1 //===- bolt/Rewrite/RewriteInstance.cpp - ELF rewriter --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "bolt/Rewrite/RewriteInstance.h"
10 #include "bolt/Core/AddressMap.h"
11 #include "bolt/Core/BinaryContext.h"
12 #include "bolt/Core/BinaryEmitter.h"
13 #include "bolt/Core/BinaryFunction.h"
14 #include "bolt/Core/DebugData.h"
15 #include "bolt/Core/Exceptions.h"
16 #include "bolt/Core/FunctionLayout.h"
17 #include "bolt/Core/MCPlusBuilder.h"
18 #include "bolt/Core/ParallelUtilities.h"
19 #include "bolt/Core/Relocation.h"
20 #include "bolt/Passes/BinaryPasses.h"
21 #include "bolt/Passes/CacheMetrics.h"
22 #include "bolt/Passes/ReorderFunctions.h"
23 #include "bolt/Profile/BoltAddressTranslation.h"
24 #include "bolt/Profile/DataAggregator.h"
25 #include "bolt/Profile/DataReader.h"
26 #include "bolt/Profile/YAMLProfileReader.h"
27 #include "bolt/Profile/YAMLProfileWriter.h"
28 #include "bolt/Rewrite/BinaryPassManager.h"
29 #include "bolt/Rewrite/DWARFRewriter.h"
30 #include "bolt/Rewrite/ExecutableFileMemoryManager.h"
31 #include "bolt/Rewrite/JITLinkLinker.h"
32 #include "bolt/Rewrite/MetadataRewriters.h"
33 #include "bolt/RuntimeLibs/HugifyRuntimeLibrary.h"
34 #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h"
35 #include "bolt/Utils/CommandLineOpts.h"
36 #include "bolt/Utils/Utils.h"
37 #include "llvm/ADT/AddressRanges.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
40 #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
41 #include "llvm/MC/MCAsmBackend.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
44 #include "llvm/MC/MCObjectStreamer.h"
45 #include "llvm/MC/MCStreamer.h"
46 #include "llvm/MC/MCSymbol.h"
47 #include "llvm/MC/TargetRegistry.h"
48 #include "llvm/Object/ObjectFile.h"
49 #include "llvm/Support/Alignment.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/DataExtractor.h"
53 #include "llvm/Support/Errc.h"
54 #include "llvm/Support/Error.h"
55 #include "llvm/Support/FileSystem.h"
56 #include "llvm/Support/ManagedStatic.h"
57 #include "llvm/Support/Timer.h"
58 #include "llvm/Support/ToolOutputFile.h"
59 #include "llvm/Support/raw_ostream.h"
64 #include <system_error>
67 #define DEBUG_TYPE "bolt"
70 using namespace object
;
73 extern cl::opt
<uint32_t> X86AlignBranchBoundary
;
74 extern cl::opt
<bool> X86AlignBranchWithin32BBoundaries
;
78 extern cl::list
<std::string
> HotTextMoveSections
;
79 extern cl::opt
<bool> Hugify
;
80 extern cl::opt
<bool> Instrument
;
81 extern cl::opt
<JumpTableSupportLevel
> JumpTables
;
82 extern cl::opt
<bool> KeepNops
;
83 extern cl::opt
<bool> Lite
;
84 extern cl::list
<std::string
> ReorderData
;
85 extern cl::opt
<bolt::ReorderFunctions::ReorderType
> ReorderFunctions
;
86 extern cl::opt
<bool> TerminalTrap
;
87 extern cl::opt
<bool> TimeBuild
;
88 extern cl::opt
<bool> TimeRewrite
;
90 cl::opt
<bool> AllowStripped("allow-stripped",
91 cl::desc("allow processing of stripped binaries"),
92 cl::Hidden
, cl::cat(BoltCategory
));
94 static cl::opt
<bool> ForceToDataRelocations(
95 "force-data-relocations",
96 cl::desc("force relocations to data sections to always be processed"),
98 cl::Hidden
, cl::cat(BoltCategory
));
102 cl::desc("add any string to tag this execution in the "
103 "output binary via bolt info section"),
104 cl::cat(BoltCategory
));
106 cl::opt
<bool> DumpDotAll(
108 cl::desc("dump function CFGs to graphviz format after each stage;"
109 "enable '-print-loops' for color-coded blocks"),
110 cl::Hidden
, cl::cat(BoltCategory
));
112 static cl::list
<std::string
>
113 ForceFunctionNames("funcs",
115 cl::desc("limit optimizations to functions from the list"),
116 cl::value_desc("func1,func2,func3,..."),
118 cl::cat(BoltCategory
));
120 static cl::opt
<std::string
>
121 FunctionNamesFile("funcs-file",
122 cl::desc("file with list of functions to optimize"),
124 cl::cat(BoltCategory
));
126 static cl::list
<std::string
> ForceFunctionNamesNR(
127 "funcs-no-regex", cl::CommaSeparated
,
128 cl::desc("limit optimizations to functions from the list (non-regex)"),
129 cl::value_desc("func1,func2,func3,..."), cl::Hidden
, cl::cat(BoltCategory
));
131 static cl::opt
<std::string
> FunctionNamesFileNR(
132 "funcs-file-no-regex",
133 cl::desc("file with list of functions to optimize (non-regex)"), cl::Hidden
,
134 cl::cat(BoltCategory
));
138 cl::desc("preserve intermediate .o file"),
140 cl::cat(BoltCategory
));
142 static cl::opt
<unsigned>
143 LiteThresholdPct("lite-threshold-pct",
144 cl::desc("threshold (in percent) for selecting functions to process in lite "
145 "mode. Higher threshold means fewer functions to process. E.g "
146 "threshold of 90 means only top 10 percent of functions with "
147 "profile will be processed."),
151 cl::cat(BoltOptCategory
));
153 static cl::opt
<unsigned> LiteThresholdCount(
154 "lite-threshold-count",
155 cl::desc("similar to '-lite-threshold-pct' but specify threshold using "
156 "absolute function call count. I.e. limit processing to functions "
157 "executed at least the specified number of times."),
158 cl::init(0), cl::Hidden
, cl::cat(BoltOptCategory
));
160 static cl::opt
<unsigned>
161 MaxFunctions("max-funcs",
162 cl::desc("maximum number of functions to process"), cl::Hidden
,
163 cl::cat(BoltCategory
));
165 static cl::opt
<unsigned> MaxDataRelocations(
166 "max-data-relocations",
167 cl::desc("maximum number of data relocations to process"), cl::Hidden
,
168 cl::cat(BoltCategory
));
170 cl::opt
<bool> PrintAll("print-all",
171 cl::desc("print functions after each stage"), cl::Hidden
,
172 cl::cat(BoltCategory
));
174 cl::opt
<bool> PrintProfile("print-profile",
175 cl::desc("print functions after attaching profile"),
176 cl::Hidden
, cl::cat(BoltCategory
));
178 cl::opt
<bool> PrintCFG("print-cfg",
179 cl::desc("print functions after CFG construction"),
180 cl::Hidden
, cl::cat(BoltCategory
));
182 cl::opt
<bool> PrintDisasm("print-disasm",
183 cl::desc("print function after disassembly"),
184 cl::Hidden
, cl::cat(BoltCategory
));
187 PrintGlobals("print-globals",
188 cl::desc("print global symbols after disassembly"), cl::Hidden
,
189 cl::cat(BoltCategory
));
191 extern cl::opt
<bool> PrintSections
;
193 static cl::opt
<bool> PrintLoopInfo("print-loops",
194 cl::desc("print loop related information"),
195 cl::Hidden
, cl::cat(BoltCategory
));
197 static cl::opt
<cl::boolOrDefault
> RelocationMode(
198 "relocs", cl::desc("use relocations in the binary (default=autodetect)"),
199 cl::cat(BoltCategory
));
201 extern cl::opt
<std::string
> SaveProfile
;
203 static cl::list
<std::string
>
204 SkipFunctionNames("skip-funcs",
206 cl::desc("list of functions to skip"),
207 cl::value_desc("func1,func2,func3,..."),
209 cl::cat(BoltCategory
));
211 static cl::opt
<std::string
>
212 SkipFunctionNamesFile("skip-funcs-file",
213 cl::desc("file with list of functions to skip"),
215 cl::cat(BoltCategory
));
218 TrapOldCode("trap-old-code",
219 cl::desc("insert traps in old function bodies (relocation mode)"),
221 cl::cat(BoltCategory
));
223 static cl::opt
<std::string
> DWPPathName("dwp",
224 cl::desc("Path and name to DWP file."),
225 cl::Hidden
, cl::init(""),
226 cl::cat(BoltCategory
));
229 UseGnuStack("use-gnu-stack",
230 cl::desc("use GNU_STACK program header for new segment (workaround for "
231 "issues with strip/objcopy)"),
233 cl::cat(BoltCategory
));
236 SequentialDisassembly("sequential-disassembly",
237 cl::desc("performs disassembly sequentially"),
239 cl::cat(BoltOptCategory
));
241 static cl::opt
<bool> WriteBoltInfoSection(
242 "bolt-info", cl::desc("write bolt info section in the output binary"),
243 cl::init(true), cl::Hidden
, cl::cat(BoltOutputCategory
));
247 // FIXME: implement a better way to mark sections for replacement.
248 constexpr const char *RewriteInstance::SectionsToOverwrite
[];
249 std::vector
<std::string
> RewriteInstance::DebugSectionsToOverwrite
= {
250 ".debug_abbrev", ".debug_aranges", ".debug_line", ".debug_line_str",
251 ".debug_loc", ".debug_loclists", ".debug_ranges", ".debug_rnglists",
252 ".gdb_index", ".debug_addr", ".debug_abbrev", ".debug_info",
253 ".debug_types", ".pseudo_probe"};
255 const char RewriteInstance::TimerGroupName
[] = "rewrite";
256 const char RewriteInstance::TimerGroupDesc
[] = "Rewrite passes";
261 extern const char *BoltRevision
;
263 // Weird location for createMCPlusBuilder, but this is here to avoid a
264 // cyclic dependency of libCore (its natural place) and libTarget. libRewrite
265 // can depend on libTarget, but not libCore. Since libRewrite is the only
266 // user of this function, we define it here.
267 MCPlusBuilder
*createMCPlusBuilder(const Triple::ArchType Arch
,
268 const MCInstrAnalysis
*Analysis
,
269 const MCInstrInfo
*Info
,
270 const MCRegisterInfo
*RegInfo
,
271 const MCSubtargetInfo
*STI
) {
273 if (Arch
== Triple::x86_64
)
274 return createX86MCPlusBuilder(Analysis
, Info
, RegInfo
, STI
);
277 #ifdef AARCH64_AVAILABLE
278 if (Arch
== Triple::aarch64
)
279 return createAArch64MCPlusBuilder(Analysis
, Info
, RegInfo
, STI
);
282 #ifdef RISCV_AVAILABLE
283 if (Arch
== Triple::riscv64
)
284 return createRISCVMCPlusBuilder(Analysis
, Info
, RegInfo
, STI
);
287 llvm_unreachable("architecture unsupported by MCPlusBuilder");
293 using ELF64LEPhdrTy
= ELF64LEFile::Elf_Phdr
;
297 bool refersToReorderedSection(ErrorOr
<BinarySection
&> Section
) {
298 return llvm::any_of(opts::ReorderData
, [&](const std::string
&SectionName
) {
299 return Section
&& Section
->getName() == SectionName
;
303 } // anonymous namespace
305 Expected
<std::unique_ptr
<RewriteInstance
>>
306 RewriteInstance::create(ELFObjectFileBase
*File
, const int Argc
,
307 const char *const *Argv
, StringRef ToolPath
,
308 raw_ostream
&Stdout
, raw_ostream
&Stderr
) {
309 Error Err
= Error::success();
310 auto RI
= std::make_unique
<RewriteInstance
>(File
, Argc
, Argv
, ToolPath
,
311 Stdout
, Stderr
, Err
);
313 return std::move(Err
);
314 return std::move(RI
);
317 RewriteInstance::RewriteInstance(ELFObjectFileBase
*File
, const int Argc
,
318 const char *const *Argv
, StringRef ToolPath
,
319 raw_ostream
&Stdout
, raw_ostream
&Stderr
,
321 : InputFile(File
), Argc(Argc
), Argv(Argv
), ToolPath(ToolPath
),
322 SHStrTab(StringTableBuilder::ELF
) {
323 ErrorAsOutParameter
EAO(&Err
);
324 auto ELF64LEFile
= dyn_cast
<ELF64LEObjectFile
>(InputFile
);
326 Err
= createStringError(errc::not_supported
,
327 "Only 64-bit LE ELF binaries are supported");
332 const ELFFile
<ELF64LE
> &Obj
= ELF64LEFile
->getELFFile();
333 if (Obj
.getHeader().e_type
!= ELF::ET_EXEC
) {
334 Stdout
<< "BOLT-INFO: shared object or position-independent executable "
339 // Make sure we don't miss any output on core dumps.
340 Stdout
.SetUnbuffered();
341 Stderr
.SetUnbuffered();
342 LLVM_DEBUG(dbgs().SetUnbuffered());
344 // Read RISCV subtarget features from input file
345 std::unique_ptr
<SubtargetFeatures
> Features
;
346 Triple TheTriple
= File
->makeTriple();
347 if (TheTriple
.getArch() == llvm::Triple::riscv64
) {
348 Expected
<SubtargetFeatures
> FeaturesOrErr
= File
->getFeatures();
349 if (auto E
= FeaturesOrErr
.takeError()) {
353 Features
.reset(new SubtargetFeatures(*FeaturesOrErr
));
357 Relocation::Arch
= TheTriple
.getArch();
358 auto BCOrErr
= BinaryContext::createBinaryContext(
359 TheTriple
, File
->getFileName(), Features
.get(), IsPIC
,
360 DWARFContext::create(*File
, DWARFContext::ProcessDebugRelocations::Ignore
,
361 nullptr, opts::DWPPathName
,
362 WithColor::defaultErrorHandler
,
363 WithColor::defaultWarningHandler
),
364 JournalingStreams
{Stdout
, Stderr
});
365 if (Error E
= BCOrErr
.takeError()) {
369 BC
= std::move(BCOrErr
.get());
370 BC
->initializeTarget(std::unique_ptr
<MCPlusBuilder
>(
371 createMCPlusBuilder(BC
->TheTriple
->getArch(), BC
->MIA
.get(),
372 BC
->MII
.get(), BC
->MRI
.get(), BC
->STI
.get())));
374 BAT
= std::make_unique
<BoltAddressTranslation
>();
376 if (opts::UpdateDebugSections
)
377 DebugInfoRewriter
= std::make_unique
<DWARFRewriter
>(*BC
);
379 if (opts::Instrument
)
380 BC
->setRuntimeLibrary(std::make_unique
<InstrumentationRuntimeLibrary
>());
381 else if (opts::Hugify
)
382 BC
->setRuntimeLibrary(std::make_unique
<HugifyRuntimeLibrary
>());
385 RewriteInstance::~RewriteInstance() {}
387 Error
RewriteInstance::setProfile(StringRef Filename
) {
388 if (!sys::fs::exists(Filename
))
389 return errorCodeToError(make_error_code(errc::no_such_file_or_directory
));
393 return make_error
<StringError
>(Twine("multiple profiles specified: ") +
394 ProfileReader
->getFilename() + " and " +
396 inconvertibleErrorCode());
399 // Spawn a profile reader based on file contents.
400 if (DataAggregator::checkPerfDataMagic(Filename
))
401 ProfileReader
= std::make_unique
<DataAggregator
>(Filename
);
402 else if (YAMLProfileReader::isYAML(Filename
))
403 ProfileReader
= std::make_unique
<YAMLProfileReader
>(Filename
);
405 ProfileReader
= std::make_unique
<DataReader
>(Filename
);
407 return Error::success();
410 /// Return true if the function \p BF should be disassembled.
411 static bool shouldDisassemble(const BinaryFunction
&BF
) {
415 if (opts::processAllFunctions())
418 return !BF
.isIgnored();
421 // Return if a section stored in the image falls into a segment address space.
422 // If not, Set \p Overlap to true if there's a partial overlap.
423 template <class ELFT
>
424 static bool checkOffsets(const typename
ELFT::Phdr
&Phdr
,
425 const typename
ELFT::Shdr
&Sec
, bool &Overlap
) {
426 // SHT_NOBITS sections don't need to have an offset inside the segment.
427 if (Sec
.sh_type
== ELF::SHT_NOBITS
)
430 // Only non-empty sections can be at the end of a segment.
431 uint64_t SectionSize
= Sec
.sh_size
? Sec
.sh_size
: 1ull;
432 AddressRange
SectionAddressRange((uint64_t)Sec
.sh_offset
,
433 Sec
.sh_offset
+ SectionSize
);
434 AddressRange
SegmentAddressRange(Phdr
.p_offset
,
435 Phdr
.p_offset
+ Phdr
.p_filesz
);
436 if (SegmentAddressRange
.contains(SectionAddressRange
))
439 Overlap
= SegmentAddressRange
.intersects(SectionAddressRange
);
443 // Check that an allocatable section belongs to a virtual address
444 // space of a segment.
445 template <class ELFT
>
446 static bool checkVMA(const typename
ELFT::Phdr
&Phdr
,
447 const typename
ELFT::Shdr
&Sec
, bool &Overlap
) {
448 // Only non-empty sections can be at the end of a segment.
449 uint64_t SectionSize
= Sec
.sh_size
? Sec
.sh_size
: 1ull;
450 AddressRange
SectionAddressRange((uint64_t)Sec
.sh_addr
,
451 Sec
.sh_addr
+ SectionSize
);
452 AddressRange
SegmentAddressRange(Phdr
.p_vaddr
, Phdr
.p_vaddr
+ Phdr
.p_memsz
);
454 if (SegmentAddressRange
.contains(SectionAddressRange
))
456 Overlap
= SegmentAddressRange
.intersects(SectionAddressRange
);
460 void RewriteInstance::markGnuRelroSections() {
461 using ELFT
= ELF64LE
;
462 using ELFShdrTy
= typename ELFObjectFile
<ELFT
>::Elf_Shdr
;
463 auto ELF64LEFile
= cast
<ELF64LEObjectFile
>(InputFile
);
464 const ELFFile
<ELFT
> &Obj
= ELF64LEFile
->getELFFile();
466 auto handleSection
= [&](const ELFT::Phdr
&Phdr
, SectionRef SecRef
) {
467 BinarySection
*BinarySection
= BC
->getSectionForSectionRef(SecRef
);
468 // If the section is non-allocatable, ignore it for GNU_RELRO purposes:
469 // it can't be made read-only after runtime relocations processing.
470 if (!BinarySection
|| !BinarySection
->isAllocatable())
472 const ELFShdrTy
*Sec
= cantFail(Obj
.getSection(SecRef
.getIndex()));
473 bool ImageOverlap
{false}, VMAOverlap
{false};
474 bool ImageContains
= checkOffsets
<ELFT
>(Phdr
, *Sec
, ImageOverlap
);
475 bool VMAContains
= checkVMA
<ELFT
>(Phdr
, *Sec
, VMAOverlap
);
477 if (opts::Verbosity
>= 1)
478 BC
->errs() << "BOLT-WARNING: GNU_RELRO segment has partial file offset "
479 << "overlap with section " << BinarySection
->getName()
484 if (opts::Verbosity
>= 1)
485 BC
->errs() << "BOLT-WARNING: GNU_RELRO segment has partial VMA overlap "
486 << "with section " << BinarySection
->getName() << '\n';
489 if (!ImageContains
|| !VMAContains
)
491 BinarySection
->setRelro();
492 if (opts::Verbosity
>= 1)
493 BC
->outs() << "BOLT-INFO: marking " << BinarySection
->getName()
494 << " as GNU_RELRO\n";
497 for (const ELFT::Phdr
&Phdr
: cantFail(Obj
.program_headers()))
498 if (Phdr
.p_type
== ELF::PT_GNU_RELRO
)
499 for (SectionRef SecRef
: InputFile
->sections())
500 handleSection(Phdr
, SecRef
);
503 Error
RewriteInstance::discoverStorage() {
504 NamedRegionTimer
T("discoverStorage", "discover storage", TimerGroupName
,
505 TimerGroupDesc
, opts::TimeRewrite
);
507 auto ELF64LEFile
= cast
<ELF64LEObjectFile
>(InputFile
);
508 const ELFFile
<ELF64LE
> &Obj
= ELF64LEFile
->getELFFile();
510 BC
->StartFunctionAddress
= Obj
.getHeader().e_entry
;
512 NextAvailableAddress
= 0;
513 uint64_t NextAvailableOffset
= 0;
514 Expected
<ELF64LE::PhdrRange
> PHsOrErr
= Obj
.program_headers();
515 if (Error E
= PHsOrErr
.takeError())
518 ELF64LE::PhdrRange PHs
= PHsOrErr
.get();
519 for (const ELF64LE::Phdr
&Phdr
: PHs
) {
520 switch (Phdr
.p_type
) {
522 BC
->FirstAllocAddress
= std::min(BC
->FirstAllocAddress
,
523 static_cast<uint64_t>(Phdr
.p_vaddr
));
524 NextAvailableAddress
= std::max(NextAvailableAddress
,
525 Phdr
.p_vaddr
+ Phdr
.p_memsz
);
526 NextAvailableOffset
= std::max(NextAvailableOffset
,
527 Phdr
.p_offset
+ Phdr
.p_filesz
);
529 BC
->SegmentMapInfo
[Phdr
.p_vaddr
] = SegmentInfo
{
530 Phdr
.p_vaddr
, Phdr
.p_memsz
, Phdr
.p_offset
,
531 Phdr
.p_filesz
, Phdr
.p_align
, ((Phdr
.p_flags
& ELF::PF_X
) != 0)};
532 if (BC
->TheTriple
->getArch() == llvm::Triple::x86_64
&&
533 Phdr
.p_vaddr
>= BinaryContext::KernelStartX86_64
)
534 BC
->IsLinuxKernel
= true;
537 BC
->HasInterpHeader
= true;
542 if (BC
->IsLinuxKernel
)
543 BC
->outs() << "BOLT-INFO: Linux kernel binary detected\n";
545 for (const SectionRef
&Section
: InputFile
->sections()) {
546 Expected
<StringRef
> SectionNameOrErr
= Section
.getName();
547 if (Error E
= SectionNameOrErr
.takeError())
549 StringRef SectionName
= SectionNameOrErr
.get();
550 if (SectionName
== BC
->getMainCodeSectionName()) {
551 BC
->OldTextSectionAddress
= Section
.getAddress();
552 BC
->OldTextSectionSize
= Section
.getSize();
554 Expected
<StringRef
> SectionContentsOrErr
= Section
.getContents();
555 if (Error E
= SectionContentsOrErr
.takeError())
557 StringRef SectionContents
= SectionContentsOrErr
.get();
558 BC
->OldTextSectionOffset
=
559 SectionContents
.data() - InputFile
->getData().data();
562 if (!opts::HeatmapMode
&&
563 !(opts::AggregateOnly
&& BAT
->enabledFor(InputFile
)) &&
564 (SectionName
.starts_with(getOrgSecPrefix()) ||
565 SectionName
== getBOLTTextSectionName()))
566 return createStringError(
567 errc::function_not_supported
,
568 "BOLT-ERROR: input file was processed by BOLT. Cannot re-optimize");
571 if (!NextAvailableAddress
|| !NextAvailableOffset
)
572 return createStringError(errc::executable_format_error
,
573 "no PT_LOAD pheader seen");
575 BC
->outs() << "BOLT-INFO: first alloc address is 0x"
576 << Twine::utohexstr(BC
->FirstAllocAddress
) << '\n';
578 FirstNonAllocatableOffset
= NextAvailableOffset
;
580 NextAvailableAddress
= alignTo(NextAvailableAddress
, BC
->PageAlign
);
581 NextAvailableOffset
= alignTo(NextAvailableOffset
, BC
->PageAlign
);
583 // Hugify: Additional huge page from left side due to
584 // weird ASLR mapping addresses (4KB aligned)
585 if (opts::Hugify
&& !BC
->HasFixedLoadAddress
)
586 NextAvailableAddress
+= BC
->PageAlign
;
588 if (!opts::UseGnuStack
&& !BC
->IsLinuxKernel
) {
589 // This is where the black magic happens. Creating PHDR table in a segment
590 // other than that containing ELF header is tricky. Some loaders and/or
591 // parts of loaders will apply e_phoff from ELF header assuming both are in
592 // the same segment, while others will do the proper calculation.
593 // We create the new PHDR table in such a way that both of the methods
594 // of loading and locating the table work. There's a slight file size
595 // overhead because of that.
597 // NB: bfd's strip command cannot do the above and will corrupt the
598 // binary during the process of stripping non-allocatable sections.
599 if (NextAvailableOffset
<= NextAvailableAddress
- BC
->FirstAllocAddress
)
600 NextAvailableOffset
= NextAvailableAddress
- BC
->FirstAllocAddress
;
602 NextAvailableAddress
= NextAvailableOffset
+ BC
->FirstAllocAddress
;
604 assert(NextAvailableOffset
==
605 NextAvailableAddress
- BC
->FirstAllocAddress
&&
606 "PHDR table address calculation error");
608 BC
->outs() << "BOLT-INFO: creating new program header table at address 0x"
609 << Twine::utohexstr(NextAvailableAddress
) << ", offset 0x"
610 << Twine::utohexstr(NextAvailableOffset
) << '\n';
612 PHDRTableAddress
= NextAvailableAddress
;
613 PHDRTableOffset
= NextAvailableOffset
;
615 // Reserve space for 3 extra pheaders.
616 unsigned Phnum
= Obj
.getHeader().e_phnum
;
619 NextAvailableAddress
+= Phnum
* sizeof(ELF64LEPhdrTy
);
620 NextAvailableOffset
+= Phnum
* sizeof(ELF64LEPhdrTy
);
623 // Align at cache line.
624 NextAvailableAddress
= alignTo(NextAvailableAddress
, 64);
625 NextAvailableOffset
= alignTo(NextAvailableOffset
, 64);
627 NewTextSegmentAddress
= NextAvailableAddress
;
628 NewTextSegmentOffset
= NextAvailableOffset
;
629 BC
->LayoutStartAddress
= NextAvailableAddress
;
631 // Tools such as objcopy can strip section contents but leave header
632 // entries. Check that at least .text is mapped in the file.
633 if (!getFileOffsetForAddress(BC
->OldTextSectionAddress
))
634 return createStringError(errc::executable_format_error
,
635 "BOLT-ERROR: input binary is not a valid ELF "
636 "executable as its text section is not "
637 "mapped to a valid segment");
638 return Error::success();
641 Error
RewriteInstance::run() {
642 assert(BC
&& "failed to create a binary context");
644 BC
->outs() << "BOLT-INFO: Target architecture: "
645 << Triple::getArchTypeName(
646 (llvm::Triple::ArchType
)InputFile
->getArch())
648 BC
->outs() << "BOLT-INFO: BOLT version: " << BoltRevision
<< "\n";
650 if (Error E
= discoverStorage())
652 if (Error E
= readSpecialSections())
654 adjustCommandLineOptions();
655 discoverFileObjects();
657 if (opts::Instrument
&& !BC
->IsStaticExecutable
)
658 if (Error E
= discoverRtFiniAddress())
661 preprocessProfileData();
663 // Skip disassembling if we have a translation table and we are running an
665 if (opts::AggregateOnly
&& BAT
->enabledFor(InputFile
)) {
666 // YAML profile in BAT mode requires CFG for .bolt.org.text functions
667 if (!opts::SaveProfile
.empty() ||
668 opts::ProfileFormat
== opts::ProfileFormatKind::PF_YAML
) {
669 selectFunctionsToProcess();
670 disassembleFunctions();
671 processMetadataPreCFG();
674 processProfileData();
675 return Error::success();
678 selectFunctionsToProcess();
682 disassembleFunctions();
684 processMetadataPreCFG();
688 processProfileData();
690 // Save input binary metadata if BAT section needs to be emitted
692 BAT
->saveMetadata(*BC
);
694 postProcessFunctions();
696 processMetadataPostCFG();
699 return Error::success();
701 preregisterSections();
703 runOptimizationPasses();
705 finalizeMetadataPreEmit();
711 if (opts::Instrument
&& !BC
->IsStaticExecutable
)
714 if (opts::OutputFilename
== "/dev/null") {
715 BC
->outs() << "BOLT-INFO: skipping writing final binary to disk\n";
716 return Error::success();
717 } else if (BC
->IsLinuxKernel
) {
718 BC
->errs() << "BOLT-WARNING: Linux kernel support is experimental\n";
721 // Rewrite allocatable contents and copy non-allocatable parts with mods.
723 return Error::success();
726 void RewriteInstance::discoverFileObjects() {
727 NamedRegionTimer
T("discoverFileObjects", "discover file objects",
728 TimerGroupName
, TimerGroupDesc
, opts::TimeRewrite
);
730 // For local symbols we want to keep track of associated FILE symbol name for
731 // disambiguation by combined name.
732 StringRef FileSymbolName
;
733 bool SeenFileName
= false;
734 struct SymbolRefHash
{
735 size_t operator()(SymbolRef
const &S
) const {
736 return std::hash
<decltype(DataRefImpl::p
)>{}(S
.getRawDataRefImpl().p
);
739 std::unordered_map
<SymbolRef
, StringRef
, SymbolRefHash
> SymbolToFileName
;
740 for (const ELFSymbolRef
&Symbol
: InputFile
->symbols()) {
741 Expected
<StringRef
> NameOrError
= Symbol
.getName();
742 if (NameOrError
&& NameOrError
->starts_with("__asan_init")) {
744 << "BOLT-ERROR: input file was compiled or linked with sanitizer "
745 "support. Cannot optimize.\n";
748 if (NameOrError
&& NameOrError
->starts_with("__llvm_coverage_mapping")) {
750 << "BOLT-ERROR: input file was compiled or linked with coverage "
751 "support. Cannot optimize.\n";
755 if (cantFail(Symbol
.getFlags()) & SymbolRef::SF_Undefined
)
758 if (cantFail(Symbol
.getType()) == SymbolRef::ST_File
) {
759 FileSymbols
.emplace_back(Symbol
);
761 cantFail(std::move(NameOrError
), "cannot get symbol name for file");
762 // Ignore Clang LTO artificial FILE symbol as it is not always generated,
763 // and this uncertainty is causing havoc in function name matching.
764 if (Name
== "ld-temp.o")
766 FileSymbolName
= Name
;
770 if (!FileSymbolName
.empty() &&
771 !(cantFail(Symbol
.getFlags()) & SymbolRef::SF_Global
))
772 SymbolToFileName
[Symbol
] = FileSymbolName
;
775 // Sort symbols in the file by value. Ignore symbols from non-allocatable
776 // sections. We memoize getAddress(), as it has rather high overhead.
