Bump version to 19.1.0 (final)
[llvm-project.git] / libcxxabi / src / fallback_malloc.cpp
blob76bd2e9bcd9f7452a8d7f30453e46d6dfa5c3424
1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "fallback_malloc.h"
10 #include "abort_message.h"
12 #include <__thread/support.h>
13 #ifndef _LIBCXXABI_HAS_NO_THREADS
14 #if defined(__ELF__) && defined(_LIBCXXABI_LINK_PTHREAD_LIB)
15 #pragma comment(lib, "pthread")
16 #endif
17 #endif
19 #include <__memory/aligned_alloc.h>
20 #include <__assert>
21 #include <stdlib.h> // for malloc, calloc, free
22 #include <string.h> // for memset
24 // A small, simple heap manager based (loosely) on
25 // the startup heap manager from FreeBSD, optimized for space.
27 // Manages a fixed-size memory pool, supports malloc and free only.
28 // No support for realloc.
30 // Allocates chunks in multiples of four bytes, with a four byte header
31 // for each chunk. The overhead of each chunk is kept low by keeping pointers
32 // as two byte offsets within the heap, rather than (4 or 8 byte) pointers.
34 namespace {
36 // When POSIX threads are not available, make the mutex operations a nop
37 #ifndef _LIBCXXABI_HAS_NO_THREADS
38 static _LIBCPP_CONSTINIT std::__libcpp_mutex_t heap_mutex = _LIBCPP_MUTEX_INITIALIZER;
39 #else
40 static _LIBCPP_CONSTINIT void* heap_mutex = 0;
41 #endif
43 class mutexor {
44 public:
45 #ifndef _LIBCXXABI_HAS_NO_THREADS
46 mutexor(std::__libcpp_mutex_t* m) : mtx_(m) {
47 std::__libcpp_mutex_lock(mtx_);
49 ~mutexor() { std::__libcpp_mutex_unlock(mtx_); }
50 #else
51 mutexor(void*) {}
52 ~mutexor() {}
53 #endif
54 private:
55 mutexor(const mutexor& rhs);
56 mutexor& operator=(const mutexor& rhs);
57 #ifndef _LIBCXXABI_HAS_NO_THREADS
58 std::__libcpp_mutex_t* mtx_;
59 #endif
62 static const size_t HEAP_SIZE = 512;
63 char heap[HEAP_SIZE] __attribute__((aligned));
65 typedef unsigned short heap_offset;
66 typedef unsigned short heap_size;
68 // On both 64 and 32 bit targets heap_node should have the following properties
69 // Size: 4
70 // Alignment: 2
71 struct heap_node {
72 heap_offset next_node; // offset into heap
73 heap_size len; // size in units of "sizeof(heap_node)"
76 // All pointers returned by fallback_malloc must be at least aligned
77 // as RequiredAligned. Note that RequiredAlignment can be greater than
78 // alignof(std::max_align_t) on 64 bit systems compiling 32 bit code.
79 struct FallbackMaxAlignType {
80 } __attribute__((aligned));
81 const size_t RequiredAlignment = alignof(FallbackMaxAlignType);
83 static_assert(alignof(FallbackMaxAlignType) % sizeof(heap_node) == 0,
84 "The required alignment must be evenly divisible by the sizeof(heap_node)");
86 // The number of heap_node's that can fit in a chunk of memory with the size
87 // of the RequiredAlignment. On 64 bit targets NodesPerAlignment should be 4.
88 const size_t NodesPerAlignment = alignof(FallbackMaxAlignType) / sizeof(heap_node);
90 static const heap_node* list_end =
91 (heap_node*)(&heap[HEAP_SIZE]); // one past the end of the heap
92 static heap_node* freelist = NULL;
94 heap_node* node_from_offset(const heap_offset offset) {
95 return (heap_node*)(heap + (offset * sizeof(heap_node)));
98 heap_offset offset_from_node(const heap_node* ptr) {
99 return static_cast<heap_offset>(
100 static_cast<size_t>(reinterpret_cast<const char*>(ptr) - heap) /
101 sizeof(heap_node));
104 // Return a pointer to the first address, 'A', in `heap` that can actually be
105 // used to represent a heap_node. 'A' must be aligned so that
106 // '(A + sizeof(heap_node)) % RequiredAlignment == 0'. On 64 bit systems this
107 // address should be 12 bytes after the first 16 byte boundary.
