1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Expr constant evaluator.
11 // Constant expression evaluation produces four main results:
13 // * A success/failure flag indicating whether constant folding was successful.
14 // This is the 'bool' return value used by most of the code in this file. A
15 // 'false' return value indicates that constant folding has failed, and any
16 // appropriate diagnostic has already been produced.
18 // * An evaluated result, valid only if constant folding has not failed.
20 // * A flag indicating if evaluation encountered (unevaluated) side-effects.
21 // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
22 // where it is possible to determine the evaluated result regardless.
24 // * A set of notes indicating why the evaluation was not a constant expression
25 // (under the C++11 / C++1y rules only, at the moment), or, if folding failed
26 // too, why the expression could not be folded.
28 // If we are checking for a potential constant expression, failure to constant
29 // fold a potential constant sub-expression will be indicated by a 'false'
30 // return value (the expression could not be folded) and no diagnostic (the
31 // expression is not necessarily non-constant).
33 //===----------------------------------------------------------------------===//
35 #include "Interp/Context.h"
36 #include "Interp/Frame.h"
37 #include "Interp/State.h"
38 #include "clang/AST/APValue.h"
39 #include "clang/AST/ASTContext.h"
40 #include "clang/AST/ASTDiagnostic.h"
41 #include "clang/AST/ASTLambda.h"
42 #include "clang/AST/Attr.h"
43 #include "clang/AST/CXXInheritance.h"
44 #include "clang/AST/CharUnits.h"
45 #include "clang/AST/CurrentSourceLocExprScope.h"
46 #include "clang/AST/Expr.h"
47 #include "clang/AST/OSLog.h"
48 #include "clang/AST/OptionalDiagnostic.h"
49 #include "clang/AST/RecordLayout.h"
50 #include "clang/AST/StmtVisitor.h"
51 #include "clang/AST/TypeLoc.h"
52 #include "clang/Basic/Builtins.h"
53 #include "clang/Basic/TargetInfo.h"
54 #include "llvm/ADT/APFixedPoint.h"
55 #include "llvm/ADT/Optional.h"
56 #include "llvm/ADT/SmallBitVector.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/SaveAndRestore.h"
59 #include "llvm/Support/TimeProfiler.h"
60 #include "llvm/Support/raw_ostream.h"
64 #define DEBUG_TYPE "exprconstant"
66 using namespace clang
;
67 using llvm::APFixedPoint
;
71 using llvm::FixedPointSemantics
;
79 using SourceLocExprScopeGuard
=
80 CurrentSourceLocExprScope::SourceLocExprScopeGuard
;
82 static QualType
getType(APValue::LValueBase B
) {
86 /// Get an LValue path entry, which is known to not be an array index, as a
87 /// field declaration.
88 static const FieldDecl
*getAsField(APValue::LValuePathEntry E
) {
89 return dyn_cast_or_null
<FieldDecl
>(E
.getAsBaseOrMember().getPointer());
91 /// Get an LValue path entry, which is known to not be an array index, as a
92 /// base class declaration.
93 static const CXXRecordDecl
*getAsBaseClass(APValue::LValuePathEntry E
) {
94 return dyn_cast_or_null
<CXXRecordDecl
>(E
.getAsBaseOrMember().getPointer());
96 /// Determine whether this LValue path entry for a base class names a virtual
98 static bool isVirtualBaseClass(APValue::LValuePathEntry E
) {
99 return E
.getAsBaseOrMember().getInt();
102 /// Given an expression, determine the type used to store the result of
103 /// evaluating that expression.
104 static QualType
getStorageType(const ASTContext
&Ctx
, const Expr
*E
) {
107 return Ctx
.getLValueReferenceType(E
->getType());
110 /// Given a CallExpr, try to get the alloc_size attribute. May return null.
111 static const AllocSizeAttr
*getAllocSizeAttr(const CallExpr
*CE
) {
112 if (const FunctionDecl
*DirectCallee
= CE
->getDirectCallee())
113 return DirectCallee
->getAttr
<AllocSizeAttr
>();
114 if (const Decl
*IndirectCallee
= CE
->getCalleeDecl())
115 return IndirectCallee
->getAttr
<AllocSizeAttr
>();
119 /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
120 /// This will look through a single cast.
122 /// Returns null if we couldn't unwrap a function with alloc_size.
123 static const CallExpr
*tryUnwrapAllocSizeCall(const Expr
*E
) {
124 if (!E
->getType()->isPointerType())
127 E
= E
->IgnoreParens();
128 // If we're doing a variable assignment from e.g. malloc(N), there will
129 // probably be a cast of some kind. In exotic cases, we might also see a
130 // top-level ExprWithCleanups. Ignore them either way.
131 if (const auto *FE
= dyn_cast
<FullExpr
>(E
))
132 E
= FE
->getSubExpr()->IgnoreParens();
134 if (const auto *Cast
= dyn_cast
<CastExpr
>(E
))
135 E
= Cast
->getSubExpr()->IgnoreParens();
137 if (const auto *CE
= dyn_cast
<CallExpr
>(E
))
138 return getAllocSizeAttr(CE
) ? CE
: nullptr;
142 /// Determines whether or not the given Base contains a call to a function
143 /// with the alloc_size attribute.
144 static bool isBaseAnAllocSizeCall(APValue::LValueBase Base
) {
145 const auto *E
= Base
.dyn_cast
<const Expr
*>();
146 return E
&& E
->getType()->isPointerType() && tryUnwrapAllocSizeCall(E
);
149 /// Determines whether the given kind of constant expression is only ever
150 /// used for name mangling. If so, it's permitted to reference things that we
151 /// can't generate code for (in particular, dllimported functions).
152 static bool isForManglingOnly(ConstantExprKind Kind
) {
154 case ConstantExprKind::Normal
:
155 case ConstantExprKind::ClassTemplateArgument
:
156 case ConstantExprKind::ImmediateInvocation
:
157 // Note that non-type template arguments of class type are emitted as
158 // template parameter objects.
161 case ConstantExprKind::NonClassTemplateArgument
:
164 llvm_unreachable("unknown ConstantExprKind");
167 static bool isTemplateArgument(ConstantExprKind Kind
) {
169 case ConstantExprKind::Normal
:
170 case ConstantExprKind::ImmediateInvocation
:
173 case ConstantExprKind::ClassTemplateArgument
:
174 case ConstantExprKind::NonClassTemplateArgument
:
177 llvm_unreachable("unknown ConstantExprKind");
180 /// The bound to claim that an array of unknown bound has.
181 /// The value in MostDerivedArraySize is undefined in this case. So, set it
182 /// to an arbitrary value that's likely to loudly break things if it's used.
183 static const uint64_t AssumedSizeForUnsizedArray
=
184 std::numeric_limits
<uint64_t>::max() / 2;
186 /// Determines if an LValue with the given LValueBase will have an unsized
187 /// array in its designator.
188 /// Find the path length and type of the most-derived subobject in the given
189 /// path, and find the size of the containing array, if any.
191 findMostDerivedSubobject(ASTContext
&Ctx
, APValue::LValueBase Base
,
192 ArrayRef
<APValue::LValuePathEntry
> Path
,
193 uint64_t &ArraySize
, QualType
&Type
, bool &IsArray
,
194 bool &FirstEntryIsUnsizedArray
) {
195 // This only accepts LValueBases from APValues, and APValues don't support
196 // arrays that lack size info.
197 assert(!isBaseAnAllocSizeCall(Base
) &&
198 "Unsized arrays shouldn't appear here");
199 unsigned MostDerivedLength
= 0;
200 Type
= getType(Base
);
202 for (unsigned I
= 0, N
= Path
.size(); I
!= N
; ++I
) {
203 if (Type
->isArrayType()) {
204 const ArrayType
*AT
= Ctx
.getAsArrayType(Type
);
205 Type
= AT
->getElementType();
206 MostDerivedLength
= I
+ 1;
209 if (auto *CAT
= dyn_cast
<ConstantArrayType
>(AT
)) {
210 ArraySize
= CAT
->getSize().getZExtValue();
212 assert(I
== 0 && "unexpected unsized array designator");
213 FirstEntryIsUnsizedArray
= true;
214 ArraySize
= AssumedSizeForUnsizedArray
;
216 } else if (Type
->isAnyComplexType()) {
217 const ComplexType
*CT
= Type
->castAs
<ComplexType
>();
218 Type
= CT
->getElementType();
220 MostDerivedLength
= I
+ 1;
222 } else if (const FieldDecl
*FD
= getAsField(Path
[I
])) {
223 Type
= FD
->getType();
225 MostDerivedLength
= I
+ 1;
228 // Path[I] describes a base class.
233 return MostDerivedLength
;
236 /// A path from a glvalue to a subobject of that glvalue.
237 struct SubobjectDesignator
{
238 /// True if the subobject was named in a manner not supported by C++11. Such
239 /// lvalues can still be folded, but they are not core constant expressions
240 /// and we cannot perform lvalue-to-rvalue conversions on them.
241 unsigned Invalid
: 1;
243 /// Is this a pointer one past the end of an object?
244 unsigned IsOnePastTheEnd
: 1;
246 /// Indicator of whether the first entry is an unsized array.
247 unsigned FirstEntryIsAnUnsizedArray
: 1;
249 /// Indicator of whether the most-derived object is an array element.
250 unsigned MostDerivedIsArrayElement
: 1;
252 /// The length of the path to the most-derived object of which this is a
254 unsigned MostDerivedPathLength
: 28;
256 /// The size of the array of which the most-derived object is an element.
257 /// This will always be 0 if the most-derived object is not an array
258 /// element. 0 is not an indicator of whether or not the most-derived object
259 /// is an array, however, because 0-length arrays are allowed.
261 /// If the current array is an unsized array, the value of this is
263 uint64_t MostDerivedArraySize
;
265 /// The type of the most derived object referred to by this address.
266 QualType MostDerivedType
;
268 typedef APValue::LValuePathEntry PathEntry
;
270 /// The entries on the path from the glvalue to the designated subobject.
271 SmallVector
<PathEntry
, 8> Entries
;
273 SubobjectDesignator() : Invalid(true) {}
275 explicit SubobjectDesignator(QualType T
)
276 : Invalid(false), IsOnePastTheEnd(false),
277 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
278 MostDerivedPathLength(0), MostDerivedArraySize(0),
279 MostDerivedType(T
) {}
281 SubobjectDesignator(ASTContext
&Ctx
, const APValue
&V
)
282 : Invalid(!V
.isLValue() || !V
.hasLValuePath()), IsOnePastTheEnd(false),
283 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
284 MostDerivedPathLength(0), MostDerivedArraySize(0) {
285 assert(V
.isLValue() && "Non-LValue used to make an LValue designator?");
287 IsOnePastTheEnd
= V
.isLValueOnePastTheEnd();
288 ArrayRef
<PathEntry
> VEntries
= V
.getLValuePath();
289 Entries
.insert(Entries
.end(), VEntries
.begin(), VEntries
.end());
290 if (V
.getLValueBase()) {
291 bool IsArray
= false;
292 bool FirstIsUnsizedArray
= false;
293 MostDerivedPathLength
= findMostDerivedSubobject(
294 Ctx
, V
.getLValueBase(), V
.getLValuePath(), MostDerivedArraySize
,
295 MostDerivedType
, IsArray
, FirstIsUnsizedArray
);
296 MostDerivedIsArrayElement
= IsArray
;
297 FirstEntryIsAnUnsizedArray
= FirstIsUnsizedArray
;
302 void truncate(ASTContext
&Ctx
, APValue::LValueBase Base
,
303 unsigned NewLength
) {
307 assert(Base
&& "cannot truncate path for null pointer");
308 assert(NewLength
<= Entries
.size() && "not a truncation");
310 if (NewLength
== Entries
.size())
312 Entries
.resize(NewLength
);
314 bool IsArray
= false;
315 bool FirstIsUnsizedArray
= false;
316 MostDerivedPathLength
= findMostDerivedSubobject(
317 Ctx
, Base
, Entries
, MostDerivedArraySize
, MostDerivedType
, IsArray
,
318 FirstIsUnsizedArray
);
319 MostDerivedIsArrayElement
= IsArray
;
320 FirstEntryIsAnUnsizedArray
= FirstIsUnsizedArray
;
328 /// Determine whether the most derived subobject is an array without a
330 bool isMostDerivedAnUnsizedArray() const {
331 assert(!Invalid
&& "Calling this makes no sense on invalid designators");
332 return Entries
.size() == 1 && FirstEntryIsAnUnsizedArray
;
335 /// Determine what the most derived array's size is. Results in an assertion
336 /// failure if the most derived array lacks a size.