781 std::vector
<SymbolInfo
> SortedSymbols
;
782 auto isSymbolInMemory
= [this](const SymbolRef
&Sym
) {
783 if (cantFail(Sym
.getType()) == SymbolRef::ST_File
)
785 if (cantFail(Sym
.getFlags()) & SymbolRef::SF_Absolute
)
787 if (cantFail(Sym
.getFlags()) & SymbolRef::SF_Undefined
)
789 BinarySection
Section(*BC
, *cantFail(Sym
.getSection()));
790 return Section
.isAllocatable();
792 auto checkSymbolInSection
= [this](const SymbolInfo
&S
) {
793 // Sometimes, we encounter symbols with addresses outside their section. If
794 // such symbols happen to fall into another section, they can interfere with
795 // disassembly. Notably, this occurs with AArch64 marker symbols ($d and $t)
796 // that belong to .eh_frame, but end up pointing into .text.
797 // As a workaround, we ignore all symbols that lie outside their sections.
798 auto Section
= cantFail(S
.Symbol
.getSection());
800 // Accept all absolute symbols.
801 if (Section
== InputFile
->section_end())
804 uint64_t SecStart
= Section
->getAddress();
805 uint64_t SecEnd
= SecStart
+ Section
->getSize();
806 uint64_t SymEnd
= S
.Address
+ ELFSymbolRef(S
.Symbol
).getSize();
807 if (S
.Address
>= SecStart
&& SymEnd
<= SecEnd
)
810 auto SymType
= cantFail(S
.Symbol
.getType());
811 // Skip warnings for common benign cases.
812 if (opts::Verbosity
< 1 && SymType
== SymbolRef::ST_Other
)
813 return false; // E.g. ELF::STT_TLS.
815 auto SymName
= S
.Symbol
.getName();
816 auto SecName
= cantFail(S
.Symbol
.getSection())->getName();
817 BC
->errs() << "BOLT-WARNING: ignoring symbol "
818 << (SymName
? *SymName
: "[unnamed]") << " at 0x"
819 << Twine::utohexstr(S
.Address
) << ", which lies outside "
820 << (SecName
? *SecName
: "[unnamed]") << "\n";
824 for (const SymbolRef
&Symbol
: InputFile
->symbols())
825 if (isSymbolInMemory(Symbol
)) {
826 SymbolInfo SymInfo
{cantFail(Symbol
.getAddress()), Symbol
};
827 if (checkSymbolInSection(SymInfo
))
828 SortedSymbols
.push_back(SymInfo
);
831 auto CompareSymbols
= [this](const SymbolInfo
&A
, const SymbolInfo
&B
) {
832 if (A
.Address
!= B
.Address
)
833 return A
.Address
< B
.Address
;
835 const bool AMarker
= BC
->isMarker(A
.Symbol
);
836 const bool BMarker
= BC
->isMarker(B
.Symbol
);
837 if (AMarker
|| BMarker
) {
838 return AMarker
&& !BMarker
;
841 const auto AType
= cantFail(A
.Symbol
.getType());
842 const auto BType
= cantFail(B
.Symbol
.getType());
843 if (AType
== SymbolRef::ST_Function
&& BType
!= SymbolRef::ST_Function
)
845 if (BType
== SymbolRef::ST_Debug
&& AType
!= SymbolRef::ST_Debug
)
850 llvm::stable_sort(SortedSymbols
, CompareSymbols
);
852 auto LastSymbol
= SortedSymbols
.end();
853 if (!SortedSymbols
.empty())
856 // For aarch64, the ABI defines mapping symbols so we identify data in the
857 // code section (see IHI0056B). $d identifies data contents.
858 // Compilers usually merge multiple data objects in a single $d-$x interval,
859 // but we need every data object to be marked with $d. Because of that we
860 // create a vector of MarkerSyms with all locations of data objects.
867 std::vector
<MarkerSym
> SortedMarkerSymbols
;
868 auto addExtraDataMarkerPerSymbol
= [&]() {
870 uint64_t LastAddr
= 0;
871 for (const auto &SymInfo
: SortedSymbols
) {
872 if (LastAddr
== SymInfo
.Address
) // don't repeat markers
875 MarkerSymType MarkerType
= BC
->getMarkerType(SymInfo
.Symbol
);
876 if (MarkerType
!= MarkerSymType::NONE
) {
877 SortedMarkerSymbols
.push_back(MarkerSym
{SymInfo
.Address
, MarkerType
});
878 LastAddr
= SymInfo
.Address
;
879 IsData
= MarkerType
== MarkerSymType::DATA
;
884 SortedMarkerSymbols
.push_back({SymInfo
.Address
, MarkerSymType::DATA
});
885 LastAddr
= SymInfo
.Address
;
890 if (BC
->isAArch64() || BC
->isRISCV()) {
891 addExtraDataMarkerPerSymbol();
892 LastSymbol
= std::stable_partition(
893 SortedSymbols
.begin(), SortedSymbols
.end(),
894 [this](const SymbolInfo
&S
) { return !BC
->isMarker(S
.Symbol
); });
895 if (!SortedSymbols
.empty())
899 BinaryFunction
*PreviousFunction
= nullptr;
900 unsigned AnonymousId
= 0;
902 const auto SortedSymbolsEnd
=
903 LastSymbol
== SortedSymbols
.end() ? LastSymbol
: std::next(LastSymbol
);
904 for (auto Iter
= SortedSymbols
.begin(); Iter
!= SortedSymbolsEnd
; ++Iter
) {
905 const SymbolRef
&Symbol
= Iter
->Symbol
;
906 const uint64_t SymbolAddress
= Iter
->Address
;
907 const auto SymbolFlags
= cantFail(Symbol
.getFlags());
908 const SymbolRef::Type SymbolType
= cantFail(Symbol
.getType());
910 if (SymbolType
== SymbolRef::ST_File
)
913 StringRef SymName
= cantFail(Symbol
.getName(), "cannot get symbol name");
914 if (SymbolAddress
== 0) {
915 if (opts::Verbosity
>= 1 && SymbolType
== SymbolRef::ST_Function
)
916 BC
->errs() << "BOLT-WARNING: function with 0 address seen\n";
920 // Ignore input hot markers
921 if (SymName
== "__hot_start" || SymName
== "__hot_end")
924 FileSymRefs
.emplace(SymbolAddress
, Symbol
);
926 // Skip section symbols that will be registered by disassemblePLT().
927 if (SymbolType
== SymbolRef::ST_Debug
) {
928 ErrorOr
<BinarySection
&> BSection
=
929 BC
->getSectionForAddress(SymbolAddress
);
930 if (BSection
&& getPLTSectionInfo(BSection
->getName()))
934 /// It is possible we are seeing a globalized local. LLVM might treat it as
935 /// a local if it has a "private global" prefix, e.g. ".L". Thus we have to
936 /// change the prefix to enforce global scope of the symbol.
938 SymName
.starts_with(BC
->AsmInfo
->getPrivateGlobalPrefix())
939 ? "PG" + std::string(SymName
)
940 : std::string(SymName
);
942 // Disambiguate all local symbols before adding to symbol table.
943 // Since we don't know if we will see a global with the same name,
944 // always modify the local name.
946 // NOTE: the naming convention for local symbols should match
947 // the one we use for profile data.
948 std::string UniqueName
;
949 std::string AlternativeName
;
951 UniqueName
= "ANONYMOUS." + std::to_string(AnonymousId
++);
952 } else if (SymbolFlags
& SymbolRef::SF_Global
) {
953 if (const BinaryData
*BD
= BC
->getBinaryDataByName(Name
)) {
954 if (BD
->getSize() == ELFSymbolRef(Symbol
).getSize() &&
955 BD
->getAddress() == SymbolAddress
) {
956 if (opts::Verbosity
> 1)
957 BC
->errs() << "BOLT-WARNING: ignoring duplicate global symbol "
959 // Ignore duplicate entry - possibly a bug in the linker
962 BC
->errs() << "BOLT-ERROR: bad input binary, global symbol \"" << Name
963 << "\" is not unique\n";
968 // If we have a local file name, we should create 2 variants for the
969 // function name. The reason is that perf profile might have been
970 // collected on a binary that did not have the local file name (e.g. as
971 // a side effect of stripping debug info from the binary):
973 // primary: <function>/<id>
974 // alternative: <function>/<file>/<id2>
976 // The <id> field is used for disambiguation of local symbols since there
977 // could be identical function names coming from identical file names
978 // (e.g. from different directories).
979 std::string AltPrefix
;
980 auto SFI
= SymbolToFileName
.find(Symbol
);
981 if (SymbolType
== SymbolRef::ST_Function
&& SFI
!= SymbolToFileName
.end())
982 AltPrefix
= Name
+ "/" + std::string(SFI
->second
);
984 UniqueName
= NR
.uniquify(Name
);
985 if (!AltPrefix
.empty())
986 AlternativeName
= NR
.uniquify(AltPrefix
);
989 uint64_t SymbolSize
= ELFSymbolRef(Symbol
).getSize();
990 uint64_t SymbolAlignment
= Symbol
.getAlignment();
992 auto registerName
= [&](uint64_t FinalSize
) {
993 // Register names even if it's not a function, e.g. for an entry point.
994 BC
->registerNameAtAddress(UniqueName
, SymbolAddress
, FinalSize
,
995 SymbolAlignment
, SymbolFlags
);
996 if (!AlternativeName
.empty())
997 BC
->registerNameAtAddress(AlternativeName
, SymbolAddress
, FinalSize
,
998 SymbolAlignment
, SymbolFlags
);
1001 section_iterator Section
=
1002 cantFail(Symbol
.getSection(), "cannot get symbol section");
1003 if (Section
== InputFile
->section_end()) {
1004 // Could be an absolute symbol. Used on RISC-V for __global_pointer$ so we
1005 // need to record it to handle relocations against it. For other instances
1006 // of absolute symbols, we record for pretty printing.
1007 LLVM_DEBUG(if (opts::Verbosity
> 1) {
1008 dbgs() << "BOLT-INFO: absolute sym " << UniqueName
<< "\n";
1010 registerName(SymbolSize
);
1014 if (SymName
== getBOLTReservedStart() || SymName
== getBOLTReservedEnd()) {
1015 registerName(SymbolSize
);
1019 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: considering symbol " << UniqueName
1020 << " for function\n");
1022 if (SymbolAddress
== Section
->getAddress() + Section
->getSize()) {
1023 assert(SymbolSize
== 0 &&
1024 "unexpect non-zero sized symbol at end of section");
1027 << "BOLT-DEBUG: rejecting as symbol points to end of its section\n");
1028 registerName(SymbolSize
);
1032 if (!Section
->isText()) {
1033 assert(SymbolType
!= SymbolRef::ST_Function
&&
1034 "unexpected function inside non-code section");
1035 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejecting as symbol is not in code\n");
1036 registerName(SymbolSize
);
1040 // Assembly functions could be ST_NONE with 0 size. Check that the
1041 // corresponding section is a code section and they are not inside any
1042 // other known function to consider them.
1044 // Sometimes assembly functions are not marked as functions and neither are
1045 // their local labels. The only way to tell them apart is to look at
1046 // symbol scope - global vs local.
1047 if (PreviousFunction
&& SymbolType
!= SymbolRef::ST_Function
) {
1048 if (PreviousFunction
->containsAddress(SymbolAddress
)) {
1049 if (PreviousFunction
->isSymbolValidInScope(Symbol
, SymbolSize
)) {
1051 << "BOLT-DEBUG: symbol is a function local symbol\n");
1052 } else if (SymbolAddress
== PreviousFunction
->getAddress() &&
1054 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring symbol as a marker\n");
1055 } else if (opts::Verbosity
> 1) {
1056 BC
->errs() << "BOLT-WARNING: symbol " << UniqueName
1057 << " seen in the middle of function " << *PreviousFunction
1058 << ". Could be a new entry.\n";
1060 registerName(SymbolSize
);
1062 } else if (PreviousFunction
->getSize() == 0 &&
1063 PreviousFunction
->isSymbolValidInScope(Symbol
, SymbolSize
)) {
1064 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n");
1065 registerName(SymbolSize
);
1070 if (PreviousFunction
&& PreviousFunction
->containsAddress(SymbolAddress
) &&
1071 PreviousFunction
->getAddress() != SymbolAddress
) {
1072 if (PreviousFunction
->isSymbolValidInScope(Symbol
, SymbolSize
)) {
1073 if (opts::Verbosity
>= 1)
1075 << "BOLT-INFO: skipping possibly another entry for function "
1076 << *PreviousFunction
<< " : " << UniqueName
<< '\n';
1077 registerName(SymbolSize
);
1079 BC
->outs() << "BOLT-INFO: using " << UniqueName
1080 << " as another entry to "
1081 << "function " << *PreviousFunction
<< '\n';
1085 PreviousFunction
->addEntryPointAtOffset(SymbolAddress
-
1086 PreviousFunction
->getAddress());
1088 // Remove the symbol from FileSymRefs so that we can skip it from
1090 auto SI
= llvm::find_if(
1091 llvm::make_range(FileSymRefs
.equal_range(SymbolAddress
)),
1092 [&](auto SymIt
) { return SymIt
.second
== Symbol
; });
1093 assert(SI
!= FileSymRefs
.end() && "symbol expected to be present");
1094 assert(SI
->second
== Symbol
&& "wrong symbol found");
1095 FileSymRefs
.erase(SI
);
1100 // Checkout for conflicts with function data from FDEs.
1101 bool IsSimple
= true;
1102 auto FDEI
= CFIRdWrt
->getFDEs().lower_bound(SymbolAddress
);
1103 if (FDEI
!= CFIRdWrt
->getFDEs().end()) {
1104 const dwarf::FDE
&FDE
= *FDEI
->second
;
1105 if (FDEI
->first
!= SymbolAddress
) {
1106 // There's no matching starting address in FDE. Make sure the previous
1107 // FDE does not contain this address.
1108 if (FDEI
!= CFIRdWrt
->getFDEs().begin()) {
1110 const dwarf::FDE
&PrevFDE
= *FDEI
->second
;
1111 uint64_t PrevStart
= PrevFDE
.getInitialLocation();
1112 uint64_t PrevLength
= PrevFDE
.getAddressRange();
1113 if (SymbolAddress
> PrevStart
&&
1114 SymbolAddress
< PrevStart
+ PrevLength
) {
1115 BC
->errs() << "BOLT-ERROR: function " << UniqueName
1116 << " is in conflict with FDE ["
1117 << Twine::utohexstr(PrevStart
) << ", "
1118 << Twine::utohexstr(PrevStart
+ PrevLength
)
1119 << "). Skipping.\n";
1123 } else if (FDE
.getAddressRange() != SymbolSize
) {
1125 // Function addresses match but sizes differ.
1126 BC
->errs() << "BOLT-WARNING: sizes differ for function " << UniqueName
1127 << ". FDE : " << FDE
.getAddressRange()
1128 << "; symbol table : " << SymbolSize
1129 << ". Using max size.\n";
1131 SymbolSize
= std::max(SymbolSize
, FDE
.getAddressRange());
1132 if (BC
->getBinaryDataAtAddress(SymbolAddress
)) {
1133 BC
->setBinaryDataSize(SymbolAddress
, SymbolSize
);
1135 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: No BD @ 0x"
1136 << Twine::utohexstr(SymbolAddress
) << "\n");
1141 BinaryFunction
*BF
= nullptr;
1142 // Since function may not have yet obtained its real size, do a search
1143 // using the list of registered functions instead of calling
1144 // getBinaryFunctionAtAddress().
1145 auto BFI
= BC
->getBinaryFunctions().find(SymbolAddress
);
1146 if (BFI
!= BC
->getBinaryFunctions().end()) {
1148 // Duplicate the function name. Make sure everything matches before we add
1149 // an alternative name.
1150 if (SymbolSize
!= BF
->getSize()) {
1151 if (opts::Verbosity
>= 1) {
1152 if (SymbolSize
&& BF
->getSize())
1153 BC
->errs() << "BOLT-WARNING: size mismatch for duplicate entries "
1154 << *BF
<< " and " << UniqueName
<< '\n';
1155 BC
->outs() << "BOLT-INFO: adjusting size of function " << *BF
1156 << " old " << BF
->getSize() << " new " << SymbolSize
1159 BF
->setSize(std::max(SymbolSize
, BF
->getSize()));
1160 BC
->setBinaryDataSize(SymbolAddress
, BF
->getSize());
1162 BF
->addAlternativeName(UniqueName
);
1164 ErrorOr
<BinarySection
&> Section
=
1165 BC
->getSectionForAddress(SymbolAddress
);
1166 // Skip symbols from invalid sections
1168 BC
->errs() << "BOLT-WARNING: " << UniqueName
<< " (0x"
1169 << Twine::utohexstr(SymbolAddress
)
1170 << ") does not have any section\n";
1174 // Skip symbols from zero-sized sections.
1175 if (!Section
->getSize())
1178 BF
= BC
->createBinaryFunction(UniqueName
, *Section
, SymbolAddress
,
1181 BF
->setSimple(false);
1184 // Check if it's a cold function fragment.
1185 if (FunctionFragmentTemplate
.match(SymName
)) {
1186 static bool PrintedWarning
= false;
1187 if (!PrintedWarning
) {
1188 PrintedWarning
= true;
1189 BC
->errs() << "BOLT-WARNING: split function detected on input : "
1191 if (BC
->HasRelocations
)
1192 BC
->errs() << ". The support is limited in relocation mode\n";
1196 BC
->HasSplitFunctions
= true;
1197 BF
->IsFragment
= true;
1200 if (!AlternativeName
.empty())
1201 BF
->addAlternativeName(AlternativeName
);
1203 registerName(SymbolSize
);
1204 PreviousFunction
= BF
;
1207 // Read dynamic relocation first as their presence affects the way we process
1208 // static relocations. E.g. we will ignore a static relocation at an address
1209 // that is a subject to dynamic relocation processing.
1210 processDynamicRelocations();
1212 // Process PLT section.
1215 // See if we missed any functions marked by FDE.
1216 for (const auto &FDEI
: CFIRdWrt
->getFDEs()) {
1217 const uint64_t Address
= FDEI
.first
;
1218 const dwarf::FDE
*FDE
= FDEI
.second
;
1219 const BinaryFunction
*BF
= BC
->getBinaryFunctionAtAddress(Address
);
1223 BF
= BC
->getBinaryFunctionContainingAddress(Address
);
1225 BC
->errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address
)
1226 << ", 0x" << Twine::utohexstr(Address
+ FDE
->getAddressRange())
1227 << ") conflicts with function " << *BF
<< '\n';
1231 if (opts::Verbosity
>= 1)
1232 BC
->errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address
)
1233 << ", 0x" << Twine::utohexstr(Address
+ FDE
->getAddressRange())
1234 << ") has no corresponding symbol table entry\n";
1236 ErrorOr
<BinarySection
&> Section
= BC
->getSectionForAddress(Address
);
1237 assert(Section
&& "cannot get section for address from FDE");
1238 std::string FunctionName
=
1239 "__BOLT_FDE_FUNCat" + Twine::utohexstr(Address
).str();
1240 BC
->createBinaryFunction(FunctionName
, *Section
, Address
,
1241 FDE
->getAddressRange());
1244 BC
->setHasSymbolsWithFileName(SeenFileName
);
1246 // Now that all the functions were created - adjust their boundaries.
1247 adjustFunctionBoundaries();
1249 // Annotate functions with code/data markers in AArch64
1250 for (auto ISym
= SortedMarkerSymbols
.begin();
1251 ISym
!= SortedMarkerSymbols
.end(); ++ISym
) {
1254 BC
->getBinaryFunctionContainingAddress(ISym
->Address
, true, true);
1260 const auto EntryOffset
= ISym
->Address
- BF
->getAddress();
1261 if (ISym
->Type
== MarkerSymType::CODE
) {
1262 BF
->markCodeAtOffset(EntryOffset
);
1265 if (ISym
->Type
== MarkerSymType::DATA
) {
1266 BF
->markDataAtOffset(EntryOffset
);
1267 BC
->AddressToConstantIslandMap
[ISym
->Address
] = BF
;
1270 llvm_unreachable("Unknown marker");
1273 if (BC
->isAArch64()) {
1274 // Check for dynamic relocations that might be contained in
1275 // constant islands.
1276 for (const BinarySection
&Section
: BC
->allocatableSections()) {
1277 const uint64_t SectionAddress
= Section
.getAddress();
1278 for (const Relocation
&Rel
: Section
.dynamicRelocations()) {
1279 const uint64_t RelAddress
= SectionAddress
+ Rel
.Offset
;
1280 BinaryFunction
*BF
=
1281 BC
->getBinaryFunctionContainingAddress(RelAddress
,
1282 /*CheckPastEnd*/ false,
1283 /*UseMaxSize*/ true);
1285 assert(Rel
.isRelative() && "Expected relative relocation for island");
1286 BC
->logBOLTErrorsAndQuitOnFatal(
1287 BF
->markIslandDynamicRelocationAtAddress(RelAddress
));
1293 if (!BC
->IsLinuxKernel
) {
1294 // Read all relocations now that we have binary functions mapped.
1295 processRelocations();
1298 registerFragments();
1299 FileSymbols
.clear();
1300 FileSymRefs
.clear();
1302 discoverBOLTReserved();
1305 void RewriteInstance::discoverBOLTReserved() {
1306 BinaryData
*StartBD
= BC
->getBinaryDataByName(getBOLTReservedStart());
1307 BinaryData
*EndBD
= BC
->getBinaryDataByName(getBOLTReservedEnd());
1308 if (!StartBD
!= !EndBD
) {
1309 BC
->errs() << "BOLT-ERROR: one of the symbols is missing from the binary: "
1310 << getBOLTReservedStart() << ", " << getBOLTReservedEnd()
1318 if (StartBD
->getAddress() >= EndBD
->getAddress()) {
1319 BC
->errs() << "BOLT-ERROR: invalid reserved space boundaries\n";
1322 BC
->BOLTReserved
= AddressRange(StartBD
->getAddress(), EndBD
->getAddress());
1323 BC
->outs() << "BOLT-INFO: using reserved space for allocating new sections\n";
1325 PHDRTableOffset
= 0;
1326 PHDRTableAddress
= 0;
1327 NewTextSegmentAddress
= 0;
1328 NewTextSegmentOffset
= 0;
1329 NextAvailableAddress
= BC
->BOLTReserved
.start();
1332 Error
RewriteInstance::discoverRtFiniAddress() {
1333 // Use DT_FINI if it's available.
1334 if (BC
->FiniAddress
) {
1335 BC
->FiniFunctionAddress
= BC
->FiniAddress
;
1336 return Error::success();
1339 if (!BC
->FiniArrayAddress
|| !BC
->FiniArraySize
) {
1340 return createStringError(
1341 std::errc::not_supported
,
1342 "Instrumentation needs either DT_FINI or DT_FINI_ARRAY");
1345 if (*BC
->FiniArraySize
< BC
->AsmInfo
->getCodePointerSize()) {
1346 return createStringError(std::errc::not_supported
,
1347 "Need at least 1 DT_FINI_ARRAY slot");
1350 ErrorOr
<BinarySection
&> FiniArraySection
=
1351 BC
->getSectionForAddress(*BC
->FiniArrayAddress
);
1352 if (auto EC
= FiniArraySection
.getError())
1353 return errorCodeToError(EC
);
1355 if (const Relocation
*Reloc
= FiniArraySection
->getDynamicRelocationAt(0)) {
1356 BC
->FiniFunctionAddress
= Reloc
->Addend
;
1357 return Error::success();
1360 if (const Relocation
*Reloc
= FiniArraySection
->getRelocationAt(0)) {
1361 BC
->FiniFunctionAddress
= Reloc
->Value
;
1362 return Error::success();
1365 return createStringError(std::errc::not_supported
,
1366 "No relocation for first DT_FINI_ARRAY slot");
1369 void RewriteInstance::updateRtFiniReloc() {
1370 // Updating DT_FINI is handled by patchELFDynamic.
1371 if (BC
->FiniAddress
)
1374 const RuntimeLibrary
*RT
= BC
->getRuntimeLibrary();
1375 if (!RT
|| !RT
->getRuntimeFiniAddress())
1378 assert(BC
->FiniArrayAddress
&& BC
->FiniArraySize
&&
1379 "inconsistent .fini_array state");
1381 ErrorOr
<BinarySection
&> FiniArraySection
=
1382 BC
->getSectionForAddress(*BC
->FiniArrayAddress
);
1383 assert(FiniArraySection
&& ".fini_array removed");
1385 if (std::optional
<Relocation
> Reloc
=
1386 FiniArraySection
->takeDynamicRelocationAt(0)) {
1387 assert(Reloc
->Addend
== BC
->FiniFunctionAddress
&&
1388 "inconsistent .fini_array dynamic relocation");
1389 Reloc
->Addend
= RT
->getRuntimeFiniAddress();
1390 FiniArraySection
->addDynamicRelocation(*Reloc
);
1393 // Update the static relocation by adding a pending relocation which will get
1394 // patched when flushPendingRelocations is called in rewriteFile. Note that
1395 // flushPendingRelocations will calculate the value to patch as
1396 // "Symbol + Addend". Since we don't have a symbol, just set the addend to the
1398 FiniArraySection
->addPendingRelocation(Relocation
{
1399 /*Offset*/ 0, /*Symbol*/ nullptr, /*Type*/ Relocation::getAbs64(),
1400 /*Addend*/ RT
->getRuntimeFiniAddress(), /*Value*/ 0});
1403 void RewriteInstance::registerFragments() {
1404 if (!BC
->HasSplitFunctions
)
1407 // Process fragments with ambiguous parents separately as they are typically a
1408 // vanishing minority of cases and require expensive symbol table lookups.
1409 std::vector
<std::pair
<StringRef
, BinaryFunction
*>> AmbiguousFragments
;
1410 for (auto &BFI
: BC
->getBinaryFunctions()) {
1411 BinaryFunction
&Function
= BFI
.second
;
1412 if (!Function
.isFragment())
1414 for (StringRef Name
: Function
.getNames()) {
1415 StringRef BaseName
= NR
.restore(Name
);
1416 const bool IsGlobal
= BaseName
== Name
;
1417 SmallVector
<StringRef
> Matches
;
1418 if (!FunctionFragmentTemplate
.match(BaseName
, &Matches
))
1420 StringRef ParentName
= Matches
[1];
1421 const BinaryData
*BD
= BC
->getBinaryDataByName(ParentName
);
1422 const uint64_t NumPossibleLocalParents
=
1423 NR
.getUniquifiedNameCount(ParentName
);
1424 // The most common case: single local parent fragment.
1425 if (!BD
&& NumPossibleLocalParents
== 1) {
1426 BD
= BC
->getBinaryDataByName(NR
.getUniqueName(ParentName
, 1));
1427 } else if (BD
&& (!NumPossibleLocalParents
|| IsGlobal
)) {
1428 // Global parent and either no local candidates (second most common), or
1429 // the fragment is global as well (uncommon).
1431 // Any other case: need to disambiguate using FILE symbols.
1432 AmbiguousFragments
.emplace_back(ParentName
, &Function
);
1436 BinaryFunction
*BF
= BC
->getFunctionForSymbol(BD
->getSymbol());
1438 BC
->registerFragment(Function
, *BF
);
1442 BC
->errs() << "BOLT-ERROR: parent function not found for " << Function
1448 if (AmbiguousFragments
.empty())
1451 if (!BC
->hasSymbolsWithFileName()) {
1452 BC
->errs() << "BOLT-ERROR: input file has split functions but does not "
1453 "have FILE symbols. If the binary was stripped, preserve "
1454 "FILE symbols with --keep-file-symbols strip option\n";
1458 // The first global symbol is identified by the symbol table sh_info value.
1459 // Used as local symbol search stopping point.
1460 auto *ELF64LEFile
= cast
<ELF64LEObjectFile
>(InputFile
);
1461 const ELFFile
<ELF64LE
> &Obj
= ELF64LEFile
->getELFFile();
1462 auto *SymTab
= llvm::find_if(cantFail(Obj
.sections()), [](const auto &Sec
) {
1463 return Sec
.sh_type
== ELF::SHT_SYMTAB
;
1466 // Symtab sh_info contains the value one greater than the symbol table index
1467 // of the last local symbol.
1468 ELFSymbolRef LocalSymEnd
= ELF64LEFile
->toSymbolRef(SymTab
, SymTab
->sh_info
);
1470 for (auto &Fragment
: AmbiguousFragments
) {
1471 const StringRef
&ParentName
= Fragment
.first
;
1472 BinaryFunction
*BF
= Fragment
.second
;
1473 const uint64_t Address
= BF
->getAddress();
1475 // Get fragment's own symbol
1476 const auto SymIt
= llvm::find_if(
1477 llvm::make_range(FileSymRefs
.equal_range(Address
)), [&](auto SI
) {
1478 StringRef Name
= cantFail(SI
.second
.getName());
1479 return Name
.contains(ParentName
);
1481 if (SymIt
== FileSymRefs
.end()) {
1483 << "BOLT-ERROR: symbol lookup failed for function at address 0x"
1484 << Twine::utohexstr(Address
) << '\n';
1488 // Find containing FILE symbol
1489 ELFSymbolRef Symbol
= SymIt
->second
;
1490 auto FSI
= llvm::upper_bound(FileSymbols
, Symbol
);
1491 if (FSI
== FileSymbols
.begin()) {
1492 BC
->errs() << "BOLT-ERROR: owning FILE symbol not found for symbol "
1493 << cantFail(Symbol
.getName()) << '\n';
1497 ELFSymbolRef StopSymbol
= LocalSymEnd
;
1498 if (FSI
!= FileSymbols
.end())
1501 uint64_t ParentAddress
{0};
1503 // BOLT split fragment symbols are emitted just before the main function
1505 for (ELFSymbolRef NextSymbol
= Symbol
; NextSymbol
< StopSymbol
;
1506 NextSymbol
.moveNext()) {
1507 StringRef Name
= cantFail(NextSymbol
.getName());
1508 if (Name
== ParentName
) {
1509 ParentAddress
= cantFail(NextSymbol
.getValue());
1510 goto registerParent
;
1512 if (Name
.starts_with(ParentName
))
1513 // With multi-way splitting, there are multiple fragments with different
1514 // suffixes. Parent follows the last fragment.
1519 // Iterate over local file symbols and check symbol names to match parent.
1520 for (ELFSymbolRef
Symbol(FSI
[-1]); Symbol
< StopSymbol
; Symbol
.moveNext()) {
1521 if (cantFail(Symbol
.getName()) == ParentName
) {
1522 ParentAddress
= cantFail(Symbol
.getAddress());
1528 // No local parent is found, use global parent function.
