1 //===- bolt/Core/BinaryEmitter.cpp - Emit code and data -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the collection of functions and classes used for
10 // emission of code and data into object/binary file.
12 //===----------------------------------------------------------------------===//
14 #include "bolt/Core/BinaryEmitter.h"
15 #include "bolt/Core/BinaryContext.h"
16 #include "bolt/Core/BinaryFunction.h"
17 #include "bolt/Core/DebugData.h"
18 #include "bolt/Core/FunctionLayout.h"
19 #include "bolt/Utils/CommandLineOpts.h"
20 #include "bolt/Utils/Utils.h"
21 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
22 #include "llvm/MC/MCSection.h"
23 #include "llvm/MC/MCStreamer.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/LEB128.h"
26 #include "llvm/Support/SMLoc.h"
28 #define DEBUG_TYPE "bolt"
35 extern cl::opt
<JumpTableSupportLevel
> JumpTables
;
36 extern cl::opt
<bool> PreserveBlocksAlignment
;
38 cl::opt
<bool> AlignBlocks("align-blocks", cl::desc("align basic blocks"),
39 cl::cat(BoltOptCategory
));
41 static cl::list
<std::string
>
42 BreakFunctionNames("break-funcs",
44 cl::desc("list of functions to core dump on (debugging)"),
45 cl::value_desc("func1,func2,func3,..."),
47 cl::cat(BoltCategory
));
49 static cl::list
<std::string
>
50 FunctionPadSpec("pad-funcs",
52 cl::desc("list of functions to pad with amount of bytes"),
53 cl::value_desc("func1:pad1,func2:pad2,func3:pad3,..."),
55 cl::cat(BoltCategory
));
57 static cl::opt
<bool> MarkFuncs(
59 cl::desc("mark function boundaries with break instruction to make "
60 "sure we accidentally don't cross them"),
61 cl::ReallyHidden
, cl::cat(BoltCategory
));
63 static cl::opt
<bool> PrintJumpTables("print-jump-tables",
64 cl::desc("print jump tables"), cl::Hidden
,
65 cl::cat(BoltCategory
));
68 X86AlignBranchBoundaryHotOnly("x86-align-branch-boundary-hot-only",
69 cl::desc("only apply branch boundary alignment in hot code"),
71 cl::cat(BoltOptCategory
));
73 size_t padFunction(const BinaryFunction
&Function
) {
74 static std::map
<std::string
, size_t> FunctionPadding
;
76 if (FunctionPadding
.empty() && !FunctionPadSpec
.empty()) {
77 for (std::string
&Spec
: FunctionPadSpec
) {
78 size_t N
= Spec
.find(':');
79 if (N
== std::string::npos
)
81 std::string Name
= Spec
.substr(0, N
);
82 size_t Padding
= std::stoull(Spec
.substr(N
+ 1));
83 FunctionPadding
[Name
] = Padding
;
87 for (auto &FPI
: FunctionPadding
) {
88 std::string Name
= FPI
.first
;
89 size_t Padding
= FPI
.second
;
90 if (Function
.hasNameRegex(Name
))
100 using JumpTable
= bolt::JumpTable
;
102 class BinaryEmitter
{
104 BinaryEmitter(const BinaryEmitter
&) = delete;
105 BinaryEmitter
&operator=(const BinaryEmitter
&) = delete;
107 MCStreamer
&Streamer
;
111 BinaryEmitter(MCStreamer
&Streamer
, BinaryContext
&BC
)
112 : Streamer(Streamer
), BC(BC
) {}
114 /// Emit all code and data.
115 void emitAll(StringRef OrgSecPrefix
);
117 /// Emit function code. The caller is responsible for emitting function
118 /// symbol(s) and setting the section to emit the code to.
119 void emitFunctionBody(BinaryFunction
&BF
, FunctionFragment
&FF
,
120 bool EmitCodeOnly
= false);
123 /// Emit function code.
124 void emitFunctions();
126 /// Emit a single function.
127 bool emitFunction(BinaryFunction
&BF
, FunctionFragment
&FF
);
129 /// Helper for emitFunctionBody to write data inside a function
130 /// (used for AArch64)
131 void emitConstantIslands(BinaryFunction
&BF
, bool EmitColdPart
,
132 BinaryFunction
*OnBehalfOf
= nullptr);
134 /// Emit jump tables for the function.
135 void emitJumpTables(const BinaryFunction
&BF
);
137 /// Emit jump table data. Callee supplies sections for the data.
138 void emitJumpTable(const JumpTable
&JT
, MCSection
*HotSection
,
139 MCSection
*ColdSection
);
141 void emitCFIInstruction(const MCCFIInstruction
&Inst
) const;
143 /// Emit exception handling ranges for the function.
144 void emitLSDA(BinaryFunction
&BF
, const FunctionFragment
&FF
);
146 /// Emit line number information corresponding to \p NewLoc. \p PrevLoc
147 /// provides a context for de-duplication of line number info.
148 /// \p FirstInstr indicates if \p NewLoc represents the first instruction
149 /// in a sequence, such as a function fragment.
151 /// If \p NewLoc location matches \p PrevLoc, no new line number entry will be
152 /// created and the function will return \p PrevLoc while \p InstrLabel will
153 /// be ignored. Otherwise, the caller should use \p InstrLabel to mark the
154 /// corresponding instruction by emitting \p InstrLabel before it.
155 /// If \p InstrLabel is set by the caller, its value will be used with \p
156 /// \p NewLoc. If it was nullptr on entry, it will be populated with a pointer
157 /// to a new temp symbol used with \p NewLoc.
159 /// Return new current location which is either \p NewLoc or \p PrevLoc.
160 SMLoc
emitLineInfo(const BinaryFunction
&BF
, SMLoc NewLoc
, SMLoc PrevLoc
,
161 bool FirstInstr
, MCSymbol
*&InstrLabel
);
163 /// Use \p FunctionEndSymbol to mark the end of the line info sequence.
164 /// Note that it does not automatically result in the insertion of the EOS
165 /// marker in the line table program, but provides one to the DWARF generator
166 /// when it needs it.
167 void emitLineInfoEnd(const BinaryFunction
&BF
, MCSymbol
*FunctionEndSymbol
);
169 /// Emit debug line info for unprocessed functions from CUs that include
170 /// emitted functions.
171 void emitDebugLineInfoForOriginalFunctions();
173 /// Emit debug line for CUs that were not modified.
174 void emitDebugLineInfoForUnprocessedCUs();
176 /// Emit data sections that have code references in them.
