[AArch64,ELF] Restrict MOVZ/MOVK to non-PIC large code model (#70178)
[llvm-project.git] / mlir / docs / Tutorials / DataFlowAnalysis.md
blob8265eff8b6ec7a94b953405de5acded8f93f2578
1 # Writing DataFlow Analyses in MLIR
3 Writing dataflow analyses in MLIR, or well any compiler, can often seem quite
4 daunting and/or complex. A dataflow analysis generally involves propagating
5 information about the IR across various different types of control flow
6 constructs, of which MLIR has many (Block-based branches, Region-based branches,
7 CallGraph, etc), and it isn't always clear how best to go about performing the
8 propagation. To help writing these types of analyses in MLIR, this document
9 details several utilities that simplify the process and make it a bit more
10 approachable.
12 ## Forward Dataflow Analysis
14 One type of dataflow analysis is a forward propagation analysis. This type of
15 analysis, as the name may suggest, propagates information forward (e.g. from
16 definitions to uses). To provide a bit of concrete context, let's go over
17 writing a simple forward dataflow analysis in MLIR. Let's say for this analysis
18 that we want to propagate information about a special "metadata" dictionary
19 attribute. The contents of this attribute are simply a set of metadata that
20 describe a specific value, e.g. `metadata = { likes_pizza = true }`. We will
21 collect the `metadata` for operations in the IR and propagate them about.
23 ### Lattices
25 Before going into how one might setup the analysis itself, it is important to
26 first introduce the concept of a `Lattice` and how we will use it for the
27 analysis. A lattice represents all of the possible values or results of the
28 analysis for a given value. A lattice element holds the set of information
29 computed by the analysis for a given value, and is what gets propagated across
30 the IR. For our analysis, this would correspond to the `metadata` dictionary
31 attribute.
33 Regardless of the value held within, every type of lattice contains two special
34 element states:
36 *   `uninitialized`
38     -   The element has not been initialized.
40 *   `top`/`overdefined`/`unknown`
42     -   The element encompasses every possible value.
43     -   This is a very conservative state, and essentially means "I can't make
44         any assumptions about the value, it could be anything"
46 These two states are important when merging, or `join`ing as we will refer to it
47 further in this document, information as part of the analysis. Lattice elements
48 are `join`ed whenever there are two different source points, such as an argument
49 to a block with multiple predecessors. One important note about the `join`
50 operation, is that it is required to be monotonic (see the `join` method in the
51 example below for more information). This ensures that `join`ing elements is
52 consistent. The two special states mentioned above have unique properties during
53 a `join`:
55 *   `uninitialized`
57     -   If one of the elements is `uninitialized`, the other element is used.
58     -   `uninitialized` in the context of a `join` essentially means "take the
59         other thing".
61 *   `top`/`overdefined`/`unknown`
63     -   If one of the elements being joined is `overdefined`, the result is
64         `overdefined`.
66 For our analysis in MLIR, we will need to define a class representing the value
67 held by an element of the lattice used by our dataflow analysis:
69 ```c++
70 /// The value of our lattice represents the inner structure of a DictionaryAttr,
71 /// for the `metadata`.
72 struct MetadataLatticeValue {
73   MetadataLatticeValue() = default;
74   /// Compute a lattice value from the provided dictionary.
75   MetadataLatticeValue(DictionaryAttr attr)
76       : metadata(attr.begin(), attr.end()) {}
78   /// Return a pessimistic value state, i.e. the `top`/`overdefined`/`unknown`
79   /// state, for our value type. The resultant state should not assume any
80   /// information about the state of the IR.
81   static MetadataLatticeValue getPessimisticValueState(MLIRContext *context) {
82     // The `top`/`overdefined`/`unknown` state is when we know nothing about any
83     // metadata, i.e. an empty dictionary.
84     return MetadataLatticeValue();
85   }
86   /// Return a pessimistic value state for our value type using only information
87   /// about the state of the provided IR. This is similar to the above method,
88   /// but may produce a slightly more refined result. This is okay, as the
89   /// information is already encoded as fact in the IR.
90   static MetadataLatticeValue getPessimisticValueState(Value value) {
91     // Check to see if the parent operation has metadata.