1530 if (BinaryData
*ParentBD
= BC
->getBinaryDataByName(ParentName
))
1531 ParentAddress
= ParentBD
->getAddress();
1533 if (BinaryFunction
*ParentBF
=
1534 BC
->getBinaryFunctionAtAddress(ParentAddress
)) {
1535 BC
->registerFragment(*BF
, *ParentBF
);
1538 BC
->errs() << "BOLT-ERROR: parent function not found for " << *BF
<< '\n';
1543 void RewriteInstance::createPLTBinaryFunction(uint64_t TargetAddress
,
1544 uint64_t EntryAddress
,
1545 uint64_t EntrySize
) {
1549 auto setPLTSymbol
= [&](BinaryFunction
*BF
, StringRef Name
) {
1550 const unsigned PtrSize
= BC
->AsmInfo
->getCodePointerSize();
1551 MCSymbol
*TargetSymbol
= BC
->registerNameAtAddress(
1552 Name
.str() + "@GOT", TargetAddress
, PtrSize
, PtrSize
);
1553 BF
->setPLTSymbol(TargetSymbol
);
1556 BinaryFunction
*BF
= BC
->getBinaryFunctionAtAddress(EntryAddress
);
1557 if (BF
&& BC
->isAArch64()) {
1558 // Handle IFUNC trampoline with symbol
1559 setPLTSymbol(BF
, BF
->getOneName());
1563 const Relocation
*Rel
= BC
->getDynamicRelocationAt(TargetAddress
);
1567 MCSymbol
*Symbol
= Rel
->Symbol
;
1569 if (BC
->isRISCV() || !Rel
->Addend
|| !Rel
->isIRelative())
1572 // IFUNC trampoline without symbol
1573 BinaryFunction
*TargetBF
= BC
->getBinaryFunctionAtAddress(Rel
->Addend
);
1576 << "BOLT-WARNING: Expected BF to be presented as IFUNC resolver at "
1577 << Twine::utohexstr(Rel
->Addend
) << ", skipping\n";
1581 Symbol
= TargetBF
->getSymbol();
1584 ErrorOr
<BinarySection
&> Section
= BC
->getSectionForAddress(EntryAddress
);
1585 assert(Section
&& "cannot get section for address");
1587 BF
= BC
->createBinaryFunction(Symbol
->getName().str() + "@PLT", *Section
,
1588 EntryAddress
, 0, EntrySize
,
1589 Section
->getAlignment());
1591 BF
->addAlternativeName(Symbol
->getName().str() + "@PLT");
1592 setPLTSymbol(BF
, Symbol
->getName());
1595 void RewriteInstance::disassemblePLTInstruction(const BinarySection
&Section
,
1596 uint64_t InstrOffset
,
1597 MCInst
&Instruction
,
1598 uint64_t &InstrSize
) {
1599 const uint64_t SectionAddress
= Section
.getAddress();
1600 const uint64_t SectionSize
= Section
.getSize();
1601 StringRef PLTContents
= Section
.getContents();
1602 ArrayRef
<uint8_t> PLTData(
1603 reinterpret_cast<const uint8_t *>(PLTContents
.data()), SectionSize
);
1605 const uint64_t InstrAddr
= SectionAddress
+ InstrOffset
;
1606 if (!BC
->DisAsm
->getInstruction(Instruction
, InstrSize
,
1607 PLTData
.slice(InstrOffset
), InstrAddr
,
1610 << "BOLT-ERROR: unable to disassemble instruction in PLT section "
1611 << Section
.getName() << formatv(" at offset {0:x}\n", InstrOffset
);
1616 void RewriteInstance::disassemblePLTSectionAArch64(BinarySection
&Section
) {
1617 const uint64_t SectionAddress
= Section
.getAddress();
1618 const uint64_t SectionSize
= Section
.getSize();
1620 uint64_t InstrOffset
= 0;
1621 // Locate new plt entry
1622 while (InstrOffset
< SectionSize
) {
1623 InstructionListType Instructions
;
1625 uint64_t EntryOffset
= InstrOffset
;
1626 uint64_t EntrySize
= 0;
1628 // Loop through entry instructions
1629 while (InstrOffset
< SectionSize
) {
1630 disassemblePLTInstruction(Section
, InstrOffset
, Instruction
, InstrSize
);
1631 EntrySize
+= InstrSize
;
1632 if (!BC
->MIB
->isIndirectBranch(Instruction
)) {
1633 Instructions
.emplace_back(Instruction
);
1634 InstrOffset
+= InstrSize
;
1638 const uint64_t EntryAddress
= SectionAddress
+ EntryOffset
;
1639 const uint64_t TargetAddress
= BC
->MIB
->analyzePLTEntry(
1640 Instruction
, Instructions
.begin(), Instructions
.end(), EntryAddress
);
1642 createPLTBinaryFunction(TargetAddress
, EntryAddress
, EntrySize
);
1646 // Branch instruction
1647 InstrOffset
+= InstrSize
;
1650 while (InstrOffset
< SectionSize
) {
1651 disassemblePLTInstruction(Section
, InstrOffset
, Instruction
, InstrSize
);
1652 if (!BC
->MIB
->isNoop(Instruction
))
1655 InstrOffset
+= InstrSize
;
1660 void RewriteInstance::disassemblePLTSectionRISCV(BinarySection
&Section
) {
1661 const uint64_t SectionAddress
= Section
.getAddress();
1662 const uint64_t SectionSize
= Section
.getSize();
1663 StringRef PLTContents
= Section
.getContents();
1664 ArrayRef
<uint8_t> PLTData(
1665 reinterpret_cast<const uint8_t *>(PLTContents
.data()), SectionSize
);
1667 auto disassembleInstruction
= [&](uint64_t InstrOffset
, MCInst
&Instruction
,
1668 uint64_t &InstrSize
) {
1669 const uint64_t InstrAddr
= SectionAddress
+ InstrOffset
;
1670 if (!BC
->DisAsm
->getInstruction(Instruction
, InstrSize
,
1671 PLTData
.slice(InstrOffset
), InstrAddr
,
1674 << "BOLT-ERROR: unable to disassemble instruction in PLT section "
1675 << Section
.getName() << " at offset 0x"
1676 << Twine::utohexstr(InstrOffset
) << '\n';
1681 // Skip the first special entry since no relocation points to it.
1682 uint64_t InstrOffset
= 32;
1684 while (InstrOffset
< SectionSize
) {
1685 InstructionListType Instructions
;
1687 const uint64_t EntryOffset
= InstrOffset
;
1688 const uint64_t EntrySize
= 16;
1691 while (InstrOffset
< EntryOffset
+ EntrySize
) {
1692 disassembleInstruction(InstrOffset
, Instruction
, InstrSize
);
1693 Instructions
.emplace_back(Instruction
);
1694 InstrOffset
+= InstrSize
;
1697 const uint64_t EntryAddress
= SectionAddress
+ EntryOffset
;
1698 const uint64_t TargetAddress
= BC
->MIB
->analyzePLTEntry(
1699 Instruction
, Instructions
.begin(), Instructions
.end(), EntryAddress
);
1701 createPLTBinaryFunction(TargetAddress
, EntryAddress
, EntrySize
);
1705 void RewriteInstance::disassemblePLTSectionX86(BinarySection
&Section
,
1706 uint64_t EntrySize
) {
1707 const uint64_t SectionAddress
= Section
.getAddress();
1708 const uint64_t SectionSize
= Section
.getSize();
1710 for (uint64_t EntryOffset
= 0; EntryOffset
+ EntrySize
<= SectionSize
;
1711 EntryOffset
+= EntrySize
) {
1713 uint64_t InstrSize
, InstrOffset
= EntryOffset
;
1714 while (InstrOffset
< EntryOffset
+ EntrySize
) {
1715 disassemblePLTInstruction(Section
, InstrOffset
, Instruction
, InstrSize
);
1716 // Check if the entry size needs adjustment.
1717 if (EntryOffset
== 0 && BC
->MIB
->isTerminateBranch(Instruction
) &&
1721 if (BC
->MIB
->isIndirectBranch(Instruction
))
1724 InstrOffset
+= InstrSize
;
1727 if (InstrOffset
+ InstrSize
> EntryOffset
+ EntrySize
)
1730 uint64_t TargetAddress
;
1731 if (!BC
->MIB
->evaluateMemOperandTarget(Instruction
, TargetAddress
,
1732 SectionAddress
+ InstrOffset
,
1734 BC
->errs() << "BOLT-ERROR: error evaluating PLT instruction at offset 0x"
1735 << Twine::utohexstr(SectionAddress
+ InstrOffset
) << '\n';
1739 createPLTBinaryFunction(TargetAddress
, SectionAddress
+ EntryOffset
,
1744 void RewriteInstance::disassemblePLT() {
1745 auto analyzeOnePLTSection
= [&](BinarySection
&Section
, uint64_t EntrySize
) {
1746 if (BC
->isAArch64())
1747 return disassemblePLTSectionAArch64(Section
);
1749 return disassemblePLTSectionRISCV(Section
);
1751 return disassemblePLTSectionX86(Section
, EntrySize
);
1752 llvm_unreachable("Unmplemented PLT");
1755 for (BinarySection
&Section
: BC
->allocatableSections()) {
1756 const PLTSectionInfo
*PLTSI
= getPLTSectionInfo(Section
.getName());
1760 analyzeOnePLTSection(Section
, PLTSI
->EntrySize
);
1762 BinaryFunction
*PltBF
;
1763 auto BFIter
= BC
->getBinaryFunctions().find(Section
.getAddress());
1764 if (BFIter
!= BC
->getBinaryFunctions().end()) {
1765 PltBF
= &BFIter
->second
;
1767 // If we did not register any function at the start of the section,
1768 // then it must be a general PLT entry. Add a function at the location.
1769 PltBF
= BC
->createBinaryFunction(
1770 "__BOLT_PSEUDO_" + Section
.getName().str(), Section
,
1771 Section
.getAddress(), 0, PLTSI
->EntrySize
, Section
.getAlignment());
1773 PltBF
->setPseudo(true);
1777 void RewriteInstance::adjustFunctionBoundaries() {
1778 for (auto BFI
= BC
->getBinaryFunctions().begin(),
1779 BFE
= BC
->getBinaryFunctions().end();
1780 BFI
!= BFE
; ++BFI
) {
1781 BinaryFunction
&Function
= BFI
->second
;
1782 const BinaryFunction
*NextFunction
= nullptr;
1783 if (std::next(BFI
) != BFE
)
1784 NextFunction
= &std::next(BFI
)->second
;
1786 // Check if there's a symbol or a function with a larger address in the
1787 // same section. If there is - it determines the maximum size for the
1788 // current function. Otherwise, it is the size of a containing section
1791 // NOTE: ignore some symbols that could be tolerated inside the body
1793 auto NextSymRefI
= FileSymRefs
.upper_bound(Function
.getAddress());
1794 while (NextSymRefI
!= FileSymRefs
.end()) {
1795 SymbolRef
&Symbol
= NextSymRefI
->second
;
1796 const uint64_t SymbolAddress
= NextSymRefI
->first
;
1797 const uint64_t SymbolSize
= ELFSymbolRef(Symbol
).getSize();
1799 if (NextFunction
&& SymbolAddress
>= NextFunction
->getAddress())
1802 if (!Function
.isSymbolValidInScope(Symbol
, SymbolSize
))
1805 // Skip basic block labels. This happens on RISC-V with linker relaxation
1806 // enabled because every branch needs a relocation and corresponding
1807 // symbol. We don't want to add such symbols as entry points.
1808 const auto PrivateLabelPrefix
= BC
->AsmInfo
->getPrivateLabelPrefix();
1809 if (!PrivateLabelPrefix
.empty() &&
1810 cantFail(Symbol
.getName()).starts_with(PrivateLabelPrefix
)) {
1815 // This is potentially another entry point into the function.
1816 uint64_t EntryOffset
= NextSymRefI
->first
- Function
.getAddress();
1817 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding entry point to function "
1818 << Function
<< " at offset 0x"
1819 << Twine::utohexstr(EntryOffset
) << '\n');
1820 Function
.addEntryPointAtOffset(EntryOffset
);
1825 // Function runs at most till the end of the containing section.
1826 uint64_t NextObjectAddress
= Function
.getOriginSection()->getEndAddress();
1827 // Or till the next object marked by a symbol.
1828 if (NextSymRefI
!= FileSymRefs
.end())
1829 NextObjectAddress
= std::min(NextSymRefI
->first
, NextObjectAddress
);
1831 // Or till the next function not marked by a symbol.
1834 std::min(NextFunction
->getAddress(), NextObjectAddress
);
1836 const uint64_t MaxSize
= NextObjectAddress
- Function
.getAddress();
1837 if (MaxSize
< Function
.getSize()) {
1838 BC
->errs() << "BOLT-ERROR: symbol seen in the middle of the function "
1839 << Function
<< ". Skipping.\n";
1840 Function
.setSimple(false);
1841 Function
.setMaxSize(Function
.getSize());
1844 Function
.setMaxSize(MaxSize
);
1845 if (!Function
.getSize() && Function
.isSimple()) {
1846 // Some assembly functions have their size set to 0, use the max
1847 // size as their real size.
1848 if (opts::Verbosity
>= 1)
1849 BC
->outs() << "BOLT-INFO: setting size of function " << Function
1850 << " to " << Function
.getMaxSize() << " (was 0)\n";
1851 Function
.setSize(Function
.getMaxSize());
1856 void RewriteInstance::relocateEHFrameSection() {
1857 assert(EHFrameSection
&& "Non-empty .eh_frame section expected.");
1859 BinarySection
*RelocatedEHFrameSection
=
1860 getSection(".relocated" + getEHFrameSectionName());
1861 assert(RelocatedEHFrameSection
&&
1862 "Relocated eh_frame section should be preregistered.");
1863 DWARFDataExtractor
DE(EHFrameSection
->getContents(),
1864 BC
->AsmInfo
->isLittleEndian(),
1865 BC
->AsmInfo
->getCodePointerSize());
1866 auto createReloc
= [&](uint64_t Value
, uint64_t Offset
, uint64_t DwarfType
) {
1867 if (DwarfType
== dwarf::DW_EH_PE_omit
)
1870 // Only fix references that are relative to other locations.
1871 if (!(DwarfType
& dwarf::DW_EH_PE_pcrel
) &&
1872 !(DwarfType
& dwarf::DW_EH_PE_textrel
) &&
1873 !(DwarfType
& dwarf::DW_EH_PE_funcrel
) &&
1874 !(DwarfType
& dwarf::DW_EH_PE_datarel
))
1877 if (!(DwarfType
& dwarf::DW_EH_PE_sdata4
))
1881 switch (DwarfType
& 0x0f) {
1883 llvm_unreachable("unsupported DWARF encoding type");
1884 case dwarf::DW_EH_PE_sdata4
:
1885 case dwarf::DW_EH_PE_udata4
:
1886 RelType
= Relocation::getPC32();
1889 case dwarf::DW_EH_PE_sdata8
:
1890 case dwarf::DW_EH_PE_udata8
:
1891 RelType
= Relocation::getPC64();
1896 // Create a relocation against an absolute value since the goal is to
1897 // preserve the contents of the section independent of the new values
1898 // of referenced symbols.
1899 RelocatedEHFrameSection
->addRelocation(Offset
, nullptr, RelType
, Value
);
1902 Error E
= EHFrameParser::parse(DE
, EHFrameSection
->getAddress(), createReloc
);
1903 check_error(std::move(E
), "failed to patch EH frame");
1906 Error
RewriteInstance::readSpecialSections() {
1907 NamedRegionTimer
T("readSpecialSections", "read special sections",
1908 TimerGroupName
, TimerGroupDesc
, opts::TimeRewrite
);
1910 bool HasTextRelocations
= false;
1911 bool HasSymbolTable
= false;
1912 bool HasDebugInfo
= false;
1914 // Process special sections.
1915 for (const SectionRef
&Section
: InputFile
->sections()) {
1916 Expected
<StringRef
> SectionNameOrErr
= Section
.getName();
1917 check_error(SectionNameOrErr
.takeError(), "cannot get section name");
1918 StringRef SectionName
= *SectionNameOrErr
;
1920 if (Error E
= Section
.getContents().takeError())
1922 BC
->registerSection(Section
);
1924 dbgs() << "BOLT-DEBUG: registering section " << SectionName
<< " @ 0x"
1925 << Twine::utohexstr(Section
.getAddress()) << ":0x"
1926 << Twine::utohexstr(Section
.getAddress() + Section
.getSize())
1928 if (isDebugSection(SectionName
))
1929 HasDebugInfo
= true;
1932 // Set IsRelro section attribute based on PT_GNU_RELRO segment.
1933 markGnuRelroSections();
1935 if (HasDebugInfo
&& !opts::UpdateDebugSections
&& !opts::AggregateOnly
) {
1936 BC
->errs() << "BOLT-WARNING: debug info will be stripped from the binary. "
1937 "Use -update-debug-sections to keep it.\n";
1940 HasTextRelocations
= (bool)BC
->getUniqueSectionByName(
1941 ".rela" + std::string(BC
->getMainCodeSectionName()));
1942 HasSymbolTable
= (bool)BC
->getUniqueSectionByName(".symtab");
1943 EHFrameSection
= BC
->getUniqueSectionByName(".eh_frame");
1945 if (ErrorOr
<BinarySection
&> BATSec
=
1946 BC
->getUniqueSectionByName(BoltAddressTranslation::SECTION_NAME
)) {
1947 BC
->HasBATSection
= true;
1948 // Do not read BAT when plotting a heatmap
1949 if (!opts::HeatmapMode
) {
1950 if (std::error_code EC
= BAT
->parse(BC
->outs(), BATSec
->getContents())) {
1951 BC
->errs() << "BOLT-ERROR: failed to parse BOLT address translation "
1958 if (opts::PrintSections
) {
1959 BC
->outs() << "BOLT-INFO: Sections from original binary:\n";
1960 BC
->printSections(BC
->outs());
1963 if (opts::RelocationMode
== cl::BOU_TRUE
&& !HasTextRelocations
) {
1965 << "BOLT-ERROR: relocations against code are missing from the input "
1966 "file. Cannot proceed in relocations mode (-relocs).\n";
1970 BC
->HasRelocations
=
1971 HasTextRelocations
&& (opts::RelocationMode
!= cl::BOU_FALSE
);
1973 if (BC
->IsLinuxKernel
&& BC
->HasRelocations
) {
1974 BC
->outs() << "BOLT-INFO: disabling relocation mode for Linux kernel\n";
1975 BC
->HasRelocations
= false;
1978 BC
->IsStripped
= !HasSymbolTable
;
1980 if (BC
->IsStripped
&& !opts::AllowStripped
) {
1982 << "BOLT-ERROR: stripped binaries are not supported. If you know "
1983 "what you're doing, use --allow-stripped to proceed";
1987 // Force non-relocation mode for heatmap generation
1988 if (opts::HeatmapMode
)
1989 BC
->HasRelocations
= false;
1991 if (BC
->HasRelocations
)
1992 BC
->outs() << "BOLT-INFO: enabling " << (opts::StrictMode
? "strict " : "")
1993 << "relocation mode\n";
1995 // Read EH frame for function boundaries info.
1996 Expected
<const DWARFDebugFrame
*> EHFrameOrError
= BC
->DwCtx
->getEHFrame();
1997 if (!EHFrameOrError
)
1998 report_error("expected valid eh_frame section", EHFrameOrError
.takeError());
1999 CFIRdWrt
.reset(new CFIReaderWriter(*BC
, *EHFrameOrError
.get()));
2001 processSectionMetadata();
2003 // Read .dynamic/PT_DYNAMIC.
2004 return readELFDynamic();
2007 void RewriteInstance::adjustCommandLineOptions() {
2008 if (BC
->isAArch64() && !BC
->HasRelocations
)
2009 BC
->errs() << "BOLT-WARNING: non-relocation mode for AArch64 is not fully "
2012 if (RuntimeLibrary
*RtLibrary
= BC
->getRuntimeLibrary())
2013 RtLibrary
->adjustCommandLineOptions(*BC
);
2015 if (BC
->isX86() && BC
->MAB
->allowAutoPadding()) {
2016 if (!BC
->HasRelocations
) {
2018 << "BOLT-ERROR: cannot apply mitigations for Intel JCC erratum in "
2019 "non-relocation mode\n";
2023 << "BOLT-WARNING: using mitigation for Intel JCC erratum, layout "
2024 "may take several minutes\n";
2027 if (opts::SplitEH
&& !BC
->HasRelocations
) {
2028 BC
->errs() << "BOLT-WARNING: disabling -split-eh in non-relocation mode\n";
2029 opts::SplitEH
= false;
2032 if (opts::StrictMode
&& !BC
->HasRelocations
) {
2034 << "BOLT-WARNING: disabling strict mode (-strict) in non-relocation "
2036 opts::StrictMode
= false;
2039 if (BC
->HasRelocations
&& opts::AggregateOnly
&&
2040 !opts::StrictMode
.getNumOccurrences()) {
2041 BC
->outs() << "BOLT-INFO: enabling strict relocation mode for aggregation "
2043 opts::StrictMode
= true;
2046 if (!BC
->HasRelocations
&&
2047 opts::ReorderFunctions
!= ReorderFunctions::RT_NONE
) {
2048 BC
->errs() << "BOLT-ERROR: function reordering only works when "
2049 << "relocations are enabled\n";
2053 if (opts::Instrument
||
2054 (opts::ReorderFunctions
!= ReorderFunctions::RT_NONE
&&
2055 !opts::HotText
.getNumOccurrences())) {
2056 opts::HotText
= true;
2057 } else if (opts::HotText
&& !BC
->HasRelocations
) {
2058 BC
->errs() << "BOLT-WARNING: hot text is disabled in non-relocation mode\n";
2059 opts::HotText
= false;
2062 if (opts::HotText
&& opts::HotTextMoveSections
.getNumOccurrences() == 0) {
2063 opts::HotTextMoveSections
.addValue(".stub");
2064 opts::HotTextMoveSections
.addValue(".mover");
2065 opts::HotTextMoveSections
.addValue(".never_hugify");
2068 if (opts::UseOldText
&& !BC
->OldTextSectionAddress
) {
2070 << "BOLT-WARNING: cannot use old .text as the section was not found"
2072 opts::UseOldText
= false;
2074 if (opts::UseOldText
&& !BC
->HasRelocations
) {
2075 BC
->errs() << "BOLT-WARNING: cannot use old .text in non-relocation mode\n";
2076 opts::UseOldText
= false;
2079 if (!opts::AlignText
.getNumOccurrences())
2080 opts::AlignText
= BC
->PageAlign
;
2082 if (opts::AlignText
< opts::AlignFunctions
)
2083 opts::AlignText
= (unsigned)opts::AlignFunctions
;
2085 if (BC
->isX86() && opts::Lite
.getNumOccurrences() == 0 && !opts::StrictMode
&&
2089 if (opts::Lite
&& opts::UseOldText
) {
2090 BC
->errs() << "BOLT-WARNING: cannot combine -lite with -use-old-text. "
2091 "Disabling -use-old-text.\n";
2092 opts::UseOldText
= false;
2095 if (opts::Lite
&& opts::StrictMode
) {
2097 << "BOLT-ERROR: -strict and -lite cannot be used at the same time\n";
2102 BC
->outs() << "BOLT-INFO: enabling lite mode\n";
2104 if (BC
->IsLinuxKernel
) {
2105 if (!opts::KeepNops
.getNumOccurrences())
2106 opts::KeepNops
= true;
2108 // Linux kernel may resume execution after a trap instruction in some cases.
2109 if (!opts::TerminalTrap
.getNumOccurrences())
2110 opts::TerminalTrap
= false;
2115 template <typename ELFT
>
2116 int64_t getRelocationAddend(const ELFObjectFile
<ELFT
> *Obj
,
2117 const RelocationRef
&RelRef
) {
2118 using ELFShdrTy
= typename
ELFT::Shdr
;
2119 using Elf_Rela
= typename
ELFT::Rela
;
2121 const ELFFile
<ELFT
> &EF
= Obj
->getELFFile();
2122 DataRefImpl Rel
= RelRef
.getRawDataRefImpl();
2123 const ELFShdrTy
*RelocationSection
= cantFail(EF
.getSection(Rel
.d
.a
));
2124 switch (RelocationSection
->sh_type
) {
2126 llvm_unreachable("unexpected relocation section type");
2129 case ELF::SHT_RELA
: {
2130 const Elf_Rela
*RelA
= Obj
->getRela(Rel
);
2131 Addend
= RelA
->r_addend
;
2139 int64_t getRelocationAddend(const ELFObjectFileBase
*Obj
,
2140 const RelocationRef
&Rel
) {
2141 return getRelocationAddend(cast
<ELF64LEObjectFile
>(Obj
), Rel
);
2144 template <typename ELFT
>
2145 uint32_t getRelocationSymbol(const ELFObjectFile
<ELFT
> *Obj
,
2146 const RelocationRef
&RelRef
) {
2147 using ELFShdrTy
= typename
ELFT::Shdr
;
2148 uint32_t Symbol
= 0;
2149 const ELFFile
<ELFT
> &EF
= Obj
->getELFFile();
2150 DataRefImpl Rel
= RelRef
.getRawDataRefImpl();
2151 const ELFShdrTy
*RelocationSection
= cantFail(EF
.getSection(Rel
.d
.a
));
2152 switch (RelocationSection
->sh_type
) {
2154 llvm_unreachable("unexpected relocation section type");
2156 Symbol
= Obj
->getRel(Rel
)->getSymbol(EF
.isMips64EL());
2159 Symbol
= Obj
->getRela(Rel
)->getSymbol(EF
.isMips64EL());
2166 uint32_t getRelocationSymbol(const ELFObjectFileBase
*Obj
,
2167 const RelocationRef
&Rel
) {
2168 return getRelocationSymbol(cast
<ELF64LEObjectFile
>(Obj
), Rel
);
2170 } // anonymous namespace
2172 bool RewriteInstance::analyzeRelocation(
2173 const RelocationRef
&Rel
, uint64_t &RType
, std::string
&SymbolName
,
2174 bool &IsSectionRelocation
, uint64_t &SymbolAddress
, int64_t &Addend
,
2175 uint64_t &ExtractedValue
, bool &Skip
) const {
2177 if (!Relocation::isSupported(RType
))
2180 auto IsWeakReference
= [](const SymbolRef
&Symbol
) {
2181 Expected
<uint32_t> SymFlagsOrErr
= Symbol
.getFlags();
2184 return (*SymFlagsOrErr
& SymbolRef::SF_Undefined
) &&
2185 (*SymFlagsOrErr
& SymbolRef::SF_Weak
);
2188 const bool IsAArch64
= BC
->isAArch64();
2190 const size_t RelSize
= Relocation::getSizeForType(RType
);
2192 ErrorOr
<uint64_t> Value
=
2193 BC
->getUnsignedValueAtAddress(Rel
.getOffset(), RelSize
);
2194 assert(Value
&& "failed to extract relocated value");
2195 if ((Skip
= Relocation::skipRelocationProcess(RType
, *Value
)))
2198 ExtractedValue
= Relocation::extractValue(RType
, *Value
, Rel
.getOffset());
2199 Addend
= getRelocationAddend(InputFile
, Rel
);
2201 const bool IsPCRelative
= Relocation::isPCRelative(RType
);
2202 const uint64_t PCRelOffset
= IsPCRelative
&& !IsAArch64
? Rel
.getOffset() : 0;
2203 bool SkipVerification
= false;
2204 auto SymbolIter
= Rel
.getSymbol();
2205 if (SymbolIter
== InputFile
->symbol_end()) {
2206 SymbolAddress
= ExtractedValue
- Addend
+ PCRelOffset
;
2207 MCSymbol
*RelSymbol
=
2208 BC
->getOrCreateGlobalSymbol(SymbolAddress
, "RELSYMat");
2209 SymbolName
= std::string(RelSymbol
->getName());
2210 IsSectionRelocation
= false;
2212 const SymbolRef
&Symbol
= *SymbolIter
;
2213 SymbolName
= std::string(cantFail(Symbol
.getName()));
2214 SymbolAddress
= cantFail(Symbol
.getAddress());
2215 SkipVerification
= (cantFail(Symbol
.getType()) == SymbolRef::ST_Other
);
2216 // Section symbols are marked as ST_Debug.
2217 IsSectionRelocation
= (cantFail(Symbol
.getType()) == SymbolRef::ST_Debug
);
2218 // Check for PLT entry registered with symbol name
2219 if (!SymbolAddress
&& !IsWeakReference(Symbol
) &&
2220 (IsAArch64
|| BC
->isRISCV())) {
2221 const BinaryData
*BD
= BC
->getPLTBinaryDataByName(SymbolName
);
2222 SymbolAddress
= BD
? BD
->getAddress() : 0;
2225 // For PIE or dynamic libs, the linker may choose not to put the relocation
2226 // result at the address if it is a X86_64_64 one because it will emit a
2227 // dynamic relocation (X86_RELATIVE) for the dynamic linker and loader to
2228 // resolve it at run time. The static relocation result goes as the addend
2229 // of the dynamic relocation in this case. We can't verify these cases.
2230 // FIXME: perhaps we can try to find if it really emitted a corresponding
2231 // RELATIVE relocation at this offset with the correct value as the addend.
2232 if (!BC
->HasFixedLoadAddress
&& RelSize
== 8)
2233 SkipVerification
= true;
2235 if (IsSectionRelocation
&& !IsAArch64
) {
2236 ErrorOr
<BinarySection
&> Section
= BC
->getSectionForAddress(SymbolAddress
);
2237 assert(Section
&& "section expected for section relocation");
2238 SymbolName
= "section " + std::string(Section
->getName());
2239 // Convert section symbol relocations to regular relocations inside
2240 // non-section symbols.
2241 if (Section
->containsAddress(ExtractedValue
) && !IsPCRelative
) {
2242 SymbolAddress
= ExtractedValue
;
2245 Addend
= ExtractedValue
- (SymbolAddress
- PCRelOffset
);
2249 // If no symbol has been found or if it is a relocation requiring the
2250 // creation of a GOT entry, do not link against the symbol but against
2251 // whatever address was extracted from the instruction itself. We are
2252 // not creating a GOT entry as this was already processed by the linker.
2253 // For GOT relocs, do not subtract addend as the addend does not refer
2254 // to this instruction's target, but it refers to the target in the GOT
2256 if (Relocation::isGOT(RType
)) {
2258 SymbolAddress
= ExtractedValue
+ PCRelOffset
;
2259 } else if (Relocation::isTLS(RType
)) {
2260 SkipVerification
= true;
2261 } else if (!SymbolAddress
) {
2262 assert(!IsSectionRelocation
);
2263 if (ExtractedValue
|| Addend
== 0 || IsPCRelative
) {
2265 truncateToSize(ExtractedValue
- Addend
+ PCRelOffset
, RelSize
);
2267 // This is weird case. The extracted value is zero but the addend is
2268 // non-zero and the relocation is not pc-rel. Using the previous logic,
2269 // the SymbolAddress would end up as a huge number. Seen in
2270 // exceptions_pic.test.