177 void emitDataSections(StringRef OrgSecPrefix
);
180 } // anonymous namespace
182 void BinaryEmitter::emitAll(StringRef OrgSecPrefix
) {
183 Streamer
.initSections(false, *BC
.STI
);
184 Streamer
.setUseAssemblerInfoForParsing(false);
186 if (opts::UpdateDebugSections
&& BC
.isELF()) {
187 // Force the emission of debug line info into allocatable section to ensure
188 // JITLink will process it.
190 // NB: on MachO all sections are required for execution, hence no need
191 // to change flags/attributes.
192 MCSectionELF
*ELFDwarfLineSection
=
193 static_cast<MCSectionELF
*>(BC
.MOFI
->getDwarfLineSection());
194 ELFDwarfLineSection
->setFlags(ELF::SHF_ALLOC
);
195 MCSectionELF
*ELFDwarfLineStrSection
=
196 static_cast<MCSectionELF
*>(BC
.MOFI
->getDwarfLineStrSection());
197 ELFDwarfLineStrSection
->setFlags(ELF::SHF_ALLOC
);
200 if (RuntimeLibrary
*RtLibrary
= BC
.getRuntimeLibrary())
201 RtLibrary
->emitBinary(BC
, Streamer
);
203 BC
.getTextSection()->setAlignment(Align(opts::AlignText
));
207 if (opts::UpdateDebugSections
) {
208 emitDebugLineInfoForOriginalFunctions();
209 DwarfLineTable::emit(BC
, Streamer
);
212 emitDataSections(OrgSecPrefix
);
214 // TODO Enable for Mach-O once BinaryContext::getDataSection supports it.
216 AddressMap::emit(Streamer
, BC
);
217 Streamer
.setUseAssemblerInfoForParsing(true);
220 void BinaryEmitter::emitFunctions() {
221 auto emit
= [&](const std::vector
<BinaryFunction
*> &Functions
) {
222 const bool HasProfile
= BC
.NumProfiledFuncs
> 0;
223 const bool OriginalAllowAutoPadding
= Streamer
.getAllowAutoPadding();
224 for (BinaryFunction
*Function
: Functions
) {
225 if (!BC
.shouldEmit(*Function
))
228 LLVM_DEBUG(dbgs() << "BOLT: generating code for function \"" << *Function
229 << "\" : " << Function
->getFunctionNumber() << '\n');
231 // Was any part of the function emitted.
232 bool Emitted
= false;
234 // Turn off Intel JCC Erratum mitigation for cold code if requested
235 if (HasProfile
&& opts::X86AlignBranchBoundaryHotOnly
&&
236 !Function
->hasValidProfile())
237 Streamer
.setAllowAutoPadding(false);
239 FunctionLayout
&Layout
= Function
->getLayout();
240 Emitted
|= emitFunction(*Function
, Layout
.getMainFragment());
242 if (Function
->isSplit()) {
243 if (opts::X86AlignBranchBoundaryHotOnly
)
244 Streamer
.setAllowAutoPadding(false);
246 assert((Layout
.fragment_size() == 1 || Function
->isSimple()) &&
247 "Only simple functions can have fragments");
248 for (FunctionFragment
&FF
: Layout
.getSplitFragments()) {
249 // Skip empty fragments so no symbols and sections for empty fragments
251 if (FF
.empty() && !Function
->hasConstantIsland())
253 Emitted
|= emitFunction(*Function
, FF
);
257 Streamer
.setAllowAutoPadding(OriginalAllowAutoPadding
);
260 Function
->setEmitted(/*KeepCFG=*/opts::PrintCacheMetrics
);
264 // Mark the start of hot text.
266 Streamer
.switchSection(BC
.getTextSection());
267 Streamer
.emitLabel(BC
.getHotTextStartSymbol());
270 // Emit functions in sorted order.
271 std::vector
<BinaryFunction
*> SortedFunctions
= BC
.getSortedFunctions();
272 emit(SortedFunctions
);
274 // Emit functions added by BOLT.
275 emit(BC
.getInjectedBinaryFunctions());
277 // Mark the end of hot text.
279 if (BC
.HasWarmSection
)
280 Streamer
.switchSection(BC
.getCodeSection(BC
.getWarmCodeSectionName()));
282 Streamer
.switchSection(BC
.getTextSection());
283 Streamer
.emitLabel(BC
.getHotTextEndSymbol());
287 bool BinaryEmitter::emitFunction(BinaryFunction
&Function
,
288 FunctionFragment
&FF
) {
289 if (Function
.size() == 0 && !Function
.hasIslandsInfo())
292 if (Function
.getState() == BinaryFunction::State::Empty
)
295 // Avoid emitting function without instructions when overwriting the original
296 // function in-place. Otherwise, emit the empty function to define the symbol.
297 if (!BC
.HasRelocations
&& !Function
.hasNonPseudoInstructions())
301 BC
.getCodeSection(Function
.getCodeSectionName(FF
.getFragmentNum()));
302 Streamer
.switchSection(Section
);
303 Section
->setHasInstructions(true);
304 BC
.Ctx
->addGenDwarfSection(Section
);
306 if (BC
.HasRelocations
) {
307 // Set section alignment to at least maximum possible object alignment.
308 // We need this to support LongJmp and other passes that calculates
310 Section
->ensureMinAlignment(Align(opts::AlignFunctions
));
312 Streamer
.emitCodeAlignment(Function
.getMinAlign(), &*BC
.STI
);
313 uint16_t MaxAlignBytes
= FF
.isSplitFragment()
314 ? Function
.getMaxColdAlignmentBytes()
315 : Function
.getMaxAlignmentBytes();
316 if (MaxAlignBytes
> 0)
317 Streamer
.emitCodeAlignment(Function
.getAlign(), &*BC
.STI
, MaxAlignBytes
);
319 Streamer
.emitCodeAlignment(Function
.getAlign(), &*BC
.STI
);
322 MCContext
&Context
= Streamer
.getContext();
323 const MCAsmInfo
*MAI
= Context
.getAsmInfo();
325 MCSymbol
*const StartSymbol
= Function
.getSymbol(FF
.getFragmentNum());
327 // Emit all symbols associated with the main function entry.