337 uint64_t getMostDerivedArraySize() const {
338 assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
339 return MostDerivedArraySize
;
342 /// Determine whether this is a one-past-the-end pointer.
343 bool isOnePastTheEnd() const {
347 if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement
&&
348 Entries
[MostDerivedPathLength
- 1].getAsArrayIndex() ==
349 MostDerivedArraySize
)
354 /// Get the range of valid index adjustments in the form
355 /// {maximum value that can be subtracted from this pointer,
356 /// maximum value that can be added to this pointer}
357 std::pair
<uint64_t, uint64_t> validIndexAdjustments() {
358 if (Invalid
|| isMostDerivedAnUnsizedArray())
361 // [expr.add]p4: For the purposes of these operators, a pointer to a
362 // nonarray object behaves the same as a pointer to the first element of
363 // an array of length one with the type of the object as its element type.
364 bool IsArray
= MostDerivedPathLength
== Entries
.size() &&
365 MostDerivedIsArrayElement
;
366 uint64_t ArrayIndex
= IsArray
? Entries
.back().getAsArrayIndex()
367 : (uint64_t)IsOnePastTheEnd
;
369 IsArray
? getMostDerivedArraySize() : (uint64_t)1;
370 return {ArrayIndex
, ArraySize
- ArrayIndex
};
373 /// Check that this refers to a valid subobject.
374 bool isValidSubobject() const {
377 return !isOnePastTheEnd();
379 /// Check that this refers to a valid subobject, and if not, produce a
380 /// relevant diagnostic and set the designator as invalid.
381 bool checkSubobject(EvalInfo
&Info
, const Expr
*E
, CheckSubobjectKind CSK
);
383 /// Get the type of the designated object.
384 QualType
getType(ASTContext
&Ctx
) const {
385 assert(!Invalid
&& "invalid designator has no subobject type");
386 return MostDerivedPathLength
== Entries
.size()
388 : Ctx
.getRecordType(getAsBaseClass(Entries
.back()));
391 /// Update this designator to refer to the first element within this array.
392 void addArrayUnchecked(const ConstantArrayType
*CAT
) {
393 Entries
.push_back(PathEntry::ArrayIndex(0));
395 // This is a most-derived object.
396 MostDerivedType
= CAT
->getElementType();
397 MostDerivedIsArrayElement
= true;
398 MostDerivedArraySize
= CAT
->getSize().getZExtValue();
399 MostDerivedPathLength
= Entries
.size();
401 /// Update this designator to refer to the first element within the array of
402 /// elements of type T. This is an array of unknown size.
403 void addUnsizedArrayUnchecked(QualType ElemTy
) {
404 Entries
.push_back(PathEntry::ArrayIndex(0));
406 MostDerivedType
= ElemTy
;
407 MostDerivedIsArrayElement
= true;
408 // The value in MostDerivedArraySize is undefined in this case. So, set it
409 // to an arbitrary value that's likely to loudly break things if it's
411 MostDerivedArraySize
= AssumedSizeForUnsizedArray
;
412 MostDerivedPathLength
= Entries
.size();
414 /// Update this designator to refer to the given base or member of this
416 void addDeclUnchecked(const Decl
*D
, bool Virtual
= false) {
417 Entries
.push_back(APValue::BaseOrMemberType(D
, Virtual
));
419 // If this isn't a base class, it's a new most-derived object.
420 if (const FieldDecl
*FD
= dyn_cast
<FieldDecl
>(D
)) {
421 MostDerivedType
= FD
->getType();
422 MostDerivedIsArrayElement
= false;
423 MostDerivedArraySize
= 0;
424 MostDerivedPathLength
= Entries
.size();
427 /// Update this designator to refer to the given complex component.
428 void addComplexUnchecked(QualType EltTy
, bool Imag
) {
429 Entries
.push_back(PathEntry::ArrayIndex(Imag
));
431 // This is technically a most-derived object, though in practice this
432 // is unlikely to matter.
433 MostDerivedType
= EltTy
;
434 MostDerivedIsArrayElement
= true;
435 MostDerivedArraySize
= 2;
436 MostDerivedPathLength
= Entries
.size();
438 void diagnoseUnsizedArrayPointerArithmetic(EvalInfo
&Info
, const Expr
*E
);
439 void diagnosePointerArithmetic(EvalInfo
&Info
, const Expr
*E
,
441 /// Add N to the address of this subobject.
442 void adjustIndex(EvalInfo
&Info
, const Expr
*E
, APSInt N
) {
443 if (Invalid
|| !N
) return;
444 uint64_t TruncatedN
= N
.extOrTrunc(64).getZExtValue();
445 if (isMostDerivedAnUnsizedArray()) {
446 diagnoseUnsizedArrayPointerArithmetic(Info
, E
);
447 // Can't verify -- trust that the user is doing the right thing (or if
448 // not, trust that the caller will catch the bad behavior).
449 // FIXME: Should we reject if this overflows, at least?
450 Entries
.back() = PathEntry::ArrayIndex(
451 Entries
.back().getAsArrayIndex() + TruncatedN
);
455 // [expr.add]p4: For the purposes of these operators, a pointer to a
456 // nonarray object behaves the same as a pointer to the first element of
457 // an array of length one with the type of the object as its element type.
458 bool IsArray
= MostDerivedPathLength
== Entries
.size() &&
459 MostDerivedIsArrayElement
;
460 uint64_t ArrayIndex
= IsArray
? Entries
.back().getAsArrayIndex()
461 : (uint64_t)IsOnePastTheEnd
;
463 IsArray
? getMostDerivedArraySize() : (uint64_t)1;
465 if (N
< -(int64_t)ArrayIndex
|| N
> ArraySize
- ArrayIndex
) {
466 // Calculate the actual index in a wide enough type, so we can include
468 N
= N
.extend(std::max
<unsigned>(N
.getBitWidth() + 1, 65));
469 (llvm::APInt
&)N
+= ArrayIndex
;
470 assert(N
.ugt(ArraySize
) && "bounds check failed for in-bounds index");
471 diagnosePointerArithmetic(Info
, E
, N
);
476 ArrayIndex
+= TruncatedN
;
477 assert(ArrayIndex
<= ArraySize
&&
478 "bounds check succeeded for out-of-bounds index");
481 Entries
.back() = PathEntry::ArrayIndex(ArrayIndex
);
483 IsOnePastTheEnd
= (ArrayIndex
!= 0);
487 /// A scope at the end of which an object can need to be destroyed.
488 enum class ScopeKind
{
494 /// A reference to a particular call and its arguments.
496 CallRef() : OrigCallee(), CallIndex(0), Version() {}
497 CallRef(const FunctionDecl
*Callee
, unsigned CallIndex
, unsigned Version
)
498 : OrigCallee(Callee
), CallIndex(CallIndex
), Version(Version
) {}
500 explicit operator bool() const { return OrigCallee
; }
502 /// Get the parameter that the caller initialized, corresponding to the
503 /// given parameter in the callee.
504 const ParmVarDecl
*getOrigParam(const ParmVarDecl
*PVD
) const {
505 return OrigCallee
? OrigCallee
->getParamDecl(PVD
->getFunctionScopeIndex())
509 /// The callee at the point where the arguments were evaluated. This might
510 /// be different from the actual callee (a different redeclaration, or a
511 /// virtual override), but this function's parameters are the ones that
512 /// appear in the parameter map.
513 const FunctionDecl
*OrigCallee
;
514 /// The call index of the frame that holds the argument values.
516 /// The version of the parameters corresponding to this call.
520 /// A stack frame in the constexpr call stack.
521 class CallStackFrame
: public interp::Frame
{
525 /// Parent - The caller of this stack frame.
526 CallStackFrame
*Caller
;
528 /// Callee - The function which was called.
529 const FunctionDecl
*Callee
;
531 /// This - The binding for the this pointer in this call, if any.
534 /// Information on how to find the arguments to this call. Our arguments
535 /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a
536 /// key and this value as the version.
539 /// Source location information about the default argument or default
540 /// initializer expression we're evaluating, if any.
541 CurrentSourceLocExprScope CurSourceLocExprScope
;
543 // Note that we intentionally use std::map here so that references to
544 // values are stable.
545 typedef std::pair
<const void *, unsigned> MapKeyTy
;
546 typedef std::map
<MapKeyTy
, APValue
> MapTy
;
547 /// Temporaries - Temporary lvalues materialized within this stack frame.
550 /// CallLoc - The location of the call expression for this call.
551 SourceLocation CallLoc
;
553 /// Index - The call index of this call.
556 /// The stack of integers for tracking version numbers for temporaries.
557 SmallVector
<unsigned, 2> TempVersionStack
= {1};
558 unsigned CurTempVersion
= TempVersionStack
.back();
560 unsigned getTempVersion() const { return TempVersionStack
.back(); }
562 void pushTempVersion() {
563 TempVersionStack
.push_back(++CurTempVersion
);
566 void popTempVersion() {
567 TempVersionStack
.pop_back();
570 CallRef
createCall(const FunctionDecl
*Callee
) {
571 return {Callee
, Index
, ++CurTempVersion
};
574 // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
575 // on the overall stack usage of deeply-recursing constexpr evaluations.
576 // (We should cache this map rather than recomputing it repeatedly.)
577 // But let's try this and see how it goes; we can look into caching the map
578 // as a later change.
580 /// LambdaCaptureFields - Mapping from captured variables/this to
581 /// corresponding data members in the closure class.
582 llvm::DenseMap
<const ValueDecl
*, FieldDecl
*> LambdaCaptureFields
;
583 FieldDecl
*LambdaThisCaptureField
;
585 CallStackFrame(EvalInfo
&Info
, SourceLocation CallLoc
,
586 const FunctionDecl
*Callee
, const LValue
*This
,
590 // Return the temporary for Key whose version number is Version.
591 APValue
*getTemporary(const void *Key
, unsigned Version
) {
592 MapKeyTy
KV(Key
, Version
);
593 auto LB
= Temporaries
.lower_bound(KV
);
594 if (LB
!= Temporaries
.end() && LB
->first
== KV
)
596 // Pair (Key,Version) wasn't found in the map. Check that no elements
597 // in the map have 'Key' as their key.
598 assert((LB
== Temporaries
.end() || LB
->first
.first
!= Key
) &&
599 (LB
== Temporaries
.begin() || std::prev(LB
)->first
.first
!= Key
) &&
600 "Element with key 'Key' found in map");
604 // Return the current temporary for Key in the map.
605 APValue
*getCurrentTemporary(const void *Key
) {
606 auto UB
= Temporaries
.upper_bound(MapKeyTy(Key
, UINT_MAX
));
607 if (UB
!= Temporaries
.begin() && std::prev(UB
)->first
.first
== Key
)
608 return &std::prev(UB
)->second
;
612 // Return the version number of the current temporary for Key.
613 unsigned getCurrentTemporaryVersion(const void *Key
) const {
614 auto UB
= Temporaries
.upper_bound(MapKeyTy(Key
, UINT_MAX
));
615 if (UB
!= Temporaries
.begin() && std::prev(UB
)->first
.first
== Key
)
616 return std::prev(UB
)->first
.second
;
620 /// Allocate storage for an object of type T in this stack frame.
