1 //===- InputSection.cpp ---------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "InputSection.h"
11 #include "InputFiles.h"
12 #include "OutputSections.h"
13 #include "Relocations.h"
14 #include "SymbolTable.h"
16 #include "SyntheticSections.h"
18 #include "lld/Common/CommonLinkerContext.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/Compression.h"
21 #include "llvm/Support/Endian.h"
22 #include "llvm/Support/xxhash.h"
29 using namespace llvm::ELF
;
30 using namespace llvm::object
;
31 using namespace llvm::support
;
32 using namespace llvm::support::endian
;
33 using namespace llvm::sys
;
35 using namespace lld::elf
;
37 // Returns a string to construct an error message.
38 std::string
elf::toStr(Ctx
&ctx
, const InputSectionBase
*sec
) {
39 return (toStr(ctx
, sec
->file
) + ":(" + sec
->name
+ ")").str();
42 const ELFSyncStream
&elf::operator<<(const ELFSyncStream
&s
,
43 const InputSectionBase
*sec
) {
44 return s
<< toStr(s
.ctx
, sec
);
48 static ArrayRef
<uint8_t> getSectionContents(ObjFile
<ELFT
> &file
,
49 const typename
ELFT::Shdr
&hdr
) {
50 if (hdr
.sh_type
== SHT_NOBITS
)
51 return ArrayRef
<uint8_t>(nullptr, hdr
.sh_size
);
52 return check(file
.getObj().getSectionContents(hdr
));
55 InputSectionBase::InputSectionBase(InputFile
*file
, uint64_t flags
,
56 uint32_t type
, uint64_t entsize
,
57 uint32_t link
, uint32_t info
,
58 uint32_t addralign
, ArrayRef
<uint8_t> data
,
59 StringRef name
, Kind sectionKind
)
60 : SectionBase(sectionKind
, file
, name
, flags
, entsize
, addralign
, type
,
62 content_(data
.data()), size(data
.size()) {
63 // In order to reduce memory allocation, we assume that mergeable
64 // sections are smaller than 4 GiB, which is not an unreasonable
65 // assumption as of 2017.
66 if (sectionKind
== SectionBase::Merge
&& content().size() > UINT32_MAX
)
67 ErrAlways(getCtx()) << this << ": section too large";
69 // The ELF spec states that a value of 0 means the section has
70 // no alignment constraints.
71 uint32_t v
= std::max
<uint32_t>(addralign
, 1);
72 if (!isPowerOf2_64(v
))
73 Fatal(getCtx()) << this << ": sh_addralign is not a power of 2";
76 // If SHF_COMPRESSED is set, parse the header. The legacy .zdebug format is no
78 if (flags
& SHF_COMPRESSED
) {
80 invokeELFT(parseCompressedHeader
, ctx
);
84 // SHF_INFO_LINK and SHF_GROUP are normally resolved and not copied to the
85 // output section. However, for relocatable linking without
86 // --force-group-allocation, the SHF_GROUP flag and section groups are retained.
87 static uint64_t getFlags(Ctx
&ctx
, uint64_t flags
) {
88 flags
&= ~(uint64_t)SHF_INFO_LINK
;
89 if (ctx
.arg
.resolveGroups
)
90 flags
&= ~(uint64_t)SHF_GROUP
;
95 InputSectionBase::InputSectionBase(ObjFile
<ELFT
> &file
,
96 const typename
ELFT::Shdr
&hdr
,
97 StringRef name
, Kind sectionKind
)
98 : InputSectionBase(&file
, getFlags(file
.ctx
, hdr
.sh_flags
), hdr
.sh_type
,
99 hdr
.sh_entsize
, hdr
.sh_link
, hdr
.sh_info
,
100 hdr
.sh_addralign
, getSectionContents(file
, hdr
), name
,
102 // We reject object files having insanely large alignments even though
103 // they are allowed by the spec. I think 4GB is a reasonable limitation.
104 // We might want to relax this in the future.
105 if (hdr
.sh_addralign
> UINT32_MAX
)
106 Fatal(getCtx()) << &file
<< ": section sh_addralign is too large";
109 size_t InputSectionBase::getSize() const {
110 if (auto *s
= dyn_cast
<SyntheticSection
>(this))
112 return size
- bytesDropped
;
115 template <class ELFT
>
116 static void decompressAux(Ctx
&ctx
, const InputSectionBase
&sec
, uint8_t *out
,
118 auto *hdr
= reinterpret_cast<const typename
ELFT::Chdr
*>(sec
.content_
);
119 auto compressed
= ArrayRef
<uint8_t>(sec
.content_
, sec
.compressedSize
)
120 .slice(sizeof(typename
ELFT::Chdr
));
121 if (Error e
= hdr
->ch_type
== ELFCOMPRESS_ZLIB
122 ? compression::zlib::decompress(compressed
, out
, size
)
123 : compression::zstd::decompress(compressed
, out
, size
))
124 Fatal(ctx
) << &sec
<< ": decompress failed: " << std::move(e
);
127 void InputSectionBase::decompress() const {
129 uint8_t *uncompressedBuf
;
131 static std::mutex mu
;
132 std::lock_guard
<std::mutex
> lock(mu
);
133 uncompressedBuf
= ctx
.bAlloc
.Allocate
<uint8_t>(size
);
136 invokeELFT(decompressAux
, ctx
, *this, uncompressedBuf
, size
);
137 content_
= uncompressedBuf
;
141 template <class ELFT
>
142 RelsOrRelas
<ELFT
> InputSectionBase::relsOrRelas(bool supportsCrel
) const {
145 RelsOrRelas
<ELFT
> ret
;
146 auto *f
= cast
<ObjFile
<ELFT
>>(file
);
147 typename
ELFT::Shdr shdr
= f
->template getELFShdrs
<ELFT
>()[relSecIdx
];
148 if (shdr
.sh_type
== SHT_CREL
) {
149 // Return an iterator if supported by caller.
151 ret
.crels
= Relocs
<typename
ELFT::Crel
>(
152 (const uint8_t *)f
->mb
.getBufferStart() + shdr
.sh_offset
);
155 InputSectionBase
*const &relSec
= f
->getSections()[relSecIdx
];
156 // Otherwise, allocate a buffer to hold the decoded RELA relocations. When
157 // called for the first time, relSec is null (without --emit-relocs) or an
158 // InputSection with false decodedCrel.
159 if (!relSec
|| !cast
<InputSection
>(relSec
)->decodedCrel
) {
160 auto *sec
= makeThreadLocal
<InputSection
>(*f
, shdr
, name
);
161 f
->cacheDecodedCrel(relSecIdx
, sec
);
162 sec
->type
= SHT_RELA
;
163 sec
->decodedCrel
= true;
165 RelocsCrel
<ELFT::Is64Bits
> entries(sec
->content_
);
166 sec
->size
= entries
.size() * sizeof(typename
ELFT::Rela
);
167 auto *relas
= makeThreadLocalN
<typename
ELFT::Rela
>(entries
.size());
168 sec
->content_
= reinterpret_cast<uint8_t *>(relas
);
169 for (auto [i
, r
] : llvm::enumerate(entries
)) {
170 relas
[i
].r_offset
= r
.r_offset
;
171 relas
[i
].setSymbolAndType(r
.r_symidx
, r
.r_type
, false);
172 relas
[i
].r_addend
= r
.r_addend
;
175 ret
.relas
= {ArrayRef(
176 reinterpret_cast<const typename
ELFT::Rela
*>(relSec
->content_
),
177 relSec
->size
/ sizeof(typename
ELFT::Rela
))};
181 const void *content
= f
->mb
.getBufferStart() + shdr
.sh_offset
;
182 size_t size
= shdr
.sh_size
;
183 if (shdr
.sh_type
== SHT_REL
) {
184 ret
.rels
= {ArrayRef(reinterpret_cast<const typename
ELFT::Rel
*>(content
),
185 size
/ sizeof(typename
ELFT::Rel
))};
187 assert(shdr
.sh_type
== SHT_RELA
);
189 ArrayRef(reinterpret_cast<const typename
ELFT::Rela
*>(content
),
190 size
/ sizeof(typename
ELFT::Rela
))};
195 Ctx
&SectionBase::getCtx() const { return file
->ctx
; }
197 uint64_t SectionBase::getOffset(uint64_t offset
) const {
200 auto *os
= cast
<OutputSection
>(this);
201 // For output sections we treat offset -1 as the end of the section.