328 if (FF
.isMainFragment()) {
329 for (MCSymbol
*Symbol
: Function
.getSymbols()) {
330 Streamer
.emitSymbolAttribute(Symbol
, MCSA_ELF_TypeFunction
);
331 Streamer
.emitLabel(Symbol
);
334 Streamer
.emitSymbolAttribute(StartSymbol
, MCSA_ELF_TypeFunction
);
335 Streamer
.emitLabel(StartSymbol
);
339 if (Function
.hasCFI()) {
340 Streamer
.emitCFIStartProc(/*IsSimple=*/false);
341 if (Function
.getPersonalityFunction() != nullptr)
342 Streamer
.emitCFIPersonality(Function
.getPersonalityFunction(),
343 Function
.getPersonalityEncoding());
344 MCSymbol
*LSDASymbol
= Function
.getLSDASymbol(FF
.getFragmentNum());
346 Streamer
.emitCFILsda(LSDASymbol
, BC
.LSDAEncoding
);
348 Streamer
.emitCFILsda(0, dwarf::DW_EH_PE_omit
);
349 // Emit CFI instructions relative to the CIE
350 for (const MCCFIInstruction
&CFIInstr
: Function
.cie()) {
351 // Only write CIE CFI insns that LLVM will not already emit
352 const std::vector
<MCCFIInstruction
> &FrameInstrs
=
353 MAI
->getInitialFrameState();
354 if (!llvm::is_contained(FrameInstrs
, CFIInstr
))
355 emitCFIInstruction(CFIInstr
);
359 assert((Function
.empty() || !(*Function
.begin()).isCold()) &&
360 "first basic block should never be cold");
362 // Emit UD2 at the beginning if requested by user.
363 if (!opts::BreakFunctionNames
.empty()) {
364 for (std::string
&Name
: opts::BreakFunctionNames
) {
365 if (Function
.hasNameRegex(Name
)) {
366 Streamer
.emitIntValue(0x0B0F, 2); // UD2: 0F 0B
373 emitFunctionBody(Function
, FF
, /*EmitCodeOnly=*/false);
375 // Emit padding if requested.
376 if (size_t Padding
= opts::padFunction(Function
)) {
377 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: padding function " << Function
<< " with "
378 << Padding
<< " bytes\n");
379 Streamer
.emitFill(Padding
, MAI
->getTextAlignFillValue());
383 Streamer
.emitBytes(BC
.MIB
->getTrapFillValue());
386 if (Function
.hasCFI())
387 Streamer
.emitCFIEndProc();
389 MCSymbol
*EndSymbol
= Function
.getFunctionEndLabel(FF
.getFragmentNum());
390 Streamer
.emitLabel(EndSymbol
);
392 if (MAI
->hasDotTypeDotSizeDirective()) {
393 const MCExpr
*SizeExpr
= MCBinaryExpr::createSub(
394 MCSymbolRefExpr::create(EndSymbol
, Context
),
395 MCSymbolRefExpr::create(StartSymbol
, Context
), Context
);
396 Streamer
.emitELFSize(StartSymbol
, SizeExpr
);
399 if (opts::UpdateDebugSections
&& Function
.getDWARFUnit())
400 emitLineInfoEnd(Function
, EndSymbol
);
402 // Exception handling info for the function.
403 emitLSDA(Function
, FF
);
405 if (FF
.isMainFragment() && opts::JumpTables
> JTS_NONE
)
406 emitJumpTables(Function
);
411 void BinaryEmitter::emitFunctionBody(BinaryFunction
&BF
, FunctionFragment
&FF
,
413 if (!EmitCodeOnly
&& FF
.isSplitFragment() && BF
.hasConstantIsland()) {
414 assert(BF
.getLayout().isHotColdSplit() &&
415 "Constant island support only with hot/cold split");
416 BF
.duplicateConstantIslands();
419 if (!FF
.empty() && FF
.front()->isLandingPad()) {
420 assert(!FF
.front()->isEntryPoint() &&
421 "Landing pad cannot be entry point of function");
422 // If the first block of the fragment is a landing pad, it's offset from the
423 // start of the area that the corresponding LSDA describes is zero. In this
424 // case, the call site entries in that LSDA have 0 as offset to the landing
425 // pad, which the runtime interprets as "no handler". To prevent this,
426 // insert some padding.
427 Streamer
.emitBytes(BC
.MIB
->getTrapFillValue());
430 // Track the first emitted instruction with debug info.
431 bool FirstInstr
= true;
432 for (BinaryBasicBlock
*const BB
: FF
) {
433 if ((opts::AlignBlocks
|| opts::PreserveBlocksAlignment
) &&
434 BB
->getAlignment() > 1)
435 Streamer
.emitCodeAlignment(BB
->getAlign(), &*BC
.STI
,
436 BB
->getAlignmentMaxBytes());
437 Streamer
.emitLabel(BB
->getLabel());
439 if (MCSymbol
*EntrySymbol
= BF
.getSecondaryEntryPointSymbol(*BB
))
440 Streamer
.emitLabel(EntrySymbol
);
444 for (auto I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
447 if (EmitCodeOnly
&& BC
.MIB
->isPseudo(Instr
))
450 // Handle pseudo instructions.
451 if (BC
.MIB
->isCFI(Instr
)) {
452 emitCFIInstruction(*BF
.getCFIFor(Instr
));
457 // A symbol to be emitted before the instruction to mark its location.
458 MCSymbol
*InstrLabel
= BC
.MIB
->getInstLabel(Instr
);
460 if (opts::UpdateDebugSections
&& BF
.getDWARFUnit()) {
461 LastLocSeen
= emitLineInfo(BF
, Instr
.getLoc(), LastLocSeen
,
462 FirstInstr
, InstrLabel
);
466 // Prepare to tag this location with a label if we need to keep track of
467 // the location of calls/returns for BOLT address translation maps
468 if (BF
.requiresAddressTranslation() && BC
.MIB
->getOffset(Instr
)) {
469 const uint32_t Offset
= *BC
.MIB
->getOffset(Instr
);
471 InstrLabel
= BC
.Ctx
->createTempSymbol();
472 BB
->getLocSyms().emplace_back(Offset
, InstrLabel
);
476 Streamer
.emitLabel(InstrLabel
);
479 // Emit sized NOPs via MCAsmBackend::writeNopData() interface on x86.
480 // This is a workaround for invalid NOPs handling by asm/disasm layer.
