[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / polly / lib / External / isl / interface / template_cpp.cc
blob2beca82550b259710fbb41f8845f24ff288bfdaa
1 /*
2 * Copyright 2020 Cerebras Systems. All rights reserved.
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above
12 * copyright notice, this list of conditions and the following
13 * disclaimer in the documentation and/or other materials provided
14 * with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY CEREBRAS SYSTEMS ''AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CEREBRAS SYSTEMS OR
20 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
21 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
23 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 * The views and conclusions contained in the software and documentation
29 * are those of the authors and should not be interpreted as
30 * representing official policies, either expressed or implied, of
31 * Cerebras Systems.
34 #include <ctype.h>
36 #include <algorithm>
37 #include <iostream>
38 #include <set>
39 #include <sstream>
40 #include <string>
41 #include <unordered_map>
42 #include <unordered_set>
44 #include "template_cpp.h"
45 #include "isl_config.h"
47 /* The textual representation of this tuple kind.
49 * By default, the textual representation is just the name.
51 std::string TupleKind::to_string() const
53 return name;
56 /* Return the parameters of this tuple kind.
58 * By default, there are no parameters.
60 std::vector<std::string> TupleKind::params() const
62 return { };
65 /* Apply the substitution "subs" to this tuple kind and return the result.
66 * "self" is a shared pointer to this.
68 * If the name of this tuple kind appears in the substitution,
69 * then return the corresponding tuple kind pointer.
70 * Otherwise, return "self".
72 TupleKindPtr TupleKind::apply(const Substitution &subs,
73 const TupleKindPtr &self) const
75 if (subs.count(name) != 0)
76 return subs.at(name);
77 return self;
80 /* Apply the substitution "subs" to "tuple" and return the result.
82 static TupleKindPtr apply(const TupleKindPtr tuple, const Substitution &subs)
84 return tuple->apply(subs, tuple);
87 /* Return the left child of this tuple kind.
89 * Since this is not a pair, there is no left child.
91 TupleKindPtr TupleKind::left() const
93 return TupleKindPtr();
96 /* Return the right child of this tuple kind.
98 * Since this is not a pair, there is no right child.
100 TupleKindPtr TupleKind::right() const
102 return TupleKindPtr();
105 /* Helper class used to construct a pointer to a tuple kind
106 * that refers to a non-template type.
108 struct Fixed {
111 /* Construct a pointer to a tuple kind that refers to a non-template type.
113 * Use an empty string as name. Since this is a non-template type,
114 * the kind name will never appear in the generated code.
116 TupleKindPtr::TupleKindPtr(Fixed) : Base(std::make_shared<TupleKind>(""))
120 /* Tuple pointers for non-template types.
122 static TupleKindPtr Ctx{Fixed()};
123 static TupleKindPtr Integer{Fixed()};
124 static TupleKindPtr Str{Fixed()};
125 static TupleKindPtr Res{Fixed()};
127 /* Special tuple pointers.
128 * Anonymous appears in the generated code but cannot be unified
129 * with anything else since it is a predefined template argument.
130 * Leaf can only be unified with something that is not a pair and
131 * does not appear in the generated code.
133 static TupleKindPtr Anonymous("Anonymous");
134 static TupleKindPtr Leaf("Leaf");
136 /* Placeholder tuple pointers that refer to (part of) the domain or range.
138 static TupleKindPtr Domain("Domain");
139 static TupleKindPtr Domain2("Domain2");
140 static TupleKindPtr Domain3("Domain3");
141 static TupleKindPtr Range("Range");
142 static TupleKindPtr Range2("Range2");
143 static TupleKindPtr Range3("Range3");
145 /* A representation of a proper tuple kind that is used as a template
146 * parameter or a template argument.
148 struct ProperTupleKind : public TupleKind {
149 ProperTupleKind(const std::string &name) : TupleKind(name) {}
151 virtual std::vector<std::string> params() const override;
154 /* Return the parameters of this tuple kind.
156 * Return the name of this tuple kind, unless it is the special Anonymous
157 * predefined template argument.
159 std::vector<std::string> ProperTupleKind::params() const
161 if (Anonymous.get() == this)
162 return { };
163 return { name };
166 /* Construct a pointer to a tuple kind that refers
167 * to a proper tuple kind with the given name.
169 TupleKindPtr::TupleKindPtr(const std::string &name) :
170 Base(std::make_shared<ProperTupleKind>(name))
174 /* A tuple kind that represents an anonymous pair of nested tuple kinds.
176 struct Pair : public TupleKind {
177 Pair(const TupleKindPtr &tuple1, const TupleKindPtr &tuple2) :
178 TupleKind(""), tuple1(tuple1), tuple2(tuple2) {}
180 virtual std::string to_string() const override;
181 virtual std::vector<std::string> params() const override;
182 virtual TupleKindPtr apply(const Substitution &match,
183 const TupleKindPtr &self) const override;
184 virtual TupleKindPtr left() const override;
185 virtual TupleKindPtr right() const override;
187 const TupleKindPtr tuple1;
188 const TupleKindPtr tuple2;
191 /* The textual representation of this tuple kind.
193 * The textual representation of a pair is of the form "pair<tuple1, tuple2>".
195 std::string Pair::to_string() const
197 return std::string("pair<") + tuple1->to_string() + ", " +
198 tuple2->to_string() + ">";
201 /* Add the elements of "vec2" that do not already appear in "vec1"
202 * at the end of "vec1".
204 * The two vectors are assumed not to have any repeated elements.
205 * The updated vector will then also not have repeated elements.
207 static void combine(std::vector<std::string> &vec1,
208 const std::vector<std::string> &vec2)
210 for (const auto &s : vec2)
211 if (std::find(vec1.begin(), vec1.end(), s) == vec1.end())
212 vec1.emplace_back(s);
215 /* Return the parameters of this tuple kind.
217 * Combine the parameters of the two nested tuple kinds.
219 std::vector<std::string> Pair::params() const
221 auto names1 = tuple1->params();
222 auto names2 = tuple2->params();
224 combine(names1, names2);
226 return names1;
229 /* Apply the substitution "subs" to this tuple kind and return the result.
230 * "self" is a shared pointer to this.
232 * Construct a new tuple kind consisting of the result of applying
233 * the substitution to the two nested tuple kinds.
235 TupleKindPtr Pair::apply(const Substitution &subs, const TupleKindPtr &self)
236 const
238 return TupleKindPtr(::apply(tuple1, subs), ::apply(tuple2, subs));
241 /* Return the left child of this tuple kind.
243 TupleKindPtr Pair::left() const
245 return tuple1;
248 /* Return the right child of this tuple kind.
250 TupleKindPtr Pair::right() const
252 return tuple2;
255 /* Construct a pointer to a tuple kind that refers
256 * to the given pair of nested tuple kinds.
258 TupleKindPtr::TupleKindPtr(const TupleKindPtr &left, const TupleKindPtr &right)
259 : Base(std::make_shared<Pair>(left, right))
263 /* Is this a kind of object representing an anonymous function?
265 bool Kind::is_anon() const
267 return size() != 0 && back() == Anonymous;
270 /* Is this a kind of object with a single tuple?
272 bool Kind::is_set() const
274 return size() == 1;
277 /* Is this a kind of object with a single, anonymous tuple?
279 bool Kind::is_anon_set() const
281 return is_set() && is_anon();
284 /* Return the parameters of this kind.
286 * Collect the parameters of the tuple kinds in the sequence.
288 std::vector<std::string> Kind::params() const
290 std::vector<std::string> params;
292 for (const auto &tuple : *this)
293 combine(params, tuple->params());
295 return params;
298 /* Apply the substitution "subs" to this kind and return the result.
300 * Apply the substitution to each of the tuple kinds in the sequence.
302 Kind Kind::apply(const Substitution &subs) const
304 Kind applied;
306 for (const auto &tuple : *this)
307 applied.emplace_back(::apply(tuple, subs));
309 return applied;
312 /* A signature of a method in terms of kinds,
313 * consisting of a return kind and a sequence of argument kinds.
315 struct Signature {
316 Kind ret;
317 std::vector<Kind> args;
319 std::vector<std::string> params() const;
320 Signature apply(const Substitution &match) const;
323 /* Return the parameters of this signature.
325 * Collect the parameters of the argument kinds and the return kind.
327 std::vector<std::string> Signature::params() const
329 std::vector<std::string> params;
331 for (const auto &arg : args)
332 combine(params, arg.params());
333 combine(params, ret.params());
335 return params;
338 /* Apply the substitution "subs" to this kind and return the result.
340 * Apply the substitution to the argument kinds and the return kind.
342 Signature Signature::apply(const Substitution &subs) const
344 std::vector<Kind> applied_args;
346 for (const auto &arg : args)
347 applied_args.emplace_back(arg.apply(subs));
349 return { ret.apply(subs), applied_args };
352 /* Return a renaming substitution that renames the elements of "params"
353 * using names starting with "prefix".
355 static Substitution param_renamer(const std::vector<std::string> &params,
356 const std::string &prefix)
358 Substitution renamer;
359 int n = 0;
361 for (const auto &name : params) {
362 auto suffix = std::to_string(++n);
363 auto arg_name = prefix + suffix;
364 auto arg = TupleKindPtr(arg_name);
366 if (name == Leaf->name)
367 generator::die("Leaf cannot be renamed");
369 renamer.emplace(name, arg);
372 return renamer;
375 /* Does the vector "v" contain the element "el"?
377 static bool contains(const std::vector<std::string> &v, const std::string &el)
379 return find(v.begin(), v.end(), el) != v.end();
383 /* Return the shared elements of "v1" and "v2", preserving the order
384 * of those elements in "v1".
386 static std::vector<std::string> intersect(const std::vector<std::string> &v1,
387 const std::vector<std::string> &v2)
389 std::vector<std::string> intersection;
391 for (const auto &el : v1)
392 if (contains(v2, el))
393 intersection.push_back(el);
395 return intersection;
398 /* Return a renaming substitution that renames
399 * any parameters that appears in both "sig" and "kind".
401 static Substitution shared_param_renamer(const Signature &sig, const Kind &kind)
403 return param_renamer(intersect(sig.params(), kind.params()), "Arg");
406 /* Signatures for unary operations.
407 * Functions have at least one tuple.
409 static Signature un_params = { { }, { { } } };
410 static Signature un_set = { { Domain }, { { Domain } } };
411 static Signature un_map = { { Domain, Range }, { { Domain, Range } } };
412 static std::vector<Signature> un_op = { un_params, un_set, un_map };
413 static std::vector<Signature> fn_un_op = { un_set, un_map };
415 /* Signatures for binary operations, with the second argument
416 * possibly referring to part of the first argument.
417 * Functions have at least one tuple.
419 static Signature bin_params = { { }, { { }, { } } };
420 static Signature bin_set = { { Domain }, { { Domain }, { Domain } } };
421 static Signature bin_map =
422 { { Domain, Range }, { { Domain, Range }, { Domain, Range } } };
423 static std::vector<Signature> bin_op = { bin_params, bin_set, bin_map };
424 static std::vector<Signature> fn_bin_op = { bin_set, bin_map };
425 static Signature bin_set_params = { { Domain }, { { Domain }, { } } };
426 static Signature bin_map_params =
427 { { Domain, Range }, { { Domain, Range }, { } } };
428 static Signature bin_map_domain =
429 { { Domain, Range }, { { Domain, Range }, { Domain } } };
430 static Signature bin_map_range =
431 { { Domain, Range }, { { Domain, Range }, { Range } } };
432 static Signature bin_map_domain_wrapped_domain =
433 { { { Domain, Domain2 }, Range },
434 { { { Domain, Domain2 }, Range }, { Domain } } };
435 static Signature bin_map_range_wrapped_domain =
436 { { Domain, { Range, Range2 } },
437 { { Domain, { Range, Range2 } }, { Range } } };
439 /* Signatures for binary operations, where the second argument
440 * is an identifier (with an anonymous tuple).