2271 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocation @ 0x"
2272 << Twine::utohexstr(Rel
.getOffset())
2273 << " value does not match addend for "
2274 << "relocation to undefined symbol.\n");
2279 auto verifyExtractedValue
= [&]() {
2280 if (SkipVerification
)
2283 if (IsAArch64
|| BC
->isRISCV())
2286 if (SymbolName
== "__hot_start" || SymbolName
== "__hot_end")
2289 if (RType
== ELF::R_X86_64_PLT32
)
2292 return truncateToSize(ExtractedValue
, RelSize
) ==
2293 truncateToSize(SymbolAddress
+ Addend
- PCRelOffset
, RelSize
);
2296 (void)verifyExtractedValue
;
2297 assert(verifyExtractedValue() && "mismatched extracted relocation value");
2302 void RewriteInstance::processDynamicRelocations() {
2303 // Read .relr.dyn section containing compressed R_*_RELATIVE relocations.
2304 if (DynamicRelrSize
> 0) {
2305 ErrorOr
<BinarySection
&> DynamicRelrSectionOrErr
=
2306 BC
->getSectionForAddress(*DynamicRelrAddress
);
2307 if (!DynamicRelrSectionOrErr
)
2308 report_error("unable to find section corresponding to DT_RELR",
2309 DynamicRelrSectionOrErr
.getError());
2310 if (DynamicRelrSectionOrErr
->getSize() != DynamicRelrSize
)
2311 report_error("section size mismatch for DT_RELRSZ",
2312 errc::executable_format_error
);
2313 readDynamicRelrRelocations(*DynamicRelrSectionOrErr
);
2316 // Read relocations for PLT - DT_JMPREL.
2317 if (PLTRelocationsSize
> 0) {
2318 ErrorOr
<BinarySection
&> PLTRelSectionOrErr
=
2319 BC
->getSectionForAddress(*PLTRelocationsAddress
);
2320 if (!PLTRelSectionOrErr
)
2321 report_error("unable to find section corresponding to DT_JMPREL",
2322 PLTRelSectionOrErr
.getError());
2323 if (PLTRelSectionOrErr
->getSize() != PLTRelocationsSize
)
2324 report_error("section size mismatch for DT_PLTRELSZ",
2325 errc::executable_format_error
);
2326 readDynamicRelocations(PLTRelSectionOrErr
->getSectionRef(),
2330 // The rest of dynamic relocations - DT_RELA.
2331 // The static executable might have .rela.dyn secion and not have PT_DYNAMIC
2332 if (!DynamicRelocationsSize
&& BC
->IsStaticExecutable
) {
2333 ErrorOr
<BinarySection
&> DynamicRelSectionOrErr
=
2334 BC
->getUniqueSectionByName(getRelaDynSectionName());
2335 if (DynamicRelSectionOrErr
) {
2336 DynamicRelocationsAddress
= DynamicRelSectionOrErr
->getAddress();
2337 DynamicRelocationsSize
= DynamicRelSectionOrErr
->getSize();
2338 const SectionRef
&SectionRef
= DynamicRelSectionOrErr
->getSectionRef();
2339 DynamicRelativeRelocationsCount
= std::distance(
2340 SectionRef
.relocation_begin(), SectionRef
.relocation_end());
2344 if (DynamicRelocationsSize
> 0) {
2345 ErrorOr
<BinarySection
&> DynamicRelSectionOrErr
=
2346 BC
->getSectionForAddress(*DynamicRelocationsAddress
);
2347 if (!DynamicRelSectionOrErr
)
2348 report_error("unable to find section corresponding to DT_RELA",
2349 DynamicRelSectionOrErr
.getError());
2350 auto DynamicRelSectionSize
= DynamicRelSectionOrErr
->getSize();
2351 // On RISC-V DT_RELASZ seems to include both .rela.dyn and .rela.plt
2352 if (DynamicRelocationsSize
== DynamicRelSectionSize
+ PLTRelocationsSize
)
2353 DynamicRelocationsSize
= DynamicRelSectionSize
;
2354 if (DynamicRelSectionSize
!= DynamicRelocationsSize
)
2355 report_error("section size mismatch for DT_RELASZ",
2356 errc::executable_format_error
);
2357 readDynamicRelocations(DynamicRelSectionOrErr
->getSectionRef(),
2358 /*IsJmpRel*/ false);
2362 void RewriteInstance::processRelocations() {
2363 if (!BC
->HasRelocations
)
2366 for (const SectionRef
&Section
: InputFile
->sections()) {
2367 section_iterator SecIter
= cantFail(Section
.getRelocatedSection());
2368 if (SecIter
== InputFile
->section_end())
2370 if (BinarySection(*BC
, Section
).isAllocatable())
2373 readRelocations(Section
);
2376 if (NumFailedRelocations
)
2377 BC
->errs() << "BOLT-WARNING: Failed to analyze " << NumFailedRelocations
2378 << " relocations\n";
2381 void RewriteInstance::readDynamicRelocations(const SectionRef
&Section
,
2383 assert(BinarySection(*BC
, Section
).isAllocatable() && "allocatable expected");
2386 StringRef SectionName
= cantFail(Section
.getName());
2387 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName
2391 for (const RelocationRef
&Rel
: Section
.relocations()) {
2392 const uint64_t RType
= Rel
.getType();
2393 if (Relocation::isNone(RType
))
2396 StringRef SymbolName
= "<none>";
2397 MCSymbol
*Symbol
= nullptr;
2398 uint64_t SymbolAddress
= 0;
2399 const uint64_t Addend
= getRelocationAddend(InputFile
, Rel
);
2401 symbol_iterator SymbolIter
= Rel
.getSymbol();
2402 if (SymbolIter
!= InputFile
->symbol_end()) {
2403 SymbolName
= cantFail(SymbolIter
->getName());
2404 BinaryData
*BD
= BC
->getBinaryDataByName(SymbolName
);
2405 Symbol
= BD
? BD
->getSymbol()
2406 : BC
->getOrCreateUndefinedGlobalSymbol(SymbolName
);
2407 SymbolAddress
= cantFail(SymbolIter
->getAddress());
2408 (void)SymbolAddress
;
2412 SmallString
<16> TypeName
;
2413 Rel
.getTypeName(TypeName
);
2414 dbgs() << "BOLT-DEBUG: dynamic relocation at 0x"
2415 << Twine::utohexstr(Rel
.getOffset()) << " : " << TypeName
2416 << " : " << SymbolName
<< " : " << Twine::utohexstr(SymbolAddress
)
2417 << " : + 0x" << Twine::utohexstr(Addend
) << '\n'
2421 IsJmpRelocation
[RType
] = true;
2424 SymbolIndex
[Symbol
] = getRelocationSymbol(InputFile
, Rel
);
2426 BC
->addDynamicRelocation(Rel
.getOffset(), Symbol
, RType
, Addend
);
2430 void RewriteInstance::readDynamicRelrRelocations(BinarySection
&Section
) {
2431 assert(Section
.isAllocatable() && "allocatable expected");
2434 StringRef SectionName
= Section
.getName();
2435 dbgs() << "BOLT-DEBUG: reading relocations in section " << SectionName
2439 const uint64_t RType
= Relocation::getRelative();
2440 const uint8_t PSize
= BC
->AsmInfo
->getCodePointerSize();
2441 const uint64_t MaxDelta
= ((CHAR_BIT
* DynamicRelrEntrySize
) - 1) * PSize
;
2443 auto ExtractAddendValue
= [&](uint64_t Address
) -> uint64_t {
2444 ErrorOr
<BinarySection
&> Section
= BC
->getSectionForAddress(Address
);
2445 assert(Section
&& "cannot get section for data address from RELR");
2446 DataExtractor DE
= DataExtractor(Section
->getContents(),
2447 BC
->AsmInfo
->isLittleEndian(), PSize
);
2448 uint64_t Offset
= Address
- Section
->getAddress();
2449 return DE
.getUnsigned(&Offset
, PSize
);
2452 auto AddRelocation
= [&](uint64_t Address
) {
2453 uint64_t Addend
= ExtractAddendValue(Address
);
2454 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: R_*_RELATIVE relocation at 0x"
2455 << Twine::utohexstr(Address
) << " to 0x"
2456 << Twine::utohexstr(Addend
) << '\n';);
2457 BC
->addDynamicRelocation(Address
, nullptr, RType
, Addend
);
2460 DataExtractor DE
= DataExtractor(Section
.getContents(),
2461 BC
->AsmInfo
->isLittleEndian(), PSize
);
2462 uint64_t Offset
= 0, Address
= 0;
2463 uint64_t RelrCount
= DynamicRelrSize
/ DynamicRelrEntrySize
;
2464 while (RelrCount
--) {
2465 assert(DE
.isValidOffset(Offset
));
2466 uint64_t Entry
= DE
.getUnsigned(&Offset
, DynamicRelrEntrySize
);
2467 if ((Entry
& 1) == 0) {
2468 AddRelocation(Entry
);
2469 Address
= Entry
+ PSize
;
2471 const uint64_t StartAddress
= Address
;
2472 while (Entry
>>= 1) {
2474 AddRelocation(Address
);
2479 Address
= StartAddress
+ MaxDelta
;
2484 void RewriteInstance::printRelocationInfo(const RelocationRef
&Rel
,
2485 StringRef SymbolName
,
2486 uint64_t SymbolAddress
,
2488 uint64_t ExtractedValue
) const {
2489 SmallString
<16> TypeName
;
2490 Rel
.getTypeName(TypeName
);
2491 const uint64_t Address
= SymbolAddress
+ Addend
;
2492 const uint64_t Offset
= Rel
.getOffset();
2493 ErrorOr
<BinarySection
&> Section
= BC
->getSectionForAddress(SymbolAddress
);
2494 BinaryFunction
*Func
=
2495 BC
->getBinaryFunctionContainingAddress(Offset
, false, BC
->isAArch64());
2496 dbgs() << formatv("Relocation: offset = {0:x}; type = {1}; value = {2:x}; ",
2497 Offset
, TypeName
, ExtractedValue
)
2498 << formatv("symbol = {0} ({1}); symbol address = {2:x}; ", SymbolName
,
2499 Section
? Section
->getName() : "", SymbolAddress
)
2500 << formatv("addend = {0:x}; address = {1:x}; in = ", Addend
, Address
);
2502 dbgs() << Func
->getPrintName();
2504 dbgs() << BC
->getSectionForAddress(Rel
.getOffset())->getName();
2508 void RewriteInstance::readRelocations(const SectionRef
&Section
) {
2510 StringRef SectionName
= cantFail(Section
.getName());
2511 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName
2514 if (BinarySection(*BC
, Section
).isAllocatable()) {
2515 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring runtime relocations\n");
2518 section_iterator SecIter
= cantFail(Section
.getRelocatedSection());
2519 assert(SecIter
!= InputFile
->section_end() && "relocated section expected");
2520 SectionRef RelocatedSection
= *SecIter
;
2522 StringRef RelocatedSectionName
= cantFail(RelocatedSection
.getName());
2523 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocated section is "
2524 << RelocatedSectionName
<< '\n');
2526 if (!BinarySection(*BC
, RelocatedSection
).isAllocatable()) {
2527 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocations against "
2528 << "non-allocatable section\n");
2531 const bool SkipRelocs
= StringSwitch
<bool>(RelocatedSectionName
)
2532 .Cases(".plt", ".rela.plt", ".got.plt",
2533 ".eh_frame", ".gcc_except_table", true)
2537 dbgs() << "BOLT-DEBUG: ignoring relocations against known section\n");
2541 for (const RelocationRef
&Rel
: Section
.relocations())
2542 handleRelocation(RelocatedSection
, Rel
);
2545 void RewriteInstance::handleRelocation(const SectionRef
&RelocatedSection
,
2546 const RelocationRef
&Rel
) {
2547 const bool IsAArch64
= BC
->isAArch64();
2548 const bool IsFromCode
= RelocatedSection
.isText();
2550 SmallString
<16> TypeName
;
2551 Rel
.getTypeName(TypeName
);
2552 uint64_t RType
= Rel
.getType();
2553 if (Relocation::skipRelocationType(RType
))
2556 // Adjust the relocation type as the linker might have skewed it.
2557 if (BC
->isX86() && (RType
& ELF::R_X86_64_converted_reloc_bit
)) {
2558 if (opts::Verbosity
>= 1)
2559 dbgs() << "BOLT-WARNING: ignoring R_X86_64_converted_reloc_bit\n";
2560 RType
&= ~ELF::R_X86_64_converted_reloc_bit
;
2563 if (Relocation::isTLS(RType
)) {
2564 // No special handling required for TLS relocations on X86.
2568 // The non-got related TLS relocations on AArch64 and RISC-V also could be
2570 if (!Relocation::isGOT(RType
))
2574 if (!IsAArch64
&& BC
->getDynamicRelocationAt(Rel
.getOffset())) {
2576 dbgs() << formatv("BOLT-DEBUG: address {0:x} has a ", Rel
.getOffset())
2577 << "dynamic relocation against it. Ignoring static relocation.\n";
2582 std::string SymbolName
;
2583 uint64_t SymbolAddress
;
2585 uint64_t ExtractedValue
;
2586 bool IsSectionRelocation
;
2588 if (!analyzeRelocation(Rel
, RType
, SymbolName
, IsSectionRelocation
,
2589 SymbolAddress
, Addend
, ExtractedValue
, Skip
)) {
2591 dbgs() << "BOLT-WARNING: failed to analyze relocation @ offset = "
2592 << formatv("{0:x}; type name = {1}\n", Rel
.getOffset(), TypeName
);
2594 ++NumFailedRelocations
;
2600 dbgs() << "BOLT-DEBUG: skipping relocation @ offset = "
2601 << formatv("{0:x}; type name = {1}\n", Rel
.getOffset(), TypeName
);
2606 const uint64_t Address
= SymbolAddress
+ Addend
;
2609 dbgs() << "BOLT-DEBUG: ";
2610 printRelocationInfo(Rel
, SymbolName
, SymbolAddress
, Addend
, ExtractedValue
);
2613 BinaryFunction
*ContainingBF
= nullptr;
2616 BC
->getBinaryFunctionContainingAddress(Rel
.getOffset(),
2617 /*CheckPastEnd*/ false,
2618 /*UseMaxSize*/ true);
2619 assert(ContainingBF
&& "cannot find function for address in code");
2620 if (!IsAArch64
&& !ContainingBF
->containsAddress(Rel
.getOffset())) {
2621 if (opts::Verbosity
>= 1)
2622 BC
->outs() << formatv(
2623 "BOLT-INFO: {0} has relocations in padding area\n", *ContainingBF
);
2624 ContainingBF
->setSize(ContainingBF
->getMaxSize());
2625 ContainingBF
->setSimple(false);
2630 MCSymbol
*ReferencedSymbol
= nullptr;
2631 if (!IsSectionRelocation
) {
2632 if (BinaryData
*BD
= BC
->getBinaryDataByName(SymbolName
))
2633 ReferencedSymbol
= BD
->getSymbol();
2634 else if (BC
->isGOTSymbol(SymbolName
))
2635 if (BinaryData
*BD
= BC
->getGOTSymbol())
2636 ReferencedSymbol
= BD
->getSymbol();
2639 ErrorOr
<BinarySection
&> ReferencedSection
{std::errc::bad_address
};
2640 symbol_iterator SymbolIter
= Rel
.getSymbol();
2641 if (SymbolIter
!= InputFile
->symbol_end()) {
2642 SymbolRef Symbol
= *SymbolIter
;
2643 section_iterator Section
=
2644 cantFail(Symbol
.getSection(), "cannot get symbol section");
2645 if (Section
!= InputFile
->section_end()) {
2646 Expected
<StringRef
> SectionName
= Section
->getName();
2647 if (SectionName
&& !SectionName
->empty())
2648 ReferencedSection
= BC
->getUniqueSectionByName(*SectionName
);
2649 } else if (BC
->isRISCV() && ReferencedSymbol
&& ContainingBF
&&
2650 (cantFail(Symbol
.getFlags()) & SymbolRef::SF_Absolute
)) {
2651 // This might be a relocation for an ABS symbols like __global_pointer$ on
2653 ContainingBF
->addRelocation(Rel
.getOffset(), ReferencedSymbol
,
2655 cantFail(Symbol
.getValue()));
2660 if (!ReferencedSection
)
2661 ReferencedSection
= BC
->getSectionForAddress(SymbolAddress
);
2663 const bool IsToCode
= ReferencedSection
&& ReferencedSection
->isText();
2665 // Special handling of PC-relative relocations.
2666 if (BC
->isX86() && Relocation::isPCRelative(RType
)) {
2667 if (!IsFromCode
&& IsToCode
) {
2668 // PC-relative relocations from data to code are tricky since the
2669 // original information is typically lost after linking, even with
2670 // '--emit-relocs'. Such relocations are normally used by PIC-style
2671 // jump tables and they reference both the jump table and jump
2672 // targets by computing the difference between the two. If we blindly
2673 // apply the relocation, it will appear that it references an arbitrary
2674 // location in the code, possibly in a different function from the one
2675 // containing the jump table.
2677 // For that reason, we only register the fact that there is a
2678 // PC-relative relocation at a given address against the code.
2679 // The actual referenced label/address will be determined during jump
2681 BC
->addPCRelativeDataRelocation(Rel
.getOffset());
2682 } else if (ContainingBF
&& !IsSectionRelocation
&& ReferencedSymbol
) {
2683 // If we know the referenced symbol, register the relocation from
2684 // the code. It's required to properly handle cases where
2685 // "symbol + addend" references an object different from "symbol".
2686 ContainingBF
->addRelocation(Rel
.getOffset(), ReferencedSymbol
, RType
,
2687 Addend
, ExtractedValue
);
2690 dbgs() << "BOLT-DEBUG: not creating PC-relative relocation at"
2691 << formatv("{0:x} for {1}\n", Rel
.getOffset(), SymbolName
);
2698 bool ForceRelocation
= BC
->forceSymbolRelocations(SymbolName
);
2699 if ((BC
->isAArch64() || BC
->isRISCV()) && Relocation::isGOT(RType
))
2700 ForceRelocation
= true;
2702 if (!ReferencedSection
&& !ForceRelocation
) {
2703 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: cannot determine referenced section.\n");
2707 // Occasionally we may see a reference past the last byte of the function
2708 // typically as a result of __builtin_unreachable(). Check it here.
2709 BinaryFunction
*ReferencedBF
= BC
->getBinaryFunctionContainingAddress(
2710 Address
, /*CheckPastEnd*/ true, /*UseMaxSize*/ IsAArch64
);
2712 if (!IsSectionRelocation
) {
2713 if (BinaryFunction
*BF
=
2714 BC
->getBinaryFunctionContainingAddress(SymbolAddress
)) {
2715 if (BF
!= ReferencedBF
) {
2716 // It's possible we are referencing a function without referencing any
2717 // code, e.g. when taking a bitmask action on a function address.
2719 << "BOLT-WARNING: non-standard function reference (e.g. bitmask)"
2720 << formatv(" detected against function {0} from ", *BF
);
2722 BC
->errs() << formatv("function {0}\n", *ContainingBF
);
2724 BC
->errs() << formatv("data section at {0:x}\n", Rel
.getOffset());
2725 LLVM_DEBUG(printRelocationInfo(Rel
, SymbolName
, SymbolAddress
, Addend
,
2730 } else if (ReferencedBF
) {
2731 assert(ReferencedSection
&& "section expected for section relocation");
2732 if (*ReferencedBF
->getOriginSection() != *ReferencedSection
) {
2733 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring false function reference\n");
2734 ReferencedBF
= nullptr;
2738 // Workaround for a member function pointer de-virtualization bug. We check
2739 // if a non-pc-relative relocation in the code is pointing to (fptr - 1).
2740 if (IsToCode
&& ContainingBF
&& !Relocation::isPCRelative(RType
) &&
2741 (!ReferencedBF
|| (ReferencedBF
->getAddress() != Address
))) {
2742 if (const BinaryFunction
*RogueBF
=
2743 BC
->getBinaryFunctionAtAddress(Address
+ 1)) {
2744 // Do an extra check that the function was referenced previously.
2745 // It's a linear search, but it should rarely happen.
2746 auto CheckReloc
= [&](const Relocation
&Rel
) {
2747 return Rel
.Symbol
== RogueBF
->getSymbol() &&
2748 !Relocation::isPCRelative(Rel
.Type
);
2750 bool Found
= llvm::any_of(
2751 llvm::make_second_range(ContainingBF
->Relocations
), CheckReloc
);
2755 << "BOLT-WARNING: detected possible compiler de-virtualization "
2756 "bug: -1 addend used with non-pc-relative relocation against "
2757 << formatv("function {0} in function {1}\n", *RogueBF
,
2764 if (ForceRelocation
) {
2766 Relocation::isGOT(RType
) ? "__BOLT_got_zero" : SymbolName
;
2767 ReferencedSymbol
= BC
->registerNameAtAddress(Name
, 0, 0, 0);
2769 if (Relocation::isGOT(RType
))
2771 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: forcing relocation against symbol "
2772 << SymbolName
<< " with addend " << Addend
<< '\n');
2773 } else if (ReferencedBF
) {
2774 ReferencedSymbol
= ReferencedBF
->getSymbol();
2775 uint64_t RefFunctionOffset
= 0;
2777 // Adjust the point of reference to a code location inside a function.
2778 if (ReferencedBF
->containsAddress(Address
, /*UseMaxSize = */ true)) {
2779 RefFunctionOffset
= Address
- ReferencedBF
->getAddress();
2780 if (Relocation::isInstructionReference(RType
)) {
2781 // Instruction labels are created while disassembling so we just leave
2782 // the symbol empty for now. Since the extracted value is typically
2783 // unrelated to the referenced symbol (e.g., %pcrel_lo in RISC-V
2784 // references an instruction but the patched value references the low
2785 // bits of a data address), we set the extracted value to the symbol
2786 // address in order to be able to correctly reconstruct the reference
2788 ReferencedSymbol
= nullptr;
2789 ExtractedValue
= Address
;
2790 } else if (RefFunctionOffset
) {
2791 if (ContainingBF
&& ContainingBF
!= ReferencedBF
) {
2793 ReferencedBF
->addEntryPointAtOffset(RefFunctionOffset
);
2796 ReferencedBF
->getOrCreateLocalLabel(Address
,
2797 /*CreatePastEnd =*/true);
2799 // If ContainingBF != nullptr, it equals ReferencedBF (see
2800 // if-condition above) so we're handling a relocation from a function
2801 // to itself. RISC-V uses such relocations for branches, for example.
2802 // These should not be registered as externally references offsets.
2804 ReferencedBF
->registerReferencedOffset(RefFunctionOffset
);
2806 if (opts::Verbosity
> 1 &&
2807 BinarySection(*BC
, RelocatedSection
).isWritable())
2809 << "BOLT-WARNING: writable reference into the middle of the "
2810 << formatv("function {0} detected at address {1:x}\n",
2811 *ReferencedBF
, Rel
.getOffset());
2813 SymbolAddress
= Address
;
2817 dbgs() << " referenced function " << *ReferencedBF
;
2818 if (Address
!= ReferencedBF
->getAddress())
2819 dbgs() << formatv(" at offset {0:x}", RefFunctionOffset
);
2823 if (IsToCode
&& SymbolAddress
) {
2824 // This can happen e.g. with PIC-style jump tables.
2825 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: no corresponding function for "
2826 "relocation against code\n");
2829 // In AArch64 there are zero reasons to keep a reference to the
2830 // "original" symbol plus addend. The original symbol is probably just a
2831 // section symbol. If we are here, this means we are probably accessing
2832 // data, so it is imperative to keep the original address.
2834 SymbolName
= formatv("SYMBOLat{0:x}", Address
);
2835 SymbolAddress
= Address
;
2839 if (BinaryData
*BD
= BC
->getBinaryDataContainingAddress(SymbolAddress
)) {
2840 // Note: this assertion is trying to check sanity of BinaryData objects
2841 // but AArch64 has inferred and incomplete object locations coming from
2842 // GOT/TLS or any other non-trivial relocation (that requires creation
2843 // of sections and whose symbol address is not really what should be
2844 // encoded in the instruction). So we essentially disabled this check
2845 // for AArch64 and live with bogus names for objects.
2846 assert((IsAArch64
|| IsSectionRelocation
||
2847 BD
->nameStartsWith(SymbolName
) ||
2848 BD
->nameStartsWith("PG" + SymbolName
) ||
2849 (BD
->nameStartsWith("ANONYMOUS") &&
2850 (BD
->getSectionName().starts_with(".plt") ||
2851 BD
->getSectionName().ends_with(".plt")))) &&
2852 "BOLT symbol names of all non-section relocations must match up "
2853 "with symbol names referenced in the relocation");
2855 if (IsSectionRelocation
)
2856 BC
->markAmbiguousRelocations(*BD
, Address
);
2858 ReferencedSymbol
= BD
->getSymbol();
2859 Addend
+= (SymbolAddress
- BD
->getAddress());
2860 SymbolAddress
= BD
->getAddress();
2861 assert(Address
== SymbolAddress
+ Addend
);
2863 // These are mostly local data symbols but undefined symbols
2864 // in relocation sections can get through here too, from .plt.
2866 (IsAArch64
|| BC
->isRISCV() || IsSectionRelocation
||
2867 BC
->getSectionNameForAddress(SymbolAddress
)->starts_with(".plt")) &&
2868 "known symbols should not resolve to anonymous locals");
2870 if (IsSectionRelocation
) {
2872 BC
->getOrCreateGlobalSymbol(SymbolAddress
, "SYMBOLat");
2874 SymbolRef Symbol
= *Rel
.getSymbol();
2875 const uint64_t SymbolSize
=
2876 IsAArch64
? 0 : ELFSymbolRef(Symbol
).getSize();
2877 const uint64_t SymbolAlignment
= IsAArch64
? 1 : Symbol
.getAlignment();
2878 const uint32_t SymbolFlags
= cantFail(Symbol
.getFlags());
2880 if (SymbolFlags
& SymbolRef::SF_Global
) {
2883 if (StringRef(SymbolName
)
2884 .starts_with(BC
->AsmInfo
->getPrivateGlobalPrefix()))
2885 Name
= NR
.uniquify("PG" + SymbolName
);
2887 Name
= NR
.uniquify(SymbolName
);
2889 ReferencedSymbol
= BC
->registerNameAtAddress(
2890 Name
, SymbolAddress
, SymbolSize
, SymbolAlignment
, SymbolFlags
);
2893 if (IsSectionRelocation
) {
2894 BinaryData
*BD
= BC
->getBinaryDataByName(ReferencedSymbol
->getName());
2895 BC
->markAmbiguousRelocations(*BD
, Address
);
2900 auto checkMaxDataRelocations
= [&]() {
2901 ++NumDataRelocations
;
2902 LLVM_DEBUG(if (opts::MaxDataRelocations
&&
2903 NumDataRelocations
+ 1 == opts::MaxDataRelocations
) {
2904 dbgs() << "BOLT-DEBUG: processing ending on data relocation "
2905 << NumDataRelocations
<< ": ";
2906 printRelocationInfo(Rel
, ReferencedSymbol
->getName(), SymbolAddress
,
2907 Addend
, ExtractedValue
);
2910 return (!opts::MaxDataRelocations
||
2911 NumDataRelocations
< opts::MaxDataRelocations
);
2914 if ((ReferencedSection
&& refersToReorderedSection(ReferencedSection
)) ||
2915 (opts::ForceToDataRelocations
&& checkMaxDataRelocations()) ||
2916 // RISC-V has ADD/SUB data-to-data relocations
2918 ForceRelocation
= true;
2921 ContainingBF
->addRelocation(Rel
.getOffset(), ReferencedSymbol
, RType
,
2922 Addend
, ExtractedValue
);
2923 else if (IsToCode
|| ForceRelocation
)
2924 BC
->addRelocation(Rel
.getOffset(), ReferencedSymbol
, RType
, Addend
,
2927 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocation from data to data\n");
2930 void RewriteInstance::selectFunctionsToProcess() {
2931 // Extend the list of functions to process or skip from a file.
2932 auto populateFunctionNames
= [](cl::opt
<std::string
> &FunctionNamesFile
,
2933 cl::list
<std::string
> &FunctionNames
) {
2934 if (FunctionNamesFile
.empty())
2936 std::ifstream
FuncsFile(FunctionNamesFile
, std::ios::in
);
2937 std::string FuncName
;
2938 while (std::getline(FuncsFile
, FuncName
))
2939 FunctionNames
.push_back(FuncName
);
2941 populateFunctionNames(opts::FunctionNamesFile
, opts::ForceFunctionNames
);
2942 populateFunctionNames(opts::SkipFunctionNamesFile
, opts::SkipFunctionNames
);
2943 populateFunctionNames(opts::FunctionNamesFileNR
, opts::ForceFunctionNamesNR
);
2945 // Make a set of functions to process to speed up lookups.
2946 std::unordered_set
<std::string
> ForceFunctionsNR(
2947 opts::ForceFunctionNamesNR
.begin(), opts::ForceFunctionNamesNR
.end());
2949 if ((!opts::ForceFunctionNames
.empty() ||
2950 !opts::ForceFunctionNamesNR
.empty()) &&
2951 !opts::SkipFunctionNames
.empty()) {
2953 << "BOLT-ERROR: cannot select functions to process and skip at the "
2954 "same time. Please use only one type of selection.\n";
2958 uint64_t LiteThresholdExecCount
= 0;
2959 if (opts::LiteThresholdPct
) {
2960 if (opts::LiteThresholdPct
> 100)
2961 opts::LiteThresholdPct
= 100;
2963 std::vector
<const BinaryFunction
*> TopFunctions
;
2964 for (auto &BFI
: BC
->getBinaryFunctions()) {
2965 const BinaryFunction
&Function
= BFI
.second
;
2966 if (ProfileReader
->mayHaveProfileData(Function
))
2967 TopFunctions
.push_back(&Function
);
2970 TopFunctions
, [](const BinaryFunction
*A
, const BinaryFunction
*B
) {
2971 return A
->getKnownExecutionCount() < B
->getKnownExecutionCount();
2974 size_t Index
= TopFunctions
.size() * opts::LiteThresholdPct
/ 100;
2977 LiteThresholdExecCount
= TopFunctions
[Index
]->getKnownExecutionCount();
2978 BC
->outs() << "BOLT-INFO: limiting processing to functions with at least "
2979 << LiteThresholdExecCount
<< " invocations\n";
2981 LiteThresholdExecCount
= std::max(
2982 LiteThresholdExecCount
, static_cast<uint64_t>(opts::LiteThresholdCount
));
2984 StringSet
<> ReorderFunctionsUserSet
;
2985 StringSet
<> ReorderFunctionsLTOCommonSet
;
2986 if (opts::ReorderFunctions
== ReorderFunctions::RT_USER
) {
2987 std::vector
<std::string
> FunctionNames
;
2988 BC
->logBOLTErrorsAndQuitOnFatal(
2989 ReorderFunctions::readFunctionOrderFile(FunctionNames
));
2990 for (const std::string
&Function
: FunctionNames
) {
2991 ReorderFunctionsUserSet
.insert(Function
);
2992 if (std::optional
<StringRef
> LTOCommonName
= getLTOCommonName(Function
))
2993 ReorderFunctionsLTOCommonSet
.insert(*LTOCommonName
);
2997 uint64_t NumFunctionsToProcess
= 0;
2998 auto mustSkip
= [&](const BinaryFunction
&Function
) {
2999 if (opts::MaxFunctions
.getNumOccurrences() &&
3000 NumFunctionsToProcess
>= opts::MaxFunctions
)
3002 for (std::string
&Name
: opts::SkipFunctionNames
)
3003 if (Function
.hasNameRegex(Name
))
3009 auto shouldProcess
= [&](const BinaryFunction
&Function
) {
3010 if (mustSkip(Function
))
3013 // If the list is not empty, only process functions from the list.