108 heap_node* getFirstAlignedNodeInHeap() {
109 heap_node* node = (heap_node*)heap;
110 const size_t alignNBytesAfterBoundary = RequiredAlignment - sizeof(heap_node);
111 size_t boundaryOffset = reinterpret_cast<size_t>(node) % RequiredAlignment;
112 size_t requiredOffset = alignNBytesAfterBoundary - boundaryOffset;
113 size_t NElemOffset = requiredOffset / sizeof(heap_node);
114 return node + NElemOffset;
117 void init_heap() {
118 freelist = getFirstAlignedNodeInHeap();
119 freelist->next_node = offset_from_node(list_end);
120 freelist->len = static_cast<heap_size>(list_end - freelist);
123 // How big a chunk we allocate
124 size_t alloc_size(size_t len) {
125 return (len + sizeof(heap_node) - 1) / sizeof(heap_node) + 1;
128 bool is_fallback_ptr(void* ptr) {
129 return ptr >= heap && ptr < (heap + HEAP_SIZE);
132 void* fallback_malloc(size_t len) {
133 heap_node *p, *prev;
134 const size_t nelems = alloc_size(len);
135 mutexor mtx(&heap_mutex);
137 if (NULL == freelist)
138 init_heap();
140 // Walk the free list, looking for a "big enough" chunk
141 for (p = freelist, prev = 0; p && p != list_end;
142 prev = p, p = node_from_offset(p->next_node)) {
144 // Check the invariant that all heap_nodes pointers 'p' are aligned
145 // so that 'p + 1' has an alignment of at least RequiredAlignment
146 _LIBCXXABI_ASSERT(reinterpret_cast<size_t>(p + 1) % RequiredAlignment == 0, "");
148 // Calculate the number of extra padding elements needed in order
149 // to split 'p' and create a properly aligned heap_node from the tail
150 // of 'p'. We calculate aligned_nelems such that 'p->len - aligned_nelems'
151 // will be a multiple of NodesPerAlignment.
152 size_t aligned_nelems = nelems;
153 if (p->len > nelems) {
154 heap_size remaining_len = static_cast<heap_size>(p->len - nelems);
155 aligned_nelems += remaining_len % NodesPerAlignment;
158 // chunk is larger and we can create a properly aligned heap_node
159 // from the tail. In this case we shorten 'p' and return the tail.
160 if (p->len > aligned_nelems) {
161 heap_node* q;
162 p->len = static_cast<heap_size>(p->len - aligned_nelems);
163 q = p + p->len;
164 q->next_node = 0;
165 q->len = static_cast<heap_size>(aligned_nelems);
166 void* ptr = q + 1;
167 _LIBCXXABI_ASSERT(reinterpret_cast<size_t>(ptr) % RequiredAlignment == 0, "");
168 return ptr;
171 // The chunk is the exact size or the chunk is larger but not large
172 // enough to split due to alignment constraints.