202 return offset
== uint64_t(-1) ? os
->size
: offset
;
205 llvm_unreachable("section classes do not have offsets");
209 return cast
<InputSection
>(this)->outSecOff
+ offset
;
211 // Two code paths may reach here. First, clang_rt.crtbegin.o and GCC
212 // crtbeginT.o may reference the start of an empty .eh_frame to identify the
213 // start of the output .eh_frame. Just return offset.
215 // Second, InputSection::copyRelocations on .eh_frame. Some pieces may be
216 // discarded due to GC/ICF. We should compute the output section offset.
217 const EhInputSection
*es
= cast
<EhInputSection
>(this);
218 if (!es
->content().empty())
219 if (InputSection
*isec
= es
->getParent())
220 return isec
->outSecOff
+ es
->getParentOffset(offset
);
224 const MergeInputSection
*ms
= cast
<MergeInputSection
>(this);
225 if (InputSection
*isec
= ms
->getParent())
226 return isec
->outSecOff
+ ms
->getParentOffset(offset
);
227 return ms
->getParentOffset(offset
);
229 llvm_unreachable("invalid section kind");
232 uint64_t SectionBase::getVA(uint64_t offset
) const {
233 const OutputSection
*out
= getOutputSection();
234 return (out
? out
->addr
: 0) + getOffset(offset
);
237 OutputSection
*SectionBase::getOutputSection() {
239 if (auto *isec
= dyn_cast
<InputSection
>(this))
241 else if (auto *ms
= dyn_cast
<MergeInputSection
>(this))
242 sec
= ms
->getParent();
243 else if (auto *eh
= dyn_cast
<EhInputSection
>(this))
244 sec
= eh
->getParent();
246 return cast
<OutputSection
>(this);
247 return sec
? sec
->getParent() : nullptr;
250 // When a section is compressed, `rawData` consists with a header followed
251 // by zlib-compressed data. This function parses a header to initialize
252 // `uncompressedSize` member and remove the header from `rawData`.
253 template <typename ELFT
>
254 void InputSectionBase::parseCompressedHeader(Ctx
&ctx
) {
255 flags
&= ~(uint64_t)SHF_COMPRESSED
;
258 if (content().size() < sizeof(typename
ELFT::Chdr
)) {
259 ErrAlways(ctx
) << this << ": corrupted compressed section";
263 auto *hdr
= reinterpret_cast<const typename
ELFT::Chdr
*>(content().data());
264 if (hdr
->ch_type
== ELFCOMPRESS_ZLIB
) {
265 if (!compression::zlib::isAvailable())
266 ErrAlways(ctx
) << this
267 << " is compressed with ELFCOMPRESS_ZLIB, but lld is "
268 "not built with zlib support";
269 } else if (hdr
->ch_type
== ELFCOMPRESS_ZSTD
) {
270 if (!compression::zstd::isAvailable())
271 ErrAlways(ctx
) << this
272 << " is compressed with ELFCOMPRESS_ZSTD, but lld is "
273 "not built with zstd support";
275 ErrAlways(ctx
) << this << ": unsupported compression type ("
276 << Twine(hdr
->ch_type
) << ")";
281 compressedSize
= size
;
283 addralign
= std::max
<uint32_t>(hdr
->ch_addralign
, 1);
286 InputSection
*InputSectionBase::getLinkOrderDep() const {
287 assert(flags
& SHF_LINK_ORDER
);
290 return cast
<InputSection
>(file
->getSections()[link
]);
293 // Find a symbol that encloses a given location.
294 Defined
*InputSectionBase::getEnclosingSymbol(uint64_t offset
,
295 uint8_t type
) const {
296 if (file
->isInternal())
298 for (Symbol
*b
: file
->getSymbols())
299 if (Defined
*d
= dyn_cast
<Defined
>(b
))
300 if (d
->section
== this && d
->value
<= offset
&&
301 offset
< d
->value
+ d
->size
&& (type
== 0 || type
== d
->type
))
306 // Returns an object file location string. Used to construct an error message.
307 std::string
InputSectionBase::getLocation(uint64_t offset
) const {
308 std::string secAndOffset
=
309 (name
+ "+0x" + Twine::utohexstr(offset
) + ")").str();
311 std::string filename
= toStr(getCtx(), file
);
312 if (Defined
*d
= getEnclosingFunction(offset
))
313 return filename
+ ":(function " + toStr(getCtx(), *d
) + ": " + secAndOffset
;
315 return filename
+ ":(" + secAndOffset
;
318 // This function is intended to be used for constructing an error message.
319 // The returned message looks like this:
321 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
323 // Returns an empty string if there's no way to get line info.
324 std::string
InputSectionBase::getSrcMsg(const Symbol
&sym
,
325 uint64_t offset
) const {
326 return file
->getSrcMsg(sym
, *this, offset
);
329 // Returns a filename string along with an optional section name. This
330 // function is intended to be used for constructing an error
331 // message. The returned message looks like this:
333 // path/to/foo.o:(function bar)
337 // path/to/foo.o:(function bar) in archive path/to/bar.a
338 std::string
InputSectionBase::getObjMsg(uint64_t off
) const {
339 std::string filename
= std::string(file
->getName());
342 if (!file
->archiveName
.empty())
343 archive
= (" in archive " + file
->archiveName
).str();
345 // Find a symbol that encloses a given location. getObjMsg may be called
346 // before ObjFile::initSectionsAndLocalSyms where local symbols are
348 if (Defined
*d
= getEnclosingSymbol(off
))
349 return filename
+ ":(" + toStr(getCtx(), *d
) + ")" + archive
;
351 // If there's no symbol, print out the offset in the section.
352 return (filename
+ ":(" + name
+ "+0x" + utohexstr(off
) + ")" + archive
)
356 PotentialSpillSection::PotentialSpillSection(const InputSectionBase
&source
,
357 InputSectionDescription
&isd
)
358 : InputSection(source
.file
, source
.flags
, source
.type
, source
.addralign
, {},
359 source
.name
, SectionBase::Spill
),
362 InputSection
InputSection::discarded(nullptr, 0, 0, 0, ArrayRef
<uint8_t>(), "");
364 InputSection::InputSection(InputFile
*f
, uint64_t flags
, uint32_t type
,
365 uint32_t addralign
, ArrayRef
<uint8_t> data
,
366 StringRef name
, Kind k
)
367 : InputSectionBase(f
, flags
, type
,
368 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, addralign
, data
,
370 assert(f
|| this == &InputSection::discarded
);
373 template <class ELFT
>
374 InputSection::InputSection(ObjFile
<ELFT
> &f
, const typename
ELFT::Shdr
&header
,
376 : InputSectionBase(f
, header
, name
, InputSectionBase::Regular
) {}
378 // Copy SHT_GROUP section contents. Used only for the -r option.
379 template <class ELFT
> void InputSection::copyShtGroup(uint8_t *buf
) {
380 // ELFT::Word is the 32-bit integral type in the target endianness.
381 using u32
= typename
ELFT::Word
;
382 ArrayRef
<u32
> from
= getDataAs
<u32
>();
383 auto *to
= reinterpret_cast<u32
*>(buf
);
385 // The first entry is not a section number but a flag.
388 // Adjust section numbers because section numbers in an input object files are
389 // different in the output. We also need to handle combined or discarded
391 ArrayRef
<InputSectionBase
*> sections
= file
->getSections();
392 DenseSet
<uint32_t> seen
;
393 for (uint32_t idx
: from
.slice(1)) {
394 OutputSection
*osec
= sections
[idx
]->getOutputSection();
395 if (osec
&& seen
.insert(osec
->sectionIndex
).second
)
396 *to
++ = osec
->sectionIndex
;
400 InputSectionBase
*InputSection::getRelocatedSection() const {
401 if (file
->isInternal() || !isStaticRelSecType(type
))
403 ArrayRef
<InputSectionBase
*> sections
= file
->getSections();
404 return sections
[info
];
407 template <class ELFT
, class RelTy
>
408 void InputSection::copyRelocations(Ctx
&ctx
, uint8_t *buf
) {
409 if (ctx
.arg
.relax
&& !ctx
.arg
.relocatable
&&
410 (ctx
.arg
.emachine
== EM_RISCV
|| ctx
.arg
.emachine
== EM_LOONGARCH
)) {
411 // On LoongArch and RISC-V, relaxation might change relocations: copy
412 // from internal ones that are updated by relaxation.
