Bump version to 19.1.0 (final)
[llvm-project.git] / lld / COFF / Writer.cpp
blobf776c76a47ae96041f4efabdd3a8f215e4faccfb
1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "Writer.h"
10 #include "COFFLinkerContext.h"
11 #include "CallGraphSort.h"
12 #include "Config.h"
13 #include "DLL.h"
14 #include "InputFiles.h"
15 #include "LLDMapFile.h"
16 #include "MapFile.h"
17 #include "PDB.h"
18 #include "SymbolTable.h"
19 #include "Symbols.h"
20 #include "lld/Common/ErrorHandler.h"
21 #include "lld/Common/Memory.h"
22 #include "lld/Common/Timer.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringSet.h"
26 #include "llvm/BinaryFormat/COFF.h"
27 #include "llvm/Support/BinaryStreamReader.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/Endian.h"
30 #include "llvm/Support/FileOutputBuffer.h"
31 #include "llvm/Support/Parallel.h"
32 #include "llvm/Support/Path.h"
33 #include "llvm/Support/RandomNumberGenerator.h"
34 #include "llvm/Support/TimeProfiler.h"
35 #include "llvm/Support/xxhash.h"
36 #include <algorithm>
37 #include <cstdio>
38 #include <map>
39 #include <memory>
40 #include <utility>
42 using namespace llvm;
43 using namespace llvm::COFF;
44 using namespace llvm::object;
45 using namespace llvm::support;
46 using namespace llvm::support::endian;
47 using namespace lld;
48 using namespace lld::coff;
50 /* To re-generate DOSProgram:
51 $ cat > /tmp/DOSProgram.asm
52 org 0
53 ; Copy cs to ds.
54 push cs
55 pop ds
56 ; Point ds:dx at the $-terminated string.
57 mov dx, str
58 ; Int 21/AH=09h: Write string to standard output.
59 mov ah, 0x9
60 int 0x21
61 ; Int 21/AH=4Ch: Exit with return code (in AL).
62 mov ax, 0x4C01
63 int 0x21
64 str:
65 db 'This program cannot be run in DOS mode.$'
66 align 8, db 0
67 $ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin
68 $ xxd -i /tmp/DOSProgram.bin
70 static unsigned char dosProgram[] = {
71 0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c,
72 0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72,
73 0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65,
74 0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20,
75 0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00
77 static_assert(sizeof(dosProgram) % 8 == 0,
78 "DOSProgram size must be multiple of 8");
80 static const int dosStubSize = sizeof(dos_header) + sizeof(dosProgram);
81 static_assert(dosStubSize % 8 == 0, "DOSStub size must be multiple of 8");
83 static const int numberOfDataDirectory = 16;
85 namespace {
87 class DebugDirectoryChunk : public NonSectionChunk {
88 public:
89 DebugDirectoryChunk(const COFFLinkerContext &c,
90 const std::vector<std::pair<COFF::DebugType, Chunk *>> &r,
91 bool writeRepro)
92 : records(r), writeRepro(writeRepro), ctx(c) {}
94 size_t getSize() const override {
95 return (records.size() + int(writeRepro)) * sizeof(debug_directory);
98 void writeTo(uint8_t *b) const override {
99 auto *d = reinterpret_cast<debug_directory *>(b);
101 for (const std::pair<COFF::DebugType, Chunk *>& record : records) {
102 Chunk *c = record.second;
103 const OutputSection *os = ctx.getOutputSection(c);
104 uint64_t offs = os->getFileOff() + (c->getRVA() - os->getRVA());
105 fillEntry(d, record.first, c->getSize(), c->getRVA(), offs);
106 ++d;
109 if (writeRepro) {
110 // FIXME: The COFF spec allows either a 0-sized entry to just say
111 // "the timestamp field is really a hash", or a 4-byte size field
112 // followed by that many bytes containing a longer hash (with the
113 // lowest 4 bytes usually being the timestamp in little-endian order).
114 // Consider storing the full 8 bytes computed by xxh3_64bits here.
115 fillEntry(d, COFF::IMAGE_DEBUG_TYPE_REPRO, 0, 0, 0);
119 void setTimeDateStamp(uint32_t timeDateStamp) {
120 for (support::ulittle32_t *tds : timeDateStamps)
121 *tds = timeDateStamp;
124 private:
125 void fillEntry(debug_directory *d, COFF::DebugType debugType, size_t size,
126 uint64_t rva, uint64_t offs) const {
127 d->Characteristics = 0;
128 d->TimeDateStamp = 0;
129 d->MajorVersion = 0;
130 d->MinorVersion = 0;
131 d->Type = debugType;
132 d->SizeOfData = size;
133 d->AddressOfRawData = rva;
134 d->PointerToRawData = offs;
136 timeDateStamps.push_back(&d->TimeDateStamp);
139 mutable std::vector<support::ulittle32_t *> timeDateStamps;
140 const std::vector<std::pair<COFF::DebugType, Chunk *>> &records;
141 bool writeRepro;
142 const COFFLinkerContext &ctx;
145 class CVDebugRecordChunk : public NonSectionChunk {
146 public:
147 CVDebugRecordChunk(const COFFLinkerContext &c) : ctx(c) {}
149 size_t getSize() const override {
150 return sizeof(codeview::DebugInfo) + ctx.config.pdbAltPath.size() + 1;
153 void writeTo(uint8_t *b) const override {
154 // Save off the DebugInfo entry to backfill the file signature (build id)
155 // in Writer::writeBuildId
156 buildId = reinterpret_cast<codeview::DebugInfo *>(b);
158 // variable sized field (PDB Path)
159 char *p = reinterpret_cast<char *>(b + sizeof(*buildId));
160 if (!ctx.config.pdbAltPath.empty())
161 memcpy(p, ctx.config.pdbAltPath.data(), ctx.config.pdbAltPath.size());
162 p[ctx.config.pdbAltPath.size()] = '\0';
165 mutable codeview::DebugInfo *buildId = nullptr;
167 private:
168 const COFFLinkerContext &ctx;
171 class ExtendedDllCharacteristicsChunk : public NonSectionChunk {
172 public:
173 ExtendedDllCharacteristicsChunk(uint32_t c) : characteristics(c) {}
175 size_t getSize() const override { return 4; }
177 void writeTo(uint8_t *buf) const override { write32le(buf, characteristics); }
179 uint32_t characteristics = 0;
182 // PartialSection represents a group of chunks that contribute to an
183 // OutputSection. Collating a collection of PartialSections of same name and
184 // characteristics constitutes the OutputSection.
185 class PartialSectionKey {
186 public:
187 StringRef name;
188 unsigned characteristics;
190 bool operator<(const PartialSectionKey &other) const {
191 int c = name.compare(other.name);
192 if (c > 0)
193 return false;
194 if (c == 0)
195 return characteristics < other.characteristics;
196 return true;
200 struct ChunkRange {
201 Chunk *first = nullptr, *last;
204 // The writer writes a SymbolTable result to a file.
205 class Writer {
206 public:
207 Writer(COFFLinkerContext &c)
208 : buffer(errorHandler().outputBuffer), delayIdata(c), edata(c), ctx(c) {}
209 void run();
211 private:
212 void createSections();
213 void createMiscChunks();
214 void createImportTables();
215 void appendImportThunks();
216 void locateImportTables();
217 void createExportTable();
218 void mergeSections();
219 void sortECChunks();
220 void removeUnusedSections();
221 void assignAddresses();
222 bool isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin);
223 std::pair<Defined *, bool> getThunk(DenseMap<uint64_t, Defined *> &lastThunks,
224 Defined *target, uint64_t p,
225 uint16_t type, int margin);
226 bool createThunks(OutputSection *os, int margin);
227 bool verifyRanges(const std::vector<Chunk *> chunks);
228 void createECCodeMap();
229 void finalizeAddresses();
230 void removeEmptySections();
231 void assignOutputSectionIndices();
232 void createSymbolAndStringTable();
233 void openFile(StringRef outputPath);
234 template <typename PEHeaderTy> void writeHeader();
235 void createSEHTable();
236 void createRuntimePseudoRelocs();
237 void createECChunks();
238 void insertCtorDtorSymbols();
239 void markSymbolsWithRelocations(ObjFile *file, SymbolRVASet &usedSymbols);
240 void createGuardCFTables();
241 void markSymbolsForRVATable(ObjFile *file,
242 ArrayRef<SectionChunk *> symIdxChunks,
243 SymbolRVASet &tableSymbols);
244 void getSymbolsFromSections(ObjFile *file,
245 ArrayRef<SectionChunk *> symIdxChunks,
246 std::vector<Symbol *> &symbols);
247 void maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
248 StringRef countSym, bool hasFlag=false);
249 void setSectionPermissions();
250 void setECSymbols();
251 void writeSections();
252 void writeBuildId();
253 void writePEChecksum();
254 void sortSections();
255 template <typename T> void sortExceptionTable(ChunkRange &exceptionTable);
256 void sortExceptionTables();
257 void sortCRTSectionChunks(std::vector<Chunk *> &chunks);
258 void addSyntheticIdata();
259 void sortBySectionOrder(std::vector<Chunk *> &chunks);
260 void fixPartialSectionChars(StringRef name, uint32_t chars);
261 bool fixGnuImportChunks();
262 void fixTlsAlignment();
263 PartialSection *createPartialSection(StringRef name, uint32_t outChars);
264 PartialSection *findPartialSection(StringRef name, uint32_t outChars);
266 std::optional<coff_symbol16> createSymbol(Defined *d);
267 size_t addEntryToStringTable(StringRef str);
269 OutputSection *findSection(StringRef name);
270 void addBaserels();
271 void addBaserelBlocks(std::vector<Baserel> &v);
273 uint32_t getSizeOfInitializedData();
275 void prepareLoadConfig();
276 template <typename T> void prepareLoadConfig(T *loadConfig);
277 template <typename T> void checkLoadConfigGuardData(const T *loadConfig);
279 std::unique_ptr<FileOutputBuffer> &buffer;
280 std::map<PartialSectionKey, PartialSection *> partialSections;
281 std::vector<char> strtab;
282 std::vector<llvm::object::coff_symbol16> outputSymtab;
283 std::vector<ECCodeMapEntry> codeMap;
284 IdataContents idata;
285 Chunk *importTableStart = nullptr;
286 uint64_t importTableSize = 0;
287 Chunk *edataStart = nullptr;
288 Chunk *edataEnd = nullptr;
289 Chunk *iatStart = nullptr;
290 uint64_t iatSize = 0;
291 DelayLoadContents delayIdata;
292 EdataContents edata;
293 bool setNoSEHCharacteristic = false;
294 uint32_t tlsAlignment = 0;
296 DebugDirectoryChunk *debugDirectory = nullptr;
297 std::vector<std::pair<COFF::DebugType, Chunk *>> debugRecords;
298 CVDebugRecordChunk *buildId = nullptr;
299 ArrayRef<uint8_t> sectionTable;
301 uint64_t fileSize;
302 uint32_t pointerToSymbolTable = 0;
303 uint64_t sizeOfImage;
304 uint64_t sizeOfHeaders;
306 OutputSection *textSec;
307 OutputSection *rdataSec;
308 OutputSection *buildidSec;
309 OutputSection *dataSec;
310 OutputSection *pdataSec;
311 OutputSection *idataSec;
312 OutputSection *edataSec;
313 OutputSection *didatSec;
314 OutputSection *rsrcSec;
315 OutputSection *relocSec;
316 OutputSection *ctorsSec;
317 OutputSection *dtorsSec;
318 // Either .rdata section or .buildid section.
319 OutputSection *debugInfoSec;
321 // The range of .pdata sections in the output file.
323 // We need to keep track of the location of .pdata in whichever section it
324 // gets merged into so that we can sort its contents and emit a correct data
325 // directory entry for the exception table. This is also the case for some
326 // other sections (such as .edata) but because the contents of those sections
327 // are entirely linker-generated we can keep track of their locations using
328 // the chunks that the linker creates. All .pdata chunks come from input
329 // files, so we need to keep track of them separately.
330 ChunkRange pdata;
332 // x86_64 .pdata sections on ARM64EC/ARM64X targets.
333 ChunkRange hybridPdata;
335 COFFLinkerContext &ctx;
337 } // anonymous namespace
339 void lld::coff::writeResult(COFFLinkerContext &ctx) {
340 llvm::TimeTraceScope timeScope("Write output(s)");
341 Writer(ctx).run();
344 void OutputSection::addChunk(Chunk *c) {
345 chunks.push_back(c);
348 void OutputSection::insertChunkAtStart(Chunk *c) {
349 chunks.insert(chunks.begin(), c);
352 void OutputSection::setPermissions(uint32_t c) {
353 header.Characteristics &= ~permMask;
354 header.Characteristics |= c;
357 void OutputSection::merge(OutputSection *other) {
358 chunks.insert(chunks.end(), other->chunks.begin(), other->chunks.end());
359 other->chunks.clear();
360 contribSections.insert(contribSections.end(), other->contribSections.begin(),
361 other->contribSections.end());
362 other->contribSections.clear();
364 // MS link.exe compatibility: when merging a code section into a data section,
365 // mark the target section as a code section.