3014 if (!opts::ForceFunctionNames
.empty() || !ForceFunctionsNR
.empty()) {
3015 // Regex check (-funcs and -funcs-file options).
3016 for (std::string
&Name
: opts::ForceFunctionNames
)
3017 if (Function
.hasNameRegex(Name
))
3020 // Non-regex check (-funcs-no-regex and -funcs-file-no-regex).
3021 for (const StringRef Name
: Function
.getNames())
3022 if (ForceFunctionsNR
.count(Name
.str()))
3029 // Forcibly include functions specified in the -function-order file.
3030 if (opts::ReorderFunctions
== ReorderFunctions::RT_USER
) {
3031 for (const StringRef Name
: Function
.getNames())
3032 if (ReorderFunctionsUserSet
.contains(Name
))
3034 for (const StringRef Name
: Function
.getNames())
3035 if (std::optional
<StringRef
> LTOCommonName
= getLTOCommonName(Name
))
3036 if (ReorderFunctionsLTOCommonSet
.contains(*LTOCommonName
))
3040 if (ProfileReader
&& !ProfileReader
->mayHaveProfileData(Function
))
3043 if (Function
.getKnownExecutionCount() < LiteThresholdExecCount
)
3050 for (auto &BFI
: BC
->getBinaryFunctions()) {
3051 BinaryFunction
&Function
= BFI
.second
;
3053 // Pseudo functions are explicitly marked by us not to be processed.
3054 if (Function
.isPseudo()) {
3055 Function
.IsIgnored
= true;
3056 Function
.HasExternalRefRelocations
= true;
3060 // Decide what to do with fragments after parent functions are processed.
3061 if (Function
.isFragment())
3064 if (!shouldProcess(Function
)) {
3065 if (opts::Verbosity
>= 1) {
3066 BC
->outs() << "BOLT-INFO: skipping processing " << Function
3067 << " per user request\n";
3069 Function
.setIgnored();
3071 ++NumFunctionsToProcess
;
3072 if (opts::MaxFunctions
.getNumOccurrences() &&
3073 NumFunctionsToProcess
== opts::MaxFunctions
)
3074 BC
->outs() << "BOLT-INFO: processing ending on " << Function
<< '\n';
3078 if (!BC
->HasSplitFunctions
)
3081 // Fragment overrides:
3082 // - If the fragment must be skipped, then the parent must be skipped as well.
3083 // Otherwise, fragment should follow the parent function:
3084 // - if the parent is skipped, skip fragment,
3085 // - if the parent is processed, process the fragment(s) as well.
3086 for (auto &BFI
: BC
->getBinaryFunctions()) {
3087 BinaryFunction
&Function
= BFI
.second
;
3088 if (!Function
.isFragment())
3090 if (mustSkip(Function
)) {
3091 for (BinaryFunction
*Parent
: Function
.ParentFragments
) {
3092 if (opts::Verbosity
>= 1) {
3093 BC
->outs() << "BOLT-INFO: skipping processing " << *Parent
3094 << " together with fragment function\n";
3096 Parent
->setIgnored();
3097 --NumFunctionsToProcess
;
3099 Function
.setIgnored();
3103 bool IgnoredParent
=
3104 llvm::any_of(Function
.ParentFragments
, [&](BinaryFunction
*Parent
) {
3105 return Parent
->isIgnored();
3107 if (IgnoredParent
) {
3108 if (opts::Verbosity
>= 1) {
3109 BC
->outs() << "BOLT-INFO: skipping processing " << Function
3110 << " together with parent function\n";
3112 Function
.setIgnored();
3114 ++NumFunctionsToProcess
;
3115 if (opts::Verbosity
>= 1) {
3116 BC
->outs() << "BOLT-INFO: processing " << Function
3117 << " as a sibling of non-ignored function\n";
3119 if (opts::MaxFunctions
&& NumFunctionsToProcess
== opts::MaxFunctions
)
3120 BC
->outs() << "BOLT-INFO: processing ending on " << Function
<< '\n';
3125 void RewriteInstance::readDebugInfo() {
3126 NamedRegionTimer
T("readDebugInfo", "read debug info", TimerGroupName
,
3127 TimerGroupDesc
, opts::TimeRewrite
);
3128 if (!opts::UpdateDebugSections
)
3131 BC
->preprocessDebugInfo();
3134 void RewriteInstance::preprocessProfileData() {
3138 NamedRegionTimer
T("preprocessprofile", "pre-process profile data",
3139 TimerGroupName
, TimerGroupDesc
, opts::TimeRewrite
);
3141 BC
->outs() << "BOLT-INFO: pre-processing profile using "
3142 << ProfileReader
->getReaderName() << '\n';
3144 if (BAT
->enabledFor(InputFile
)) {
3145 BC
->outs() << "BOLT-INFO: profile collection done on a binary already "
3146 "processed by BOLT\n";
3147 ProfileReader
->setBAT(&*BAT
);
3150 if (Error E
= ProfileReader
->preprocessProfile(*BC
.get()))
3151 report_error("cannot pre-process profile", std::move(E
));
3153 if (!BC
->hasSymbolsWithFileName() && ProfileReader
->hasLocalsWithFileName() &&
3154 !opts::AllowStripped
) {
3156 << "BOLT-ERROR: input binary does not have local file symbols "
3157 "but profile data includes function names with embedded file "
3158 "names. It appears that the input binary was stripped while a "
3159 "profiled binary was not. If you know what you are doing and "
3160 "wish to proceed, use -allow-stripped option.\n";
3165 void RewriteInstance::initializeMetadataManager() {
3166 if (BC
->IsLinuxKernel
)
3167 MetadataManager
.registerRewriter(createLinuxKernelRewriter(*BC
));
3169 MetadataManager
.registerRewriter(createBuildIDRewriter(*BC
));
3171 MetadataManager
.registerRewriter(createPseudoProbeRewriter(*BC
));
3173 MetadataManager
.registerRewriter(createSDTRewriter(*BC
));
3176 void RewriteInstance::processSectionMetadata() {
3177 NamedRegionTimer
T("processmetadata-section", "process section metadata",
3178 TimerGroupName
, TimerGroupDesc
, opts::TimeRewrite
);
3179 initializeMetadataManager();
3181 MetadataManager
.runSectionInitializers();
3184 void RewriteInstance::processMetadataPreCFG() {
3185 NamedRegionTimer
T("processmetadata-precfg", "process metadata pre-CFG",
3186 TimerGroupName
, TimerGroupDesc
, opts::TimeRewrite
);
3187 MetadataManager
.runInitializersPreCFG();
3189 processProfileDataPreCFG();
3192 void RewriteInstance::processMetadataPostCFG() {
3193 NamedRegionTimer
T("processmetadata-postcfg", "process metadata post-CFG",
3194 TimerGroupName
, TimerGroupDesc
, opts::TimeRewrite
);
3195 MetadataManager
.runInitializersPostCFG();
3198 void RewriteInstance::processProfileDataPreCFG() {
3202 NamedRegionTimer
T("processprofile-precfg", "process profile data pre-CFG",
3203 TimerGroupName
, TimerGroupDesc
, opts::TimeRewrite
);
3205 if (Error E
= ProfileReader
->readProfilePreCFG(*BC
.get()))
3206 report_error("cannot read profile pre-CFG", std::move(E
));
3209 void RewriteInstance::processProfileData() {
3213 NamedRegionTimer
T("processprofile", "process profile data", TimerGroupName
,
3214 TimerGroupDesc
, opts::TimeRewrite
);
3216 if (Error E
= ProfileReader
->readProfile(*BC
.get()))
3217 report_error("cannot read profile", std::move(E
));
3219 if (opts::PrintProfile
|| opts::PrintAll
) {
3220 for (auto &BFI
: BC
->getBinaryFunctions()) {
3221 BinaryFunction
&Function
= BFI
.second
;
3222 if (Function
.empty())
3225 Function
.print(BC
->outs(), "after attaching profile");
3229 if (!opts::SaveProfile
.empty() && !BAT
->enabledFor(InputFile
)) {
3230 YAMLProfileWriter
PW(opts::SaveProfile
);
3231 PW
.writeProfile(*this);
3233 if (opts::AggregateOnly
&&
3234 opts::ProfileFormat
== opts::ProfileFormatKind::PF_YAML
&&
3235 !BAT
->enabledFor(InputFile
)) {
3236 YAMLProfileWriter
PW(opts::OutputFilename
);
3237 PW
.writeProfile(*this);
3240 // Release memory used by profile reader.
3241 ProfileReader
.reset();
3243 if (opts::AggregateOnly
) {
3244 PrintProgramStats
PPS(&*BAT
);
3245 BC
->logBOLTErrorsAndQuitOnFatal(PPS
.runOnFunctions(*BC
));
3246 TimerGroup::printAll(outs());
3251 void RewriteInstance::disassembleFunctions() {
3252 NamedRegionTimer
T("disassembleFunctions", "disassemble functions",
3253 TimerGroupName
, TimerGroupDesc
, opts::TimeRewrite
);
3254 for (auto &BFI
: BC
->getBinaryFunctions()) {
3255 BinaryFunction
&Function
= BFI
.second
;
3257 ErrorOr
<ArrayRef
<uint8_t>> FunctionData
= Function
.getData();
3258 if (!FunctionData
) {
3259 BC
->errs() << "BOLT-ERROR: corresponding section is non-executable or "
3260 << "empty for function " << Function
<< '\n';
3264 // Treat zero-sized functions as non-simple ones.
3265 if (Function
.getSize() == 0) {
3266 Function
.setSimple(false);
3270 // Offset of the function in the file.
3271 const auto *FileBegin
=
3272 reinterpret_cast<const uint8_t *>(InputFile
->getData().data());
3273 Function
.setFileOffset(FunctionData
->begin() - FileBegin
);
3275 if (!shouldDisassemble(Function
)) {
3276 NamedRegionTimer
T("scan", "scan functions", "buildfuncs",
3277 "Scan Binary Functions", opts::TimeBuild
);
3278 Function
.scanExternalRefs();
3279 Function
.setSimple(false);
3283 bool DisasmFailed
{false};
3284 handleAllErrors(Function
.disassemble(), [&](const BOLTError
&E
) {
3285 DisasmFailed
= true;
3290 if (opts::processAllFunctions()) {
3291 BC
->errs() << BC
->generateBugReportMessage(
3292 "function cannot be properly disassembled. "
3293 "Unable to continue in relocation mode.",
3297 if (opts::Verbosity
>= 1)
3298 BC
->outs() << "BOLT-INFO: could not disassemble function " << Function
3299 << ". Will ignore.\n";
3300 // Forcefully ignore the function.
3301 Function
.setIgnored();
3307 if (opts::PrintAll
|| opts::PrintDisasm
)
3308 Function
.print(BC
->outs(), "after disassembly");
3311 BC
->processInterproceduralReferences();
3312 BC
->populateJumpTables();
3314 for (auto &BFI
: BC
->getBinaryFunctions()) {
3315 BinaryFunction
&Function
= BFI
.second
;
3317 if (!shouldDisassemble(Function
))
3320 Function
.postProcessEntryPoints();
3321 Function
.postProcessJumpTables();
3324 BC
->clearJumpTableTempData();
3325 BC
->adjustCodePadding();
3327 for (auto &BFI
: BC
->getBinaryFunctions()) {
3328 BinaryFunction
&Function
= BFI
.second
;
3330 if (!shouldDisassemble(Function
))
3333 if (!Function
.isSimple()) {
3334 assert((!BC
->HasRelocations
|| Function
.getSize() == 0 ||
3335 Function
.hasIndirectTargetToSplitFragment()) &&
3336 "unexpected non-simple function in relocation mode");
3340 // Fill in CFI information for this function
3341 if (!Function
.trapsOnEntry() && !CFIRdWrt
->fillCFIInfoFor(Function
)) {
3342 if (BC
->HasRelocations
) {
3343 BC
->errs() << BC
->generateBugReportMessage("unable to fill CFI.",
3347 BC
->errs() << "BOLT-WARNING: unable to fill CFI for function "
3348 << Function
<< ". Skipping.\n";
3349 Function
.setSimple(false);
3355 if (Function
.getLSDAAddress() != 0 &&
3356 !BC
->getFragmentsToSkip().count(&Function
)) {
3357 ErrorOr
<BinarySection
&> LSDASection
=
3358 BC
->getSectionForAddress(Function
.getLSDAAddress());
3359 check_error(LSDASection
.getError(), "failed to get LSDA section");
3360 ArrayRef
<uint8_t> LSDAData
= ArrayRef
<uint8_t>(
3361 LSDASection
->getData(), LSDASection
->getContents().size());
3362 BC
->logBOLTErrorsAndQuitOnFatal(
3363 Function
.parseLSDA(LSDAData
, LSDASection
->getAddress()));
3368 void RewriteInstance::buildFunctionsCFG() {
3369 NamedRegionTimer
T("buildCFG", "buildCFG", "buildfuncs",
3370 "Build Binary Functions", opts::TimeBuild
);
3372 // Create annotation indices to allow lock-free execution
3373 BC
->MIB
->getOrCreateAnnotationIndex("JTIndexReg");
3374 BC
->MIB
->getOrCreateAnnotationIndex("NOP");
3376 ParallelUtilities::WorkFuncWithAllocTy WorkFun
=
3377 [&](BinaryFunction
&BF
, MCPlusBuilder::AllocatorIdTy AllocId
) {
3378 bool HadErrors
{false};
3379 handleAllErrors(BF
.buildCFG(AllocId
), [&](const BOLTError
&E
) {
3380 if (!E
.getMessage().empty())
3390 if (opts::PrintAll
) {
3391 auto L
= BC
->scopeLock();
3392 BF
.print(BC
->outs(), "while building cfg");
3396 ParallelUtilities::PredicateTy SkipPredicate
= [&](const BinaryFunction
&BF
) {
3397 return !shouldDisassemble(BF
) || !BF
.isSimple();
3400 ParallelUtilities::runOnEachFunctionWithUniqueAllocId(
3401 *BC
, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR
, WorkFun
,
3402 SkipPredicate
, "disassembleFunctions-buildCFG",
3403 /*ForceSequential*/ opts::SequentialDisassembly
|| opts::PrintAll
);
3405 BC
->postProcessSymbolTable();
3408 void RewriteInstance::postProcessFunctions() {
3409 // We mark fragments as non-simple here, not during disassembly,
3410 // So we can build their CFGs.
3411 BC
->skipMarkedFragments();
3412 BC
->clearFragmentsToSkip();
3415 BC
->SumExecutionCount
= 0;
3416 for (auto &BFI
: BC
->getBinaryFunctions()) {
3417 BinaryFunction
&Function
= BFI
.second
;
3419 // Set function as non-simple if it has dynamic relocations
3420 // in constant island, we don't want this function to be optimized
3421 // e.g. function splitting is unsupported.
3422 if (Function
.hasDynamicRelocationAtIsland())
3423 Function
.setSimple(false);
3425 if (Function
.empty())
3428 Function
.postProcessCFG();
3430 if (opts::PrintAll
|| opts::PrintCFG
)
3431 Function
.print(BC
->outs(), "after building cfg");
3433 if (opts::DumpDotAll
)
3434 Function
.dumpGraphForPass("00_build-cfg");
3436 if (opts::PrintLoopInfo
) {
3437 Function
.calculateLoopInfo();
3438 Function
.printLoopInfo(BC
->outs());
3441 BC
->TotalScore
+= Function
.getFunctionScore();
3442 BC
->SumExecutionCount
+= Function
.getKnownExecutionCount();
3445 if (opts::PrintGlobals
) {
3446 BC
->outs() << "BOLT-INFO: Global symbols:\n";
3447 BC
->printGlobalSymbols(BC
->outs());
3451 void RewriteInstance::runOptimizationPasses() {
3452 NamedRegionTimer
T("runOptimizationPasses", "run optimization passes",
3453 TimerGroupName
, TimerGroupDesc
, opts::TimeRewrite
);
3454 BC
->logBOLTErrorsAndQuitOnFatal(BinaryFunctionPassManager::runAllPasses(*BC
));
3457 void RewriteInstance::preregisterSections() {
3458 // Preregister sections before emission to set their order in the output.
3459 const unsigned ROFlags
= BinarySection::getFlags(/*IsReadOnly*/ true,
3461 /*IsAllocatable*/ true);
3462 if (BinarySection
*EHFrameSection
= getSection(getEHFrameSectionName())) {
3464 BC
->registerOrUpdateSection(getNewSecPrefix() + getEHFrameSectionName(),
3465 ELF::SHT_PROGBITS
, ROFlags
);
3466 // Fully register a relocatable copy of the original .eh_frame.
3467 BC
->registerSection(".relocated.eh_frame", *EHFrameSection
);
3469 BC
->registerOrUpdateSection(getNewSecPrefix() + ".gcc_except_table",
3470 ELF::SHT_PROGBITS
, ROFlags
);
3471 BC
->registerOrUpdateSection(getNewSecPrefix() + ".rodata", ELF::SHT_PROGBITS
,
3473 BC
->registerOrUpdateSection(getNewSecPrefix() + ".rodata.cold",
3474 ELF::SHT_PROGBITS
, ROFlags
);
3477 void RewriteInstance::emitAndLink() {
3478 NamedRegionTimer
T("emitAndLink", "emit and link", TimerGroupName
,
3479 TimerGroupDesc
, opts::TimeRewrite
);
3481 SmallString
<0> ObjectBuffer
;
3482 raw_svector_ostream
OS(ObjectBuffer
);
3484 // Implicitly MCObjectStreamer takes ownership of MCAsmBackend (MAB)
3485 // and MCCodeEmitter (MCE). ~MCObjectStreamer() will delete these
3487 std::unique_ptr
<MCStreamer
> Streamer
= BC
->createStreamer(OS
);
3489 if (EHFrameSection
) {
3490 if (opts::UseOldText
|| opts::StrictMode
) {
3491 // The section is going to be regenerated from scratch.
3492 // Empty the contents, but keep the section reference.
3493 EHFrameSection
->clearContents();
3495 // Make .eh_frame relocatable.
3496 relocateEHFrameSection();
3500 emitBinaryContext(*Streamer
, *BC
, getOrgSecPrefix());
3503 if (Streamer
->getContext().hadError()) {
3504 BC
->errs() << "BOLT-ERROR: Emission failed.\n";
3508 if (opts::KeepTmp
) {
3509 SmallString
<128> OutObjectPath
;
3510 sys::fs::getPotentiallyUniqueTempFileName("output", "o", OutObjectPath
);
3512 raw_fd_ostream
FOS(OutObjectPath
, EC
);
3513 check_error(EC
, "cannot create output object file");
3514 FOS
<< ObjectBuffer
;
3516 << "BOLT-INFO: intermediary output object file saved for debugging "
3518 << OutObjectPath
<< "\n";
3521 ErrorOr
<BinarySection
&> TextSection
=
3522 BC
->getUniqueSectionByName(BC
->getMainCodeSectionName());
3523 if (BC
->HasRelocations
&& TextSection
)
3524 BC
->renameSection(*TextSection
,
3525 getOrgSecPrefix() + BC
->getMainCodeSectionName());
3527 //////////////////////////////////////////////////////////////////////////////
3528 // Assign addresses to new sections.
3529 //////////////////////////////////////////////////////////////////////////////
3531 // Get output object as ObjectFile.
3532 std::unique_ptr
<MemoryBuffer
> ObjectMemBuffer
=
3533 MemoryBuffer::getMemBuffer(ObjectBuffer
, "in-memory object file", false);
3535 auto EFMM
= std::make_unique
<ExecutableFileMemoryManager
>(*BC
);
3536 EFMM
->setNewSecPrefix(getNewSecPrefix());
3537 EFMM
->setOrgSecPrefix(getOrgSecPrefix());
3539 Linker
= std::make_unique
<JITLinkLinker
>(*BC
, std::move(EFMM
));
3540 Linker
->loadObject(ObjectMemBuffer
->getMemBufferRef(),
3541 [this](auto MapSection
) { mapFileSections(MapSection
); });
3543 // Update output addresses based on the new section map and
3544 // layout. Only do this for the object created by ourselves.
3545 updateOutputValues(*Linker
);
3547 if (opts::UpdateDebugSections
) {
3548 DebugInfoRewriter
->updateLineTableOffsets(
3549 static_cast<MCObjectStreamer
&>(*Streamer
).getAssembler());
3552 if (RuntimeLibrary
*RtLibrary
= BC
->getRuntimeLibrary())
3553 RtLibrary
->link(*BC
, ToolPath
, *Linker
, [this](auto MapSection
) {
3554 // Map newly registered sections.
3555 this->mapAllocatableSections(MapSection
);
3558 // Once the code is emitted, we can rename function sections to actual
3559 // output sections and de-register sections used for emission.
3560 for (BinaryFunction
*Function
: BC
->getAllBinaryFunctions()) {
3561 ErrorOr
<BinarySection
&> Section
= Function
->getCodeSection();
3563 (Function
->getImageAddress() == 0 || Function
->getImageSize() == 0))
3566 // Restore origin section for functions that were emitted or supposed to
3567 // be emitted to patch sections.
3569 BC
->deregisterSection(*Section
);
3570 assert(Function
->getOriginSectionName() && "expected origin section");
3571 Function
->CodeSectionName
= Function
->getOriginSectionName()->str();
3572 for (const FunctionFragment
&FF
:
3573 Function
->getLayout().getSplitFragments()) {
3574 if (ErrorOr
<BinarySection
&> ColdSection
=
3575 Function
->getCodeSection(FF
.getFragmentNum()))
3576 BC
->deregisterSection(*ColdSection
);
3578 if (Function
->getLayout().isSplit())
3579 Function
->setColdCodeSectionName(getBOLTTextSectionName());
3582 if (opts::PrintCacheMetrics
) {
3583 BC
->outs() << "BOLT-INFO: cache metrics after emitting functions:\n";
3584 CacheMetrics::printAll(BC
->outs(), BC
->getSortedFunctions());
3588 void RewriteInstance::finalizeMetadataPreEmit() {
3589 NamedRegionTimer
T("finalizemetadata-preemit", "finalize metadata pre-emit",
3590 TimerGroupName
, TimerGroupDesc
, opts::TimeRewrite
);
3591 MetadataManager
.runFinalizersPreEmit();
3594 void RewriteInstance::updateMetadata() {
3595 NamedRegionTimer
T("updatemetadata-postemit", "update metadata post-emit",
3596 TimerGroupName
, TimerGroupDesc
, opts::TimeRewrite
);
3597 MetadataManager
.runFinalizersAfterEmit();
3599 if (opts::UpdateDebugSections
) {
3600 NamedRegionTimer
T("updateDebugInfo", "update debug info", TimerGroupName
,
3601 TimerGroupDesc
, opts::TimeRewrite
);
3602 DebugInfoRewriter
->updateDebugInfo();
3605 if (opts::WriteBoltInfoSection
)
3606 addBoltInfoSection();
3609 void RewriteInstance::mapFileSections(BOLTLinker::SectionMapper MapSection
) {
3610 BC
->deregisterUnusedSections();
3612 // If no new .eh_frame was written, remove relocated original .eh_frame.
3613 BinarySection
*RelocatedEHFrameSection
=
3614 getSection(".relocated" + getEHFrameSectionName());
3615 if (RelocatedEHFrameSection
&& RelocatedEHFrameSection
->hasValidSectionID()) {
3616 BinarySection
*NewEHFrameSection
=
3617 getSection(getNewSecPrefix() + getEHFrameSectionName());
3618 if (!NewEHFrameSection
|| !NewEHFrameSection
->isFinalized()) {
3619 // JITLink will still have to process relocations for the section, hence
3620 // we need to assign it the address that wouldn't result in relocation
3621 // processing failure.
3622 MapSection(*RelocatedEHFrameSection
, NextAvailableAddress
);
3623 BC
->deregisterSection(*RelocatedEHFrameSection
);
3627 mapCodeSections(MapSection
);
3629 // Map the rest of the sections.
3630 mapAllocatableSections(MapSection
);
3632 if (!BC
->BOLTReserved
.empty()) {
3633 const uint64_t AllocatedSize
=
3634 NextAvailableAddress
- BC
->BOLTReserved
.start();
3635 if (BC
->BOLTReserved
.size() < AllocatedSize
) {
3636 BC
->errs() << "BOLT-ERROR: reserved space (" << BC
->BOLTReserved
.size()
3637 << " byte" << (BC
->BOLTReserved
.size() == 1 ? "" : "s")
3638 << ") is smaller than required for new allocations ("
3639 << AllocatedSize
<< " bytes)\n";
3645 std::vector
<BinarySection
*> RewriteInstance::getCodeSections() {
3646 std::vector
<BinarySection
*> CodeSections
;
3647 for (BinarySection
&Section
: BC
->textSections())
3648 if (Section
.hasValidSectionID())
3649 CodeSections
.emplace_back(&Section
);
3651 auto compareSections
= [&](const BinarySection
*A
, const BinarySection
*B
) {
3652 // If both A and B have names starting with ".text.cold", then
3653 // - if opts::HotFunctionsAtEnd is true, we want order
3654 // ".text.cold.T", ".text.cold.T-1", ... ".text.cold.1", ".text.cold"
3655 // - if opts::HotFunctionsAtEnd is false, we want order
3656 // ".text.cold", ".text.cold.1", ... ".text.cold.T-1", ".text.cold.T"
3657 if (A
->getName().starts_with(BC
->getColdCodeSectionName()) &&
3658 B
->getName().starts_with(BC
->getColdCodeSectionName())) {
3659 if (A
->getName().size() != B
->getName().size())
3660 return (opts::HotFunctionsAtEnd
)
3661 ? (A
->getName().size() > B
->getName().size())
3662 : (A
->getName().size() < B
->getName().size());
3663 return (opts::HotFunctionsAtEnd
) ? (A
->getName() > B
->getName())
3664 : (A
->getName() < B
->getName());
3667 // Place movers before anything else.
3668 if (A
->getName() == BC
->getHotTextMoverSectionName())
3670 if (B
->getName() == BC
->getHotTextMoverSectionName())
3673 // Depending on opts::HotFunctionsAtEnd, place main and warm sections in
3675 if (opts::HotFunctionsAtEnd
) {
3676 if (B
->getName() == BC
->getMainCodeSectionName())
3678 if (A
->getName() == BC
->getMainCodeSectionName())
3680 return (B
->getName() == BC
->getWarmCodeSectionName());
3682 if (A
->getName() == BC
->getMainCodeSectionName())
3684 if (B
->getName() == BC
->getMainCodeSectionName())
3686 return (A
->getName() == BC
->getWarmCodeSectionName());
3690 // Determine the order of sections.
3691 llvm::stable_sort(CodeSections
, compareSections
);
3693 return CodeSections
;
3696 void RewriteInstance::mapCodeSections(BOLTLinker::SectionMapper MapSection
) {
3697 if (BC
->HasRelocations
) {
3698 // Map sections for functions with pre-assigned addresses.
3699 for (BinaryFunction
*InjectedFunction
: BC
->getInjectedBinaryFunctions()) {
3700 const uint64_t OutputAddress
= InjectedFunction
->getOutputAddress();
3704 ErrorOr
<BinarySection
&> FunctionSection
=
3705 InjectedFunction
->getCodeSection();
3706 assert(FunctionSection
&& "function should have section");
3707 FunctionSection
->setOutputAddress(OutputAddress
);
3708 MapSection(*FunctionSection
, OutputAddress
);
3709 InjectedFunction
->setImageAddress(FunctionSection
->getAllocAddress());
3710 InjectedFunction
->setImageSize(FunctionSection
->getOutputSize());
3713 // Populate the list of sections to be allocated.
3714 std::vector
<BinarySection
*> CodeSections
= getCodeSections();
3716 // Remove sections that were pre-allocated (patch sections).
3717 llvm::erase_if(CodeSections
, [](BinarySection
*Section
) {
3718 return Section
->getOutputAddress();
3720 LLVM_DEBUG(dbgs() << "Code sections in the order of output:\n";
3721 for (const BinarySection
*Section
: CodeSections
)
3722 dbgs() << Section
->getName() << '\n';
3725 uint64_t PaddingSize
= 0; // size of padding required at the end
3727 // Allocate sections starting at a given Address.
3728 auto allocateAt
= [&](uint64_t Address
) {
3729 const char *LastNonColdSectionName
= BC
->HasWarmSection
3730 ? BC
->getWarmCodeSectionName()
3731 : BC
->getMainCodeSectionName();
3732 for (BinarySection
*Section
: CodeSections
) {
3733 Address
= alignTo(Address
, Section
->getAlignment());
3734 Section
->setOutputAddress(Address
);
3735 Address
+= Section
->getOutputSize();
3737 // Hugify: Additional huge page from right side due to
3738 // weird ASLR mapping addresses (4KB aligned)
3739 if (opts::Hugify
&& !BC
->HasFixedLoadAddress
&&
3740 Section
->getName() == LastNonColdSectionName
)
3741 Address
= alignTo(Address
, Section
->getAlignment());
3744 // Make sure we allocate enough space for huge pages.
3745 ErrorOr
<BinarySection
&> TextSection
=
3746 BC
->getUniqueSectionByName(LastNonColdSectionName
);
3747 if (opts::HotText
&& TextSection
&& TextSection
->hasValidSectionID()) {
3748 uint64_t HotTextEnd
=
3749 TextSection
->getOutputAddress() + TextSection
->getOutputSize();
3750 HotTextEnd
= alignTo(HotTextEnd
, BC
->PageAlign
);
3751 if (HotTextEnd
> Address
) {
3752 PaddingSize
= HotTextEnd
- Address
;
3753 Address
= HotTextEnd
;
3759 // Check if we can fit code in the original .text
3760 bool AllocationDone
= false;
3761 if (opts::UseOldText
) {
3762 const uint64_t CodeSize
=
3763 allocateAt(BC
->OldTextSectionAddress
) - BC
->OldTextSectionAddress
;
3765 if (CodeSize
<= BC
->OldTextSectionSize
) {
3766 BC
->outs() << "BOLT-INFO: using original .text for new code with 0x"
3767 << Twine::utohexstr(opts::AlignText
) << " alignment\n";
3768 AllocationDone
= true;
3771 << "BOLT-WARNING: original .text too small to fit the new code"
3772 << " using 0x" << Twine::utohexstr(opts::AlignText
)
3773 << " alignment. " << CodeSize
<< " bytes needed, have "
3774 << BC
->OldTextSectionSize
<< " bytes available.\n";
3775 opts::UseOldText
= false;
3779 if (!AllocationDone
)
3780 NextAvailableAddress
= allocateAt(NextAvailableAddress
);
3782 // Do the mapping for ORC layer based on the allocation.