481 if (BC
.isX86() && BC
.MIB
->isNoop(Instr
)) {
482 if (std::optional
<uint32_t> Size
= BC
.MIB
->getSize(Instr
)) {
483 SmallString
<15> Code
;
484 raw_svector_ostream
VecOS(Code
);
485 BC
.MAB
->writeNopData(VecOS
, *Size
, BC
.STI
.get());
486 Streamer
.emitBytes(Code
);
491 Streamer
.emitInstruction(Instr
, *BC
.STI
);
496 emitConstantIslands(BF
, FF
.isSplitFragment());
499 void BinaryEmitter::emitConstantIslands(BinaryFunction
&BF
, bool EmitColdPart
,
500 BinaryFunction
*OnBehalfOf
) {
501 if (!BF
.hasIslandsInfo())
504 BinaryFunction::IslandInfo
&Islands
= BF
.getIslandInfo();
505 if (Islands
.DataOffsets
.empty() && Islands
.Dependency
.empty())
508 // AArch64 requires CI to be aligned to 8 bytes due to access instructions
509 // restrictions. E.g. the ldr with imm, where imm must be aligned to 8 bytes.
510 const uint16_t Alignment
= OnBehalfOf
511 ? OnBehalfOf
->getConstantIslandAlignment()
512 : BF
.getConstantIslandAlignment();
513 Streamer
.emitCodeAlignment(Align(Alignment
), &*BC
.STI
);
517 Streamer
.emitLabel(BF
.getFunctionConstantIslandLabel());
519 Streamer
.emitLabel(BF
.getFunctionColdConstantIslandLabel());
522 assert((!OnBehalfOf
|| Islands
.Proxies
[OnBehalfOf
].size() > 0) &&
523 "spurious OnBehalfOf constant island emission");
525 assert(!BF
.isInjected() &&
526 "injected functions should not have constant islands");
527 // Raw contents of the function.
528 StringRef SectionContents
= BF
.getOriginSection()->getContents();
530 // Raw contents of the function.
531 StringRef FunctionContents
= SectionContents
.substr(
532 BF
.getAddress() - BF
.getOriginSection()->getAddress(), BF
.getMaxSize());
534 if (opts::Verbosity
&& !OnBehalfOf
)
535 BC
.outs() << "BOLT-INFO: emitting constant island for function " << BF
538 // We split the island into smaller blocks and output labels between them.
539 auto IS
= Islands
.Offsets
.begin();
540 for (auto DataIter
= Islands
.DataOffsets
.begin();
541 DataIter
!= Islands
.DataOffsets
.end(); ++DataIter
) {
542 uint64_t FunctionOffset
= *DataIter
;
543 uint64_t EndOffset
= 0ULL;
545 // Determine size of this data chunk
546 auto NextData
= std::next(DataIter
);
547 auto CodeIter
= Islands
.CodeOffsets
.lower_bound(*DataIter
);
548 if (CodeIter
== Islands
.CodeOffsets
.end() &&
549 NextData
== Islands
.DataOffsets
.end())
550 EndOffset
= BF
.getMaxSize();
551 else if (CodeIter
== Islands
.CodeOffsets
.end())
552 EndOffset
= *NextData
;
553 else if (NextData
== Islands
.DataOffsets
.end())
554 EndOffset
= *CodeIter
;
556 EndOffset
= (*CodeIter
> *NextData
) ? *NextData
: *CodeIter
;
558 if (FunctionOffset
== EndOffset
)
559 continue; // Size is zero, nothing to emit
561 auto emitCI
= [&](uint64_t &FunctionOffset
, uint64_t EndOffset
) {
562 if (FunctionOffset
>= EndOffset
)
565 for (auto It
= Islands
.Relocations
.lower_bound(FunctionOffset
);
566 It
!= Islands
.Relocations
.end(); ++It
) {
567 if (It
->first
>= EndOffset
)
570 const Relocation
&Relocation
= It
->second
;
571 if (FunctionOffset
< Relocation
.Offset
) {
573 FunctionContents
.slice(FunctionOffset
, Relocation
.Offset
));
574 FunctionOffset
= Relocation
.Offset
;
578 dbgs() << "BOLT-DEBUG: emitting constant island relocation"
579 << " for " << BF
<< " at offset 0x"
580 << Twine::utohexstr(Relocation
.Offset
) << " with size "
581 << Relocation::getSizeForType(Relocation
.Type
) << '\n');
583 FunctionOffset
+= Relocation
.emit(&Streamer
);
586 assert(FunctionOffset
<= EndOffset
&& "overflow error");
587 if (FunctionOffset
< EndOffset
) {
588 Streamer
.emitBytes(FunctionContents
.slice(FunctionOffset
, EndOffset
));
589 FunctionOffset
= EndOffset
;
593 // Emit labels, relocs and data
594 while (IS
!= Islands
.Offsets
.end() && IS
->first
< EndOffset
) {
595 auto NextLabelOffset
=
596 IS
== Islands
.Offsets
.end() ? EndOffset
: IS
->first
;
597 auto NextStop
= std::min(NextLabelOffset
, EndOffset
);
598 assert(NextStop
<= EndOffset
&& "internal overflow error");
599 emitCI(FunctionOffset
, NextStop
);
600 if (IS
!= Islands
.Offsets
.end() && FunctionOffset
== IS
->first
) {
601 // This is a slightly complex code to decide which label to emit. We
602 // have 4 cases to handle: regular symbol, cold symbol, regular or cold
603 // symbol being emitted on behalf of an external function.
606 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label "
607 << IS
->second
->getName() << " at offset 0x"
608 << Twine::utohexstr(IS
->first
) << '\n');
609 if (IS
->second
->isUndefined())
610 Streamer
.emitLabel(IS
->second
);
612 assert(BF
.hasName(std::string(IS
->second
->getName())));
613 } else if (Islands
.ColdSymbols
.count(IS
->second
) != 0) {
615 << "BOLT-DEBUG: emitted label "
616 << Islands
.ColdSymbols
[IS
->second
]->getName() << '\n');
617 if (Islands
.ColdSymbols
[IS
->second
]->isUndefined())
618 Streamer
.emitLabel(Islands
.ColdSymbols
[IS
->second
]);
622 if (MCSymbol
*Sym
= Islands
.Proxies
[OnBehalfOf
][IS
->second
]) {
623 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label "
624 << Sym
->getName() << '\n');
625 Streamer
.emitLabel(Sym
);
627 } else if (MCSymbol
*Sym
=
628 Islands
.ColdProxies
[OnBehalfOf
][IS
->second
]) {
629 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " << Sym
->getName()
631 Streamer
.emitLabel(Sym
);
637 assert(FunctionOffset
<= EndOffset
&& "overflow error");
638 emitCI(FunctionOffset
, EndOffset
);
640 assert(IS
== Islands
.Offsets
.end() && "some symbols were not emitted!");
644 // Now emit constant islands from other functions that we may have used in
646 for (BinaryFunction
*ExternalFunc
: Islands
.Dependency
)
647 emitConstantIslands(*ExternalFunc
, EmitColdPart
, &BF
);
650 SMLoc
BinaryEmitter::emitLineInfo(const BinaryFunction
&BF
, SMLoc NewLoc
,
651 SMLoc PrevLoc
, bool FirstInstr
,
652 MCSymbol
*&InstrLabel
) {
653 DWARFUnit
*FunctionCU
= BF
.getDWARFUnit();
654 const DWARFDebugLine::LineTable
*FunctionLineTable
= BF
.getDWARFLineTable();
655 assert(FunctionCU
&& "cannot emit line info for function without CU");
657 DebugLineTableRowRef RowReference
= DebugLineTableRowRef::fromSMLoc(NewLoc
);
659 // Check if no new line info needs to be emitted.