442 static Signature bin_params_anon = { { }, { { }, { Anonymous } } };
443 static Signature bin_set_anon = { { Domain }, { { Domain }, { Anonymous } } };
444 static Signature bin_map_anon =
445 { { Domain, Range }, { { Domain, Range }, { Anonymous } } };
446 static std::vector<Signature> bin_op_anon =
447 { bin_params_anon, bin_set_anon, bin_map_anon };
449 /* Signatures for ternary operations, where the last two arguments are integers.
451 static Signature ter_params_int_int =
452 { { }, { { }, { Integer }, { Integer } } };
453 static Signature ter_set_int_int =
454 { { Domain }, { { Domain }, { Integer }, { Integer } } };
455 static Signature ter_map_int_int =
456 { { Domain, Range }, { { Domain, Range }, { Integer }, { Integer } } };
457 static std::vector<Signature> ter_int_int =
458 { ter_params_int_int, ter_set_int_int, ter_map_int_int };
460 /* Signatures for ternary operations.
461 * Functions have at least one tuple.
463 static Signature ter_set =
464 { { Domain }, { { Domain }, { Domain }, { Domain } } };
465 static Signature ter_map =
466 { { Domain, Range },
467 { { Domain, Range }, { Domain, Range }, { Domain, Range } } };
468 static std::vector<Signature> fn_ter_op = { ter_set, ter_map };
470 /* Signatures for naming a leaf tuple using an identifier (with an anonymous
471 * tuple).
473 static Signature update_set = { { Domain2 }, { { Leaf }, { Anonymous } } };
474 static Signature update_domain =
475 { { Domain2, Range }, { { Leaf, Range }, { Anonymous } } };
476 static Signature update_range =
477 { { Domain, Range2 }, { { Domain, Leaf }, { Anonymous } } };
479 /* Signatures for the functions "min" and "max", which can be either
480 * unary or binary operations.
482 static std::vector<Signature> min_max = { un_set, bin_set, un_map, bin_map };
484 /* Signatures for adding an unnamed tuple to an object with zero or one tuple.
486 static Signature to_set = { { Domain }, { { }, { Integer } } };
487 static Signature add_range = { { Domain, Range }, { { Domain }, { Integer } } };
488 /* Signatures for adding a named tuple to an object with zero or one tuple.
490 static Signature to_set_named =
491 { { Domain }, { { }, { Anonymous }, { Integer } } };
492 static Signature add_range_named =
493 { { Domain, Range }, { { Domain }, { Anonymous }, { Integer } } };
495 /* Signatures for methods applying a map to a set, a function or
496 * part of a map.
498 static Signature set_forward = { { Range }, { { Domain }, { Domain, Range } } };
499 static Signature domain_forward =
500 { { Domain2, Range }, { { Domain, Range }, { Domain, Domain2 } } };
501 static Signature range_forward =
502 { { Domain, Range2 }, { { Domain, Range }, { Range, Range2 } } };
504 /* Signatures for methods plugging in a function into a set, a function or
505 * part of a map.
507 static Signature set_backward =
508 { { Domain2 }, { { Domain }, { Domain2, Domain } } };
509 static Signature domain_backward =
510 { { Domain2, Range }, { { Domain, Range }, { Domain2, Domain } } };
511 static Signature range_backward =
512 { { Domain, Range2 }, { { Domain, Range }, { Range2, Range } } };
513 static Signature domain_wrapped_domain_backward =
514 { { { Domain3, Domain2 }, Range },
515 { { { Domain, Domain2 }, Range }, { Domain3, Domain } } };
517 /* Signatures for methods binding a set, a function,
518 * or (part of) a map to parameters or an object of the same kind.
520 static Signature bind_set = { { }, { { Domain }, { Domain } } };
521 static Signature bind_domain = { { Range }, { { Domain, Range }, { Domain } } };
522 static Signature bind_range = { { Domain }, { { Domain, Range }, { Range } } };
523 static Signature bind_domain_wrapped_domain =
524 { { Range2, Range }, { { { Domain2, Range2 }, Range }, { Domain2 } } };
526 /* Signatures for functions that take a callback accepting
527 * objects of the same kind (but a different type).
529 * The return and argument kinds of the callback appear
530 * at the position of the callback.
532 static Signature each_params = { { Res }, { { }, { Res }, { } } };
533 static Signature each_set = { { Res }, { { Domain }, { Res }, { Domain } } };
534 static Signature each_map =
535 { { Res }, { { Domain, Range }, { Res }, { Domain, Range } } };
536 static std::vector<Signature> each = { each_params, each_set, each_map };
538 /* Signatures for isl_*_list_foreach_scc.
540 * The first callback takes two elements with the same tuple kinds.
541 * The second callback takes a list with the same tuple kinds.
543 static Signature each_scc_params =
544 { { Res }, { { }, { Res }, { }, { }, { Res }, { } } };
545 static Signature each_scc_set =
546 { { Res }, { { Domain },
547 { Res }, { Domain }, { Domain },
548 { Res }, { Domain } } };
549 static Signature each_scc_map =
550 { { Res }, { { Domain, Range },
551 { Res }, { Domain, Range }, { Domain, Range },
552 { Res }, { Domain, Range } } };
553 static std::vector<Signature> each_scc =
554 { each_scc_params, each_scc_set, each_scc_map };
556 /* Signature for creating a map from a range,
557 * where the domain is given by an extra argument.
559 static Signature map_from_range_and_domain =
560 { { Domain, Range }, { { Range }, { Domain } } };
562 /* Signature for creating a map from a domain,
563 * where the range is given by an extra argument.
565 static Signature map_from_domain_and_range =
566 { { Domain, Range }, { { Domain }, { Range } } };
568 /* Signatures for creating an anonymous set from a parameter set
569 * or a map from a domain, where the range is anonymous.
571 static Signature anonymous_set_from_params = { { Anonymous }, { { } } };
572 static Signature anonymous_map_from_domain =
573 { { Domain, Anonymous }, { { Domain } } };
574 static std::vector<Signature> anonymous_from_domain =
575 { anonymous_set_from_params, anonymous_map_from_domain };
577 /* Signature for creating a set from a parameter set,
578 * where the domain is given by an extra argument.
580 static Signature set_from_params = { { Domain }, { { }, { Domain } } };
582 /* Signatures for creating an anonymous function from a domain,
583 * where the second argument is an identifier (with an anonymous tuple).
585 static Signature anonymous_set_from_params_bin_anon =
586 { { Anonymous }, { { }, { Anonymous } } };
587 static Signature anonymous_map_from_domain_bin_anon =
588 { { Domain, Anonymous }, { { Domain }, { Anonymous } } };
589 static std::vector<Signature> anonymous_from_domain_bin_anon = {
590 anonymous_set_from_params_bin_anon,
591 anonymous_map_from_domain_bin_anon
594 /* Signature for creating a map from a domain,
595 * where the range tuple is equal to the domain tuple.
597 static Signature set_to_map = { { Domain, Domain }, { { Domain } } };
599 /* Signatures for obtaining the range or the domain of a map.
600 * In case of a transformation, the domain and range are the same.
602 static Signature domain = { { Domain }, { { Domain, Range } } };
603 static Signature range = { { Range }, { { Domain, Range } } };
604 static Signature transformation_domain = { { Domain }, { { Domain, Domain } } };
606 /* Signatures for obtaining the parameter domain of a set or map.
608 static Signature set_params = { { }, { { Domain } } };
609 static Signature map_params = { { }, { { Domain, Range } } };
611 /* Signatures for obtaining the domain of a function.
613 static std::vector<Signature> fn_domain = { domain, set_params };
615 /* Signatures for interchanging (wrapped) domain and range.
617 static Signature map_reverse = { { Range, Domain }, { { Domain, Range } } };
618 static Signature map_range_reverse =
619 { { Domain, { Range2, Range } }, { { Domain, { Range, Range2 } } } };
621 /* Signatures for constructing products.
623 static Signature set_product =
624 { { { Domain, Range } }, { { Domain }, { Range } } };
625 static Signature map_product =
626 { { { Domain, Domain2 }, { Range, Range2 } },
627 { { Domain, Range }, { Domain2, Range2 } } };
628 static Signature domain_product =
629 { { { Domain, Domain2 }, Range },
630 { { Domain, Range }, { Domain2, Range } } };
631 static Signature range_product =
632 { { Domain, { Range, Range2 } },
633 { { Domain, Range }, { Domain, Range2 } } };
635 /* Signatures for obtaining factors from a product.
637 static Signature domain_factor_domain =
638 { { Domain, Range }, { { { Domain, Domain2 }, Range } } };
639 static Signature domain_factor_range =
640 { { Domain2, Range }, { { { Domain, Domain2 }, Range } } };
641 static Signature range_factor_domain =
642 { { Domain, Range }, { { Domain, { Range, Range2 } } } };
643 static Signature range_factor_range =
644 { { Domain, Range2 }, { { Domain, { Range, Range2 } } } };
646 /* Signatures for (un)currying.
648 static Signature curry =
649 { { Domain, { Range, Range2 } },
650 { { { Domain, Range }, Range2 } } };
651 static Signature uncurry =
652 { { { Domain, Range }, Range2 },
653 { { Domain, { Range, Range2 } } } };
655 /* Signatures for (un)wrapping.
657 static Signature wrap = { { { Domain, Range } }, { { Domain, Range } } };
658 static Signature unwrap = { { Domain, Range }, { { { Domain, Range } } } };
660 /* Signatures for constructing objects that map to the domain or range
661 * of a map.
663 static Signature domain_map =
664 { { { Domain, Range }, Domain }, { { Domain, Range } } };
665 static Signature range_map =
666 { { { Domain, Range }, Range }, { { Domain, Range } } };
668 /* Signature for applying a comparison between the domain and the range
669 * of a map.
671 static Signature map_cmp =
672 { { Domain, Domain }, { { Domain, Domain }, { Domain, Range } } };
674 /* Signature for creating a set corresponding to the domains
675 * of two functions.
677 static Signature set_join =
678 { { Domain }, { { Domain, Range }, { Domain, Range } } };
680 /* Signatures for flattening the domain or range of a map,
681 * replacing it with either an anonymous tuple or a tuple with a given name.
683 static Signature anonymize_nested_domain =
684 { { Anonymous, Range2 }, { { { Domain, Range }, Range2 } } };
685 static Signature anonymize_nested_range =
686 { { Domain, Anonymous }, { { Domain, { Range, Range2 } } } };
687 static Signature replace_nested_domain =
688 { { Domain2, Range2 },
689 { { { Domain, Range }, Range2 }, { Anonymous} } };
690 static Signature replace_nested_range =
691 { { Domain, Range3 }, { { Domain, { Range, Range2 } }, { Anonymous} } };
692 static std::vector<Signature> flatten_domain =
693 { anonymize_nested_domain, replace_nested_domain };
694 static std::vector<Signature> flatten_range =
695 { anonymize_nested_range, replace_nested_range };
697 /* Signatures for "set_at" methods.
699 static Signature set_at_set =
700 { { Domain }, { { Domain }, { Integer }, { Anonymous } } };
701 static Signature set_at_map =
702 { { Domain, Range },
703 { { Domain, Range }, { Integer }, { Domain, Anonymous } } };
704 static std::vector<Signature> set_at = { set_at_set, set_at_map };
706 /* Signatures for "list" methods, extracting a list
707 * from a multi-expression.
709 static Signature to_list_set = { { Anonymous }, { { Domain } } };
710 static Signature to_list_map = { { Domain, Anonymous }, { { Domain, Range } } };
712 /* Signatures for functions constructing an object from only an isl::ctx.
714 static Signature ctx_params = { { }, { { Ctx } } };
715 static Signature ctx_set = { { Domain }, { { Ctx } } };
716 static Signature ctx_map = { { Domain, Range }, { { Ctx } } };
718 /* Helper structure for sorting the keys of static_methods and
719 * special_member_methods such that the larger keys appear first.
720 * In particular, a key should appear before any key that appears
721 * as a substring in the key.