366 if (other->header.Characteristics & IMAGE_SCN_CNT_CODE) {
367 header.Characteristics |= IMAGE_SCN_CNT_CODE;
368 header.Characteristics &=
369 ~(IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_CNT_UNINITIALIZED_DATA);
373 // Write the section header to a given buffer.
374 void OutputSection::writeHeaderTo(uint8_t *buf, bool isDebug) {
375 auto *hdr = reinterpret_cast<coff_section *>(buf);
376 *hdr = header;
377 if (stringTableOff) {
378 // If name is too long, write offset into the string table as a name.
379 encodeSectionName(hdr->Name, stringTableOff);
380 } else {
381 assert(!isDebug || name.size() <= COFF::NameSize ||
382 (hdr->Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0);
383 strncpy(hdr->Name, name.data(),
384 std::min(name.size(), (size_t)COFF::NameSize));
388 void OutputSection::addContributingPartialSection(PartialSection *sec) {
389 contribSections.push_back(sec);
392 // Check whether the target address S is in range from a relocation
393 // of type relType at address P.
394 bool Writer::isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin) {
395 if (ctx.config.machine == ARMNT) {
396 int64_t diff = AbsoluteDifference(s, p + 4) + margin;
397 switch (relType) {
398 case IMAGE_REL_ARM_BRANCH20T:
399 return isInt<21>(diff);
400 case IMAGE_REL_ARM_BRANCH24T:
401 case IMAGE_REL_ARM_BLX23T:
402 return isInt<25>(diff);
403 default:
404 return true;
406 } else if (ctx.config.machine == ARM64) {
407 int64_t diff = AbsoluteDifference(s, p) + margin;
408 switch (relType) {
409 case IMAGE_REL_ARM64_BRANCH26:
410 return isInt<28>(diff);
411 case IMAGE_REL_ARM64_BRANCH19:
412 return isInt<21>(diff);
413 case IMAGE_REL_ARM64_BRANCH14:
414 return isInt<16>(diff);
415 default:
416 return true;
418 } else {
419 llvm_unreachable("Unexpected architecture");
423 // Return the last thunk for the given target if it is in range,
424 // or create a new one.
425 std::pair<Defined *, bool>
426 Writer::getThunk(DenseMap<uint64_t, Defined *> &lastThunks, Defined *target,
427 uint64_t p, uint16_t type, int margin) {
428 Defined *&lastThunk = lastThunks[target->getRVA()];
429 if (lastThunk && isInRange(type, lastThunk->getRVA(), p, margin))
430 return {lastThunk, false};
431 Chunk *c;
432 switch (ctx.config.machine) {
433 case ARMNT:
434 c = make<RangeExtensionThunkARM>(ctx, target);
435 break;
436 case ARM64:
437 c = make<RangeExtensionThunkARM64>(ctx, target);
438 break;
439 default:
440 llvm_unreachable("Unexpected architecture");
442 Defined *d = make<DefinedSynthetic>("range_extension_thunk", c);
443 lastThunk = d;
444 return {d, true};
447 // This checks all relocations, and for any relocation which isn't in range
448 // it adds a thunk after the section chunk that contains the relocation.
449 // If the latest thunk for the specific target is in range, that is used
450 // instead of creating a new thunk. All range checks are done with the
451 // specified margin, to make sure that relocations that originally are in
452 // range, but only barely, also get thunks - in case other added thunks makes
453 // the target go out of range.
455 // After adding thunks, we verify that all relocations are in range (with
456 // no extra margin requirements). If this failed, we restart (throwing away
457 // the previously created thunks) and retry with a wider margin.
458 bool Writer::createThunks(OutputSection *os, int margin) {
459 bool addressesChanged = false;
460 DenseMap<uint64_t, Defined *> lastThunks;
461 DenseMap<std::pair<ObjFile *, Defined *>, uint32_t> thunkSymtabIndices;
462 size_t thunksSize = 0;
463 // Recheck Chunks.size() each iteration, since we can insert more
464 // elements into it.
465 for (size_t i = 0; i != os->chunks.size(); ++i) {
466 SectionChunk *sc = dyn_cast_or_null<SectionChunk>(os->chunks[i]);
467 if (!sc)
468 continue;
469 size_t thunkInsertionSpot = i + 1;
471 // Try to get a good enough estimate of where new thunks will be placed.
472 // Offset this by the size of the new thunks added so far, to make the
473 // estimate slightly better.
474 size_t thunkInsertionRVA = sc->getRVA() + sc->getSize() + thunksSize;
475 ObjFile *file = sc->file;
476 std::vector<std::pair<uint32_t, uint32_t>> relocReplacements;
477 ArrayRef<coff_relocation> originalRelocs =
478 file->getCOFFObj()->getRelocations(sc->header);
479 for (size_t j = 0, e = originalRelocs.size(); j < e; ++j) {
480 const coff_relocation &rel = originalRelocs[j];
481 Symbol *relocTarget = file->getSymbol(rel.SymbolTableIndex);
483 // The estimate of the source address P should be pretty accurate,
484 // but we don't know whether the target Symbol address should be
485 // offset by thunksSize or not (or by some of thunksSize but not all of
486 // it), giving us some uncertainty once we have added one thunk.
487 uint64_t p = sc->getRVA() + rel.VirtualAddress + thunksSize;
489 Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
490 if (!sym)
491 continue;
493 uint64_t s = sym->getRVA();
495 if (isInRange(rel.Type, s, p, margin))
496 continue;
498 // If the target isn't in range, hook it up to an existing or new thunk.
499 auto [thunk, wasNew] = getThunk(lastThunks, sym, p, rel.Type, margin);
500 if (wasNew) {
501 Chunk *thunkChunk = thunk->getChunk();
502 thunkChunk->setRVA(
503 thunkInsertionRVA); // Estimate of where it will be located.
504 os->chunks.insert(os->chunks.begin() + thunkInsertionSpot, thunkChunk);
505 thunkInsertionSpot++;
506 thunksSize += thunkChunk->getSize();
507 thunkInsertionRVA += thunkChunk->getSize();
508 addressesChanged = true;
511 // To redirect the relocation, add a symbol to the parent object file's
512 // symbol table, and replace the relocation symbol table index with the
513 // new index.
514 auto insertion = thunkSymtabIndices.insert({{file, thunk}, ~0U});
515 uint32_t &thunkSymbolIndex = insertion.first->second;
516 if (insertion.second)
517 thunkSymbolIndex = file->addRangeThunkSymbol(thunk);
518 relocReplacements.emplace_back(j, thunkSymbolIndex);
521 // Get a writable copy of this section's relocations so they can be
522 // modified. If the relocations point into the object file, allocate new
523 // memory. Otherwise, this must be previously allocated memory that can be
524 // modified in place.
525 ArrayRef<coff_relocation> curRelocs = sc->getRelocs();
526 MutableArrayRef<coff_relocation> newRelocs;
527 if (originalRelocs.data() == curRelocs.data()) {
528 newRelocs = MutableArrayRef(
529 bAlloc().Allocate<coff_relocation>(originalRelocs.size()),
530 originalRelocs.size());
531 } else {
532 newRelocs = MutableArrayRef(
533 const_cast<coff_relocation *>(curRelocs.data()), curRelocs.size());
536 // Copy each relocation, but replace the symbol table indices which need
537 // thunks.
538 auto nextReplacement = relocReplacements.begin();
539 auto endReplacement = relocReplacements.end();
540 for (size_t i = 0, e = originalRelocs.size(); i != e; ++i) {
541 newRelocs[i] = originalRelocs[i];
542 if (nextReplacement != endReplacement && nextReplacement->first == i) {
543 newRelocs[i].SymbolTableIndex = nextReplacement->second;
544 ++nextReplacement;
548 sc->setRelocs(newRelocs);
550 return addressesChanged;
553 // Create a code map for CHPE metadata.
554 void Writer::createECCodeMap() {
555 if (!isArm64EC(ctx.config.machine))
556 return;
558 // Clear the map in case we were're recomputing the map after adding
559 // a range extension thunk.
560 codeMap.clear();
562 std::optional<chpe_range_type> lastType;
563 Chunk *first, *last;
565 auto closeRange = [&]() {
566 if (lastType) {
567 codeMap.push_back({first, last, *lastType});
568 lastType.reset();
572 for (OutputSection *sec : ctx.outputSections) {
573 for (Chunk *c : sec->chunks) {
574 // Skip empty section chunks. MS link.exe does not seem to do that and
575 // generates empty code ranges in some cases.
576 if (isa<SectionChunk>(c) && !c->getSize())
577 continue;
579 std::optional<chpe_range_type> chunkType = c->getArm64ECRangeType();
580 if (chunkType != lastType) {
581 closeRange();
582 first = c;
583 lastType = chunkType;
585 last = c;
589 closeRange();
591 Symbol *tableCountSym = ctx.symtab.findUnderscore("__hybrid_code_map_count");
592 cast<DefinedAbsolute>(tableCountSym)->setVA(codeMap.size());
595 // Verify that all relocations are in range, with no extra margin requirements.
596 bool Writer::verifyRanges(const std::vector<Chunk *> chunks) {
597 for (Chunk *c : chunks) {
598 SectionChunk *sc = dyn_cast_or_null<SectionChunk>(c);
599 if (!sc)
600 continue;
602 ArrayRef<coff_relocation> relocs = sc->getRelocs();
603 for (const coff_relocation &rel : relocs) {
604 Symbol *relocTarget = sc->file->getSymbol(rel.SymbolTableIndex);
606 Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
607 if (!sym)
608 continue;
610 uint64_t p = sc->getRVA() + rel.VirtualAddress;
611 uint64_t s = sym->getRVA();
613 if (!isInRange(rel.Type, s, p, 0))
614 return false;
617 return true;
620 // Assign addresses and add thunks if necessary.
621 void Writer::finalizeAddresses() {
622 assignAddresses();
623 if (ctx.config.machine != ARMNT && ctx.config.machine != ARM64)
624 return;
626 size_t origNumChunks = 0;
627 for (OutputSection *sec : ctx.outputSections) {
628 sec->origChunks = sec->chunks;
629 origNumChunks += sec->chunks.size();
632 int pass = 0;
633 int margin = 1024 * 100;
634 while (true) {
635 llvm::TimeTraceScope timeScope2("Add thunks pass");
637 // First check whether we need thunks at all, or if the previous pass of
638 // adding them turned out ok.
639 bool rangesOk = true;
640 size_t numChunks = 0;
642 llvm::TimeTraceScope timeScope3("Verify ranges");
643 for (OutputSection *sec : ctx.outputSections) {
644 if (!verifyRanges(sec->chunks)) {
645 rangesOk = false;
646 break;
648 numChunks += sec->chunks.size();
651 if (rangesOk) {
652 if (pass > 0)
653 log("Added " + Twine(numChunks - origNumChunks) + " thunks with " +
654 "margin " + Twine(margin) + " in " + Twine(pass) + " passes");
655 return;
658 if (pass >= 10)
659 fatal("adding thunks hasn't converged after " + Twine(pass) + " passes");
661 if (pass > 0) {
662 // If the previous pass didn't work out, reset everything back to the
663 // original conditions before retrying with a wider margin. This should
664 // ideally never happen under real circumstances.
665 for (OutputSection *sec : ctx.outputSections)
666 sec->chunks = sec->origChunks;
667 margin *= 2;
670 // Try adding thunks everywhere where it is needed, with a margin
671 // to avoid things going out of range due to the added thunks.
672 bool addressesChanged = false;
674 llvm::TimeTraceScope timeScope3("Create thunks");
675 for (OutputSection *sec : ctx.outputSections)
676 addressesChanged |= createThunks(sec, margin);
678 // If the verification above thought we needed thunks, we should have
679 // added some.
680 assert(addressesChanged);
681 (void)addressesChanged;
683 // Recalculate the layout for the whole image (and verify the ranges at
684 // the start of the next round).
685 assignAddresses();
687 pass++;
691 void Writer::writePEChecksum() {
692 if (!ctx.config.writeCheckSum) {
693 return;
696 llvm::TimeTraceScope timeScope("PE checksum");
698 // https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#checksum
699 uint32_t *buf = (uint32_t *)buffer->getBufferStart();
700 uint32_t size = (uint32_t)(buffer->getBufferSize());
702 coff_file_header *coffHeader =
703 (coff_file_header *)((uint8_t *)buf + dosStubSize + sizeof(PEMagic));
704 pe32_header *peHeader =
705 (pe32_header *)((uint8_t *)coffHeader + sizeof(coff_file_header));
707 uint64_t sum = 0;
708 uint32_t count = size;
709 ulittle16_t *addr = (ulittle16_t *)buf;
711 // The PE checksum algorithm, implemented as suggested in RFC1071
712 while (count > 1) {
713 sum += *addr++;
714 count -= 2;
717 // Add left-over byte, if any
718 if (count > 0)
719 sum += *(unsigned char *)addr;
721 // Fold 32-bit sum to 16 bits
722 while (sum >> 16) {
723 sum = (sum & 0xffff) + (sum >> 16);
726 sum += size;
727 peHeader->CheckSum = sum;
730 // The main function of the writer.