660 if (RowReference
== DebugLineTableRowRef::NULL_ROW
||
661 NewLoc
.getPointer() == PrevLoc
.getPointer())
664 unsigned CurrentFilenum
= 0;
665 const DWARFDebugLine::LineTable
*CurrentLineTable
= FunctionLineTable
;
667 // If the CU id from the current instruction location does not
668 // match the CU id from the current function, it means that we
669 // have come across some inlined code. We must look up the CU
670 // for the instruction's original function and get the line table
672 const uint64_t FunctionUnitIndex
= FunctionCU
->getOffset();
673 const uint32_t CurrentUnitIndex
= RowReference
.DwCompileUnitIndex
;
674 if (CurrentUnitIndex
!= FunctionUnitIndex
) {
675 CurrentLineTable
= BC
.DwCtx
->getLineTableForUnit(
676 BC
.DwCtx
->getCompileUnitForOffset(CurrentUnitIndex
));
677 // Add filename from the inlined function to the current CU.
678 CurrentFilenum
= BC
.addDebugFilenameToUnit(
679 FunctionUnitIndex
, CurrentUnitIndex
,
680 CurrentLineTable
->Rows
[RowReference
.RowIndex
- 1].File
);
683 const DWARFDebugLine::Row
&CurrentRow
=
684 CurrentLineTable
->Rows
[RowReference
.RowIndex
- 1];
686 CurrentFilenum
= CurrentRow
.File
;
688 unsigned Flags
= (DWARF2_FLAG_IS_STMT
* CurrentRow
.IsStmt
) |
689 (DWARF2_FLAG_BASIC_BLOCK
* CurrentRow
.BasicBlock
) |
690 (DWARF2_FLAG_PROLOGUE_END
* CurrentRow
.PrologueEnd
) |
691 (DWARF2_FLAG_EPILOGUE_BEGIN
* CurrentRow
.EpilogueBegin
);
693 // Always emit is_stmt at the beginning of function fragment.
695 Flags
|= DWARF2_FLAG_IS_STMT
;
697 BC
.Ctx
->setCurrentDwarfLoc(CurrentFilenum
, CurrentRow
.Line
, CurrentRow
.Column
,
698 Flags
, CurrentRow
.Isa
, CurrentRow
.Discriminator
);
699 const MCDwarfLoc
&DwarfLoc
= BC
.Ctx
->getCurrentDwarfLoc();
700 BC
.Ctx
->clearDwarfLocSeen();
703 InstrLabel
= BC
.Ctx
->createTempSymbol();
705 BC
.getDwarfLineTable(FunctionUnitIndex
)
707 .addLineEntry(MCDwarfLineEntry(InstrLabel
, DwarfLoc
),
708 Streamer
.getCurrentSectionOnly());
713 void BinaryEmitter::emitLineInfoEnd(const BinaryFunction
&BF
,
714 MCSymbol
*FunctionEndLabel
) {
715 DWARFUnit
*FunctionCU
= BF
.getDWARFUnit();
716 assert(FunctionCU
&& "DWARF unit expected");
717 BC
.Ctx
->setCurrentDwarfLoc(0, 0, 0, DWARF2_FLAG_END_SEQUENCE
, 0, 0);
718 const MCDwarfLoc
&DwarfLoc
= BC
.Ctx
->getCurrentDwarfLoc();
719 BC
.Ctx
->clearDwarfLocSeen();
720 BC
.getDwarfLineTable(FunctionCU
->getOffset())
722 .addLineEntry(MCDwarfLineEntry(FunctionEndLabel
, DwarfLoc
),
723 Streamer
.getCurrentSectionOnly());
726 void BinaryEmitter::emitJumpTables(const BinaryFunction
&BF
) {
727 MCSection
*ReadOnlySection
= BC
.MOFI
->getReadOnlySection();
728 MCSection
*ReadOnlyColdSection
= BC
.MOFI
->getContext().getELFSection(
729 ".rodata.cold", ELF::SHT_PROGBITS
, ELF::SHF_ALLOC
);
731 if (!BF
.hasJumpTables())
734 if (opts::PrintJumpTables
)
735 BC
.outs() << "BOLT-INFO: jump tables for function " << BF
<< ":\n";
737 for (auto &JTI
: BF
.jumpTables()) {
738 JumpTable
&JT
= *JTI
.second
;
739 // Only emit shared jump tables once, when processing the first parent
740 if (JT
.Parents
.size() > 1 && JT
.Parents
[0] != &BF
)
742 if (opts::PrintJumpTables
)
744 if (opts::JumpTables
== JTS_BASIC
&& BC
.HasRelocations
) {
747 MCSection
*HotSection
, *ColdSection
;
748 if (opts::JumpTables
== JTS_BASIC
) {
749 // In non-relocation mode we have to emit jump tables in local sections.
750 // This way we only overwrite them when the corresponding function is
752 std::string Name
= ".local." + JT
.Labels
[0]->getName().str();
753 std::replace(Name
.begin(), Name
.end(), '/', '.');
754 BinarySection
&Section
=
755 BC
.registerOrUpdateSection(Name
, ELF::SHT_PROGBITS
, ELF::SHF_ALLOC
);
756 Section
.setAnonymous(true);
757 JT
.setOutputSection(Section
);
758 HotSection
= BC
.getDataSection(Name
);
759 ColdSection
= HotSection
;
762 HotSection
= ReadOnlySection
;
763 ColdSection
= ReadOnlyColdSection
;
765 HotSection
= BF
.hasProfile() ? ReadOnlySection
: ReadOnlyColdSection
;
766 ColdSection
= HotSection
;
769 emitJumpTable(JT
, HotSection
, ColdSection
);
774 void BinaryEmitter::emitJumpTable(const JumpTable
&JT
, MCSection
*HotSection
,
775 MCSection
*ColdSection
) {
776 // Pre-process entries for aggressive splitting.