413 InputSectionBase
*sec
= getRelocatedSection();
414 copyRelocations
<ELFT
, RelTy
>(
416 llvm::make_range(sec
->relocations
.begin(), sec
->relocations
.end()));
418 // Convert the raw relocations in the input section into Relocation objects
419 // suitable to be used by copyRelocations below.
422 const ObjFile
<ELFT
> &file
;
423 Relocation
operator()(const RelTy
&rel
) const {
424 // RelExpr is not used so set to a dummy value.
425 return Relocation
{R_NONE
, rel
.getType(ctx
.arg
.isMips64EL
), rel
.r_offset
,
426 getAddend
<ELFT
>(rel
), &file
.getRelocTargetSym(rel
)};
430 using RawRels
= ArrayRef
<RelTy
>;
432 llvm::mapped_iterator
<typename
RawRels::iterator
, MapRel
>;
433 auto mapRel
= MapRel
{ctx
, *getFile
<ELFT
>()};
434 RawRels rawRels
= getDataAs
<RelTy
>();
435 auto rels
= llvm::make_range(MapRelIter(rawRels
.begin(), mapRel
),
436 MapRelIter(rawRels
.end(), mapRel
));
437 copyRelocations
<ELFT
, RelTy
>(ctx
, buf
, rels
);
441 // This is used for -r and --emit-relocs. We can't use memcpy to copy
442 // relocations because we need to update symbol table offset and section index
443 // for each relocation. So we copy relocations one by one.
444 template <class ELFT
, class RelTy
, class RelIt
>
445 void InputSection::copyRelocations(Ctx
&ctx
, uint8_t *buf
,
446 llvm::iterator_range
<RelIt
> rels
) {
447 const TargetInfo
&target
= *ctx
.target
;
448 InputSectionBase
*sec
= getRelocatedSection();
449 (void)sec
->contentMaybeDecompress(); // uncompress if needed
451 for (const Relocation
&rel
: rels
) {
452 RelType type
= rel
.type
;
453 const ObjFile
<ELFT
> *file
= getFile
<ELFT
>();
454 Symbol
&sym
= *rel
.sym
;
456 auto *p
= reinterpret_cast<typename
ELFT::Rela
*>(buf
);
457 buf
+= sizeof(RelTy
);
459 if (RelTy::HasAddend
)
460 p
->r_addend
= rel
.addend
;
462 // Output section VA is zero for -r, so r_offset is an offset within the
463 // section, but for --emit-relocs it is a virtual address.
464 p
->r_offset
= sec
->getVA(rel
.offset
);
465 p
->setSymbolAndType(ctx
.in
.symTab
->getSymbolIndex(sym
), type
,
468 if (sym
.type
== STT_SECTION
) {
469 // We combine multiple section symbols into only one per
470 // section. This means we have to update the addend. That is
471 // trivial for Elf_Rela, but for Elf_Rel we have to write to the
472 // section data. We do that by adding to the Relocation vector.
474 // .eh_frame is horribly special and can reference discarded sections. To
475 // avoid having to parse and recreate .eh_frame, we just replace any
476 // relocation in it pointing to discarded sections with R_*_NONE, which
477 // hopefully creates a frame that is ignored at runtime. Also, don't warn
478 // on .gcc_except_table and debug sections.
480 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc
481 auto *d
= dyn_cast
<Defined
>(&sym
);
483 if (!isDebugSection(*sec
) && sec
->name
!= ".eh_frame" &&
484 sec
->name
!= ".gcc_except_table" && sec
->name
!= ".got2" &&
485 sec
->name
!= ".toc") {
486 uint32_t secIdx
= cast
<Undefined
>(sym
).discardedSecIdx
;
487 Elf_Shdr_Impl
<ELFT
> sec
= file
->template getELFShdrs
<ELFT
>()[secIdx
];
488 Warn(ctx
) << "relocation refers to a discarded section: "
489 << CHECK2(file
->getObj().getSectionName(sec
), file
)
490 << "\n>>> referenced by " << getObjMsg(p
->r_offset
);
492 p
->setSymbolAndType(0, 0, false);
495 SectionBase
*section
= d
->section
;
496 assert(section
->isLive());
498 int64_t addend
= rel
.addend
;
499 const uint8_t *bufLoc
= sec
->content().begin() + rel
.offset
;
500 if (!RelTy::HasAddend
)
501 addend
= target
.getImplicitAddend(bufLoc
, type
);
503 if (ctx
.arg
.emachine
== EM_MIPS
&&
504 target
.getRelExpr(type
, sym
, bufLoc
) == R_MIPS_GOTREL
) {
505 // Some MIPS relocations depend on "gp" value. By default,
506 // this value has 0x7ff0 offset from a .got section. But
507 // relocatable files produced by a compiler or a linker
508 // might redefine this default value and we must use it
509 // for a calculation of the relocation result. When we
510 // generate EXE or DSO it's trivial. Generating a relocatable
511 // output is more difficult case because the linker does
512 // not calculate relocations in this mode and loses
513 // individual "gp" values used by each input object file.
514 // As a workaround we add the "gp" value to the relocation
515 // addend and save it back to the file.
516 addend
+= sec
->getFile
<ELFT
>()->mipsGp0
;
519 if (RelTy::HasAddend
)
521 sym
.getVA(ctx
, addend
) - section
->getOutputSection()->addr
;
522 // For SHF_ALLOC sections relocated by REL, append a relocation to
523 // sec->relocations so that relocateAlloc transitively called by
524 // writeSections will update the implicit addend. Non-SHF_ALLOC sections
525 // utilize relocateNonAlloc to process raw relocations and do not need
526 // this sec->relocations change.
527 else if (ctx
.arg
.relocatable
&& (sec
->flags
& SHF_ALLOC
) &&
528 type
!= target
.noneRel
)
529 sec
->addReloc({R_ABS
, type
, rel
.offset
, addend
, &sym
});
530 } else if (ctx
.arg
.emachine
== EM_PPC
&& type
== R_PPC_PLTREL24
&&
531 p
->r_addend
>= 0x8000 && sec
->file
->ppc32Got2
) {
532 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24
533 // indicates that r30 is relative to the input section .got2
534 // (r_addend>=0x8000), after linking, r30 should be relative to the output
535 // section .got2 . To compensate for the shift, adjust r_addend by
536 // ppc32Got->outSecOff.
537 p
->r_addend
+= sec
->file
->ppc32Got2
->outSecOff
;
542 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
543 // references specially. The general rule is that the value of the symbol in
544 // this context is the address of the place P. A further special case is that
545 // branch relocations to an undefined weak reference resolve to the next
547 static uint32_t getARMUndefinedRelativeWeakVA(RelType type
, uint32_t a
,
550 // Unresolved branch relocations to weak references resolve to next
551 // instruction, this will be either 2 or 4 bytes on from P.
552 case R_ARM_THM_JUMP8
:
553 case R_ARM_THM_JUMP11
:
560 case R_ARM_THM_JUMP19
:
561 case R_ARM_THM_JUMP24
:
564 // We don't want an interworking BLX to ARM
566 // Unresolved non branch pc-relative relocations
567 // R_ARM_TARGET2 which can be resolved relatively is not present as it never
568 // targets a weak-reference.
569 case R_ARM_MOVW_PREL_NC
:
570 case R_ARM_MOVT_PREL
:
572 case R_ARM_THM_ALU_PREL_11_0
:
573 case R_ARM_THM_MOVW_PREL_NC
:
574 case R_ARM_THM_MOVT_PREL
:
577 // p + a is unrepresentable as negative immediates can't be encoded.
581 llvm_unreachable("ARM pc-relative relocation expected\n");
584 // The comment above getARMUndefinedRelativeWeakVA applies to this function.
585 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type
, uint64_t p
) {
587 // Unresolved branch relocations to weak references resolve to next
588 // instruction, this is 4 bytes on from P.
