Bump version to 19.1.0 (final)
[llvm-project.git] / bolt / lib / Core / BinaryEmitter.cpp
blobf6dfa249f9a9f54217b39eb399b184dcc2197acc
1 //===- bolt/Core/BinaryEmitter.cpp - Emit code and data -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the collection of functions and classes used for
10 // emission of code and data into object/binary file.
12 //===----------------------------------------------------------------------===//
14 #include "bolt/Core/BinaryEmitter.h"
15 #include "bolt/Core/BinaryContext.h"
16 #include "bolt/Core/BinaryFunction.h"
17 #include "bolt/Core/DebugData.h"
18 #include "bolt/Core/FunctionLayout.h"
19 #include "bolt/Utils/CommandLineOpts.h"
20 #include "bolt/Utils/Utils.h"
21 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
22 #include "llvm/MC/MCSection.h"
23 #include "llvm/MC/MCStreamer.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/LEB128.h"
26 #include "llvm/Support/SMLoc.h"
28 #define DEBUG_TYPE "bolt"
30 using namespace llvm;
31 using namespace bolt;
33 namespace opts {
35 extern cl::opt<JumpTableSupportLevel> JumpTables;
36 extern cl::opt<bool> PreserveBlocksAlignment;
38 cl::opt<bool> AlignBlocks("align-blocks", cl::desc("align basic blocks"),
39 cl::cat(BoltOptCategory));
41 static cl::list<std::string>
42 BreakFunctionNames("break-funcs",
43 cl::CommaSeparated,
44 cl::desc("list of functions to core dump on (debugging)"),
45 cl::value_desc("func1,func2,func3,..."),
46 cl::Hidden,
47 cl::cat(BoltCategory));
49 static cl::list<std::string>
50 FunctionPadSpec("pad-funcs",
51 cl::CommaSeparated,
52 cl::desc("list of functions to pad with amount of bytes"),
53 cl::value_desc("func1:pad1,func2:pad2,func3:pad3,..."),
54 cl::Hidden,
55 cl::cat(BoltCategory));
57 static cl::opt<bool> MarkFuncs(
58 "mark-funcs",
59 cl::desc("mark function boundaries with break instruction to make "
60 "sure we accidentally don't cross them"),
61 cl::ReallyHidden, cl::cat(BoltCategory));
63 static cl::opt<bool> PrintJumpTables("print-jump-tables",
64 cl::desc("print jump tables"), cl::Hidden,
65 cl::cat(BoltCategory));
67 static cl::opt<bool>
68 X86AlignBranchBoundaryHotOnly("x86-align-branch-boundary-hot-only",
69 cl::desc("only apply branch boundary alignment in hot code"),
70 cl::init(true),
71 cl::cat(BoltOptCategory));
73 size_t padFunction(const BinaryFunction &Function) {
74 static std::map<std::string, size_t> FunctionPadding;
76 if (FunctionPadding.empty() && !FunctionPadSpec.empty()) {
77 for (std::string &Spec : FunctionPadSpec) {
78 size_t N = Spec.find(':');
79 if (N == std::string::npos)
80 continue;
81 std::string Name = Spec.substr(0, N);
82 size_t Padding = std::stoull(Spec.substr(N + 1));
83 FunctionPadding[Name] = Padding;
87 for (auto &FPI : FunctionPadding) {
88 std::string Name = FPI.first;
89 size_t Padding = FPI.second;
90 if (Function.hasNameRegex(Name))
91 return Padding;
94 return 0;
97 } // namespace opts
99 namespace {
100 using JumpTable = bolt::JumpTable;
102 class BinaryEmitter {
103 private:
104 BinaryEmitter(const BinaryEmitter &) = delete;
105 BinaryEmitter &operator=(const BinaryEmitter &) = delete;
107 MCStreamer &Streamer;
108 BinaryContext &BC;
110 public:
111 BinaryEmitter(MCStreamer &Streamer, BinaryContext &BC)
112 : Streamer(Streamer), BC(BC) {}
114 /// Emit all code and data.
115 void emitAll(StringRef OrgSecPrefix);
117 /// Emit function code. The caller is responsible for emitting function
118 /// symbol(s) and setting the section to emit the code to.
119 void emitFunctionBody(BinaryFunction &BF, FunctionFragment &FF,
120 bool EmitCodeOnly = false);
122 private:
123 /// Emit function code.
124 void emitFunctions();
126 /// Emit a single function.
127 bool emitFunction(BinaryFunction &BF, FunctionFragment &FF);
129 /// Helper for emitFunctionBody to write data inside a function
130 /// (used for AArch64)
131 void emitConstantIslands(BinaryFunction &BF, bool EmitColdPart,
132 BinaryFunction *OnBehalfOf = nullptr);
134 /// Emit jump tables for the function.
135 void emitJumpTables(const BinaryFunction &BF);
137 /// Emit jump table data. Callee supplies sections for the data.
138 void emitJumpTable(const JumpTable &JT, MCSection *HotSection,
139 MCSection *ColdSection);
141 void emitCFIInstruction(const MCCFIInstruction &Inst) const;
143 /// Emit exception handling ranges for the function.
144 void emitLSDA(BinaryFunction &BF, const FunctionFragment &FF);
146 /// Emit line number information corresponding to \p NewLoc. \p PrevLoc
147 /// provides a context for de-duplication of line number info.
148 /// \p FirstInstr indicates if \p NewLoc represents the first instruction
149 /// in a sequence, such as a function fragment.
151 /// If \p NewLoc location matches \p PrevLoc, no new line number entry will be
152 /// created and the function will return \p PrevLoc while \p InstrLabel will
153 /// be ignored. Otherwise, the caller should use \p InstrLabel to mark the
154 /// corresponding instruction by emitting \p InstrLabel before it.
155 /// If \p InstrLabel is set by the caller, its value will be used with \p
156 /// \p NewLoc. If it was nullptr on entry, it will be populated with a pointer
157 /// to a new temp symbol used with \p NewLoc.
159 /// Return new current location which is either \p NewLoc or \p PrevLoc.
160 SMLoc emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, SMLoc PrevLoc,
161 bool FirstInstr, MCSymbol *&InstrLabel);
163 /// Use \p FunctionEndSymbol to mark the end of the line info sequence.
164 /// Note that it does not automatically result in the insertion of the EOS
165 /// marker in the line table program, but provides one to the DWARF generator
166 /// when it needs it.
