always followed by a
1366 /// terminator instruction. This means the insert point may be specified by a
1367 /// terminator instruction, but it can never point to an ->end() iterator
1368 /// which does not have a corresponding instruction. Hence, dereferencing
1369 /// the insertpoint to obtain an instruction is known to be save.
1371 /// We also do not need to update the Builder here, as new instructions are
1372 /// always inserted _before_ the given InsertLocation. As a result, the
1373 /// insert location remains valid.
1374 assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() &&
1375 "Insert location points after last valid instruction");
1376 Instruction *InsertLocation = &*Builder.GetInsertPoint();
1377 return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(),
1378 InsertLocation, &ValueMap,
1379 StartBlock->getSinglePredecessor());
1382 /// The AST expression we generate to perform the run-time check assumes
1383 /// computations on integer types of infinite size. As we only use 64-bit
1384 /// arithmetic we check for overflows, in case of which we set the result
1385 /// of this run-time check to false to be conservatively correct,
1386 Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) {
1387 auto ExprBuilder = getExprBuilder();
1389 // In case the AST expression has integers larger than 64 bit, bail out. The
1390 // resulting LLVM-IR will contain operations on types that use more than 64
1391 // bits. These are -- in case wrapping intrinsics are used -- translated to
1392 // runtime library calls that are not available on all systems (e.g., Android)
1393 // and consequently will result in linker errors.
1394 if (ExprBuilder.hasLargeInts(isl::manage_copy(Condition))) {
1395 isl_ast_expr_free(Condition);
1396 return Builder.getFalse();
1399 ExprBuilder.setTrackOverflow(true);
1400 Value *RTC = ExprBuilder.create(Condition);
1401 if (!RTC->getType()->isIntegerTy(1))
1402 RTC = Builder.CreateIsNotNull(RTC);
1403 Value *OverflowHappened =
1404 Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown");
1406 if (PollyGenerateRTCPrint) {
1407 auto *F = Builder.GetInsertBlock()->getParent();
1408 RuntimeDebugBuilder::createCPUPrinter(
1409 Builder,
1410 "F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() +
1411 "RTC: ",
1412 RTC, " Overflow: ", OverflowHappened,
1413 "\n"
1414 " (0 failed, -1 succeeded)\n"
1415 " (if one or both are 0 falling back to original code, if both are -1 "
1416 "executing Polly code)\n");
1419 RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result");
1420 ExprBuilder.setTrackOverflow(false);
1422 if (!isa<ConstantInt>(RTC))
1423 VersionedScops++;
1425 return RTC;