1 //===- Symbols.h ------------------------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #ifndef LLD_COFF_SYMBOLS_H
10 #define LLD_COFF_SYMBOLS_H
14 #include "lld/Common/LLVM.h"
15 #include "lld/Common/Memory.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/Object/Archive.h"
18 #include "llvm/Object/COFF.h"
27 using llvm::object::Archive
;
28 using llvm::object::COFFSymbolRef
;
29 using llvm::object::coff_import_header
;
30 using llvm::object::coff_symbol_generic
;
33 class COFFLinkerContext
;
38 // The base class for real symbol classes.
42 // The order of these is significant. We start with the regular defined
43 // symbols as those are the most prevalent and the zero tag is the cheapest
44 // to set. Among the defined kinds, the lower the kind is preferred over
45 // the higher kind when testing whether one symbol should take precedence
47 DefinedRegularKind
= 0,
49 DefinedLocalImportKind
,
50 DefinedImportThunkKind
,
51 DefinedImportDataKind
,
60 LastDefinedCOFFKind
= DefinedCommonKind
,
61 LastDefinedKind
= DefinedSyntheticKind
,
64 Kind
kind() const { return static_cast<Kind
>(symbolKind
); }
66 // Returns the symbol name.
68 // COFF symbol names are read lazily for a performance reason.
69 // Non-external symbol names are never used by the linker except for logging
70 // or debugging. Their internal references are resolved not by name but by
71 // symbol index. And because they are not external, no one can refer them by
72 // name. Object files contain lots of non-external symbols, and creating
73 // StringRefs for them (which involves lots of strlen() on the string table)
74 // is a waste of time.
75 if (nameData
== nullptr)
77 return StringRef(nameData
, nameSize
);
80 void replaceKeepingName(Symbol
*other
, size_t size
);
82 // Returns the file from which this symbol was created.
85 // Indicates that this symbol will be included in the final image. Only valid
86 // after calling markLive.
90 return symbolKind
== LazyArchiveKind
|| symbolKind
== LazyObjectKind
||
91 symbolKind
== LazyDLLSymbolKind
;
99 explicit Symbol(Kind k
, StringRef n
= "")
100 : symbolKind(k
), isExternal(true), isCOMDAT(false),
101 writtenToSymtab(false), isUsedInRegularObj(false),
102 pendingArchiveLoad(false), isGCRoot(false), isRuntimePseudoReloc(false),
103 deferUndefined(false), canInline(true), isWeak(false),
104 nameSize(n
.size()), nameData(n
.empty() ? nullptr : n
.data()) {
105 assert((!n
.empty() || k
<= LastDefinedCOFFKind
) &&
106 "If the name is empty, the Symbol must be a DefinedCOFF.");
109 unsigned symbolKind
: 8;
110 unsigned isExternal
: 1;
113 // This bit is used by the \c DefinedRegular subclass.
114 unsigned isCOMDAT
: 1;
116 // This bit is used by Writer::createSymbolAndStringTable() to prevent
117 // symbols from being written to the symbol table more than once.
118 unsigned writtenToSymtab
: 1;
120 // True if this symbol was referenced by a regular (non-bitcode) object.
121 unsigned isUsedInRegularObj
: 1;
123 // True if we've seen both a lazy and an undefined symbol with this symbol
124 // name, which means that we have enqueued an archive member load and should
125 // not load any more archive members to resolve the same symbol.
126 unsigned pendingArchiveLoad
: 1;
128 /// True if we've already added this symbol to the list of GC roots.
129 unsigned isGCRoot
: 1;
131 unsigned isRuntimePseudoReloc
: 1;
133 // True if we want to allow this symbol to be undefined in the early
134 // undefined check pass in SymbolTable::reportUnresolvable(), as it
135 // might be fixed up later.
136 unsigned deferUndefined
: 1;
138 // False if LTO shouldn't inline whatever this symbol points to. If a symbol
139 // is overwritten after LTO, LTO shouldn't inline the symbol because it
140 // doesn't know the final contents of the symbol.
141 unsigned canInline
: 1;
143 // True if the symbol is weak. This is only tracked for bitcode/LTO symbols.
144 // This information isn't written to the output; rather, it's used for
145 // managing weak symbol overrides.
149 // Symbol name length. Assume symbol lengths fit in a 32-bit integer.
152 const char *nameData
;
155 // The base class for any defined symbols, including absolute symbols,
157 class Defined
: public Symbol
{
159 Defined(Kind k
, StringRef n
) : Symbol(k
, n
) {}
161 static bool classof(const Symbol
*s
) { return s
->kind() <= LastDefinedKind
; }
163 // Returns the RVA (relative virtual address) of this symbol. The
164 // writer sets and uses RVAs.