731 void Writer::run() {
733 llvm::TimeTraceScope timeScope("Write PE");
734 ScopedTimer t1(ctx.codeLayoutTimer);
736 createImportTables();
737 createSections();
738 appendImportThunks();
739 // Import thunks must be added before the Control Flow Guard tables are
740 // added.
741 createMiscChunks();
742 createExportTable();
743 mergeSections();
744 sortECChunks();
745 removeUnusedSections();
746 finalizeAddresses();
747 removeEmptySections();
748 assignOutputSectionIndices();
749 setSectionPermissions();
750 setECSymbols();
751 createSymbolAndStringTable();
753 if (fileSize > UINT32_MAX)
754 fatal("image size (" + Twine(fileSize) + ") " +
755 "exceeds maximum allowable size (" + Twine(UINT32_MAX) + ")");
757 openFile(ctx.config.outputFile);
758 if (ctx.config.is64()) {
759 writeHeader<pe32plus_header>();
760 } else {
761 writeHeader<pe32_header>();
763 writeSections();
764 prepareLoadConfig();
765 sortExceptionTables();
767 // Fix up the alignment in the TLS Directory's characteristic field,
768 // if a specific alignment value is needed
769 if (tlsAlignment)
770 fixTlsAlignment();
773 if (!ctx.config.pdbPath.empty() && ctx.config.debug) {
774 assert(buildId);
775 createPDB(ctx, sectionTable, buildId->buildId);
777 writeBuildId();
779 writeLLDMapFile(ctx);
780 writeMapFile(ctx);
782 writePEChecksum();
784 if (errorCount())
785 return;
787 llvm::TimeTraceScope timeScope("Commit PE to disk");
788 ScopedTimer t2(ctx.outputCommitTimer);
789 if (auto e = buffer->commit())
790 fatal("failed to write output '" + buffer->getPath() +
791 "': " + toString(std::move(e)));
794 static StringRef getOutputSectionName(StringRef name) {
795 StringRef s = name.split('$').first;
797 // Treat a later period as a separator for MinGW, for sections like
798 // ".ctors.01234".
799 return s.substr(0, s.find('.', 1));
802 // For /order.
803 void Writer::sortBySectionOrder(std::vector<Chunk *> &chunks) {
804 auto getPriority = [&ctx = ctx](const Chunk *c) {
805 if (auto *sec = dyn_cast<SectionChunk>(c))
806 if (sec->sym)
807 return ctx.config.order.lookup(sec->sym->getName());
808 return 0;
811 llvm::stable_sort(chunks, [=](const Chunk *a, const Chunk *b) {
812 return getPriority(a) < getPriority(b);
816 // Change the characteristics of existing PartialSections that belong to the
817 // section Name to Chars.
818 void Writer::fixPartialSectionChars(StringRef name, uint32_t chars) {
819 for (auto it : partialSections) {
820 PartialSection *pSec = it.second;
821 StringRef curName = pSec->name;
822 if (!curName.consume_front(name) ||
823 (!curName.empty() && !curName.starts_with("$")))
824 continue;
825 if (pSec->characteristics == chars)
826 continue;
827 PartialSection *destSec = createPartialSection(pSec->name, chars);
828 destSec->chunks.insert(destSec->chunks.end(), pSec->chunks.begin(),
829 pSec->chunks.end());
830 pSec->chunks.clear();
834 // Sort concrete section chunks from GNU import libraries.
836 // GNU binutils doesn't use short import files, but instead produces import
837 // libraries that consist of object files, with section chunks for the .idata$*
838 // sections. These are linked just as regular static libraries. Each import
839 // library consists of one header object, one object file for every imported
840 // symbol, and one trailer object. In order for the .idata tables/lists to
841 // be formed correctly, the section chunks within each .idata$* section need
842 // to be grouped by library, and sorted alphabetically within each library
843 // (which makes sure the header comes first and the trailer last).
844 bool Writer::fixGnuImportChunks() {
845 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
847 // Make sure all .idata$* section chunks are mapped as RDATA in order to
848 // be sorted into the same sections as our own synthesized .idata chunks.
849 fixPartialSectionChars(".idata", rdata);
851 bool hasIdata = false;
852 // Sort all .idata$* chunks, grouping chunks from the same library,
853 // with alphabetical ordering of the object files within a library.
854 for (auto it : partialSections) {
855 PartialSection *pSec = it.second;
856 if (!pSec->name.starts_with(".idata"))
857 continue;
859 if (!pSec->chunks.empty())
860 hasIdata = true;
861 llvm::stable_sort(pSec->chunks, [&](Chunk *s, Chunk *t) {
862 SectionChunk *sc1 = dyn_cast_or_null<SectionChunk>(s);
863 SectionChunk *sc2 = dyn_cast_or_null<SectionChunk>(t);
864 if (!sc1 || !sc2) {
865 // if SC1, order them ascending. If SC2 or both null,
866 // S is not less than T.
867 return sc1 != nullptr;
869 // Make a string with "libraryname/objectfile" for sorting, achieving
870 // both grouping by library and sorting of objects within a library,
871 // at once.
872 std::string key1 =
873 (sc1->file->parentName + "/" + sc1->file->getName()).str();
874 std::string key2 =
875 (sc2->file->parentName + "/" + sc2->file->getName()).str();
876 return key1 < key2;
879 return hasIdata;
882 // Add generated idata chunks, for imported symbols and DLLs, and a
883 // terminator in .idata$2.
884 void Writer::addSyntheticIdata() {
885 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
886 idata.create(ctx);
888 // Add the .idata content in the right section groups, to allow
889 // chunks from other linked in object files to be grouped together.
890 // See Microsoft PE/COFF spec 5.4 for details.
891 auto add = [&](StringRef n, std::vector<Chunk *> &v) {
892 PartialSection *pSec = createPartialSection(n, rdata);
893 pSec->chunks.insert(pSec->chunks.end(), v.begin(), v.end());
896 // The loader assumes a specific order of data.
897 // Add each type in the correct order.
898 add(".idata$2", idata.dirs);
899 add(".idata$4", idata.lookups);
900 add(".idata$5", idata.addresses);
901 if (!idata.hints.empty())
902 add(".idata$6", idata.hints);
903 add(".idata$7", idata.dllNames);
906 // Locate the first Chunk and size of the import directory list and the
907 // IAT.
908 void Writer::locateImportTables() {
909 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
911 if (PartialSection *importDirs = findPartialSection(".idata$2", rdata)) {
912 if (!importDirs->chunks.empty())
913 importTableStart = importDirs->chunks.front();
914 for (Chunk *c : importDirs->chunks)
915 importTableSize += c->getSize();
918 if (PartialSection *importAddresses = findPartialSection(".idata$5", rdata)) {
919 if (!importAddresses->chunks.empty())
920 iatStart = importAddresses->chunks.front();
921 for (Chunk *c : importAddresses->chunks)
922 iatSize += c->getSize();
926 // Return whether a SectionChunk's suffix (the dollar and any trailing
927 // suffix) should be removed and sorted into the main suffixless
928 // PartialSection.
929 static bool shouldStripSectionSuffix(SectionChunk *sc, StringRef name,
930 bool isMinGW) {
931 // On MinGW, comdat groups are formed by putting the comdat group name
932 // after the '$' in the section name. For .eh_frame$<symbol>, that must
933 // still be sorted before the .eh_frame trailer from crtend.o, thus just
934 // strip the section name trailer. For other sections, such as
935 // .tls$$<symbol> (where non-comdat .tls symbols are otherwise stored in
936 // ".tls$"), they must be strictly sorted after .tls. And for the
937 // hypothetical case of comdat .CRT$XCU, we definitely need to keep the
938 // suffix for sorting. Thus, to play it safe, only strip the suffix for
939 // the standard sections.
940 if (!isMinGW)
941 return false;
942 if (!sc || !sc->isCOMDAT())
943 return false;
944 return name.starts_with(".text$") || name.starts_with(".data$") ||
945 name.starts_with(".rdata$") || name.starts_with(".pdata$") ||
946 name.starts_with(".xdata$") || name.starts_with(".eh_frame$");
949 void Writer::sortSections() {
950 if (!ctx.config.callGraphProfile.empty()) {
951 DenseMap<const SectionChunk *, int> order =
952 computeCallGraphProfileOrder(ctx);
953 for (auto it : order) {
954 if (DefinedRegular *sym = it.first->sym)
955 ctx.config.order[sym->getName()] = it.second;
958 if (!ctx.config.order.empty())
959 for (auto it : partialSections)
960 sortBySectionOrder(it.second->chunks);
963 // Create output section objects and add them to OutputSections.
964 void Writer::createSections() {
965 llvm::TimeTraceScope timeScope("Output sections");
966 // First, create the builtin sections.
967 const uint32_t data = IMAGE_SCN_CNT_INITIALIZED_DATA;
968 const uint32_t bss = IMAGE_SCN_CNT_UNINITIALIZED_DATA;
969 const uint32_t code = IMAGE_SCN_CNT_CODE;
970 const uint32_t discardable = IMAGE_SCN_MEM_DISCARDABLE;
971 const uint32_t r = IMAGE_SCN_MEM_READ;
972 const uint32_t w = IMAGE_SCN_MEM_WRITE;
973 const uint32_t x = IMAGE_SCN_MEM_EXECUTE;
975 SmallDenseMap<std::pair<StringRef, uint32_t>, OutputSection *> sections;
976 auto createSection = [&](StringRef name, uint32_t outChars) {
977 OutputSection *&sec = sections[{name, outChars}];
978 if (!sec) {
979 sec = make<OutputSection>(name, outChars);
980 ctx.outputSections.push_back(sec);
982 return sec;
985 // Try to match the section order used by link.exe.
986 textSec = createSection(".text", code | r | x);
987 createSection(".bss", bss | r | w);
988 rdataSec = createSection(".rdata", data | r);
989 buildidSec = createSection(".buildid", data | r);
990 dataSec = createSection(".data", data | r | w);
991 pdataSec = createSection(".pdata", data | r);
992 idataSec = createSection(".idata", data | r);
993 edataSec = createSection(".edata", data | r);
994 didatSec = createSection(".didat", data | r);
995 rsrcSec = createSection(".rsrc", data | r);
996 relocSec = createSection(".reloc", data | discardable | r);
997 ctorsSec = createSection(".ctors", data | r | w);
998 dtorsSec = createSection(".dtors", data | r | w);
1000 // Then bin chunks by name and output characteristics.
1001 for (Chunk *c : ctx.symtab.getChunks()) {
1002 auto *sc = dyn_cast<SectionChunk>(c);
1003 if (sc && !sc->live) {
1004 if (ctx.config.verbose)
1005 sc->printDiscardedMessage();
1006 continue;
1008 StringRef name = c->getSectionName();
1009 if (shouldStripSectionSuffix(sc, name, ctx.config.mingw))
1010 name = name.split('$').first;
1012 if (name.starts_with(".tls"))
1013 tlsAlignment = std::max(tlsAlignment, c->getAlignment());
1015 PartialSection *pSec = createPartialSection(name,
1016 c->getOutputCharacteristics());
1017 pSec->chunks.push_back(c);
1020 fixPartialSectionChars(".rsrc", data | r);
1021 fixPartialSectionChars(".edata", data | r);
1022 // Even in non MinGW cases, we might need to link against GNU import
1023 // libraries.
1024 bool hasIdata = fixGnuImportChunks();
1025 if (!idata.empty())
1026 hasIdata = true;
1028 if (hasIdata)
1029 addSyntheticIdata();
1031 sortSections();
1033 if (hasIdata)
1034 locateImportTables();
1036 // Then create an OutputSection for each section.
1037 // '$' and all following characters in input section names are
1038 // discarded when determining output section. So, .text$foo
1039 // contributes to .text, for example. See PE/COFF spec 3.2.
1040 for (auto it : partialSections) {
1041 PartialSection *pSec = it.second;
1042 StringRef name = getOutputSectionName(pSec->name);
1043 uint32_t outChars = pSec->characteristics;
1045 if (name == ".CRT") {
1046 // In link.exe, there is a special case for the I386 target where .CRT
1047 // sections are treated as if they have output characteristics DATA | R if
1048 // their characteristics are DATA | R | W. This implements the same
1049 // special case for all architectures.