722 * Note that this sorting is currently only important
723 * for special_member_methods.
725 struct larger_infix {
726 bool operator()(const std::string &x, const std::string &y) const {
727 if (x.length() > y. length())
728 return true;
729 return x < y;
733 /* A map from part of a type name to a sequence of signatures.
735 typedef std::map<std::string, std::vector<Signature>, larger_infix> infix_map;
737 /* A map from a method name to a map from part of a type name
738 * to a sequence of signatures.
740 typedef std::map<std::string, infix_map> infix_map_map;
742 /* Signatures for static methods.
744 * The "unit" static method is only available in a 0-tuple space.
746 * The "empty" static method creates union objects with the relevant
747 * number of tuples.
749 * The "universe" static methods create objects from the corresponding spaces.
751 static const infix_map_map static_methods {
752 { "unit",
753 { { "space", { ctx_params } } }
755 { "empty",
757 { "union_set", { ctx_params, ctx_set } },
758 { "union_map", { ctx_map } },
759 { "union_pw_multi_aff", { ctx_set, ctx_map } },
762 { "universe",
764 { "set", { un_params, un_set } },
765 { "map", { un_map } },
770 /* Signatures for unary operations that either take something in a set space
771 * and return something in the same space or take something in a map space
772 * and return something in the range of that space.
774 static std::vector<Signature> range_op = { un_set, range };
776 /* Signatures for binary operations where the second argument
777 * is a (multi-)value.
779 static std::vector<Signature> bin_val = { bin_set, bin_map_range };
781 /* The (default) signatures for methods with a given name.
782 * Some of these are overridden by special_member_methods.
784 static const std::unordered_map<std::string, std::vector<Signature>>
785 member_methods {
786 { "add", bin_op },
787 { "add_constant", bin_val },
788 { "add_named_tuple", { to_set_named, add_range_named } },
789 { "add_param", bin_op_anon },
790 { "add_unnamed_tuple", { to_set, add_range } },
791 { "apply", { set_forward, range_forward } },
792 { "apply_domain", { domain_forward } },
793 { "apply_range", { range_forward } },
794 { "as", un_op },
795 { "as_map", { un_map } },
796 { "as_union_map", { un_map } },
797 { "as_set", { un_set } },
798 { "bind", { bind_set, bind_range } },
799 { "bind_domain", { bind_domain } },
800 { "bind_range", { bind_range } },
801 { "bind_domain_wrapped_domain",
802 { bind_domain_wrapped_domain } },
803 { "ceil", fn_un_op },
804 { "coalesce", un_op },
805 { "cond", fn_ter_op },
806 { "constant", range_op },
807 { "curry", { curry } },
808 { "deltas", { transformation_domain } },
809 { "detect_equalities", un_op },
810 { "domain", fn_domain },
811 { "domain_factor_domain",
812 { domain_factor_domain } },
813 { "domain_factor_range",
814 { domain_factor_range } },
815 { "domain_map", { domain_map } },
816 { "domain_product", { domain_product } },
817 { "drop", ter_int_int },
818 { "eq_at", { map_cmp } },
819 { "every", each },
820 { "extract", bin_op },
821 { "flatten_domain", flatten_domain },
822 { "flatten_range", flatten_range },
823 { "floor", fn_un_op },
824 { "foreach", each },
825 { "foreach_scc", each_scc },
826 { "ge_set", { set_join } },
827 { "gt_set", { set_join } },
828 { "gist", bin_op },
829 { "gist_domain", { bin_map_domain } },
830 { "gist_params", { bin_set_params, bin_map_params } },
831 { "identity", { un_map, set_to_map } },
832 { "identity_on_domain", { set_to_map } },
833 { "indicator_function", anonymous_from_domain },
834 { "insert_domain", { map_from_range_and_domain } },
835 { "intersect", bin_op },
836 { "intersect_params", { bin_set_params, bin_map_params } },
837 { "intersect_domain", { bin_map_domain } },
838 { "intersect_domain_wrapped_domain",
839 { bin_map_domain_wrapped_domain } },
840 { "intersect_range", { bin_map_range } },
841 { "intersect_range_wrapped_domain",
842 { bin_map_range_wrapped_domain } },
843 { "lattice_tile", { un_set } },
844 { "le_set", { set_join } },
845 { "lt_set", { set_join } },
846 { "lex_le_at", { map_cmp } },
847 { "lex_lt_at", { map_cmp } },
848 { "lex_ge_at", { map_cmp } },
849 { "lex_gt_at", { map_cmp } },
850 { "lexmin", fn_un_op },
851 { "lexmax", fn_un_op },
852 { "list", { to_list_set, to_list_map } },
853 { "lower_bound", fn_bin_op },
854 { "map_from_set", { set_to_map } },
855 { "max", min_max },
856 { "max_val", range_op },
857 { "max_multi_val", range_op },
858 { "min", min_max },
859 { "min_val", range_op },
860 { "min_multi_val", range_op },
861 { "mod", bin_val },
862 { "on_domain", { map_from_domain_and_range } },
863 { "neg", fn_un_op },
864 { "offset", fn_un_op },
865 { "param_on_domain", anonymous_from_domain_bin_anon },
866 { "params", { set_params, map_params } },
867 { "plain_multi_val_if_fixed",
868 { un_set } },
869 { "preimage", { set_backward } },
870 { "preimage_domain", { domain_backward } },
871 { "preimage_domain_wrapped_domain",
872 { domain_wrapped_domain_backward } },
873 { "preimage_range", { range_backward } },
874 { "product", { set_product, map_product } },
875 { "project_out_param", bin_op_anon },
876 { "project_out_all_params",
877 un_op },
878 { "pullback", { domain_backward, bind_domain } },
879 { "range", { range } },
880 { "range_factor_domain",
881 { range_factor_domain } },
882 { "range_factor_range", { range_factor_range } },
883 { "range_lattice_tile", { un_map } },
884 { "range_map", { range_map } },
885 { "range_product", { range_product } },
886 { "range_reverse", { map_range_reverse } },
887 { "range_simple_fixed_box_hull",
888 { un_map } },
889 { "reverse", { map_reverse } },
890 { "scale", bin_val },
891 { "scale_down", bin_val },
892 { "set_at", set_at },
893 { "set_domain_tuple", { update_domain } },
894 { "set_range_tuple", { update_set, update_range } },
895 { "simple_fixed_box_hull",
896 { un_set } },
897 { "sub", fn_bin_op },
898 { "subtract", bin_op },
899 { "subtract_domain", { bin_map_domain } },
900 { "subtract_range", { bin_map_range } },
901 { "translation", { set_to_map } },
902 { "to", un_op },
903 { "unbind_params", { set_from_params } },
904 { "unbind_params_insert_domain",
905 { map_from_range_and_domain } },
906 { "uncurry", { uncurry } },
907 { "union_add", fn_bin_op },
908 { "unite", bin_op },
909 { "universe", un_op },
910 { "unwrap", { unwrap } },
911 { "upper_bound", fn_bin_op },
912 { "wrap", { wrap } },
913 { "zero", fn_un_op },
914 { "zero_on_domain", { anonymous_map_from_domain } },
917 /* Signatures for methods of types containing a given substring
918 * that override the default signatures, where larger substrings
919 * appear first.
921 * In particular, "gist" is usually a regular binary operation,
922 * but for any type derived from "aff", the argument refers
923 * to the domain of the function.
925 * The "size" method can usually simply be inherited from
926 * the corresponding plain C++ type, but for a "fixed_box",
927 * the size lives in the space of the box or its range.
929 * The "space" method is usually a regular unary operation
930 * that returns the single space of the elements in the object,
931 * with the same number of tuples.
932 * However, a "union" object may contain elements from many spaces and
933 * therefore its space only refers to the symbolic constants and
934 * has zero tuples, except if it is also a "multi_union" object,
935 * in which case it has a fixed range space and the space of the object
936 * has a single tuple.
937 * Note that since "space' is also the name of a template class,
938 * the default space method is handled by print_type_named_member_method.
940 static const infix_map_map special_member_methods {
941 { "gist",
942 { { "aff", { bin_set_params, bin_map_domain } } }
944 { "size",
945 { { "fixed_box", range_op } },
947 { "space",
949 { "multi_union", range_op },
950 { "union", { un_params, set_params, map_params } },
955 /* Generic kinds for objects with zero, one or two tuples,
956 * the last of which may be anonymous.
958 static Kind params{};
959 static Kind set_type{ Domain };
960 static Kind set_anon{ Anonymous };
961 static Kind map_type{ Domain, Range };
962 static Kind map_anon{ Domain, Anonymous };
964 /* The initial sequence of specialization kinds for base types.
965 * The specialization kinds for other types are derived
966 * from the corresponding base types.
968 * In particular, this sequence specifies how many tuples
969 * a given type can have and whether it is anonymous.
971 * "space" can have any number of tuples.
972 * "set" and "point" can have zero or one tuple.
973 * "map" can only have two tuples.
974 * "aff" can have one or two tuples, the last of which is anonymous.
975 * "fixed_box" can represent a (proper) set) or a map.
976 * "val" and "id" are treated as anonymous sets so that
977 * they can form the basis of "multi_val" and "multi_id".
979 static const std::unordered_map<std::string, std::vector<Kind>> base_kinds {
980 { "space", { params, set_type, map_type } },
981 { "set", { params, set_type } },
982 { "point", { params, set_type } },
983 { "map", { map_type } },
984 { "aff", { set_anon, map_anon } },
985 { "fixed_box", { set_type, map_type } },
986 { "val", { set_anon } },
987 { "id", { set_anon } },
990 /* Prefixes introduced by type constructors.
992 static const std::unordered_set<std::string> type_prefixes {
993 "basic",
994 "multi",
995 "pw",
996 "union",
999 /* If "type" has a "_list" suffix, then return "type" with this suffix removed.
1000 * Otherwise, simply return "type".
1002 static std::string drop_list(const std::string &type)
1004 size_t pos = type.rfind('_');
1006 if (pos == std::string::npos)
1007 return type;
1008 if (type.substr(pos + 1) == "list")
1009 return type.substr(0, pos);
1010 return type;
1013 /* Given the name of a plain C++ type, return the base type
1014 * from which it was derived using type constructors.
1016 * In particular, drop any "list" suffix and
1017 * drop any prefixes from type_prefixes, stopping
1018 * as soon as a base type is found for which kinds have been registered
1019 * in base_kinds.
1021 static std::string base_type(const std::string &type)
1023 auto base = type;
1024 size_t pos;
1026 base = drop_list(base);
1027 while (base_kinds.count(base) == 0 &&
1028 (pos = base.find('_')) != std::string::npos &&
1029 type_prefixes.count(base.substr(0, pos)) != 0) {
1030 base = base.substr(pos + 1);
1033 return base;
1036 /* A mapping from anonymous kinds to named kinds.
1038 static std::map<Kind, Kind> anon_to_named {
1039 { set_anon, set_type },
1040 { map_anon, map_type },
1043 /* Given a sequence of anonymous kinds, replace them
1044 * by the corresponding named kinds.
1046 static std::vector<Kind> add_name(const std::vector<Kind> &tuples)
1048 std::vector<Kind> named;
1050 for (const auto &tuple : tuples)
1051 named.emplace_back(anon_to_named.at(tuple));
1053 return named;
1056 /* Look up the (initial) specializations of the class called "name".
1057 * If no specializations have been defined, then return an empty vector.
1059 * Start from the initial specializations of the corresponding base type.
1060 * If this template class is a multi-expression, then it was derived
1061 * from an anonymous function type. Replace the final Anonymous
1062 * tuple kind by a placeholder in this case.
1064 static std::vector<Kind> lookup_class_tuples(const std::string &name)
1066 std::string base = base_type(name);
1068 if (base_kinds.count(base) == 0)
1069 return { };
1070 if (name.find("multi_") != std::string::npos)
1071 return add_name(base_kinds.at(base));
1072 return base_kinds.at(base);
1075 /* Add a template class called "name", of which the methods are described
1076 * by "clazz" and the initial specializations by "class_tuples".