621 /// Populates LV with a handle to the created object. Key identifies
622 /// the temporary within the stack frame, and must not be reused without
623 /// bumping the temporary version number.
624 template<typename KeyT
>
625 APValue
&createTemporary(const KeyT
*Key
, QualType T
,
626 ScopeKind Scope
, LValue
&LV
);
628 /// Allocate storage for a parameter of a function call made in this frame.
629 APValue
&createParam(CallRef Args
, const ParmVarDecl
*PVD
, LValue
&LV
);
631 void describe(llvm::raw_ostream
&OS
) override
;
633 Frame
*getCaller() const override
{ return Caller
; }
634 SourceLocation
getCallLocation() const override
{ return CallLoc
; }
635 const FunctionDecl
*getCallee() const override
{ return Callee
; }
637 bool isStdFunction() const {
638 for (const DeclContext
*DC
= Callee
; DC
; DC
= DC
->getParent())
639 if (DC
->isStdNamespace())
645 APValue
&createLocal(APValue::LValueBase Base
, const void *Key
, QualType T
,
649 /// Temporarily override 'this'.
650 class ThisOverrideRAII
{
652 ThisOverrideRAII(CallStackFrame
&Frame
, const LValue
*NewThis
, bool Enable
)
653 : Frame(Frame
), OldThis(Frame
.This
) {
655 Frame
.This
= NewThis
;
657 ~ThisOverrideRAII() {
658 Frame
.This
= OldThis
;
661 CallStackFrame
&Frame
;
662 const LValue
*OldThis
;
665 // A shorthand time trace scope struct, prints source range, for example
666 // {"name":"EvaluateAsRValue","args":{"detail":"<test.cc:8:21, col:25>"}}}
667 class ExprTimeTraceScope
{
669 ExprTimeTraceScope(const Expr
*E
, const ASTContext
&Ctx
, StringRef Name
)
670 : TimeScope(Name
, [E
, &Ctx
] {
671 return E
->getSourceRange().printToString(Ctx
.getSourceManager());
675 llvm::TimeTraceScope TimeScope
;
679 static bool HandleDestruction(EvalInfo
&Info
, const Expr
*E
,
680 const LValue
&This
, QualType ThisType
);
681 static bool HandleDestruction(EvalInfo
&Info
, SourceLocation Loc
,
682 APValue::LValueBase LVBase
, APValue
&Value
,
686 /// A cleanup, and a flag indicating whether it is lifetime-extended.
688 llvm::PointerIntPair
<APValue
*, 2, ScopeKind
> Value
;
689 APValue::LValueBase Base
;
693 Cleanup(APValue
*Val
, APValue::LValueBase Base
, QualType T
,
695 : Value(Val
, Scope
), Base(Base
), T(T
) {}
697 /// Determine whether this cleanup should be performed at the end of the
698 /// given kind of scope.
699 bool isDestroyedAtEndOf(ScopeKind K
) const {
700 return (int)Value
.getInt() >= (int)K
;
702 bool endLifetime(EvalInfo
&Info
, bool RunDestructors
) {
703 if (RunDestructors
) {
705 if (const ValueDecl
*VD
= Base
.dyn_cast
<const ValueDecl
*>())
706 Loc
= VD
->getLocation();
707 else if (const Expr
*E
= Base
.dyn_cast
<const Expr
*>())
708 Loc
= E
->getExprLoc();
709 return HandleDestruction(Info
, Loc
, Base
, *Value
.getPointer(), T
);
711 *Value
.getPointer() = APValue();
715 bool hasSideEffect() {
716 return T
.isDestructedType();
720 /// A reference to an object whose construction we are currently evaluating.
721 struct ObjectUnderConstruction
{
722 APValue::LValueBase Base
;
723 ArrayRef
<APValue::LValuePathEntry
> Path
;
724 friend bool operator==(const ObjectUnderConstruction
&LHS
,
725 const ObjectUnderConstruction
&RHS
) {
726 return LHS
.Base
== RHS
.Base
&& LHS
.Path
== RHS
.Path
;
728 friend llvm::hash_code
hash_value(const ObjectUnderConstruction
&Obj
) {
729 return llvm::hash_combine(Obj
.Base
, Obj
.Path
);
732 enum class ConstructionPhase
{
743 template<> struct DenseMapInfo
<ObjectUnderConstruction
> {
744 using Base
= DenseMapInfo
<APValue::LValueBase
>;
745 static ObjectUnderConstruction
getEmptyKey() {
746 return {Base::getEmptyKey(), {}}; }
747 static ObjectUnderConstruction
getTombstoneKey() {
748 return {Base::getTombstoneKey(), {}};
750 static unsigned getHashValue(const ObjectUnderConstruction
&Object
) {
751 return hash_value(Object
);
753 static bool isEqual(const ObjectUnderConstruction
&LHS
,
754 const ObjectUnderConstruction
&RHS
) {
761 /// A dynamically-allocated heap object.
763 /// The value of this heap-allocated object.
765 /// The allocating expression; used for diagnostics. Either a CXXNewExpr
766 /// or a CallExpr (the latter is for direct calls to operator new inside
767 /// std::allocator<T>::allocate).
768 const Expr
*AllocExpr
= nullptr;
776 /// Get the kind of the allocation. This must match between allocation
777 /// and deallocation.
778 Kind
getKind() const {
779 if (auto *NE
= dyn_cast
<CXXNewExpr
>(AllocExpr
))
780 return NE
->isArray() ? ArrayNew
: New
;
781 assert(isa
<CallExpr
>(AllocExpr
));
786 struct DynAllocOrder
{
787 bool operator()(DynamicAllocLValue L
, DynamicAllocLValue R
) const {
788 return L
.getIndex() < R
.getIndex();
792 /// EvalInfo - This is a private struct used by the evaluator to capture
793 /// information about a subexpression as it is folded. It retains information
794 /// about the AST context, but also maintains information about the folded
797 /// If an expression could be evaluated, it is still possible it is not a C
798 /// "integer constant expression" or constant expression. If not, this struct
799 /// captures information about how and why not.
801 /// One bit of information passed *into* the request for constant folding
802 /// indicates whether the subexpression is "evaluated" or not according to C
803 /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
804 /// evaluate the expression regardless of what the RHS is, but C only allows
805 /// certain things in certain situations.
806 class EvalInfo
: public interp::State
{
810 /// EvalStatus - Contains information about the evaluation.
811 Expr::EvalStatus
&EvalStatus
;
813 /// CurrentCall - The top of the constexpr call stack.
814 CallStackFrame
*CurrentCall
;
816 /// CallStackDepth - The number of calls in the call stack right now.
817 unsigned CallStackDepth
;
819 /// NextCallIndex - The next call index to assign.
820 unsigned NextCallIndex
;
822 /// StepsLeft - The remaining number of evaluation steps we're permitted
823 /// to perform. This is essentially a limit for the number of statements
824 /// we will evaluate.
827 /// Enable the experimental new constant interpreter. If an expression is
828 /// not supported by the interpreter, an error is triggered.
829 bool EnableNewConstInterp
;
831 /// BottomFrame - The frame in which evaluation started. This must be
832 /// initialized after CurrentCall and CallStackDepth.
833 CallStackFrame BottomFrame
;
835 /// A stack of values whose lifetimes end at the end of some surrounding
836 /// evaluation frame.
837 llvm::SmallVector
<Cleanup
, 16> CleanupStack
;
839 /// EvaluatingDecl - This is the declaration whose initializer is being
840 /// evaluated, if any.
841 APValue::LValueBase EvaluatingDecl
;
843 enum class EvaluatingDeclKind
{
845 /// We're evaluating the construction of EvaluatingDecl.
847 /// We're evaluating the destruction of EvaluatingDecl.
850 EvaluatingDeclKind IsEvaluatingDecl
= EvaluatingDeclKind::None
;
852 /// EvaluatingDeclValue - This is the value being constructed for the
853 /// declaration whose initializer is being evaluated, if any.
854 APValue
*EvaluatingDeclValue
;
856 /// Set of objects that are currently being constructed.
857 llvm::DenseMap
<ObjectUnderConstruction
, ConstructionPhase
>
858 ObjectsUnderConstruction
;
860 /// Current heap allocations, along with the location where each was
861 /// allocated. We use std::map here because we need stable addresses
862 /// for the stored APValues.
863 std::map
<DynamicAllocLValue
, DynAlloc
, DynAllocOrder
> HeapAllocs
;
865 /// The number of heap allocations performed so far in this evaluation.
866 unsigned NumHeapAllocs
= 0;
868 struct EvaluatingConstructorRAII
{
870 ObjectUnderConstruction Object
;
872 EvaluatingConstructorRAII(EvalInfo
&EI
, ObjectUnderConstruction Object
,
874 : EI(EI
), Object(Object
) {
876 EI
.ObjectsUnderConstruction
877 .insert({Object
, HasBases
? ConstructionPhase::Bases
878 : ConstructionPhase::AfterBases
})
881 void finishedConstructingBases() {
882 EI
.ObjectsUnderConstruction
[Object
] = ConstructionPhase::AfterBases
;
884 void finishedConstructingFields() {
885 EI
.ObjectsUnderConstruction
[Object
] = ConstructionPhase::AfterFields
;
887 ~EvaluatingConstructorRAII() {
888 if (DidInsert
) EI
.ObjectsUnderConstruction
.erase(Object
);
892 struct EvaluatingDestructorRAII
{
894 ObjectUnderConstruction Object
;
896 EvaluatingDestructorRAII(EvalInfo
&EI
, ObjectUnderConstruction Object
)
897 : EI(EI
), Object(Object
) {
898 DidInsert
= EI
.ObjectsUnderConstruction
899 .insert({Object
, ConstructionPhase::Destroying
})
902 void startedDestroyingBases() {
903 EI
.ObjectsUnderConstruction
[Object
] =
904 ConstructionPhase::DestroyingBases
;
906 ~EvaluatingDestructorRAII() {
908 EI
.ObjectsUnderConstruction
.erase(Object
);
913 isEvaluatingCtorDtor(APValue::LValueBase Base
,
914 ArrayRef
<APValue::LValuePathEntry
> Path
) {
915 return ObjectsUnderConstruction
.lookup({Base
, Path
});
918 /// If we're currently speculatively evaluating, the outermost call stack
919 /// depth at which we can mutate state, otherwise 0.
920 unsigned SpeculativeEvaluationDepth
= 0;
922 /// The current array initialization index, if we're performing array
924 uint64_t ArrayInitIndex
= -1;
926 /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
927 /// notes attached to it will also be stored, otherwise they will not be.
928 bool HasActiveDiagnostic
;
930 /// Have we emitted a diagnostic explaining why we couldn't constant
931 /// fold (not just why it's not strictly a constant expression)?
932 bool HasFoldFailureDiagnostic
;
934 /// Whether or not we're in a context where the front end requires a
936 bool InConstantContext
;
938 /// Whether we're checking that an expression is a potential constant
939 /// expression. If so, do not fail on constructs that could become constant
940 /// later on (such as a use of an undefined global).
941 bool CheckingPotentialConstantExpression
= false;
943 /// Whether we're checking for an expression that has undefined behavior.
944 /// If so, we will produce warnings if we encounter an operation that is
945 /// always undefined.
947 /// Note that we still need to evaluate the expression normally when this
948 /// is set; this is used when evaluating ICEs in C.
949 bool CheckingForUndefinedBehavior
= false;
951 enum EvaluationMode
{
952 /// Evaluate as a constant expression. Stop if we find that the expression
953 /// is not a constant expression.
954 EM_ConstantExpression
,
956 /// Evaluate as a constant expression. Stop if we find that the expression
957 /// is not a constant expression. Some expressions can be retried in the
958 /// optimizer if we don't constant fold them here, but in an unevaluated
959 /// context we try to fold them immediately since the optimizer never
960 /// gets a chance to look at it.
