[AArch64,ELF] Restrict MOVZ/MOVK to non-PIC large code model (#70178)
[llvm-project.git] / lldb / unittests / Instruction / RISCV / TestRISCVEmulator.cpp
blob90d5a7c4f3b9745b0c097b39196631a75b7ba085
1 //===-- TestRISCVEmulator.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "gtest/gtest.h"
11 #include "lldb/Core/Address.h"
12 #include "lldb/Core/Disassembler.h"
13 #include "lldb/Core/PluginManager.h"
14 #include "lldb/Target/ExecutionContext.h"
15 #include "lldb/Utility/ArchSpec.h"
16 #include "lldb/Utility/RegisterValue.h"
18 #include "Plugins/Instruction/RISCV/EmulateInstructionRISCV.h"
19 #include "Plugins/Process/Utility/RegisterInfoPOSIX_riscv64.h"
20 #include "Plugins/Process/Utility/lldb-riscv-register-enums.h"
22 using namespace llvm;
23 using namespace lldb;
24 using namespace lldb_private;
26 struct RISCVEmulatorTester : public EmulateInstructionRISCV, testing::Test {
27 RegisterInfoPOSIX_riscv64::GPR gpr;
28 RegisterInfoPOSIX_riscv64::FPR fpr;
29 uint8_t memory[1024] = {0};
31 RISCVEmulatorTester(std::string triple = "riscv64-unknown-linux-gnu")
32 : EmulateInstructionRISCV(ArchSpec(triple)) {
33 EmulateInstruction::SetReadRegCallback(ReadRegisterCallback);
34 EmulateInstruction::SetWriteRegCallback(WriteRegisterCallback);
35 EmulateInstruction::SetReadMemCallback(ReadMemoryCallback);
36 EmulateInstruction::SetWriteMemCallback(WriteMemoryCallback);
37 ClearAll();
40 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
41 const RegisterInfo *reg_info,
42 RegisterValue &reg_value) {
43 RISCVEmulatorTester *tester = (RISCVEmulatorTester *)instruction;
44 uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
45 if (reg == gpr_x0_riscv)
46 reg_value.SetUInt(0, reg_info->byte_size);
47 if (reg >= gpr_pc_riscv && reg <= gpr_x31_riscv)
48 reg_value.SetUInt(tester->gpr.gpr[reg], reg_info->byte_size);
49 if (reg >= fpr_f0_riscv && reg <= fpr_f31_riscv)
50 reg_value.SetUInt(tester->fpr.fpr[reg - fpr_f0_riscv],
51 reg_info->byte_size);
52 if (reg == fpr_fcsr_riscv)
53 reg_value.SetUInt(tester->fpr.fcsr, reg_info->byte_size);
54 return true;
57 static bool WriteRegisterCallback(EmulateInstruction *instruction,
58 void *baton, const Context &context,
59 const RegisterInfo *reg_info,
60 const RegisterValue &reg_value) {
61 RISCVEmulatorTester *tester = (RISCVEmulatorTester *)instruction;
62 uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
63 if (reg >= gpr_pc_riscv && reg <= gpr_x31_riscv)
64 tester->gpr.gpr[reg] = reg_value.GetAsUInt64();
65 if (reg >= fpr_f0_riscv && reg <= fpr_f31_riscv)
66 tester->fpr.fpr[reg - fpr_f0_riscv] = reg_value.GetAsUInt64();
67 if (reg == fpr_fcsr_riscv)
68 tester->fpr.fcsr = reg_value.GetAsUInt32();
69 return true;
72 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton,
73 const Context &context, addr_t addr,
74 void *dst, size_t length) {
75 RISCVEmulatorTester *tester = (RISCVEmulatorTester *)instruction;
76 assert(addr + length < sizeof(tester->memory));
77 memcpy(dst, tester->memory + addr, length);
78 return length;
81 static size_t WriteMemoryCallback(EmulateInstruction *instruction,
82 void *baton, const Context &context,
83 addr_t addr, const void *dst,
84 size_t length) {
85 RISCVEmulatorTester *tester = (RISCVEmulatorTester *)instruction;
86 assert(addr + length < sizeof(tester->memory));
87 memcpy(tester->memory + addr, dst, length);
88 return length;
91 bool DecodeAndExecute(uint32_t inst, bool ignore_cond) {
92 return llvm::transformOptional(
93 Decode(inst),
94 [&](DecodeResult res) { return Execute(res, ignore_cond); })
95 .value_or(false);
98 void ClearAll() {
99 memset(&gpr, 0, sizeof(gpr));
100 memset(&fpr, 0, sizeof(fpr));
101 memset(memory, 0, sizeof(memory));
105 TEST_F(RISCVEmulatorTester, testJAL) {
106 addr_t old_pc = 0x114514;
107 WritePC(old_pc);
108 // jal x1, -6*4
109 uint32_t inst = 0b11111110100111111111000011101111;
110 ASSERT_TRUE(DecodeAndExecute(inst, false));
111 auto x1 = gpr.gpr[1];
112 auto pc = ReadPC();
113 ASSERT_TRUE(pc.has_value());
114 ASSERT_EQ(x1, old_pc + 4);
115 ASSERT_EQ(*pc, old_pc + (-6 * 4));
118 constexpr uint32_t EncodeIType(uint32_t opcode, uint32_t funct3, uint32_t rd,
119 uint32_t rs1, uint32_t imm) {
120 return imm << 20 | rs1 << 15 | funct3 << 12 | rd << 7 | opcode;
123 constexpr uint32_t EncodeJALR(uint32_t rd, uint32_t rs1, int32_t offset) {
124 return EncodeIType(0b1100111, 0, rd, rs1, uint32_t(offset));
127 TEST_F(RISCVEmulatorTester, testJALR) {
128 addr_t old_pc = 0x114514;
129 addr_t old_x2 = 0x1024;
130 WritePC(old_pc);
131 gpr.gpr[2] = old_x2;
132 // jalr x1, x2(-255)
133 uint32_t inst = EncodeJALR(1, 2, -255);
134 ASSERT_TRUE(DecodeAndExecute(inst, false));
135 auto x1 = gpr.gpr[1];
136 auto pc = ReadPC();
137 ASSERT_TRUE(pc.has_value());
138 ASSERT_EQ(x1, old_pc + 4);
139 // JALR always zeros the bottom bit of the target address.