167 // Returns the chunk containing this symbol. Absolute symbols and __ImageBase
168 // do not have chunks, so this may return null.
172 // Symbols defined via a COFF object file or bitcode file. For COFF files, this
173 // stores a coff_symbol_generic*, and names of internal symbols are lazily
174 // loaded through that. For bitcode files, Sym is nullptr and the name is stored
175 // as a decomposed StringRef.
176 class DefinedCOFF
: public Defined
{
180 DefinedCOFF(Kind k
, InputFile
*f
, StringRef n
, const coff_symbol_generic
*s
)
181 : Defined(k
, n
), file(f
), sym(s
) {}
183 static bool classof(const Symbol
*s
) {
184 return s
->kind() <= LastDefinedCOFFKind
;
187 InputFile
*getFile() { return file
; }
189 COFFSymbolRef
getCOFFSymbol();
194 const coff_symbol_generic
*sym
;
197 // Regular defined symbols read from object file symbol tables.
198 class DefinedRegular
: public DefinedCOFF
{
200 DefinedRegular(InputFile
*f
, StringRef n
, bool isCOMDAT
,
201 bool isExternal
= false,
202 const coff_symbol_generic
*s
= nullptr,
203 SectionChunk
*c
= nullptr, bool isWeak
= false)
204 : DefinedCOFF(DefinedRegularKind
, f
, n
, s
), data(c
? &c
->repl
: nullptr) {
205 this->isExternal
= isExternal
;
206 this->isCOMDAT
= isCOMDAT
;
207 this->isWeak
= isWeak
;
210 static bool classof(const Symbol
*s
) {
211 return s
->kind() == DefinedRegularKind
;
214 uint64_t getRVA() const { return (*data
)->getRVA() + sym
->Value
; }
215 SectionChunk
*getChunk() const { return *data
; }
216 uint32_t getValue() const { return sym
->Value
; }
221 class DefinedCommon
: public DefinedCOFF
{
223 DefinedCommon(InputFile
*f
, StringRef n
, uint64_t size
,
224 const coff_symbol_generic
*s
= nullptr,
225 CommonChunk
*c
= nullptr)
226 : DefinedCOFF(DefinedCommonKind
, f
, n
, s
), data(c
), size(size
) {
227 this->isExternal
= true;
230 static bool classof(const Symbol
*s
) {
231 return s
->kind() == DefinedCommonKind
;
234 uint64_t getRVA() { return data
->getRVA(); }
235 CommonChunk
*getChunk() { return data
; }
239 uint64_t getSize() const { return size
; }
245 class DefinedAbsolute
: public Defined
{
247 DefinedAbsolute(const COFFLinkerContext
&c
, StringRef n
, COFFSymbolRef s
)
248 : Defined(DefinedAbsoluteKind
, n
), va(s
.getValue()), ctx(c
) {
249 isExternal
= s
.isExternal();
252 DefinedAbsolute(const COFFLinkerContext
&c
, StringRef n
, uint64_t v
)
253 : Defined(DefinedAbsoluteKind
, n
), va(v
), ctx(c
) {}
255 static bool classof(const Symbol
*s
) {
256 return s
->kind() == DefinedAbsoluteKind
;
260 void setVA(uint64_t v
) { va
= v
; }
261 uint64_t getVA() const { return va
; }
265 const COFFLinkerContext
&ctx
;
268 // This symbol is used for linker-synthesized symbols like __ImageBase and
269 // __safe_se_handler_table.
270 class DefinedSynthetic
: public Defined
{
272 explicit DefinedSynthetic(StringRef name
, Chunk
*c
, uint32_t offset
= 0)
273 : Defined(DefinedSyntheticKind
, name
), c(c
), offset(offset
) {}
275 static bool classof(const Symbol
*s
) {
276 return s
->kind() == DefinedSyntheticKind
;
279 // A null chunk indicates that this is __ImageBase. Otherwise, this is some
280 // other synthesized chunk, like SEHTableChunk.
281 uint32_t getRVA() { return c
? c
->getRVA() + offset
: 0; }
282 Chunk
*getChunk() { return c
; }
289 // This class represents a symbol defined in an archive file. It is
290 // created from an archive file header, and it knows how to load an
291 // object file from an archive to replace itself with a defined
292 // symbol. If the resolver finds both Undefined and LazyArchive for
293 // the same name, it will ask the LazyArchive to load a file.