961 EM_ConstantExpressionUnevaluated
,
963 /// Fold the expression to a constant. Stop if we hit a side-effect that
967 /// Evaluate in any way we know how. Don't worry about side-effects that
968 /// can't be modeled.
969 EM_IgnoreSideEffects
,
972 /// Are we checking whether the expression is a potential constant
974 bool checkingPotentialConstantExpression() const override
{
975 return CheckingPotentialConstantExpression
;
978 /// Are we checking an expression for overflow?
979 // FIXME: We should check for any kind of undefined or suspicious behavior
980 // in such constructs, not just overflow.
981 bool checkingForUndefinedBehavior() const override
{
982 return CheckingForUndefinedBehavior
;
985 EvalInfo(const ASTContext
&C
, Expr::EvalStatus
&S
, EvaluationMode Mode
)
986 : Ctx(const_cast<ASTContext
&>(C
)), EvalStatus(S
), CurrentCall(nullptr),
987 CallStackDepth(0), NextCallIndex(1),
988 StepsLeft(C
.getLangOpts().ConstexprStepLimit
),
989 EnableNewConstInterp(C
.getLangOpts().EnableNewConstInterp
),
990 BottomFrame(*this, SourceLocation(), nullptr, nullptr, CallRef()),
991 EvaluatingDecl((const ValueDecl
*)nullptr),
992 EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
993 HasFoldFailureDiagnostic(false), InConstantContext(false),
1000 ASTContext
&getCtx() const override
{ return Ctx
; }
1002 void setEvaluatingDecl(APValue::LValueBase Base
, APValue
&Value
,
1003 EvaluatingDeclKind EDK
= EvaluatingDeclKind::Ctor
) {
1004 EvaluatingDecl
= Base
;
1005 IsEvaluatingDecl
= EDK
;
1006 EvaluatingDeclValue
= &Value
;
1009 bool CheckCallLimit(SourceLocation Loc
) {
1010 // Don't perform any constexpr calls (other than the call we're checking)
1011 // when checking a potential constant expression.
1012 if (checkingPotentialConstantExpression() && CallStackDepth
> 1)
1014 if (NextCallIndex
== 0) {
1015 // NextCallIndex has wrapped around.
1016 FFDiag(Loc
, diag::note_constexpr_call_limit_exceeded
);
1019 if (CallStackDepth
<= getLangOpts().ConstexprCallDepth
)
1021 FFDiag(Loc
, diag::note_constexpr_depth_limit_exceeded
)
1022 << getLangOpts().ConstexprCallDepth
;
1026 std::pair
<CallStackFrame
*, unsigned>
1027 getCallFrameAndDepth(unsigned CallIndex
) {
1028 assert(CallIndex
&& "no call index in getCallFrameAndDepth");
1029 // We will eventually hit BottomFrame, which has Index 1, so Frame can't
1030 // be null in this loop.
1031 unsigned Depth
= CallStackDepth
;
1032 CallStackFrame
*Frame
= CurrentCall
;
1033 while (Frame
->Index
> CallIndex
) {
1034 Frame
= Frame
->Caller
;
1037 if (Frame
->Index
== CallIndex
)
1038 return {Frame
, Depth
};
1039 return {nullptr, 0};
1042 bool nextStep(const Stmt
*S
) {
1044 FFDiag(S
->getBeginLoc(), diag::note_constexpr_step_limit_exceeded
);
1051 APValue
*createHeapAlloc(const Expr
*E
, QualType T
, LValue
&LV
);
1053 Optional
<DynAlloc
*> lookupDynamicAlloc(DynamicAllocLValue DA
) {
1054 Optional
<DynAlloc
*> Result
;
1055 auto It
= HeapAllocs
.find(DA
);
1056 if (It
!= HeapAllocs
.end())
1057 Result
= &It
->second
;
1061 /// Get the allocated storage for the given parameter of the given call.
1062 APValue
*getParamSlot(CallRef Call
, const ParmVarDecl
*PVD
) {
1063 CallStackFrame
*Frame
= getCallFrameAndDepth(Call
.CallIndex
).first
;
1064 return Frame
? Frame
->getTemporary(Call
.getOrigParam(PVD
), Call
.Version
)
1068 /// Information about a stack frame for std::allocator<T>::[de]allocate.
1069 struct StdAllocatorCaller
{
1070 unsigned FrameIndex
;
1072 explicit operator bool() const { return FrameIndex
!= 0; };
1075 StdAllocatorCaller
getStdAllocatorCaller(StringRef FnName
) const {
1076 for (const CallStackFrame
*Call
= CurrentCall
; Call
!= &BottomFrame
;
1077 Call
= Call
->Caller
) {
1078 const auto *MD
= dyn_cast_or_null
<CXXMethodDecl
>(Call
->Callee
);
1081 const IdentifierInfo
*FnII
= MD
->getIdentifier();
1082 if (!FnII
|| !FnII
->isStr(FnName
))
1086 dyn_cast
<ClassTemplateSpecializationDecl
>(MD
->getParent());
1090 const IdentifierInfo
*ClassII
= CTSD
->getIdentifier();
1091 const TemplateArgumentList
&TAL
= CTSD
->getTemplateArgs();
1092 if (CTSD
->isInStdNamespace() && ClassII
&&
1093 ClassII
->isStr("allocator") && TAL
.size() >= 1 &&
1094 TAL
[0].getKind() == TemplateArgument::Type
)
1095 return {Call
->Index
, TAL
[0].getAsType()};
1101 void performLifetimeExtension() {
1102 // Disable the cleanups for lifetime-extended temporaries.
1103 llvm::erase_if(CleanupStack
, [](Cleanup
&C
) {
1104 return !C
.isDestroyedAtEndOf(ScopeKind::FullExpression
);
1108 /// Throw away any remaining cleanups at the end of evaluation. If any
1109 /// cleanups would have had a side-effect, note that as an unmodeled
1110 /// side-effect and return false. Otherwise, return true.
1111 bool discardCleanups() {
1112 for (Cleanup
&C
: CleanupStack
) {
1113 if (C
.hasSideEffect() && !noteSideEffect()) {
1114 CleanupStack
.clear();
1118 CleanupStack
.clear();
1123 interp::Frame
*getCurrentFrame() override
{ return CurrentCall
; }
1124 const interp::Frame
*getBottomFrame() const override
{ return &BottomFrame
; }
1126 bool hasActiveDiagnostic() override
{ return HasActiveDiagnostic
; }
1127 void setActiveDiagnostic(bool Flag
) override
{ HasActiveDiagnostic
= Flag
; }
1129 void setFoldFailureDiagnostic(bool Flag
) override
{
1130 HasFoldFailureDiagnostic
= Flag
;
1133 Expr::EvalStatus
&getEvalStatus() const override
{ return EvalStatus
; }
1135 // If we have a prior diagnostic, it will be noting that the expression
1136 // isn't a constant expression. This diagnostic is more important,
1137 // unless we require this evaluation to produce a constant expression.
1139 // FIXME: We might want to show both diagnostics to the user in
1140 // EM_ConstantFold mode.
1141 bool hasPriorDiagnostic() override
{
1142 if (!EvalStatus
.Diag
->empty()) {
1144 case EM_ConstantFold
:
1145 case EM_IgnoreSideEffects
:
1146 if (!HasFoldFailureDiagnostic
)
1148 // We've already failed to fold something. Keep that diagnostic.
1150 case EM_ConstantExpression
:
1151 case EM_ConstantExpressionUnevaluated
:
1152 setActiveDiagnostic(false);
1159 unsigned getCallStackDepth() override
{ return CallStackDepth
; }
1162 /// Should we continue evaluation after encountering a side-effect that we
1164 bool keepEvaluatingAfterSideEffect() {
1166 case EM_IgnoreSideEffects
:
1169 case EM_ConstantExpression
:
1170 case EM_ConstantExpressionUnevaluated
:
1171 case EM_ConstantFold
:
1172 // By default, assume any side effect might be valid in some other
1173 // evaluation of this expression from a different context.
1174 return checkingPotentialConstantExpression() ||
1175 checkingForUndefinedBehavior();
1177 llvm_unreachable("Missed EvalMode case");
1180 /// Note that we have had a side-effect, and determine whether we should
1181 /// keep evaluating.
1182 bool noteSideEffect() {
1183 EvalStatus
.HasSideEffects
= true;
1184 return keepEvaluatingAfterSideEffect();
1187 /// Should we continue evaluation after encountering undefined behavior?
1188 bool keepEvaluatingAfterUndefinedBehavior() {
1190 case EM_IgnoreSideEffects
:
1191 case EM_ConstantFold
:
1194 case EM_ConstantExpression
:
1195 case EM_ConstantExpressionUnevaluated
:
1196 return checkingForUndefinedBehavior();
1198 llvm_unreachable("Missed EvalMode case");
1201 /// Note that we hit something that was technically undefined behavior, but
1202 /// that we can evaluate past it (such as signed overflow or floating-point
1203 /// division by zero.)
1204 bool noteUndefinedBehavior() override
{
1205 EvalStatus
.HasUndefinedBehavior
= true;
1206 return keepEvaluatingAfterUndefinedBehavior();
1209 /// Should we continue evaluation as much as possible after encountering a
1210 /// construct which can't be reduced to a value?
1211 bool keepEvaluatingAfterFailure() const override
{
1216 case EM_ConstantExpression
:
1217 case EM_ConstantExpressionUnevaluated
:
1218 case EM_ConstantFold
:
1219 case EM_IgnoreSideEffects
:
1220 return checkingPotentialConstantExpression() ||
1221 checkingForUndefinedBehavior();
1223 llvm_unreachable("Missed EvalMode case");
1226 /// Notes that we failed to evaluate an expression that other expressions
1227 /// directly depend on, and determine if we should keep evaluating. This
1228 /// should only be called if we actually intend to keep evaluating.
1230 /// Call noteSideEffect() instead if we may be able to ignore the value that
1231 /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
1233 /// (Foo(), 1) // use noteSideEffect
1234 /// (Foo() || true) // use noteSideEffect
1235 /// Foo() + 1 // use noteFailure
1236 [[nodiscard
]] bool noteFailure() {
1237 // Failure when evaluating some expression often means there is some
1238 // subexpression whose evaluation was skipped. Therefore, (because we
1239 // don't track whether we skipped an expression when unwinding after an
1240 // evaluation failure) every evaluation failure that bubbles up from a
1241 // subexpression implies that a side-effect has potentially happened. We
1242 // skip setting the HasSideEffects flag to true until we decide to
1243 // continue evaluating after that point, which happens here.
1244 bool KeepGoing
= keepEvaluatingAfterFailure();
1245 EvalStatus
.HasSideEffects
|= KeepGoing
;
1249 class ArrayInitLoopIndex
{
1251 uint64_t OuterIndex
;
1254 ArrayInitLoopIndex(EvalInfo
&Info
)
1255 : Info(Info
), OuterIndex(Info
.ArrayInitIndex
) {
1256 Info
.ArrayInitIndex
= 0;
1258 ~ArrayInitLoopIndex() { Info
.ArrayInitIndex
= OuterIndex
; }
1260 operator uint64_t&() { return Info
.ArrayInitIndex
; }
1264 /// Object used to treat all foldable expressions as constant expressions.