167 void emitLineInfoEnd(const BinaryFunction &BF, MCSymbol *FunctionEndSymbol);
169 /// Emit debug line info for unprocessed functions from CUs that include
170 /// emitted functions.
171 void emitDebugLineInfoForOriginalFunctions();
173 /// Emit debug line for CUs that were not modified.
174 void emitDebugLineInfoForUnprocessedCUs();
176 /// Emit data sections that have code references in them.
177 void emitDataSections(StringRef OrgSecPrefix);
180 } // anonymous namespace
182 void BinaryEmitter::emitAll(StringRef OrgSecPrefix) {
183 Streamer.initSections(false, *BC.STI);
184 Streamer.setUseAssemblerInfoForParsing(false);
186 if (opts::UpdateDebugSections && BC.isELF()) {
187 // Force the emission of debug line info into allocatable section to ensure
188 // JITLink will process it.
190 // NB: on MachO all sections are required for execution, hence no need
191 // to change flags/attributes.
192 MCSectionELF *ELFDwarfLineSection =
193 static_cast<MCSectionELF *>(BC.MOFI->getDwarfLineSection());
194 ELFDwarfLineSection->setFlags(ELF::SHF_ALLOC);
195 MCSectionELF *ELFDwarfLineStrSection =
196 static_cast<MCSectionELF *>(BC.MOFI->getDwarfLineStrSection());
197 ELFDwarfLineStrSection->setFlags(ELF::SHF_ALLOC);
200 if (RuntimeLibrary *RtLibrary = BC.getRuntimeLibrary())
201 RtLibrary->emitBinary(BC, Streamer);
203 BC.getTextSection()->setAlignment(Align(opts::AlignText));
205 emitFunctions();
207 if (opts::UpdateDebugSections) {
208 emitDebugLineInfoForOriginalFunctions();
209 DwarfLineTable::emit(BC, Streamer);
212 emitDataSections(OrgSecPrefix);
214 // TODO Enable for Mach-O once BinaryContext::getDataSection supports it.
215 if (BC.isELF())
216 AddressMap::emit(Streamer, BC);
217 Streamer.setUseAssemblerInfoForParsing(true);
220 void BinaryEmitter::emitFunctions() {
221 auto emit = [&](const std::vector<BinaryFunction *> &Functions) {
222 const bool HasProfile = BC.NumProfiledFuncs > 0;
223 const bool OriginalAllowAutoPadding = Streamer.getAllowAutoPadding();
224 for (BinaryFunction *Function : Functions) {
225 if (!BC.shouldEmit(*Function))
226 continue;
228 LLVM_DEBUG(dbgs() << "BOLT: generating code for function \"" << *Function
229 << "\" : " << Function->getFunctionNumber() << '\n');
231 // Was any part of the function emitted.
232 bool Emitted = false;
234 // Turn off Intel JCC Erratum mitigation for cold code if requested
235 if (HasProfile && opts::X86AlignBranchBoundaryHotOnly &&
236 !Function->hasValidProfile())
237 Streamer.setAllowAutoPadding(false);
239 FunctionLayout &Layout = Function->getLayout();
240 Emitted |= emitFunction(*Function, Layout.getMainFragment());
242 if (Function->isSplit()) {
243 if (opts::X86AlignBranchBoundaryHotOnly)
244 Streamer.setAllowAutoPadding(false);
246 assert((Layout.fragment_size() == 1 || Function->isSimple()) &&
247 "Only simple functions can have fragments");
248 for (FunctionFragment &FF : Layout.getSplitFragments()) {
249 // Skip empty fragments so no symbols and sections for empty fragments
250 // are generated
251 if (FF.empty() && !Function->hasConstantIsland())
252 continue;
253 Emitted |= emitFunction(*Function, FF);
257 Streamer.setAllowAutoPadding(OriginalAllowAutoPadding);
259 if (Emitted)
260 Function->setEmitted(/*KeepCFG=*/opts::PrintCacheMetrics);
264 // Mark the start of hot text.
265 if (opts::HotText) {
266 Streamer.switchSection(BC.getTextSection());
267 Streamer.emitLabel(BC.getHotTextStartSymbol());
270 // Emit functions in sorted order.
271 std::vector<BinaryFunction *> SortedFunctions = BC.getSortedFunctions();
272 emit(SortedFunctions);
274 // Emit functions added by BOLT.
275 emit(BC.getInjectedBinaryFunctions());
277 // Mark the end of hot text.
278 if (opts::HotText) {
279 if (BC.HasWarmSection)
280 Streamer.switchSection(BC.getCodeSection(BC.getWarmCodeSectionName()));
281 else
282 Streamer.switchSection(BC.getTextSection());
283 Streamer.emitLabel(BC.getHotTextEndSymbol());
287 bool BinaryEmitter::emitFunction(BinaryFunction &Function,
288 FunctionFragment &FF) {
289 if (Function.size() == 0 && !Function.hasIslandsInfo())
290 return false;
292 if (Function.getState() == BinaryFunction::State::Empty)
293 return false;
295 // Avoid emitting function without instructions when overwriting the original
296 // function in-place. Otherwise, emit the empty function to define the symbol.
297 if (!BC.HasRelocations && !Function.hasNonPseudoInstructions())
298 return false;
300 MCSection *Section =
301 BC.getCodeSection(Function.getCodeSectionName(FF.getFragmentNum()));
302 Streamer.switchSection(Section);
303 Section->setHasInstructions(true);
304 BC.Ctx->addGenDwarfSection(Section);
306 if (BC.HasRelocations) {
307 // Set section alignment to at least maximum possible object alignment.
308 // We need this to support LongJmp and other passes that calculates
309 // tentative layout.
310 Section->ensureMinAlignment(Align(opts::AlignFunctions));
312 Streamer.emitCodeAlignment(Function.getMinAlign(), &*BC.STI);
313 uint16_t MaxAlignBytes = FF.isSplitFragment()
314 ? Function.getMaxColdAlignmentBytes()
315 : Function.getMaxAlignmentBytes();
316 if (MaxAlignBytes > 0)
317 Streamer.emitCodeAlignment(Function.getAlign(), &*BC.STI, MaxAlignBytes);
318 } else {
319 Streamer.emitCodeAlignment(Function.getAlign(), &*BC.STI);
322 MCContext &Context = Streamer.getContext();
323 const MCAsmInfo *MAI = Context.getAsmInfo();
325 MCSymbol *const StartSymbol = Function.getSymbol(FF.getFragmentNum());
327 // Emit all symbols associated with the main function entry.