140 ASSERT_EQ(*pc, (old_x2 + (-255)) & (~1));
143 constexpr uint32_t EncodeBType(uint32_t opcode, uint32_t funct3, uint32_t rs1,
144 uint32_t rs2, uint32_t imm) {
145 uint32_t bimm = (imm & (0b1 << 11)) >> 4 | (imm & (0b11110)) << 7 |
146 (imm & (0b111111 << 5)) << 20 | (imm & (0b1 << 12)) << 19;
148 return rs2 << 20 | rs1 << 15 | funct3 << 12 | opcode | bimm;
151 constexpr uint32_t BEQ(uint32_t rs1, uint32_t rs2, int32_t offset) {
152 return EncodeBType(0b1100011, 0b000, rs1, rs2, uint32_t(offset));
155 constexpr uint32_t BNE(uint32_t rs1, uint32_t rs2, int32_t offset) {
156 return EncodeBType(0b1100011, 0b001, rs1, rs2, uint32_t(offset));
159 constexpr uint32_t BLT(uint32_t rs1, uint32_t rs2, int32_t offset) {
160 return EncodeBType(0b1100011, 0b100, rs1, rs2, uint32_t(offset));
163 constexpr uint32_t BGE(uint32_t rs1, uint32_t rs2, int32_t offset) {
164 return EncodeBType(0b1100011, 0b101, rs1, rs2, uint32_t(offset));
167 constexpr uint32_t BLTU(uint32_t rs1, uint32_t rs2, int32_t offset) {
168 return EncodeBType(0b1100011, 0b110, rs1, rs2, uint32_t(offset));
171 constexpr uint32_t BGEU(uint32_t rs1, uint32_t rs2, int32_t offset) {
172 return EncodeBType(0b1100011, 0b111, rs1, rs2, uint32_t(offset));
175 using EncoderB = uint32_t (*)(uint32_t rs1, uint32_t rs2, int32_t offset);
177 static void testBranch(RISCVEmulatorTester *tester, EncoderB encoder,
178 bool branched, uint64_t rs1, uint64_t rs2) {
179 // prepare test registers
180 addr_t old_pc = 0x114514;
181 tester->WritePC(old_pc);
182 tester->gpr.gpr[1] = rs1;
183 tester->gpr.gpr[2] = rs2;
184 // b<cmp> x1, x2, (-256)
185 uint32_t inst = encoder(1, 2, -256);
186 ASSERT_TRUE(tester->DecodeAndExecute(inst, false));
187 auto pc = tester->ReadPC();
188 ASSERT_TRUE(pc.has_value());
189 ASSERT_EQ(*pc, old_pc + (branched ? (-256) : 0));
192 #define GEN_BRANCH_TEST(name, rs1, rs2_branched, rs2_continued) \
193 TEST_F(RISCVEmulatorTester, test##name##Branched) { \
194 testBranch(this, name, true, rs1, rs2_branched); \
196 TEST_F(RISCVEmulatorTester, test##name##Continued) { \
197 testBranch(this, name, false, rs1, rs2_continued); \
200 static void CheckRD(RISCVEmulatorTester *tester, uint64_t rd, uint64_t value) {
201 ASSERT_EQ(tester->gpr.gpr[rd], value);
204 template <typename T>
205 static void CheckMem(RISCVEmulatorTester *tester, uint64_t addr,
206 uint64_t value) {
207 auto mem = tester->ReadMem<T>(addr);
208 ASSERT_TRUE(mem.has_value());
209 ASSERT_EQ(*mem, value);
212 using RS1 = uint64_t;
213 using RS2 = uint64_t;
214 using PC = uint64_t;
215 using RDComputer = std::function<uint64_t(RS1, RS2, PC)>;
217 static void TestInst(RISCVEmulatorTester *tester, DecodeResult inst,
218 bool has_rs2, RDComputer rd_val) {
220 addr_t old_pc = 0x114514;
221 tester->WritePC(old_pc);
222 uint32_t rd = DecodeRD(inst.inst);
223 uint32_t rs1 = DecodeRS1(inst.inst);
224 uint32_t rs2 = 0;
226 uint64_t rs1_val = 0x19;
227 uint64_t rs2_val = 0x81;
229 if (rs1)
230 tester->gpr.gpr[rs1] = rs1_val;
232 if (has_rs2) {
233 rs2 = DecodeRS2(inst.inst);
234 if (rs2) {
235 if (rs1 == rs2)
236 rs2_val = rs1_val;
237 tester->gpr.gpr[rs2] = rs2_val;
241 ASSERT_TRUE(tester->Execute(inst, false));
242 CheckRD(tester, rd, rd_val(rs1_val, rs2 ? rs2_val : 0, old_pc));
245 template <typename T>