1050 outChars = data | r;
1052 log("Processing section " + pSec->name + " -> " + name);
1054 sortCRTSectionChunks(pSec->chunks);
1057 OutputSection *sec = createSection(name, outChars);
1058 for (Chunk *c : pSec->chunks)
1059 sec->addChunk(c);
1061 sec->addContributingPartialSection(pSec);
1064 // Finally, move some output sections to the end.
1065 auto sectionOrder = [&](const OutputSection *s) {
1066 // Move DISCARDABLE (or non-memory-mapped) sections to the end of file
1067 // because the loader cannot handle holes. Stripping can remove other
1068 // discardable ones than .reloc, which is first of them (created early).
1069 if (s->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) {
1070 // Move discardable sections named .debug_ to the end, after other
1071 // discardable sections. Stripping only removes the sections named
1072 // .debug_* - thus try to avoid leaving holes after stripping.
1073 if (s->name.starts_with(".debug_"))
1074 return 3;
1075 return 2;
1077 // .rsrc should come at the end of the non-discardable sections because its
1078 // size may change by the Win32 UpdateResources() function, causing
1079 // subsequent sections to move (see https://crbug.com/827082).
1080 if (s == rsrcSec)
1081 return 1;
1082 return 0;
1084 llvm::stable_sort(ctx.outputSections,
1085 [&](const OutputSection *s, const OutputSection *t) {
1086 return sectionOrder(s) < sectionOrder(t);
1090 void Writer::createMiscChunks() {
1091 llvm::TimeTraceScope timeScope("Misc chunks");
1092 Configuration *config = &ctx.config;
1094 for (MergeChunk *p : ctx.mergeChunkInstances) {
1095 if (p) {
1096 p->finalizeContents();
1097 rdataSec->addChunk(p);
1101 // Create thunks for locally-dllimported symbols.
1102 if (!ctx.symtab.localImportChunks.empty()) {
1103 for (Chunk *c : ctx.symtab.localImportChunks)
1104 rdataSec->addChunk(c);
1107 // Create Debug Information Chunks
1108 debugInfoSec = config->mingw ? buildidSec : rdataSec;
1109 if (config->buildIDHash != BuildIDHash::None || config->debug ||
1110 config->repro || config->cetCompat) {
1111 debugDirectory =
1112 make<DebugDirectoryChunk>(ctx, debugRecords, config->repro);
1113 debugDirectory->setAlignment(4);
1114 debugInfoSec->addChunk(debugDirectory);
1117 if (config->debug || config->buildIDHash != BuildIDHash::None) {
1118 // Make a CVDebugRecordChunk even when /DEBUG:CV is not specified. We
1119 // output a PDB no matter what, and this chunk provides the only means of
1120 // allowing a debugger to match a PDB and an executable. So we need it even
1121 // if we're ultimately not going to write CodeView data to the PDB.
1122 buildId = make<CVDebugRecordChunk>(ctx);
1123 debugRecords.emplace_back(COFF::IMAGE_DEBUG_TYPE_CODEVIEW, buildId);
1124 if (Symbol *buildidSym = ctx.symtab.findUnderscore("__buildid"))
1125 replaceSymbol<DefinedSynthetic>(buildidSym, buildidSym->getName(),
1126 buildId, 4);
1129 if (config->cetCompat) {
1130 debugRecords.emplace_back(COFF::IMAGE_DEBUG_TYPE_EX_DLLCHARACTERISTICS,
1131 make<ExtendedDllCharacteristicsChunk>(
1132 IMAGE_DLL_CHARACTERISTICS_EX_CET_COMPAT));
1135 // Align and add each chunk referenced by the debug data directory.
1136 for (std::pair<COFF::DebugType, Chunk *> r : debugRecords) {
1137 r.second->setAlignment(4);
1138 debugInfoSec->addChunk(r.second);
1141 // Create SEH table. x86-only.
1142 if (config->safeSEH)
1143 createSEHTable();
1145 // Create /guard:cf tables if requested.
1146 if (config->guardCF != GuardCFLevel::Off)
1147 createGuardCFTables();
1149 if (isArm64EC(config->machine))
1150 createECChunks();
1152 if (config->autoImport)
1153 createRuntimePseudoRelocs();
1155 if (config->mingw)
1156 insertCtorDtorSymbols();
1159 // Create .idata section for the DLL-imported symbol table.
1160 // The format of this section is inherently Windows-specific.
1161 // IdataContents class abstracted away the details for us,
1162 // so we just let it create chunks and add them to the section.
1163 void Writer::createImportTables() {
1164 llvm::TimeTraceScope timeScope("Import tables");
1165 // Initialize DLLOrder so that import entries are ordered in
1166 // the same order as in the command line. (That affects DLL
1167 // initialization order, and this ordering is MSVC-compatible.)
1168 for (ImportFile *file : ctx.importFileInstances) {
1169 if (!file->live)
1170 continue;
1172 std::string dll = StringRef(file->dllName).lower();
1173 if (ctx.config.dllOrder.count(dll) == 0)
1174 ctx.config.dllOrder[dll] = ctx.config.dllOrder.size();
1176 if (file->impSym && !isa<DefinedImportData>(file->impSym))
1177 fatal(toString(ctx, *file->impSym) + " was replaced");
1178 DefinedImportData *impSym = cast_or_null<DefinedImportData>(file->impSym);
1179 if (ctx.config.delayLoads.count(StringRef(file->dllName).lower())) {
1180 if (!file->thunkSym)
1181 fatal("cannot delay-load " + toString(file) +
1182 " due to import of data: " + toString(ctx, *impSym));
1183 delayIdata.add(impSym);
1184 } else {
1185 idata.add(impSym);
1190 void Writer::appendImportThunks() {
1191 if (ctx.importFileInstances.empty())
1192 return;
1194 llvm::TimeTraceScope timeScope("Import thunks");
1195 for (ImportFile *file : ctx.importFileInstances) {
1196 if (!file->live)
1197 continue;
1199 if (!file->thunkSym)
1200 continue;
1202 if (!isa<DefinedImportThunk>(file->thunkSym))
1203 fatal(toString(ctx, *file->thunkSym) + " was replaced");
1204 DefinedImportThunk *thunk = cast<DefinedImportThunk>(file->thunkSym);
1205 if (file->thunkLive)
1206 textSec->addChunk(thunk->getChunk());
1209 if (!delayIdata.empty()) {
1210 Defined *helper = cast<Defined>(ctx.config.delayLoadHelper);
1211 delayIdata.create(helper);
1212 for (Chunk *c : delayIdata.getChunks())
1213 didatSec->addChunk(c);
1214 for (Chunk *c : delayIdata.getDataChunks())
1215 dataSec->addChunk(c);
1216 for (Chunk *c : delayIdata.getCodeChunks())
1217 textSec->addChunk(c);
1218 for (Chunk *c : delayIdata.getCodePData())
1219 pdataSec->addChunk(c);
1220 for (Chunk *c : delayIdata.getCodeUnwindInfo())
1221 rdataSec->addChunk(c);
1225 void Writer::createExportTable() {
1226 llvm::TimeTraceScope timeScope("Export table");
1227 if (!edataSec->chunks.empty()) {
1228 // Allow using a custom built export table from input object files, instead
1229 // of having the linker synthesize the tables.
1230 if (ctx.config.hadExplicitExports)
1231 warn("literal .edata sections override exports");
1232 } else if (!ctx.config.exports.empty()) {
1233 for (Chunk *c : edata.chunks)
1234 edataSec->addChunk(c);
1236 if (!edataSec->chunks.empty()) {
1237 edataStart = edataSec->chunks.front();
1238 edataEnd = edataSec->chunks.back();
1240 // Warn on exported deleting destructor.
1241 for (auto e : ctx.config.exports)
1242 if (e.sym && e.sym->getName().starts_with("??_G"))
1243 warn("export of deleting dtor: " + toString(ctx, *e.sym));
1246 void Writer::removeUnusedSections() {
1247 llvm::TimeTraceScope timeScope("Remove unused sections");
1248 // Remove sections that we can be sure won't get content, to avoid
1249 // allocating space for their section headers.
1250 auto isUnused = [this](OutputSection *s) {
1251 if (s == relocSec)
1252 return false; // This section is populated later.
1253 // MergeChunks have zero size at this point, as their size is finalized
1254 // later. Only remove sections that have no Chunks at all.
1255 return s->chunks.empty();
1257 llvm::erase_if(ctx.outputSections, isUnused);
1260 // The Windows loader doesn't seem to like empty sections,
1261 // so we remove them if any.
1262 void Writer::removeEmptySections() {
1263 llvm::TimeTraceScope timeScope("Remove empty sections");
1264 auto isEmpty = [](OutputSection *s) { return s->getVirtualSize() == 0; };
1265 llvm::erase_if(ctx.outputSections, isEmpty);
1268 void Writer::assignOutputSectionIndices() {
1269 llvm::TimeTraceScope timeScope("Output sections indices");
1270 // Assign final output section indices, and assign each chunk to its output
1271 // section.
1272 uint32_t idx = 1;
1273 for (OutputSection *os : ctx.outputSections) {
1274 os->sectionIndex = idx;
1275 for (Chunk *c : os->chunks)
1276 c->setOutputSectionIdx(idx);
1277 ++idx;
1280 // Merge chunks are containers of chunks, so assign those an output section
1281 // too.
1282 for (MergeChunk *mc : ctx.mergeChunkInstances)
1283 if (mc)
1284 for (SectionChunk *sc : mc->sections)
1285 if (sc && sc->live)
1286 sc->setOutputSectionIdx(mc->getOutputSectionIdx());
1289 size_t Writer::addEntryToStringTable(StringRef str) {
1290 assert(str.size() > COFF::NameSize);
1291 size_t offsetOfEntry = strtab.size() + 4; // +4 for the size field
1292 strtab.insert(strtab.end(), str.begin(), str.end());
1293 strtab.push_back('\0');
1294 return offsetOfEntry;
1297 std::optional<coff_symbol16> Writer::createSymbol(Defined *def) {
1298 coff_symbol16 sym;
1299 switch (def->kind()) {
1300 case Symbol::DefinedAbsoluteKind: {
1301 auto *da = dyn_cast<DefinedAbsolute>(def);
1302 // Note: COFF symbol can only store 32-bit values, so 64-bit absolute
1303 // values will be truncated.
1304 sym.Value = da->getVA();
1305 sym.SectionNumber = IMAGE_SYM_ABSOLUTE;
1306 break;
1308 default: {
1309 // Don't write symbols that won't be written to the output to the symbol
1310 // table.
1311 // We also try to write DefinedSynthetic as a normal symbol. Some of these
1312 // symbols do point to an actual chunk, like __safe_se_handler_table. Others
1313 // like __ImageBase are outside of sections and thus cannot be represented.
1314 Chunk *c = def->getChunk();
1315 if (!c)
1316 return std::nullopt;
1317 OutputSection *os = ctx.getOutputSection(c);
1318 if (!os)
1319 return std::nullopt;
1321 sym.Value = def->getRVA() - os->getRVA();
1322 sym.SectionNumber = os->sectionIndex;
1323 break;
1327 // Symbols that are runtime pseudo relocations don't point to the actual
1328 // symbol data itself (as they are imported), but points to the IAT entry
1329 // instead. Avoid emitting them to the symbol table, as they can confuse
1330 // debuggers.
1331 if (def->isRuntimePseudoReloc)
1332 return std::nullopt;
1334 StringRef name = def->getName();
1335 if (name.size() > COFF::NameSize) {
1336 sym.Name.Offset.Zeroes = 0;
1337 sym.Name.Offset.Offset = addEntryToStringTable(name);
1338 } else {
1339 memset(sym.Name.ShortName, 0, COFF::NameSize);
1340 memcpy(sym.Name.ShortName, name.data(), name.size());
1343 if (auto *d = dyn_cast<DefinedCOFF>(def)) {
1344 COFFSymbolRef ref = d->getCOFFSymbol();
1345 sym.Type = ref.getType();
1346 sym.StorageClass = ref.getStorageClass();
1347 } else if (def->kind() == Symbol::DefinedImportThunkKind) {
1348 sym.Type = (IMAGE_SYM_DTYPE_FUNCTION << SCT_COMPLEX_TYPE_SHIFT) |
1349 IMAGE_SYM_TYPE_NULL;
1350 sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL;
1351 } else {
1352 sym.Type = IMAGE_SYM_TYPE_NULL;
1353 sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL;
1355 sym.NumberOfAuxSymbols = 0;
1356 return sym;
1359 void Writer::createSymbolAndStringTable() {
1360 llvm::TimeTraceScope timeScope("Symbol and string table");
1361 // PE/COFF images are limited to 8 byte section names. Longer names can be
1362 // supported by writing a non-standard string table, but this string table is
1363 // not mapped at runtime and the long names will therefore be inaccessible.
1364 // link.exe always truncates section names to 8 bytes, whereas binutils always
1365 // preserves long section names via the string table. LLD adopts a hybrid
1366 // solution where discardable sections have long names preserved and
1367 // non-discardable sections have their names truncated, to ensure that any
1368 // section which is mapped at runtime also has its name mapped at runtime.