328 if (FF.isMainFragment()) {
329 for (MCSymbol *Symbol : Function.getSymbols()) {
330 Streamer.emitSymbolAttribute(Symbol, MCSA_ELF_TypeFunction);
331 Streamer.emitLabel(Symbol);
333 } else {
334 Streamer.emitSymbolAttribute(StartSymbol, MCSA_ELF_TypeFunction);
335 Streamer.emitLabel(StartSymbol);
338 // Emit CFI start
339 if (Function.hasCFI()) {
340 Streamer.emitCFIStartProc(/*IsSimple=*/false);
341 if (Function.getPersonalityFunction() != nullptr)
342 Streamer.emitCFIPersonality(Function.getPersonalityFunction(),
343 Function.getPersonalityEncoding());
344 MCSymbol *LSDASymbol = Function.getLSDASymbol(FF.getFragmentNum());
345 if (LSDASymbol)
346 Streamer.emitCFILsda(LSDASymbol, BC.LSDAEncoding);
347 else
348 Streamer.emitCFILsda(0, dwarf::DW_EH_PE_omit);
349 // Emit CFI instructions relative to the CIE
350 for (const MCCFIInstruction &CFIInstr : Function.cie()) {
351 // Only write CIE CFI insns that LLVM will not already emit
352 const std::vector<MCCFIInstruction> &FrameInstrs =
353 MAI->getInitialFrameState();
354 if (!llvm::is_contained(FrameInstrs, CFIInstr))
355 emitCFIInstruction(CFIInstr);
359 assert((Function.empty() || !(*Function.begin()).isCold()) &&
360 "first basic block should never be cold");
362 // Emit UD2 at the beginning if requested by user.
363 if (!opts::BreakFunctionNames.empty()) {
364 for (std::string &Name : opts::BreakFunctionNames) {
365 if (Function.hasNameRegex(Name)) {
366 Streamer.emitIntValue(0x0B0F, 2); // UD2: 0F 0B
367 break;
372 // Emit code.
373 emitFunctionBody(Function, FF, /*EmitCodeOnly=*/false);
375 // Emit padding if requested.
376 if (size_t Padding = opts::padFunction(Function)) {
377 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: padding function " << Function << " with "
378 << Padding << " bytes\n");
379 Streamer.emitFill(Padding, MAI->getTextAlignFillValue());
382 if (opts::MarkFuncs)
383 Streamer.emitBytes(BC.MIB->getTrapFillValue());
385 // Emit CFI end
386 if (Function.hasCFI())
387 Streamer.emitCFIEndProc();
389 MCSymbol *EndSymbol = Function.getFunctionEndLabel(FF.getFragmentNum());
390 Streamer.emitLabel(EndSymbol);
392 if (MAI->hasDotTypeDotSizeDirective()) {
393 const MCExpr *SizeExpr = MCBinaryExpr::createSub(
394 MCSymbolRefExpr::create(EndSymbol, Context),
395 MCSymbolRefExpr::create(StartSymbol, Context), Context);
396 Streamer.emitELFSize(StartSymbol, SizeExpr);
399 if (opts::UpdateDebugSections && Function.getDWARFUnit())
400 emitLineInfoEnd(Function, EndSymbol);
402 // Exception handling info for the function.
403 emitLSDA(Function, FF);
405 if (FF.isMainFragment() && opts::JumpTables > JTS_NONE)
406 emitJumpTables(Function);
408 return true;
411 void BinaryEmitter::emitFunctionBody(BinaryFunction &BF, FunctionFragment &FF,
412 bool EmitCodeOnly) {
413 if (!EmitCodeOnly && FF.isSplitFragment() && BF.hasConstantIsland()) {
414 assert(BF.getLayout().isHotColdSplit() &&
415 "Constant island support only with hot/cold split");
416 BF.duplicateConstantIslands();
419 if (!FF.empty() && FF.front()->isLandingPad()) {
420 assert(!FF.front()->isEntryPoint() &&
421 "Landing pad cannot be entry point of function");
422 // If the first block of the fragment is a landing pad, it's offset from the
423 // start of the area that the corresponding LSDA describes is zero. In this
424 // case, the call site entries in that LSDA have 0 as offset to the landing
425 // pad, which the runtime interprets as "no handler". To prevent this,
426 // insert some padding.
427 Streamer.emitBytes(BC.MIB->getTrapFillValue());
430 // Track the first emitted instruction with debug info.
431 bool FirstInstr = true;
432 for (BinaryBasicBlock *const BB : FF) {
433 if ((opts::AlignBlocks || opts::PreserveBlocksAlignment) &&
434 BB->getAlignment() > 1)
435 Streamer.emitCodeAlignment(BB->getAlign(), &*BC.STI,
436 BB->getAlignmentMaxBytes());
437 Streamer.emitLabel(BB->getLabel());
438 if (!EmitCodeOnly) {
439 if (MCSymbol *EntrySymbol = BF.getSecondaryEntryPointSymbol(*BB))
440 Streamer.emitLabel(EntrySymbol);
443 SMLoc LastLocSeen;
444 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
445 MCInst &Instr = *I;
447 if (EmitCodeOnly && BC.MIB->isPseudo(Instr))
448 continue;
450 // Handle pseudo instructions.
451 if (BC.MIB->isCFI(Instr)) {
452 emitCFIInstruction(*BF.getCFIFor(Instr));
453 continue;
456 if (!EmitCodeOnly) {
457 // A symbol to be emitted before the instruction to mark its location.
458 MCSymbol *InstrLabel = BC.MIB->getInstLabel(Instr);
460 if (opts::UpdateDebugSections && BF.getDWARFUnit()) {
461 LastLocSeen = emitLineInfo(BF, Instr.getLoc(), LastLocSeen,
462 FirstInstr, InstrLabel);
463 FirstInstr = false;
466 // Prepare to tag this location with a label if we need to keep track of
467 // the location of calls/returns for BOLT address translation maps
468 if (BF.requiresAddressTranslation() && BC.MIB->getOffset(Instr)) {
469 const uint32_t Offset = *BC.MIB->getOffset(Instr);
470 if (!InstrLabel)
471 InstrLabel = BC.Ctx->createTempSymbol();
472 BB->getLocSyms().emplace_back(Offset, InstrLabel);
475 if (InstrLabel)
476 Streamer.emitLabel(InstrLabel);
479 // Emit sized NOPs via MCAsmBackend::writeNopData() interface on x86.