589 case R_AARCH64_CALL26
:
590 case R_AARCH64_CONDBR19
:
591 case R_AARCH64_JUMP26
:
592 case R_AARCH64_TSTBR14
:
594 // Unresolved non branch pc-relative relocations
595 case R_AARCH64_PREL16
:
596 case R_AARCH64_PREL32
:
597 case R_AARCH64_PREL64
:
598 case R_AARCH64_ADR_PREL_LO21
:
599 case R_AARCH64_LD_PREL_LO19
:
600 case R_AARCH64_PLT32
:
603 llvm_unreachable("AArch64 pc-relative relocation expected\n");
606 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type
, uint64_t p
) {
611 case R_RISCV_CALL_PLT
:
612 case R_RISCV_RVC_BRANCH
:
613 case R_RISCV_RVC_JUMP
:
621 // ARM SBREL relocations are of the form S + A - B where B is the static base
622 // The ARM ABI defines base to be "addressing origin of the output segment
623 // defining the symbol S". We defined the "addressing origin"/static base to be
624 // the base of the PT_LOAD segment containing the Sym.
625 // The procedure call standard only defines a Read Write Position Independent
626 // RWPI variant so in practice we should expect the static base to be the base
627 // of the RW segment.
628 static uint64_t getARMStaticBase(const Symbol
&sym
) {
629 OutputSection
*os
= sym
.getOutputSection();
630 if (!os
|| !os
->ptLoad
|| !os
->ptLoad
->firstSec
)
631 Fatal(os
->ctx
) << "SBREL relocation to " << sym
.getName()
632 << " without static base";
633 return os
->ptLoad
->firstSec
->addr
;
636 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
637 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
638 // is calculated using PCREL_HI20's symbol.
640 // This function returns the R_RISCV_PCREL_HI20 relocation from the
641 // R_RISCV_PCREL_LO12 relocation.
642 static Relocation
*getRISCVPCRelHi20(Ctx
&ctx
, const InputSectionBase
*loSec
,
643 const Relocation
&loReloc
) {
644 uint64_t addend
= loReloc
.addend
;
645 Symbol
*sym
= loReloc
.sym
;
647 const Defined
*d
= cast
<Defined
>(sym
);
649 Err(ctx
) << loSec
->getLocation(loReloc
.offset
)
650 << ": R_RISCV_PCREL_LO12 relocation points to an absolute symbol: "
654 InputSection
*hiSec
= cast
<InputSection
>(d
->section
);
657 Err(ctx
) << loSec
->getLocation(loReloc
.offset
)
658 << ": R_RISCV_PCREL_LO12 relocation points to a symbol '"
659 << sym
->getName() << "' in a different section '" << hiSec
->name
663 Warn(ctx
) << loSec
->getLocation(loReloc
.offset
)
664 << ": non-zero addend in R_RISCV_PCREL_LO12 relocation to "
665 << hiSec
->getObjMsg(d
->value
) << " is ignored";
667 // Relocations are sorted by offset, so we can use std::equal_range to do
670 hiReloc
.offset
= d
->value
;
672 std::equal_range(hiSec
->relocs().begin(), hiSec
->relocs().end(), hiReloc
,
673 [](const Relocation
&lhs
, const Relocation
&rhs
) {
674 return lhs
.offset
< rhs
.offset
;
677 for (auto it
= range
.first
; it
!= range
.second
; ++it
)
678 if (it
->type
== R_RISCV_PCREL_HI20
|| it
->type
== R_RISCV_GOT_HI20
||
679 it
->type
== R_RISCV_TLS_GD_HI20
|| it
->type
== R_RISCV_TLS_GOT_HI20
)
682 Err(ctx
) << loSec
->getLocation(loReloc
.offset
)
683 << ": R_RISCV_PCREL_LO12 relocation points to "
684 << hiSec
->getObjMsg(d
->value
)
685 << " without an associated R_RISCV_PCREL_HI20 relocation";
689 // A TLS symbol's virtual address is relative to the TLS segment. Add a
690 // target-specific adjustment to produce a thread-pointer-relative offset.
691 static int64_t getTlsTpOffset(Ctx
&ctx
, const Symbol
&s
) {
692 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0.
693 if (&s
== ctx
.sym
.tlsModuleBase
)
696 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2
697 // while most others use Variant 1. At run time TP will be aligned to p_align.
699 // Variant 1. TP will be followed by an optional gap (which is the size of 2
700 // pointers on ARM/AArch64, 0 on other targets), followed by alignment
701 // padding, then the static TLS blocks. The alignment padding is added so that
702 // (TP + gap + padding) is congruent to p_vaddr modulo p_align.
704 // Variant 2. Static TLS blocks, followed by alignment padding are placed
705 // before TP. The alignment padding is added so that (TP - padding -
706 // p_memsz) is congruent to p_vaddr modulo p_align.
707 PhdrEntry
*tls
= ctx
.tlsPhdr
;
708 if (!tls
) // Reported an error in getSymVA
710 switch (ctx
.arg
.emachine
) {
714 return s
.getVA(ctx
, 0) + ctx
.arg
.wordsize
* 2 +
715 ((tls
->p_vaddr
- ctx
.arg
.wordsize
* 2) & (tls
->p_align
- 1));
719 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is
720 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library
721 // data and 0xf000 of the program's TLS segment.
722 return s
.getVA(ctx
, 0) + (tls
->p_vaddr
& (tls
->p_align
- 1)) - 0x7000;
725 // See the comment in handleTlsRelocation. For TLSDESC=>IE,
726 // R_RISCV_TLSDESC_{LOAD_LO12,ADD_LO12_I,CALL} also reach here. While
727 // `tls` may be null, the return value is ignored.
728 if (s
.type
!= STT_TLS
)
730 return s
.getVA(ctx
, 0) + (tls
->p_vaddr
& (tls
->p_align
- 1));
738 return s
.getVA(ctx
, 0) - tls
->p_memsz
-
739 ((-tls
->p_vaddr
- tls
->p_memsz
) & (tls
->p_align
- 1));
741 llvm_unreachable("unhandled ctx.arg.emachine");
745 uint64_t InputSectionBase::getRelocTargetVA(Ctx
&ctx
, const Relocation
&r
,
747 int64_t a
= r
.addend
;
751 case R_RELAX_TLS_LD_TO_LE_ABS
:
752 case R_RELAX_GOT_PC_NOPIC
:
756 return r
.sym
->getVA(ctx
, a
);
762 return r
.sym
->getVA(ctx
, a
) - getARMStaticBase(*r
.sym
);
764 case R_RELAX_TLS_GD_TO_IE_ABS
:
765 return r
.sym
->getGotVA(ctx
) + a
;
766 case R_LOONGARCH_GOT
:
767 // The LoongArch TLS GD relocs reuse the R_LARCH_GOT_PC_LO12 reloc r.type
768 // for their page offsets. The arithmetics are different in the TLS case
769 // so we have to duplicate some logic here.
770 if (r
.sym
->hasFlag(NEEDS_TLSGD
) && r
.type
!= R_LARCH_TLS_IE_PC_LO12
)
771 // Like R_LOONGARCH_TLSGD_PAGE_PC but taking the absolute value.
772 return ctx
.in
.got
->getGlobalDynAddr(*r
.sym
) + a
;
773 return r
.sym
->getGotVA(ctx
) + a
;
775 return ctx
.in
.got
->getVA() + a
- p
;
776 case R_GOTPLTONLY_PC
:
777 return ctx
.in
.gotPlt
->getVA() + a
- p
;
779 case R_PPC64_RELAX_TOC
:
780 return r
.sym
->getVA(ctx
, a
) - ctx
.in
.got
->getVA();
782 return r
.sym
->getVA(ctx
, a
) - ctx
.in
.gotPlt
->getVA();
784 case R_RELAX_TLS_GD_TO_IE_GOTPLT
:
785 return r
.sym
->getGotVA(ctx
) + a
- ctx
.in
.gotPlt
->getVA();
786 case R_TLSLD_GOT_OFF
:
788 case R_RELAX_TLS_GD_TO_IE_GOT_OFF
:
789 return r
.sym
->getGotOffset(ctx
) + a
;
790 case R_AARCH64_GOT_PAGE_PC
:
791 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC
:
792 return getAArch64Page(r
.sym
->getGotVA(ctx
) + a
) - getAArch64Page(p
);
793 case R_AARCH64_GOT_PAGE
:
794 return r
.sym
->getGotVA(ctx
) + a
- getAArch64Page(ctx
.in
.got
->getVA());
796 case R_RELAX_TLS_GD_TO_IE
:
797 return r
.sym
->getGotVA(ctx
) + a
- p
;
798 case R_GOTPLT_GOTREL
:
799 return r
.sym
->getGotPltVA(ctx
) + a
- ctx
.in
.got
->getVA();
801 return r
.sym
->getGotPltVA(ctx
) + a
- p
;
802 case R_LOONGARCH_GOT_PAGE_PC
:
803 if (r
.sym
->hasFlag(NEEDS_TLSGD
))
804 return getLoongArchPageDelta(ctx
.in
.got
->getGlobalDynAddr(*r
.sym
) + a
, p
,
806 return getLoongArchPageDelta(r
.sym
->getGotVA(ctx
) + a
, p
, r
.type
);
808 return r
.sym
->getVA(ctx
, a
) - ctx
.in
.mipsGot
->getGp(file
);
810 return ctx
.in
.mipsGot
->getGp(file
) + a
;
811 case R_MIPS_GOT_GP_PC
: {
812 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC r.type iif the target
813 // is _gp_disp symbol. In that case we should use the following
814 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
815 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
816 // microMIPS variants of these relocations use slightly different
817 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
818 // to correctly handle less-significant bit of the microMIPS symbol.
