1 //===- Target.h -------------------------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #ifndef LLD_ELF_TARGET_H
10 #define LLD_ELF_TARGET_H
13 #include "InputSection.h"
14 #include "lld/Common/ErrorHandler.h"
15 #include "llvm/ADT/StringExtras.h"
16 #include "llvm/Object/ELF.h"
17 #include "llvm/Object/ELFTypes.h"
18 #include "llvm/Support/Compiler.h"
19 #include "llvm/Support/MathExtras.h"
28 std::string
toStr(Ctx
&, RelType type
);
32 TargetInfo(Ctx
&ctx
) : ctx(ctx
) {}
33 virtual uint32_t calcEFlags() const { return 0; }
34 virtual RelExpr
getRelExpr(RelType type
, const Symbol
&s
,
35 const uint8_t *loc
) const = 0;
36 virtual RelType
getDynRel(RelType type
) const { return 0; }
37 virtual void writeGotPltHeader(uint8_t *buf
) const {}
38 virtual void writeGotHeader(uint8_t *buf
) const {}
39 virtual void writeGotPlt(uint8_t *buf
, const Symbol
&s
) const {};
40 virtual void writeIgotPlt(uint8_t *buf
, const Symbol
&s
) const {}
41 virtual int64_t getImplicitAddend(const uint8_t *buf
, RelType type
) const;
42 virtual int getTlsGdRelaxSkip(RelType type
) const { return 1; }
44 // If lazy binding is supported, the first entry of the PLT has code
45 // to call the dynamic linker to resolve PLT entries the first time
46 // they are called. This function writes that code.
47 virtual void writePltHeader(uint8_t *buf
) const {}
49 virtual void writePlt(uint8_t *buf
, const Symbol
&sym
,
50 uint64_t pltEntryAddr
) const {}
51 virtual void writeIplt(uint8_t *buf
, const Symbol
&sym
,
52 uint64_t pltEntryAddr
) const {
53 // All but PPC32 and PPC64 use the same format for .plt and .iplt entries.
54 writePlt(buf
, sym
, pltEntryAddr
);
56 virtual void writeIBTPlt(uint8_t *buf
, size_t numEntries
) const {}
57 virtual void addPltHeaderSymbols(InputSection
&isec
) const {}
58 virtual void addPltSymbols(InputSection
&isec
, uint64_t off
) const {}
60 // Returns true if a relocation only uses the low bits of a value such that
61 // all those bits are in the same page. For example, if the relocation
62 // only uses the low 12 bits in a system with 4k pages. If this is true, the
63 // bits will always have the same value at runtime and we don't have to emit
64 // a dynamic relocation.
65 virtual bool usesOnlyLowPageBits(RelType type
) const;
67 // Decide whether a Thunk is needed for the relocation from File
69 virtual bool needsThunk(RelExpr expr
, RelType relocType
,
70 const InputFile
*file
, uint64_t branchAddr
,
71 const Symbol
&s
, int64_t a
) const;
73 // On systems with range extensions we place collections of Thunks at
74 // regular spacings that enable the majority of branches reach the Thunks.
75 // a value of 0 means range extension thunks are not supported.
76 virtual uint32_t getThunkSectionSpacing() const { return 0; }
78 // The function with a prologue starting at Loc was compiled with
79 // -fsplit-stack and it calls a function compiled without. Adjust the prologue
80 // to do the right thing. See https://gcc.gnu.org/wiki/SplitStacks.
81 // The symbols st_other flags are needed on PowerPC64 for determining the
82 // offset to the split-stack prologue.
83 virtual bool adjustPrologueForCrossSplitStack(uint8_t *loc
, uint8_t *end
,
84 uint8_t stOther
) const;
86 // Return true if we can reach dst from src with RelType type.
87 virtual bool inBranchRange(RelType type
, uint64_t src
,
90 virtual void relocate(uint8_t *loc
, const Relocation
&rel
,
91 uint64_t val
) const = 0;
92 void relocateNoSym(uint8_t *loc
, RelType type
, uint64_t val
) const {
93 relocate(loc
, Relocation
{R_NONE
, type
, 0, 0, nullptr}, val
);
95 virtual void relocateAlloc(InputSectionBase
&sec
, uint8_t *buf
) const;
97 // Do a linker relaxation pass and return true if we changed something.