480 // This is a workaround for invalid NOPs handling by asm/disasm layer.
481 if (BC.isX86() && BC.MIB->isNoop(Instr)) {
482 if (std::optional<uint32_t> Size = BC.MIB->getSize(Instr)) {
483 SmallString<15> Code;
484 raw_svector_ostream VecOS(Code);
485 BC.MAB->writeNopData(VecOS, *Size, BC.STI.get());
486 Streamer.emitBytes(Code);
487 continue;
491 Streamer.emitInstruction(Instr, *BC.STI);
495 if (!EmitCodeOnly)
496 emitConstantIslands(BF, FF.isSplitFragment());
499 void BinaryEmitter::emitConstantIslands(BinaryFunction &BF, bool EmitColdPart,
500 BinaryFunction *OnBehalfOf) {
501 if (!BF.hasIslandsInfo())
502 return;
504 BinaryFunction::IslandInfo &Islands = BF.getIslandInfo();
505 if (Islands.DataOffsets.empty() && Islands.Dependency.empty())
506 return;
508 // AArch64 requires CI to be aligned to 8 bytes due to access instructions
509 // restrictions. E.g. the ldr with imm, where imm must be aligned to 8 bytes.
510 const uint16_t Alignment = OnBehalfOf
511 ? OnBehalfOf->getConstantIslandAlignment()
512 : BF.getConstantIslandAlignment();
513 Streamer.emitCodeAlignment(Align(Alignment), &*BC.STI);
515 if (!OnBehalfOf) {
516 if (!EmitColdPart)
517 Streamer.emitLabel(BF.getFunctionConstantIslandLabel());
518 else
519 Streamer.emitLabel(BF.getFunctionColdConstantIslandLabel());
522 assert((!OnBehalfOf || Islands.Proxies[OnBehalfOf].size() > 0) &&
523 "spurious OnBehalfOf constant island emission");
525 assert(!BF.isInjected() &&
526 "injected functions should not have constant islands");
527 // Raw contents of the function.
528 StringRef SectionContents = BF.getOriginSection()->getContents();
530 // Raw contents of the function.
531 StringRef FunctionContents = SectionContents.substr(
532 BF.getAddress() - BF.getOriginSection()->getAddress(), BF.getMaxSize());
534 if (opts::Verbosity && !OnBehalfOf)
535 BC.outs() << "BOLT-INFO: emitting constant island for function " << BF
536 << "\n";
538 // We split the island into smaller blocks and output labels between them.
539 auto IS = Islands.Offsets.begin();
540 for (auto DataIter = Islands.DataOffsets.begin();
541 DataIter != Islands.DataOffsets.end(); ++DataIter) {
542 uint64_t FunctionOffset = *DataIter;
543 uint64_t EndOffset = 0ULL;
545 // Determine size of this data chunk
546 auto NextData = std::next(DataIter);
547 auto CodeIter = Islands.CodeOffsets.lower_bound(*DataIter);
548 if (CodeIter == Islands.CodeOffsets.end() &&
549 NextData == Islands.DataOffsets.end())
550 EndOffset = BF.getMaxSize();
551 else if (CodeIter == Islands.CodeOffsets.end())
552 EndOffset = *NextData;
553 else if (NextData == Islands.DataOffsets.end())
554 EndOffset = *CodeIter;
555 else
556 EndOffset = (*CodeIter > *NextData) ? *NextData : *CodeIter;
558 if (FunctionOffset == EndOffset)
559 continue; // Size is zero, nothing to emit
561 auto emitCI = [&](uint64_t &FunctionOffset, uint64_t EndOffset) {
562 if (FunctionOffset >= EndOffset)
563 return;
565 for (auto It = Islands.Relocations.lower_bound(FunctionOffset);
566 It != Islands.Relocations.end(); ++It) {
567 if (It->first >= EndOffset)
568 break;
570 const Relocation &Relocation = It->second;
571 if (FunctionOffset < Relocation.Offset) {
572 Streamer.emitBytes(
573 FunctionContents.slice(FunctionOffset, Relocation.Offset));
574 FunctionOffset = Relocation.Offset;
577 LLVM_DEBUG(
578 dbgs() << "BOLT-DEBUG: emitting constant island relocation"
579 << " for " << BF << " at offset 0x"
580 << Twine::utohexstr(Relocation.Offset) << " with size "
581 << Relocation::getSizeForType(Relocation.Type) << '\n');
583 FunctionOffset += Relocation.emit(&Streamer);
586 assert(FunctionOffset <= EndOffset && "overflow error");
587 if (FunctionOffset < EndOffset) {
588 Streamer.emitBytes(FunctionContents.slice(FunctionOffset, EndOffset));
589 FunctionOffset = EndOffset;
593 // Emit labels, relocs and data
594 while (IS != Islands.Offsets.end() && IS->first < EndOffset) {
595 auto NextLabelOffset =
596 IS == Islands.Offsets.end() ? EndOffset : IS->first;
597 auto NextStop = std::min(NextLabelOffset, EndOffset);
598 assert(NextStop <= EndOffset && "internal overflow error");
599 emitCI(FunctionOffset, NextStop);
600 if (IS != Islands.Offsets.end() && FunctionOffset == IS->first) {
601 // This is a slightly complex code to decide which label to emit. We
602 // have 4 cases to handle: regular symbol, cold symbol, regular or cold
603 // symbol being emitted on behalf of an external function.