173 if (p->len >= nelems) {
174 if (prev == 0)
175 freelist = node_from_offset(p->next_node);
176 else
177 prev->next_node = p->next_node;
178 p->next_node = 0;
179 void* ptr = p + 1;
180 _LIBCXXABI_ASSERT(reinterpret_cast<size_t>(ptr) % RequiredAlignment == 0, "");
181 return ptr;
184 return NULL; // couldn't find a spot big enough
187 // Return the start of the next block
188 heap_node* after(struct heap_node* p) { return p + p->len; }
190 void fallback_free(void* ptr) {
191 struct heap_node* cp = ((struct heap_node*)ptr) - 1; // retrieve the chunk
192 struct heap_node *p, *prev;
194 mutexor mtx(&heap_mutex);
196 #ifdef DEBUG_FALLBACK_MALLOC
197 std::printf("Freeing item at %d of size %d\n", offset_from_node(cp), cp->len);
198 #endif
200 for (p = freelist, prev = 0; p && p != list_end;
201 prev = p, p = node_from_offset(p->next_node)) {
202 #ifdef DEBUG_FALLBACK_MALLOC
203 std::printf(" p=%d, cp=%d, after(p)=%d, after(cp)=%d\n",
204 offset_from_node(p), offset_from_node(cp),
205 offset_from_node(after(p)), offset_from_node(after(cp)));
206 #endif
207 if (after(p) == cp) {
208 #ifdef DEBUG_FALLBACK_MALLOC
209 std::printf(" Appending onto chunk at %d\n", offset_from_node(p));
210 #endif
211 p->len = static_cast<heap_size>(
212 p->len + cp->len); // make the free heap_node larger
213 return;
214 } else if (after(cp) == p) { // there's a free heap_node right after
215 #ifdef DEBUG_FALLBACK_MALLOC
216 std::printf(" Appending free chunk at %d\n", offset_from_node(p));
217 #endif
218 cp->len = static_cast<heap_size>(cp->len + p->len);
219 if (prev == 0) {
220 freelist = cp;
221 cp->next_node = p->next_node;
222 } else
223 prev->next_node = offset_from_node(cp);
224 return;
227 // Nothing to merge with, add it to the start of the free list
228 #ifdef DEBUG_FALLBACK_MALLOC
229 std::printf(" Making new free list entry %d\n", offset_from_node(cp));
230 #endif
231 cp->next_node = offset_from_node(freelist);
232 freelist = cp;
235 #ifdef INSTRUMENT_FALLBACK_MALLOC
236 size_t print_free_list() {
237 struct heap_node *p, *prev;
238 heap_size total_free = 0;
239 if (NULL == freelist)
240 init_heap();
242 for (p = freelist, prev = 0; p && p != list_end;
243 prev = p, p = node_from_offset(p->next_node)) {
244 std::printf("%sOffset: %d\tsize: %d Next: %d\n",
245 (prev == 0 ? "" : " "), offset_from_node(p), p->len, p->next_node);
246 total_free += p->len;
248 std::printf("Total Free space: %d\n", total_free);
249 return total_free;
251 #endif
252 } // end unnamed namespace
254 namespace __cxxabiv1 {
256 struct __attribute__((aligned)) __aligned_type {};
258 void* __aligned_malloc_with_fallback(size_t size) {
259 #if defined(_WIN32)
260 if (void* dest = std::__libcpp_aligned_alloc(alignof(__aligned_type), size))
261 return dest;
262 #elif defined(_LIBCPP_HAS_NO_LIBRARY_ALIGNED_ALLOCATION)
263 if (void* dest = ::malloc(size))
264 return dest;
265 #else
266 if (size == 0)
267 size = 1;
268 if (void* dest = std::__libcpp_aligned_alloc(__alignof(__aligned_type), size))
269 return dest;
270 #endif
271 return fallback_malloc(size);
274 void* __calloc_with_fallback(size_t count, size_t size) {
275 void* ptr = ::calloc(count, size);
276 if (NULL != ptr)
277 return ptr;
278 // if calloc fails, fall back to emergency stash
279 ptr = fallback_malloc(size * count);
280 if (NULL != ptr)
281 ::memset(ptr, 0, size * count);
282 return ptr;
285 void __aligned_free_with_fallback(void* ptr) {
286 if (is_fallback_ptr(ptr))
287 fallback_free(ptr);
288 else {
289 #if defined(_LIBCPP_HAS_NO_LIBRARY_ALIGNED_ALLOCATION)
290 ::free(ptr);
291 #else
292 std::__libcpp_aligned_free(ptr);
293 #endif
297 void __free_with_fallback(void* ptr) {
298 if (is_fallback_ptr(ptr))
299 fallback_free(ptr);
300 else
301 ::free(ptr);
304 } // namespace __cxxabiv1