1265 struct FoldConstant
{
1268 bool HadNoPriorDiags
;
1269 EvalInfo::EvaluationMode OldMode
;
1271 explicit FoldConstant(EvalInfo
&Info
, bool Enabled
)
1274 HadNoPriorDiags(Info
.EvalStatus
.Diag
&&
1275 Info
.EvalStatus
.Diag
->empty() &&
1276 !Info
.EvalStatus
.HasSideEffects
),
1277 OldMode(Info
.EvalMode
) {
1279 Info
.EvalMode
= EvalInfo::EM_ConstantFold
;
1281 void keepDiagnostics() { Enabled
= false; }
1283 if (Enabled
&& HadNoPriorDiags
&& !Info
.EvalStatus
.Diag
->empty() &&
1284 !Info
.EvalStatus
.HasSideEffects
)
1285 Info
.EvalStatus
.Diag
->clear();
1286 Info
.EvalMode
= OldMode
;
1290 /// RAII object used to set the current evaluation mode to ignore
1292 struct IgnoreSideEffectsRAII
{
1294 EvalInfo::EvaluationMode OldMode
;
1295 explicit IgnoreSideEffectsRAII(EvalInfo
&Info
)
1296 : Info(Info
), OldMode(Info
.EvalMode
) {
1297 Info
.EvalMode
= EvalInfo::EM_IgnoreSideEffects
;
1300 ~IgnoreSideEffectsRAII() { Info
.EvalMode
= OldMode
; }
1303 /// RAII object used to optionally suppress diagnostics and side-effects from
1304 /// a speculative evaluation.
1305 class SpeculativeEvaluationRAII
{
1306 EvalInfo
*Info
= nullptr;
1307 Expr::EvalStatus OldStatus
;
1308 unsigned OldSpeculativeEvaluationDepth
;
1310 void moveFromAndCancel(SpeculativeEvaluationRAII
&&Other
) {
1312 OldStatus
= Other
.OldStatus
;
1313 OldSpeculativeEvaluationDepth
= Other
.OldSpeculativeEvaluationDepth
;
1314 Other
.Info
= nullptr;
1317 void maybeRestoreState() {
1321 Info
->EvalStatus
= OldStatus
;
1322 Info
->SpeculativeEvaluationDepth
= OldSpeculativeEvaluationDepth
;
1326 SpeculativeEvaluationRAII() = default;
1328 SpeculativeEvaluationRAII(
1329 EvalInfo
&Info
, SmallVectorImpl
<PartialDiagnosticAt
> *NewDiag
= nullptr)
1330 : Info(&Info
), OldStatus(Info
.EvalStatus
),
1331 OldSpeculativeEvaluationDepth(Info
.SpeculativeEvaluationDepth
) {
1332 Info
.EvalStatus
.Diag
= NewDiag
;
1333 Info
.SpeculativeEvaluationDepth
= Info
.CallStackDepth
+ 1;
1336 SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII
&Other
) = delete;
1337 SpeculativeEvaluationRAII(SpeculativeEvaluationRAII
&&Other
) {
1338 moveFromAndCancel(std::move(Other
));
1341 SpeculativeEvaluationRAII
&operator=(SpeculativeEvaluationRAII
&&Other
) {
1342 maybeRestoreState();
1343 moveFromAndCancel(std::move(Other
));
1347 ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
1350 /// RAII object wrapping a full-expression or block scope, and handling
1351 /// the ending of the lifetime of temporaries created within it.
1352 template<ScopeKind Kind
>
1355 unsigned OldStackSize
;
1357 ScopeRAII(EvalInfo
&Info
)
1358 : Info(Info
), OldStackSize(Info
.CleanupStack
.size()) {
1359 // Push a new temporary version. This is needed to distinguish between
1360 // temporaries created in different iterations of a loop.
1361 Info
.CurrentCall
->pushTempVersion();
1363 bool destroy(bool RunDestructors
= true) {
1364 bool OK
= cleanup(Info
, RunDestructors
, OldStackSize
);
1369 if (OldStackSize
!= -1U)
1371 // Body moved to a static method to encourage the compiler to inline away
1372 // instances of this class.
1373 Info
.CurrentCall
->popTempVersion();
1376 static bool cleanup(EvalInfo
&Info
, bool RunDestructors
,
1377 unsigned OldStackSize
) {
1378 assert(OldStackSize
<= Info
.CleanupStack
.size() &&
1379 "running cleanups out of order?");
1381 // Run all cleanups for a block scope, and non-lifetime-extended cleanups
1382 // for a full-expression scope.
1383 bool Success
= true;
1384 for (unsigned I
= Info
.CleanupStack
.size(); I
> OldStackSize
; --I
) {
1385 if (Info
.CleanupStack
[I
- 1].isDestroyedAtEndOf(Kind
)) {
1386 if (!Info
.CleanupStack
[I
- 1].endLifetime(Info
, RunDestructors
)) {
1393 // Compact any retained cleanups.
1394 auto NewEnd
= Info
.CleanupStack
.begin() + OldStackSize
;
1395 if (Kind
!= ScopeKind::Block
)
1397 std::remove_if(NewEnd
, Info
.CleanupStack
.end(), [](Cleanup
&C
) {
1398 return C
.isDestroyedAtEndOf(Kind
);
1400 Info
.CleanupStack
.erase(NewEnd
, Info
.CleanupStack
.end());
1404 typedef ScopeRAII
<ScopeKind::Block
> BlockScopeRAII
;
1405 typedef ScopeRAII
<ScopeKind::FullExpression
> FullExpressionRAII
;
1406 typedef ScopeRAII
<ScopeKind::Call
> CallScopeRAII
;
1409 bool SubobjectDesignator::checkSubobject(EvalInfo
&Info
, const Expr
*E
,
1410 CheckSubobjectKind CSK
) {
1413 if (isOnePastTheEnd()) {
1414 Info
.CCEDiag(E
, diag::note_constexpr_past_end_subobject
)
1419 // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
1420 // must actually be at least one array element; even a VLA cannot have a
1421 // bound of zero. And if our index is nonzero, we already had a CCEDiag.
1425 void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo
&Info
,
1427 Info
.CCEDiag(E
, diag::note_constexpr_unsized_array_indexed
);
1428 // Do not set the designator as invalid: we can represent this situation,
1429 // and correct handling of __builtin_object_size requires us to do so.
1432 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo
&Info
,
1435 // If we're complaining, we must be able to statically determine the size of
1436 // the most derived array.
1437 if (MostDerivedPathLength
== Entries
.size() && MostDerivedIsArrayElement
)
1438 Info
.CCEDiag(E
, diag::note_constexpr_array_index
)
1440 << static_cast<unsigned>(getMostDerivedArraySize());
1442 Info
.CCEDiag(E
, diag::note_constexpr_array_index
)
1443 << N
<< /*non-array*/ 1;
1447 CallStackFrame::CallStackFrame(EvalInfo
&Info
, SourceLocation CallLoc
,
1448 const FunctionDecl
*Callee
, const LValue
*This
,
1450 : Info(Info
), Caller(Info
.CurrentCall
), Callee(Callee
), This(This
),
1451 Arguments(Call
), CallLoc(CallLoc
), Index(Info
.NextCallIndex
++) {
1452 Info
.CurrentCall
= this;
1453 ++Info
.CallStackDepth
;
1456 CallStackFrame::~CallStackFrame() {
1457 assert(Info
.CurrentCall
== this && "calls retired out of order");
1458 --Info
.CallStackDepth
;
1459 Info
.CurrentCall
= Caller
;
1462 static bool isRead(AccessKinds AK
) {
1463 return AK
== AK_Read
|| AK
== AK_ReadObjectRepresentation
;
1466 static bool isModification(AccessKinds AK
) {
1469 case AK_ReadObjectRepresentation
:
1471 case AK_DynamicCast
:
1481 llvm_unreachable("unknown access kind");
1484 static bool isAnyAccess(AccessKinds AK
) {
1485 return isRead(AK
) || isModification(AK
);
1488 /// Is this an access per the C++ definition?
1489 static bool isFormalAccess(AccessKinds AK
) {
1490 return isAnyAccess(AK
) && AK
!= AK_Construct
&& AK
!= AK_Destroy
;
1493 /// Is this kind of axcess valid on an indeterminate object value?
1494 static bool isValidIndeterminateAccess(AccessKinds AK
) {
1499 // These need the object's value.
1502 case AK_ReadObjectRepresentation
:
1506 // Construction and destruction don't need the value.
1510 case AK_DynamicCast
:
1512 // These aren't really meaningful on scalars.
1515 llvm_unreachable("unknown access kind");
1519 struct ComplexValue
{
1524 APSInt IntReal
, IntImag
;
1525 APFloat FloatReal
, FloatImag
;
1527 ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
1529 void makeComplexFloat() { IsInt
= false; }
1530 bool isComplexFloat() const { return !IsInt
; }
1531 APFloat
&getComplexFloatReal() { return FloatReal
; }
1532 APFloat
&getComplexFloatImag() { return FloatImag
; }
1534 void makeComplexInt() { IsInt
= true; }
1535 bool isComplexInt() const { return IsInt
; }
1536 APSInt
&getComplexIntReal() { return IntReal
; }
1537 APSInt
&getComplexIntImag() { return IntImag
; }
1539 void moveInto(APValue
&v
) const {
1540 if (isComplexFloat())
1541 v
= APValue(FloatReal
, FloatImag
);
1543 v
= APValue(IntReal
, IntImag
);
1545 void setFrom(const APValue
&v
) {
1546 assert(v
.isComplexFloat() || v
.isComplexInt());
1547 if (v
.isComplexFloat()) {
1549 FloatReal
= v
.getComplexFloatReal();
1550 FloatImag
= v
.getComplexFloatImag();
1553 IntReal
= v
.getComplexIntReal();
1554 IntImag
= v
.getComplexIntImag();
1560 APValue::LValueBase Base
;
1562 SubobjectDesignator Designator
;
1564 bool InvalidBase
: 1;
1566 const APValue::LValueBase
getLValueBase() const { return Base
; }
1567 CharUnits
&getLValueOffset() { return Offset
; }
1568 const CharUnits
&getLValueOffset() const { return Offset
; }
1569 SubobjectDesignator
&getLValueDesignator() { return Designator
; }
1570 const SubobjectDesignator
&getLValueDesignator() const { return Designator
;}
1571 bool isNullPointer() const { return IsNullPtr
;}
1573 unsigned getLValueCallIndex() const { return Base
.getCallIndex(); }
1574 unsigned getLValueVersion() const { return Base
.getVersion(); }
1576 void moveInto(APValue
&V
) const {
1577 if (Designator
.Invalid
)
1578 V
= APValue(Base
, Offset
, APValue::NoLValuePath(), IsNullPtr
);
1580 assert(!InvalidBase
&& "APValues can't handle invalid LValue bases");
1581 V
= APValue(Base
, Offset
, Designator
.Entries
,
1582 Designator
.IsOnePastTheEnd
, IsNullPtr
);
1585 void setFrom(ASTContext
&Ctx
, const APValue
&V
) {
1586 assert(V
.isLValue() && "Setting LValue from a non-LValue?");
1587 Base
= V
.getLValueBase();
1588 Offset
= V
.getLValueOffset();
1589 InvalidBase
= false;
1590 Designator
= SubobjectDesignator(Ctx
, V
);
1591 IsNullPtr
= V
.isNullPointer();
1594 void set(APValue::LValueBase B
, bool BInvalid
= false) {
1596 // We only allow a few types of invalid bases. Enforce that here.
1598 const auto *E
= B
.get
<const Expr
*>();
1599 assert((isa
<MemberExpr
>(E
) || tryUnwrapAllocSizeCall(E
)) &&
1600 "Unexpected type of invalid base");
1605 Offset
= CharUnits::fromQuantity(0);
1606 InvalidBase
= BInvalid
;
1607 Designator
= SubobjectDesignator(getType(B
));
1611 void setNull(ASTContext
&Ctx
, QualType PointerTy
) {
1612 Base
= (const ValueDecl
*)nullptr;
1614 CharUnits::fromQuantity(Ctx
.getTargetNullPointerValue(PointerTy
));
1615 InvalidBase
= false;
1616 Designator
= SubobjectDesignator(PointerTy
->getPointeeType());
1620 void setInvalid(APValue::LValueBase B
, unsigned I
= 0) {
1624 std::string
toString(ASTContext
&Ctx
, QualType T
) const {
1626 moveInto(Printable
);
1627 return Printable
.getAsString(Ctx
, T
);
1631 // Check that this LValue is not based on a null pointer. If it is, produce
1632 // a diagnostic and mark the designator as invalid.