777 // Each label represents a separate switch table and gets its own count
778 // determining its destination.
779 std::map
<MCSymbol
*, uint64_t> LabelCounts
;
780 if (opts::JumpTables
> JTS_SPLIT
&& !JT
.Counts
.empty()) {
781 auto It
= JT
.Labels
.find(0);
782 assert(It
!= JT
.Labels
.end());
783 MCSymbol
*CurrentLabel
= It
->second
;
784 uint64_t CurrentLabelCount
= 0;
785 for (unsigned Index
= 0; Index
< JT
.Entries
.size(); ++Index
) {
786 auto LI
= JT
.Labels
.find(Index
* JT
.EntrySize
);
787 if (LI
!= JT
.Labels
.end()) {
788 LabelCounts
[CurrentLabel
] = CurrentLabelCount
;
789 CurrentLabel
= LI
->second
;
790 CurrentLabelCount
= 0;
792 CurrentLabelCount
+= JT
.Counts
[Index
].Count
;
794 LabelCounts
[CurrentLabel
] = CurrentLabelCount
;
796 Streamer
.switchSection(JT
.Count
> 0 ? HotSection
: ColdSection
);
797 Streamer
.emitValueToAlignment(Align(JT
.EntrySize
));
799 MCSymbol
*LastLabel
= nullptr;
801 for (MCSymbol
*Entry
: JT
.Entries
) {
802 auto LI
= JT
.Labels
.find(Offset
);
803 if (LI
!= JT
.Labels
.end()) {
805 dbgs() << "BOLT-DEBUG: emitting jump table " << LI
->second
->getName()
806 << " (originally was at address 0x"
807 << Twine::utohexstr(JT
.getAddress() + Offset
)
808 << (Offset
? ") as part of larger jump table\n" : ")\n");
810 if (!LabelCounts
.empty()) {
811 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump table count: "
812 << LabelCounts
[LI
->second
] << '\n');
813 if (LabelCounts
[LI
->second
] > 0)
814 Streamer
.switchSection(HotSection
);
816 Streamer
.switchSection(ColdSection
);
817 Streamer
.emitValueToAlignment(Align(JT
.EntrySize
));
819 // Emit all labels registered at the address of this jump table
820 // to sync with our global symbol table. We may have two labels
821 // registered at this address if one label was created via
822 // getOrCreateGlobalSymbol() (e.g. LEA instructions referencing
823 // this location) and another via getOrCreateJumpTable(). This
824 // creates a race where the symbols created by these two
825 // functions may or may not be the same, but they are both
826 // registered in our symbol table at the same address. By
827 // emitting them all here we make sure there is no ambiguity
828 // that depends on the order that these symbols were created, so
829 // whenever this address is referenced in the binary, it is
830 // certain to point to the jump table identified at this
832 if (BinaryData
*BD
= BC
.getBinaryDataByName(LI
->second
->getName())) {
833 for (MCSymbol
*S
: BD
->getSymbols())
834 Streamer
.emitLabel(S
);
836 Streamer
.emitLabel(LI
->second
);
838 LastLabel
= LI
->second
;
840 if (JT
.Type
== JumpTable::JTT_NORMAL
) {
841 Streamer
.emitSymbolValue(Entry
, JT
.OutputEntrySize
);
843 const MCSymbolRefExpr
*JTExpr
=
844 MCSymbolRefExpr::create(LastLabel
, Streamer
.getContext());
845 const MCSymbolRefExpr
*E
=
846 MCSymbolRefExpr::create(Entry
, Streamer
.getContext());
847 const MCBinaryExpr
*Value
=
848 MCBinaryExpr::createSub(E
, JTExpr
, Streamer
.getContext());
849 Streamer
.emitValue(Value
, JT
.EntrySize
);
851 Offset
+= JT
.EntrySize
;
855 void BinaryEmitter::emitCFIInstruction(const MCCFIInstruction
&Inst
) const {
856 switch (Inst
.getOperation()) {
858 llvm_unreachable("Unexpected instruction");
859 case MCCFIInstruction::OpDefCfaOffset
:
860 Streamer
.emitCFIDefCfaOffset(Inst
.getOffset());
862 case MCCFIInstruction::OpAdjustCfaOffset
:
863 Streamer
.emitCFIAdjustCfaOffset(Inst
.getOffset());
865 case MCCFIInstruction::OpDefCfa
:
866 Streamer
.emitCFIDefCfa(Inst
.getRegister(), Inst
.getOffset());
868 case MCCFIInstruction::OpDefCfaRegister
:
869 Streamer
.emitCFIDefCfaRegister(Inst
.getRegister());
871 case MCCFIInstruction::OpOffset
:
872 Streamer
.emitCFIOffset(Inst
.getRegister(), Inst
.getOffset());
874 case MCCFIInstruction::OpRegister
:
875 Streamer
.emitCFIRegister(Inst
.getRegister(), Inst
.getRegister2());
877 case MCCFIInstruction::OpWindowSave
:
878 Streamer
.emitCFIWindowSave();
880 case MCCFIInstruction::OpNegateRAState
:
881 Streamer
.emitCFINegateRAState();
883 case MCCFIInstruction::OpSameValue
:
884 Streamer
.emitCFISameValue(Inst
.getRegister());
886 case MCCFIInstruction::OpGnuArgsSize
:
887 Streamer
.emitCFIGnuArgsSize(Inst
.getOffset());
889 case MCCFIInstruction::OpEscape
:
890 Streamer
.AddComment(Inst
.getComment());
891 Streamer
.emitCFIEscape(Inst
.getValues());
893 case MCCFIInstruction::OpRestore
:
894 Streamer
.emitCFIRestore(Inst
.getRegister());
896 case MCCFIInstruction::OpUndefined
:
897 Streamer
.emitCFIUndefined(Inst
.getRegister());
902 // The code is based on EHStreamer::emitExceptionTable().