246 static void TestAtomic(RISCVEmulatorTester *tester, uint64_t inst, T rs1_val,
247 T rs2_val, T rd_expected, T mem_expected) {
248 // Atomic inst must have rs1 and rs2
250 uint32_t rd = DecodeRD(inst);
251 uint32_t rs1 = DecodeRS1(inst);
252 uint32_t rs2 = DecodeRS2(inst);
254 // addr was stored in rs1
255 uint64_t atomic_addr = 0x100;
257 tester->gpr.gpr[rs1] = atomic_addr;
258 tester->gpr.gpr[rs2] = rs2_val;
260 // Write and check rs1_val in atomic_addr
261 ASSERT_TRUE(tester->WriteMem<T>(atomic_addr, rs1_val));
262 CheckMem<T>(tester, atomic_addr, rs1_val);
264 ASSERT_TRUE(tester->DecodeAndExecute(inst, false));
265 CheckRD(tester, rd, rd_expected);
266 CheckMem<T>(tester, atomic_addr, mem_expected);
269 TEST_F(RISCVEmulatorTester, TestAtomicSequence) {
270 this->WritePC(0x0);
271 *(uint32_t *)this->memory = 0x100427af; // lr.w a5,(s0)
272 *(uint32_t *)(this->memory + 4) = 0x00079663; // bnez a5,12
273 *(uint32_t *)(this->memory + 8) = 0x1ce426af; // sc.w.aq a3,a4,(s0)
274 *(uint32_t *)(this->memory + 12) = 0xfe069ae3; // bnez a3,-12
275 ASSERT_TRUE(this->DecodeAndExecute(*(uint32_t *)this->memory, false));
276 ASSERT_EQ(this->gpr.gpr[0], uint64_t(16));
279 struct TestDecode {
280 uint32_t inst;
281 RISCVInst inst_type;
284 TEST_F(RISCVEmulatorTester, TestCDecode) {
285 std::vector<TestDecode> tests = {
286 {0x0000, INVALID{0x0000}},
287 {0x0010, RESERVED{0x0010}},
288 // ADDI4SPN here, decode as ADDI
289 {0x0024, ADDI{Rd{9}, Rs{2}, 8}},
290 {0x2084, FLD{Rd{9}, Rs{9}, 0}},
291 {0x4488, LW{Rd{10}, Rs{9}, 8}},
292 {0x6488, LD{Rd{10}, Rs{9}, 8}},
293 {0xA084, FSD{Rs{9}, Rs{9}, 0}},
294 {0xC488, SW{Rs{9}, Rs{10}, 8}},
295 {0xE488, SD{Rs{9}, Rs{10}, 8}},
296 {0x1001, NOP{0x1001}},
297 {0x1085, ADDI{Rd{1}, Rs{1}, uint32_t(-31)}},
298 {0x2081, ADDIW{Rd{1}, Rs{1}, 0}},
299 // ADDI16SP here, decode as ADDI
300 {0x7101, ADDI{Rd{2}, Rs{2}, uint32_t(-512)}},
301 {0x4081, ADDI{Rd{1}, Rs{0}, 0}},
302 {0x7081, LUI{Rd{1}, uint32_t(-131072)}},
303 {0x8085, SRLI{Rd{9}, Rs{9}, 1}},
304 {0x8485, SRAI{Rd{9}, Rs{9}, 1}},
305 {0x8881, ANDI{Rd{9}, Rs{9}, 0}},
306 {0x8C85, SUB{Rd{9}, Rs{9}, Rs{9}}},
307 {0x8CA5, XOR{Rd{9}, Rs{9}, Rs{9}}},
308 {0x8CC5, OR{Rd{9}, Rs{9}, Rs{9}}},
309 {0x8CE5, AND{Rd{9}, Rs{9}, Rs{9}}},
310 {0x9C85, SUBW{Rd{9}, Rs{9}, Rs{9}}},
311 {0x9CA5, ADDW{Rd{9}, Rs{9}, Rs{9}}},
312 // C.J here, decoded as JAL
313 {0xA001, JAL{Rd{0}, 0}},
314 {0xC081, B{Rs{9}, Rs{0}, 0, 0b000}},
315 {0xE081, B{Rs{9}, Rs{0}, 0, 0b001}},
316 {0x1082, SLLI{Rd{1}, Rs{1}, 32}},
317 {0x1002, HINT{0x1002}},
318 // SLLI64 here, decoded as HINT if not in RV128
319 {0x0082, HINT{0x0082}},
320 // FLDSP here, decoded as FLD
321 {0x2082, FLD{Rd{1}, Rs{2}, 0}},
322 // LWSP here, decoded as LW
323 {0x4082, LW{Rd{1}, Rs{2}, 0}},
324 // LDSP here, decoded as LD
325 {0x6082, LD{Rd{1}, Rs{2}, 0}},
326 // C.JR here, decoded as JALR
327 {0x8082, JALR{Rd{0}, Rs{1}, 0}},
328 // C.MV here, decoded as ADD
329 {0x8086, ADD{Rd{1}, Rs{0}, Rs{1}}},
330 {0x9002, EBREAK{0x9002}},
331 {0x9082, JALR{Rd{1}, Rs{1}, 0}},
332 {0x9086, ADD{Rd{1}, Rs{1}, Rs{1}}},
333 // C.FSDSP here, decoded as FSD
334 {0xA006, FSD{Rs{2}, Rs{1}, 0}},
335 // C.SWSP here, decoded as SW
336 {0xC006, SW{Rs{2}, Rs{1}, 0}},
337 // C.SDSP here, decoded as SD
338 {0xE006, SD{Rs{2}, Rs{1}, 0}},
341 for (auto i : tests) {