819 uint64_t v
= ctx
.in
.mipsGot
->getGp(file
) + a
- p
;
820 if (r
.type
== R_MIPS_LO16
|| r
.type
== R_MICROMIPS_LO16
)
822 if (r
.type
== R_MICROMIPS_LO16
|| r
.type
== R_MICROMIPS_HI16
)
826 case R_MIPS_GOT_LOCAL_PAGE
:
827 // If relocation against MIPS local symbol requires GOT entry, this entry
828 // should be initialized by 'page address'. This address is high 16-bits
829 // of sum the symbol's value and the addend.
830 return ctx
.in
.mipsGot
->getVA() +
831 ctx
.in
.mipsGot
->getPageEntryOffset(file
, *r
.sym
, a
) -
832 ctx
.in
.mipsGot
->getGp(file
);
834 case R_MIPS_GOT_OFF32
:
835 // In case of MIPS if a GOT relocation has non-zero addend this addend
836 // should be applied to the GOT entry content not to the GOT entry offset.
837 // That is why we use separate expression r.type.
838 return ctx
.in
.mipsGot
->getVA() +
839 ctx
.in
.mipsGot
->getSymEntryOffset(file
, *r
.sym
, a
) -
840 ctx
.in
.mipsGot
->getGp(file
);
842 return ctx
.in
.mipsGot
->getVA() +
843 ctx
.in
.mipsGot
->getGlobalDynOffset(file
, *r
.sym
) -
844 ctx
.in
.mipsGot
->getGp(file
);
846 return ctx
.in
.mipsGot
->getVA() + ctx
.in
.mipsGot
->getTlsIndexOffset(file
) -
847 ctx
.in
.mipsGot
->getGp(file
);
848 case R_AARCH64_PAGE_PC
: {
849 uint64_t val
= r
.sym
->isUndefWeak() ? p
+ a
: r
.sym
->getVA(ctx
, a
);
850 return getAArch64Page(val
) - getAArch64Page(p
);
852 case R_RISCV_PC_INDIRECT
: {
853 if (const Relocation
*hiRel
= getRISCVPCRelHi20(ctx
, this, r
))
854 return getRelocTargetVA(ctx
, *hiRel
, r
.sym
->getVA(ctx
));
857 case R_LOONGARCH_PAGE_PC
:
858 return getLoongArchPageDelta(r
.sym
->getVA(ctx
, a
), p
, r
.type
);
862 if (r
.expr
== R_ARM_PCA
)
863 // Some PC relative ARM (Thumb) relocations align down the place.
865 if (r
.sym
->isUndefined()) {
866 // On ARM and AArch64 a branch to an undefined weak resolves to the next
867 // instruction, otherwise the place. On RISC-V, resolve an undefined weak
868 // to the same instruction to cause an infinite loop (making the user
869 // aware of the issue) while ensuring no overflow.
870 // Note: if the symbol is hidden, its binding has been converted to local,
871 // so we just check isUndefined() here.
872 if (ctx
.arg
.emachine
== EM_ARM
)
873 dest
= getARMUndefinedRelativeWeakVA(r
.type
, a
, p
);
874 else if (ctx
.arg
.emachine
== EM_AARCH64
)
875 dest
= getAArch64UndefinedRelativeWeakVA(r
.type
, p
) + a
;
876 else if (ctx
.arg
.emachine
== EM_PPC
)
878 else if (ctx
.arg
.emachine
== EM_RISCV
)
879 dest
= getRISCVUndefinedRelativeWeakVA(r
.type
, p
) + a
;
881 dest
= r
.sym
->getVA(ctx
, a
);
883 dest
= r
.sym
->getVA(ctx
, a
);
888 return r
.sym
->getPltVA(ctx
) + a
;
890 case R_PPC64_CALL_PLT
:
891 return r
.sym
->getPltVA(ctx
) + a
- p
;
892 case R_LOONGARCH_PLT_PAGE_PC
:
893 return getLoongArchPageDelta(r
.sym
->getPltVA(ctx
) + a
, p
, r
.type
);
895 return r
.sym
->getPltVA(ctx
) + a
- ctx
.in
.gotPlt
->getVA();
897 return r
.sym
->getPltVA(ctx
) + a
- ctx
.in
.got
->getVA();
899 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30
900 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for
901 // target VA computation.
902 return r
.sym
->getPltVA(ctx
) - p
;
904 uint64_t symVA
= r
.sym
->getVA(ctx
, a
);
905 // If we have an undefined weak symbol, we might get here with a symbol
906 // address of zero. That could overflow, but the code must be unreachable,
907 // so don't bother doing anything at all.
911 // PPC64 V2 ABI describes two entry points to a function. The global entry
912 // point is used for calls where the caller and callee (may) have different
913 // TOC base pointers and r2 needs to be modified to hold the TOC base for
914 // the callee. For local calls the caller and callee share the same
915 // TOC base and so the TOC pointer initialization code should be skipped by
916 // branching to the local entry point.
918 getPPC64GlobalEntryToLocalEntryOffset(ctx
, r
.sym
->stOther
);
920 case R_PPC64_TOCBASE
:
921 return getPPC64TocBase(ctx
) + a
;
923 case R_PPC64_RELAX_GOT_PC
:
924 return r
.sym
->getVA(ctx
, a
) - p
;
925 case R_RELAX_TLS_GD_TO_LE
:
926 case R_RELAX_TLS_IE_TO_LE
:
927 case R_RELAX_TLS_LD_TO_LE
:
929 // It is not very clear what to return if the symbol is undefined. With
930 // --noinhibit-exec, even a non-weak undefined reference may reach here.
931 // Just return A, which matches R_ABS, and the behavior of some dynamic
933 if (r
.sym
->isUndefined())
935 return getTlsTpOffset(ctx
, *r
.sym
) + a
;
936 case R_RELAX_TLS_GD_TO_LE_NEG
:
938 if (r
.sym
->isUndefined())
940 return -getTlsTpOffset(ctx
, *r
.sym
) + a
;
942 return r
.sym
->getSize() + a
;
944 return ctx
.in
.got
->getTlsDescAddr(*r
.sym
) + a
;
946 return ctx
.in
.got
->getTlsDescAddr(*r
.sym
) + a
- p
;
947 case R_TLSDESC_GOTPLT
:
948 return ctx
.in
.got
->getTlsDescAddr(*r
.sym
) + a
- ctx
.in
.gotPlt
->getVA();
949 case R_AARCH64_TLSDESC_PAGE
:
950 return getAArch64Page(ctx
.in
.got
->getTlsDescAddr(*r
.sym
) + a
) -
952 case R_LOONGARCH_TLSDESC_PAGE_PC
:
953 return getLoongArchPageDelta(ctx
.in
.got
->getTlsDescAddr(*r
.sym
) + a
, p
,
956 return ctx
.in
.got
->getGlobalDynOffset(*r
.sym
) + a
;
958 return ctx
.in
.got
->getGlobalDynAddr(*r
.sym
) + a
- ctx
.in
.gotPlt
->getVA();
960 return ctx
.in
.got
->getGlobalDynAddr(*r
.sym
) + a
- p
;
961 case R_LOONGARCH_TLSGD_PAGE_PC
:
962 return getLoongArchPageDelta(ctx
.in
.got
->getGlobalDynAddr(*r
.sym
) + a
, p
,
965 return ctx
.in
.got
->getVA() + ctx
.in
.got
->getTlsIndexOff() + a
-
966 ctx
.in
.gotPlt
->getVA();
968 return ctx
.in
.got
->getTlsIndexOff() + a
;
970 return ctx
.in
.got
->getTlsIndexVA() + a
- p
;
972 llvm_unreachable("invalid expression");
976 // This function applies relocations to sections without SHF_ALLOC bit.