98 virtual bool relaxOnce(int pass
) const { return false; }
99 // Do finalize relaxation after collecting relaxation infos.
100 virtual void finalizeRelax(int passes
) const {}
102 virtual void applyJumpInstrMod(uint8_t *loc
, JumpModType type
,
103 JumpModType val
) const {}
105 virtual ~TargetInfo();
107 // This deletes a jump insn at the end of the section if it is a fall thru to
108 // the next section. Further, if there is a conditional jump and a direct
109 // jump consecutively, it tries to flip the conditional jump to convert the
110 // direct jump into a fall thru and delete it. Returns true if a jump
111 // instruction can be deleted.
112 virtual bool deleteFallThruJmpInsn(InputSection
&is
, InputFile
*file
,
113 InputSection
*nextIS
) const {
118 unsigned defaultCommonPageSize
= 4096;
119 unsigned defaultMaxPageSize
= 4096;
121 uint64_t getImageBase() const;
123 // True if _GLOBAL_OFFSET_TABLE_ is relative to .got.plt, false if .got.
124 bool gotBaseSymInGotPlt
= false;
126 static constexpr RelType noneRel
= 0;
130 RelType relativeRel
= 0;
131 RelType iRelativeRel
= 0;
132 RelType symbolicRel
= 0;
133 RelType tlsDescRel
= 0;
134 RelType tlsGotRel
= 0;
135 RelType tlsModuleIndexRel
= 0;
136 RelType tlsOffsetRel
= 0;
137 unsigned gotEntrySize
= ctx
.arg
.wordsize
;
138 unsigned pltEntrySize
= 0;
139 unsigned pltHeaderSize
= 0;
140 unsigned ipltEntrySize
= 0;
142 // At least on x86_64 positions 1 and 2 are used by the first plt entry
143 // to support lazy loading.
144 unsigned gotPltHeaderEntriesNum
= 3;
146 // On PPC ELF V2 abi, the first entry in the .got is the .TOC.
147 unsigned gotHeaderEntriesNum
= 0;
149 // On PPC ELF V2 abi, the dynamic section needs DT_PPC64_OPT (DT_LOPROC + 3)
150 // to be set to 0x2 if there can be multiple TOC's. Although we do not emit
151 // multiple TOC's, there can be a mix of TOC and NOTOC addressing which
152 // is functionally equivalent.
153 int ppc64DynamicSectionOpt
= 0;
155 bool needsThunks
= false;
157 // A 4-byte field corresponding to one or more trap instructions, used to pad
158 // executable OutputSections.
159 std::array
<uint8_t, 4> trapInstr
= {};
161 // Stores the NOP instructions of different sizes for the target and is used
162 // to pad sections that are relaxed.
163 std::optional
<std::vector
<std::vector
<uint8_t>>> nopInstrs
;
165 // If a target needs to rewrite calls to __morestack to instead call
166 // __morestack_non_split when a split-stack enabled caller calls a
167 // non-split-stack callee this will return true. Otherwise returns false.
168 bool needsMoreStackNonSplit
= true;
170 virtual RelExpr
adjustTlsExpr(RelType type
, RelExpr expr
) const;
171 virtual RelExpr
adjustGotPcExpr(RelType type
, int64_t addend
,
172 const uint8_t *loc
) const;
175 // On FreeBSD x86_64 the first page cannot be mmaped.
176 // On Linux this is controlled by vm.mmap_min_addr. At least on some x86_64
177 // installs this is set to 65536, so the first 15 pages cannot be used.
178 // Given that, the smallest value that can be used in here is 0x10000.