342 auto decode = this->Decode(i.inst);
343 ASSERT_TRUE(decode.has_value());
344 ASSERT_EQ(decode->decoded, i.inst_type);
348 class RISCVEmulatorTester32 : public RISCVEmulatorTester {
349 public:
350 RISCVEmulatorTester32() : RISCVEmulatorTester("riscv32-unknown-linux-gnu") {}
353 TEST_F(RISCVEmulatorTester32, TestCDecodeRV32) {
354 std::vector<TestDecode> tests = {
355 {0x6002, FLW{Rd{0}, Rs{2}, 0}},
356 {0xE006, FSW{Rs{2}, Rs{1}, 0}},
357 {0x6000, FLW{Rd{8}, Rs{8}, 0}},
358 {0xE000, FSW{Rs{8}, Rs{8}, 0}},
360 {0x2084, FLD{Rd{9}, Rs{9}, 0}},
361 {0xA084, FSD{Rs{9}, Rs{9}, 0}},
362 {0x2082, FLD{Rd{1}, Rs{2}, 0}},
363 {0xA006, FSD{Rs{2}, Rs{1}, 0}},
366 for (auto i : tests) {
367 auto decode = this->Decode(i.inst);
368 ASSERT_TRUE(decode.has_value());
369 ASSERT_EQ(decode->decoded, i.inst_type);
373 // GEN_BRANCH_TEST(opcode, imm1, imm2, imm3):
374 // It should branch for instruction `opcode imm1, imm2`
375 // It should do nothing for instruction `opcode imm1, imm3`
376 GEN_BRANCH_TEST(BEQ, 1, 1, 0)
377 GEN_BRANCH_TEST(BNE, 1, 0, 1)
378 GEN_BRANCH_TEST(BLT, -2, 1, -3)
379 GEN_BRANCH_TEST(BGE, -2, -3, 1)
380 GEN_BRANCH_TEST(BLTU, -2, -1, 1)
381 GEN_BRANCH_TEST(BGEU, -2, 1, -1)
383 struct TestData {
384 uint32_t inst;
385 std::string name;
386 bool has_rs2;
387 RDComputer rd_val;
390 TEST_F(RISCVEmulatorTester, TestDecodeAndExcute) {
391 std::vector<TestData> tests = {
392 // RV32I & RV64I Tests
393 {0x00010113, "ADDI", false, [](RS1 rs1, RS2, PC) { return rs1 + 0; }},
394 {0x00023517, "AUIPC", false, [](RS1, RS2, PC pc) { return pc + 143360; }},
395 {0x0006079b, "ADDIW", false, [](RS1 rs1, RS2, PC) { return rs1 + 0; }},
396 {0x00110837, "LUI", false, [](RS1, RS2, PC pc) { return 1114112; }},
397 {0x00147513, "ANDI", false, [](RS1 rs1, RS2, PC) { return rs1 & 1; }},
398 {0x00153513, "SLTIU", false, [](RS1 rs1, RS2, PC) { return 0; }},
399 {0x00256513, "ORI", false, [](RS1 rs1, RS2, PC) { return rs1 | 2; }},
400 {0x00451a13, "SLLI", false, [](RS1 rs1, RS2, PC) { return rs1 << 4; }},
401 {0x00455693, "SRLI", false, [](RS1 rs1, RS2, PC) { return rs1 >> 4; }},
402 {0x00a035b3, "SLTU", true, [](RS1 rs1, RS2 rs2, PC) { return rs2 != 0; }},
403 {0x00b50633, "ADD", true, [](RS1 rs1, RS2 rs2, PC) { return rs1 + rs2; }},
404 {0x40d507b3, "SUB", true, [](RS1 rs1, RS2 rs2, PC) { return rs1 - rs2; }},
406 // RV32M & RV64M Tests
407 {0x02f787b3, "MUL", true, [](RS1 rs1, RS2 rs2, PC) { return rs1 * rs2; }},
408 {0x2F797B3, "MULH", true, [](RS1 rs1, RS2 rs2, PC) { return 0; }},
409 {0x2F7A7B3, "MULHSU", true, [](RS1 rs1, RS2 rs2, PC) { return 0; }},
410 {0x2F7B7B3, "MULHU", true, [](RS1 rs1, RS2 rs2, PC) { return 0; }},
411 {0x02f747b3, "DIV", true, [](RS1 rs1, RS2 rs2, PC) { return rs1 / rs2; }},
412 {0x02f757b3, "DIVU", true,
413 [](RS1 rs1, RS2 rs2, PC) { return rs1 / rs2; }},
414 {0x02f767b3, "REM", true, [](RS1 rs1, RS2 rs2, PC) { return rs1 % rs2; }},
415 {0x02f777b3, "REMU", true,
416 [](RS1 rs1, RS2 rs2, PC) { return rs1 % rs2; }},
417 {0x02f787bb, "MULW", true,
418 [](RS1 rs1, RS2 rs2, PC) { return rs1 * rs2; }},
419 {0x02f747bb, "DIVW", true,
420 [](RS1 rs1, RS2 rs2, PC) { return rs1 / rs2; }},
421 {0x02f757bb, "DIVUW", true,
422 [](RS1 rs1, RS2 rs2, PC) { return rs1 / rs2; }},
423 {0x02f767bb, "REMW", true,
424 [](RS1 rs1, RS2 rs2, PC) { return rs1 % rs2; }},