977 // Such sections are never mapped to memory at runtime. Debug sections are
978 // an example. Relocations in non-alloc sections are much easier to
979 // handle than in allocated sections because it will never need complex
980 // treatment such as GOT or PLT (because at runtime no one refers them).
981 // So, we handle relocations for non-alloc sections directly in this
982 // function as a performance optimization.
983 template <class ELFT
, class RelTy
>
984 void InputSection::relocateNonAlloc(Ctx
&ctx
, uint8_t *buf
,
985 Relocs
<RelTy
> rels
) {
986 const unsigned bits
= sizeof(typename
ELFT::uint
) * 8;
987 const TargetInfo
&target
= *ctx
.target
;
988 const auto emachine
= ctx
.arg
.emachine
;
989 const bool isDebug
= isDebugSection(*this);
990 const bool isDebugLine
= isDebug
&& name
== ".debug_line";
991 std::optional
<uint64_t> tombstone
;
993 if (name
== ".debug_loc" || name
== ".debug_ranges")
995 else if (name
== ".debug_names")
996 tombstone
= UINT64_MAX
; // tombstone value
1000 for (const auto &patAndValue
: llvm::reverse(ctx
.arg
.deadRelocInNonAlloc
))
1001 if (patAndValue
.first
.match(this->name
)) {
1002 tombstone
= patAndValue
.second
;
1006 const InputFile
*f
= this->file
;
1007 for (auto it
= rels
.begin(), end
= rels
.end(); it
!= end
; ++it
) {
1008 const RelTy
&rel
= *it
;
1009 const RelType type
= rel
.getType(ctx
.arg
.isMips64EL
);
1010 const uint64_t offset
= rel
.r_offset
;
1011 uint8_t *bufLoc
= buf
+ offset
;
1012 int64_t addend
= getAddend
<ELFT
>(rel
);
1013 if (!RelTy::HasAddend
)
1014 addend
+= target
.getImplicitAddend(bufLoc
, type
);
1016 Symbol
&sym
= f
->getRelocTargetSym(rel
);
1017 RelExpr expr
= target
.getRelExpr(type
, sym
, bufLoc
);
1020 auto *ds
= dyn_cast
<Defined
>(&sym
);
1022 if (emachine
== EM_RISCV
&& type
== R_RISCV_SET_ULEB128
) {
1024 it
->getType(/*isMips64EL=*/false) == R_RISCV_SUB_ULEB128
&&
1025 it
->r_offset
== offset
) {
1027 if (!ds
&& tombstone
) {
1030 val
= sym
.getVA(ctx
, addend
) -
1031 (f
->getRelocTargetSym(*it
).getVA(ctx
) + getAddend
<ELFT
>(*it
));
1033 if (overwriteULEB128(bufLoc
, val
) >= 0x80)
1034 Err(ctx
) << getLocation(offset
) << ": ULEB128 value " << val
1035 << " exceeds available space; references '" << &sym
<< "'";
1038 Err(ctx
) << getLocation(offset
)
1039 << ": R_RISCV_SET_ULEB128 not paired with R_RISCV_SUB_SET128";
1043 if (tombstone
&& (expr
== R_ABS
|| expr
== R_DTPREL
)) {
1044 // Resolve relocations in .debug_* referencing (discarded symbols or ICF
1045 // folded section symbols) to a tombstone value. Resolving to addend is
1046 // unsatisfactory because the result address range may collide with a
1047 // valid range of low address, or leave multiple CUs claiming ownership of
1048 // the same range of code, which may confuse consumers.
1050 // To address the problems, we use -1 as a tombstone value for most
1051 // .debug_* sections. We have to ignore the addend because we don't want
1052 // to resolve an address attribute (which may have a non-zero addend) to
1053 // -1+addend (wrap around to a low address).
1055 // R_DTPREL type relocations represent an offset into the dynamic thread
1056 // vector. The computed value is st_value plus a non-negative offset.
1057 // Negative values are invalid, so -1 can be used as the tombstone value.
1059 // If the referenced symbol is relative to a discarded section (due to
1060 // --gc-sections, COMDAT, etc), it has been converted to a Undefined.
1061 // `ds->folded` catches the ICF folded case. However, resolving a
1062 // relocation in .debug_line to -1 would stop debugger users from setting
1063 // breakpoints on the folded-in function, so exclude .debug_line.
1065 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value
1066 // (base address selection entry), use 1 (which is used by GNU ld for
1069 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone
1070 // value. Enable -1 in a future release.
1071 if (!ds
|| (ds
->folded
&& !isDebugLine
)) {
1072 // If -z dead-reloc-in-nonalloc= is specified, respect it.
1073 uint64_t value
= SignExtend64
<bits
>(*tombstone
);
1074 // For a 32-bit local TU reference in .debug_names, X86_64::relocate
1075 // requires that the unsigned value for R_X86_64_32 is truncated to
1076 // 32-bit. Other 64-bit targets's don't discern signed/unsigned 32-bit
1077 // absolute relocations and do not need this change.
1078 if (emachine
== EM_X86_64
&& type
== R_X86_64_32
)
1079 value
= static_cast<uint32_t>(value
);
1080 target
.relocateNoSym(bufLoc
, type
, value
);
1085 // For a relocatable link, content relocated by relocation types with an
1086 // explicit addend, such as RELA, remain unchanged and we can stop here.
1087 // While content relocated by relocation types with an implicit addend, such
1088 // as REL, needs the implicit addend updated.
1089 if (ctx
.arg
.relocatable
&& (RelTy::HasAddend
|| sym
.type
!= STT_SECTION
))
1092 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC
1094 if (LLVM_LIKELY(expr
== R_ABS
) || expr
== R_DTPREL
|| expr
== R_GOTPLTREL
||
1095 expr
== R_RISCV_ADD
) {
1096 target
.relocateNoSym(bufLoc
, type
,
1097 SignExtend64
<bits
>(sym
.getVA(ctx
, addend
)));
1101 if (expr
== R_SIZE
) {
1102 target
.relocateNoSym(bufLoc
, type
,
1103 SignExtend64
<bits
>(sym
.getSize() + addend
));
1107 // If the control reaches here, we found a PC-relative relocation in a
1108 // non-ALLOC section. Since non-ALLOC section is not loaded into memory
1109 // at runtime, the notion of PC-relative doesn't make sense here. So,
1110 // this is a usage error. However, GNU linkers historically accept such
1111 // relocations without any errors and relocate them as if they were at
1112 // address 0. For bug-compatibility, we accept them with warnings. We
1113 // know Steel Bank Common Lisp as of 2018 have this bug.
1115 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
1116 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed in
1117 // 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we need to
1118 // keep this bug-compatible code for a while.
1119 bool isErr
= expr
!= R_PC
&& !(emachine
== EM_386
&& type
== R_386_GOTPC
);
1121 ELFSyncStream
diag(ctx
, isErr
&& !ctx
.arg
.noinhibitExec
1124 diag
<< getLocation(offset
) << ": has non-ABS relocation " << type
1125 << " against symbol '" << &sym
<< "'";
1128 target
.relocateNoSym(
1130 SignExtend64
<bits
>(sym
.getVA(ctx
, addend
- offset
- outSecOff
)));
1134 template <class ELFT
>
1135 void InputSectionBase::relocate(Ctx
&ctx
, uint8_t *buf
, uint8_t *bufEnd
) {
1136 if ((flags
& SHF_EXECINSTR
) && LLVM_UNLIKELY(getFile
<ELFT
>()->splitStack
))
1137 adjustSplitStackFunctionPrologues
<ELFT
>(ctx
, buf
, bufEnd
);
1139 if (flags
& SHF_ALLOC
) {
1140 ctx
.target
->relocateAlloc(*this, buf
);
1144 auto *sec
= cast
<InputSection
>(this);
1145 // For a relocatable link, also call relocateNonAlloc() to rewrite applicable
1146 // locations with tombstone values.
1147 invokeOnRelocs(*sec
, sec
->relocateNonAlloc
<ELFT
>, ctx
, buf
);
1150 // For each function-defining prologue, find any calls to __morestack,
1151 // and replace them with calls to __morestack_non_split.