1633 template <typename GenDiagType
>
1634 bool checkNullPointerDiagnosingWith(const GenDiagType
&GenDiag
) {
1635 if (Designator
.Invalid
)
1639 Designator
.setInvalid();
1646 bool checkNullPointer(EvalInfo
&Info
, const Expr
*E
,
1647 CheckSubobjectKind CSK
) {
1648 return checkNullPointerDiagnosingWith([&Info
, E
, CSK
] {
1649 Info
.CCEDiag(E
, diag::note_constexpr_null_subobject
) << CSK
;
1653 bool checkNullPointerForFoldAccess(EvalInfo
&Info
, const Expr
*E
,
1655 return checkNullPointerDiagnosingWith([&Info
, E
, AK
] {
1656 Info
.FFDiag(E
, diag::note_constexpr_access_null
) << AK
;
1660 // Check this LValue refers to an object. If not, set the designator to be
1661 // invalid and emit a diagnostic.
1662 bool checkSubobject(EvalInfo
&Info
, const Expr
*E
, CheckSubobjectKind CSK
) {
1663 return (CSK
== CSK_ArrayToPointer
|| checkNullPointer(Info
, E
, CSK
)) &&
1664 Designator
.checkSubobject(Info
, E
, CSK
);
1667 void addDecl(EvalInfo
&Info
, const Expr
*E
,
1668 const Decl
*D
, bool Virtual
= false) {
1669 if (checkSubobject(Info
, E
, isa
<FieldDecl
>(D
) ? CSK_Field
: CSK_Base
))
1670 Designator
.addDeclUnchecked(D
, Virtual
);
1672 void addUnsizedArray(EvalInfo
&Info
, const Expr
*E
, QualType ElemTy
) {
1673 if (!Designator
.Entries
.empty()) {
1674 Info
.CCEDiag(E
, diag::note_constexpr_unsupported_unsized_array
);
1675 Designator
.setInvalid();
1678 if (checkSubobject(Info
, E
, CSK_ArrayToPointer
)) {
1679 assert(getType(Base
)->isPointerType() || getType(Base
)->isArrayType());
1680 Designator
.FirstEntryIsAnUnsizedArray
= true;
1681 Designator
.addUnsizedArrayUnchecked(ElemTy
);
1684 void addArray(EvalInfo
&Info
, const Expr
*E
, const ConstantArrayType
*CAT
) {
1685 if (checkSubobject(Info
, E
, CSK_ArrayToPointer
))
1686 Designator
.addArrayUnchecked(CAT
);
1688 void addComplex(EvalInfo
&Info
, const Expr
*E
, QualType EltTy
, bool Imag
) {
1689 if (checkSubobject(Info
, E
, Imag
? CSK_Imag
: CSK_Real
))
1690 Designator
.addComplexUnchecked(EltTy
, Imag
);
1692 void clearIsNullPointer() {
1695 void adjustOffsetAndIndex(EvalInfo
&Info
, const Expr
*E
,
1696 const APSInt
&Index
, CharUnits ElementSize
) {
1697 // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
1698 // but we're not required to diagnose it and it's valid in C++.)
1702 // Compute the new offset in the appropriate width, wrapping at 64 bits.
1703 // FIXME: When compiling for a 32-bit target, we should use 32-bit
1705 uint64_t Offset64
= Offset
.getQuantity();
1706 uint64_t ElemSize64
= ElementSize
.getQuantity();
1707 uint64_t Index64
= Index
.extOrTrunc(64).getZExtValue();
1708 Offset
= CharUnits::fromQuantity(Offset64
+ ElemSize64
* Index64
);
1710 if (checkNullPointer(Info
, E
, CSK_ArrayIndex
))
1711 Designator
.adjustIndex(Info
, E
, Index
);
1712 clearIsNullPointer();
1714 void adjustOffset(CharUnits N
) {
1716 if (N
.getQuantity())
1717 clearIsNullPointer();
1723 explicit MemberPtr(const ValueDecl
*Decl
)
1724 : DeclAndIsDerivedMember(Decl
, false) {}
1726 /// The member or (direct or indirect) field referred to by this member
1727 /// pointer, or 0 if this is a null member pointer.
1728 const ValueDecl
*getDecl() const {
1729 return DeclAndIsDerivedMember
.getPointer();
1731 /// Is this actually a member of some type derived from the relevant class?
1732 bool isDerivedMember() const {
1733 return DeclAndIsDerivedMember
.getInt();
1735 /// Get the class which the declaration actually lives in.
1736 const CXXRecordDecl
*getContainingRecord() const {
1737 return cast
<CXXRecordDecl
>(
1738 DeclAndIsDerivedMember
.getPointer()->getDeclContext());
1741 void moveInto(APValue
&V
) const {
1742 V
= APValue(getDecl(), isDerivedMember(), Path
);
1744 void setFrom(const APValue
&V
) {
1745 assert(V
.isMemberPointer());
1746 DeclAndIsDerivedMember
.setPointer(V
.getMemberPointerDecl());
1747 DeclAndIsDerivedMember
.setInt(V
.isMemberPointerToDerivedMember());
1749 ArrayRef
<const CXXRecordDecl
*> P
= V
.getMemberPointerPath();
1750 Path
.insert(Path
.end(), P
.begin(), P
.end());
1753 /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1754 /// whether the member is a member of some class derived from the class type
1755 /// of the member pointer.
1756 llvm::PointerIntPair
<const ValueDecl
*, 1, bool> DeclAndIsDerivedMember
;
1757 /// Path - The path of base/derived classes from the member declaration's
1758 /// class (exclusive) to the class type of the member pointer (inclusive).
1759 SmallVector
<const CXXRecordDecl
*, 4> Path
;
1761 /// Perform a cast towards the class of the Decl (either up or down the
1763 bool castBack(const CXXRecordDecl
*Class
) {
1764 assert(!Path
.empty());
1765 const CXXRecordDecl
*Expected
;
1766 if (Path
.size() >= 2)
1767 Expected
= Path
[Path
.size() - 2];
1769 Expected
= getContainingRecord();
1770 if (Expected
->getCanonicalDecl() != Class
->getCanonicalDecl()) {
1771 // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1772 // if B does not contain the original member and is not a base or
1773 // derived class of the class containing the original member, the result
1774 // of the cast is undefined.
1775 // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1776 // (D::*). We consider that to be a language defect.
1782 /// Perform a base-to-derived member pointer cast.
1783 bool castToDerived(const CXXRecordDecl
*Derived
) {
1786 if (!isDerivedMember()) {
1787 Path
.push_back(Derived
);
1790 if (!castBack(Derived
))
1793 DeclAndIsDerivedMember
.setInt(false);
1796 /// Perform a derived-to-base member pointer cast.
1797 bool castToBase(const CXXRecordDecl
*Base
) {
1801 DeclAndIsDerivedMember
.setInt(true);
1802 if (isDerivedMember()) {
1803 Path
.push_back(Base
);
1806 return castBack(Base
);
1810 /// Compare two member pointers, which are assumed to be of the same type.
1811 static bool operator==(const MemberPtr
&LHS
, const MemberPtr
&RHS
) {
1812 if (!LHS
.getDecl() || !RHS
.getDecl())
1813 return !LHS
.getDecl() && !RHS
.getDecl();
1814 if (LHS
.getDecl()->getCanonicalDecl() != RHS
.getDecl()->getCanonicalDecl())
1816 return LHS
.Path
== RHS
.Path
;
1820 static bool Evaluate(APValue
&Result
, EvalInfo
&Info
, const Expr
*E
);
1821 static bool EvaluateInPlace(APValue
&Result
, EvalInfo
&Info
,
1822 const LValue
&This
, const Expr
*E
,
1823 bool AllowNonLiteralTypes
= false);
1824 static bool EvaluateLValue(const Expr
*E
, LValue
&Result
, EvalInfo
&Info
,
1825 bool InvalidBaseOK
= false);
1826 static bool EvaluatePointer(const Expr
*E
, LValue
&Result
, EvalInfo
&Info
,
1827 bool InvalidBaseOK
= false);
1828 static bool EvaluateMemberPointer(const Expr
*E
, MemberPtr
&Result
,
1830 static bool EvaluateTemporary(const Expr
*E
, LValue
&Result
, EvalInfo
&Info
);
1831 static bool EvaluateInteger(const Expr
*E
, APSInt
&Result
, EvalInfo
&Info
);
1832 static bool EvaluateIntegerOrLValue(const Expr
*E
, APValue
&Result
,
1834 static bool EvaluateFloat(const Expr
*E
, APFloat
&Result
, EvalInfo
&Info
);
1835 static bool EvaluateComplex(const Expr
*E
, ComplexValue
&Res
, EvalInfo
&Info
);
1836 static bool EvaluateAtomic(const Expr
*E
, const LValue
*This
, APValue
&Result
,
1838 static bool EvaluateAsRValue(EvalInfo
&Info
, const Expr
*E
, APValue
&Result
);
1839 static bool EvaluateBuiltinStrLen(const Expr
*E
, uint64_t &Result
,
1842 /// Evaluate an integer or fixed point expression into an APResult.
1843 static bool EvaluateFixedPointOrInteger(const Expr
*E
, APFixedPoint
&Result
,
1846 /// Evaluate only a fixed point expression into an APResult.
1847 static bool EvaluateFixedPoint(const Expr
*E
, APFixedPoint
&Result
,
1850 //===----------------------------------------------------------------------===//
1852 //===----------------------------------------------------------------------===//
1854 /// Negate an APSInt in place, converting it to a signed form if necessary, and
1855 /// preserving its value (by extending by up to one bit as needed).
1856 static void negateAsSigned(APSInt
&Int
) {
1857 if (Int
.isUnsigned() || Int
.isMinSignedValue()) {
1858 Int
= Int
.extend(Int
.getBitWidth() + 1);
1859 Int
.setIsSigned(true);
1864 template<typename KeyT
>
1865 APValue
&CallStackFrame::createTemporary(const KeyT
*Key
, QualType T
,
1866 ScopeKind Scope
, LValue
&LV
) {
1867 unsigned Version
= getTempVersion();
1868 APValue::LValueBase
Base(Key
, Index
, Version
);
1870 return createLocal(Base
, Key
, T
, Scope
);
1873 /// Allocate storage for a parameter of a function call made in this frame.
1874 APValue
&CallStackFrame::createParam(CallRef Args
, const ParmVarDecl
*PVD
,
1876 assert(Args
.CallIndex
== Index
&& "creating parameter in wrong frame");
1877 APValue::LValueBase
Base(PVD
, Index
, Args
.Version
);
1879 // We always destroy parameters at the end of the call, even if we'd allow
1880 // them to live to the end of the full-expression at runtime, in order to
1881 // give portable results and match other compilers.
1882 return createLocal(Base
, PVD
, PVD
->getType(), ScopeKind::Call
);
1885 APValue
&CallStackFrame::createLocal(APValue::LValueBase Base
, const void *Key
,
1886 QualType T
, ScopeKind Scope
) {
1887 assert(Base
.getCallIndex() == Index
&& "lvalue for wrong frame");
1888 unsigned Version
= Base
.getVersion();
1889 APValue
&Result
= Temporaries
[MapKeyTy(Key
, Version
)];
1890 assert(Result
.isAbsent() && "local created multiple times");
1892 // If we're creating a local immediately in the operand of a speculative
1893 // evaluation, don't register a cleanup to be run outside the speculative
1894 // evaluation context, since we won't actually be able to initialize this
1896 if (Index
<= Info
.SpeculativeEvaluationDepth
) {
1897 if (T
.isDestructedType())
1898 Info
.noteSideEffect();
1900 Info
.CleanupStack
.push_back(Cleanup(&Result
, Base
, T
, Scope
));
1905 APValue
*EvalInfo::createHeapAlloc(const Expr
*E
, QualType T
, LValue
&LV
) {
1906 if (NumHeapAllocs
> DynamicAllocLValue::getMaxIndex()) {
1907 FFDiag(E
, diag::note_constexpr_heap_alloc_limit_exceeded
);
1911 DynamicAllocLValue
DA(NumHeapAllocs
++);
1912 LV
.set(APValue::LValueBase::getDynamicAlloc(DA
, T
));
1913 auto Result
= HeapAllocs
.emplace(std::piecewise_construct
,
1914 std::forward_as_tuple(DA
), std::tuple
<>());
1915 assert(Result
.second
&& "reused a heap alloc index?");
1916 Result
.first
->second
.AllocExpr
= E
;
1917 return &Result
.first
->second
.Value
;
1920 /// Produce a string describing the given constexpr call.