1369 for (OutputSection *sec : ctx.outputSections) {
1370 if (sec->name.size() <= COFF::NameSize)
1371 continue;
1372 if ((sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0)
1373 continue;
1374 if (ctx.config.warnLongSectionNames) {
1375 warn("section name " + sec->name +
1376 " is longer than 8 characters and will use a non-standard string "
1377 "table");
1379 sec->setStringTableOff(addEntryToStringTable(sec->name));
1382 if (ctx.config.writeSymtab) {
1383 for (ObjFile *file : ctx.objFileInstances) {
1384 for (Symbol *b : file->getSymbols()) {
1385 auto *d = dyn_cast_or_null<Defined>(b);
1386 if (!d || d->writtenToSymtab)
1387 continue;
1388 d->writtenToSymtab = true;
1389 if (auto *dc = dyn_cast_or_null<DefinedCOFF>(d)) {
1390 COFFSymbolRef symRef = dc->getCOFFSymbol();
1391 if (symRef.isSectionDefinition() ||
1392 symRef.getStorageClass() == COFF::IMAGE_SYM_CLASS_LABEL)
1393 continue;
1396 if (std::optional<coff_symbol16> sym = createSymbol(d))
1397 outputSymtab.push_back(*sym);
1399 if (auto *dthunk = dyn_cast<DefinedImportThunk>(d)) {
1400 if (!dthunk->wrappedSym->writtenToSymtab) {
1401 dthunk->wrappedSym->writtenToSymtab = true;
1402 if (std::optional<coff_symbol16> sym =
1403 createSymbol(dthunk->wrappedSym))
1404 outputSymtab.push_back(*sym);
1411 if (outputSymtab.empty() && strtab.empty())
1412 return;
1414 // We position the symbol table to be adjacent to the end of the last section.
1415 uint64_t fileOff = fileSize;
1416 pointerToSymbolTable = fileOff;
1417 fileOff += outputSymtab.size() * sizeof(coff_symbol16);
1418 fileOff += 4 + strtab.size();
1419 fileSize = alignTo(fileOff, ctx.config.fileAlign);
1422 void Writer::mergeSections() {
1423 llvm::TimeTraceScope timeScope("Merge sections");
1424 if (!pdataSec->chunks.empty()) {
1425 if (isArm64EC(ctx.config.machine)) {
1426 // On ARM64EC .pdata may contain both ARM64 and X64 data. Split them by
1427 // sorting and store their regions separately.
1428 llvm::stable_sort(pdataSec->chunks, [=](const Chunk *a, const Chunk *b) {
1429 return (a->getMachine() == AMD64) < (b->getMachine() == AMD64);
1432 for (auto chunk : pdataSec->chunks) {
1433 if (chunk->getMachine() == AMD64) {
1434 hybridPdata.first = chunk;
1435 hybridPdata.last = pdataSec->chunks.back();
1436 break;
1439 if (!pdata.first)
1440 pdata.first = chunk;
1441 pdata.last = chunk;
1443 } else {
1444 pdata.first = pdataSec->chunks.front();
1445 pdata.last = pdataSec->chunks.back();
1449 for (auto &p : ctx.config.merge) {
1450 StringRef toName = p.second;
1451 if (p.first == toName)
1452 continue;
1453 StringSet<> names;
1454 while (true) {
1455 if (!names.insert(toName).second)
1456 fatal("/merge: cycle found for section '" + p.first + "'");
1457 auto i = ctx.config.merge.find(toName);
1458 if (i == ctx.config.merge.end())
1459 break;
1460 toName = i->second;
1462 OutputSection *from = findSection(p.first);
1463 OutputSection *to = findSection(toName);
1464 if (!from)
1465 continue;
1466 if (!to) {
1467 from->name = toName;
1468 continue;
1470 to->merge(from);
1474 // EC targets may have chunks of various architectures mixed together at this
1475 // point. Group code chunks of the same architecture together by sorting chunks
1476 // by their EC range type.
1477 void Writer::sortECChunks() {
1478 if (!isArm64EC(ctx.config.machine))
1479 return;
1481 for (OutputSection *sec : ctx.outputSections) {
1482 if (sec->isCodeSection())
1483 llvm::stable_sort(sec->chunks, [=](const Chunk *a, const Chunk *b) {
1484 std::optional<chpe_range_type> aType = a->getArm64ECRangeType(),
1485 bType = b->getArm64ECRangeType();
1486 return bType && (!aType || *aType < *bType);
1491 // Visits all sections to assign incremental, non-overlapping RVAs and
1492 // file offsets.
1493 void Writer::assignAddresses() {
1494 llvm::TimeTraceScope timeScope("Assign addresses");
1495 Configuration *config = &ctx.config;
1497 // We need to create EC code map so that ECCodeMapChunk knows its size.
1498 // We do it here to make sure that we account for range extension chunks.
1499 createECCodeMap();
1501 sizeOfHeaders = dosStubSize + sizeof(PEMagic) + sizeof(coff_file_header) +
1502 sizeof(data_directory) * numberOfDataDirectory +
1503 sizeof(coff_section) * ctx.outputSections.size();
1504 sizeOfHeaders +=
1505 config->is64() ? sizeof(pe32plus_header) : sizeof(pe32_header);
1506 sizeOfHeaders = alignTo(sizeOfHeaders, config->fileAlign);
1507 fileSize = sizeOfHeaders;
1509 // The first page is kept unmapped.
1510 uint64_t rva = alignTo(sizeOfHeaders, config->align);
1512 for (OutputSection *sec : ctx.outputSections) {
1513 llvm::TimeTraceScope timeScope("Section: ", sec->name);
1514 if (sec == relocSec)
1515 addBaserels();
1516 uint64_t rawSize = 0, virtualSize = 0;
1517 sec->header.VirtualAddress = rva;
1519 // If /FUNCTIONPADMIN is used, functions are padded in order to create a
1520 // hotpatchable image.
1521 uint32_t padding = sec->isCodeSection() ? config->functionPadMin : 0;
1522 std::optional<chpe_range_type> prevECRange;
1524 for (Chunk *c : sec->chunks) {
1525 // Alignment EC code range baudaries.
1526 if (isArm64EC(ctx.config.machine) && sec->isCodeSection()) {
1527 std::optional<chpe_range_type> rangeType = c->getArm64ECRangeType();
1528 if (rangeType != prevECRange) {
1529 virtualSize = alignTo(virtualSize, 4096);
1530 prevECRange = rangeType;
1533 if (padding && c->isHotPatchable())
1534 virtualSize += padding;
1535 // If chunk has EC entry thunk, reserve a space for an offset to the
1536 // thunk.
1537 if (c->getEntryThunk())
1538 virtualSize += sizeof(uint32_t);
1539 virtualSize = alignTo(virtualSize, c->getAlignment());
1540 c->setRVA(rva + virtualSize);
1541 virtualSize += c->getSize();
1542 if (c->hasData)
1543 rawSize = alignTo(virtualSize, config->fileAlign);
1545 if (virtualSize > UINT32_MAX)
1546 error("section larger than 4 GiB: " + sec->name);
1547 sec->header.VirtualSize = virtualSize;
1548 sec->header.SizeOfRawData = rawSize;
1549 if (rawSize != 0)
1550 sec->header.PointerToRawData = fileSize;
1551 rva += alignTo(virtualSize, config->align);
1552 fileSize += alignTo(rawSize, config->fileAlign);
1554 sizeOfImage = alignTo(rva, config->align);
1556 // Assign addresses to sections in MergeChunks.
1557 for (MergeChunk *mc : ctx.mergeChunkInstances)
1558 if (mc)
1559 mc->assignSubsectionRVAs();
1562 template <typename PEHeaderTy> void Writer::writeHeader() {
1563 // Write DOS header. For backwards compatibility, the first part of a PE/COFF
1564 // executable consists of an MS-DOS MZ executable. If the executable is run
1565 // under DOS, that program gets run (usually to just print an error message).
1566 // When run under Windows, the loader looks at AddressOfNewExeHeader and uses
1567 // the PE header instead.
1568 Configuration *config = &ctx.config;
1569 uint8_t *buf = buffer->getBufferStart();
1570 auto *dos = reinterpret_cast<dos_header *>(buf);
1571 buf += sizeof(dos_header);
1572 dos->Magic[0] = 'M';
1573 dos->Magic[1] = 'Z';
1574 dos->UsedBytesInTheLastPage = dosStubSize % 512;
1575 dos->FileSizeInPages = divideCeil(dosStubSize, 512);
1576 dos->HeaderSizeInParagraphs = sizeof(dos_header) / 16;
1578 dos->AddressOfRelocationTable = sizeof(dos_header);
1579 dos->AddressOfNewExeHeader = dosStubSize;
1581 // Write DOS program.
1582 memcpy(buf, dosProgram, sizeof(dosProgram));
1583 buf += sizeof(dosProgram);
1585 // Write PE magic
1586 memcpy(buf, PEMagic, sizeof(PEMagic));
1587 buf += sizeof(PEMagic);
1589 // Write COFF header
1590 auto *coff = reinterpret_cast<coff_file_header *>(buf);
1591 buf += sizeof(*coff);
1592 switch (config->machine) {
1593 case ARM64EC:
1594 coff->Machine = AMD64;
1595 break;
1596 case ARM64X:
1597 coff->Machine = ARM64;
1598 break;
1599 default:
1600 coff->Machine = config->machine;
1602 coff->NumberOfSections = ctx.outputSections.size();
1603 coff->Characteristics = IMAGE_FILE_EXECUTABLE_IMAGE;
1604 if (config->largeAddressAware)
1605 coff->Characteristics |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
1606 if (!config->is64())
1607 coff->Characteristics |= IMAGE_FILE_32BIT_MACHINE;
1608 if (config->dll)
1609 coff->Characteristics |= IMAGE_FILE_DLL;
1610 if (config->driverUponly)
1611 coff->Characteristics |= IMAGE_FILE_UP_SYSTEM_ONLY;
1612 if (!config->relocatable)
1613 coff->Characteristics |= IMAGE_FILE_RELOCS_STRIPPED;
1614 if (config->swaprunCD)
1615 coff->Characteristics |= IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP;
1616 if (config->swaprunNet)
1617 coff->Characteristics |= IMAGE_FILE_NET_RUN_FROM_SWAP;
1618 coff->SizeOfOptionalHeader =
1619 sizeof(PEHeaderTy) + sizeof(data_directory) * numberOfDataDirectory;
1621 // Write PE header
1622 auto *pe = reinterpret_cast<PEHeaderTy *>(buf);
1623 buf += sizeof(*pe);
1624 pe->Magic = config->is64() ? PE32Header::PE32_PLUS : PE32Header::PE32;
1626 // If {Major,Minor}LinkerVersion is left at 0.0, then for some
1627 // reason signing the resulting PE file with Authenticode produces a
1628 // signature that fails to validate on Windows 7 (but is OK on 10).
1629 // Set it to 14.0, which is what VS2015 outputs, and which avoids
1630 // that problem.
1631 pe->MajorLinkerVersion = 14;
1632 pe->MinorLinkerVersion = 0;
1634 pe->ImageBase = config->imageBase;
1635 pe->SectionAlignment = config->align;
1636 pe->FileAlignment = config->fileAlign;
1637 pe->MajorImageVersion = config->majorImageVersion;
1638 pe->MinorImageVersion = config->minorImageVersion;
1639 pe->MajorOperatingSystemVersion = config->majorOSVersion;
1640 pe->MinorOperatingSystemVersion = config->minorOSVersion;
1641 pe->MajorSubsystemVersion = config->majorSubsystemVersion;
1642 pe->MinorSubsystemVersion = config->minorSubsystemVersion;
1643 pe->Subsystem = config->subsystem;
1644 pe->SizeOfImage = sizeOfImage;
1645 pe->SizeOfHeaders = sizeOfHeaders;
1646 if (!config->noEntry) {
1647 Defined *entry = cast<Defined>(config->entry);
1648 pe->AddressOfEntryPoint = entry->getRVA();
1649 // Pointer to thumb code must have the LSB set, so adjust it.