1078 void template_cpp_generator::add_template_class(const isl_class &clazz,
1079 const std::string &name, const std::vector<Kind> &class_tuples)
1081 auto isl_namespace = cpp_type_printer().isl_namespace();
1082 auto super = isl_namespace + name;
1084 template_classes.emplace(name,
1085 template_class{name, super, clazz, class_tuples});
1088 /* Construct a templated C++ bindings generator from
1089 * the exported types and functions and the set of all declared functions.
1091 * On top of the initialization of the shared parts
1092 * of C++ bindings generators, add a template class
1093 * for each plain C++ class for which template kinds
1094 * have been defined.
1095 * In particular, determine the base type from which the plain C++ class
1096 * was derived using type constructors and check if any template kinds
1097 * have been registered for this base type.
1099 template_cpp_generator::template_cpp_generator(clang::SourceManager &SM,
1100 std::set<clang::RecordDecl *> &exported_types,
1101 std::set<clang::FunctionDecl *> exported_functions,
1102 std::set<clang::FunctionDecl *> functions) :
1103 cpp_generator(SM, exported_types, exported_functions,
1104 functions)
1106 for (const auto &kvp : classes) {
1107 const auto &clazz = kvp.second;
1108 std::string name = type2cpp(clazz);
1109 const auto &class_tuples = lookup_class_tuples(name);
1111 if (class_tuples.empty())
1112 continue;
1113 add_template_class(clazz, name, class_tuples);
1117 /* Call "fn" on each template class.
1119 void template_cpp_generator::foreach_template_class(
1120 const std::function<void(const template_class &)> &fn) const
1122 for (const auto &kvp : template_classes)
1123 fn(kvp.second);
1126 /* Print forward declarations for all template classes to "os".
1128 * For template classes that represent an anonymous function
1129 * that can also have a domain tuple, provide an <name>_on alias
1130 * that adds the fixed Anonymous tuple kind.
1132 void template_cpp_generator::print_forward_declarations(std::ostream &os)
1134 foreach_template_class([&os] (const template_class &template_class) {
1135 auto name = template_class.class_name;
1137 os << "\n";
1138 os << "template <typename...>\n";
1139 os << "struct " << name << ";\n";
1141 if (!template_class.is_anon())
1142 return;
1143 if (template_class.is_anon_set())
1144 return;
1146 os << "\n";
1147 os << "template <typename...Ts>\n";
1148 os << "using " << name << "_on = "
1149 << name << "<Ts..., Anonymous>;\n";
1153 /* Print friend declarations for all template classes to "os".
1155 void template_cpp_generator::print_friends(std::ostream &os)
1157 foreach_template_class([&os] (const template_class &template_class) {
1158 os << " template <typename...>\n";
1159 os << " friend struct " << template_class.class_name << ";\n";
1163 /* Print a template parameter or argument.
1164 * In case of a std::string, it's a template parameter
1165 * that needs to be declared.
1167 static void print_template_arg(std::ostream &os, const std::string &arg)
1169 os << "typename " << arg;
1172 /* Print a template parameter or argument.
1173 * In case of a TupleKindPtr, it's a template argument.
1175 static void print_template_arg(std::ostream &os, const TupleKindPtr &kind)
1177 os << kind->to_string();
1180 /* Print a sequence of template parameters (std::string) or
1181 * arguments (TupleKindPtr) "args", without the enclosing angle brackets.
1183 template <typename List>
1184 static void print_pure_template_args(std::ostream &os, const List &args)
1186 for (size_t i = 0; i < args.size(); ++i) {
1187 if (i != 0)
1188 os << ", ";
1189 print_template_arg(os, args[i]);
1193 /* Print a sequence of template parameters (std::string) or
1194 * arguments (TupleKindPtr) "args".
1196 template <typename List>
1197 static void print_template_args(std::ostream &os, const List &args)
1199 os << "<";
1200 print_pure_template_args(os, args);
1201 os << ">";
1204 /* Print a declaration of the template parameters "params".
1206 static void print_template(std::ostream &os,
1207 const std::vector<std::string> &params)
1209 os << "template ";
1210 print_template_args(os, params);
1211 os << "\n";
1214 /* Print a declaration of the template parameters "params",
1215 * if there are any.
1217 static void print_non_empty_template(std::ostream &os,
1218 const std::vector<std::string> &params)
1220 if (params.size() > 0)
1221 print_template(os, params);
1224 /* Print a bare template type, i.e., without namespace,
1225 * consisting of the type "type" and the kind "kind" to "os".
1227 * In particular, print "type" followed by the template arguments
1228 * as specified by "kind".
1230 static void print_bare_template_type(std::ostream &os, const std::string &type,
1231 const Kind &kind)
1233 os << type;
1234 print_template_args(os, kind);
1237 /* A specific instance of "template_class", with tuple kinds given by "kind".
1239 struct specialization {
1240 struct template_class &template_class;
1241 Kind kind;
1243 const std::string &base_name() const;
1244 const std::string &class_name() const;
1247 /* The name of the plain C++ interface class
1248 * from which this template class (instance) derives.
1250 const std::string &specialization::base_name() const
1252 return template_class.super_name;
1255 /* The name of the template class.
1257 const std::string &specialization::class_name() const
1259 return template_class.class_name;
1262 /* Helper class for printing the specializations of template classes
1263 * that is used to print both the class declarations and the class definitions.
1265 * "os" is the stream onto which the classes should be printed.
1266 * "generator" is the templated C++ interface generator printing the classes.
1268 struct specialization_printer {
1269 specialization_printer(std::ostream &os,
1270 template_cpp_generator &generator) :
1271 os(os), generator(generator) {}
1273 virtual void print_class(const specialization &instance) const = 0;
1274 void print_classes() const;
1276 std::ostream &os;
1277 template_cpp_generator &generator;
1280 /* Print all specializations of all template classes.
1282 * Each class has a predefined set of initial specializations,
1283 * but while such a specialization is being printed,
1284 * the need for other specializations may arise and
1285 * these are added at the end of the list of specializations.
1286 * That is, class_tuples.size() may change during the execution
1287 * of the loop.
1289 * For each specialization of a template class, call
1290 * the print_class virtual method.
1292 void specialization_printer::print_classes() const
1294 for (auto &kvp : generator.template_classes) {
1295 auto &template_class = kvp.second;
1296 const auto &class_tuples = template_class.class_tuples;
1298 for (size_t i = 0; i < class_tuples.size(); ++i)
1299 print_class({ template_class, class_tuples[i] });
1303 /* A helper class for printing method declarations and definitions
1304 * of a template class specialization.
1306 * "instance" is the template class specialization for which methods
1307 * are printed.
1308 * "generator" is the templated C++ interface generator printing the classes.
1310 struct template_cpp_generator::class_printer :
1311 public cpp_generator::class_printer {
1312 class_printer(const specialization &instance,
1313 const specialization_printer &instance_printer,
1314 bool is_declaration);
1316 void print_return_type(const Method &method, const Kind &kind)
1317 const;
1318 void print_method_template_arguments(const Signature &sig);
1319 void print_method_header(const Method &method, const Signature &sig);
1320 bool print_special_method(const Method &method,
1321 const infix_map_map &special_methods);
1322 void print_static_method(const Method &method);
1323 void print_constructor(const Method &method);
1324 bool is_return_kind(const Method &method, const Kind &return_kind);
1325 void add_specialization(const Kind &kind);
1326 bool print_matching_method(const Method &method, const Signature &sig,
1327 const Kind &match_arg);
1328 bool print_matching_method(const Method &method, const Signature &sig);
1329 void print_matching_method(const Method &method,
1330 const std::vector<Signature> &signatures);
1331 void print_at_method(const Method &method);
1332 bool print_special_member_method(const Method &method);
1333 bool print_type_named_member_method(const Method &method);
1334 bool print_member_method_with_name(const Method &method,
1335 const std::string &name);
1336 void print_member_method(const Method &method);
1337 void print_any_method(const Method &method);
1338 virtual void print_method(const Method &method) override;
1339 virtual void print_method(const ConversionMethod &method) override;
1340 virtual void print_method_sig(const Method &method,
1341 const Signature &sig, bool deleted) = 0;
1342 virtual bool want_descendent_overloads(const function_set &methods)
1343 override;
1344 void print_all_methods();
1346 const specialization &instance;
1347 template_cpp_generator &generator;
1350 /* Construct a class_printer from the template class specialization
1351 * for which methods are printed and
1352 * the printer of the template class.
1354 * The template class printer is only used to obtain the output stream and
1355 * the templated C++ interface generator printing the classes.
1357 template_cpp_generator::class_printer::class_printer(
1358 const specialization &instance,
1359 const specialization_printer &instance_printer,
1360 bool is_declaration) :
1361 cpp_generator::class_printer(instance_printer.os,
1362 instance.template_class.clazz, instance_printer.generator,
1363 is_declaration),
1364 instance(instance), generator(instance_printer.generator)
1368 /* An abstract template type printer, where the way of obtaining
1369 * the argument kind is specified by the subclasses.
1371 struct template_cpp_type_printer : public cpp_type_printer {
1372 template_cpp_type_printer() {}
1374 std::string base(const std::string &type, const Kind &kind) const;
1375 virtual Kind kind(int arg) const = 0;
1376 virtual std::string qualified(int arg, const std::string &cpp_type)
1377 const override;
1380 /* Print a template type consisting of the type "type" and the kind "kind",
1381 * including the "typed::" namespace specifier.
1383 std::string template_cpp_type_printer::base(const std::string &type,
1384 const Kind &kind) const
1386 std::ostringstream ss;
1388 ss << "typed::";
1389 print_bare_template_type(ss, type, kind);
1390 return ss.str();
1393 /* Return the qualified form of the given C++ isl type name appearing
1394 * in argument position "arg" (-1 for return type).
1396 * isl::ctx is not templated, so if "cpp_type" is "ctx",
1397 * then print a non-templated version.
1398 * Otherwise, look up the kind of the argument and print
1399 * the corresponding template type.
1401 std::string template_cpp_type_printer::qualified(int arg,
1402 const std::string &cpp_type) const
1404 if (cpp_type == "ctx")
1405 return cpp_type_printer::qualified(arg, cpp_type);
1407 return base(cpp_type, kind(arg));
1410 /* A template type printer for printing types with a fixed kind.
1412 * "fixed_kind" is the fixed kind.
1414 struct template_cpp_kind_type_printer : public template_cpp_type_printer {
1415 template_cpp_kind_type_printer(const Kind &kind) :
1416 template_cpp_type_printer(), fixed_kind(kind) {}
1418 virtual Kind kind(int arg) const override;
1420 const Kind &fixed_kind;
1423 /* Return the kind of the argument at position "arg",
1424 * where position -1 refers to the return type.
1426 * Always use the fixed kind.
1428 Kind template_cpp_kind_type_printer::kind(int arg) const
1430 return fixed_kind;
1433 /* A template type printer for printing a method with a given signature.
1435 * "sig" is the signature of the method being printed.
1437 struct template_cpp_arg_type_printer : public template_cpp_type_printer {
1438 template_cpp_arg_type_printer(const Signature &sig) :
1439 template_cpp_type_printer(), sig(sig) {}
1441 virtual Kind kind(int arg) const override;
1443 const Signature &sig;
1446 /* Return the kind of the argument at position "arg",
1447 * where position -1 refers to the return type.
1449 * Look up the kind in the signature.
1451 Kind template_cpp_arg_type_printer::kind(int arg) const
1453 int n_args = sig.args.size();
1455 if (arg < 0)
1456 return sig.ret;
1457 if (arg >= n_args)
1458 generator::die("argument out of bounds");
1459 return sig.args[arg];
1462 /* A template type printer for printing a method with a given signature
1463 * as part of a template class specialization of a given kind.
1465 * "class_kind" is the template class specialization kind.