604 if (!OnBehalfOf) {
605 if (!EmitColdPart) {
606 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label "
607 << IS->second->getName() << " at offset 0x"
608 << Twine::utohexstr(IS->first) << '\n');
609 if (IS->second->isUndefined())
610 Streamer.emitLabel(IS->second);
611 else
612 assert(BF.hasName(std::string(IS->second->getName())));
613 } else if (Islands.ColdSymbols.count(IS->second) != 0) {
614 LLVM_DEBUG(dbgs()
615 << "BOLT-DEBUG: emitted label "
616 << Islands.ColdSymbols[IS->second]->getName() << '\n');
617 if (Islands.ColdSymbols[IS->second]->isUndefined())
618 Streamer.emitLabel(Islands.ColdSymbols[IS->second]);
620 } else {
621 if (!EmitColdPart) {
622 if (MCSymbol *Sym = Islands.Proxies[OnBehalfOf][IS->second]) {
623 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label "
624 << Sym->getName() << '\n');
625 Streamer.emitLabel(Sym);
627 } else if (MCSymbol *Sym =
628 Islands.ColdProxies[OnBehalfOf][IS->second]) {
629 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " << Sym->getName()
630 << '\n');
631 Streamer.emitLabel(Sym);
634 ++IS;
637 assert(FunctionOffset <= EndOffset && "overflow error");
638 emitCI(FunctionOffset, EndOffset);
640 assert(IS == Islands.Offsets.end() && "some symbols were not emitted!");
642 if (OnBehalfOf)
643 return;
644 // Now emit constant islands from other functions that we may have used in
645 // this function.
646 for (BinaryFunction *ExternalFunc : Islands.Dependency)
647 emitConstantIslands(*ExternalFunc, EmitColdPart, &BF);
650 SMLoc BinaryEmitter::emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc,
651 SMLoc PrevLoc, bool FirstInstr,
652 MCSymbol *&InstrLabel) {
653 DWARFUnit *FunctionCU = BF.getDWARFUnit();
654 const DWARFDebugLine::LineTable *FunctionLineTable = BF.getDWARFLineTable();
655 assert(FunctionCU && "cannot emit line info for function without CU");
657 DebugLineTableRowRef RowReference = DebugLineTableRowRef::fromSMLoc(NewLoc);
659 // Check if no new line info needs to be emitted.
660 if (RowReference == DebugLineTableRowRef::NULL_ROW ||
661 NewLoc.getPointer() == PrevLoc.getPointer())
662 return PrevLoc;
664 unsigned CurrentFilenum = 0;
665 const DWARFDebugLine::LineTable *CurrentLineTable = FunctionLineTable;
667 // If the CU id from the current instruction location does not
668 // match the CU id from the current function, it means that we
669 // have come across some inlined code. We must look up the CU
670 // for the instruction's original function and get the line table
671 // from that.
672 const uint64_t FunctionUnitIndex = FunctionCU->getOffset();
673 const uint32_t CurrentUnitIndex = RowReference.DwCompileUnitIndex;
674 if (CurrentUnitIndex != FunctionUnitIndex) {
675 CurrentLineTable = BC.DwCtx->getLineTableForUnit(
676 BC.DwCtx->getCompileUnitForOffset(CurrentUnitIndex));
677 // Add filename from the inlined function to the current CU.
678 CurrentFilenum = BC.addDebugFilenameToUnit(
679 FunctionUnitIndex, CurrentUnitIndex,
680 CurrentLineTable->Rows[RowReference.RowIndex - 1].File);
683 const DWARFDebugLine::Row &CurrentRow =
684 CurrentLineTable->Rows[RowReference.RowIndex - 1];
685 if (!CurrentFilenum)
686 CurrentFilenum = CurrentRow.File;
688 unsigned Flags = (DWARF2_FLAG_IS_STMT * CurrentRow.IsStmt) |
689 (DWARF2_FLAG_BASIC_BLOCK * CurrentRow.BasicBlock) |
690 (DWARF2_FLAG_PROLOGUE_END * CurrentRow.PrologueEnd) |
691 (DWARF2_FLAG_EPILOGUE_BEGIN * CurrentRow.EpilogueBegin);
693 // Always emit is_stmt at the beginning of function fragment.
694 if (FirstInstr)
695 Flags |= DWARF2_FLAG_IS_STMT;
697 BC.Ctx->setCurrentDwarfLoc(CurrentFilenum, CurrentRow.Line, CurrentRow.Column,
698 Flags, CurrentRow.Isa, CurrentRow.Discriminator);
699 const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc();
700 BC.Ctx->clearDwarfLocSeen();
702 if (!InstrLabel)
703 InstrLabel = BC.Ctx->createTempSymbol();
705 BC.getDwarfLineTable(FunctionUnitIndex)
706 .getMCLineSections()
707 .addLineEntry(MCDwarfLineEntry(InstrLabel, DwarfLoc),
708 Streamer.getCurrentSectionOnly());
710 return NewLoc;
713 void BinaryEmitter::emitLineInfoEnd(const BinaryFunction &BF,
714 MCSymbol *FunctionEndLabel) {
715 DWARFUnit *FunctionCU = BF.getDWARFUnit();
716 assert(FunctionCU && "DWARF unit expected");
717 BC.Ctx->setCurrentDwarfLoc(0, 0, 0, DWARF2_FLAG_END_SEQUENCE, 0, 0);
718 const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc();
719 BC.Ctx->clearDwarfLocSeen();
720 BC.getDwarfLineTable(FunctionCU->getOffset())
721 .getMCLineSections()
722 .addLineEntry(MCDwarfLineEntry(FunctionEndLabel, DwarfLoc),
723 Streamer.getCurrentSectionOnly());
726 void BinaryEmitter::emitJumpTables(const BinaryFunction &BF) {
727 MCSection *ReadOnlySection = BC.MOFI->getReadOnlySection();
728 MCSection *ReadOnlyColdSection = BC.MOFI->getContext().getELFSection(
729 ".rodata.cold", ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
731 if (!BF.hasJumpTables())
732 return;
734 if (opts::PrintJumpTables)
735 BC.outs() << "BOLT-INFO: jump tables for function " << BF << ":\n";
737 for (auto &JTI : BF.jumpTables()) {
738 JumpTable &JT = *JTI.second;
739 // Only emit shared jump tables once, when processing the first parent
740 if (JT.Parents.size() > 1 && JT.Parents[0] != &BF)
741 continue;
742 if (opts::PrintJumpTables)
743 JT.print(BC.outs());
744 if (opts::JumpTables == JTS_BASIC && BC.HasRelocations) {
745 JT.updateOriginal();
746 } else {
747 MCSection *HotSection, *ColdSection;
748 if (opts::JumpTables == JTS_BASIC) {
749 // In non-relocation mode we have to emit jump tables in local sections.
750 // This way we only overwrite them when the corresponding function is
751 // overwritten.