1650 if (config->machine == ARMNT)
1651 pe->AddressOfEntryPoint |= 1;
1653 pe->SizeOfStackReserve = config->stackReserve;
1654 pe->SizeOfStackCommit = config->stackCommit;
1655 pe->SizeOfHeapReserve = config->heapReserve;
1656 pe->SizeOfHeapCommit = config->heapCommit;
1657 if (config->appContainer)
1658 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER;
1659 if (config->driverWdm)
1660 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER;
1661 if (config->dynamicBase)
1662 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE;
1663 if (config->highEntropyVA)
1664 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA;
1665 if (!config->allowBind)
1666 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_BIND;
1667 if (config->nxCompat)
1668 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT;
1669 if (!config->allowIsolation)
1670 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION;
1671 if (config->guardCF != GuardCFLevel::Off)
1672 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_GUARD_CF;
1673 if (config->integrityCheck)
1674 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY;
1675 if (setNoSEHCharacteristic || config->noSEH)
1676 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_SEH;
1677 if (config->terminalServerAware)
1678 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE;
1679 pe->NumberOfRvaAndSize = numberOfDataDirectory;
1680 if (textSec->getVirtualSize()) {
1681 pe->BaseOfCode = textSec->getRVA();
1682 pe->SizeOfCode = textSec->getRawSize();
1684 pe->SizeOfInitializedData = getSizeOfInitializedData();
1686 // Write data directory
1687 auto *dir = reinterpret_cast<data_directory *>(buf);
1688 buf += sizeof(*dir) * numberOfDataDirectory;
1689 if (edataStart) {
1690 dir[EXPORT_TABLE].RelativeVirtualAddress = edataStart->getRVA();
1691 dir[EXPORT_TABLE].Size =
1692 edataEnd->getRVA() + edataEnd->getSize() - edataStart->getRVA();
1694 if (importTableStart) {
1695 dir[IMPORT_TABLE].RelativeVirtualAddress = importTableStart->getRVA();
1696 dir[IMPORT_TABLE].Size = importTableSize;
1698 if (iatStart) {
1699 dir[IAT].RelativeVirtualAddress = iatStart->getRVA();
1700 dir[IAT].Size = iatSize;
1702 if (rsrcSec->getVirtualSize()) {
1703 dir[RESOURCE_TABLE].RelativeVirtualAddress = rsrcSec->getRVA();
1704 dir[RESOURCE_TABLE].Size = rsrcSec->getVirtualSize();
1706 // ARM64EC (but not ARM64X) contains x86_64 exception table in data directory.
1707 ChunkRange &exceptionTable =
1708 ctx.config.machine == ARM64EC ? hybridPdata : pdata;
1709 if (exceptionTable.first) {
1710 dir[EXCEPTION_TABLE].RelativeVirtualAddress =
1711 exceptionTable.first->getRVA();
1712 dir[EXCEPTION_TABLE].Size = exceptionTable.last->getRVA() +
1713 exceptionTable.last->getSize() -
1714 exceptionTable.first->getRVA();
1716 if (relocSec->getVirtualSize()) {
1717 dir[BASE_RELOCATION_TABLE].RelativeVirtualAddress = relocSec->getRVA();
1718 dir[BASE_RELOCATION_TABLE].Size = relocSec->getVirtualSize();
1720 if (Symbol *sym = ctx.symtab.findUnderscore("_tls_used")) {
1721 if (Defined *b = dyn_cast<Defined>(sym)) {
1722 dir[TLS_TABLE].RelativeVirtualAddress = b->getRVA();
1723 dir[TLS_TABLE].Size = config->is64()
1724 ? sizeof(object::coff_tls_directory64)
1725 : sizeof(object::coff_tls_directory32);
1728 if (debugDirectory) {
1729 dir[DEBUG_DIRECTORY].RelativeVirtualAddress = debugDirectory->getRVA();
1730 dir[DEBUG_DIRECTORY].Size = debugDirectory->getSize();
1732 if (Symbol *sym = ctx.symtab.findUnderscore("_load_config_used")) {
1733 if (auto *b = dyn_cast<DefinedRegular>(sym)) {
1734 SectionChunk *sc = b->getChunk();
1735 assert(b->getRVA() >= sc->getRVA());
1736 uint64_t offsetInChunk = b->getRVA() - sc->getRVA();
1737 if (!sc->hasData || offsetInChunk + 4 > sc->getSize())
1738 fatal("_load_config_used is malformed");
1740 ArrayRef<uint8_t> secContents = sc->getContents();
1741 uint32_t loadConfigSize =
1742 *reinterpret_cast<const ulittle32_t *>(&secContents[offsetInChunk]);
1743 if (offsetInChunk + loadConfigSize > sc->getSize())
1744 fatal("_load_config_used is too large");
1745 dir[LOAD_CONFIG_TABLE].RelativeVirtualAddress = b->getRVA();
1746 dir[LOAD_CONFIG_TABLE].Size = loadConfigSize;
1749 if (!delayIdata.empty()) {
1750 dir[DELAY_IMPORT_DESCRIPTOR].RelativeVirtualAddress =
1751 delayIdata.getDirRVA();
1752 dir[DELAY_IMPORT_DESCRIPTOR].Size = delayIdata.getDirSize();
1755 // Write section table
1756 for (OutputSection *sec : ctx.outputSections) {
1757 sec->writeHeaderTo(buf, config->debug);
1758 buf += sizeof(coff_section);
1760 sectionTable = ArrayRef<uint8_t>(
1761 buf - ctx.outputSections.size() * sizeof(coff_section), buf);
1763 if (outputSymtab.empty() && strtab.empty())
1764 return;
1766 coff->PointerToSymbolTable = pointerToSymbolTable;
1767 uint32_t numberOfSymbols = outputSymtab.size();
1768 coff->NumberOfSymbols = numberOfSymbols;
1769 auto *symbolTable = reinterpret_cast<coff_symbol16 *>(
1770 buffer->getBufferStart() + coff->PointerToSymbolTable);
1771 for (size_t i = 0; i != numberOfSymbols; ++i)
1772 symbolTable[i] = outputSymtab[i];
1773 // Create the string table, it follows immediately after the symbol table.
1774 // The first 4 bytes is length including itself.
1775 buf = reinterpret_cast<uint8_t *>(&symbolTable[numberOfSymbols]);
1776 write32le(buf, strtab.size() + 4);
1777 if (!strtab.empty())
1778 memcpy(buf + 4, strtab.data(), strtab.size());
1781 void Writer::openFile(StringRef path) {
1782 buffer = CHECK(
1783 FileOutputBuffer::create(path, fileSize, FileOutputBuffer::F_executable),
1784 "failed to open " + path);
1787 void Writer::createSEHTable() {
1788 SymbolRVASet handlers;
1789 for (ObjFile *file : ctx.objFileInstances) {
1790 if (!file->hasSafeSEH())
1791 error("/safeseh: " + file->getName() + " is not compatible with SEH");
1792 markSymbolsForRVATable(file, file->getSXDataChunks(), handlers);
1795 // Set the "no SEH" characteristic if there really were no handlers, or if
1796 // there is no load config object to point to the table of handlers.
1797 setNoSEHCharacteristic =
1798 handlers.empty() || !ctx.symtab.findUnderscore("_load_config_used");
1800 maybeAddRVATable(std::move(handlers), "__safe_se_handler_table",
1801 "__safe_se_handler_count");
1804 // Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set
1805 // cannot contain duplicates. Therefore, the set is uniqued by Chunk and the
1806 // symbol's offset into that Chunk.
1807 static void addSymbolToRVASet(SymbolRVASet &rvaSet, Defined *s) {
1808 Chunk *c = s->getChunk();
1809 if (!c)
1810 return;
1811 if (auto *sc = dyn_cast<SectionChunk>(c))
1812 c = sc->repl; // Look through ICF replacement.
1813 uint32_t off = s->getRVA() - (c ? c->getRVA() : 0);
1814 rvaSet.insert({c, off});
1817 // Given a symbol, add it to the GFIDs table if it is a live, defined, function
1818 // symbol in an executable section.
1819 static void maybeAddAddressTakenFunction(SymbolRVASet &addressTakenSyms,
1820 Symbol *s) {
1821 if (!s)
1822 return;
1824 switch (s->kind()) {
1825 case Symbol::DefinedLocalImportKind:
1826 case Symbol::DefinedImportDataKind:
1827 // Defines an __imp_ pointer, so it is data, so it is ignored.
1828 break;
1829 case Symbol::DefinedCommonKind:
1830 // Common is always data, so it is ignored.
1831 break;
1832 case Symbol::DefinedAbsoluteKind:
1833 case Symbol::DefinedSyntheticKind:
1834 // Absolute is never code, synthetic generally isn't and usually isn't
1835 // determinable.
1836 break;
1837 case Symbol::LazyArchiveKind:
1838 case Symbol::LazyObjectKind:
1839 case Symbol::LazyDLLSymbolKind:
1840 case Symbol::UndefinedKind:
1841 // Undefined symbols resolve to zero, so they don't have an RVA. Lazy
1842 // symbols shouldn't have relocations.
1843 break;
1845 case Symbol::DefinedImportThunkKind:
1846 // Thunks are always code, include them.
1847 addSymbolToRVASet(addressTakenSyms, cast<Defined>(s));
1848 break;
1850 case Symbol::DefinedRegularKind: {
1851 // This is a regular, defined, symbol from a COFF file. Mark the symbol as
1852 // address taken if the symbol type is function and it's in an executable
1853 // section.
1854 auto *d = cast<DefinedRegular>(s);
1855 if (d->getCOFFSymbol().getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) {
1856 SectionChunk *sc = dyn_cast<SectionChunk>(d->getChunk());
1857 if (sc && sc->live &&
1858 sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE)
1859 addSymbolToRVASet(addressTakenSyms, d);
1861 break;
1866 // Visit all relocations from all section contributions of this object file and
1867 // mark the relocation target as address-taken.
1868 void Writer::markSymbolsWithRelocations(ObjFile *file,
1869 SymbolRVASet &usedSymbols) {
1870 for (Chunk *c : file->getChunks()) {
1871 // We only care about live section chunks. Common chunks and other chunks
1872 // don't generally contain relocations.
1873 SectionChunk *sc = dyn_cast<SectionChunk>(c);
1874 if (!sc || !sc->live)
1875 continue;
1877 for (const coff_relocation &reloc : sc->getRelocs()) {
1878 if (ctx.config.machine == I386 &&
1879 reloc.Type == COFF::IMAGE_REL_I386_REL32)
1880 // Ignore relative relocations on x86. On x86_64 they can't be ignored
1881 // since they're also used to compute absolute addresses.
1882 continue;
1884 Symbol *ref = sc->file->getSymbol(reloc.SymbolTableIndex);
1885 maybeAddAddressTakenFunction(usedSymbols, ref);
1890 // Create the guard function id table. This is a table of RVAs of all
1891 // address-taken functions. It is sorted and uniqued, just like the safe SEH
1892 // table.
1893 void Writer::createGuardCFTables() {
1894 Configuration *config = &ctx.config;
1896 SymbolRVASet addressTakenSyms;
1897 SymbolRVASet giatsRVASet;
1898 std::vector<Symbol *> giatsSymbols;
1899 SymbolRVASet longJmpTargets;
1900 SymbolRVASet ehContTargets;
1901 for (ObjFile *file : ctx.objFileInstances) {
1902 // If the object was compiled with /guard:cf, the address taken symbols
1903 // are in .gfids$y sections, and the longjmp targets are in .gljmp$y
1904 // sections. If the object was not compiled with /guard:cf, we assume there
1905 // were no setjmp targets, and that all code symbols with relocations are
1906 // possibly address-taken.
1907 if (file->hasGuardCF()) {
1908 markSymbolsForRVATable(file, file->getGuardFidChunks(), addressTakenSyms);
1909 markSymbolsForRVATable(file, file->getGuardIATChunks(), giatsRVASet);
1910 getSymbolsFromSections(file, file->getGuardIATChunks(), giatsSymbols);
1911 markSymbolsForRVATable(file, file->getGuardLJmpChunks(), longJmpTargets);
1912 } else {
1913 markSymbolsWithRelocations(file, addressTakenSyms);
1915 // If the object was compiled with /guard:ehcont, the ehcont targets are in
1916 // .gehcont$y sections.
1917 if (file->hasGuardEHCont())
1918 markSymbolsForRVATable(file, file->getGuardEHContChunks(), ehContTargets);
1921 // Mark the image entry as address-taken.
1922 if (config->entry)
1923 maybeAddAddressTakenFunction(addressTakenSyms, config->entry);
1925 // Mark exported symbols in executable sections as address-taken.
1926 for (Export &e : config->exports)
1927 maybeAddAddressTakenFunction(addressTakenSyms, e.sym);
1929 // For each entry in the .giats table, check if it has a corresponding load
1930 // thunk (e.g. because the DLL that defines it will be delay-loaded) and, if
1931 // so, add the load thunk to the address taken (.gfids) table.
1932 for (Symbol *s : giatsSymbols) {
1933 if (auto *di = dyn_cast<DefinedImportData>(s)) {
1934 if (di->loadThunkSym)
1935 addSymbolToRVASet(addressTakenSyms, di->loadThunkSym);
1939 // Ensure sections referenced in the gfid table are 16-byte aligned.
1940 for (const ChunkAndOffset &c : addressTakenSyms)
1941 if (c.inputChunk->getAlignment() < 16)
1942 c.inputChunk->setAlignment(16);
1944 maybeAddRVATable(std::move(addressTakenSyms), "__guard_fids_table",
1945 "__guard_fids_count");
1947 // Add the Guard Address Taken IAT Entry Table (.giats).