1467 struct template_method_type_printer : public template_cpp_arg_type_printer {
1468 template_method_type_printer(const Signature &sig,
1469 const Kind &class_kind) :
1470 template_cpp_arg_type_printer(sig),
1471 class_kind(class_kind) {}
1473 virtual std::string class_type(const std::string &cpp_name)
1474 const override;
1476 const Kind &class_kind;
1479 /* Print the class type "cpp_name".
1481 * Print the templated version using the template class specialization kind.
1483 std::string template_method_type_printer::class_type(
1484 const std::string &cpp_name) const
1486 return base(cpp_name, class_kind);
1489 /* Print the templated return type of "method" of the kind "return_kind".
1491 * Construct a type printer with "return_kind" as fixed kind and
1492 * use it to print the return type.
1494 void template_cpp_generator::class_printer::print_return_type(
1495 const Method &method, const Kind &return_kind) const
1497 template_cpp_kind_type_printer printer(return_kind);
1499 os << printer.return_type(method);
1502 /* Remove the initial "n" elements from "v".
1504 template <typename T>
1505 static void drop_initial(std::vector<T> &v, size_t n)
1507 v.erase(v.begin(), v.begin() + n);
1510 /* If a method with signature "sig" requires additional template parameters
1511 * compared to those of the class, then print a declaration for them.
1512 * If this->declarations is set, then this will be part of a method declaration,
1513 * requiring extra indentation.
1515 * Construct the sequence of all required template parameters
1516 * with those of the template class appearing first.
1517 * If this sequence has any parameters not induced by the template class itself,
1518 * then print a declaration for these extra parameters.
1520 void template_cpp_generator::class_printer::print_method_template_arguments(
1521 const Signature &sig)
1523 std::vector<std::string> class_params, method_params;
1525 class_params = instance.kind.params();
1526 method_params = class_params;
1527 combine(method_params, sig.params());
1529 if (class_params.size() == method_params.size())
1530 return;
1532 drop_initial(method_params, class_params.size());
1534 if (declarations)
1535 os << " ";
1536 print_template(os, method_params);
1539 /* Print the header for "method" with signature "sig".
1541 * First print any additional template parameters that may be required and
1542 * then print a regular method header, using a template type printer.
1544 void template_cpp_generator::class_printer::print_method_header(
1545 const Method &method, const Signature &sig)
1547 template_method_type_printer type_printer(sig, instance.kind);
1549 print_method_template_arguments(sig);
1550 cpp_generator::class_printer::print_method_header(method,
1551 type_printer);
1554 /* Given a group of methods with the same name,
1555 * should extra methods be added that take as arguments
1556 * those types that can be converted to the original argument type
1557 * through a unary constructor?
1559 * Since type deduction does not consider implicit conversions,
1560 * these extra methods should always be printed.
1562 bool template_cpp_generator::class_printer::want_descendent_overloads(
1563 const function_set &methods)
1565 return true;
1568 /* Print all constructors and methods that forward
1569 * to the corresponding methods in the plain C++ interface class.
1571 void template_cpp_generator::class_printer::print_all_methods()
1573 print_constructors();
1574 print_methods();
1577 /* A helper class for printing method declarations
1578 * of a template class specialization.
1580 struct template_cpp_generator::method_decl_printer :
1581 public template_cpp_generator::class_printer {
1582 method_decl_printer(const specialization &instance,
1583 const struct specialization_printer &instance_printer) :
1584 class_printer(instance, instance_printer, true) {}
1586 virtual void print_method_sig(const Method &method,
1587 const Signature &sig, bool deleted) override;
1588 virtual void print_get_method(FunctionDecl *fd) override;
1591 /* Print a declaration of the method "method" with signature "sig".
1592 * Mark is "delete" if "deleted" is set.
1594 void template_cpp_generator::method_decl_printer::print_method_sig(
1595 const Method &method, const Signature &sig, bool deleted)
1597 print_method_header(method, sig);
1598 if (deleted)
1599 os << " = delete";
1600 os << ";\n";
1603 /* Return the total number of arguments in the signature for "method",
1604 * taking into account any possible callback arguments.
1606 * In particular, if the method has a callback argument,
1607 * then the return kind of the callback appears at the position
1608 * of the callback and the kinds of the arguments (except
1609 * the user pointer argument) appear in the following positions.
1610 * The user pointer argument that follows the callback argument
1611 * is also removed.
1613 static int total_params(const Method &method)
1615 int n = method.num_params();
1617 for (const auto &callback : method.callbacks) {
1618 auto callback_type = callback->getType();
1619 auto proto = generator::extract_prototype(callback_type);
1621 n += proto->getNumArgs() - 1;
1622 n -= 1;
1625 return n;
1628 /* Return a signature for "method" that matches "instance".
1630 static Signature instance_sig(const Method &method,
1631 const specialization &instance)
1633 std::vector<Kind> args(total_params(method));
1635 args[0] = instance.kind;
1636 return { instance.kind, args };
1639 /* Print a declaration for the "get" method "fd",
1640 * using a name that includes the "get_" prefix.
1642 * These methods are only included in the plain interface.
1643 * Explicitly delete them from the templated interface.
1645 void template_cpp_generator::method_decl_printer::print_get_method(
1646 FunctionDecl *fd)
1648 Method method(clazz, fd, clazz.base_method_name(fd));
1650 print_method_sig(method, instance_sig(method, instance), true);
1653 /* A helper class for printing method definitions
1654 * of a template class specialization.
1656 struct template_cpp_generator::method_impl_printer :
1657 public template_cpp_generator::class_printer {
1658 method_impl_printer(const specialization &instance,
1659 const struct specialization_printer &instance_printer) :
1660 class_printer(instance, instance_printer, false) {}
1662 void print_callback_method_body(const Method &method,
1663 const Signature &sig);
1664 void print_method_body(const Method &method, const Signature &sig);
1665 void print_constructor_body(const Method &method, const Signature &sig);
1666 virtual void print_method_sig(const Method &method,
1667 const Signature &sig, bool deleted) override;
1668 virtual void print_get_method(FunctionDecl *fd) override;
1671 /* Print a definition of the constructor "method" with signature "sig".
1673 * Simply pass all arguments to the constructor of the corresponding
1674 * plain type.
1676 void template_cpp_generator::method_impl_printer::print_constructor_body(
1677 const Method &method, const Signature &sig)
1679 const auto &base_name = instance.base_name();
1681 os << " : " << base_name;
1682 method.print_cpp_arg_list(os, [&] (int i, int arg) {
1683 os << method.fd->getParamDecl(i)->getName().str();
1685 os << "\n";
1687 os << "{\n";
1688 os << "}\n";
1691 /* Print the arguments of the callback function "callback" to "os",
1692 * calling "print_arg" with the type and the name of the arguments,
1693 * where the type is obtained from "type_printer" with argument positions
1694 * shifted by "shift".
1695 * None of the arguments should be skipped.
1697 static void print_callback_args(std::ostream &os,
1698 const FunctionProtoType *callback, const cpp_type_printer &type_printer,
1699 int shift,
1700 const std::function<void(const std::string &type,
1701 const std::string &name)> &print_arg)
1703 auto n_arg = callback->getNumArgs() - 1;
1705 Method::print_arg_list(os, 0, n_arg, [&] (int i) {
1706 auto type = callback->getArgType(i);
1707 auto name = "arg" + std::to_string(i);
1708 auto cpptype = type_printer.param(shift + i, type);
1710 print_arg(cpptype, name);
1712 return false;
1716 /* Print a lambda corresponding to "callback"
1717 * with signature "sig" and argument positions shifted by "shift".
1719 * The lambda takes arguments with plain isl types and
1720 * calls the callback of "method" with templated arguments.
1722 static void print_callback_lambda(std::ostream &os, ParmVarDecl *callback,
1723 const Signature &sig, int shift)
1725 auto callback_type = callback->getType();
1726 auto callback_name = callback->getName().str();
1727 auto proto = generator::extract_prototype(callback_type);
1729 os << " auto lambda_" << callback_name << " = [&] ";
1730 print_callback_args(os, proto, cpp_type_printer(), shift,
1731 [&] (const std::string &type, const std::string &name) {
1732 os << type << " " << name;
1734 os << " {\n";
1736 os << " return " << callback_name;
1737 print_callback_args(os, proto, template_cpp_arg_type_printer(sig),
1738 shift,
1739 [&] (const std::string &type, const std::string &name) {
1740 os << type << "(" << name << ")";
1742 os << ";\n";
1744 os << " };\n";
1747 /* Print lambdas for passing to the plain method corresponding to "method"
1748 * with signature "sig".
1750 * The method is assumed to have only callbacks as argument,
1751 * which means the arguments of the first callback are shifted by 2
1752 * with respect to the arguments of the signature
1753 * (one for the position of the callback argument plus
1754 * one for the return kind of the callback).
1755 * The arguments of a subsequent callback are shifted by
1756 * the number of arguments of the previous callback minus one
1757 * for the user pointer plus one for the return kind.
1759 static void print_callback_lambdas(std::ostream &os, const Method &method,
1760 const Signature &sig)
1762 int shift;
1764 if (method.num_params() != 1 + 2 * method.callbacks.size())
1765 generator::die("callbacks are assumed to be only arguments");
1767 shift = 2;
1768 for (const auto &callback : method.callbacks) {
1769 print_callback_lambda(os, callback, sig, shift);
1770 shift += generator::prototype_n_args(callback->getType());
1774 /* Print a definition of the member method "method", which is known
1775 * to have a callback argument, with signature "sig".
1777 * First print lambdas for passing to the corresponding plain method and
1778 * calling the callback of "method" with templated arguments.
1779 * Then call the plain method, replacing the original callbacks
1780 * by the lambdas.
1782 * The return value is assumed to be isl_bool or isl_stat
1783 * so that no conversion to a template type is required.
1785 void template_cpp_generator::method_impl_printer::print_callback_method_body(
1786 const Method &method, const Signature &sig)
1788 const auto &base_name = instance.base_name();
1789 auto return_type = method.fd->getReturnType();
1791 if (!is_isl_bool(return_type) && !is_isl_stat(return_type))
1792 die("only isl_bool and isl_stat return types are supported");
1794 os << "{\n";
1796 print_callback_lambdas(os, method, sig);
1798 os << " return ";
1799 os << base_name << "::" << method.name;
1800 method.print_cpp_arg_list(os, [&] (int i, int arg) {
1801 auto param = method.fd->getParamDecl(i);
1803 if (generator::is_callback(param->getType()))
1804 os << "lambda_";
1805 os << param->getName().str();
1807 os << ";\n";
1809 os << "}\n";
1812 /* Print a definition of the member or static method "method"
1813 * with signature "sig".
1815 * The body calls the corresponding method of the base class
1816 * in the plain interface and
1817 * then casts the result to the templated result type.
1819 void template_cpp_generator::method_impl_printer::print_method_body(
1820 const Method &method, const Signature &sig)
1822 const auto &base_name = instance.base_name();
1824 os << "{\n";
1825 os << " auto res = ";
1826 os << base_name << "::" << method.name;
1827 method.print_cpp_arg_list(os, [&] (int i, int arg) {
1828 os << method.fd->getParamDecl(i)->getName().str();
1830 os << ";\n";
1832 os << " return ";
1833 print_return_type(method, sig.ret);
1834 os << "(res);\n";
1835 os << "}\n";
1838 /* Print a definition of the method "method" with signature "sig",
1839 * if "deleted" is not set.
1841 * If "deleted" is set, then the corresponding declaration
1842 * is marked "delete" and no definition needs to be printed.
1844 * Otherwise print the method header, preceded by the template parameters,
1845 * if needed.
1846 * The body depends on whether the method is a constructor or
1847 * takes any callbacks.