3783 for (BinarySection
*Section
: CodeSections
) {
3785 dbgs() << "BOLT: mapping " << Section
->getName() << " at 0x"
3786 << Twine::utohexstr(Section
->getAllocAddress()) << " to 0x"
3787 << Twine::utohexstr(Section
->getOutputAddress()) << '\n');
3788 MapSection(*Section
, Section
->getOutputAddress());
3789 Section
->setOutputFileOffset(
3790 getFileOffsetForAddress(Section
->getOutputAddress()));
3793 // Check if we need to insert a padding section for hot text.
3794 if (PaddingSize
&& !opts::UseOldText
)
3795 BC
->outs() << "BOLT-INFO: padding code to 0x"
3796 << Twine::utohexstr(NextAvailableAddress
)
3797 << " to accommodate hot text\n";
3802 // Processing in non-relocation mode.
3803 uint64_t NewTextSectionStartAddress
= NextAvailableAddress
;
3805 for (auto &BFI
: BC
->getBinaryFunctions()) {
3806 BinaryFunction
&Function
= BFI
.second
;
3807 if (!Function
.isEmitted())
3810 ErrorOr
<BinarySection
&> FuncSection
= Function
.getCodeSection();
3811 assert(FuncSection
&& "cannot find section for function");
3812 FuncSection
->setOutputAddress(Function
.getAddress());
3813 LLVM_DEBUG(dbgs() << "BOLT: mapping 0x"
3814 << Twine::utohexstr(FuncSection
->getAllocAddress())
3815 << " to 0x" << Twine::utohexstr(Function
.getAddress())
3817 MapSection(*FuncSection
, Function
.getAddress());
3818 Function
.setImageAddress(FuncSection
->getAllocAddress());
3819 Function
.setImageSize(FuncSection
->getOutputSize());
3820 assert(Function
.getImageSize() <= Function
.getMaxSize() &&
3821 "Unexpected large function");
3823 // Map jump tables if updating in-place.
3824 if (opts::JumpTables
== JTS_BASIC
) {
3825 for (auto &JTI
: Function
.JumpTables
) {
3826 JumpTable
*JT
= JTI
.second
;
3827 BinarySection
&Section
= JT
->getOutputSection();
3828 Section
.setOutputAddress(JT
->getAddress());
3829 Section
.setOutputFileOffset(getFileOffsetForAddress(JT
->getAddress()));
3830 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: mapping JT " << Section
.getName()
3831 << " to 0x" << Twine::utohexstr(JT
->getAddress())
3833 MapSection(Section
, JT
->getAddress());
3837 if (!Function
.isSplit())
3840 assert(Function
.getLayout().isHotColdSplit() &&
3841 "Cannot allocate more than two fragments per function in "
3842 "non-relocation mode.");
3844 FunctionFragment
&FF
=
3845 Function
.getLayout().getFragment(FragmentNum::cold());
3846 ErrorOr
<BinarySection
&> ColdSection
=
3847 Function
.getCodeSection(FF
.getFragmentNum());
3848 assert(ColdSection
&& "cannot find section for cold part");
3849 // Cold fragments are aligned at 16 bytes.
3850 NextAvailableAddress
= alignTo(NextAvailableAddress
, 16);
3851 FF
.setAddress(NextAvailableAddress
);
3852 FF
.setImageAddress(ColdSection
->getAllocAddress());
3853 FF
.setImageSize(ColdSection
->getOutputSize());
3854 FF
.setFileOffset(getFileOffsetForAddress(NextAvailableAddress
));
3855 ColdSection
->setOutputAddress(FF
.getAddress());
3859 "BOLT: mapping cold fragment {0:x+} to {1:x+} with size {2:x+}\n",
3860 FF
.getImageAddress(), FF
.getAddress(), FF
.getImageSize()));
3861 MapSection(*ColdSection
, FF
.getAddress());
3863 NextAvailableAddress
+= FF
.getImageSize();
3866 // Add the new text section aggregating all existing code sections.
3867 // This is pseudo-section that serves a purpose of creating a corresponding
3868 // entry in section header table.
3869 const uint64_t NewTextSectionSize
=
3870 NextAvailableAddress
- NewTextSectionStartAddress
;
3871 if (NewTextSectionSize
) {
3872 const unsigned Flags
= BinarySection::getFlags(/*IsReadOnly=*/true,
3874 /*IsAllocatable=*/true);
3875 BinarySection
&Section
=
3876 BC
->registerOrUpdateSection(getBOLTTextSectionName(),
3882 Section
.setOutputAddress(NewTextSectionStartAddress
);
3883 Section
.setOutputFileOffset(
3884 getFileOffsetForAddress(NewTextSectionStartAddress
));
3888 void RewriteInstance::mapAllocatableSections(
3889 BOLTLinker::SectionMapper MapSection
) {
3891 if (opts::UseOldText
|| opts::StrictMode
) {
3892 auto tryRewriteSection
= [&](BinarySection
&OldSection
,
3893 BinarySection
&NewSection
) {
3894 if (OldSection
.getSize() < NewSection
.getOutputSize())
3897 BC
->outs() << "BOLT-INFO: rewriting " << OldSection
.getName()
3900 NewSection
.setOutputAddress(OldSection
.getAddress());
3901 NewSection
.setOutputFileOffset(OldSection
.getInputFileOffset());
3902 MapSection(NewSection
, OldSection
.getAddress());
3904 // Pad contents with zeros.
3905 NewSection
.addPadding(OldSection
.getSize() - NewSection
.getOutputSize());
3907 // Prevent the original section name from appearing in the section header
3909 OldSection
.setAnonymous(true);
3912 if (EHFrameSection
) {
3913 BinarySection
*NewEHFrameSection
=
3914 getSection(getNewSecPrefix() + getEHFrameSectionName());
3915 assert(NewEHFrameSection
&& "New contents expected for .eh_frame");
3916 tryRewriteSection(*EHFrameSection
, *NewEHFrameSection
);
3918 BinarySection
*EHSection
= getSection(".gcc_except_table");
3919 BinarySection
*NewEHSection
=
3920 getSection(getNewSecPrefix() + ".gcc_except_table");
3922 assert(NewEHSection
&& "New contents expected for .gcc_except_table");
3923 tryRewriteSection(*EHSection
, *NewEHSection
);
3927 // Allocate read-only sections first, then writable sections.
3928 enum : uint8_t { ST_READONLY
, ST_READWRITE
};
3929 for (uint8_t SType
= ST_READONLY
; SType
<= ST_READWRITE
; ++SType
) {
3930 const uint64_t LastNextAvailableAddress
= NextAvailableAddress
;
3931 if (SType
== ST_READWRITE
) {
3932 // Align R+W segment to regular page size
3933 NextAvailableAddress
= alignTo(NextAvailableAddress
, BC
->RegularPageSize
);
3934 NewWritableSegmentAddress
= NextAvailableAddress
;
3937 for (BinarySection
&Section
: BC
->allocatableSections()) {
3938 if (Section
.isLinkOnly())
3941 if (!Section
.hasValidSectionID())
3944 if (Section
.isWritable() == (SType
== ST_READONLY
))
3947 if (Section
.getOutputAddress()) {
3949 dbgs() << "BOLT-DEBUG: section " << Section
.getName()
3950 << " is already mapped at 0x"
3951 << Twine::utohexstr(Section
.getOutputAddress()) << '\n';
3956 if (Section
.hasSectionRef()) {
3958 dbgs() << "BOLT-DEBUG: mapping original section " << Section
.getName()
3959 << " to 0x" << Twine::utohexstr(Section
.getAddress()) << '\n';
3961 Section
.setOutputAddress(Section
.getAddress());
3962 Section
.setOutputFileOffset(Section
.getInputFileOffset());
3963 MapSection(Section
, Section
.getAddress());
3965 NextAvailableAddress
=
3966 alignTo(NextAvailableAddress
, Section
.getAlignment());
3968 dbgs() << "BOLT: mapping section " << Section
.getName() << " (0x"
3969 << Twine::utohexstr(Section
.getAllocAddress()) << ") to 0x"
3970 << Twine::utohexstr(NextAvailableAddress
) << ":0x"
3971 << Twine::utohexstr(NextAvailableAddress
+
3972 Section
.getOutputSize())
3976 MapSection(Section
, NextAvailableAddress
);
3977 Section
.setOutputAddress(NextAvailableAddress
);
3978 Section
.setOutputFileOffset(
3979 getFileOffsetForAddress(NextAvailableAddress
));
3981 NextAvailableAddress
+= Section
.getOutputSize();
3985 if (SType
== ST_READONLY
) {
3986 if (PHDRTableAddress
) {
3987 // Segment size includes the size of the PHDR area.
3988 NewTextSegmentSize
= NextAvailableAddress
- PHDRTableAddress
;
3989 } else if (NewTextSegmentAddress
) {
3990 // Existing PHDR table would be updated.
3991 NewTextSegmentSize
= NextAvailableAddress
- NewTextSegmentAddress
;
3993 } else if (SType
== ST_READWRITE
) {
3994 NewWritableSegmentSize
= NextAvailableAddress
- NewWritableSegmentAddress
;
3995 // Restore NextAvailableAddress if no new writable sections
3996 if (!NewWritableSegmentSize
)
3997 NextAvailableAddress
= LastNextAvailableAddress
;
4002 void RewriteInstance::updateOutputValues(const BOLTLinker
&Linker
) {
4003 if (std::optional
<AddressMap
> Map
= AddressMap::parse(*BC
))
4004 BC
->setIOAddressMap(std::move(*Map
));
4006 for (BinaryFunction
*Function
: BC
->getAllBinaryFunctions())
4007 Function
->updateOutputValues(Linker
);
4010 void RewriteInstance::patchELFPHDRTable() {
4011 auto ELF64LEFile
= cast
<ELF64LEObjectFile
>(InputFile
);
4012 const ELFFile
<ELF64LE
> &Obj
= ELF64LEFile
->getELFFile();
4013 raw_fd_ostream
&OS
= Out
->os();
4015 // Write/re-write program headers.
4016 Phnum
= Obj
.getHeader().e_phnum
;
4017 if (PHDRTableOffset
) {
4018 // Writing new pheader table and adding one new entry for R+X segment.
4020 if (NewWritableSegmentSize
) {
4021 // Adding one more entry for R+W segment.
4025 assert(!PHDRTableAddress
&& "unexpected address for program header table");
4026 PHDRTableOffset
= Obj
.getHeader().e_phoff
;
4027 if (NewWritableSegmentSize
) {
4028 BC
->errs() << "BOLT-ERROR: unable to add writable segment\n";
4033 // NOTE Currently .eh_frame_hdr appends to the last segment, recalculate
4034 // last segments size based on the NextAvailableAddress variable.
4035 if (!NewWritableSegmentSize
) {
4036 if (PHDRTableAddress
)
4037 NewTextSegmentSize
= NextAvailableAddress
- PHDRTableAddress
;
4038 else if (NewTextSegmentAddress
)
4039 NewTextSegmentSize
= NextAvailableAddress
- NewTextSegmentAddress
;
4041 NewWritableSegmentSize
= NextAvailableAddress
- NewWritableSegmentAddress
;
4044 const uint64_t SavedPos
= OS
.tell();
4045 OS
.seek(PHDRTableOffset
);
4047 auto createNewTextPhdr
= [&]() {
4048 ELF64LEPhdrTy NewPhdr
;
4049 NewPhdr
.p_type
= ELF::PT_LOAD
;
4050 if (PHDRTableAddress
) {
4051 NewPhdr
.p_offset
= PHDRTableOffset
;
4052 NewPhdr
.p_vaddr
= PHDRTableAddress
;
4053 NewPhdr
.p_paddr
= PHDRTableAddress
;
4055 NewPhdr
.p_offset
= NewTextSegmentOffset
;
4056 NewPhdr
.p_vaddr
= NewTextSegmentAddress
;
4057 NewPhdr
.p_paddr
= NewTextSegmentAddress
;
4059 NewPhdr
.p_filesz
= NewTextSegmentSize
;
4060 NewPhdr
.p_memsz
= NewTextSegmentSize
;
4061 NewPhdr
.p_flags
= ELF::PF_X
| ELF::PF_R
;
4062 if (opts::Instrument
) {
4063 // FIXME: Currently instrumentation is experimental and the runtime data
4064 // is emitted with code, thus everything needs to be writable.
4065 NewPhdr
.p_flags
|= ELF::PF_W
;
4067 NewPhdr
.p_align
= BC
->PageAlign
;
4072 auto writeNewSegmentPhdrs
= [&]() {
4073 if (PHDRTableAddress
|| NewTextSegmentSize
) {
4074 ELF64LE::Phdr NewPhdr
= createNewTextPhdr();
4075 OS
.write(reinterpret_cast<const char *>(&NewPhdr
), sizeof(NewPhdr
));
4078 if (NewWritableSegmentSize
) {
4079 ELF64LEPhdrTy NewPhdr
;
4080 NewPhdr
.p_type
= ELF::PT_LOAD
;
4081 NewPhdr
.p_offset
= getFileOffsetForAddress(NewWritableSegmentAddress
);
4082 NewPhdr
.p_vaddr
= NewWritableSegmentAddress
;
4083 NewPhdr
.p_paddr
= NewWritableSegmentAddress
;
4084 NewPhdr
.p_filesz
= NewWritableSegmentSize
;
4085 NewPhdr
.p_memsz
= NewWritableSegmentSize
;
4086 NewPhdr
.p_align
= BC
->RegularPageSize
;
4087 NewPhdr
.p_flags
= ELF::PF_R
| ELF::PF_W
;
4088 OS
.write(reinterpret_cast<const char *>(&NewPhdr
), sizeof(NewPhdr
));
4092 bool ModdedGnuStack
= false;
4093 bool AddedSegment
= false;
4095 // Copy existing program headers with modifications.
4096 for (const ELF64LE::Phdr
&Phdr
: cantFail(Obj
.program_headers())) {
4097 ELF64LE::Phdr NewPhdr
= Phdr
;
4098 switch (Phdr
.p_type
) {
4100 if (PHDRTableAddress
) {
4101 NewPhdr
.p_offset
= PHDRTableOffset
;
4102 NewPhdr
.p_vaddr
= PHDRTableAddress
;
4103 NewPhdr
.p_paddr
= PHDRTableAddress
;
4104 NewPhdr
.p_filesz
= sizeof(NewPhdr
) * Phnum
;
4105 NewPhdr
.p_memsz
= sizeof(NewPhdr
) * Phnum
;
4108 case ELF::PT_GNU_EH_FRAME
: {
4109 ErrorOr
<BinarySection
&> EHFrameHdrSec
= BC
->getUniqueSectionByName(
4110 getNewSecPrefix() + getEHFrameHdrSectionName());
4111 if (EHFrameHdrSec
&& EHFrameHdrSec
->isAllocatable() &&
4112 EHFrameHdrSec
->isFinalized()) {
4113 NewPhdr
.p_offset
= EHFrameHdrSec
->getOutputFileOffset();
4114 NewPhdr
.p_vaddr
= EHFrameHdrSec
->getOutputAddress();
4115 NewPhdr
.p_paddr
= EHFrameHdrSec
->getOutputAddress();
4116 NewPhdr
.p_filesz
= EHFrameHdrSec
->getOutputSize();
4117 NewPhdr
.p_memsz
= EHFrameHdrSec
->getOutputSize();
4121 case ELF::PT_GNU_STACK
:
4122 if (opts::UseGnuStack
) {
4123 // Overwrite the header with the new text segment header.
4124 NewPhdr
= createNewTextPhdr();
4125 ModdedGnuStack
= true;
4128 case ELF::PT_DYNAMIC
:
4129 if (!opts::UseGnuStack
) {
4130 // Insert new headers before DYNAMIC.
4131 writeNewSegmentPhdrs();
4132 AddedSegment
= true;
4136 OS
.write(reinterpret_cast<const char *>(&NewPhdr
), sizeof(NewPhdr
));
4139 if (!opts::UseGnuStack
&& !AddedSegment
) {
4140 // Append new headers to the end of the table.
4141 writeNewSegmentPhdrs();
4144 if (opts::UseGnuStack
&& !ModdedGnuStack
) {
4146 << "BOLT-ERROR: could not find PT_GNU_STACK program header to modify\n";
4155 /// Write padding to \p OS such that its current \p Offset becomes aligned
4156 /// at \p Alignment. Return new (aligned) offset.
4157 uint64_t appendPadding(raw_pwrite_stream
&OS
, uint64_t Offset
,
4158 uint64_t Alignment
) {
4162 const uint64_t PaddingSize
=
4163 offsetToAlignment(Offset
, llvm::Align(Alignment
));
4164 for (unsigned I
= 0; I
< PaddingSize
; ++I
)
4165 OS
.write((unsigned char)0);
4166 return Offset
+ PaddingSize
;
4171 void RewriteInstance::rewriteNoteSections() {
4172 auto ELF64LEFile
= cast
<ELF64LEObjectFile
>(InputFile
);
4173 const ELFFile
<ELF64LE
> &Obj
= ELF64LEFile
->getELFFile();
4174 raw_fd_ostream
&OS
= Out
->os();
4176 uint64_t NextAvailableOffset
= std::max(
4177 getFileOffsetForAddress(NextAvailableAddress
), FirstNonAllocatableOffset
);
4178 OS
.seek(NextAvailableOffset
);
4180 // Copy over non-allocatable section contents and update file offsets.
4181 for (const ELF64LE::Shdr
&Section
: cantFail(Obj
.sections())) {
4182 if (Section
.sh_type
== ELF::SHT_NULL
)
4184 if (Section
.sh_flags
& ELF::SHF_ALLOC
)
4187 SectionRef SecRef
= ELF64LEFile
->toSectionRef(&Section
);
4188 BinarySection
*BSec
= BC
->getSectionForSectionRef(SecRef
);
4189 assert(BSec
&& !BSec
->isAllocatable() &&
4190 "Matching non-allocatable BinarySection should exist.");
4192 StringRef SectionName
=
4193 cantFail(Obj
.getSectionName(Section
), "cannot get section name");
4194 if (shouldStrip(Section
, SectionName
))
4197 // Insert padding as needed.
4198 NextAvailableOffset
=
4199 appendPadding(OS
, NextAvailableOffset
, Section
.sh_addralign
);
4201 // New section size.
4203 bool DataWritten
= false;
4204 // Copy over section contents unless it's one of the sections we overwrite.
4205 if (!willOverwriteSection(SectionName
)) {
4206 Size
= Section
.sh_size
;
4207 StringRef Dataref
= InputFile
->getData().substr(Section
.sh_offset
, Size
);
4209 if (BSec
->getPatcher()) {
4210 Data
= BSec
->getPatcher()->patchBinary(Dataref
);
4211 Dataref
= StringRef(Data
);
4214 // Section was expanded, so need to treat it as overwrite.
4215 if (Size
!= Dataref
.size()) {
4216 BSec
= &BC
->registerOrUpdateNoteSection(
4217 SectionName
, copyByteArray(Dataref
), Dataref
.size());
4223 // Add padding as the section extension might rely on the alignment.
4224 Size
= appendPadding(OS
, Size
, Section
.sh_addralign
);
4228 // Perform section post-processing.
4229 assert(BSec
->getAlignment() <= Section
.sh_addralign
&&
4230 "alignment exceeds value in file");
4232 if (BSec
->getAllocAddress()) {
4233 assert(!DataWritten
&& "Writing section twice.");
4235 Size
+= BSec
->write(OS
);
4238 BSec
->setOutputFileOffset(NextAvailableOffset
);
4239 BSec
->flushPendingRelocations(OS
, [this](const MCSymbol
*S
) {
4240 return getNewValueForSymbol(S
->getName());
4243 // Section contents are no longer needed, but we need to update the size so
4244 // that it will be reflected in the section header table.
4245 BSec
->updateContents(nullptr, Size
);
4247 NextAvailableOffset
+= Size
;
4250 // Write new note sections.
4251 for (BinarySection
&Section
: BC
->nonAllocatableSections()) {
4252 if (Section
.getOutputFileOffset() || !Section
.getAllocAddress())
4255 assert(!Section
.hasPendingRelocations() && "cannot have pending relocs");
4257 NextAvailableOffset
=
4258 appendPadding(OS
, NextAvailableOffset
, Section
.getAlignment());
4259 Section
.setOutputFileOffset(NextAvailableOffset
);
4262 dbgs() << "BOLT-DEBUG: writing out new section " << Section
.getName()
4263 << " of size " << Section
.getOutputSize() << " at offset 0x"
4264 << Twine::utohexstr(Section
.getOutputFileOffset()) << '\n');
4266 NextAvailableOffset
+= Section
.write(OS
);
4270 template <typename ELFT
>
4271 void RewriteInstance::finalizeSectionStringTable(ELFObjectFile
<ELFT
> *File
) {
4272 // Pre-populate section header string table.
4273 for (const BinarySection
&Section
: BC
->sections())
4274 if (!Section
.isAnonymous())
4275 SHStrTab
.add(Section
.getOutputName());
4276 SHStrTab
.finalize();
4278 const size_t SHStrTabSize
= SHStrTab
.getSize();
4279 uint8_t *DataCopy
= new uint8_t[SHStrTabSize
];
4280 memset(DataCopy
, 0, SHStrTabSize
);
4281 SHStrTab
.write(DataCopy
);
4282 BC
->registerOrUpdateNoteSection(".shstrtab",
4286 /*IsReadOnly=*/true,
4290 void RewriteInstance::addBoltInfoSection() {
4291 std::string DescStr
;
4292 raw_string_ostream
DescOS(DescStr
);
4294 DescOS
<< "BOLT revision: " << BoltRevision
<< ", "
4296 for (int I
= 0; I
< Argc
; ++I
)
4297 DescOS
<< " " << Argv
[I
];
4299 // Encode as GNU GOLD VERSION so it is easily printable by 'readelf -n'
4300 const std::string BoltInfo
=
4301 BinarySection::encodeELFNote("GNU", DescStr
, 4 /*NT_GNU_GOLD_VERSION*/);
4302 BC
->registerOrUpdateNoteSection(".note.bolt_info", copyByteArray(BoltInfo
),
4305 /*IsReadOnly=*/true, ELF::SHT_NOTE
);
4308 void RewriteInstance::addBATSection() {
4309 BC
->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME
, nullptr,
4312 /*IsReadOnly=*/true, ELF::SHT_NOTE
);
4315 void RewriteInstance::encodeBATSection() {
4316 std::string DescStr
;
4317 raw_string_ostream
DescOS(DescStr
);
4319 BAT
->write(*BC
, DescOS
);
4321 const std::string BoltInfo
=
4322 BinarySection::encodeELFNote("BOLT", DescStr
, BinarySection::NT_BOLT_BAT
);
4323 BC
->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME
,
4324 copyByteArray(BoltInfo
), BoltInfo
.size(),
4326 /*IsReadOnly=*/true, ELF::SHT_NOTE
);
4327 BC
->outs() << "BOLT-INFO: BAT section size (bytes): " << BoltInfo
.size()
4331 template <typename ELFShdrTy
>
4332 bool RewriteInstance::shouldStrip(const ELFShdrTy
&Section
,
4333 StringRef SectionName
) {
4334 // Strip non-allocatable relocation sections.
4335 if (!(Section
.sh_flags
& ELF::SHF_ALLOC
) && Section
.sh_type
== ELF::SHT_RELA
)
4338 // Strip debug sections if not updating them.
4339 if (isDebugSection(SectionName
) && !opts::UpdateDebugSections
)
4342 // Strip symtab section if needed
4343 if (opts::RemoveSymtab
&& Section
.sh_type
== ELF::SHT_SYMTAB
)
4349 template <typename ELFT
>
4350 std::vector
<typename
object::ELFObjectFile
<ELFT
>::Elf_Shdr
>
4351 RewriteInstance::getOutputSections(ELFObjectFile
<ELFT
> *File
,
4352 std::vector
<uint32_t> &NewSectionIndex
) {
4353 using ELFShdrTy
= typename ELFObjectFile
<ELFT
>::Elf_Shdr
;
4354 const ELFFile
<ELFT
> &Obj
= File
->getELFFile();
4355 typename
ELFT::ShdrRange Sections
= cantFail(Obj
.sections());
4357 // Keep track of section header entries attached to the corresponding section.
4358 std::vector
<std::pair
<BinarySection
*, ELFShdrTy
>> OutputSections
;
4359 auto addSection
= [&](const ELFShdrTy
&Section
, BinarySection
&BinSec
) {
4360 ELFShdrTy NewSection
= Section
;
4361 NewSection
.sh_name
= SHStrTab
.getOffset(BinSec
.getOutputName());
4362 OutputSections
.emplace_back(&BinSec
, std::move(NewSection
));
4365 // Copy over entries for original allocatable sections using modified name.
4366 for (const ELFShdrTy
&Section
: Sections
) {
4367 // Always ignore this section.
4368 if (Section
.sh_type
== ELF::SHT_NULL
) {
4369 OutputSections
.emplace_back(nullptr, Section
);
4373 if (!(Section
.sh_flags
& ELF::SHF_ALLOC
))
4376 SectionRef SecRef
= File
->toSectionRef(&Section
);
4377 BinarySection
*BinSec
= BC
->getSectionForSectionRef(SecRef
);
4378 assert(BinSec
&& "Matching BinarySection should exist.");
4380 // Exclude anonymous sections.
4381 if (BinSec
->isAnonymous())
4384 addSection(Section
, *BinSec
);
4387 for (BinarySection
&Section
: BC
->allocatableSections()) {
4388 if (!Section
.isFinalized())
4391 if (Section
.hasSectionRef() || Section
.isAnonymous()) {
4392 if (opts::Verbosity
)
4393 BC
->outs() << "BOLT-INFO: not writing section header for section "
4394 << Section
.getOutputName() << '\n';
4398 if (opts::Verbosity
>= 1)
4399 BC
->outs() << "BOLT-INFO: writing section header for "
4400 << Section
.getOutputName() << '\n';
4401 ELFShdrTy NewSection
;
4402 NewSection
.sh_type
= ELF::SHT_PROGBITS
;
4403 NewSection
.sh_addr
= Section
.getOutputAddress();
4404 NewSection
.sh_offset
= Section
.getOutputFileOffset();
4405 NewSection
.sh_size
= Section
.getOutputSize();
4406 NewSection
.sh_entsize
= 0;
4407 NewSection
.sh_flags
= Section
.getELFFlags();
4408 NewSection
.sh_link
= 0;
4409 NewSection
.sh_info
= 0;
4410 NewSection
.sh_addralign
= Section
.getAlignment();
4411 addSection(NewSection
, Section
);
4414 // Sort all allocatable sections by their offset.
4415 llvm::stable_sort(OutputSections
, [](const auto &A
, const auto &B
) {
4416 return A
.second
.sh_offset
< B
.second
.sh_offset
;
4419 // Fix section sizes to prevent overlapping.
4420 ELFShdrTy
*PrevSection
= nullptr;
4421 BinarySection
*PrevBinSec
= nullptr;
4422 for (auto &SectionKV
: OutputSections
) {
4423 ELFShdrTy
&Section
= SectionKV
.second
;
4425 // Ignore NOBITS sections as they don't take any space in the file.
4426 if (Section
.sh_type
== ELF::SHT_NOBITS
)
4429 // Note that address continuity is not guaranteed as sections could be
4430 // placed in different loadable segments.
4432 PrevSection
->sh_offset
+ PrevSection
->sh_size
> Section
.sh_offset
) {
4433 if (opts::Verbosity
> 1)
4434 BC
->outs() << "BOLT-INFO: adjusting size for section "
4435 << PrevBinSec
->getOutputName() << '\n';
4436 PrevSection
->sh_size
= Section
.sh_offset
- PrevSection
->sh_offset
;
4439 PrevSection
= &Section
;
4440 PrevBinSec
= SectionKV
.first
;
4443 uint64_t LastFileOffset
= 0;
4445 // Copy over entries for non-allocatable sections performing necessary
4447 for (const ELFShdrTy
&Section
: Sections
) {
4448 if (Section
.sh_type
== ELF::SHT_NULL
)
4450 if (Section
.sh_flags
& ELF::SHF_ALLOC
)
4453 StringRef SectionName
=
4454 cantFail(Obj
.getSectionName(Section
), "cannot get section name");
4456 if (shouldStrip(Section
, SectionName
))
4459 SectionRef SecRef
= File
->toSectionRef(&Section
);
4460 BinarySection
*BinSec
= BC
->getSectionForSectionRef(SecRef
);
4461 assert(BinSec
&& "Matching BinarySection should exist.");
4463 ELFShdrTy NewSection
= Section
;
4464 NewSection
.sh_offset
= BinSec
->getOutputFileOffset();
4465 NewSection
.sh_size
= BinSec
->getOutputSize();
4467 if (NewSection
.sh_type
== ELF::SHT_SYMTAB
)
4468 NewSection
.sh_info
= NumLocalSymbols
;
4470 addSection(NewSection
, *BinSec
);
4472 LastFileOffset
= BinSec
->getOutputFileOffset();
4475 // Create entries for new non-allocatable sections.
4476 for (BinarySection
&Section
: BC
->nonAllocatableSections()) {
4477 if (Section
.getOutputFileOffset() <= LastFileOffset
)
4480 if (opts::Verbosity
>= 1)
4481 BC
->outs() << "BOLT-INFO: writing section header for "
4482 << Section
.getOutputName() << '\n';
4484 ELFShdrTy NewSection
;
4485 NewSection
.sh_type
= Section
.getELFType();
4486 NewSection
.sh_addr
= 0;
4487 NewSection
.sh_offset
= Section
.getOutputFileOffset();
4488 NewSection
.sh_size
= Section
.getOutputSize();
4489 NewSection
.sh_entsize
= 0;
4490 NewSection
.sh_flags
= Section
.getELFFlags();
4491 NewSection
.sh_link
= 0;
4492 NewSection
.sh_info
= 0;
4493 NewSection
.sh_addralign
= Section
.getAlignment();
4495 addSection(NewSection
, Section
);
4498 // Assign indices to sections.