425 {0x02f777bb, "REMUW", true,
426 [](RS1 rs1, RS2 rs2, PC) { return rs1 % rs2; }},
428 for (auto i : tests) {
429 auto decode = this->Decode(i.inst);
430 ASSERT_TRUE(decode.has_value());
431 std::string name = decode->pattern.name;
432 ASSERT_EQ(name, i.name);
433 TestInst(this, *decode, i.has_rs2, i.rd_val);
437 TEST_F(RISCVEmulatorTester, TestAMOSWAP) {
438 TestAtomic<uint32_t>(this, 0x8F7282F, 0x1, 0x2, 0x1, 0x2);
439 TestAtomic<uint64_t>(this, 0x8F7382F, 0x1, 0x2, 0x1, 0x2);
442 TEST_F(RISCVEmulatorTester, TestAMOADD) {
443 TestAtomic<uint32_t>(this, 0xF7282F, 0x1, 0x2, 0x1, 0x3);
444 TestAtomic<uint64_t>(this, 0xF7382F, 0x1, 0x2, 0x1, 0x3);
447 TEST_F(RISCVEmulatorTester, TestAMOXOR) {
448 TestAtomic<uint32_t>(this, 0x20F7282F, 0x1, 0x2, 0x1, 0x3);
449 TestAtomic<uint32_t>(this, 0x20F7382F, 0x1, 0x2, 0x1, 0x3);
452 TEST_F(RISCVEmulatorTester, TestAMOAND) {
453 TestAtomic<uint32_t>(this, 0x60F7282F, 0x1, 0x2, 0x1, 0x0);
454 TestAtomic<uint64_t>(this, 0x60F7382F, 0x1, 0x2, 0x1, 0x0);
457 TEST_F(RISCVEmulatorTester, TestAMOOR) {
458 TestAtomic<uint32_t>(this, 0x40F7282F, 0x1, 0x2, 0x1, 0x3);
459 TestAtomic<uint32_t>(this, 0x40F7382F, 0x1, 0x2, 0x1, 0x3);
462 TEST_F(RISCVEmulatorTester, TestAMOMIN) {
463 TestAtomic<uint32_t>(this, 0x80F7282F, 0x1, 0x2, 0x1, 0x1);
464 TestAtomic<uint64_t>(this, 0x80F7382F, 0x1, 0x2, 0x1, 0x1);
467 TEST_F(RISCVEmulatorTester, TestAMOMAX) {
468 TestAtomic<uint32_t>(this, 0xA0F7282F, 0x1, 0x2, 0x1, 0x2);
469 TestAtomic<uint64_t>(this, 0xA0F7382F, 0x1, 0x2, 0x1, 0x2);
472 TEST_F(RISCVEmulatorTester, TestAMOMINU) {
473 TestAtomic<uint32_t>(this, 0xC0F7282F, 0x1, 0x2, 0x1, 0x1);
474 TestAtomic<uint64_t>(this, 0xC0F7382F, 0x1, 0x2, 0x1, 0x1);
477 TEST_F(RISCVEmulatorTester, TestAMOMAXU) {
478 TestAtomic<uint32_t>(this, 0xE0F7282F, 0x1, 0x2, 0x1, 0x2);
479 TestAtomic<uint64_t>(this, 0xE0F7382F, 0x1, 0x2, 0x1, 0x2);
482 template <typename T> struct F_D_CalInst {
483 uint32_t inst;
484 std::string name;
485 T rs1_val;
486 T rs2_val;
487 T rd_val;
490 using FloatCalInst = F_D_CalInst<float>;
491 using DoubleCalInst = F_D_CalInst<double>;
493 template <typename T>
494 static void TestF_D_CalInst(RISCVEmulatorTester *tester, DecodeResult inst,
495 T rs1_val, T rs2_val, T rd_exp) {
496 std::vector<std::string> CMPs = {"FEQ_S", "FLT_S", "FLE_S",
497 "FEQ_D", "FLT_D", "FLE_D"};
498 std::vector<std::string> FMAs = {"FMADD_S", "FMSUB_S", "FNMSUB_S",
499 "FNMADD_S", "FMADD_D", "FMSUB_D",
500 "FNMSUB_D", "FNMADD_D"};
502 uint32_t rd = DecodeRD(inst.inst);
503 uint32_t rs1 = DecodeRS1(inst.inst);
504 uint32_t rs2 = DecodeRS2(inst.inst);
506 APFloat ap_rs1_val(rs1_val);
507 APFloat ap_rs2_val(rs2_val);
508 APFloat ap_rs3_val(0.0f);
509 static_assert(std::is_same_v<T, float> || std::is_same_v<T, double>,
510 "T should be float or double");
511 if constexpr (std::is_same_v<T, float>)
512 ap_rs3_val = APFloat(0.5f);
513 if constexpr (std::is_same_v<T, double>)
514 ap_rs3_val = APFloat(0.5);
516 if (rs1)
517 tester->fpr.fpr[rs1] = ap_rs1_val.bitcastToAPInt().getZExtValue();
518 if (rs2)
519 tester->fpr.fpr[rs2] = ap_rs2_val.bitcastToAPInt().getZExtValue();
520 for (auto i : FMAs) {
521 if (inst.pattern.name == i) {
522 uint32_t rs3 = DecodeRS3(inst.inst);
523 tester->fpr.fpr[rs3] = ap_rs3_val.bitcastToAPInt().getZExtValue();