294 class LazyArchive
: public Symbol
{
296 LazyArchive(ArchiveFile
*f
, const Archive::Symbol s
)
297 : Symbol(LazyArchiveKind
, s
.getName()), file(f
), sym(s
) {}
299 static bool classof(const Symbol
*s
) { return s
->kind() == LazyArchiveKind
; }
301 MemoryBufferRef
getMemberBuffer();
304 const Archive::Symbol sym
;
307 class LazyObject
: public Symbol
{
309 LazyObject(InputFile
*f
, StringRef n
) : Symbol(LazyObjectKind
, n
), file(f
) {}
310 static bool classof(const Symbol
*s
) { return s
->kind() == LazyObjectKind
; }
315 class LazyDLLSymbol
: public Symbol
{
317 LazyDLLSymbol(DLLFile
*f
, DLLFile::Symbol
*s
, StringRef n
)
318 : Symbol(LazyDLLSymbolKind
, n
), file(f
), sym(s
) {}
319 static bool classof(const Symbol
*s
) {
320 return s
->kind() == LazyDLLSymbolKind
;
324 DLLFile::Symbol
*sym
;
327 // Undefined symbols.
328 class Undefined
: public Symbol
{
330 explicit Undefined(StringRef n
) : Symbol(UndefinedKind
, n
) {}
332 static bool classof(const Symbol
*s
) { return s
->kind() == UndefinedKind
; }
334 // An undefined symbol can have a fallback symbol which gives an
335 // undefined symbol a second chance if it would remain undefined.
336 // If it remains undefined, it'll be replaced with whatever the
337 // Alias pointer points to.
338 Symbol
*weakAlias
= nullptr;
340 // If this symbol is external weak, try to resolve it to a defined
341 // symbol by searching the chain of fallback symbols. Returns the symbol if
342 // successful, otherwise returns null.
343 Defined
*getWeakAlias();
346 // Windows-specific classes.
348 // This class represents a symbol imported from a DLL. This has two
349 // names for internal use and external use. The former is used for
350 // name resolution, and the latter is used for the import descriptor
351 // table in an output. The former has "__imp_" prefix.
352 class DefinedImportData
: public Defined
{
354 DefinedImportData(StringRef n
, ImportFile
*f
)
355 : Defined(DefinedImportDataKind
, n
), file(f
) {
358 static bool classof(const Symbol
*s
) {
359 return s
->kind() == DefinedImportDataKind
;
362 uint64_t getRVA() { return file
->location
->getRVA(); }
363 Chunk
*getChunk() { return file
->location
; }
364 void setLocation(Chunk
*addressTable
) { file
->location
= addressTable
; }
366 StringRef
getDLLName() { return file
->dllName
; }
367 StringRef
getExternalName() { return file
->externalName
; }
368 uint16_t getOrdinal() { return file
->hdr
->OrdinalHint
; }
372 // This is a pointer to the synthetic symbol associated with the load thunk
373 // for this symbol that will be called if the DLL is delay-loaded. This is
374 // needed for Control Flow Guard because if this DefinedImportData symbol is a
375 // valid call target, the corresponding load thunk must also be marked as a
376 // valid call target.
377 DefinedSynthetic
*loadThunkSym
= nullptr;
380 // This class represents a symbol for a jump table entry which jumps
381 // to a function in a DLL. Linker are supposed to create such symbols
382 // without "__imp_" prefix for all function symbols exported from
383 // DLLs, so that you can call DLL functions as regular functions with
384 // a regular name. A function pointer is given as a DefinedImportData.
385 class DefinedImportThunk
: public Defined
{
387 DefinedImportThunk(COFFLinkerContext
&ctx
, StringRef name
,
388 DefinedImportData
*s
, uint16_t machine
);
390 static bool classof(const Symbol
*s
) {
391 return s
->kind() == DefinedImportThunkKind
;
394 uint64_t getRVA() { return data
->getRVA(); }
395 Chunk
*getChunk() { return data
; }
397 DefinedImportData
*wrappedSym
;
403 // If you have a symbol "foo" in your object file, a symbol name
404 // "__imp_foo" becomes automatically available as a pointer to "foo".
405 // This class is for such automatically-created symbols.
406 // Yes, this is an odd feature. We didn't intend to implement that.
407 // This is here just for compatibility with MSVC.