1152 static void switchMorestackCallsToMorestackNonSplit(
1153 Ctx
&ctx
, DenseSet
<Defined
*> &prologues
,
1154 SmallVector
<Relocation
*, 0> &morestackCalls
) {
1156 // If the target adjusted a function's prologue, all calls to
1157 // __morestack inside that function should be switched to
1158 // __morestack_non_split.
1159 Symbol
*moreStackNonSplit
= ctx
.symtab
->find("__morestack_non_split");
1160 if (!moreStackNonSplit
) {
1161 ErrAlways(ctx
) << "mixing split-stack objects requires a definition of "
1162 "__morestack_non_split";
1166 // Sort both collections to compare addresses efficiently.
1167 llvm::sort(morestackCalls
, [](const Relocation
*l
, const Relocation
*r
) {
1168 return l
->offset
< r
->offset
;
1170 std::vector
<Defined
*> functions(prologues
.begin(), prologues
.end());
1171 llvm::sort(functions
, [](const Defined
*l
, const Defined
*r
) {
1172 return l
->value
< r
->value
;
1175 auto it
= morestackCalls
.begin();
1176 for (Defined
*f
: functions
) {
1177 // Find the first call to __morestack within the function.
1178 while (it
!= morestackCalls
.end() && (*it
)->offset
< f
->value
)
1180 // Adjust all calls inside the function.
1181 while (it
!= morestackCalls
.end() && (*it
)->offset
< f
->value
+ f
->size
) {
1182 (*it
)->sym
= moreStackNonSplit
;
1188 static bool enclosingPrologueAttempted(uint64_t offset
,
1189 const DenseSet
<Defined
*> &prologues
) {
1190 for (Defined
*f
: prologues
)
1191 if (f
->value
<= offset
&& offset
< f
->value
+ f
->size
)
1196 // If a function compiled for split stack calls a function not
1197 // compiled for split stack, then the caller needs its prologue
1198 // adjusted to ensure that the called function will have enough stack
1199 // available. Find those functions, and adjust their prologues.
1200 template <class ELFT
>
1201 void InputSectionBase::adjustSplitStackFunctionPrologues(Ctx
&ctx
, uint8_t *buf
,
1203 DenseSet
<Defined
*> prologues
;
1204 SmallVector
<Relocation
*, 0> morestackCalls
;
1206 for (Relocation
&rel
: relocs()) {
1207 // Ignore calls into the split-stack api.
1208 if (rel
.sym
->getName().starts_with("__morestack")) {
1209 if (rel
.sym
->getName() == "__morestack")
1210 morestackCalls
.push_back(&rel
);
1214 // A relocation to non-function isn't relevant. Sometimes
1215 // __morestack is not marked as a function, so this check comes
1216 // after the name check.
1217 if (rel
.sym
->type
!= STT_FUNC
)
1220 // If the callee's-file was compiled with split stack, nothing to do. In
1221 // this context, a "Defined" symbol is one "defined by the binary currently
1222 // being produced". So an "undefined" symbol might be provided by a shared
1223 // library. It is not possible to tell how such symbols were compiled, so be
1225 if (Defined
*d
= dyn_cast
<Defined
>(rel
.sym
))
1226 if (InputSection
*isec
= cast_or_null
<InputSection
>(d
->section
))
1227 if (!isec
|| !isec
->getFile
<ELFT
>() || isec
->getFile
<ELFT
>()->splitStack
)
1230 if (enclosingPrologueAttempted(rel
.offset
, prologues
))
1233 if (Defined
*f
= getEnclosingFunction(rel
.offset
)) {
1234 prologues
.insert(f
);
1235 if (ctx
.target
->adjustPrologueForCrossSplitStack(buf
+ f
->value
, end
,
1238 if (!getFile
<ELFT
>()->someNoSplitStack
)
1240 << this << ": " << f
->getName() << " (with -fsplit-stack) calls "
1241 << rel
.sym
->getName()
1242 << " (without -fsplit-stack), but couldn't adjust its prologue";
1246 if (ctx
.target
->needsMoreStackNonSplit
)
1247 switchMorestackCallsToMorestackNonSplit(ctx
, prologues
, morestackCalls
);
1250 template <class ELFT
> void InputSection::writeTo(Ctx
&ctx
, uint8_t *buf
) {
1251 if (LLVM_UNLIKELY(type
== SHT_NOBITS
))
1253 // If -r or --emit-relocs is given, then an InputSection
1254 // may be a relocation section.
1255 if (LLVM_UNLIKELY(type
== SHT_RELA
)) {
1256 copyRelocations
<ELFT
, typename
ELFT::Rela
>(ctx
, buf
);
1259 if (LLVM_UNLIKELY(type
== SHT_REL
)) {
1260 copyRelocations
<ELFT
, typename
ELFT::Rel
>(ctx
, buf
);
1264 // If -r is given, we may have a SHT_GROUP section.
1265 if (LLVM_UNLIKELY(type
== SHT_GROUP
)) {
1266 copyShtGroup
<ELFT
>(buf
);
1270 // If this is a compressed section, uncompress section contents directly
1273 auto *hdr
= reinterpret_cast<const typename
ELFT::Chdr
*>(content_
);
1274 auto compressed
= ArrayRef
<uint8_t>(content_
, compressedSize
)
1275 .slice(sizeof(typename
ELFT::Chdr
));
1276 size_t size
= this->size
;
1277 if (Error e
= hdr
->ch_type
== ELFCOMPRESS_ZLIB
1278 ? compression::zlib::decompress(compressed
, buf
, size
)
1279 : compression::zstd::decompress(compressed
, buf
, size
))
1280 Fatal(ctx
) << this << ": decompress failed: " << std::move(e
);
1281 uint8_t *bufEnd
= buf
+ size
;
1282 relocate
<ELFT
>(ctx
, buf
, bufEnd
);
1286 // Copy section contents from source object file to output file
1287 // and then apply relocations.
1288 memcpy(buf
, content().data(), content().size());
1289 relocate
<ELFT
>(ctx
, buf
, buf
+ content().size());
1292 void InputSection::replace(InputSection
*other
) {
1293 addralign
= std::max(addralign
, other
->addralign
);
1295 // When a section is replaced with another section that was allocated to
1296 // another partition, the replacement section (and its associated sections)
1297 // need to be placed in the main partition so that both partitions will be
1298 // able to access it.
1299 if (partition
!= other
->partition
) {
1301 for (InputSection
*isec
: dependentSections
)
1302 isec
->partition
= 1;
1309 template <class ELFT
>
1310 EhInputSection::EhInputSection(ObjFile
<ELFT
> &f
,
1311 const typename
ELFT::Shdr
&header
,
1313 : InputSectionBase(f
, header
, name
, InputSectionBase::EHFrame
) {}
1315 SyntheticSection
*EhInputSection::getParent() const {
1316 return cast_or_null
<SyntheticSection
>(parent
);
1319 // .eh_frame is a sequence of CIE or FDE records.
1320 // This function splits an input section into records and returns them.
1321 template <class ELFT
> void EhInputSection::split() {
1322 const RelsOrRelas
<ELFT
> rels
= relsOrRelas
<ELFT
>(/*supportsCrel=*/false);
1323 // getReloc expects the relocations to be sorted by r_offset. See the comment
1325 if (rels
.areRelocsRel()) {
1326 SmallVector
<typename
ELFT::Rel
, 0> storage
;
1327 split
<ELFT
>(sortRels(rels
.rels
, storage
));
1329 SmallVector
<typename
ELFT::Rela
, 0> storage
;
1330 split
<ELFT
>(sortRels(rels
.relas
, storage
));
1334 template <class ELFT
, class RelTy
>
1335 void EhInputSection::split(ArrayRef
<RelTy
> rels
) {
1336 ArrayRef
<uint8_t> d
= content();
1337 const char *msg
= nullptr;
1339 while (!d
.empty()) {
1341 msg
= "CIE/FDE too small";
1344 uint64_t size
= endian::read32
<ELFT::Endianness
>(d
.data());
1345 if (size
== 0) // ZERO terminator
1347 uint32_t id
= endian::read32
<ELFT::Endianness
>(d
.data() + 4);
1349 if (LLVM_UNLIKELY(size
> d
.size())) {
1350 // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead,
1351 // but we do not support that format yet.