903 void BinaryEmitter::emitLSDA(BinaryFunction
&BF
, const FunctionFragment
&FF
) {
904 const BinaryFunction::CallSitesRange Sites
=
905 BF
.getCallSites(FF
.getFragmentNum());
909 // Calculate callsite table size. Size of each callsite entry is:
911 // sizeof(start) + sizeof(length) + sizeof(LP) + sizeof(uleb128(action))
915 // sizeof(dwarf::DW_EH_PE_data4) * 3 + sizeof(uleb128(action))
916 uint64_t CallSiteTableLength
= llvm::size(Sites
) * 4 * 3;
917 for (const auto &FragmentCallSite
: Sites
)
918 CallSiteTableLength
+= getULEB128Size(FragmentCallSite
.second
.Action
);
920 Streamer
.switchSection(BC
.MOFI
->getLSDASection());
922 const unsigned TTypeEncoding
= BF
.getLSDATypeEncoding();
923 const unsigned TTypeEncodingSize
= BC
.getDWARFEncodingSize(TTypeEncoding
);
924 const uint16_t TTypeAlignment
= 4;
926 // Type tables have to be aligned at 4 bytes.
927 Streamer
.emitValueToAlignment(Align(TTypeAlignment
));
929 // Emit the LSDA label.
930 MCSymbol
*LSDASymbol
= BF
.getLSDASymbol(FF
.getFragmentNum());
931 assert(LSDASymbol
&& "no LSDA symbol set");
932 Streamer
.emitLabel(LSDASymbol
);
934 // Corresponding FDE start.
935 const MCSymbol
*StartSymbol
= BF
.getSymbol(FF
.getFragmentNum());
937 // Emit the LSDA header.
939 // If LPStart is omitted, then the start of the FDE is used as a base for
940 // landing pad displacements. Then if a cold fragment starts with
941 // a landing pad, this means that the first landing pad offset will be 0.
942 // As a result, the exception handling runtime will ignore this landing pad
943 // because zero offset denotes the absence of a landing pad.
944 // For this reason, when the binary has fixed starting address we emit LPStart
945 // as 0 and output the absolute value of the landing pad in the table.
947 // If the base address can change, we cannot use absolute addresses for
948 // landing pads (at least not without runtime relocations). Hence, we fall
949 // back to emitting landing pads relative to the FDE start.
950 // As we are emitting label differences, we have to guarantee both labels are
951 // defined in the same section and hence cannot place the landing pad into a
952 // cold fragment when the corresponding call site is in the hot fragment.
953 // Because of this issue and the previously described issue of possible
954 // zero-offset landing pad we have to place landing pads in the same section
955 // as the corresponding invokes for shared objects.
956 std::function
<void(const MCSymbol
*)> emitLandingPad
;
957 if (BC
.HasFixedLoadAddress
) {
958 Streamer
.emitIntValue(dwarf::DW_EH_PE_udata4
, 1); // LPStart format
959 Streamer
.emitIntValue(0, 4); // LPStart
960 emitLandingPad
= [&](const MCSymbol
*LPSymbol
) {
962 Streamer
.emitIntValue(0, 4);
964 Streamer
.emitSymbolValue(LPSymbol
, 4);
967 Streamer
.emitIntValue(dwarf::DW_EH_PE_omit
, 1); // LPStart format
968 emitLandingPad
= [&](const MCSymbol
*LPSymbol
) {
970 Streamer
.emitIntValue(0, 4);
972 Streamer
.emitAbsoluteSymbolDiff(LPSymbol
, StartSymbol
, 4);
976 Streamer
.emitIntValue(TTypeEncoding
, 1); // TType format
978 // See the comment in EHStreamer::emitExceptionTable() on to use
979 // uleb128 encoding (which can use variable number of bytes to encode the same
980 // value) to ensure type info table is properly aligned at 4 bytes without
981 // iteratively fixing sizes of the tables.
982 unsigned CallSiteTableLengthSize
= getULEB128Size(CallSiteTableLength
);
983 unsigned TTypeBaseOffset
=
984 sizeof(int8_t) + // Call site format
985 CallSiteTableLengthSize
+ // Call site table length size
986 CallSiteTableLength
+ // Call site table length
987 BF
.getLSDAActionTable().size() + // Actions table size
988 BF
.getLSDATypeTable().size() * TTypeEncodingSize
; // Types table size
989 unsigned TTypeBaseOffsetSize
= getULEB128Size(TTypeBaseOffset
);
990 unsigned TotalSize
= sizeof(int8_t) + // LPStart format
991 sizeof(int8_t) + // TType format
992 TTypeBaseOffsetSize
+ // TType base offset size
993 TTypeBaseOffset
; // TType base offset
994 unsigned SizeAlign
= (4 - TotalSize
) & 3;
996 if (TTypeEncoding
!= dwarf::DW_EH_PE_omit
)
997 // Account for any extra padding that will be added to the call site table
999 Streamer
.emitULEB128IntValue(TTypeBaseOffset
,
1000 /*PadTo=*/TTypeBaseOffsetSize
+ SizeAlign
);
1002 // Emit the landing pad call site table. We use signed data4 since we can emit
1003 // a landing pad in a different part of the split function that could appear
1004 // earlier in the address space than LPStart.
1005 Streamer
.emitIntValue(dwarf::DW_EH_PE_sdata4
, 1);
1006 Streamer
.emitULEB128IntValue(CallSiteTableLength
);
1008 for (const auto &FragmentCallSite
: Sites
) {
1009 const BinaryFunction::CallSite
&CallSite
= FragmentCallSite
.second
;
1010 const MCSymbol
*BeginLabel
= CallSite
.Start
;
1011 const MCSymbol
*EndLabel
= CallSite
.End
;
1013 assert(BeginLabel
&& "start EH label expected");
1014 assert(EndLabel
&& "end EH label expected");
1016 // Start of the range is emitted relative to the start of current
1017 // function split part.
1018 Streamer
.emitAbsoluteSymbolDiff(BeginLabel
, StartSymbol
, 4);
1019 Streamer
.emitAbsoluteSymbolDiff(EndLabel
, BeginLabel
, 4);
1020 emitLandingPad(CallSite
.LP
);
1021 Streamer
.emitULEB128IntValue(CallSite
.Action
);
1024 // Write out action, type, and type index tables at the end.
1026 // For action and type index tables there's no need to change the original
1027 // table format unless we are doing function splitting, in which case we can
1028 // split and optimize the tables.
1030 // For type table we (re-)encode the table using TTypeEncoding matching
1031 // the current assembler mode.