752 std::string Name = ".local." + JT.Labels[0]->getName().str();
753 std::replace(Name.begin(), Name.end(), '/', '.');
754 BinarySection &Section =
755 BC.registerOrUpdateSection(Name, ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
756 Section.setAnonymous(true);
757 JT.setOutputSection(Section);
758 HotSection = BC.getDataSection(Name);
759 ColdSection = HotSection;
760 } else {
761 if (BF.isSimple()) {
762 HotSection = ReadOnlySection;
763 ColdSection = ReadOnlyColdSection;
764 } else {
765 HotSection = BF.hasProfile() ? ReadOnlySection : ReadOnlyColdSection;
766 ColdSection = HotSection;
769 emitJumpTable(JT, HotSection, ColdSection);
774 void BinaryEmitter::emitJumpTable(const JumpTable &JT, MCSection *HotSection,
775 MCSection *ColdSection) {
776 // Pre-process entries for aggressive splitting.
777 // Each label represents a separate switch table and gets its own count
778 // determining its destination.
779 std::map<MCSymbol *, uint64_t> LabelCounts;
780 if (opts::JumpTables > JTS_SPLIT && !JT.Counts.empty()) {
781 auto It = JT.Labels.find(0);
782 assert(It != JT.Labels.end());
783 MCSymbol *CurrentLabel = It->second;
784 uint64_t CurrentLabelCount = 0;
785 for (unsigned Index = 0; Index < JT.Entries.size(); ++Index) {
786 auto LI = JT.Labels.find(Index * JT.EntrySize);
787 if (LI != JT.Labels.end()) {
788 LabelCounts[CurrentLabel] = CurrentLabelCount;
789 CurrentLabel = LI->second;
790 CurrentLabelCount = 0;
792 CurrentLabelCount += JT.Counts[Index].Count;
794 LabelCounts[CurrentLabel] = CurrentLabelCount;
795 } else {
796 Streamer.switchSection(JT.Count > 0 ? HotSection : ColdSection);
797 Streamer.emitValueToAlignment(Align(JT.EntrySize));
799 MCSymbol *LastLabel = nullptr;
800 uint64_t Offset = 0;
801 for (MCSymbol *Entry : JT.Entries) {
802 auto LI = JT.Labels.find(Offset);
803 if (LI != JT.Labels.end()) {
804 LLVM_DEBUG({
805 dbgs() << "BOLT-DEBUG: emitting jump table " << LI->second->getName()
806 << " (originally was at address 0x"
807 << Twine::utohexstr(JT.getAddress() + Offset)
808 << (Offset ? ") as part of larger jump table\n" : ")\n");
810 if (!LabelCounts.empty()) {
811 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump table count: "
812 << LabelCounts[LI->second] << '\n');
813 if (LabelCounts[LI->second] > 0)
814 Streamer.switchSection(HotSection);
815 else
816 Streamer.switchSection(ColdSection);
817 Streamer.emitValueToAlignment(Align(JT.EntrySize));
819 // Emit all labels registered at the address of this jump table
820 // to sync with our global symbol table. We may have two labels
821 // registered at this address if one label was created via
822 // getOrCreateGlobalSymbol() (e.g. LEA instructions referencing
823 // this location) and another via getOrCreateJumpTable(). This
824 // creates a race where the symbols created by these two
825 // functions may or may not be the same, but they are both
826 // registered in our symbol table at the same address. By
827 // emitting them all here we make sure there is no ambiguity
828 // that depends on the order that these symbols were created, so
829 // whenever this address is referenced in the binary, it is
830 // certain to point to the jump table identified at this
831 // address.
832 if (BinaryData *BD = BC.getBinaryDataByName(LI->second->getName())) {
833 for (MCSymbol *S : BD->getSymbols())
834 Streamer.emitLabel(S);
835 } else {
836 Streamer.emitLabel(LI->second);
838 LastLabel = LI->second;
840 if (JT.Type == JumpTable::JTT_NORMAL) {
841 Streamer.emitSymbolValue(Entry, JT.OutputEntrySize);
842 } else { // JTT_PIC
843 const MCSymbolRefExpr *JTExpr =
844 MCSymbolRefExpr::create(LastLabel, Streamer.getContext());
845 const MCSymbolRefExpr *E =
846 MCSymbolRefExpr::create(Entry, Streamer.getContext());
847 const MCBinaryExpr *Value =
848 MCBinaryExpr::createSub(E, JTExpr, Streamer.getContext());
849 Streamer.emitValue(Value, JT.EntrySize);
851 Offset += JT.EntrySize;
855 void BinaryEmitter::emitCFIInstruction(const MCCFIInstruction &Inst) const {
856 switch (Inst.getOperation()) {
857 default:
858 llvm_unreachable("Unexpected instruction");
859 case MCCFIInstruction::OpDefCfaOffset:
860 Streamer.emitCFIDefCfaOffset(Inst.getOffset());
861 break;
862 case MCCFIInstruction::OpAdjustCfaOffset:
863 Streamer.emitCFIAdjustCfaOffset(Inst.getOffset());
864 break;
865 case MCCFIInstruction::OpDefCfa:
866 Streamer.emitCFIDefCfa(Inst.getRegister(), Inst.getOffset());
867 break;
868 case MCCFIInstruction::OpDefCfaRegister:
869 Streamer.emitCFIDefCfaRegister(Inst.getRegister());
870 break;
871 case MCCFIInstruction::OpOffset:
872 Streamer.emitCFIOffset(Inst.getRegister(), Inst.getOffset());
873 break;
874 case MCCFIInstruction::OpRegister:
875 Streamer.emitCFIRegister(Inst.getRegister(), Inst.getRegister2());
876 break;
877 case MCCFIInstruction::OpWindowSave:
878 Streamer.emitCFIWindowSave();
879 break;
880 case MCCFIInstruction::OpNegateRAState:
881 Streamer.emitCFINegateRAState();
882 break;
883 case MCCFIInstruction::OpSameValue:
884 Streamer.emitCFISameValue(Inst.getRegister());
885 break;
886 case MCCFIInstruction::OpGnuArgsSize:
887 Streamer.emitCFIGnuArgsSize(Inst.getOffset());
888 break;
889 case MCCFIInstruction::OpEscape:
890 Streamer.AddComment(Inst.getComment());
891 Streamer.emitCFIEscape(Inst.getValues());
892 break;
893 case MCCFIInstruction::OpRestore:
894 Streamer.emitCFIRestore(Inst.getRegister());
895 break;
896 case MCCFIInstruction::OpUndefined:
897 Streamer.emitCFIUndefined(Inst.getRegister());
898 break;
902 // The code is based on EHStreamer::emitExceptionTable().