179 uint64_t defaultImageBase
= 0x10000;
182 void setAArch64TargetInfo(Ctx
&);
183 void setAMDGPUTargetInfo(Ctx
&);
184 void setARMTargetInfo(Ctx
&);
185 void setAVRTargetInfo(Ctx
&);
186 void setHexagonTargetInfo(Ctx
&);
187 void setLoongArchTargetInfo(Ctx
&);
188 void setMSP430TargetInfo(Ctx
&);
189 void setMipsTargetInfo(Ctx
&);
190 void setPPC64TargetInfo(Ctx
&);
191 void setPPCTargetInfo(Ctx
&);
192 void setRISCVTargetInfo(Ctx
&);
193 void setSPARCV9TargetInfo(Ctx
&);
194 void setSystemZTargetInfo(Ctx
&);
195 void setX86TargetInfo(Ctx
&);
196 void setX86_64TargetInfo(Ctx
&);
199 InputSectionBase
*isec
;
204 // Returns input section and corresponding source string for the given location.
205 ErrorPlace
getErrorPlace(Ctx
&ctx
, const uint8_t *loc
);
207 static inline std::string
getErrorLoc(Ctx
&ctx
, const uint8_t *loc
) {
208 return getErrorPlace(ctx
, loc
).loc
;
211 void processArmCmseSymbols(Ctx
&);
213 template <class ELFT
> uint32_t calcMipsEFlags(Ctx
&);
214 uint8_t getMipsFpAbiFlag(Ctx
&, uint8_t oldFlag
, uint8_t newFlag
,
215 llvm::StringRef fileName
);
216 bool isMipsN32Abi(Ctx
&, const InputFile
&f
);
217 bool isMicroMips(Ctx
&);
218 bool isMipsR6(Ctx
&);
220 void writePPC32GlinkSection(Ctx
&, uint8_t *buf
, size_t numEntries
);
222 unsigned getPPCDFormOp(unsigned secondaryOp
);
223 unsigned getPPCDSFormOp(unsigned secondaryOp
);
225 // In the PowerPC64 Elf V2 abi a function can have 2 entry points. The first
226 // is a global entry point (GEP) which typically is used to initialize the TOC
227 // pointer in general purpose register 2. The second is a local entry
228 // point (LEP) which bypasses the TOC pointer initialization code. The
229 // offset between GEP and LEP is encoded in a function's st_other flags.
230 // This function will return the offset (in bytes) from the global entry-point
231 // to the local entry-point.
232 unsigned getPPC64GlobalEntryToLocalEntryOffset(Ctx
&, uint8_t stOther
);
234 // Write a prefixed instruction, which is a 4-byte prefix followed by a 4-byte
235 // instruction (regardless of endianness). Therefore, the prefix is always in
236 // lower memory than the instruction.
237 void writePrefixedInst(Ctx
&, uint8_t *loc
, uint64_t insn
);
239 void addPPC64SaveRestore(Ctx
&);
240 uint64_t getPPC64TocBase(Ctx
&ctx
);
241 uint64_t getAArch64Page(uint64_t expr
);
242 bool isAArch64BTILandingPad(Ctx
&, Symbol
&s
, int64_t a
);
243 template <typename ELFT
> void writeARMCmseImportLib(Ctx
&);
244 uint64_t getLoongArchPageDelta(uint64_t dest
, uint64_t pc
, RelType type
);
245 void riscvFinalizeRelax(int passes
);
246 void mergeRISCVAttributesSections(Ctx
&);
247 void addArmInputSectionMappingSymbols(Ctx
&);
248 void addArmSyntheticSectionMappingSymbol(Defined
*);
249 void sortArmMappingSymbols(Ctx
&);
250 void convertArmInstructionstoBE8(Ctx
&, InputSection
*sec
, uint8_t *buf
);
251 void createTaggedSymbols(Ctx
&);
252 void initSymbolAnchors(Ctx
&);
254 void setTarget(Ctx
&);
256 template <class ELFT
> bool isMipsPIC(const Defined
*sym
);
258 const ELFSyncStream
&operator<<(const ELFSyncStream
&, RelType
);
260 void reportRangeError(Ctx
&, uint8_t *loc
, const Relocation
&rel
,
261 const Twine
&v
, int64_t min
, uint64_t max
);
262 void reportRangeError(Ctx
&ctx
, uint8_t *loc
, int64_t v
, int n
,
263 const Symbol
&sym
, const Twine
&msg
);
265 // Make sure that V can be represented as an N bit signed integer.