1032 for (uint8_t const &Byte
: BF
.getLSDAActionTable())
1033 Streamer
.emitIntValue(Byte
, 1);
1035 const BinaryFunction::LSDATypeTableTy
&TypeTable
=
1036 (TTypeEncoding
& dwarf::DW_EH_PE_indirect
) ? BF
.getLSDATypeAddressTable()
1037 : BF
.getLSDATypeTable();
1038 assert(TypeTable
.size() == BF
.getLSDATypeTable().size() &&
1039 "indirect type table size mismatch");
1041 for (int Index
= TypeTable
.size() - 1; Index
>= 0; --Index
) {
1042 const uint64_t TypeAddress
= TypeTable
[Index
];
1043 switch (TTypeEncoding
& 0x70) {
1045 llvm_unreachable("unsupported TTypeEncoding");
1046 case dwarf::DW_EH_PE_absptr
:
1047 Streamer
.emitIntValue(TypeAddress
, TTypeEncodingSize
);
1049 case dwarf::DW_EH_PE_pcrel
: {
1051 const MCSymbol
*TypeSymbol
=
1052 BC
.getOrCreateGlobalSymbol(TypeAddress
, "TI", 0, TTypeAlignment
);
1053 MCSymbol
*DotSymbol
= BC
.Ctx
->createNamedTempSymbol();
1054 Streamer
.emitLabel(DotSymbol
);
1055 const MCBinaryExpr
*SubDotExpr
= MCBinaryExpr::createSub(
1056 MCSymbolRefExpr::create(TypeSymbol
, *BC
.Ctx
),
1057 MCSymbolRefExpr::create(DotSymbol
, *BC
.Ctx
), *BC
.Ctx
);
1058 Streamer
.emitValue(SubDotExpr
, TTypeEncodingSize
);
1060 Streamer
.emitIntValue(0, TTypeEncodingSize
);
1066 for (uint8_t const &Byte
: BF
.getLSDATypeIndexTable())
1067 Streamer
.emitIntValue(Byte
, 1);
1070 void BinaryEmitter::emitDebugLineInfoForOriginalFunctions() {
1071 // If a function is in a CU containing at least one processed function, we
1072 // have to rewrite the whole line table for that CU. For unprocessed functions
1073 // we use data from the input line table.
1074 for (auto &It
: BC
.getBinaryFunctions()) {
1075 const BinaryFunction
&Function
= It
.second
;
1077 // If the function was emitted, its line info was emitted with it.
1078 if (Function
.isEmitted())
1081 const DWARFDebugLine::LineTable
*LineTable
= Function
.getDWARFLineTable();
1083 continue; // nothing to update for this function
1085 const uint64_t Address
= Function
.getAddress();
1086 std::vector
<uint32_t> Results
;
1087 if (!LineTable
->lookupAddressRange(
1088 {Address
, object::SectionedAddress::UndefSection
},
1089 Function
.getSize(), Results
))
1092 if (Results
.empty())
1095 // The first row returned could be the last row matching the start address.
1096 // Find the first row with the same address that is not the end of the
1098 uint64_t FirstRow
= Results
.front();
1099 while (FirstRow
> 0) {
1100 const DWARFDebugLine::Row
&PrevRow
= LineTable
->Rows
[FirstRow
- 1];
1101 if (PrevRow
.Address
.Address
!= Address
|| PrevRow
.EndSequence
)
1106 const uint64_t EndOfSequenceAddress
=
1107 Function
.getAddress() + Function
.getMaxSize();
1108 BC
.getDwarfLineTable(Function
.getDWARFUnit()->getOffset())
1109 .addLineTableSequence(LineTable
, FirstRow
, Results
.back(),
1110 EndOfSequenceAddress
);
1113 // For units that are completely unprocessed, use original debug line contents
1114 // eliminating the need to regenerate line info program.
1115 emitDebugLineInfoForUnprocessedCUs();
1118 void BinaryEmitter::emitDebugLineInfoForUnprocessedCUs() {
1119 // Sorted list of section offsets provides boundaries for section fragments,
1120 // where each fragment is the unit's contribution to debug line section.
1121 std::vector
<uint64_t> StmtListOffsets
;
1122 StmtListOffsets
.reserve(BC
.DwCtx
->getNumCompileUnits());
1123 for (const std::unique_ptr
<DWARFUnit
> &CU
: BC
.DwCtx
->compile_units()) {
1124 DWARFDie CUDie
= CU
->getUnitDIE();
1125 auto StmtList
= dwarf::toSectionOffset(CUDie
.find(dwarf::DW_AT_stmt_list
));
1129 StmtListOffsets
.push_back(*StmtList
);
1131 llvm::sort(StmtListOffsets
);
1133 // For each CU that was not processed, emit its line info as a binary blob.
1134 for (const std::unique_ptr
<DWARFUnit
> &CU
: BC
.DwCtx
->compile_units()) {
1135 if (BC
.ProcessedCUs
.count(CU
.get()))
1138 DWARFDie CUDie
= CU
->getUnitDIE();
1139 auto StmtList
= dwarf::toSectionOffset(CUDie
.find(dwarf::DW_AT_stmt_list
));
1143 StringRef DebugLineContents
= CU
->getLineSection().Data
;
1145 const uint64_t Begin
= *StmtList
;
1147 // Statement list ends where the next unit contribution begins, or at the
1148 // end of the section.
1149 auto It
= llvm::upper_bound(StmtListOffsets
, Begin
);
1150 const uint64_t End
=
1151 It
== StmtListOffsets
.end() ? DebugLineContents
.size() : *It
;
1153 BC
.getDwarfLineTable(CU
->getOffset())
1154 .addRawContents(DebugLineContents
.slice(Begin
, End
));
1158 void BinaryEmitter::emitDataSections(StringRef OrgSecPrefix
) {
1159 for (BinarySection
&Section
: BC
.sections()) {
1160 if (!Section
.hasRelocations())
1163 StringRef Prefix
= Section
.hasSectionRef() ? OrgSecPrefix
: "";
1164 Section
.emitAsData(Streamer
, Prefix
+ Section
.getName());
1165 Section
.clearRelocations();
1172 void emitBinaryContext(MCStreamer
&Streamer
, BinaryContext
&BC
,
1173 StringRef OrgSecPrefix
) {
1174 BinaryEmitter(Streamer
, BC
).emitAll(OrgSecPrefix
);
1177 void emitFunctionBody(MCStreamer
&Streamer
, BinaryFunction
&BF
,
1178 FunctionFragment
&FF
, bool EmitCodeOnly
) {
1179 BinaryEmitter(Streamer
, BF
.getBinaryContext())
1180 .emitFunctionBody(BF
, FF
, EmitCodeOnly
);