1352 msg
= size
== UINT32_MAX
+ uint64_t(4)
1353 ? "CIE/FDE too large"
1354 : "CIE/FDE ends past the end of the section";
1358 // Find the first relocation that points to [off,off+size). Relocations
1359 // have been sorted by r_offset.
1360 const uint64_t off
= d
.data() - content().data();
1361 while (relI
!= rels
.size() && rels
[relI
].r_offset
< off
)
1363 unsigned firstRel
= -1;
1364 if (relI
!= rels
.size() && rels
[relI
].r_offset
< off
+ size
)
1366 (id
== 0 ? cies
: fdes
).emplace_back(off
, this, size
, firstRel
);
1370 Err(file
->ctx
) << "corrupted .eh_frame: " << msg
<< "\n>>> defined in "
1371 << getObjMsg(d
.data() - content().data());
1374 // Return the offset in an output section for a given input offset.
1375 uint64_t EhInputSection::getParentOffset(uint64_t offset
) const {
1376 auto it
= partition_point(
1377 fdes
, [=](EhSectionPiece p
) { return p
.inputOff
<= offset
; });
1378 if (it
== fdes
.begin() || it
[-1].inputOff
+ it
[-1].size
<= offset
) {
1379 it
= partition_point(
1380 cies
, [=](EhSectionPiece p
) { return p
.inputOff
<= offset
; });
1381 if (it
== cies
.begin()) // invalid piece
1384 if (it
[-1].outputOff
== -1) // invalid piece
1385 return offset
- it
[-1].inputOff
;
1386 return it
[-1].outputOff
+ (offset
- it
[-1].inputOff
);
1389 static size_t findNull(StringRef s
, size_t entSize
) {
1390 for (unsigned i
= 0, n
= s
.size(); i
!= n
; i
+= entSize
) {
1391 const char *b
= s
.begin() + i
;
1392 if (std::all_of(b
, b
+ entSize
, [](char c
) { return c
== 0; }))
1395 llvm_unreachable("");
1398 // Split SHF_STRINGS section. Such section is a sequence of
1399 // null-terminated strings.
1400 void MergeInputSection::splitStrings(StringRef s
, size_t entSize
) {
1401 const bool live
= !(flags
& SHF_ALLOC
) || !getCtx().arg
.gcSections
;
1402 const char *p
= s
.data(), *end
= s
.data() + s
.size();
1403 if (!std::all_of(end
- entSize
, end
, [](char c
) { return c
== 0; }))
1404 Fatal(getCtx()) << this << ": string is not null terminated";
1406 // Optimize the common case.
1408 size_t size
= strlen(p
);
1409 pieces
.emplace_back(p
- s
.begin(), xxh3_64bits(StringRef(p
, size
)), live
);
1414 size_t size
= findNull(StringRef(p
, end
- p
), entSize
);
1415 pieces
.emplace_back(p
- s
.begin(), xxh3_64bits(StringRef(p
, size
)), live
);
1416 p
+= size
+ entSize
;
1421 // Split non-SHF_STRINGS section. Such section is a sequence of
1422 // fixed size records.
1423 void MergeInputSection::splitNonStrings(ArrayRef
<uint8_t> data
,
1425 size_t size
= data
.size();
1426 assert((size
% entSize
) == 0);
1427 const bool live
= !(flags
& SHF_ALLOC
) || !getCtx().arg
.gcSections
;
1429 pieces
.resize_for_overwrite(size
/ entSize
);
1430 for (size_t i
= 0, j
= 0; i
!= size
; i
+= entSize
, j
++)
1431 pieces
[j
] = {i
, (uint32_t)xxh3_64bits(data
.slice(i
, entSize
)), live
};
1434 template <class ELFT
>
1435 MergeInputSection::MergeInputSection(ObjFile
<ELFT
> &f
,
1436 const typename
ELFT::Shdr
&header
,
1438 : InputSectionBase(f
, header
, name
, InputSectionBase::Merge
) {}
1440 MergeInputSection::MergeInputSection(Ctx
&ctx
, uint64_t flags
, uint32_t type
,
1441 uint64_t entsize
, ArrayRef
<uint8_t> data
,
1443 : InputSectionBase(ctx
.internalFile
, flags
, type
, entsize
, /*link=*/0,
1445 /*alignment=*/entsize
, data
, name
, SectionBase::Merge
) {}
1447 // This function is called after we obtain a complete list of input sections
1448 // that need to be linked. This is responsible to split section contents
1449 // into small chunks for further processing.
1451 // Note that this function is called from parallelForEach. This must be
1452 // thread-safe (i.e. no memory allocation from the pools).
1453 void MergeInputSection::splitIntoPieces() {
1454 assert(pieces
.empty());
1456 if (flags
& SHF_STRINGS
)
1457 splitStrings(toStringRef(contentMaybeDecompress()), entsize
);
1459 splitNonStrings(contentMaybeDecompress(), entsize
);
1462 SectionPiece
&MergeInputSection::getSectionPiece(uint64_t offset
) {
1463 if (content().size() <= offset
)
1464 Fatal(getCtx()) << this << ": offset is outside the section";
1465 return partition_point(
1466 pieces
, [=](SectionPiece p
) { return p
.inputOff
<= offset
; })[-1];
1469 // Return the offset in an output section for a given input offset.
1470 uint64_t MergeInputSection::getParentOffset(uint64_t offset
) const {
1471 const SectionPiece
&piece
= getSectionPiece(offset
);
1472 return piece
.outputOff
+ (offset
- piece
.inputOff
);
1475 template InputSection::InputSection(ObjFile
<ELF32LE
> &, const ELF32LE::Shdr
&,
1477 template InputSection::InputSection(ObjFile
<ELF32BE
> &, const ELF32BE::Shdr
&,
1479 template InputSection::InputSection(ObjFile
<ELF64LE
> &, const ELF64LE::Shdr
&,
1481 template InputSection::InputSection(ObjFile
<ELF64BE
> &, const ELF64BE::Shdr
&,
1484 template void InputSection::writeTo
<ELF32LE
>(Ctx
&, uint8_t *);
1485 template void InputSection::writeTo
<ELF32BE
>(Ctx
&, uint8_t *);
1486 template void InputSection::writeTo
<ELF64LE
>(Ctx
&, uint8_t *);
1487 template void InputSection::writeTo
<ELF64BE
>(Ctx
&, uint8_t *);
1489 template RelsOrRelas
<ELF32LE
>
1490 InputSectionBase::relsOrRelas
<ELF32LE
>(bool) const;
1491 template RelsOrRelas
<ELF32BE
>
1492 InputSectionBase::relsOrRelas
<ELF32BE
>(bool) const;
1493 template RelsOrRelas
<ELF64LE
>
1494 InputSectionBase::relsOrRelas
<ELF64LE
>(bool) const;
1495 template RelsOrRelas
<ELF64BE
>
1496 InputSectionBase::relsOrRelas
<ELF64BE
>(bool) const;
1498 template MergeInputSection::MergeInputSection(ObjFile
<ELF32LE
> &,
1499 const ELF32LE::Shdr
&, StringRef
);
1500 template MergeInputSection::MergeInputSection(ObjFile
<ELF32BE
> &,
1501 const ELF32BE::Shdr
&, StringRef
);
1502 template MergeInputSection::MergeInputSection(ObjFile
<ELF64LE
> &,
1503 const ELF64LE::Shdr
&, StringRef
);
1504 template MergeInputSection::MergeInputSection(ObjFile
<ELF64BE
> &,
1505 const ELF64BE::Shdr
&, StringRef
);
1507 template EhInputSection::EhInputSection(ObjFile
<ELF32LE
> &,
1508 const ELF32LE::Shdr
&, StringRef
);
1509 template EhInputSection::EhInputSection(ObjFile
<ELF32BE
> &,
1510 const ELF32BE::Shdr
&, StringRef
);
1511 template EhInputSection::EhInputSection(ObjFile
<ELF64LE
> &,
1512 const ELF64LE::Shdr
&, StringRef
);
1513 template EhInputSection::EhInputSection(ObjFile
<ELF64BE
> &,
1514 const ELF64BE::Shdr
&, StringRef
);
1516 template void EhInputSection::split
<ELF32LE
>();
1517 template void EhInputSection::split
<ELF32BE
>();
1518 template void EhInputSection::split
<ELF64LE
>();
1519 template void EhInputSection::split
<ELF64BE
>();