266 inline void checkInt(Ctx
&ctx
, uint8_t *loc
, int64_t v
, int n
,
267 const Relocation
&rel
) {
268 if (v
!= llvm::SignExtend64(v
, n
))
269 reportRangeError(ctx
, loc
, rel
, Twine(v
), llvm::minIntN(n
),
273 // Make sure that V can be represented as an N bit unsigned integer.
274 inline void checkUInt(Ctx
&ctx
, uint8_t *loc
, uint64_t v
, int n
,
275 const Relocation
&rel
) {
277 reportRangeError(ctx
, loc
, rel
, Twine(v
), 0, llvm::maxUIntN(n
));
280 // Make sure that V can be represented as an N bit signed or unsigned integer.
281 inline void checkIntUInt(Ctx
&ctx
, uint8_t *loc
, uint64_t v
, int n
,
282 const Relocation
&rel
) {
283 // For the error message we should cast V to a signed integer so that error
284 // messages show a small negative value rather than an extremely large one
285 if (v
!= (uint64_t)llvm::SignExtend64(v
, n
) && (v
>> n
) != 0)
286 reportRangeError(ctx
, loc
, rel
, Twine((int64_t)v
), llvm::minIntN(n
),
290 inline void checkAlignment(Ctx
&ctx
, uint8_t *loc
, uint64_t v
, int n
,
291 const Relocation
&rel
) {
292 if ((v
& (n
- 1)) != 0)
293 Err(ctx
) << getErrorLoc(ctx
, loc
) << "improper alignment for relocation "
294 << rel
.type
<< ": 0x" << llvm::utohexstr(v
)
295 << " is not aligned to " << Twine(n
) << " bytes";
298 // Endianness-aware read/write.
299 inline uint16_t read16(Ctx
&ctx
, const void *p
) {
300 return llvm::support::endian::read16(p
, ctx
.arg
.endianness
);
303 inline uint32_t read32(Ctx
&ctx
, const void *p
) {
304 return llvm::support::endian::read32(p
, ctx
.arg
.endianness
);
307 inline uint64_t read64(Ctx
&ctx
, const void *p
) {
308 return llvm::support::endian::read64(p
, ctx
.arg
.endianness
);
311 inline void write16(Ctx
&ctx
, void *p
, uint16_t v
) {
312 llvm::support::endian::write16(p
, v
, ctx
.arg
.endianness
);
315 inline void write32(Ctx
&ctx
, void *p
, uint32_t v
) {
316 llvm::support::endian::write32(p
, v
, ctx
.arg
.endianness
);
319 inline void write64(Ctx
&ctx
, void *p
, uint64_t v
) {
320 llvm::support::endian::write64(p
, v
, ctx
.arg
.endianness
);
323 // Overwrite a ULEB128 value and keep the original length.
324 inline uint64_t overwriteULEB128(uint8_t *bufLoc
, uint64_t val
) {
325 while (*bufLoc
& 0x80) {
326 *bufLoc
++ = 0x80 | (val
& 0x7f);
336 #pragma clang diagnostic ignored "-Wgnu-zero-variadic-macro-arguments"
338 #define invokeELFT(f, ...) \
339 switch (ctx.arg.ekind) { \
340 case lld::elf::ELF32LEKind: \
341 f<llvm::object::ELF32LE>(__VA_ARGS__); \
343 case lld::elf::ELF32BEKind: \
344 f<llvm::object::ELF32BE>(__VA_ARGS__); \
346 case lld::elf::ELF64LEKind: \
347 f<llvm::object::ELF64LE>(__VA_ARGS__); \
349 case lld::elf::ELF64BEKind: \
350 f<llvm::object::ELF64BE>(__VA_ARGS__); \
353 llvm_unreachable("unknown ctx.arg.ekind"); \