1849 void template_cpp_generator::method_impl_printer::print_method_sig(
1850 const Method &method, const Signature &sig, bool deleted)
1852 if (deleted)
1853 return;
1855 os << "\n";
1856 print_non_empty_template(os, instance.kind.params());
1857 print_method_header(method, sig);
1858 os << "\n";
1859 if (method.kind == Method::Kind::constructor)
1860 print_constructor_body(method, sig);
1861 else if (method.callbacks.size() != 0)
1862 print_callback_method_body(method, sig);
1863 else
1864 print_method_body(method, sig);
1867 /* Print a definition for the "get" method "fd" in class "clazz",
1868 * using a name that includes the "get_" prefix, to "os".
1870 * The declarations of these methods are explicitly delete'd
1871 * so no definition needs to be printed.
1873 void template_cpp_generator::method_impl_printer::print_get_method(
1874 FunctionDecl *fd)
1878 /* Print a declaration or definition of the static method "method",
1879 * if it has a signature specified by static_methods.
1881 void template_cpp_generator::class_printer::print_static_method(
1882 const Method &method)
1884 print_special_method(method, static_methods);
1887 /* Signatures for constructors of multi-expressions
1888 * from a space and a list.
1890 static Signature from_list_set = { { Domain }, { { Domain }, { Anonymous } } };
1891 static Signature from_list_map =
1892 { { Domain, Range }, { { Domain, Range }, { Domain, Anonymous } } };
1894 /* Signatures for constructors from a string.
1896 static Signature params_from_str = { { }, { { Ctx }, { Str } } };
1897 static Signature set_from_str = { { Domain }, { { Ctx }, { Str } } };
1898 static Signature map_from_str = { { Domain, Range }, { { Ctx }, { Str } } };
1899 static std::vector<Signature> from_str =
1900 { params_from_str, set_from_str, map_from_str };
1902 /* Signature for a constructor from an integer.
1904 static Signature int_from_si = { { Anonymous }, { { Ctx }, { Integer } } };
1906 /* Signatures for constructors of lists from the initial number
1907 * of elements.
1909 static Signature alloc_params = { { }, { { Ctx }, { Integer } } };
1910 static Signature alloc_set = { { Domain }, { { Ctx }, { Integer } } };
1911 static Signature alloc_map = { { Domain, Range }, { { Ctx }, { Integer } } };
1913 /* Signatures for constructors and methods named after some other class.
1915 * Two forms of constructors are handled
1916 * - conversion from another object
1917 * - construction of a multi-expression from a space and a list
1919 * Methods named after some other class also come in two forms
1920 * - extraction of information such as the space or a list
1921 * - construction of a multi-expression from a space and a list
1923 * In both cases, the first form is a unary operation and
1924 * the second has an extra argument with a kind that is equal
1925 * to that of the first argument, except that the final tuple is anonymous.
1927 static std::vector<Signature> constructor_sig = {
1928 un_params,
1929 un_set,
1930 un_map,
1931 from_list_set,
1932 from_list_map,
1935 /* Signatures for constructors derived from methods
1936 * with the given names that override the default signatures.
1938 static const std::unordered_map<std::string, std::vector<Signature>>
1939 special_constructors {
1940 { "alloc", { alloc_params, alloc_set, alloc_map } },
1941 { "int_from_si", { int_from_si } },
1942 { "read_from_str", from_str },
1945 /* Print a declaration or definition of the constructor "method".
1947 void template_cpp_generator::class_printer::print_constructor(
1948 const Method &method)
1950 if (special_constructors.count(method.name) != 0) {
1951 const auto &sigs = special_constructors.at(method.name);
1952 return print_matching_method(method, sigs);
1954 print_matching_method(method, constructor_sig);
1957 /* Does this template class represent an anonymous function?
1959 * If any specialization represents an anonymous function,
1960 * then every specialization does, so simply check
1961 * the first specialization.
1963 bool template_class::is_anon() const
1965 return class_tuples[0].is_anon();
1968 /* Does this template class represent an anonymous value?
1970 * That is, is there only a single specialization that moreover
1971 * has a single, anonymous tuple?
1973 bool template_class::is_anon_set() const
1975 return class_tuples.size() == 1 && class_tuples[0].is_anon_set();
1978 /* Update the substitution "sub" to map "general" to "specific"
1979 * if "specific" is a special case of "general" consistent with "sub",
1980 * given that "general" is not a pair and can be assigned "specific".
1981 * Return true if successful.
1982 * Otherwise, return false.
1984 * Check whether "general" is already assigned something in "sub".
1985 * If so, it must be assigned "specific".
1986 * Otherwise, there is a conflict.
1988 static bool update_sub_base(Substitution &sub, const TupleKindPtr &general,
1989 const TupleKindPtr &specific)
1991 auto name = general->name;
1993 if (sub.count(name) != 0 && sub.at(name) != specific)
1994 return false;
1995 sub.emplace(name, specific);
1996 return true;
1999 /* Update the substitution "sub" to map "general" to "specific"
2000 * if "specific" is a special case of "general" consistent with "sub".
2001 * Return true if successful.
2002 * Otherwise, return false.
2004 * If "general" is a pair and "specific" is not,
2005 * then "specific" cannot be a special case.
2006 * If both are pairs, then update the substitution based
2007 * on both sides.
2008 * If "general" is Anonymous, then "specific" must be Anonymous as well.
2009 * If "general" is Leaf, then "specific" cannot be a pair.
2011 * Otherwise, assign "specific" to "general", if possible.
2013 static bool update_sub(Substitution &sub, const TupleKindPtr &general,
2014 const TupleKindPtr &specific)
2016 if (general->left() && !specific->left())
2017 return false;
2018 if (general->left())
2019 return update_sub(sub, general->left(), specific->left()) &&
2020 update_sub(sub, general->right(), specific->right());
2021 if (general == Anonymous && specific != Anonymous)
2022 return false;
2023 if (general == Leaf && specific->left())
2024 return false;
2026 return update_sub_base(sub, general, specific);
2029 /* Check if "specific" is a special case of "general" and,
2030 * if so, return true along with a substitution
2031 * that maps "general" to "specific".
2032 * Otherwise return false.
2034 * This can only happen if the number of tuple kinds is the same.
2035 * If so, start with an empty substitution and update it
2036 * for each pair of tuple kinds, checking that each update succeeds.
2038 static std::pair<bool, Substitution> specializer(const Kind &general,
2039 const Kind &specific)
2041 Substitution specializer;
2043 if (general.size() != specific.size())
2044 return { false, Substitution() };
2046 for (size_t i = 0; i < general.size(); ++i) {
2047 auto general_tuple = general[i];
2049 if (!update_sub(specializer, general[i], specific[i]))
2050 return { false, Substitution() };
2053 return { true, specializer };
2056 /* Is "kind1" equivalent to "kind2"?
2057 * That is, is each a special case of the other?
2059 static bool equivalent(const Kind &kind1, const Kind &kind2)
2061 return specializer(kind1, kind2).first &&
2062 specializer(kind2, kind1).first;
2065 /* Add the specialization "kind" to the sequence of specializations,
2066 * provided there is no equivalent specialization already in there.
2068 void template_class::add_specialization(const Kind &kind)
2070 for (const auto &special : class_tuples)
2071 if (equivalent(special, kind))
2072 return;
2073 class_tuples.emplace_back(kind);
2076 /* A type printer that prints the plain interface type,
2077 * without namespace.
2079 struct plain_cpp_type_printer : public cpp_type_printer {
2080 plain_cpp_type_printer() {}
2082 virtual std::string qualified(int arg, const std::string &cpp_type)
2083 const override;
2086 /* Return the qualified form of the given C++ isl type name appearing
2087 * in argument position "arg" (-1 for return type).
2089 * For printing the plain type without namespace, no modifications
2090 * are required.
2092 std::string plain_cpp_type_printer::qualified(int arg,
2093 const std::string &cpp_type) const
2095 return cpp_type;
2098 /* Return a string representation of the plain type "type".
2100 * For the plain printer, the argument position is irrelevant,
2101 * so simply pass in -1.
2103 static std::string plain_type(QualType type)
2105 return plain_cpp_type_printer().param(-1, type);
2108 /* Return a string representation of the plain return type of "method".
2110 static std::string plain_return_type(const Method &method)
2112 return plain_type(method.fd->getReturnType());
2115 /* Return that part of the signature "sig" that should match
2116 * the template class specialization for the given method.
2118 * In particular, if the method is a regular member method,
2119 * then the instance should match the first argument.
2120 * Otherwise, it should match the return kind.
2122 static const Kind &matching_kind(const Method &method, const Signature &sig)
2124 if (method.kind == Method::Kind::member_method)
2125 return sig.args[0];
2126 else
2127 return sig.ret;
2130 /* Is it possible for "template_class" to have the given kind?
2132 * If the template class represents an anonymous function,
2133 * then so must the given kind.
2134 * There should also be specialization with the same number of tuple kinds.
2136 static bool has_kind(const template_class &template_class, const Kind &kind)
2138 if (template_class.is_anon() && !kind.is_anon())
2139 return false;
2140 for (const auto &class_tuple : template_class.class_tuples)
2141 if (class_tuple.size() == kind.size())
2142 return true;
2143 return false;
2146 /* Is "return_kind" a possible kind for the return type of "method"?
2148 * If the return type is not a template class,
2149 * then "return_kind" should not have any template parameters.
2150 * Otherwise, "return_kind" should be a valid kind for the template class.
2152 bool template_cpp_generator::class_printer::is_return_kind(
2153 const Method &method, const Kind &return_kind)
2155 const auto &template_classes = generator.template_classes;
2156 auto return_type = plain_return_type(method);
2158 if (template_classes.count(return_type) == 0)
2159 return return_kind.params().size() == 0;
2160 return has_kind(template_classes.at(return_type), return_kind);
2163 /* Is "kind" a placeholder that can be assigned something else
2164 * in a substitution?
2166 * Anonymous can only be mapped to itself. This is taken care of
2167 * by assign().
2168 * Leaf can only be assigned a placeholder, but there is no need
2169 * to handle this specifically since Leaf can still be assigned
2170 * to the placeholder.
2172 static bool assignable(const TupleKindPtr &kind)
2174 return kind != Anonymous && kind != Leaf;
2177 /* Return a substitution that maps "kind1" to "kind2", if possible.
2178 * Otherwise return an empty substitution.
2180 * Check if "kind1" can be assigned anything or
2181 * if "kind1" and "kind2" are identical.
2182 * The latter case handles mapping Anonymous to itself.
2184 static Substitution assign(const TupleKindPtr &kind1, const TupleKindPtr &kind2)
2186 Substitution res;
2188 if (assignable(kind1) || kind1 == kind2)
2189 res.emplace(kind1->name, kind2);
2190 return res;
2193 /* Return a substitution that first applies "first" and then "second".
2195 * The result consists of "second" and of "second" applied to "first".
2197 static Substitution compose(const Substitution &first,
2198 const Substitution &second)
2200 Substitution res = second;
2202 for (const auto &kvp : first)
2203 res.emplace(kvp.first, apply(kvp.second, second));
2205 return res;
2208 static Substitution compute_unifier(const TupleKindPtr &kind1,
2209 const TupleKindPtr &kind2);
2211 /* Try and extend "unifier" with a unifier for "kind1" and "kind2".
2212 * Return the resulting unifier if successful.
2213 * Otherwise, return an empty substitution.
2215 * First apply "unifier" to "kind1" and "kind2".
2216 * Then compute a unifier for the resulting tuple kinds and
2217 * combine it with "unifier".
2219 static Substitution combine_unifiers(const TupleKindPtr &kind1,
2220 const TupleKindPtr &kind2, const Substitution &unifier)
2222 auto k1 = apply(kind1, unifier);
2223 auto k2 = apply(kind2, unifier);
2224 auto u = compute_unifier(k1, k2);
2225 if (u.size() == 0)
2226 return Substitution();
2227 return compose(unifier, u);
2230 /* Try and compute a unifier of "kind1" and "kind2",
2231 * i.e., a substitution that produces the same result when
2232 * applied to both "kind1" and "kind2",
2233 * for the case where both "kind1" and "kind2" are pairs.
2234 * Return this unifier if it was found.
2235 * Return an empty substitution if no unifier can be found.