1921 void CallStackFrame::describe(raw_ostream
&Out
) {
1922 unsigned ArgIndex
= 0;
1923 bool IsMemberCall
= isa
<CXXMethodDecl
>(Callee
) &&
1924 !isa
<CXXConstructorDecl
>(Callee
) &&
1925 cast
<CXXMethodDecl
>(Callee
)->isInstance();
1928 Out
<< *Callee
<< '(';
1930 if (This
&& IsMemberCall
) {
1932 This
->moveInto(Val
);
1933 Val
.printPretty(Out
, Info
.Ctx
,
1934 This
->Designator
.MostDerivedType
);
1935 // FIXME: Add parens around Val if needed.
1936 Out
<< "->" << *Callee
<< '(';
1937 IsMemberCall
= false;
1940 for (FunctionDecl::param_const_iterator I
= Callee
->param_begin(),
1941 E
= Callee
->param_end(); I
!= E
; ++I
, ++ArgIndex
) {
1942 if (ArgIndex
> (unsigned)IsMemberCall
)
1945 const ParmVarDecl
*Param
= *I
;
1946 APValue
*V
= Info
.getParamSlot(Arguments
, Param
);
1948 V
->printPretty(Out
, Info
.Ctx
, Param
->getType());
1952 if (ArgIndex
== 0 && IsMemberCall
)
1953 Out
<< "->" << *Callee
<< '(';
1959 /// Evaluate an expression to see if it had side-effects, and discard its
1961 /// \return \c true if the caller should keep evaluating.
1962 static bool EvaluateIgnoredValue(EvalInfo
&Info
, const Expr
*E
) {
1963 assert(!E
->isValueDependent());
1965 if (!Evaluate(Scratch
, Info
, E
))
1966 // We don't need the value, but we might have skipped a side effect here.
1967 return Info
.noteSideEffect();
1971 /// Should this call expression be treated as a no-op?
1972 static bool IsNoOpCall(const CallExpr
*E
) {
1973 unsigned Builtin
= E
->getBuiltinCallee();
1974 return (Builtin
== Builtin::BI__builtin___CFStringMakeConstantString
||
1975 Builtin
== Builtin::BI__builtin___NSStringMakeConstantString
||
1976 Builtin
== Builtin::BI__builtin_function_start
);
1979 static bool IsGlobalLValue(APValue::LValueBase B
) {
1980 // C++11 [expr.const]p3 An address constant expression is a prvalue core
1981 // constant expression of pointer type that evaluates to...
1983 // ... a null pointer value, or a prvalue core constant expression of type
1985 if (!B
) return true;
1987 if (const ValueDecl
*D
= B
.dyn_cast
<const ValueDecl
*>()) {
1988 // ... the address of an object with static storage duration,
1989 if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
))
1990 return VD
->hasGlobalStorage();
1991 if (isa
<TemplateParamObjectDecl
>(D
))
1993 // ... the address of a function,
1994 // ... the address of a GUID [MS extension],
1995 // ... the address of an unnamed global constant
1996 return isa
<FunctionDecl
, MSGuidDecl
, UnnamedGlobalConstantDecl
>(D
);
1999 if (B
.is
<TypeInfoLValue
>() || B
.is
<DynamicAllocLValue
>())
2002 const Expr
*E
= B
.get
<const Expr
*>();
2003 switch (E
->getStmtClass()) {
2006 case Expr::CompoundLiteralExprClass
: {
2007 const CompoundLiteralExpr
*CLE
= cast
<CompoundLiteralExpr
>(E
);
2008 return CLE
->isFileScope() && CLE
->isLValue();
2010 case Expr::MaterializeTemporaryExprClass
:
2011 // A materialized temporary might have been lifetime-extended to static
2012 // storage duration.
2013 return cast
<MaterializeTemporaryExpr
>(E
)->getStorageDuration() == SD_Static
;
2014 // A string literal has static storage duration.
2015 case Expr::StringLiteralClass
:
2016 case Expr::PredefinedExprClass
:
2017 case Expr::ObjCStringLiteralClass
:
2018 case Expr::ObjCEncodeExprClass
:
2020 case Expr::ObjCBoxedExprClass
:
2021 return cast
<ObjCBoxedExpr
>(E
)->isExpressibleAsConstantInitializer();
2022 case Expr::CallExprClass
:
2023 return IsNoOpCall(cast
<CallExpr
>(E
));
2024 // For GCC compatibility, &&label has static storage duration.
2025 case Expr::AddrLabelExprClass
:
2027 // A Block literal expression may be used as the initialization value for
2028 // Block variables at global or local static scope.
2029 case Expr::BlockExprClass
:
2030 return !cast
<BlockExpr
>(E
)->getBlockDecl()->hasCaptures();
2031 // The APValue generated from a __builtin_source_location will be emitted as a
2033 case Expr::SourceLocExprClass
:
2035 case Expr::ImplicitValueInitExprClass
:
2037 // We can never form an lvalue with an implicit value initialization as its
2038 // base through expression evaluation, so these only appear in one case: the
2039 // implicit variable declaration we invent when checking whether a constexpr
2040 // constructor can produce a constant expression. We must assume that such
2041 // an expression might be a global lvalue.
2046 static const ValueDecl
*GetLValueBaseDecl(const LValue
&LVal
) {
2047 return LVal
.Base
.dyn_cast
<const ValueDecl
*>();
2050 static bool IsLiteralLValue(const LValue
&Value
) {
2051 if (Value
.getLValueCallIndex())
2053 const Expr
*E
= Value
.Base
.dyn_cast
<const Expr
*>();
2054 return E
&& !isa
<MaterializeTemporaryExpr
>(E
);
2057 static bool IsWeakLValue(const LValue
&Value
) {
2058 const ValueDecl
*Decl
= GetLValueBaseDecl(Value
);
2059 return Decl
&& Decl
->isWeak();
2062 static bool isZeroSized(const LValue
&Value
) {
2063 const ValueDecl
*Decl
= GetLValueBaseDecl(Value
);
2064 if (Decl
&& isa
<VarDecl
>(Decl
)) {
2065 QualType Ty
= Decl
->getType();
2066 if (Ty
->isArrayType())
2067 return Ty
->isIncompleteType() ||
2068 Decl
->getASTContext().getTypeSize(Ty
) == 0;
2073 static bool HasSameBase(const LValue
&A
, const LValue
&B
) {
2074 if (!A
.getLValueBase())
2075 return !B
.getLValueBase();
2076 if (!B
.getLValueBase())
2079 if (A
.getLValueBase().getOpaqueValue() !=
2080 B
.getLValueBase().getOpaqueValue())
2083 return A
.getLValueCallIndex() == B
.getLValueCallIndex() &&
2084 A
.getLValueVersion() == B
.getLValueVersion();
2087 static void NoteLValueLocation(EvalInfo
&Info
, APValue::LValueBase Base
) {
2088 assert(Base
&& "no location for a null lvalue");
2089 const ValueDecl
*VD
= Base
.dyn_cast
<const ValueDecl
*>();
2091 // For a parameter, find the corresponding call stack frame (if it still
2092 // exists), and point at the parameter of the function definition we actually
2094 if (auto *PVD
= dyn_cast_or_null
<ParmVarDecl
>(VD
)) {
2095 unsigned Idx
= PVD
->getFunctionScopeIndex();
2096 for (CallStackFrame
*F
= Info
.CurrentCall
; F
; F
= F
->Caller
) {
2097 if (F
->Arguments
.CallIndex
== Base
.getCallIndex() &&
2098 F
->Arguments
.Version
== Base
.getVersion() && F
->Callee
&&
2099 Idx
< F
->Callee
->getNumParams()) {
2100 VD
= F
->Callee
->getParamDecl(Idx
);
2107 Info
.Note(VD
->getLocation(), diag::note_declared_at
);
2108 else if (const Expr
*E
= Base
.dyn_cast
<const Expr
*>())
2109 Info
.Note(E
->getExprLoc(), diag::note_constexpr_temporary_here
);
2110 else if (DynamicAllocLValue DA
= Base
.dyn_cast
<DynamicAllocLValue
>()) {
2111 // FIXME: Produce a note for dangling pointers too.
2112 if (Optional
<DynAlloc
*> Alloc
= Info
.lookupDynamicAlloc(DA
))
2113 Info
.Note((*Alloc
)->AllocExpr
->getExprLoc(),
2114 diag::note_constexpr_dynamic_alloc_here
);
2116 // We have no information to show for a typeid(T) object.
2119 enum class CheckEvaluationResultKind
{
2124 /// Materialized temporaries that we've already checked to determine if they're
2125 /// initializsed by a constant expression.
2126 using CheckedTemporaries
=
2127 llvm::SmallPtrSet
<const MaterializeTemporaryExpr
*, 8>;
2129 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK
,
2130 EvalInfo
&Info
, SourceLocation DiagLoc
,
2131 QualType Type
, const APValue
&Value
,
2132 ConstantExprKind Kind
,
2133 SourceLocation SubobjectLoc
,
2134 CheckedTemporaries
&CheckedTemps
);
2136 /// Check that this reference or pointer core constant expression is a valid
2137 /// value for an address or reference constant expression. Return true if we
2138 /// can fold this expression, whether or not it's a constant expression.
2139 static bool CheckLValueConstantExpression(EvalInfo
&Info
, SourceLocation Loc
,
2140 QualType Type
, const LValue
&LVal
,
2141 ConstantExprKind Kind
,
2142 CheckedTemporaries
&CheckedTemps
) {
2143 bool IsReferenceType
= Type
->isReferenceType();
2145 APValue::LValueBase Base
= LVal
.getLValueBase();
2146 const SubobjectDesignator
&Designator
= LVal
.getLValueDesignator();
2148 const Expr
*BaseE
= Base
.dyn_cast
<const Expr
*>();
2149 const ValueDecl
*BaseVD
= Base
.dyn_cast
<const ValueDecl
*>();
2151 // Additional restrictions apply in a template argument. We only enforce the
2152 // C++20 restrictions here; additional syntactic and semantic restrictions
2153 // are applied elsewhere.
2154 if (isTemplateArgument(Kind
)) {
2155 int InvalidBaseKind
= -1;
2157 if (Base
.is
<TypeInfoLValue
>())
2158 InvalidBaseKind
= 0;
2159 else if (isa_and_nonnull
<StringLiteral
>(BaseE
))
2160 InvalidBaseKind
= 1;
2161 else if (isa_and_nonnull
<MaterializeTemporaryExpr
>(BaseE
) ||
2162 isa_and_nonnull
<LifetimeExtendedTemporaryDecl
>(BaseVD
))
2163 InvalidBaseKind
= 2;
2164 else if (auto *PE
= dyn_cast_or_null
<PredefinedExpr
>(BaseE
)) {
2165 InvalidBaseKind
= 3;
2166 Ident
= PE
->getIdentKindName();
2169 if (InvalidBaseKind
!= -1) {
2170 Info
.FFDiag(Loc
, diag::note_constexpr_invalid_template_arg
)
2171 << IsReferenceType
<< !Designator
.Entries
.empty() << InvalidBaseKind
2177 if (auto *FD
= dyn_cast_or_null
<FunctionDecl
>(BaseVD
)) {
2178 if (FD
->isConsteval()) {
2179 Info
.FFDiag(Loc
, diag::note_consteval_address_accessible
)
2180 << !Type
->isAnyPointerType();
2181 Info
.Note(FD
->getLocation(), diag::note_declared_at
);
2186 // Check that the object is a global. Note that the fake 'this' object we
2187 // manufacture when checking potential constant expressions is conservatively
2188 // assumed to be global here.