1948 maybeAddRVATable(std::move(giatsRVASet), "__guard_iat_table",
1949 "__guard_iat_count");
1951 // Add the longjmp target table unless the user told us not to.
1952 if (config->guardCF & GuardCFLevel::LongJmp)
1953 maybeAddRVATable(std::move(longJmpTargets), "__guard_longjmp_table",
1954 "__guard_longjmp_count");
1956 // Add the ehcont target table unless the user told us not to.
1957 if (config->guardCF & GuardCFLevel::EHCont)
1958 maybeAddRVATable(std::move(ehContTargets), "__guard_eh_cont_table",
1959 "__guard_eh_cont_count");
1961 // Set __guard_flags, which will be used in the load config to indicate that
1962 // /guard:cf was enabled.
1963 uint32_t guardFlags = uint32_t(GuardFlags::CF_INSTRUMENTED) |
1964 uint32_t(GuardFlags::CF_FUNCTION_TABLE_PRESENT);
1965 if (config->guardCF & GuardCFLevel::LongJmp)
1966 guardFlags |= uint32_t(GuardFlags::CF_LONGJUMP_TABLE_PRESENT);
1967 if (config->guardCF & GuardCFLevel::EHCont)
1968 guardFlags |= uint32_t(GuardFlags::EH_CONTINUATION_TABLE_PRESENT);
1969 Symbol *flagSym = ctx.symtab.findUnderscore("__guard_flags");
1970 cast<DefinedAbsolute>(flagSym)->setVA(guardFlags);
1973 // Take a list of input sections containing symbol table indices and add those
1974 // symbols to a vector. The challenge is that symbol RVAs are not known and
1975 // depend on the table size, so we can't directly build a set of integers.
1976 void Writer::getSymbolsFromSections(ObjFile *file,
1977 ArrayRef<SectionChunk *> symIdxChunks,
1978 std::vector<Symbol *> &symbols) {
1979 for (SectionChunk *c : symIdxChunks) {
1980 // Skip sections discarded by linker GC. This comes up when a .gfids section
1981 // is associated with something like a vtable and the vtable is discarded.
1982 // In this case, the associated gfids section is discarded, and we don't
1983 // mark the virtual member functions as address-taken by the vtable.
1984 if (!c->live)
1985 continue;
1987 // Validate that the contents look like symbol table indices.
1988 ArrayRef<uint8_t> data = c->getContents();
1989 if (data.size() % 4 != 0) {
1990 warn("ignoring " + c->getSectionName() +
1991 " symbol table index section in object " + toString(file));
1992 continue;
1995 // Read each symbol table index and check if that symbol was included in the
1996 // final link. If so, add it to the vector of symbols.
1997 ArrayRef<ulittle32_t> symIndices(
1998 reinterpret_cast<const ulittle32_t *>(data.data()), data.size() / 4);
1999 ArrayRef<Symbol *> objSymbols = file->getSymbols();
2000 for (uint32_t symIndex : symIndices) {
2001 if (symIndex >= objSymbols.size()) {
2002 warn("ignoring invalid symbol table index in section " +
2003 c->getSectionName() + " in object " + toString(file));
2004 continue;
2006 if (Symbol *s = objSymbols[symIndex]) {
2007 if (s->isLive())
2008 symbols.push_back(cast<Symbol>(s));
2014 // Take a list of input sections containing symbol table indices and add those
2015 // symbols to an RVA table.
2016 void Writer::markSymbolsForRVATable(ObjFile *file,
2017 ArrayRef<SectionChunk *> symIdxChunks,
2018 SymbolRVASet &tableSymbols) {
2019 std::vector<Symbol *> syms;
2020 getSymbolsFromSections(file, symIdxChunks, syms);
2022 for (Symbol *s : syms)
2023 addSymbolToRVASet(tableSymbols, cast<Defined>(s));
2026 // Replace the absolute table symbol with a synthetic symbol pointing to
2027 // tableChunk so that we can emit base relocations for it and resolve section
2028 // relative relocations.
2029 void Writer::maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
2030 StringRef countSym, bool hasFlag) {
2031 if (tableSymbols.empty())
2032 return;
2034 NonSectionChunk *tableChunk;
2035 if (hasFlag)
2036 tableChunk = make<RVAFlagTableChunk>(std::move(tableSymbols));
2037 else
2038 tableChunk = make<RVATableChunk>(std::move(tableSymbols));
2039 rdataSec->addChunk(tableChunk);
2041 Symbol *t = ctx.symtab.findUnderscore(tableSym);
2042 Symbol *c = ctx.symtab.findUnderscore(countSym);
2043 replaceSymbol<DefinedSynthetic>(t, t->getName(), tableChunk);
2044 cast<DefinedAbsolute>(c)->setVA(tableChunk->getSize() / (hasFlag ? 5 : 4));
2047 // Create CHPE metadata chunks.
2048 void Writer::createECChunks() {
2049 auto codeMapChunk = make<ECCodeMapChunk>(codeMap);
2050 rdataSec->addChunk(codeMapChunk);
2051 Symbol *codeMapSym = ctx.symtab.findUnderscore("__hybrid_code_map");
2052 replaceSymbol<DefinedSynthetic>(codeMapSym, codeMapSym->getName(),
2053 codeMapChunk);
2056 // MinGW specific. Gather all relocations that are imported from a DLL even
2057 // though the code didn't expect it to, produce the table that the runtime
2058 // uses for fixing them up, and provide the synthetic symbols that the
2059 // runtime uses for finding the table.
2060 void Writer::createRuntimePseudoRelocs() {
2061 std::vector<RuntimePseudoReloc> rels;
2063 for (Chunk *c : ctx.symtab.getChunks()) {
2064 auto *sc = dyn_cast<SectionChunk>(c);
2065 if (!sc || !sc->live)
2066 continue;
2067 // Don't create pseudo relocations for sections that won't be
2068 // mapped at runtime.
2069 if (sc->header->Characteristics & IMAGE_SCN_MEM_DISCARDABLE)
2070 continue;
2071 sc->getRuntimePseudoRelocs(rels);
2074 if (!ctx.config.pseudoRelocs) {
2075 // Not writing any pseudo relocs; if some were needed, error out and
2076 // indicate what required them.
2077 for (const RuntimePseudoReloc &rpr : rels)
2078 error("automatic dllimport of " + rpr.sym->getName() + " in " +
2079 toString(rpr.target->file) + " requires pseudo relocations");
2080 return;
2083 if (!rels.empty()) {
2084 log("Writing " + Twine(rels.size()) + " runtime pseudo relocations");
2085 const char *symbolName = "_pei386_runtime_relocator";
2086 Symbol *relocator = ctx.symtab.findUnderscore(symbolName);
2087 if (!relocator)
2088 error("output image has runtime pseudo relocations, but the function " +
2089 Twine(symbolName) +
2090 " is missing; it is needed for fixing the relocations at runtime");
2093 PseudoRelocTableChunk *table = make<PseudoRelocTableChunk>(rels);
2094 rdataSec->addChunk(table);
2095 EmptyChunk *endOfList = make<EmptyChunk>();
2096 rdataSec->addChunk(endOfList);
2098 Symbol *headSym = ctx.symtab.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST__");
2099 Symbol *endSym =
2100 ctx.symtab.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST_END__");
2101 replaceSymbol<DefinedSynthetic>(headSym, headSym->getName(), table);
2102 replaceSymbol<DefinedSynthetic>(endSym, endSym->getName(), endOfList);
2105 // MinGW specific.
2106 // The MinGW .ctors and .dtors lists have sentinels at each end;
2107 // a (uintptr_t)-1 at the start and a (uintptr_t)0 at the end.
2108 // There's a symbol pointing to the start sentinel pointer, __CTOR_LIST__
2109 // and __DTOR_LIST__ respectively.
2110 void Writer::insertCtorDtorSymbols() {
2111 AbsolutePointerChunk *ctorListHead = make<AbsolutePointerChunk>(ctx, -1);
2112 AbsolutePointerChunk *ctorListEnd = make<AbsolutePointerChunk>(ctx, 0);
2113 AbsolutePointerChunk *dtorListHead = make<AbsolutePointerChunk>(ctx, -1);
2114 AbsolutePointerChunk *dtorListEnd = make<AbsolutePointerChunk>(ctx, 0);
2115 ctorsSec->insertChunkAtStart(ctorListHead);
2116 ctorsSec->addChunk(ctorListEnd);
2117 dtorsSec->insertChunkAtStart(dtorListHead);
2118 dtorsSec->addChunk(dtorListEnd);
2120 Symbol *ctorListSym = ctx.symtab.findUnderscore("__CTOR_LIST__");
2121 Symbol *dtorListSym = ctx.symtab.findUnderscore("__DTOR_LIST__");
2122 replaceSymbol<DefinedSynthetic>(ctorListSym, ctorListSym->getName(),
2123 ctorListHead);
2124 replaceSymbol<DefinedSynthetic>(dtorListSym, dtorListSym->getName(),
2125 dtorListHead);
2128 // Handles /section options to allow users to overwrite
2129 // section attributes.
2130 void Writer::setSectionPermissions() {
2131 llvm::TimeTraceScope timeScope("Sections permissions");
2132 for (auto &p : ctx.config.section) {
2133 StringRef name = p.first;
2134 uint32_t perm = p.second;
2135 for (OutputSection *sec : ctx.outputSections)
2136 if (sec->name == name)
2137 sec->setPermissions(perm);
2141 // Set symbols used by ARM64EC metadata.
2142 void Writer::setECSymbols() {
2143 if (!isArm64EC(ctx.config.machine))
2144 return;
2146 Symbol *rfeTableSym = ctx.symtab.findUnderscore("__arm64x_extra_rfe_table");
2147 replaceSymbol<DefinedSynthetic>(rfeTableSym, "__arm64x_extra_rfe_table",
2148 pdata.first);
2150 if (pdata.first) {
2151 Symbol *rfeSizeSym =
2152 ctx.symtab.findUnderscore("__arm64x_extra_rfe_table_size");
2153 cast<DefinedAbsolute>(rfeSizeSym)
2154 ->setVA(pdata.last->getRVA() + pdata.last->getSize() -
2155 pdata.first->getRVA());
2159 // Write section contents to a mmap'ed file.
2160 void Writer::writeSections() {
2161 llvm::TimeTraceScope timeScope("Write sections");
2162 uint8_t *buf = buffer->getBufferStart();
2163 for (OutputSection *sec : ctx.outputSections) {
2164 uint8_t *secBuf = buf + sec->getFileOff();
2165 // Fill gaps between functions in .text with INT3 instructions
2166 // instead of leaving as NUL bytes (which can be interpreted as
2167 // ADD instructions). Only fill the gaps between chunks. Most
2168 // chunks overwrite it anyway, but uninitialized data chunks
2169 // merged into a code section don't.
2170 if ((sec->header.Characteristics & IMAGE_SCN_CNT_CODE) &&
2171 (ctx.config.machine == AMD64 || ctx.config.machine == I386)) {
2172 uint32_t prevEnd = 0;
2173 for (Chunk *c : sec->chunks) {
2174 uint32_t off = c->getRVA() - sec->getRVA();
2175 memset(secBuf + prevEnd, 0xCC, off - prevEnd);
2176 prevEnd = off + c->getSize();
2178 memset(secBuf + prevEnd, 0xCC, sec->getRawSize() - prevEnd);
2181 parallelForEach(sec->chunks, [&](Chunk *c) {
2182 c->writeTo(secBuf + c->getRVA() - sec->getRVA());
2187 void Writer::writeBuildId() {
2188 llvm::TimeTraceScope timeScope("Write build ID");
2190 // There are two important parts to the build ID.
2191 // 1) If building with debug info, the COFF debug directory contains a
2192 // timestamp as well as a Guid and Age of the PDB.
2193 // 2) In all cases, the PE COFF file header also contains a timestamp.
2194 // For reproducibility, instead of a timestamp we want to use a hash of the
2195 // PE contents.
2196 Configuration *config = &ctx.config;
2197 bool generateSyntheticBuildId = config->buildIDHash == BuildIDHash::Binary;
2198 if (generateSyntheticBuildId) {
2199 assert(buildId && "BuildId is not set!");
2200 // BuildId->BuildId was filled in when the PDB was written.
2203 // At this point the only fields in the COFF file which remain unset are the
2204 // "timestamp" in the COFF file header, and the ones in the coff debug
2205 // directory. Now we can hash the file and write that hash to the various
2206 // timestamp fields in the file.