526 ASSERT_TRUE(tester->Execute(inst, false));
527 for (auto i : CMPs) {
528 if (inst.pattern.name == i) {
529 ASSERT_EQ(tester->gpr.gpr[rd], rd_exp);
530 return;
534 if constexpr (std::is_same_v<T, float>) {
535 APInt apInt(32, tester->fpr.fpr[rd]);
536 APFloat rd_val(apInt.bitsToFloat());
537 ASSERT_EQ(rd_val.convertToFloat(), rd_exp);
539 if constexpr (std::is_same_v<T, double>) {
540 APInt apInt(64, tester->fpr.fpr[rd]);
541 APFloat rd_val(apInt.bitsToDouble());
542 ASSERT_EQ(rd_val.convertToDouble(), rd_exp);
546 TEST_F(RISCVEmulatorTester, TestFloatInst) {
547 std::vector<FloatCalInst> tests = {
548 {0x21F253, "FADD_S", 0.5f, 0.5f, 1.0f},
549 {0x821F253, "FSUB_S", 1.0f, 0.5f, 0.5f},
550 {0x1021F253, "FMUL_S", 0.5f, 0.5f, 0.25f},
551 {0x1821F253, "FDIV_S", 0.1f, 0.1f, 1.0f},
552 {0x20218253, "FSGNJ_S", 0.5f, 0.2f, 0.5f},
553 {0x20219253, "FSGNJN_S", 0.5f, -1.0f, 0.5f},
554 {0x2021A253, "FSGNJX_S", -0.5f, -0.5f, 0.5f},
555 {0x2021A253, "FSGNJX_S", -0.5f, 0.5f, -0.5f},
556 {0x28218253, "FMIN_S", -0.5f, 0.5f, -0.5f},
557 {0x28218253, "FMIN_S", -0.5f, -0.6f, -0.6f},
558 {0x28218253, "FMIN_S", 0.5f, 0.6f, 0.5f},
559 {0x28219253, "FMAX_S", -0.5f, -0.6f, -0.5f},
560 {0x28219253, "FMAX_S", 0.5f, 0.6f, 0.6f},
561 {0x28219253, "FMAX_S", 0.5f, -0.6f, 0.5f},
562 {0xA021A253, "FEQ_S", 0.5f, 0.5f, 1},
563 {0xA021A253, "FEQ_S", 0.5f, -0.5f, 0},
564 {0xA021A253, "FEQ_S", -0.5f, 0.5f, 0},
565 {0xA021A253, "FEQ_S", 0.4f, 0.5f, 0},
566 {0xA0219253, "FLT_S", 0.4f, 0.5f, 1},
567 {0xA0219253, "FLT_S", 0.5f, 0.5f, 0},
568 {0xA0218253, "FLE_S", 0.4f, 0.5f, 1},
569 {0xA0218253, "FLE_S", 0.5f, 0.5f, 1},
570 {0x4021F243, "FMADD_S", 0.5f, 0.5f, 0.75f},
571 {0x4021F247, "FMSUB_S", 0.5f, 0.5f, -0.25f},
572 {0x4021F24B, "FNMSUB_S", 0.5f, 0.5f, 0.25f},
573 {0x4021F24F, "FNMADD_S", 0.5f, 0.5f, -0.75f},
575 for (auto i : tests) {
576 auto decode = this->Decode(i.inst);
577 ASSERT_TRUE(decode.has_value());
578 std::string name = decode->pattern.name;
579 ASSERT_EQ(name, i.name);
580 TestF_D_CalInst(this, *decode, i.rs1_val, i.rs2_val, i.rd_val);
584 TEST_F(RISCVEmulatorTester, TestDoubleInst) {
585 std::vector<DoubleCalInst> tests = {
586 {0x221F253, "FADD_D", 0.5, 0.5, 1.0},
587 {0xA21F253, "FSUB_D", 1.0, 0.5, 0.5},
588 {0x1221F253, "FMUL_D", 0.5, 0.5, 0.25},
589 {0x1A21F253, "FDIV_D", 0.1, 0.1, 1.0},
590 {0x22218253, "FSGNJ_D", 0.5, 0.2, 0.5},
591 {0x22219253, "FSGNJN_D", 0.5, -1.0, 0.5},
592 {0x2221A253, "FSGNJX_D", -0.5, -0.5, 0.5},
593 {0x2221A253, "FSGNJX_D", -0.5, 0.5, -0.5},
594 {0x2A218253, "FMIN_D", -0.5, 0.5, -0.5},
595 {0x2A218253, "FMIN_D", -0.5, -0.6, -0.6},
596 {0x2A218253, "FMIN_D", 0.5, 0.6, 0.5},
597 {0x2A219253, "FMAX_D", -0.5, -0.6, -0.5},
598 {0x2A219253, "FMAX_D", 0.5, 0.6, 0.6},
599 {0x2A219253, "FMAX_D", 0.5, -0.6, 0.5},
600 {0xA221A253, "FEQ_D", 0.5, 0.5, 1},
601 {0xA221A253, "FEQ_D", 0.5, -0.5, 0},
602 {0xA221A253, "FEQ_D", -0.5, 0.5, 0},
603 {0xA221A253, "FEQ_D", 0.4, 0.5, 0},
604 {0xA2219253, "FLT_D", 0.4, 0.5, 1},
605 {0xA2219253, "FLT_D", 0.5, 0.5, 0},
606 {0xA2218253, "FLE_D", 0.4, 0.5, 1},
607 {0xA2218253, "FLE_D", 0.5, 0.5, 1},
608 {0x4221F243, "FMADD_D", 0.5, 0.5, 0.75},
609 {0x4221F247, "FMSUB_D", 0.5, 0.5, -0.25},
610 {0x4221F24B, "FNMSUB_D", 0.5, 0.5, 0.25},
611 {0x4221F24F, "FNMADD_D", 0.5, 0.5, -0.75},