2237 * First compute a unifier for the left parts of the pairs and,
2238 * if successful, combine it with a unifier for the right parts.
2240 static Substitution compute_pair_unifier(const TupleKindPtr &kind1,
2241 const TupleKindPtr &kind2)
2243 auto unifier_left = compute_unifier(kind1->left(), kind2->left());
2244 if (unifier_left.size() == 0)
2245 return Substitution();
2246 return combine_unifiers(kind1->right(), kind2->right(), unifier_left);
2249 /* Try and compute a unifier of "kind1" and "kind2",
2250 * i.e., a substitution that produces the same result when
2251 * applied to both "kind1" and "kind2".
2252 * Return this unifier if it was found.
2253 * Return an empty substitution if no unifier can be found.
2255 * If one of the tuple kinds is a pair then assign it
2256 * to the other tuple kind, if possible.
2257 * If neither is a pair, then try and assign one to the other.
2258 * Otherwise, let compute_pair_unifier compute a unifier.
2260 * Note that an assignment is added to the unifier even
2261 * if "kind1" and "kind2" are identical.
2262 * This ensures that a successful substitution is never empty.
2264 static Substitution compute_unifier(const TupleKindPtr &kind1,
2265 const TupleKindPtr &kind2)
2267 if (kind1->left() && !kind2->left())
2268 return assign(kind2, kind1);
2269 if (!kind1->left() && kind2->left())
2270 return assign(kind1, kind2);
2271 if (!kind1->left() && !kind2->left()) {
2272 if (assignable(kind1))
2273 return assign(kind1, kind2);
2274 else
2275 return assign(kind2, kind1);
2278 return compute_pair_unifier(kind1, kind2);
2281 /* Try and compute a unifier of "kind1" and "kind2",
2282 * i.e., a substitution that produces the same result when
2283 * applied to both "kind1" and "kind2".
2284 * Return this unifier if it was found.
2285 * Return an empty substitution if no unifier can be found.
2287 * Start with an empty substitution and compute a unifier for
2288 * each pair of tuple kinds, combining the results.
2289 * If no combined unifier can be found or
2290 * if the numbers of tuple kinds are different, then return
2291 * an empty substitution.
2292 * This assumes that the number of tuples is greater than zero,
2293 * as otherwise an empty substitution would be returned as well.
2295 static Substitution compute_unifier(const Kind &kind1, const Kind &kind2)
2297 Substitution unifier;
2299 if (kind1.size() != kind2.size())
2300 return Substitution();
2302 for (size_t i = 0; i < kind1.size(); ++i)
2303 unifier = combine_unifiers(kind1[i], kind2[i], unifier);
2305 return unifier;
2308 /* Try and construct a Kind that is a specialization of both "general" and
2309 * "specific", where "specific" is known _not_ to be a specialization
2310 * of "general" and not to contain any Leaf.
2312 * First check whether "general" is a specialization of "specific".
2313 * If so, simply return "general".
2314 * Otherwise, rename the placeholders in the two kinds apart and
2315 * try and compute a unifier.
2316 * If this succeeds, then return the result of applying the unifier.
2318 static std::pair<bool, Kind> unify(const Kind &general, const Kind &specific)
2320 if (specializer(specific, general).first) {
2321 return { true, general };
2322 } else {
2323 auto rename = param_renamer(specific.params(), "T");
2324 auto renamed = specific.apply(rename);
2325 auto unifier = compute_unifier(general, renamed);
2327 if (unifier.size() == 0)
2328 return { false, { } };
2330 return { true, general.apply(unifier) };
2334 /* Try and add a template class specialization corresponding to "kind".
2335 * The new specialization needs to be a specialization of both
2336 * the current specialization and "kind".
2338 * The current template class specialization is known not to be a special case
2339 * of "kind".
2341 * Try and unify the two kinds and, if this succeeds, add the result
2342 * to this list of template class specializations.
2344 void template_cpp_generator::class_printer::add_specialization(
2345 const Kind &kind)
2347 auto maybe_unified = unify(kind, instance.kind);
2349 if (!maybe_unified.first)
2350 return;
2351 instance.template_class.add_specialization(maybe_unified.second);
2354 /* Does the type of the parameter at position "i" of "method" necessarily
2355 * have a final Anonymous tuple?
2357 * If the parameter is not of an isl type or if no specializations
2358 * have been defined for the type, then it can be considered anonymous.
2359 * Otherwise, if any specialization represents an anonymous function,
2360 * then every specialization does, so simply check
2361 * the first specialization.
2363 static bool param_is_anon(const Method &method, int i)
2365 ParmVarDecl *param = method.get_param(i);
2366 QualType type = param->getOriginalType();
2368 if (cpp_generator::is_isl_type(type)) {
2369 const auto &name = type->getPointeeType().getAsString();
2370 const auto &cpp = cpp_generator::type2cpp(name);
2371 const auto &tuples = lookup_class_tuples(cpp);
2373 if (tuples.empty())
2374 return true;
2375 return tuples[0].is_anon();
2378 return true;
2381 /* Replace the final tuple of "arg_kind" by Anonymous in "sig" and
2382 * return the update signature,
2383 * unless this would affect the class instance "instance_kind".
2385 * If the original "instance_kind" is a special case
2386 * of the result of the substitution, then "instance_kind"
2387 * is not affected and the substitution can be applied
2388 * to the entire signature.
2390 static Signature specialize_anonymous_arg(const Signature &sig,
2391 const Kind &arg_kind, const Kind &instance_kind)
2393 const auto &subs = compute_unifier(arg_kind.back(), Anonymous);
2394 const auto &specialized_instance = instance_kind.apply(subs);
2396 if (!specializer(specialized_instance, instance_kind).first)
2397 return sig;
2399 return sig.apply(subs);
2402 /* If any of the arguments of "method" is of a type that necessarily
2403 * has a final Anonymous tuple, but the corresponding entry
2404 * in the signature "sig" is not Anonymous, then replace
2405 * that entry by Anonymous and return the updated signature,
2406 * unless this would affect the class instance "instance_kind".
2408 static Signature specialize_anonymous_args(const Signature &sig,
2409 const Method &method, const Kind &instance_kind)
2411 auto specialized_sig = sig;
2413 method.on_cpp_arg_list([&] (int i, int arg) {
2414 const auto &arg_kind = sig.args[arg];
2416 if (arg_kind.is_anon())
2417 return;
2418 if (!param_is_anon(method, i))
2419 return;
2420 specialized_sig = specialize_anonymous_arg(specialized_sig,
2421 arg_kind, instance_kind);
2424 return specialized_sig;
2427 /* Print a declaration or definition of the method "method"
2428 * if the template class specialization matches "match_arg".
2429 * Return true if so.
2430 * "sig" is the complete signature, of which "match_arg" refers
2431 * to the first argument or the return type.
2433 * Since "sig" may have parameters with the same names as
2434 * those in instance.kind, rename them apart first.
2436 * If the template class specialization is a special case of
2437 * (the renamed) "match_arg"
2438 * then apply the specializer to the complete (renamed) signature,
2439 * specialize any anonymous arguments,
2440 * check that the return kind is allowed and, if so,
2441 * print the declaration or definition using the specialized signature.
2443 * If the template class specialization is not a special case of "match_arg"
2444 * then add a further specialization to the list of specializations
2445 * of the template class.
2447 bool template_cpp_generator::class_printer::print_matching_method(
2448 const Method &method, const Signature &sig, const Kind &match_arg)
2450 auto rename = shared_param_renamer(sig, instance.kind);
2451 auto renamed_arg = match_arg.apply(rename);
2452 auto maybe_specializer = specializer(renamed_arg, instance.kind);
2453 if (maybe_specializer.first) {
2454 const auto &specializer = maybe_specializer.second;
2455 auto specialized_sig = sig.apply(rename).apply(specializer);
2456 specialized_sig = specialize_anonymous_args(specialized_sig,
2457 method, instance.kind);
2458 if (!is_return_kind(method, specialized_sig.ret))
2459 return false;
2461 print_method_sig(method, specialized_sig, false);
2462 } else {
2463 add_specialization(match_arg);
2465 return maybe_specializer.first;
2468 /* Is the first argument of "method" of type "isl_ctx *"?
2470 static bool first_arg_is_ctx(const Method &method)
2472 return generator::first_arg_is_isl_ctx(method.fd);
2475 /* Is the first signature argument set to { Ctx }?
2477 static bool first_kind_is_ctx(const Signature &sig)
2479 return sig.args[0].size() > 0 && sig.args[0][0] == Ctx;
2482 /* Print a declaration or definition of the member method "method"
2483 * if it matches the signature "sig".
2484 * Return true if so.
2486 * First determine the part of the signature that needs to match
2487 * the template class specialization and
2488 * check that it has the same number of template arguments.
2489 * Also check that the number of arguments of the signature
2490 * matches that of the method.
2491 * If there is at least one argument, then check that the first method argument
2492 * is an isl_ctx if and only if the first signature argument is Ctx.
2494 * If these tests succeed, proceed with the actual matching.
2496 bool template_cpp_generator::class_printer::print_matching_method(
2497 const Method &method, const Signature &sig)
2499 auto match_arg = matching_kind(method, sig);
2500 int n_args = sig.args.size();
2502 if (match_arg.size() != instance.kind.size())
2503 return false;
2504 if (n_args != total_params(method))
2505 return false;
2506 if (n_args > 0 && first_arg_is_ctx(method) != first_kind_is_ctx(sig))
2507 return false;
2509 return print_matching_method(method, sig, match_arg);
2512 /* Print a declaration or definition of the member method "method"
2513 * for each matching signature in "signatures".
2515 * If there is no matching signature in "signatures",
2516 * then explicitly delete the method (using a signature based on
2517 * the specialization) so that it is not inherited from the base class.
2519 void template_cpp_generator::class_printer::print_matching_method(
2520 const Method &method, const std::vector<Signature> &signatures)
2522 auto any = false;
2524 for (const auto &sig : signatures)
2525 if (print_matching_method(method, sig))
2526 any = true;
2528 if (!any)
2529 print_method_sig(method, instance_sig(method, instance), true);
2532 /* Signatures for "at" methods applied to a multi-expression,
2533 * which make the final tuple anonymous.
2535 static Signature select_set = { { Anonymous }, { { Domain }, { Integer } } };
2536 static Signature select_map =
2537 { { Domain, Anonymous }, { { Domain, Range }, { Integer } } };
2538 static std::vector<Signature> at_select = { select_set, select_map };
2540 /* Signatures for other "at" methods applied to a list,
2541 * which do not modify the tuple kind.
2543 static Signature bin_set_int = { { Domain }, { { Domain }, { Integer } } };
2544 static Signature bin_map_int =
2545 { { Domain, Range }, { { Domain, Range }, { Integer } } };
2546 static std::vector<Signature> at_keep = { bin_set_int, bin_map_int };
2548 /* Print a declaration or definition of the "at" member method "method".
2550 * There are two types of methods called "at".
2551 * One type extracts an element from a multi-expression and
2552 * the other extracts an element from a list.
2554 * In the first case, the return type is an anonymous function
2555 * while the object type is not. In this case, the return kind
2556 * should have a final Anonymous tuple.
2557 * Otherwise, the return kind should be the same as the object kind.
2559 void template_cpp_generator::class_printer::print_at_method(
2560 const Method &method)
2562 auto anon = instance.template_class.is_anon();
2563 auto return_type = plain_return_type(method);
2564 auto return_class = generator.template_classes.at(return_type);
2566 if (!anon && return_class.is_anon())
2567 return print_matching_method(method, at_select);
2568 else
2569 return print_matching_method(method, at_keep);
2572 /* Does the string "s" contain "sub" as a substring?
2574 static bool contains(const std::string &s, const std::string &sub)
2576 return s.find(sub) != std::string::npos;
2579 /* Print a declaration or definition of the member method "method",
2580 * if it has a special signature in "special_methods".
2581 * Return true if this is the case.