2207 StringRef outputFileData(
2208 reinterpret_cast<const char *>(buffer->getBufferStart()),
2209 buffer->getBufferSize());
2211 uint32_t timestamp = config->timestamp;
2212 uint64_t hash = 0;
2214 if (config->repro || generateSyntheticBuildId)
2215 hash = xxh3_64bits(outputFileData);
2217 if (config->repro)
2218 timestamp = static_cast<uint32_t>(hash);
2220 if (generateSyntheticBuildId) {
2221 buildId->buildId->PDB70.CVSignature = OMF::Signature::PDB70;
2222 buildId->buildId->PDB70.Age = 1;
2223 memcpy(buildId->buildId->PDB70.Signature, &hash, 8);
2224 // xxhash only gives us 8 bytes, so put some fixed data in the other half.
2225 memcpy(&buildId->buildId->PDB70.Signature[8], "LLD PDB.", 8);
2228 if (debugDirectory)
2229 debugDirectory->setTimeDateStamp(timestamp);
2231 uint8_t *buf = buffer->getBufferStart();
2232 buf += dosStubSize + sizeof(PEMagic);
2233 object::coff_file_header *coffHeader =
2234 reinterpret_cast<coff_file_header *>(buf);
2235 coffHeader->TimeDateStamp = timestamp;
2238 // Sort .pdata section contents according to PE/COFF spec 5.5.
2239 template <typename T>
2240 void Writer::sortExceptionTable(ChunkRange &exceptionTable) {
2241 if (!exceptionTable.first)
2242 return;
2244 // We assume .pdata contains function table entries only.
2245 auto bufAddr = [&](Chunk *c) {
2246 OutputSection *os = ctx.getOutputSection(c);
2247 return buffer->getBufferStart() + os->getFileOff() + c->getRVA() -
2248 os->getRVA();
2250 uint8_t *begin = bufAddr(exceptionTable.first);
2251 uint8_t *end = bufAddr(exceptionTable.last) + exceptionTable.last->getSize();
2252 if ((end - begin) % sizeof(T) != 0) {
2253 fatal("unexpected .pdata size: " + Twine(end - begin) +
2254 " is not a multiple of " + Twine(sizeof(T)));
2257 parallelSort(MutableArrayRef<T>(reinterpret_cast<T *>(begin),
2258 reinterpret_cast<T *>(end)),
2259 [](const T &a, const T &b) { return a.begin < b.begin; });
2262 // Sort .pdata section contents according to PE/COFF spec 5.5.
2263 void Writer::sortExceptionTables() {
2264 llvm::TimeTraceScope timeScope("Sort exception table");
2266 struct EntryX64 {
2267 ulittle32_t begin, end, unwind;
2269 struct EntryArm {
2270 ulittle32_t begin, unwind;
2273 switch (ctx.config.machine) {
2274 case AMD64:
2275 sortExceptionTable<EntryX64>(pdata);
2276 break;
2277 case ARM64EC:
2278 case ARM64X:
2279 sortExceptionTable<EntryX64>(hybridPdata);
2280 [[fallthrough]];
2281 case ARMNT:
2282 case ARM64:
2283 sortExceptionTable<EntryArm>(pdata);
2284 break;
2285 default:
2286 if (pdata.first)
2287 lld::errs() << "warning: don't know how to handle .pdata.\n";
2288 break;
2292 // The CRT section contains, among other things, the array of function
2293 // pointers that initialize every global variable that is not trivially
2294 // constructed. The CRT calls them one after the other prior to invoking
2295 // main().
2297 // As per C++ spec, 3.6.2/2.3,
2298 // "Variables with ordered initialization defined within a single
2299 // translation unit shall be initialized in the order of their definitions
2300 // in the translation unit"
2302 // It is therefore critical to sort the chunks containing the function
2303 // pointers in the order that they are listed in the object file (top to
2304 // bottom), otherwise global objects might not be initialized in the
2305 // correct order.
2306 void Writer::sortCRTSectionChunks(std::vector<Chunk *> &chunks) {
2307 auto sectionChunkOrder = [](const Chunk *a, const Chunk *b) {
2308 auto sa = dyn_cast<SectionChunk>(a);
2309 auto sb = dyn_cast<SectionChunk>(b);
2310 assert(sa && sb && "Non-section chunks in CRT section!");
2312 StringRef sAObj = sa->file->mb.getBufferIdentifier();
2313 StringRef sBObj = sb->file->mb.getBufferIdentifier();
2315 return sAObj == sBObj && sa->getSectionNumber() < sb->getSectionNumber();
2317 llvm::stable_sort(chunks, sectionChunkOrder);
2319 if (ctx.config.verbose) {
2320 for (auto &c : chunks) {
2321 auto sc = dyn_cast<SectionChunk>(c);
2322 log(" " + sc->file->mb.getBufferIdentifier().str() +
2323 ", SectionID: " + Twine(sc->getSectionNumber()));
2328 OutputSection *Writer::findSection(StringRef name) {
2329 for (OutputSection *sec : ctx.outputSections)
2330 if (sec->name == name)
2331 return sec;
2332 return nullptr;
2335 uint32_t Writer::getSizeOfInitializedData() {
2336 uint32_t res = 0;
2337 for (OutputSection *s : ctx.outputSections)
2338 if (s->header.Characteristics & IMAGE_SCN_CNT_INITIALIZED_DATA)
2339 res += s->getRawSize();
2340 return res;
2343 // Add base relocations to .reloc section.
2344 void Writer::addBaserels() {
2345 if (!ctx.config.relocatable)
2346 return;
2347 relocSec->chunks.clear();
2348 std::vector<Baserel> v;
2349 for (OutputSection *sec : ctx.outputSections) {
2350 if (sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE)
2351 continue;
2352 llvm::TimeTraceScope timeScope("Base relocations: ", sec->name);
2353 // Collect all locations for base relocations.
2354 for (Chunk *c : sec->chunks)
2355 c->getBaserels(&v);
2356 // Add the addresses to .reloc section.
2357 if (!v.empty())
2358 addBaserelBlocks(v);
2359 v.clear();
2363 // Add addresses to .reloc section. Note that addresses are grouped by page.
2364 void Writer::addBaserelBlocks(std::vector<Baserel> &v) {
2365 const uint32_t mask = ~uint32_t(pageSize - 1);
2366 uint32_t page = v[0].rva & mask;
2367 size_t i = 0, j = 1;
2368 for (size_t e = v.size(); j < e; ++j) {
2369 uint32_t p = v[j].rva & mask;
2370 if (p == page)
2371 continue;
2372 relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
2373 i = j;
2374 page = p;
2376 if (i == j)
2377 return;
2378 relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
2381 PartialSection *Writer::createPartialSection(StringRef name,
2382 uint32_t outChars) {
2383 PartialSection *&pSec = partialSections[{name, outChars}];
2384 if (pSec)
2385 return pSec;
2386 pSec = make<PartialSection>(name, outChars);
2387 return pSec;
2390 PartialSection *Writer::findPartialSection(StringRef name, uint32_t outChars) {
2391 auto it = partialSections.find({name, outChars});
2392 if (it != partialSections.end())
2393 return it->second;
2394 return nullptr;
2397 void Writer::fixTlsAlignment() {
2398 Defined *tlsSym =
2399 dyn_cast_or_null<Defined>(ctx.symtab.findUnderscore("_tls_used"));
2400 if (!tlsSym)
2401 return;
2403 OutputSection *sec = ctx.getOutputSection(tlsSym->getChunk());
2404 assert(sec && tlsSym->getRVA() >= sec->getRVA() &&
2405 "no output section for _tls_used");
2407 uint8_t *secBuf = buffer->getBufferStart() + sec->getFileOff();
2408 uint64_t tlsOffset = tlsSym->getRVA() - sec->getRVA();
2409 uint64_t directorySize = ctx.config.is64()
2410 ? sizeof(object::coff_tls_directory64)
2411 : sizeof(object::coff_tls_directory32);
2413 if (tlsOffset + directorySize > sec->getRawSize())
2414 fatal("_tls_used sym is malformed");
2416 if (ctx.config.is64()) {
2417 object::coff_tls_directory64 *tlsDir =
2418 reinterpret_cast<object::coff_tls_directory64 *>(&secBuf[tlsOffset]);
2419 tlsDir->setAlignment(tlsAlignment);
2420 } else {
2421 object::coff_tls_directory32 *tlsDir =
2422 reinterpret_cast<object::coff_tls_directory32 *>(&secBuf[tlsOffset]);
2423 tlsDir->setAlignment(tlsAlignment);
2427 void Writer::prepareLoadConfig() {
2428 Symbol *sym = ctx.symtab.findUnderscore("_load_config_used");
2429 auto *b = cast_if_present<DefinedRegular>(sym);
2430 if (!b) {
2431 if (ctx.config.guardCF != GuardCFLevel::Off)
2432 warn("Control Flow Guard is enabled but '_load_config_used' is missing");
2433 return;
2436 OutputSection *sec = ctx.getOutputSection(b->getChunk());
2437 uint8_t *buf = buffer->getBufferStart();
2438 uint8_t *secBuf = buf + sec->getFileOff();
2439 uint8_t *symBuf = secBuf + (b->getRVA() - sec->getRVA());
2440 uint32_t expectedAlign = ctx.config.is64() ? 8 : 4;
2441 if (b->getChunk()->getAlignment() < expectedAlign)
2442 warn("'_load_config_used' is misaligned (expected alignment to be " +
2443 Twine(expectedAlign) + " bytes, got " +
2444 Twine(b->getChunk()->getAlignment()) + " instead)");
2445 else if (!isAligned(Align(expectedAlign), b->getRVA()))
2446 warn("'_load_config_used' is misaligned (RVA is 0x" +
2447 Twine::utohexstr(b->getRVA()) + " not aligned to " +
2448 Twine(expectedAlign) + " bytes)");
2450 if (ctx.config.is64())
2451 prepareLoadConfig(reinterpret_cast<coff_load_configuration64 *>(symBuf));
2452 else
2453 prepareLoadConfig(reinterpret_cast<coff_load_configuration32 *>(symBuf));
2456 template <typename T> void Writer::prepareLoadConfig(T *loadConfig) {
2457 if (ctx.config.dependentLoadFlags)
2458 loadConfig->DependentLoadFlags = ctx.config.dependentLoadFlags;
2460 checkLoadConfigGuardData(loadConfig);
2463 template <typename T>
2464 void Writer::checkLoadConfigGuardData(const T *loadConfig) {
2465 size_t loadConfigSize = loadConfig->Size;
2467 #define RETURN_IF_NOT_CONTAINS(field) \
2468 if (loadConfigSize < offsetof(T, field) + sizeof(T::field)) { \
2469 warn("'_load_config_used' structure too small to include " #field); \
2470 return; \
2473 #define IF_CONTAINS(field) \
2474 if (loadConfigSize >= offsetof(T, field) + sizeof(T::field))
2476 #define CHECK_VA(field, sym) \
2477 if (auto *s = dyn_cast<DefinedSynthetic>(ctx.symtab.findUnderscore(sym))) \
2478 if (loadConfig->field != ctx.config.imageBase + s->getRVA()) \
2479 warn(#field " not set correctly in '_load_config_used'");
2481 #define CHECK_ABSOLUTE(field, sym) \
2482 if (auto *s = dyn_cast<DefinedAbsolute>(ctx.symtab.findUnderscore(sym))) \
2483 if (loadConfig->field != s->getVA()) \
2484 warn(#field " not set correctly in '_load_config_used'");
2486 if (ctx.config.guardCF == GuardCFLevel::Off)
2487 return;
2488 RETURN_IF_NOT_CONTAINS(GuardFlags)
2489 CHECK_VA(GuardCFFunctionTable, "__guard_fids_table")
2490 CHECK_ABSOLUTE(GuardCFFunctionCount, "__guard_fids_count")
2491 CHECK_ABSOLUTE(GuardFlags, "__guard_flags")
2492 IF_CONTAINS(GuardAddressTakenIatEntryCount) {
2493 CHECK_VA(GuardAddressTakenIatEntryTable, "__guard_iat_table")
2494 CHECK_ABSOLUTE(GuardAddressTakenIatEntryCount, "__guard_iat_count")
2497 if (!(ctx.config.guardCF & GuardCFLevel::LongJmp))
2498 return;
2499 RETURN_IF_NOT_CONTAINS(GuardLongJumpTargetCount)
2500 CHECK_VA(GuardLongJumpTargetTable, "__guard_longjmp_table")
2501 CHECK_ABSOLUTE(GuardLongJumpTargetCount, "__guard_longjmp_count")
2503 if (!(ctx.config.guardCF & GuardCFLevel::EHCont))
2504 return;
2505 RETURN_IF_NOT_CONTAINS(GuardEHContinuationCount)
2506 CHECK_VA(GuardEHContinuationTable, "__guard_eh_cont_table")
2507 CHECK_ABSOLUTE(GuardEHContinuationCount, "__guard_eh_cont_count")
2509 #undef RETURN_IF_NOT_CONTAINS
2510 #undef IF_CONTAINS
2511 #undef CHECK_VA
2512 #undef CHECK_ABSOLUTE