903 void BinaryEmitter::emitLSDA(BinaryFunction &BF, const FunctionFragment &FF) {
904 const BinaryFunction::CallSitesRange Sites =
905 BF.getCallSites(FF.getFragmentNum());
906 if (Sites.empty())
907 return;
909 // Calculate callsite table size. Size of each callsite entry is:
911 // sizeof(start) + sizeof(length) + sizeof(LP) + sizeof(uleb128(action))
913 // or
915 // sizeof(dwarf::DW_EH_PE_data4) * 3 + sizeof(uleb128(action))
916 uint64_t CallSiteTableLength = llvm::size(Sites) * 4 * 3;
917 for (const auto &FragmentCallSite : Sites)
918 CallSiteTableLength += getULEB128Size(FragmentCallSite.second.Action);
920 Streamer.switchSection(BC.MOFI->getLSDASection());
922 const unsigned TTypeEncoding = BF.getLSDATypeEncoding();
923 const unsigned TTypeEncodingSize = BC.getDWARFEncodingSize(TTypeEncoding);
924 const uint16_t TTypeAlignment = 4;
926 // Type tables have to be aligned at 4 bytes.
927 Streamer.emitValueToAlignment(Align(TTypeAlignment));
929 // Emit the LSDA label.
930 MCSymbol *LSDASymbol = BF.getLSDASymbol(FF.getFragmentNum());
931 assert(LSDASymbol && "no LSDA symbol set");
932 Streamer.emitLabel(LSDASymbol);
934 // Corresponding FDE start.
935 const MCSymbol *StartSymbol = BF.getSymbol(FF.getFragmentNum());
937 // Emit the LSDA header.
939 // If LPStart is omitted, then the start of the FDE is used as a base for
940 // landing pad displacements. Then if a cold fragment starts with
941 // a landing pad, this means that the first landing pad offset will be 0.
942 // As a result, the exception handling runtime will ignore this landing pad
943 // because zero offset denotes the absence of a landing pad.
944 // For this reason, when the binary has fixed starting address we emit LPStart
945 // as 0 and output the absolute value of the landing pad in the table.
947 // If the base address can change, we cannot use absolute addresses for
948 // landing pads (at least not without runtime relocations). Hence, we fall
949 // back to emitting landing pads relative to the FDE start.
950 // As we are emitting label differences, we have to guarantee both labels are
951 // defined in the same section and hence cannot place the landing pad into a
952 // cold fragment when the corresponding call site is in the hot fragment.
953 // Because of this issue and the previously described issue of possible
954 // zero-offset landing pad we have to place landing pads in the same section
955 // as the corresponding invokes for shared objects.
956 std::function<void(const MCSymbol *)> emitLandingPad;
957 if (BC.HasFixedLoadAddress) {
958 Streamer.emitIntValue(dwarf::DW_EH_PE_udata4, 1); // LPStart format
959 Streamer.emitIntValue(0, 4); // LPStart
960 emitLandingPad = [&](const MCSymbol *LPSymbol) {
961 if (!LPSymbol)
962 Streamer.emitIntValue(0, 4);
963 else
964 Streamer.emitSymbolValue(LPSymbol, 4);
966 } else {
967 Streamer.emitIntValue(dwarf::DW_EH_PE_omit, 1); // LPStart format
968 emitLandingPad = [&](const MCSymbol *LPSymbol) {
969 if (!LPSymbol)
970 Streamer.emitIntValue(0, 4);
971 else
972 Streamer.emitAbsoluteSymbolDiff(LPSymbol, StartSymbol, 4);
976 Streamer.emitIntValue(TTypeEncoding, 1); // TType format
978 // See the comment in EHStreamer::emitExceptionTable() on to use
979 // uleb128 encoding (which can use variable number of bytes to encode the same
980 // value) to ensure type info table is properly aligned at 4 bytes without
981 // iteratively fixing sizes of the tables.
982 unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength);
983 unsigned TTypeBaseOffset =
984 sizeof(int8_t) + // Call site format
985 CallSiteTableLengthSize + // Call site table length size
986 CallSiteTableLength + // Call site table length
987 BF.getLSDAActionTable().size() + // Actions table size
988 BF.getLSDATypeTable().size() * TTypeEncodingSize; // Types table size
989 unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset);
990 unsigned TotalSize = sizeof(int8_t) + // LPStart format
991 sizeof(int8_t) + // TType format
992 TTypeBaseOffsetSize + // TType base offset size
993 TTypeBaseOffset; // TType base offset
994 unsigned SizeAlign = (4 - TotalSize) & 3;
996 if (TTypeEncoding != dwarf::DW_EH_PE_omit)
997 // Account for any extra padding that will be added to the call site table
998 // length.
999 Streamer.emitULEB128IntValue(TTypeBaseOffset,
1000 /*PadTo=*/TTypeBaseOffsetSize + SizeAlign);
1002 // Emit the landing pad call site table. We use signed data4 since we can emit
1003 // a landing pad in a different part of the split function that could appear
1004 // earlier in the address space than LPStart.
1005 Streamer.emitIntValue(dwarf::DW_EH_PE_sdata4, 1);
1006 Streamer.emitULEB128IntValue(CallSiteTableLength);
1008 for (const auto &FragmentCallSite : Sites) {
1009 const BinaryFunction::CallSite &CallSite = FragmentCallSite.second;
1010 const MCSymbol *BeginLabel = CallSite.Start;
1011 const MCSymbol *EndLabel = CallSite.End;
1013 assert(BeginLabel && "start EH label expected");
1014 assert(EndLabel && "end EH label expected");
1016 // Start of the range is emitted relative to the start of current
1017 // function split part.
1018 Streamer.emitAbsoluteSymbolDiff(BeginLabel, StartSymbol, 4);
1019 Streamer.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
1020 emitLandingPad(CallSite.LP);
1021 Streamer.emitULEB128IntValue(CallSite.Action);
1024 // Write out action, type, and type index tables at the end.
1026 // For action and type index tables there's no need to change the original
1027 // table format unless we are doing function splitting, in which case we can
1028 // split and optimize the tables.
1030 // For type table we (re-)encode the table using TTypeEncoding matching
1031 // the current assembler mode.