613 for (auto i : tests) {
614 auto decode = this->Decode(i.inst);
615 ASSERT_TRUE(decode.has_value());
616 std::string name = decode->pattern.name;
617 ASSERT_EQ(name, i.name);
618 TestF_D_CalInst(this, *decode, i.rs1_val, i.rs2_val, i.rd_val);
622 template <typename T>
623 static void TestInverse(RISCVEmulatorTester *tester, uint32_t f_reg,
624 uint32_t x_reg, DecodeResult f2i, DecodeResult i2f,
625 APFloat apf_val) {
626 uint64_t exp_x;
627 if constexpr (std::is_same_v<T, float>)
628 exp_x = uint64_t(apf_val.convertToFloat());
629 if constexpr (std::is_same_v<T, double>)
630 exp_x = uint64_t(apf_val.convertToDouble());
631 T exp_f = T(exp_x);
633 // convert float/double to int.
634 tester->fpr.fpr[f_reg] = apf_val.bitcastToAPInt().getZExtValue();
635 ASSERT_TRUE(tester->Execute(f2i, false));
636 ASSERT_EQ(tester->gpr.gpr[x_reg], exp_x);
638 // then convert int to float/double back.
639 ASSERT_TRUE(tester->Execute(i2f, false));
640 ASSERT_EQ(tester->fpr.fpr[f_reg],
641 APFloat(exp_f).bitcastToAPInt().getZExtValue());
644 struct FCVTInst {
645 uint32_t f2i;
646 uint32_t i2f;
647 APFloat data;
648 bool isDouble;
651 TEST_F(RISCVEmulatorTester, TestFCVT) {
652 std::vector<FCVTInst> tests{
653 // FCVT_W_S and FCVT_S_W
654 {0xC000F0D3, 0xD000F0D3, APFloat(12.0f), false},
655 // FCVT_WU_S and FCVT_S_WU
656 {0xC010F0D3, 0xD010F0D3, APFloat(12.0f), false},
657 // FCVT_L_S and FCVT_S_L
658 {0xC020F0D3, 0xD020F0D3, APFloat(12.0f), false},
659 // FCVT_LU_S and FCVT_S_LU
660 {0xC030F0D3, 0xD030F0D3, APFloat(12.0f), false},
661 // FCVT_W_D and FCVT_D_W
662 {0xC200F0D3, 0xD200F0D3, APFloat(12.0), true},
663 // FCVT_WU_D and FCVT_D_WU
664 {0xC210F0D3, 0xD210F0D3, APFloat(12.0), true},
665 // FCVT_L_D and FCVT_D_L
666 {0xC220F0D3, 0xD220F0D3, APFloat(12.0), true},
667 // FCVT_LU_D and FCVT_D_LU
668 {0xC230F0D3, 0xD230F0D3, APFloat(12.0), true},
670 for (auto i : tests) {
671 auto f2i = this->Decode(i.f2i);
672 auto i2f = this->Decode(i.i2f);
673 ASSERT_TRUE(f2i.has_value());
674 ASSERT_TRUE(i2f.has_value());
675 uint32_t f_reg = DecodeRS1((*f2i).inst);
676 uint32_t x_reg = DecodeRS1((*i2f).inst);
677 if (i.isDouble)
678 TestInverse<double>(this, f_reg, x_reg, *f2i, *i2f, i.data);
679 else
680 TestInverse<float>(this, f_reg, x_reg, *f2i, *i2f, i.data);
684 TEST_F(RISCVEmulatorTester, TestFDInverse) {
685 // FCVT_S_D
686 auto d2f = this->Decode(0x4010F0D3);
687 // FCVT_S_D
688 auto f2d = this->Decode(0x4200F0D3);
689 ASSERT_TRUE(d2f.has_value());
690 ASSERT_TRUE(f2d.has_value());
691 auto data = APFloat(12.0);
692 uint32_t reg = DecodeRS1((*d2f).inst);
693 float exp_f = 12.0f;
694 double exp_d = 12.0;
696 // double to float
697 this->fpr.fpr[reg] = data.bitcastToAPInt().getZExtValue();
698 ASSERT_TRUE(this->Execute(*d2f, false));
699 ASSERT_EQ(this->fpr.fpr[reg], APFloat(exp_f).bitcastToAPInt().getZExtValue());
701 // float to double
702 ASSERT_TRUE(this->Execute(*f2d, false));
703 ASSERT_EQ(this->fpr.fpr[reg], APFloat(exp_d).bitcastToAPInt().getZExtValue());
706 TEST_F(RISCVEmulatorTester, TestFloatLSInst) {
707 uint32_t FLWInst = 0x1A207; // imm = 0
708 uint32_t FSWInst = 0x21A827; // imm = 16
710 APFloat apf(12.0f);
711 uint64_t bits = apf.bitcastToAPInt().getZExtValue();
713 *(uint64_t *)this->memory = bits;
714 auto decode = this->Decode(FLWInst);