4499 std::unordered_map
<std::string
, uint64_t> NameToIndex
;
4500 for (uint32_t Index
= 1; Index
< OutputSections
.size(); ++Index
)
4501 OutputSections
[Index
].first
->setIndex(Index
);
4503 // Update section index mapping
4504 NewSectionIndex
.clear();
4505 NewSectionIndex
.resize(Sections
.size(), 0);
4506 for (const ELFShdrTy
&Section
: Sections
) {
4507 if (Section
.sh_type
== ELF::SHT_NULL
)
4510 size_t OrgIndex
= std::distance(Sections
.begin(), &Section
);
4512 SectionRef SecRef
= File
->toSectionRef(&Section
);
4513 BinarySection
*BinSec
= BC
->getSectionForSectionRef(SecRef
);
4514 assert(BinSec
&& "BinarySection should exist for an input section.");
4516 // Some sections are stripped
4517 if (!BinSec
->hasValidIndex())
4520 NewSectionIndex
[OrgIndex
] = BinSec
->getIndex();
4523 std::vector
<ELFShdrTy
> SectionsOnly(OutputSections
.size());
4524 llvm::copy(llvm::make_second_range(OutputSections
), SectionsOnly
.begin());
4526 return SectionsOnly
;
4529 // Rewrite section header table inserting new entries as needed. The sections
4530 // header table size itself may affect the offsets of other sections,
4531 // so we are placing it at the end of the binary.
4533 // As we rewrite entries we need to track how many sections were inserted
4534 // as it changes the sh_link value. We map old indices to new ones for
4535 // existing sections.
4536 template <typename ELFT
>
4537 void RewriteInstance::patchELFSectionHeaderTable(ELFObjectFile
<ELFT
> *File
) {
4538 using ELFShdrTy
= typename ELFObjectFile
<ELFT
>::Elf_Shdr
;
4539 using ELFEhdrTy
= typename ELFObjectFile
<ELFT
>::Elf_Ehdr
;
4540 raw_fd_ostream
&OS
= Out
->os();
4541 const ELFFile
<ELFT
> &Obj
= File
->getELFFile();
4543 // Mapping from old section indices to new ones
4544 std::vector
<uint32_t> NewSectionIndex
;
4545 std::vector
<ELFShdrTy
> OutputSections
=
4546 getOutputSections(File
, NewSectionIndex
);
4548 dbgs() << "BOLT-DEBUG: old to new section index mapping:\n";
4549 for (uint64_t I
= 0; I
< NewSectionIndex
.size(); ++I
)
4550 dbgs() << " " << I
<< " -> " << NewSectionIndex
[I
] << '\n';
4553 // Align starting address for section header table. There's no architecutal
4554 // need to align this, it is just for pleasant human readability.
4555 uint64_t SHTOffset
= OS
.tell();
4556 SHTOffset
= appendPadding(OS
, SHTOffset
, 16);
4558 // Write all section header entries while patching section references.
4559 for (ELFShdrTy
&Section
: OutputSections
) {
4560 Section
.sh_link
= NewSectionIndex
[Section
.sh_link
];
4561 if (Section
.sh_type
== ELF::SHT_REL
|| Section
.sh_type
== ELF::SHT_RELA
)
4562 Section
.sh_info
= NewSectionIndex
[Section
.sh_info
];
4563 OS
.write(reinterpret_cast<const char *>(&Section
), sizeof(Section
));
4567 ELFEhdrTy NewEhdr
= Obj
.getHeader();
4569 if (BC
->HasRelocations
) {
4570 if (RuntimeLibrary
*RtLibrary
= BC
->getRuntimeLibrary())
4571 NewEhdr
.e_entry
= RtLibrary
->getRuntimeStartAddress();
4573 NewEhdr
.e_entry
= getNewFunctionAddress(NewEhdr
.e_entry
);
4574 assert((NewEhdr
.e_entry
|| !Obj
.getHeader().e_entry
) &&
4575 "cannot find new address for entry point");
4577 if (PHDRTableOffset
) {
4578 NewEhdr
.e_phoff
= PHDRTableOffset
;
4579 NewEhdr
.e_phnum
= Phnum
;
4581 NewEhdr
.e_shoff
= SHTOffset
;
4582 NewEhdr
.e_shnum
= OutputSections
.size();
4583 NewEhdr
.e_shstrndx
= NewSectionIndex
[NewEhdr
.e_shstrndx
];
4584 OS
.pwrite(reinterpret_cast<const char *>(&NewEhdr
), sizeof(NewEhdr
), 0);
4587 template <typename ELFT
, typename WriteFuncTy
, typename StrTabFuncTy
>
4588 void RewriteInstance::updateELFSymbolTable(
4589 ELFObjectFile
<ELFT
> *File
, bool IsDynSym
,
4590 const typename
object::ELFObjectFile
<ELFT
>::Elf_Shdr
&SymTabSection
,
4591 const std::vector
<uint32_t> &NewSectionIndex
, WriteFuncTy Write
,
4592 StrTabFuncTy AddToStrTab
) {
4593 const ELFFile
<ELFT
> &Obj
= File
->getELFFile();
4594 using ELFSymTy
= typename ELFObjectFile
<ELFT
>::Elf_Sym
;
4596 StringRef StringSection
=
4597 cantFail(Obj
.getStringTableForSymtab(SymTabSection
));
4599 unsigned NumHotTextSymsUpdated
= 0;
4600 unsigned NumHotDataSymsUpdated
= 0;
4602 std::map
<const BinaryFunction
*, uint64_t> IslandSizes
;
4603 auto getConstantIslandSize
= [&IslandSizes
](const BinaryFunction
&BF
) {
4604 auto Itr
= IslandSizes
.find(&BF
);
4605 if (Itr
!= IslandSizes
.end())
4607 return IslandSizes
[&BF
] = BF
.estimateConstantIslandSize();
4610 // Symbols for the new symbol table.
4611 std::vector
<ELFSymTy
> Symbols
;
4613 bool EmittedColdFileSymbol
= false;
4615 auto getNewSectionIndex
= [&](uint32_t OldIndex
) {
4616 // For dynamic symbol table, the section index could be wrong on the input,
4617 // and its value is ignored by the runtime if it's different from
4618 // SHN_UNDEF and SHN_ABS.
4619 // However, we still need to update dynamic symbol table, so return a
4620 // section index, even though the index is broken.
4621 if (IsDynSym
&& OldIndex
>= NewSectionIndex
.size())
4624 assert(OldIndex
< NewSectionIndex
.size() && "section index out of bounds");
4625 const uint32_t NewIndex
= NewSectionIndex
[OldIndex
];
4627 // We may have stripped the section that dynsym was referencing due to
4628 // the linker bug. In that case return the old index avoiding marking
4629 // the symbol as undefined.
4630 if (IsDynSym
&& NewIndex
!= OldIndex
&& NewIndex
== ELF::SHN_UNDEF
)
4635 // Get the extra symbol name of a split fragment; used in addExtraSymbols.
4636 auto getSplitSymbolName
= [&](const FunctionFragment
&FF
,
4637 const ELFSymTy
&FunctionSymbol
) {
4638 SmallString
<256> SymbolName
;
4639 if (BC
->HasWarmSection
)
4641 formatv("{0}.{1}", cantFail(FunctionSymbol
.getName(StringSection
)),
4642 FF
.getFragmentNum() == FragmentNum::warm() ? "warm" : "cold");
4644 SymbolName
= formatv("{0}.cold.{1}",
4645 cantFail(FunctionSymbol
.getName(StringSection
)),
4646 FF
.getFragmentNum().get() - 1);
4650 // Add extra symbols for the function.
4652 // Note that addExtraSymbols() could be called multiple times for the same
4653 // function with different FunctionSymbol matching the main function entry
4655 auto addExtraSymbols
= [&](const BinaryFunction
&Function
,
4656 const ELFSymTy
&FunctionSymbol
) {
4657 if (Function
.isFolded()) {
4658 BinaryFunction
*ICFParent
= Function
.getFoldedIntoFunction();
4659 while (ICFParent
->isFolded())
4660 ICFParent
= ICFParent
->getFoldedIntoFunction();
4661 ELFSymTy ICFSymbol
= FunctionSymbol
;
4662 SmallVector
<char, 256> Buf
;
4664 AddToStrTab(Twine(cantFail(FunctionSymbol
.getName(StringSection
)))
4667 ICFSymbol
.st_value
= ICFParent
->getOutputAddress();
4668 ICFSymbol
.st_size
= ICFParent
->getOutputSize();
4669 ICFSymbol
.st_shndx
= ICFParent
->getCodeSection()->getIndex();
4670 Symbols
.emplace_back(ICFSymbol
);
4672 if (Function
.isSplit()) {
4673 // Prepend synthetic FILE symbol to prevent local cold fragments from
4674 // colliding with existing symbols with the same name.
4675 if (!EmittedColdFileSymbol
&&
4676 FunctionSymbol
.getBinding() == ELF::STB_GLOBAL
) {
4677 ELFSymTy FileSymbol
;
4678 FileSymbol
.st_shndx
= ELF::SHN_ABS
;
4679 FileSymbol
.st_name
= AddToStrTab(getBOLTFileSymbolName());
4680 FileSymbol
.st_value
= 0;
4681 FileSymbol
.st_size
= 0;
4682 FileSymbol
.st_other
= 0;
4683 FileSymbol
.setBindingAndType(ELF::STB_LOCAL
, ELF::STT_FILE
);
4684 Symbols
.emplace_back(FileSymbol
);
4685 EmittedColdFileSymbol
= true;
4687 for (const FunctionFragment
&FF
:
4688 Function
.getLayout().getSplitFragments()) {
4689 if (FF
.getAddress()) {
4690 ELFSymTy NewColdSym
= FunctionSymbol
;
4691 const SmallString
<256> SymbolName
=
4692 getSplitSymbolName(FF
, FunctionSymbol
);
4693 NewColdSym
.st_name
= AddToStrTab(SymbolName
);
4694 NewColdSym
.st_shndx
=
4695 Function
.getCodeSection(FF
.getFragmentNum())->getIndex();
4696 NewColdSym
.st_value
= FF
.getAddress();
4697 NewColdSym
.st_size
= FF
.getImageSize();
4698 NewColdSym
.setBindingAndType(ELF::STB_LOCAL
, ELF::STT_FUNC
);
4699 Symbols
.emplace_back(NewColdSym
);
4703 if (Function
.hasConstantIsland()) {
4704 uint64_t DataMark
= Function
.getOutputDataAddress();
4705 uint64_t CISize
= getConstantIslandSize(Function
);
4706 uint64_t CodeMark
= DataMark
+ CISize
;
4707 ELFSymTy DataMarkSym
= FunctionSymbol
;
4708 DataMarkSym
.st_name
= AddToStrTab("$d");
4709 DataMarkSym
.st_value
= DataMark
;
4710 DataMarkSym
.st_size
= 0;
4711 DataMarkSym
.setType(ELF::STT_NOTYPE
);
4712 DataMarkSym
.setBinding(ELF::STB_LOCAL
);
4713 ELFSymTy CodeMarkSym
= DataMarkSym
;
4714 CodeMarkSym
.st_name
= AddToStrTab("$x");
4715 CodeMarkSym
.st_value
= CodeMark
;
4716 Symbols
.emplace_back(DataMarkSym
);
4717 Symbols
.emplace_back(CodeMarkSym
);
4719 if (Function
.hasConstantIsland() && Function
.isSplit()) {
4720 uint64_t DataMark
= Function
.getOutputColdDataAddress();
4721 uint64_t CISize
= getConstantIslandSize(Function
);
4722 uint64_t CodeMark
= DataMark
+ CISize
;
4723 ELFSymTy DataMarkSym
= FunctionSymbol
;
4724 DataMarkSym
.st_name
= AddToStrTab("$d");
4725 DataMarkSym
.st_value
= DataMark
;
4726 DataMarkSym
.st_size
= 0;
4727 DataMarkSym
.setType(ELF::STT_NOTYPE
);
4728 DataMarkSym
.setBinding(ELF::STB_LOCAL
);
4729 ELFSymTy CodeMarkSym
= DataMarkSym
;
4730 CodeMarkSym
.st_name
= AddToStrTab("$x");
4731 CodeMarkSym
.st_value
= CodeMark
;
4732 Symbols
.emplace_back(DataMarkSym
);
4733 Symbols
.emplace_back(CodeMarkSym
);
4737 // For regular (non-dynamic) symbol table, exclude symbols referring
4738 // to non-allocatable sections.
4739 auto shouldStrip
= [&](const ELFSymTy
&Symbol
) {
4740 if (Symbol
.isAbsolute() || !Symbol
.isDefined())
4743 // If we cannot link the symbol to a section, leave it as is.
4744 Expected
<const typename
ELFT::Shdr
*> Section
=
4745 Obj
.getSection(Symbol
.st_shndx
);
4749 // Remove the section symbol iif the corresponding section was stripped.
4750 if (Symbol
.getType() == ELF::STT_SECTION
) {
4751 if (!getNewSectionIndex(Symbol
.st_shndx
))
4756 // Symbols in non-allocatable sections are typically remnants of relocations
4757 // emitted under "-emit-relocs" linker option. Delete those as we delete
4758 // relocations against non-allocatable sections.
4759 if (!((*Section
)->sh_flags
& ELF::SHF_ALLOC
))
4765 for (const ELFSymTy
&Symbol
: cantFail(Obj
.symbols(&SymTabSection
))) {
4766 // For regular (non-dynamic) symbol table strip unneeded symbols.
4767 if (!IsDynSym
&& shouldStrip(Symbol
))
4770 const BinaryFunction
*Function
=
4771 BC
->getBinaryFunctionAtAddress(Symbol
.st_value
);
4772 // Ignore false function references, e.g. when the section address matches
4773 // the address of the function.
4774 if (Function
&& Symbol
.getType() == ELF::STT_SECTION
)
4777 // For non-dynamic symtab, make sure the symbol section matches that of
4778 // the function. It can mismatch e.g. if the symbol is a section marker
4779 // in which case we treat the symbol separately from the function.
4780 // For dynamic symbol table, the section index could be wrong on the input,
4781 // and its value is ignored by the runtime if it's different from
4782 // SHN_UNDEF and SHN_ABS.
4783 if (!IsDynSym
&& Function
&&
4785 Function
->getOriginSection()->getSectionRef().getIndex())
4788 // Create a new symbol based on the existing symbol.
4789 ELFSymTy NewSymbol
= Symbol
;
4791 // Handle special symbols based on their name.
4792 Expected
<StringRef
> SymbolName
= Symbol
.getName(StringSection
);
4793 assert(SymbolName
&& "cannot get symbol name");
4795 auto updateSymbolValue
= [&](const StringRef Name
,
4796 std::optional
<uint64_t> Value
= std::nullopt
) {
4797 NewSymbol
.st_value
= Value
? *Value
: getNewValueForSymbol(Name
);
4798 NewSymbol
.st_shndx
= ELF::SHN_ABS
;
4799 BC
->outs() << "BOLT-INFO: setting " << Name
<< " to 0x"
4800 << Twine::utohexstr(NewSymbol
.st_value
) << '\n';
4803 if (*SymbolName
== "__hot_start" || *SymbolName
== "__hot_end") {
4804 if (opts::HotText
) {
4805 updateSymbolValue(*SymbolName
);
4806 ++NumHotTextSymsUpdated
;
4808 goto registerSymbol
;
4811 if (*SymbolName
== "__hot_data_start" || *SymbolName
== "__hot_data_end") {
4812 if (opts::HotData
) {
4813 updateSymbolValue(*SymbolName
);
4814 ++NumHotDataSymsUpdated
;
4816 goto registerSymbol
;
4819 if (*SymbolName
== "_end") {
4820 if (NextAvailableAddress
> Symbol
.st_value
)
4821 updateSymbolValue(*SymbolName
, NextAvailableAddress
);
4822 goto registerSymbol
;
4826 // If the symbol matched a function that was not emitted, update the
4827 // corresponding section index but otherwise leave it unchanged.
4828 if (Function
->isEmitted()) {
4829 NewSymbol
.st_value
= Function
->getOutputAddress();
4830 NewSymbol
.st_size
= Function
->getOutputSize();
4831 NewSymbol
.st_shndx
= Function
->getCodeSection()->getIndex();
4832 } else if (Symbol
.st_shndx
< ELF::SHN_LORESERVE
) {
4833 NewSymbol
.st_shndx
= getNewSectionIndex(Symbol
.st_shndx
);
4836 // Add new symbols to the symbol table if necessary.
4838 addExtraSymbols(*Function
, NewSymbol
);
4840 // Check if the function symbol matches address inside a function, i.e.
4841 // it marks a secondary entry point.
4843 (Symbol
.getType() == ELF::STT_FUNC
)
4844 ? BC
->getBinaryFunctionContainingAddress(Symbol
.st_value
,
4845 /*CheckPastEnd=*/false,
4846 /*UseMaxSize=*/true)
4849 if (Function
&& Function
->isEmitted()) {
4850 assert(Function
->getLayout().isHotColdSplit() &&
4851 "Adding symbols based on cold fragment when there are more than "
4853 const uint64_t OutputAddress
=
4854 Function
->translateInputToOutputAddress(Symbol
.st_value
);
4856 NewSymbol
.st_value
= OutputAddress
;
4857 // Force secondary entry points to have zero size.
4858 NewSymbol
.st_size
= 0;
4860 // Find fragment containing entrypoint
4861 FunctionLayout::fragment_const_iterator FF
= llvm::find_if(
4862 Function
->getLayout().fragments(), [&](const FunctionFragment
&FF
) {
4863 uint64_t Lo
= FF
.getAddress();
4864 uint64_t Hi
= Lo
+ FF
.getImageSize();
4865 return Lo
<= OutputAddress
&& OutputAddress
< Hi
;
4868 if (FF
== Function
->getLayout().fragment_end()) {
4870 OutputAddress
>= Function
->getCodeSection()->getOutputAddress() &&
4871 OutputAddress
< (Function
->getCodeSection()->getOutputAddress() +
4872 Function
->getCodeSection()->getOutputSize()) &&
4873 "Cannot locate fragment containing secondary entrypoint");
4874 FF
= Function
->getLayout().fragment_begin();
4877 NewSymbol
.st_shndx
=
4878 Function
->getCodeSection(FF
->getFragmentNum())->getIndex();
4880 // Check if the symbol belongs to moved data object and update it.
4881 BinaryData
*BD
= opts::ReorderData
.empty()
4883 : BC
->getBinaryDataAtAddress(Symbol
.st_value
);
4884 if (BD
&& BD
->isMoved() && !BD
->isJumpTable()) {
4885 assert((!BD
->getSize() || !Symbol
.st_size
||
4886 Symbol
.st_size
== BD
->getSize()) &&
4887 "sizes must match");
4889 BinarySection
&OutputSection
= BD
->getOutputSection();
4890 assert(OutputSection
.getIndex());
4892 << "BOLT-DEBUG: moving " << BD
->getName() << " from "
4893 << *BC
->getSectionNameForAddress(Symbol
.st_value
) << " ("
4894 << Symbol
.st_shndx
<< ") to " << OutputSection
.getName()
4895 << " (" << OutputSection
.getIndex() << ")\n");
4896 NewSymbol
.st_shndx
= OutputSection
.getIndex();
4897 NewSymbol
.st_value
= BD
->getOutputAddress();
4899 // Otherwise just update the section for the symbol.
4900 if (Symbol
.st_shndx
< ELF::SHN_LORESERVE
)
4901 NewSymbol
.st_shndx
= getNewSectionIndex(Symbol
.st_shndx
);
4904 // Detect local syms in the text section that we didn't update
4905 // and that were preserved by the linker to support relocations against
4906 // .text. Remove them from the symtab.
4907 if (Symbol
.getType() == ELF::STT_NOTYPE
&&
4908 Symbol
.getBinding() == ELF::STB_LOCAL
&& Symbol
.st_size
== 0) {
4909 if (BC
->getBinaryFunctionContainingAddress(Symbol
.st_value
,
4910 /*CheckPastEnd=*/false,
4911 /*UseMaxSize=*/true)) {
4912 // Can only delete the symbol if not patching. Such symbols should
4913 // not exist in the dynamic symbol table.
4914 assert(!IsDynSym
&& "cannot delete symbol");
4923 Write((&Symbol
- cantFail(Obj
.symbols(&SymTabSection
)).begin()) *
4927 Symbols
.emplace_back(NewSymbol
);
4931 assert(Symbols
.empty());
4935 // Add symbols of injected functions
4936 for (BinaryFunction
*Function
: BC
->getInjectedBinaryFunctions()) {
4938 BinarySection
*OriginSection
= Function
->getOriginSection();
4939 NewSymbol
.st_shndx
=
4941 ? getNewSectionIndex(OriginSection
->getSectionRef().getIndex())
4942 : Function
->getCodeSection()->getIndex();
4943 NewSymbol
.st_value
= Function
->getOutputAddress();
4944 NewSymbol
.st_name
= AddToStrTab(Function
->getOneName());
4945 NewSymbol
.st_size
= Function
->getOutputSize();
4946 NewSymbol
.st_other
= 0;
4947 NewSymbol
.setBindingAndType(ELF::STB_LOCAL
, ELF::STT_FUNC
);
4948 Symbols
.emplace_back(NewSymbol
);
4950 if (Function
->isSplit()) {
4951 assert(Function
->getLayout().isHotColdSplit() &&
4952 "Adding symbols based on cold fragment when there are more than "
4954 ELFSymTy NewColdSym
= NewSymbol
;
4955 NewColdSym
.setType(ELF::STT_NOTYPE
);
4956 SmallVector
<char, 256> Buf
;
4957 NewColdSym
.st_name
= AddToStrTab(
4958 Twine(Function
->getPrintName()).concat(".cold.0").toStringRef(Buf
));
4959 const FunctionFragment
&ColdFF
=
4960 Function
->getLayout().getFragment(FragmentNum::cold());
4961 NewColdSym
.st_value
= ColdFF
.getAddress();
4962 NewColdSym
.st_size
= ColdFF
.getImageSize();
4963 Symbols
.emplace_back(NewColdSym
);
4967 auto AddSymbol
= [&](const StringRef
&Name
, uint64_t Address
) {
4972 Symbol
.st_value
= Address
;
4973 Symbol
.st_shndx
= ELF::SHN_ABS
;
4974 Symbol
.st_name
= AddToStrTab(Name
);
4976 Symbol
.st_other
= 0;
4977 Symbol
.setBindingAndType(ELF::STB_WEAK
, ELF::STT_NOTYPE
);
4979 BC
->outs() << "BOLT-INFO: setting " << Name
<< " to 0x"
4980 << Twine::utohexstr(Symbol
.st_value
) << '\n';
4982 Symbols
.emplace_back(Symbol
);
4985 // Add runtime library start and fini address symbols
4986 if (RuntimeLibrary
*RtLibrary
= BC
->getRuntimeLibrary()) {
4987 AddSymbol("__bolt_runtime_start", RtLibrary
->getRuntimeStartAddress());
4988 AddSymbol("__bolt_runtime_fini", RtLibrary
->getRuntimeFiniAddress());
4991 assert((!NumHotTextSymsUpdated
|| NumHotTextSymsUpdated
== 2) &&
4992 "either none or both __hot_start/__hot_end symbols were expected");
4993 assert((!NumHotDataSymsUpdated
|| NumHotDataSymsUpdated
== 2) &&
4994 "either none or both __hot_data_start/__hot_data_end symbols were "
4997 auto AddEmittedSymbol
= [&](const StringRef
&Name
) {
4998 AddSymbol(Name
, getNewValueForSymbol(Name
));
5001 if (opts::HotText
&& !NumHotTextSymsUpdated
) {
5002 AddEmittedSymbol("__hot_start");
5003 AddEmittedSymbol("__hot_end");
5006 if (opts::HotData
&& !NumHotDataSymsUpdated
) {
5007 AddEmittedSymbol("__hot_data_start");
5008 AddEmittedSymbol("__hot_data_end");
5011 // Put local symbols at the beginning.
5012 llvm::stable_sort(Symbols
, [](const ELFSymTy
&A
, const ELFSymTy
&B
) {
5013 if (A
.getBinding() == ELF::STB_LOCAL
&& B
.getBinding() != ELF::STB_LOCAL
)
5018 for (const ELFSymTy
&Symbol
: Symbols
)
5022 template <typename ELFT
>
5023 void RewriteInstance::patchELFSymTabs(ELFObjectFile
<ELFT
> *File
) {
5024 const ELFFile
<ELFT
> &Obj
= File
->getELFFile();
5025 using ELFShdrTy
= typename ELFObjectFile
<ELFT
>::Elf_Shdr
;
5026 using ELFSymTy
= typename ELFObjectFile
<ELFT
>::Elf_Sym
;
5028 // Compute a preview of how section indices will change after rewriting, so
5029 // we can properly update the symbol table based on new section indices.
5030 std::vector
<uint32_t> NewSectionIndex
;
5031 getOutputSections(File
, NewSectionIndex
);
5033 // Update dynamic symbol table.
5034 const ELFShdrTy
*DynSymSection
= nullptr;
5035 for (const ELFShdrTy
&Section
: cantFail(Obj
.sections())) {
5036 if (Section
.sh_type
== ELF::SHT_DYNSYM
) {
5037 DynSymSection
= &Section
;
5041 assert((DynSymSection
|| BC
->IsStaticExecutable
) &&
5042 "dynamic symbol table expected");
5043 if (DynSymSection
) {
5044 updateELFSymbolTable(
5049 [&](size_t Offset
, const ELFSymTy
&Sym
) {
5050 Out
->os().pwrite(reinterpret_cast<const char *>(&Sym
),
5052 DynSymSection
->sh_offset
+ Offset
);
5054 [](StringRef
) -> size_t { return 0; });
5057 if (opts::RemoveSymtab
)
5060 // (re)create regular symbol table.
5061 const ELFShdrTy
*SymTabSection
= nullptr;
5062 for (const ELFShdrTy
&Section
: cantFail(Obj
.sections())) {
5063 if (Section
.sh_type
== ELF::SHT_SYMTAB
) {
5064 SymTabSection
= &Section
;
5068 if (!SymTabSection
) {
5069 BC
->errs() << "BOLT-WARNING: no symbol table found\n";
5073 const ELFShdrTy
*StrTabSection
=
5074 cantFail(Obj
.getSection(SymTabSection
->sh_link
));
5075 std::string NewContents
;
5076 std::string NewStrTab
= std::string(
5077 File
->getData().substr(StrTabSection
->sh_offset
, StrTabSection
->sh_size
));
5078 StringRef SecName
= cantFail(Obj
.getSectionName(*SymTabSection
));
5079 StringRef StrSecName
= cantFail(Obj
.getSectionName(*StrTabSection
));
5081 NumLocalSymbols
= 0;
5082 updateELFSymbolTable(
5087 [&](size_t Offset
, const ELFSymTy
&Sym
) {
5088 if (Sym
.getBinding() == ELF::STB_LOCAL
)
5090 NewContents
.append(reinterpret_cast<const char *>(&Sym
),
5093 [&](StringRef Str
) {
5094 size_t Idx
= NewStrTab
.size();
5095 NewStrTab
.append(NameResolver::restore(Str
).str());
5096 NewStrTab
.append(1, '\0');
5100 BC
->registerOrUpdateNoteSection(SecName
,
5101 copyByteArray(NewContents
),
5104 /*IsReadOnly=*/true,
5107 BC
->registerOrUpdateNoteSection(StrSecName
,
5108 copyByteArray(NewStrTab
),
5111 /*IsReadOnly=*/true,
5115 template <typename ELFT
>
5116 void RewriteInstance::patchELFAllocatableRelrSection(
5117 ELFObjectFile
<ELFT
> *File
) {
5118 if (!DynamicRelrAddress
)
5121 raw_fd_ostream
&OS
= Out
->os();
5122 const uint8_t PSize
= BC
->AsmInfo
->getCodePointerSize();
5123 const uint64_t MaxDelta
= ((CHAR_BIT
* DynamicRelrEntrySize
) - 1) * PSize
;
5125 auto FixAddend
= [&](const BinarySection
&Section
, const Relocation
&Rel
,
5126 uint64_t FileOffset
) {
5127 // Fix relocation symbol value in place if no static relocation found
5128 // on the same address. We won't check the BF relocations here since it
5129 // is rare case and no optimization is required.