408 class DefinedLocalImport
: public Defined
{
410 DefinedLocalImport(COFFLinkerContext
&ctx
, StringRef n
, Defined
*s
)
411 : Defined(DefinedLocalImportKind
, n
),
412 data(make
<LocalImportChunk
>(ctx
, s
)) {}
414 static bool classof(const Symbol
*s
) {
415 return s
->kind() == DefinedLocalImportKind
;
418 uint64_t getRVA() { return data
->getRVA(); }
419 Chunk
*getChunk() { return data
; }
422 LocalImportChunk
*data
;
425 inline uint64_t Defined::getRVA() {
427 case DefinedAbsoluteKind
:
428 return cast
<DefinedAbsolute
>(this)->getRVA();
429 case DefinedSyntheticKind
:
430 return cast
<DefinedSynthetic
>(this)->getRVA();
431 case DefinedImportDataKind
:
432 return cast
<DefinedImportData
>(this)->getRVA();
433 case DefinedImportThunkKind
:
434 return cast
<DefinedImportThunk
>(this)->getRVA();
435 case DefinedLocalImportKind
:
436 return cast
<DefinedLocalImport
>(this)->getRVA();
437 case DefinedCommonKind
:
438 return cast
<DefinedCommon
>(this)->getRVA();
439 case DefinedRegularKind
:
440 return cast
<DefinedRegular
>(this)->getRVA();
441 case LazyArchiveKind
:
443 case LazyDLLSymbolKind
:
445 llvm_unreachable("Cannot get the address for an undefined symbol.");
447 llvm_unreachable("unknown symbol kind");
450 inline Chunk
*Defined::getChunk() {
452 case DefinedRegularKind
:
453 return cast
<DefinedRegular
>(this)->getChunk();
454 case DefinedAbsoluteKind
:
456 case DefinedSyntheticKind
:
457 return cast
<DefinedSynthetic
>(this)->getChunk();
458 case DefinedImportDataKind
:
459 return cast
<DefinedImportData
>(this)->getChunk();
460 case DefinedImportThunkKind
:
461 return cast
<DefinedImportThunk
>(this)->getChunk();
462 case DefinedLocalImportKind
:
463 return cast
<DefinedLocalImport
>(this)->getChunk();
464 case DefinedCommonKind
:
465 return cast
<DefinedCommon
>(this)->getChunk();
466 case LazyArchiveKind
:
468 case LazyDLLSymbolKind
:
470 llvm_unreachable("Cannot get the chunk of an undefined symbol.");
472 llvm_unreachable("unknown symbol kind");
475 // A buffer class that is large enough to hold any Symbol-derived
476 // object. We allocate memory using this class and instantiate a symbol
477 // using the placement new.
479 alignas(DefinedRegular
) char a
[sizeof(DefinedRegular
)];
480 alignas(DefinedCommon
) char b
[sizeof(DefinedCommon
)];
481 alignas(DefinedAbsolute
) char c
[sizeof(DefinedAbsolute
)];
482 alignas(DefinedSynthetic
) char d
[sizeof(DefinedSynthetic
)];
483 alignas(LazyArchive
) char e
[sizeof(LazyArchive
)];
484 alignas(Undefined
) char f
[sizeof(Undefined
)];
485 alignas(DefinedImportData
) char g
[sizeof(DefinedImportData
)];
486 alignas(DefinedImportThunk
) char h
[sizeof(DefinedImportThunk
)];
487 alignas(DefinedLocalImport
) char i
[sizeof(DefinedLocalImport
)];
488 alignas(LazyObject
) char j
[sizeof(LazyObject
)];
489 alignas(LazyDLLSymbol
) char k
[sizeof(LazyDLLSymbol
)];
492 template <typename T
, typename
... ArgT
>
493 void replaceSymbol(Symbol
*s
, ArgT
&&... arg
) {
494 static_assert(std::is_trivially_destructible
<T
>(),
495 "Symbol types must be trivially destructible");
496 static_assert(sizeof(T
) <= sizeof(SymbolUnion
), "Symbol too small");
497 static_assert(alignof(T
) <= alignof(SymbolUnion
),
498 "SymbolUnion not aligned enough");
499 assert(static_cast<Symbol
*>(static_cast<T
*>(nullptr)) == nullptr &&
501 bool canInline
= s
->canInline
;
502 bool isUsedInRegularObj
= s
->isUsedInRegularObj
;
503 new (s
) T(std::forward
<ArgT
>(arg
)...);
504 s
->canInline
= canInline
;
505 s
->isUsedInRegularObj
= isUsedInRegularObj
;
509 std::string
toString(const coff::COFFLinkerContext
&ctx
, coff::Symbol
&b
);
510 std::string
toCOFFString(const coff::COFFLinkerContext
&ctx
,
511 const llvm::object::Archive::Symbol
&b
);