715 ASSERT_TRUE(decode.has_value());
716 std::string name = decode->pattern.name;
717 ASSERT_EQ(name, "FLW");
718 ASSERT_TRUE(this->Execute(*decode, false));
719 ASSERT_EQ(this->fpr.fpr[DecodeRD(FLWInst)], bits);
721 this->fpr.fpr[DecodeRS2(FSWInst)] = bits;
722 decode = this->Decode(FSWInst);
723 ASSERT_TRUE(decode.has_value());
724 name = decode->pattern.name;
725 ASSERT_EQ(name, "FSW");
726 ASSERT_TRUE(this->Execute(*decode, false));
727 ASSERT_EQ(*(uint32_t *)(this->memory + 16), bits);
730 TEST_F(RISCVEmulatorTester, TestDoubleLSInst) {
731 uint32_t FLDInst = 0x1B207; // imm = 0
732 uint32_t FSDInst = 0x21B827; // imm = 16
734 APFloat apf(12.0);
735 uint64_t bits = apf.bitcastToAPInt().getZExtValue();
737 *(uint64_t *)this->memory = bits;
738 auto decode = this->Decode(FLDInst);
739 ASSERT_TRUE(decode.has_value());
740 std::string name = decode->pattern.name;
741 ASSERT_EQ(name, "FLD");
742 ASSERT_TRUE(this->Execute(*decode, false));
743 ASSERT_EQ(this->fpr.fpr[DecodeRD(FLDInst)], bits);
745 this->fpr.fpr[DecodeRS2(FSDInst)] = bits;
746 decode = this->Decode(FSDInst);
747 ASSERT_TRUE(decode.has_value());
748 name = decode->pattern.name;
749 ASSERT_EQ(name, "FSD");
750 ASSERT_TRUE(this->Execute(*decode, false));
751 ASSERT_EQ(*(uint64_t *)(this->memory + 16), bits);
754 TEST_F(RISCVEmulatorTester, TestFMV_X_WInst) {
755 auto FMV_X_WInst = 0xE0018253;
757 APFloat apf(12.0f);
758 auto exp_bits = apf.bitcastToAPInt().getZExtValue();
759 this->fpr.fpr[DecodeRS1(FMV_X_WInst)] = NanBoxing(exp_bits);
760 auto decode = this->Decode(FMV_X_WInst);
761 ASSERT_TRUE(decode.has_value());
762 std::string name = decode->pattern.name;
763 ASSERT_EQ(name, "FMV_X_W");
764 ASSERT_TRUE(this->Execute(*decode, false));
765 ASSERT_EQ(this->gpr.gpr[DecodeRD(FMV_X_WInst)], exp_bits);
768 TEST_F(RISCVEmulatorTester, TestFMV_X_DInst) {
769 auto FMV_X_DInst = 0xE2018253;
771 APFloat apf(12.0);
772 auto exp_bits = apf.bitcastToAPInt().getZExtValue();
773 this->fpr.fpr[DecodeRS1(FMV_X_DInst)] = exp_bits;
774 auto decode = this->Decode(FMV_X_DInst);
775 ASSERT_TRUE(decode.has_value());
776 std::string name = decode->pattern.name;
777 ASSERT_EQ(name, "FMV_X_D");
778 ASSERT_TRUE(this->Execute(*decode, false));
779 ASSERT_EQ(this->gpr.gpr[DecodeRD(FMV_X_DInst)], exp_bits);
782 TEST_F(RISCVEmulatorTester, TestFMV_W_XInst) {
783 auto FMV_W_XInst = 0xF0018253;
785 APFloat apf(12.0f);
786 uint64_t exp_bits = NanUnBoxing(apf.bitcastToAPInt().getZExtValue());
787 this->gpr.gpr[DecodeRS1(FMV_W_XInst)] = exp_bits;
788 auto decode = this->Decode(FMV_W_XInst);
789 ASSERT_TRUE(decode.has_value());
790 std::string name = decode->pattern.name;
791 ASSERT_EQ(name, "FMV_W_X");
792 ASSERT_TRUE(this->Execute(*decode, false));
793 ASSERT_EQ(this->fpr.fpr[DecodeRD(FMV_W_XInst)], exp_bits);
796 TEST_F(RISCVEmulatorTester, TestFMV_D_XInst) {
797 auto FMV_D_XInst = 0xF2018253;
799 APFloat apf(12.0);
800 uint64_t bits = apf.bitcastToAPInt().getZExtValue();
801 this->gpr.gpr[DecodeRS1(FMV_D_XInst)] = bits;
802 auto decode = this->Decode(FMV_D_XInst);
803 ASSERT_TRUE(decode.has_value());
804 std::string name = decode->pattern.name;
805 ASSERT_EQ(name, "FMV_D_X");
806 ASSERT_TRUE(this->Execute(*decode, false));
807 ASSERT_EQ(this->fpr.fpr[DecodeRD(FMV_D_XInst)], bits);