5130 if (Section
.getRelocationAt(Rel
.Offset
))
5133 // No fixup needed if symbol address was not changed
5134 const uint64_t Addend
= getNewFunctionOrDataAddress(Rel
.Addend
);
5138 OS
.pwrite(reinterpret_cast<const char *>(&Addend
), PSize
, FileOffset
);
5141 // Fill new relative relocation offsets set
5142 std::set
<uint64_t> RelOffsets
;
5143 for (const BinarySection
&Section
: BC
->allocatableSections()) {
5144 const uint64_t SectionInputAddress
= Section
.getAddress();
5145 uint64_t SectionAddress
= Section
.getOutputAddress();
5146 if (!SectionAddress
)
5147 SectionAddress
= SectionInputAddress
;
5149 for (const Relocation
&Rel
: Section
.dynamicRelocations()) {
5150 if (!Rel
.isRelative())
5153 uint64_t RelOffset
=
5154 getNewFunctionOrDataAddress(SectionInputAddress
+ Rel
.Offset
);
5156 RelOffset
= RelOffset
== 0 ? SectionAddress
+ Rel
.Offset
: RelOffset
;
5157 assert((RelOffset
& 1) == 0 && "Wrong relocation offset");
5158 RelOffsets
.emplace(RelOffset
);
5159 FixAddend(Section
, Rel
, RelOffset
);
5163 ErrorOr
<BinarySection
&> Section
=
5164 BC
->getSectionForAddress(*DynamicRelrAddress
);
5165 assert(Section
&& "cannot get .relr.dyn section");
5166 assert(Section
->isRelr() && "Expected section to be SHT_RELR type");
5167 uint64_t RelrDynOffset
= Section
->getInputFileOffset();
5168 const uint64_t RelrDynEndOffset
= RelrDynOffset
+ Section
->getSize();
5170 auto WriteRelr
= [&](uint64_t Value
) {
5171 if (RelrDynOffset
+ DynamicRelrEntrySize
> RelrDynEndOffset
) {
5172 BC
->errs() << "BOLT-ERROR: Offset overflow for relr.dyn section\n";
5176 OS
.pwrite(reinterpret_cast<const char *>(&Value
), DynamicRelrEntrySize
,
5178 RelrDynOffset
+= DynamicRelrEntrySize
;
5181 for (auto RelIt
= RelOffsets
.begin(); RelIt
!= RelOffsets
.end();) {
5183 uint64_t Base
= *RelIt
++ + PSize
;
5185 uint64_t Bitmap
= 0;
5186 for (; RelIt
!= RelOffsets
.end(); ++RelIt
) {
5187 const uint64_t Delta
= *RelIt
- Base
;
5188 if (Delta
>= MaxDelta
|| Delta
% PSize
)
5191 Bitmap
|= (1ULL << (Delta
/ PSize
));
5197 WriteRelr((Bitmap
<< 1) | 1);
5202 // Fill the rest of the section with empty bitmap value
5203 while (RelrDynOffset
!= RelrDynEndOffset
)
5207 template <typename ELFT
>
5209 RewriteInstance::patchELFAllocatableRelaSections(ELFObjectFile
<ELFT
> *File
) {
5210 using Elf_Rela
= typename
ELFT::Rela
;
5211 raw_fd_ostream
&OS
= Out
->os();
5212 const ELFFile
<ELFT
> &EF
= File
->getELFFile();
5214 uint64_t RelDynOffset
= 0, RelDynEndOffset
= 0;
5215 uint64_t RelPltOffset
= 0, RelPltEndOffset
= 0;
5217 auto setSectionFileOffsets
= [&](uint64_t Address
, uint64_t &Start
,
5219 ErrorOr
<BinarySection
&> Section
= BC
->getSectionForAddress(Address
);
5220 assert(Section
&& "cannot get relocation section");
5221 Start
= Section
->getInputFileOffset();
5222 End
= Start
+ Section
->getSize();
5225 if (!DynamicRelocationsAddress
&& !PLTRelocationsAddress
)
5228 if (DynamicRelocationsAddress
)
5229 setSectionFileOffsets(*DynamicRelocationsAddress
, RelDynOffset
,
5232 if (PLTRelocationsAddress
)
5233 setSectionFileOffsets(*PLTRelocationsAddress
, RelPltOffset
,
5236 DynamicRelativeRelocationsCount
= 0;
5238 auto writeRela
= [&OS
](const Elf_Rela
*RelA
, uint64_t &Offset
) {
5239 OS
.pwrite(reinterpret_cast<const char *>(RelA
), sizeof(*RelA
), Offset
);
5240 Offset
+= sizeof(*RelA
);
5243 auto writeRelocations
= [&](bool PatchRelative
) {
5244 for (BinarySection
&Section
: BC
->allocatableSections()) {
5245 const uint64_t SectionInputAddress
= Section
.getAddress();
5246 uint64_t SectionAddress
= Section
.getOutputAddress();
5247 if (!SectionAddress
)
5248 SectionAddress
= SectionInputAddress
;
5250 for (const Relocation
&Rel
: Section
.dynamicRelocations()) {
5251 const bool IsRelative
= Rel
.isRelative();
5252 if (PatchRelative
!= IsRelative
)
5256 ++DynamicRelativeRelocationsCount
;
5259 MCSymbol
*Symbol
= Rel
.Symbol
;
5260 uint32_t SymbolIdx
= 0;
5261 uint64_t Addend
= Rel
.Addend
;
5262 uint64_t RelOffset
=
5263 getNewFunctionOrDataAddress(SectionInputAddress
+ Rel
.Offset
);
5265 RelOffset
= RelOffset
== 0 ? SectionAddress
+ Rel
.Offset
: RelOffset
;
5267 SymbolIdx
= getOutputDynamicSymbolIndex(Symbol
);
5269 // Usually this case is used for R_*_(I)RELATIVE relocations
5270 const uint64_t Address
= getNewFunctionOrDataAddress(Addend
);
5275 NewRelA
.setSymbolAndType(SymbolIdx
, Rel
.Type
, EF
.isMips64EL());
5276 NewRelA
.r_offset
= RelOffset
;
5277 NewRelA
.r_addend
= Addend
;
5279 const bool IsJmpRel
= IsJmpRelocation
.contains(Rel
.Type
);
5280 uint64_t &Offset
= IsJmpRel
? RelPltOffset
: RelDynOffset
;
5281 const uint64_t &EndOffset
=
5282 IsJmpRel
? RelPltEndOffset
: RelDynEndOffset
;
5283 if (!Offset
|| !EndOffset
) {
5284 BC
->errs() << "BOLT-ERROR: Invalid offsets for dynamic relocation\n";
5288 if (Offset
+ sizeof(NewRelA
) > EndOffset
) {
5289 BC
->errs() << "BOLT-ERROR: Offset overflow for dynamic relocation\n";
5293 writeRela(&NewRelA
, Offset
);
5298 // Place R_*_RELATIVE relocations in RELA section if RELR is not presented.
5299 // The dynamic linker expects all R_*_RELATIVE relocations in RELA
5300 // to be emitted first.
5301 if (!DynamicRelrAddress
)
5302 writeRelocations(/* PatchRelative */ true);
5303 writeRelocations(/* PatchRelative */ false);
5305 auto fillNone
= [&](uint64_t &Offset
, uint64_t EndOffset
) {
5309 typename ELFObjectFile
<ELFT
>::Elf_Rela RelA
;
5310 RelA
.setSymbolAndType(0, Relocation::getNone(), EF
.isMips64EL());
5313 while (Offset
< EndOffset
)
5314 writeRela(&RelA
, Offset
);
5316 assert(Offset
== EndOffset
&& "Unexpected section overflow");
5319 // Fill the rest of the sections with R_*_NONE relocations
5320 fillNone(RelDynOffset
, RelDynEndOffset
);
5321 fillNone(RelPltOffset
, RelPltEndOffset
);
5324 template <typename ELFT
>
5325 void RewriteInstance::patchELFGOT(ELFObjectFile
<ELFT
> *File
) {
5326 raw_fd_ostream
&OS
= Out
->os();
5328 SectionRef GOTSection
;
5329 for (const SectionRef
&Section
: File
->sections()) {
5330 StringRef SectionName
= cantFail(Section
.getName());
5331 if (SectionName
== ".got") {
5332 GOTSection
= Section
;
5336 if (!GOTSection
.getObject()) {
5337 if (!BC
->IsStaticExecutable
)
5338 BC
->errs() << "BOLT-INFO: no .got section found\n";
5342 StringRef GOTContents
= cantFail(GOTSection
.getContents());
5343 for (const uint64_t *GOTEntry
=
5344 reinterpret_cast<const uint64_t *>(GOTContents
.data());
5345 GOTEntry
< reinterpret_cast<const uint64_t *>(GOTContents
.data() +
5346 GOTContents
.size());
5348 if (uint64_t NewAddress
= getNewFunctionAddress(*GOTEntry
)) {
5349 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching GOT entry 0x"
5350 << Twine::utohexstr(*GOTEntry
) << " with 0x"
5351 << Twine::utohexstr(NewAddress
) << '\n');
5352 OS
.pwrite(reinterpret_cast<const char *>(&NewAddress
), sizeof(NewAddress
),
5353 reinterpret_cast<const char *>(GOTEntry
) -
5354 File
->getData().data());
5359 template <typename ELFT
>
5360 void RewriteInstance::patchELFDynamic(ELFObjectFile
<ELFT
> *File
) {
5361 if (BC
->IsStaticExecutable
)
5364 const ELFFile
<ELFT
> &Obj
= File
->getELFFile();
5365 raw_fd_ostream
&OS
= Out
->os();
5367 using Elf_Phdr
= typename ELFFile
<ELFT
>::Elf_Phdr
;
5368 using Elf_Dyn
= typename ELFFile
<ELFT
>::Elf_Dyn
;
5370 // Locate DYNAMIC by looking through program headers.
5371 uint64_t DynamicOffset
= 0;
5372 const Elf_Phdr
*DynamicPhdr
= nullptr;
5373 for (const Elf_Phdr
&Phdr
: cantFail(Obj
.program_headers())) {
5374 if (Phdr
.p_type
== ELF::PT_DYNAMIC
) {
5375 DynamicOffset
= Phdr
.p_offset
;
5376 DynamicPhdr
= &Phdr
;
5377 assert(Phdr
.p_memsz
== Phdr
.p_filesz
&& "dynamic sizes should match");
5381 assert(DynamicPhdr
&& "missing dynamic in ELF binary");
5383 bool ZNowSet
= false;
5385 // Go through all dynamic entries and patch functions addresses with
5387 typename
ELFT::DynRange DynamicEntries
=
5388 cantFail(Obj
.dynamicEntries(), "error accessing dynamic table");
5389 auto DTB
= DynamicEntries
.begin();
5390 for (const Elf_Dyn
&Dyn
: DynamicEntries
) {
5391 Elf_Dyn NewDE
= Dyn
;
5392 bool ShouldPatch
= true;
5393 switch (Dyn
.d_tag
) {
5395 ShouldPatch
= false;
5397 case ELF::DT_RELACOUNT
:
5398 NewDE
.d_un
.d_val
= DynamicRelativeRelocationsCount
;
5401 case ELF::DT_FINI
: {
5402 if (BC
->HasRelocations
) {
5403 if (uint64_t NewAddress
= getNewFunctionAddress(Dyn
.getPtr())) {
5404 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching dynamic entry of type "
5405 << Dyn
.getTag() << '\n');
5406 NewDE
.d_un
.d_ptr
= NewAddress
;
5409 RuntimeLibrary
*RtLibrary
= BC
->getRuntimeLibrary();
5410 if (RtLibrary
&& Dyn
.getTag() == ELF::DT_FINI
) {
5411 if (uint64_t Addr
= RtLibrary
->getRuntimeFiniAddress())
5412 NewDE
.d_un
.d_ptr
= Addr
;
5414 if (RtLibrary
&& Dyn
.getTag() == ELF::DT_INIT
&& !BC
->HasInterpHeader
) {
5415 if (auto Addr
= RtLibrary
->getRuntimeStartAddress()) {
5416 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set DT_INIT to 0x"
5417 << Twine::utohexstr(Addr
) << '\n');
5418 NewDE
.d_un
.d_ptr
= Addr
;
5424 if (BC
->RequiresZNow
) {
5425 NewDE
.d_un
.d_val
|= ELF::DF_BIND_NOW
;
5429 case ELF::DT_FLAGS_1
:
5430 if (BC
->RequiresZNow
) {
5431 NewDE
.d_un
.d_val
|= ELF::DF_1_NOW
;
5437 OS
.pwrite(reinterpret_cast<const char *>(&NewDE
), sizeof(NewDE
),
5438 DynamicOffset
+ (&Dyn
- DTB
) * sizeof(Dyn
));
5441 if (BC
->RequiresZNow
&& !ZNowSet
) {
5443 << "BOLT-ERROR: output binary requires immediate relocation "
5444 "processing which depends on DT_FLAGS or DT_FLAGS_1 presence in "
5445 ".dynamic. Please re-link the binary with -znow.\n";
5450 template <typename ELFT
>
5451 Error
RewriteInstance::readELFDynamic(ELFObjectFile
<ELFT
> *File
) {
5452 const ELFFile
<ELFT
> &Obj
= File
->getELFFile();
5454 using Elf_Phdr
= typename ELFFile
<ELFT
>::Elf_Phdr
;
5455 using Elf_Dyn
= typename ELFFile
<ELFT
>::Elf_Dyn
;
5457 // Locate DYNAMIC by looking through program headers.
5458 const Elf_Phdr
*DynamicPhdr
= nullptr;
5459 for (const Elf_Phdr
&Phdr
: cantFail(Obj
.program_headers())) {
5460 if (Phdr
.p_type
== ELF::PT_DYNAMIC
) {
5461 DynamicPhdr
= &Phdr
;
5467 BC
->outs() << "BOLT-INFO: static input executable detected\n";
5468 // TODO: static PIE executable might have dynamic header
5469 BC
->IsStaticExecutable
= true;
5470 return Error::success();
5473 if (DynamicPhdr
->p_memsz
!= DynamicPhdr
->p_filesz
)
5474 return createStringError(errc::executable_format_error
,
5475 "dynamic section sizes should match");
5477 // Go through all dynamic entries to locate entries of interest.
5478 auto DynamicEntriesOrErr
= Obj
.dynamicEntries();
5479 if (!DynamicEntriesOrErr
)
5480 return DynamicEntriesOrErr
.takeError();
5481 typename
ELFT::DynRange DynamicEntries
= DynamicEntriesOrErr
.get();
5483 for (const Elf_Dyn
&Dyn
: DynamicEntries
) {
5484 switch (Dyn
.d_tag
) {
5486 if (!BC
->HasInterpHeader
) {
5487 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set start function address\n");
5488 BC
->StartFunctionAddress
= Dyn
.getPtr();
5492 BC
->FiniAddress
= Dyn
.getPtr();
5494 case ELF::DT_FINI_ARRAY
:
5495 BC
->FiniArrayAddress
= Dyn
.getPtr();
5497 case ELF::DT_FINI_ARRAYSZ
:
5498 BC
->FiniArraySize
= Dyn
.getPtr();
5501 DynamicRelocationsAddress
= Dyn
.getPtr();
5503 case ELF::DT_RELASZ
:
5504 DynamicRelocationsSize
= Dyn
.getVal();
5506 case ELF::DT_JMPREL
:
5507 PLTRelocationsAddress
= Dyn
.getPtr();
5509 case ELF::DT_PLTRELSZ
:
5510 PLTRelocationsSize
= Dyn
.getVal();
5512 case ELF::DT_RELACOUNT
:
5513 DynamicRelativeRelocationsCount
= Dyn
.getVal();
5516 DynamicRelrAddress
= Dyn
.getPtr();
5518 case ELF::DT_RELRSZ
:
5519 DynamicRelrSize
= Dyn
.getVal();
5521 case ELF::DT_RELRENT
:
5522 DynamicRelrEntrySize
= Dyn
.getVal();
5527 if (!DynamicRelocationsAddress
|| !DynamicRelocationsSize
) {
5528 DynamicRelocationsAddress
.reset();
5529 DynamicRelocationsSize
= 0;
5532 if (!PLTRelocationsAddress
|| !PLTRelocationsSize
) {
5533 PLTRelocationsAddress
.reset();
5534 PLTRelocationsSize
= 0;
5537 if (!DynamicRelrAddress
|| !DynamicRelrSize
) {
5538 DynamicRelrAddress
.reset();
5539 DynamicRelrSize
= 0;
5540 } else if (!DynamicRelrEntrySize
) {
5541 BC
->errs() << "BOLT-ERROR: expected DT_RELRENT to be presented "
5542 << "in DYNAMIC section\n";
5544 } else if (DynamicRelrSize
% DynamicRelrEntrySize
) {
5545 BC
->errs() << "BOLT-ERROR: expected RELR table size to be divisible "
5546 << "by RELR entry size\n";
5550 return Error::success();
5553 uint64_t RewriteInstance::getNewFunctionAddress(uint64_t OldAddress
) {
5554 const BinaryFunction
*Function
= BC
->getBinaryFunctionAtAddress(OldAddress
);
5558 return Function
->getOutputAddress();
5561 uint64_t RewriteInstance::getNewFunctionOrDataAddress(uint64_t OldAddress
) {
5562 if (uint64_t Function
= getNewFunctionAddress(OldAddress
))
5565 const BinaryData
*BD
= BC
->getBinaryDataAtAddress(OldAddress
);
5566 if (BD
&& BD
->isMoved())
5567 return BD
->getOutputAddress();
5569 if (const BinaryFunction
*BF
=
5570 BC
->getBinaryFunctionContainingAddress(OldAddress
)) {
5571 if (BF
->isEmitted()) {
5572 // If OldAddress is the another entry point of
5573 // the function, then BOLT could get the new address.
5574 if (BF
->isMultiEntry()) {
5575 for (const BinaryBasicBlock
&BB
: *BF
)
5576 if (BB
.isEntryPoint() &&
5577 (BF
->getAddress() + BB
.getOffset()) == OldAddress
)
5578 return BF
->getOutputAddress() + BB
.getOffset();
5580 BC
->errs() << "BOLT-ERROR: unable to get new address corresponding to "
5582 << Twine::utohexstr(OldAddress
) << " in function " << *BF
5583 << ". Consider adding this function to --skip-funcs=...\n";
5591 void RewriteInstance::rewriteFile() {
5593 Out
= std::make_unique
<ToolOutputFile
>(opts::OutputFilename
, EC
,
5595 check_error(EC
, "cannot create output executable file");
5597 raw_fd_ostream
&OS
= Out
->os();
5599 // Copy allocatable part of the input.
5600 OS
<< InputFile
->getData().substr(0, FirstNonAllocatableOffset
);
5602 auto Streamer
= BC
->createStreamer(OS
);
5603 // Make sure output stream has enough reserved space, otherwise
5604 // pwrite() will fail.
5605 uint64_t Offset
= std::max(getFileOffsetForAddress(NextAvailableAddress
),
5606 FirstNonAllocatableOffset
);
5607 Offset
= OS
.seek(Offset
);
5608 assert((Offset
!= (uint64_t)-1) && "Error resizing output file");
5610 // Overwrite functions with fixed output address. This is mostly used by
5611 // non-relocation mode, with one exception: injected functions are covered
5612 // here in both modes.
5613 uint64_t CountOverwrittenFunctions
= 0;
5614 uint64_t OverwrittenScore
= 0;
5615 for (BinaryFunction
*Function
: BC
->getAllBinaryFunctions()) {
5616 if (Function
->getImageAddress() == 0 || Function
->getImageSize() == 0)
5619 if (Function
->getImageSize() > Function
->getMaxSize()) {
5620 assert(!BC
->isX86() && "Unexpected large function.");
5621 if (opts::Verbosity
>= 1)
5622 BC
->errs() << "BOLT-WARNING: new function size (0x"
5623 << Twine::utohexstr(Function
->getImageSize())
5624 << ") is larger than maximum allowed size (0x"
5625 << Twine::utohexstr(Function
->getMaxSize())
5626 << ") for function " << *Function
<< '\n';
5628 // Remove jump table sections that this function owns in non-reloc mode
5629 // because we don't want to write them anymore.
5630 if (!BC
->HasRelocations
&& opts::JumpTables
== JTS_BASIC
) {
5631 for (auto &JTI
: Function
->JumpTables
) {
5632 JumpTable
*JT
= JTI
.second
;
5633 BinarySection
&Section
= JT
->getOutputSection();
5634 BC
->deregisterSection(Section
);
5640 const auto HasAddress
= [](const FunctionFragment
&FF
) {
5641 return FF
.empty() ||
5642 (FF
.getImageAddress() != 0 && FF
.getImageSize() != 0);
5644 const bool SplitFragmentsHaveAddress
=
5645 llvm::all_of(Function
->getLayout().getSplitFragments(), HasAddress
);
5646 if (Function
->isSplit() && !SplitFragmentsHaveAddress
) {
5647 const auto HasNoAddress
= [](const FunctionFragment
&FF
) {
5648 return FF
.getImageAddress() == 0 && FF
.getImageSize() == 0;
5650 assert(llvm::all_of(Function
->getLayout().getSplitFragments(),
5652 "Some split fragments have an address while others do not");
5657 OverwrittenScore
+= Function
->getFunctionScore();
5658 ++CountOverwrittenFunctions
;
5660 // Overwrite function in the output file.
5661 if (opts::Verbosity
>= 2)
5662 BC
->outs() << "BOLT: rewriting function \"" << *Function
<< "\"\n";
5664 OS
.pwrite(reinterpret_cast<char *>(Function
->getImageAddress()),
5665 Function
->getImageSize(), Function
->getFileOffset());
5667 // Write nops at the end of the function.
5668 if (Function
->getMaxSize() != std::numeric_limits
<uint64_t>::max()) {
5669 uint64_t Pos
= OS
.tell();
5670 OS
.seek(Function
->getFileOffset() + Function
->getImageSize());
5671 BC
->MAB
->writeNopData(
5672 OS
, Function
->getMaxSize() - Function
->getImageSize(), &*BC
->STI
);
5677 if (!Function
->isSplit())
5681 if (opts::Verbosity
>= 2) {
5682 BC
->outs() << formatv("BOLT: rewriting function \"{0}\" (split parts)\n",
5686 for (const FunctionFragment
&FF
:
5687 Function
->getLayout().getSplitFragments()) {
5688 OS
.pwrite(reinterpret_cast<char *>(FF
.getImageAddress()),
5689 FF
.getImageSize(), FF
.getFileOffset());
5693 // Print function statistics for non-relocation mode.
5694 if (!BC
->HasRelocations
) {
5695 BC
->outs() << "BOLT: " << CountOverwrittenFunctions
<< " out of "
5696 << BC
->getBinaryFunctions().size()
5697 << " functions were overwritten.\n";
5698 if (BC
->TotalScore
!= 0) {
5699 double Coverage
= OverwrittenScore
/ (double)BC
->TotalScore
* 100.0;
5700 BC
->outs() << format("BOLT-INFO: rewritten functions cover %.2lf",
5702 << "% of the execution count of simple functions of "
5707 if (BC
->HasRelocations
&& opts::TrapOldCode
) {
5708 uint64_t SavedPos
= OS
.tell();
5709 // Overwrite function body to make sure we never execute these instructions.
5710 for (auto &BFI
: BC
->getBinaryFunctions()) {
5711 BinaryFunction
&BF
= BFI
.second
;
5712 if (!BF
.getFileOffset() || !BF
.isEmitted())
5714 OS
.seek(BF
.getFileOffset());
5715 StringRef TrapInstr
= BC
->MIB
->getTrapFillValue();
5716 unsigned NInstr
= BF
.getMaxSize() / TrapInstr
.size();
5717 for (unsigned I
= 0; I
< NInstr
; ++I
)
5718 OS
.write(TrapInstr
.data(), TrapInstr
.size());
5723 // Write all allocatable sections - reloc-mode text is written here as well
5724 for (BinarySection
&Section
: BC
->allocatableSections()) {
5725 if (!Section
.isFinalized() || !Section
.getOutputData())
5727 if (Section
.isLinkOnly())
5730 if (opts::Verbosity
>= 1)
5731 BC
->outs() << "BOLT: writing new section " << Section
.getName()
5733 << Twine::utohexstr(Section
.getAllocAddress()) << "\n of size "
5734 << Section
.getOutputSize() << "\n at offset "
5735 << Section
.getOutputFileOffset() << '\n';
5736 OS
.seek(Section
.getOutputFileOffset());
5740 for (BinarySection
&Section
: BC
->allocatableSections())
5741 Section
.flushPendingRelocations(OS
, [this](const MCSymbol
*S
) {
5742 return getNewValueForSymbol(S
->getName());
5745 // If .eh_frame is present create .eh_frame_hdr.
5747 writeEHFrameHeader();
5749 // Add BOLT Addresses Translation maps to allow profile collection to
5750 // happen in the output binary
5751 if (opts::EnableBAT
)
5754 // Patch program header table.
5755 if (!BC
->IsLinuxKernel
)
5756 patchELFPHDRTable();
5758 // Finalize memory image of section string table.
5759 finalizeSectionStringTable();
5761 // Update symbol tables.
5764 if (opts::EnableBAT
)
5767 // Copy non-allocatable sections once allocatable part is finished.
5768 rewriteNoteSections();
5770 if (BC
->HasRelocations
) {
5771 patchELFAllocatableRelaSections();
5772 patchELFAllocatableRelrSection();
5776 // Patch dynamic section/segment.
5779 // Update ELF book-keeping info.
5780 patchELFSectionHeaderTable();
5782 if (opts::PrintSections
) {
5783 BC
->outs() << "BOLT-INFO: Sections after processing:\n";
5784 BC
->printSections(BC
->outs());
5788 EC
= sys::fs::setPermissions(
5789 opts::OutputFilename
,
5790 static_cast<sys::fs::perms
>(sys::fs::perms::all_all
&
5791 ~sys::fs::getUmask()));
5792 check_error(EC
, "cannot set permissions of output file");
5795 void RewriteInstance::writeEHFrameHeader() {
5796 BinarySection
*NewEHFrameSection
=
5797 getSection(getNewSecPrefix() + getEHFrameSectionName());
5799 // No need to update the header if no new .eh_frame was created.
5800 if (!NewEHFrameSection
)
5803 DWARFDebugFrame
NewEHFrame(BC
->TheTriple
->getArch(), true,
5804 NewEHFrameSection
->getOutputAddress());
5805 Error E
= NewEHFrame
.parse(DWARFDataExtractor(
5806 NewEHFrameSection
->getOutputContents(), BC
->AsmInfo
->isLittleEndian(),
5807 BC
->AsmInfo
->getCodePointerSize()));
5808 check_error(std::move(E
), "failed to parse EH frame");
5810 uint64_t RelocatedEHFrameAddress
= 0;
5811 StringRef RelocatedEHFrameContents
;
5812 BinarySection
*RelocatedEHFrameSection
=
5813 getSection(".relocated" + getEHFrameSectionName());
5814 if (RelocatedEHFrameSection
) {
5815 RelocatedEHFrameAddress
= RelocatedEHFrameSection
->getOutputAddress();
5816 RelocatedEHFrameContents
= RelocatedEHFrameSection
->getOutputContents();
5818 DWARFDebugFrame
RelocatedEHFrame(BC
->TheTriple
->getArch(), true,
5819 RelocatedEHFrameAddress
);
5820 Error Er
= RelocatedEHFrame
.parse(DWARFDataExtractor(
5821 RelocatedEHFrameContents
, BC
->AsmInfo
->isLittleEndian(),
5822 BC
->AsmInfo
->getCodePointerSize()));
5823 check_error(std::move(Er
), "failed to parse EH frame");
5825 LLVM_DEBUG(dbgs() << "BOLT: writing a new " << getEHFrameHdrSectionName()
5828 // Try to overwrite the original .eh_frame_hdr if the size permits.
5829 uint64_t EHFrameHdrOutputAddress
= 0;
5830 uint64_t EHFrameHdrFileOffset
= 0;
5831 std::vector
<char> NewEHFrameHdr
;
5832 BinarySection
*OldEHFrameHdrSection
= getSection(getEHFrameHdrSectionName());
5833 if (OldEHFrameHdrSection
) {
5834 NewEHFrameHdr
= CFIRdWrt
->generateEHFrameHeader(
5835 RelocatedEHFrame
, NewEHFrame
, OldEHFrameHdrSection
->getAddress());
5836 if (NewEHFrameHdr
.size() <= OldEHFrameHdrSection
->getSize()) {
5837 BC
->outs() << "BOLT-INFO: rewriting " << getEHFrameHdrSectionName()
5839 EHFrameHdrOutputAddress
= OldEHFrameHdrSection
->getAddress();
5840 EHFrameHdrFileOffset
= OldEHFrameHdrSection
->getInputFileOffset();
5842 OldEHFrameHdrSection
->setOutputName(getOrgSecPrefix() +
5843 getEHFrameHdrSectionName());
5844 OldEHFrameHdrSection
= nullptr;
5848 // If there was not enough space, allocate more memory for .eh_frame_hdr.
5849 if (!OldEHFrameHdrSection
) {
5850 NextAvailableAddress
=
5851 appendPadding(Out
->os(), NextAvailableAddress
, EHFrameHdrAlign
);
5853 EHFrameHdrOutputAddress
= NextAvailableAddress
;
5854 EHFrameHdrFileOffset
= getFileOffsetForAddress(NextAvailableAddress
);
5856 NewEHFrameHdr
= CFIRdWrt
->generateEHFrameHeader(
5857 RelocatedEHFrame
, NewEHFrame
, EHFrameHdrOutputAddress
);
5859 NextAvailableAddress
+= NewEHFrameHdr
.size();
5860 if (!BC
->BOLTReserved
.empty() &&
5861 (NextAvailableAddress
> BC
->BOLTReserved
.end())) {
5862 BC
->errs() << "BOLT-ERROR: unable to fit " << getEHFrameHdrSectionName()
5863 << " into reserved space\n";
5867 // Create a new entry in the section header table.
5868 const unsigned Flags
= BinarySection::getFlags(/*IsReadOnly=*/true,
5870 /*IsAllocatable=*/true);
5871 BinarySection
&EHFrameHdrSec
= BC
->registerOrUpdateSection(
5872 getNewSecPrefix() + getEHFrameHdrSectionName(), ELF::SHT_PROGBITS
,
5873 Flags
, nullptr, NewEHFrameHdr
.size(), /*Alignment=*/1);
5874 EHFrameHdrSec
.setOutputFileOffset(EHFrameHdrFileOffset
);
5875 EHFrameHdrSec
.setOutputAddress(EHFrameHdrOutputAddress
);
5876 EHFrameHdrSec
.setOutputName(getEHFrameHdrSectionName());
5879 Out
->os().seek(EHFrameHdrFileOffset
);
5880 Out
->os().write(NewEHFrameHdr
.data(), NewEHFrameHdr
.size());
5882 // Pad the contents if overwriting in-place.
5883 if (OldEHFrameHdrSection
)
5884 Out
->os().write_zeros(OldEHFrameHdrSection
->getSize() -
5885 NewEHFrameHdr
.size());
5887 // Merge new .eh_frame with the relocated original so that gdb can locate all
5889 if (RelocatedEHFrameSection
) {
5890 const uint64_t NewEHFrameSectionSize
=
5891 RelocatedEHFrameSection
->getOutputAddress() +
5892 RelocatedEHFrameSection
->getOutputSize() -
5893 NewEHFrameSection
->getOutputAddress();
5894 NewEHFrameSection
->updateContents(NewEHFrameSection
->getOutputData(),
5895 NewEHFrameSectionSize
);
5896 BC
->deregisterSection(*RelocatedEHFrameSection
);
5899 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: size of .eh_frame after merge is "
5900 << NewEHFrameSection
->getOutputSize() << '\n');
5903 uint64_t RewriteInstance::getNewValueForSymbol(const StringRef Name
) {
5904 auto Value
= Linker
->lookupSymbol(Name
);
5908 // Return the original value if we haven't emitted the symbol.
5909 BinaryData
*BD
= BC
->getBinaryDataByName(Name
);
5913 return BD
->getAddress();
5916 uint64_t RewriteInstance::getFileOffsetForAddress(uint64_t Address
) const {
5917 // Check if it's possibly part of the new segment.
5918 if (NewTextSegmentAddress
&& Address
>= NewTextSegmentAddress
)
5919 return Address
- NewTextSegmentAddress
+ NewTextSegmentOffset
;
5921 // Find an existing segment that matches the address.
5922 const auto SegmentInfoI
= BC
->SegmentMapInfo
.upper_bound(Address
);
5923 if (SegmentInfoI
== BC
->SegmentMapInfo
.begin())
5926 const SegmentInfo
&SegmentInfo
= std::prev(SegmentInfoI
)->second
;
5927 if (Address
< SegmentInfo
.Address
||
5928 Address
>= SegmentInfo
.Address
+ SegmentInfo
.FileSize
)
5931 return SegmentInfo
.FileOffset
+ Address
- SegmentInfo
.Address
;
5934 bool RewriteInstance::willOverwriteSection(StringRef SectionName
) {
5935 if (llvm::is_contained(SectionsToOverwrite
, SectionName
))
5937 if (llvm::is_contained(DebugSectionsToOverwrite
, SectionName
))
5940 ErrorOr
<BinarySection
&> Section
= BC
->getUniqueSectionByName(SectionName
);
5941 return Section
&& Section
->isAllocatable() && Section
->isFinalized();
5944 bool RewriteInstance::isDebugSection(StringRef SectionName
) {
5945 if (SectionName
.starts_with(".debug_") ||
5946 SectionName
.starts_with(".zdebug_") || SectionName
== ".gdb_index" ||
5947 SectionName
== ".stab" || SectionName
== ".stabstr")