1032 for (uint8_t const &Byte : BF.getLSDAActionTable())
1033 Streamer.emitIntValue(Byte, 1);
1035 const BinaryFunction::LSDATypeTableTy &TypeTable =
1036 (TTypeEncoding & dwarf::DW_EH_PE_indirect) ? BF.getLSDATypeAddressTable()
1037 : BF.getLSDATypeTable();
1038 assert(TypeTable.size() == BF.getLSDATypeTable().size() &&
1039 "indirect type table size mismatch");
1041 for (int Index = TypeTable.size() - 1; Index >= 0; --Index) {
1042 const uint64_t TypeAddress = TypeTable[Index];
1043 switch (TTypeEncoding & 0x70) {
1044 default:
1045 llvm_unreachable("unsupported TTypeEncoding");
1046 case dwarf::DW_EH_PE_absptr:
1047 Streamer.emitIntValue(TypeAddress, TTypeEncodingSize);
1048 break;
1049 case dwarf::DW_EH_PE_pcrel: {
1050 if (TypeAddress) {
1051 const MCSymbol *TypeSymbol =
1052 BC.getOrCreateGlobalSymbol(TypeAddress, "TI", 0, TTypeAlignment);
1053 MCSymbol *DotSymbol = BC.Ctx->createNamedTempSymbol();
1054 Streamer.emitLabel(DotSymbol);
1055 const MCBinaryExpr *SubDotExpr = MCBinaryExpr::createSub(
1056 MCSymbolRefExpr::create(TypeSymbol, *BC.Ctx),
1057 MCSymbolRefExpr::create(DotSymbol, *BC.Ctx), *BC.Ctx);
1058 Streamer.emitValue(SubDotExpr, TTypeEncodingSize);
1059 } else {
1060 Streamer.emitIntValue(0, TTypeEncodingSize);
1062 break;
1066 for (uint8_t const &Byte : BF.getLSDATypeIndexTable())
1067 Streamer.emitIntValue(Byte, 1);
1070 void BinaryEmitter::emitDebugLineInfoForOriginalFunctions() {
1071 // If a function is in a CU containing at least one processed function, we
1072 // have to rewrite the whole line table for that CU. For unprocessed functions
1073 // we use data from the input line table.
1074 for (auto &It : BC.getBinaryFunctions()) {
1075 const BinaryFunction &Function = It.second;
1077 // If the function was emitted, its line info was emitted with it.
1078 if (Function.isEmitted())
1079 continue;
1081 const DWARFDebugLine::LineTable *LineTable = Function.getDWARFLineTable();
1082 if (!LineTable)
1083 continue; // nothing to update for this function
1085 const uint64_t Address = Function.getAddress();
1086 std::vector<uint32_t> Results;
1087 if (!LineTable->lookupAddressRange(
1088 {Address, object::SectionedAddress::UndefSection},
1089 Function.getSize(), Results))
1090 continue;
1092 if (Results.empty())
1093 continue;
1095 // The first row returned could be the last row matching the start address.
1096 // Find the first row with the same address that is not the end of the
1097 // sequence.
1098 uint64_t FirstRow = Results.front();
1099 while (FirstRow > 0) {
1100 const DWARFDebugLine::Row &PrevRow = LineTable->Rows[FirstRow - 1];
1101 if (PrevRow.Address.Address != Address || PrevRow.EndSequence)
1102 break;
1103 --FirstRow;
1106 const uint64_t EndOfSequenceAddress =
1107 Function.getAddress() + Function.getMaxSize();
1108 BC.getDwarfLineTable(Function.getDWARFUnit()->getOffset())
1109 .addLineTableSequence(LineTable, FirstRow, Results.back(),
1110 EndOfSequenceAddress);
1113 // For units that are completely unprocessed, use original debug line contents
1114 // eliminating the need to regenerate line info program.
1115 emitDebugLineInfoForUnprocessedCUs();
1118 void BinaryEmitter::emitDebugLineInfoForUnprocessedCUs() {
1119 // Sorted list of section offsets provides boundaries for section fragments,
1120 // where each fragment is the unit's contribution to debug line section.
1121 std::vector<uint64_t> StmtListOffsets;
1122 StmtListOffsets.reserve(BC.DwCtx->getNumCompileUnits());
1123 for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) {
1124 DWARFDie CUDie = CU->getUnitDIE();
1125 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
1126 if (!StmtList)
1127 continue;
1129 StmtListOffsets.push_back(*StmtList);
1131 llvm::sort(StmtListOffsets);
1133 // For each CU that was not processed, emit its line info as a binary blob.
1134 for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) {
1135 if (BC.ProcessedCUs.count(CU.get()))
1136 continue;
1138 DWARFDie CUDie = CU->getUnitDIE();
1139 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
1140 if (!StmtList)
1141 continue;
1143 StringRef DebugLineContents = CU->getLineSection().Data;
1145 const uint64_t Begin = *StmtList;
1147 // Statement list ends where the next unit contribution begins, or at the
1148 // end of the section.
1149 auto It = llvm::upper_bound(StmtListOffsets, Begin);
1150 const uint64_t End =
1151 It == StmtListOffsets.end() ? DebugLineContents.size() : *It;
1153 BC.getDwarfLineTable(CU->getOffset())
1154 .addRawContents(DebugLineContents.slice(Begin, End));
1158 void BinaryEmitter::emitDataSections(StringRef OrgSecPrefix) {
1159 for (BinarySection &Section : BC.sections()) {
1160 if (!Section.hasRelocations())
1161 continue;
1163 StringRef Prefix = Section.hasSectionRef() ? OrgSecPrefix : "";
1164 Section.emitAsData(Streamer, Prefix + Section.getName());
1165 Section.clearRelocations();
1169 namespace llvm {
1170 namespace bolt {
1172 void emitBinaryContext(MCStreamer &Streamer, BinaryContext &BC,
1173 StringRef OrgSecPrefix) {
1174 BinaryEmitter(Streamer, BC).emitAll(OrgSecPrefix);
1177 void emitFunctionBody(MCStreamer &Streamer, BinaryFunction &BF,
1178 FunctionFragment &FF, bool EmitCodeOnly) {
1179 BinaryEmitter(Streamer, BF.getBinaryContext())
1180 .emitFunctionBody(BF, FF, EmitCodeOnly);
1183 } // namespace bolt
1184 } // namespace llvm