2583 * Check if any special signatures are specified for this method and
2584 * if the class name matches any of those with special signatures.
2585 * If so, pick the one with the best match, i.e., the first match
2586 * since the largest keys appear first.
2588 bool template_cpp_generator::class_printer::print_special_method(
2589 const Method &method, const infix_map_map &special_methods)
2591 if (special_methods.count(method.name) == 0)
2592 return false;
2594 for (const auto &kvp : special_methods.at(method.name)) {
2595 if (!contains(instance.template_class.class_name, kvp.first))
2596 continue;
2597 print_matching_method(method, kvp.second);
2598 return true;
2601 return false;
2604 /* Print a declaration or definition of the member method "method",
2605 * if it has a special signature specified by special_member_methods.
2606 * Return true if this is the case.
2608 bool template_cpp_generator::class_printer::print_special_member_method(
2609 const Method &method)
2611 return print_special_method(method, special_member_methods);
2614 /* Print a declaration or definition of the member method "method",
2615 * if it is named after a template class. Return true if this is the case.
2617 bool template_cpp_generator::class_printer::print_type_named_member_method(
2618 const Method &method)
2620 if (generator.template_classes.count(method.name) == 0)
2621 return false;
2623 print_matching_method(method, constructor_sig);
2625 return true;
2628 /* Print a declaration or definition of the member method "method"
2629 * using a signature associated to method name "name", if there is any.
2630 * Return true if this is the case.
2632 bool template_cpp_generator::class_printer::print_member_method_with_name(
2633 const Method &method, const std::string &name)
2635 if (member_methods.count(name) == 0)
2636 return false;
2638 print_matching_method(method, member_methods.at(name));
2639 return true;
2642 /* If "sub" appears inside "str", then remove the first occurrence and
2643 * return the result. Otherwise, simply return "str".
2645 static std::string drop_occurrence(const std::string &str,
2646 const std::string &sub)
2648 auto res = str;
2649 auto pos = str.find(sub);
2651 if (pos != std::string::npos)
2652 res.erase(pos, sub.length());
2654 return res;
2657 /* If "sub" appears in "str" next to an underscore, then remove the combination.
2658 * Otherwise, simply return "str".
2660 static std::string drop_underscore_occurrence(const std::string &str,
2661 const std::string &sub)
2663 auto res = drop_occurrence(str, sub + "_");
2664 if (res != str)
2665 return res;
2666 return drop_occurrence(res, std::string("_") + sub);
2669 /* Return the name of "method", with the name of the return type,
2670 * along with an underscore, removed, if this combination appears in the name.
2671 * Otherwise, simply return the name.
2673 const std::string name_without_return(const Method &method)
2675 auto return_infix = plain_return_type(method);
2676 return drop_underscore_occurrence(method.name, return_infix);
2679 /* If this method has a callback, then remove the type
2680 * of the first argument of the first callback from the name of the method.
2681 * Otherwise, simply return the name of the method.
2683 const std::string callback_name(const Method &method)
2685 if (method.callbacks.size() == 0)
2686 return method.name;
2688 auto type = method.callbacks.at(0)->getType();
2689 auto callback = cpp_generator::extract_prototype(type);
2690 auto arg_type = plain_type(callback->getArgType(0));
2691 return generator::drop_suffix(method.name, "_" + arg_type);
2694 /* Print a declaration or definition of the member method "method".
2696 * If the method is called "at", then it requires special treatment.
2697 * Otherwise, check if the signature is overridden for this class or
2698 * if the method is named after some other type.
2699 * Otherwise look for an appropriate signature using different variations
2700 * of the method name. First try the method name itself,
2701 * then the method name with the return type removed and
2702 * finally the method name with the callback argument type removed.
2704 void template_cpp_generator::class_printer::print_member_method(
2705 const Method &method)
2707 if (method.name == "at")
2708 return print_at_method(method);
2709 if (print_special_member_method(method))
2710 return;
2711 if (print_type_named_member_method(method))
2712 return;
2713 if (print_member_method_with_name(method, method.name))
2714 return;
2715 if (print_member_method_with_name(method, name_without_return(method)))
2716 return;
2717 if (print_member_method_with_name(method, callback_name(method)))
2718 return;
2721 /* Print a declaration or definition of "method" based on its type.
2723 void template_cpp_generator::class_printer::print_any_method(
2724 const Method &method)
2726 switch (method.kind) {
2727 case Method::Kind::static_method:
2728 print_static_method(method);
2729 break;
2730 case Method::Kind::constructor:
2731 print_constructor(method);
2732 break;
2733 case Method::Kind::member_method:
2734 print_member_method(method);
2735 break;
2739 /* Print a declaration or definition of "method".
2741 * Mark the method as not requiring copies of the arguments.
2743 void template_cpp_generator::class_printer::print_method(const Method &method)
2745 print_any_method(NoCopyMethod(method));
2748 /* Print a declaration or definition of "method".
2750 * Note that a ConversionMethod is already marked
2751 * as not requiring copies of the arguments.
2753 void template_cpp_generator::class_printer::print_method(
2754 const ConversionMethod &method)
2756 print_any_method(method);
2759 /* Helper class for printing the declarations for
2760 * template class specializations.
2762 struct template_cpp_generator::class_decl_printer :
2763 public specialization_printer
2765 class_decl_printer(std::ostream &os,
2766 template_cpp_generator &generator) :
2767 specialization_printer(os, generator) {}
2769 void print_arg_subclass_constructor(const specialization &instance,
2770 const std::vector<std::string> &params) const;
2771 void print_super_constructor(const specialization &instance) const;
2772 virtual void print_class(const specialization &instance) const override;
2775 /* Print the declaration and definition of a constructor
2776 * for the template class specialization "instance" taking
2777 * an instance with more specialized template arguments,
2778 * where "params" holds the template parameters of "instance".
2779 * It is assumed that there is at least one template parameter as otherwise
2780 * there are no template arguments to be specialized and
2781 * no constructor needs to be printed.
2783 * In particular, the constructor takes an object of the same instance where
2784 * for each template parameter, the corresponding template argument
2785 * of the input object is a subclass of the template argument
2786 * of the constructed object.
2788 * Pick fresh names for all template parameters and
2789 * add a constructor with these fresh names as extra template parameters and
2790 * a constraint requiring that each of them is a subclass
2791 * of the corresponding class template parameter.
2792 * The plain C++ interface object of the constructed object is initialized with
2793 * the plain C++ interface object of the constructor argument.
2795 void template_cpp_generator::class_decl_printer::print_arg_subclass_constructor(
2796 const specialization &instance,
2797 const std::vector<std::string> &params) const
2799 const auto &class_name = instance.class_name();
2800 auto rename = param_renamer(params, "Arg");
2801 auto derived = instance.kind.apply(rename);
2803 os << " template ";
2804 os << "<";
2805 print_pure_template_args(os, derived.params());
2806 os << ",\n";
2807 os << " typename std::enable_if<\n";
2808 for (size_t i = 0; i < params.size(); ++i) {
2809 if (i != 0)
2810 os << " &&\n";
2811 os << " std::is_base_of<"
2812 << params[i] << ", "
2813 << rename.at(params[i])->params()[0] << ">{}";
2815 os << ",\n";
2816 os << " bool>::type = true>";
2817 os << "\n";
2818 os << " " << class_name << "(const ";
2819 print_bare_template_type(os, class_name, derived);
2820 os << " &obj) : " << instance.base_name() << "(obj) {}\n";
2823 /* Print the declaration and definition of a constructor
2824 * for the template class specialization "instance" taking
2825 * an instance of the base class.
2827 * If the instance kind is that of an anonymous set
2828 * (i.e., it has a single tuple that is set to Anonymous),
2829 * then allow the constructor to be called externally.
2830 * This is mostly useful for being able to use isl::val and
2831 * isl::typed::val<Anonymous> interchangeably and similarly for isl::id.
2833 * If the instance is of any other kind, then make this constructor private
2834 * to avoid objects of the plain interface being converted automatically.
2835 * Also make sure that it does not apply to any type derived
2836 * from the base class. In particular, this makes sure it does
2837 * not apply to any other specializations of this template class as
2838 * otherwise any conflict in specializations would simply point
2839 * to the private constructor.
2841 * A factory method is added to be able to perform the conversion explicitly,
2842 * with an explicit specification of the template arguments.
2844 void template_cpp_generator::class_decl_printer::print_super_constructor(
2845 const specialization &instance) const
2847 bool hide = !instance.kind.is_anon_set();
2848 const auto &base_name = instance.base_name();
2849 const auto &arg_name = hide ? "base" : base_name;
2851 if (hide) {
2852 os << " private:\n";
2853 os << " template <typename base,\n";
2854 os << " typename std::enable_if<\n";
2855 os << " std::is_same<base, " << base_name
2856 << ">{}, bool>::type = true>\n";
2858 os << " " << instance.class_name()
2859 << "(const " << arg_name << " &obj) : "
2860 << base_name << "(obj) {}\n";
2861 if (hide)
2862 os << " public:\n";
2863 os << " static " << instance.class_name() << " from"
2864 << "(const " << base_name << " &obj) {\n";
2865 os << " return " << instance.class_name() << "(obj);\n";
2866 os << " }\n";
2869 /* Print a "declaration" for the given template class specialization.
2870 * In particular, print the class definition and the method declarations.
2872 * The template parameters are the distinct variable names
2873 * in the instance kind.
2875 * Each instance of the template class derives from the corresponding
2876 * plain C++ interface class.
2878 * All (other) template classes are made friends of this template class
2879 * to allow them to call the private constructor taking an object
2880 * of the plain interface.
2882 * Besides the constructors and methods that forward
2883 * to the corresponding methods in the plain C++ interface class,
2884 * some extra constructors are defined.
2885 * The default zero-argument constructor is useful for declaring
2886 * a variable that only gets assigned a value at a later stage.
2887 * The constructor taking an instance with more specialized
2888 * template arguments is useful for lifting the class hierarchy
2889 * of the template arguments to the template class.
2890 * The constructor taking an instance of the base class
2891 * is useful for (explicitly) constructing a template type
2892 * from a plain type.
2894 void template_cpp_generator::class_decl_printer::print_class(
2895 const specialization &instance) const
2897 const auto &class_name = instance.class_name();
2898 auto params = instance.kind.params();
2900 os << "\n";
2902 print_template(os, params);
2904 os << "struct ";
2905 print_bare_template_type(os, class_name, instance.kind);
2906 os << " : public " << instance.base_name() << " {\n";
2908 generator.print_friends(os);
2909 os << "\n";
2911 os << " " << class_name << "() = default;\n";
2912 if (params.size() != 0)
2913 print_arg_subclass_constructor(instance, params);
2914 print_super_constructor(instance);
2915 method_decl_printer(instance, *this).print_all_methods();
2917 os << "};\n";
2920 /* Helper class for printing the definitions of template class specializations.
2922 struct template_cpp_generator::class_impl_printer :
2923 public specialization_printer
2925 class_impl_printer(std::ostream &os,
2926 template_cpp_generator &generator) :
2927 specialization_printer(os, generator) {}
2929 virtual void print_class(const specialization &instance) const override;
2932 /* Print a definition for the given template class specialization.
2934 * In particular, print definitions
2935 * for the constructors and methods that forward
2936 * to the corresponding methods in the plain C++ interface class.
2937 * The extra constructors declared in the class definition
2938 * are defined inline.
2940 void template_cpp_generator::class_impl_printer::print_class(
2941 const specialization &instance) const
2943 method_impl_printer(instance, *this).print_all_methods();
2946 /* Generate a templated cpp interface
2947 * based on the extracted types and functions.
2949 * First print forward declarations for all template classes,
2950 * then the declarations of the classes, and at the end all
2951 * method implementations.
2953 void template_cpp_generator::generate()
2955 ostream &os = std::cout;
2957 os << "\n";
2959 print_forward_declarations(os);
2960 class_decl_printer(os, *this).print_classes();
2961 class_impl_printer(os, *this).print_classes();