92     if (Operation *parentOp = value.getDefiningOp()) {
93       if (auto metadata = parentOp->getAttrOfType<DictionaryAttr>("metadata"))
94         return MetadataLatticeValue(metadata);
96       // If no metadata is present, fallback to the
97       // `top`/`overdefined`/`unknown` state.
98     }
99     return MetadataLatticeValue();
100   }
102   /// This method conservatively joins the information held by `lhs` and `rhs`
103   /// into a new value. This method is required to be monotonic. `monotonicity`
104   /// is implied by the satisfaction of the following axioms:
105   ///   * idempotence:   join(x,x) == x
106   ///   * commutativity: join(x,y) == join(y,x)
107   ///   * associativity: join(x,join(y,z)) == join(join(x,y),z)
108   ///
109   /// When the above axioms are satisfied, we achieve `monotonicity`:
110   ///   * monotonicity: join(x, join(x,y)) == join(x,y)
111   static MetadataLatticeValue join(const MetadataLatticeValue &lhs,
112                                    const MetadataLatticeValue &rhs) {
113     // To join `lhs` and `rhs` we will define a simple policy, which is that we
114     // only keep information that is the same. This means that we only keep
115     // facts that are true in both.
116     MetadataLatticeValue result;
117     for (const auto &lhsIt : lhs) {
118       // As noted above, we only merge if the values are the same.
119       auto it = rhs.metadata.find(lhsIt.first);
120       if (it == rhs.metadata.end() || it->second != lhsIt.second)
121         continue;
122       result.insert(lhsIt);
123     }
124     return result;
125   }
127   /// A simple comparator that checks to see if this value is equal to the one
128   /// provided.
129   bool operator==(const MetadataLatticeValue &rhs) const {
130     if (metadata.size() != rhs.metadata.size())
131       return false;
132     // Check that the 'rhs' contains the same metadata.
133     return llvm::all_of(metadata, [&](auto &it) {
134       return rhs.metadata.count(it.second);
135     });
136   }
138   /// Our value represents the combined metadata, which is originally a
139   /// DictionaryAttr, so we use a map.
140   DenseMap<StringAttr, Attribute> metadata;
144 One interesting thing to note above is that we don't have an explicit method for
145 the `uninitialized` state. This state is handled by the `LatticeElement` class,
146 which manages a lattice value for a given IR entity. A quick overview of this
147 class, and the API that will be interesting to us while writing our analysis, is
148 shown below:
150 ```c++
151 /// This class represents a lattice element holding a specific value of type
152 /// `ValueT`.
153 template <typename ValueT>
154 class LatticeElement ... {
155 public:
156   /// Return the value held by this element. This requires that a value is
157   /// known, i.e. not `uninitialized`.
158   ValueT &getValue();
159   const ValueT &getValue() const;
161   /// Join the information contained in the 'rhs' element into this
162   /// element. Returns if the state of the current element changed.
163   ChangeResult join(const LatticeElement<ValueT> &rhs);
165   /// Join the information contained in the 'rhs' value into this
166   /// lattice. Returns if the state of the current lattice changed.
167   ChangeResult join(const ValueT &rhs);
169   /// Mark the lattice element as having reached a pessimistic fixpoint. This
170   /// means that the lattice may potentially have conflicting value states, and
171   /// only the conservatively known value state should be relied on.
172   ChangeResult markPessimisticFixPoint();
176 With our lattice defined, we can now define the driver that will compute and
177 propagate our lattice across the IR.
179 ### ForwardDataflowAnalysis Driver
181 The `ForwardDataFlowAnalysis` class represents the driver of the dataflow
182 analysis, and performs all of the related analysis computation. When defining
183 our analysis, we will inherit from this class and implement some of its hooks.
184 Before that, let's look at a quick overview of this class and some of the
185 important API for our analysis:
187 ```c++
188 /// This class represents the main driver of the forward dataflow analysis. It
189 /// takes as a template parameter the value type of lattice being computed.
190 template <typename ValueT>
191 class ForwardDataFlowAnalysis : ... {
192 public:
193   ForwardDataFlowAnalysis(MLIRContext *context);
195   /// Compute the analysis on operations rooted under the given top-level
196   /// operation. Note that the top-level operation is not visited.
197   void run(Operation *topLevelOp);
199   /// Return the lattice element attached to the given value. If a lattice has
200   /// not been added for the given value, a new 'uninitialized' value is
201   /// inserted and returned.
202   LatticeElement<ValueT> &getLatticeElement(Value value);
204   /// Return the lattice element attached to the given value, or nullptr if no
205   /// lattice element for the value has yet been created.
206   LatticeElement<ValueT> *lookupLatticeElement(Value value);
208   /// Mark all of the lattice elements for the given range of Values as having
209   /// reached a pessimistic fixpoint.
210   ChangeResult markAllPessimisticFixPoint(ValueRange values);
212 protected:
213   /// Visit the given operation, and join any necessary analysis state
214   /// into the lattice elements for the results and block arguments owned by
215   /// this operation using the provided set of operand lattice elements
216   /// (all pointer values are guaranteed to be non-null). Returns if any result
217   /// or block argument value lattice elements changed during the visit. The
218   /// lattice element for a result or block argument value can be obtained, and
219   /// join'ed into, by using `getLatticeElement`.
220   virtual ChangeResult visitOperation(
221       Operation *op, ArrayRef<LatticeElement<ValueT> *> operands) = 0;
225 NOTE: Some API has been redacted for our example. The `ForwardDataFlowAnalysis`
226 contains various other hooks that allow for injecting custom behavior when
227 applicable.
229 The main API that we are responsible for defining is the `visitOperation`
230 method. This method is responsible for computing new lattice elements for the
231 results and block arguments owned by the given operation. This is where we will
232 inject the lattice element computation logic, also known as the transfer
233 function for the operation, that is specific to our analysis. A simple
234 implementation for our example is shown below:
236 ```c++
237 class MetadataAnalysis : public ForwardDataFlowAnalysis<MetadataLatticeValue> {
238 public:
239   using ForwardDataFlowAnalysis<MetadataLatticeValue>::ForwardDataFlowAnalysis;
241   ChangeResult visitOperation(
242       Operation *op, ArrayRef<LatticeElement<ValueT> *> operands) override {
243     DictionaryAttr metadata = op->getAttrOfType<DictionaryAttr>("metadata");
245     // If we have no metadata for this operation, we will conservatively mark
246     // all of the results as having reached a pessimistic fixpoint.
247     if (!metadata)
248       return markAllPessimisticFixPoint(op->getResults());
250     // Otherwise, we will compute a lattice value for the metadata and join it
251     // into the current lattice element for all of our results.
252     MetadataLatticeValue latticeValue(metadata);
253     ChangeResult result = ChangeResult::NoChange;
254     for (Value value : op->getResults()) {
255       // We grab the lattice element for `value` via `getLatticeElement` and
256       // then join it with the lattice value for this operation's metadata. Note
257       // that during the analysis phase, it is fine to freely create a new
258       // lattice element for a value. This is why we don't use the
259       // `lookupLatticeElement` method here.
260       result |= getLatticeElement(value).join(latticeValue);
261     }
262     return result;
263   }
267 With that, we have all of the necessary components to compute our analysis.
268 After the analysis has been computed, we can grab any computed information for
269 values by using `lookupLatticeElement`. We use this function over
270 `getLatticeElement` as the analysis is not guaranteed to visit all values, e.g.
271 if the value is in a unreachable block, and we don't want to create a new
272 uninitialized lattice element in this case. See below for a quick example:
274 ```c++
275 void MyPass::runOnOperation() {
276   MetadataAnalysis analysis(&getContext());
277   analysis.run(getOperation());
278   ...
281 void MyPass::useAnalysisOn(MetadataAnalysis &analysis, Value value) {
282   LatticeElement<MetadataLatticeValue> *latticeElement = analysis.lookupLatticeElement(value);
284   // If we don't have an element, the `value` wasn't visited during our analysis
285   // meaning that it could be dead. We need to treat this conservatively.
286   if (!lattice)
287     return;
289   // Our lattice element has a value, use it:
290   MetadataLatticeValue &value = lattice->getValue();
291   ...