2189 if (!IsGlobalLValue(Base
)) {
2190 if (Info
.getLangOpts().CPlusPlus11
) {
2191 Info
.FFDiag(Loc
, diag::note_constexpr_non_global
, 1)
2192 << IsReferenceType
<< !Designator
.Entries
.empty() << !!BaseVD
2194 auto *VarD
= dyn_cast_or_null
<VarDecl
>(BaseVD
);
2195 if (VarD
&& VarD
->isConstexpr()) {
2196 // Non-static local constexpr variables have unintuitive semantics:
2197 // constexpr int a = 1;
2198 // constexpr const int *p = &a;
2199 // ... is invalid because the address of 'a' is not constant. Suggest
2200 // adding a 'static' in this case.
2201 Info
.Note(VarD
->getLocation(), diag::note_constexpr_not_static
)
2203 << FixItHint::CreateInsertion(VarD
->getBeginLoc(), "static ");
2205 NoteLValueLocation(Info
, Base
);
2210 // Don't allow references to temporaries to escape.
2213 assert((Info
.checkingPotentialConstantExpression() ||
2214 LVal
.getLValueCallIndex() == 0) &&
2215 "have call index for global lvalue");
2217 if (Base
.is
<DynamicAllocLValue
>()) {
2218 Info
.FFDiag(Loc
, diag::note_constexpr_dynamic_alloc
)
2219 << IsReferenceType
<< !Designator
.Entries
.empty();
2220 NoteLValueLocation(Info
, Base
);
2225 if (const VarDecl
*Var
= dyn_cast
<const VarDecl
>(BaseVD
)) {
2226 // Check if this is a thread-local variable.
2227 if (Var
->getTLSKind())
2228 // FIXME: Diagnostic!
2231 // A dllimport variable never acts like a constant, unless we're
2232 // evaluating a value for use only in name mangling.
2233 if (!isForManglingOnly(Kind
) && Var
->hasAttr
<DLLImportAttr
>())
2234 // FIXME: Diagnostic!
2237 // In CUDA/HIP device compilation, only device side variables have
2238 // constant addresses.
2239 if (Info
.getCtx().getLangOpts().CUDA
&&
2240 Info
.getCtx().getLangOpts().CUDAIsDevice
&&
2241 Info
.getCtx().CUDAConstantEvalCtx
.NoWrongSidedVars
) {
2242 if ((!Var
->hasAttr
<CUDADeviceAttr
>() &&
2243 !Var
->hasAttr
<CUDAConstantAttr
>() &&
2244 !Var
->getType()->isCUDADeviceBuiltinSurfaceType() &&
2245 !Var
->getType()->isCUDADeviceBuiltinTextureType()) ||
2246 Var
->hasAttr
<HIPManagedAttr
>())
2250 if (const auto *FD
= dyn_cast
<const FunctionDecl
>(BaseVD
)) {
2251 // __declspec(dllimport) must be handled very carefully:
2252 // We must never initialize an expression with the thunk in C++.
2253 // Doing otherwise would allow the same id-expression to yield
2254 // different addresses for the same function in different translation
2255 // units. However, this means that we must dynamically initialize the
2256 // expression with the contents of the import address table at runtime.
2258 // The C language has no notion of ODR; furthermore, it has no notion of
2259 // dynamic initialization. This means that we are permitted to
2260 // perform initialization with the address of the thunk.
2261 if (Info
.getLangOpts().CPlusPlus
&& !isForManglingOnly(Kind
) &&
2262 FD
->hasAttr
<DLLImportAttr
>())
2263 // FIXME: Diagnostic!
2266 } else if (const auto *MTE
=
2267 dyn_cast_or_null
<MaterializeTemporaryExpr
>(BaseE
)) {
2268 if (CheckedTemps
.insert(MTE
).second
) {
2269 QualType TempType
= getType(Base
);
2270 if (TempType
.isDestructedType()) {
2271 Info
.FFDiag(MTE
->getExprLoc(),
2272 diag::note_constexpr_unsupported_temporary_nontrivial_dtor
)
2277 APValue
*V
= MTE
->getOrCreateValue(false);
2278 assert(V
&& "evasluation result refers to uninitialised temporary");
2279 if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression
,
2280 Info
, MTE
->getExprLoc(), TempType
, *V
,
2281 Kind
, SourceLocation(), CheckedTemps
))
2286 // Allow address constant expressions to be past-the-end pointers. This is
2287 // an extension: the standard requires them to point to an object.
2288 if (!IsReferenceType
)
2291 // A reference constant expression must refer to an object.
2293 // FIXME: diagnostic
2298 // Does this refer one past the end of some object?
2299 if (!Designator
.Invalid
&& Designator
.isOnePastTheEnd()) {
2300 Info
.FFDiag(Loc
, diag::note_constexpr_past_end
, 1)
2301 << !Designator
.Entries
.empty() << !!BaseVD
<< BaseVD
;
2302 NoteLValueLocation(Info
, Base
);
2308 /// Member pointers are constant expressions unless they point to a
2309 /// non-virtual dllimport member function.
2310 static bool CheckMemberPointerConstantExpression(EvalInfo
&Info
,
2313 const APValue
&Value
,
2314 ConstantExprKind Kind
) {
2315 const ValueDecl
*Member
= Value
.getMemberPointerDecl();
2316 const auto *FD
= dyn_cast_or_null
<CXXMethodDecl
>(Member
);
2319 if (FD
->isConsteval()) {
2320 Info
.FFDiag(Loc
, diag::note_consteval_address_accessible
) << /*pointer*/ 0;
2321 Info
.Note(FD
->getLocation(), diag::note_declared_at
);
2324 return isForManglingOnly(Kind
) || FD
->isVirtual() ||
2325 !FD
->hasAttr
<DLLImportAttr
>();
2328 /// Check that this core constant expression is of literal type, and if not,
2329 /// produce an appropriate diagnostic.
2330 static bool CheckLiteralType(EvalInfo
&Info
, const Expr
*E
,
2331 const LValue
*This
= nullptr) {
2332 if (!E
->isPRValue() || E
->getType()->isLiteralType(Info
.Ctx
))
2335 // C++1y: A constant initializer for an object o [...] may also invoke
2336 // constexpr constructors for o and its subobjects even if those objects
2337 // are of non-literal class types.
2339 // C++11 missed this detail for aggregates, so classes like this:
2340 // struct foo_t { union { int i; volatile int j; } u; };
2341 // are not (obviously) initializable like so:
2342 // __attribute__((__require_constant_initialization__))
2343 // static const foo_t x = {{0}};
2344 // because "i" is a subobject with non-literal initialization (due to the
2345 // volatile member of the union). See:
2346 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
2347 // Therefore, we use the C++1y behavior.
2348 if (This
&& Info
.EvaluatingDecl
== This
->getLValueBase())
2351 // Prvalue constant expressions must be of literal types.
2352 if (Info
.getLangOpts().CPlusPlus11
)
2353 Info
.FFDiag(E
, diag::note_constexpr_nonliteral
)
2356 Info
.FFDiag(E
, diag::note_invalid_subexpr_in_const_expr
);
2360 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK
,
2361 EvalInfo
&Info
, SourceLocation DiagLoc
,
2362 QualType Type
, const APValue
&Value
,
2363 ConstantExprKind Kind
,
2364 SourceLocation SubobjectLoc
,
2365 CheckedTemporaries
&CheckedTemps
) {
2366 if (!Value
.hasValue()) {
2367 Info
.FFDiag(DiagLoc
, diag::note_constexpr_uninitialized
)
2369 if (SubobjectLoc
.isValid())
2370 Info
.Note(SubobjectLoc
, diag::note_constexpr_subobject_declared_here
);
2374 // We allow _Atomic(T) to be initialized from anything that T can be
2375 // initialized from.
2376 if (const AtomicType
*AT
= Type
->getAs
<AtomicType
>())
2377 Type
= AT
->getValueType();
2379 // Core issue 1454: For a literal constant expression of array or class type,
2380 // each subobject of its value shall have been initialized by a constant
2382 if (Value
.isArray()) {
2383 QualType EltTy
= Type
->castAsArrayTypeUnsafe()->getElementType();
2384 for (unsigned I
= 0, N
= Value
.getArrayInitializedElts(); I
!= N
; ++I
) {
2385 if (!CheckEvaluationResult(CERK
, Info
, DiagLoc
, EltTy
,
2386 Value
.getArrayInitializedElt(I
), Kind
,
2387 SubobjectLoc
, CheckedTemps
))
2390 if (!Value
.hasArrayFiller())
2392 return CheckEvaluationResult(CERK
, Info
, DiagLoc
, EltTy
,
2393 Value
.getArrayFiller(), Kind
, SubobjectLoc
,
2396 if (Value
.isUnion() && Value
.getUnionField()) {
2397 return CheckEvaluationResult(
2398 CERK
, Info
, DiagLoc
, Value
.getUnionField()->getType(),
2399 Value
.getUnionValue(), Kind
, Value
.getUnionField()->getLocation(),
2402 if (Value
.isStruct()) {
2403 RecordDecl
*RD
= Type
->castAs
<RecordType
>()->getDecl();
2404 if (const CXXRecordDecl
*CD
= dyn_cast
<CXXRecordDecl
>(RD
)) {
2405 unsigned BaseIndex
= 0;
2406 for (const CXXBaseSpecifier
&BS
: CD
->bases()) {
2407 if (!CheckEvaluationResult(CERK
, Info
, DiagLoc
, BS
.getType(),
2408 Value
.getStructBase(BaseIndex
), Kind
,
2409 BS
.getBeginLoc(), CheckedTemps
))
2414 for (const auto *I
: RD
->fields()) {
2415 if (I
->isUnnamedBitfield())
2418 if (!CheckEvaluationResult(CERK
, Info
, DiagLoc
, I
->getType(),
2419 Value
.getStructField(I
->getFieldIndex()),
2420 Kind
, I
->getLocation(), CheckedTemps
))
2425 if (Value
.isLValue() &&
2426 CERK
== CheckEvaluationResultKind::ConstantExpression
) {
2428 LVal
.setFrom(Info
.Ctx
, Value
);
2429 return CheckLValueConstantExpression(Info
, DiagLoc
, Type
, LVal
, Kind
,
2433 if (Value
.isMemberPointer() &&
2434 CERK
== CheckEvaluationResultKind::ConstantExpression
)
2435 return CheckMemberPointerConstantExpression(Info
, DiagLoc
, Type
, Value
, Kind
);
2437 // Everything else is fine.
2441 /// Check that this core constant expression value is a valid value for a
2442 /// constant expression. If not, report an appropriate diagnostic. Does not
2443 /// check that the expression is of literal type.
2444 static bool CheckConstantExpression(EvalInfo
&Info
, SourceLocation DiagLoc
,
2445 QualType Type
, const APValue
&Value
,
2446 ConstantExprKind Kind
) {
2447 // Nothing to check for a constant expression of type 'cv void'.
2448 if (Type
->isVoidType())
2451 CheckedTemporaries CheckedTemps
;
2452 return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression
,
2453 Info
, DiagLoc
, Type
, Value
, Kind
,
2454 SourceLocation(), CheckedTemps
);
2457 /// Check that this evaluated value is fully-initialized and can be loaded by
2458 /// an lvalue-to-rvalue conversion.
2459 static bool CheckFullyInitialized(EvalInfo
&Info
, SourceLocation DiagLoc
,
2460 QualType Type
, const APValue
&Value
) {
2461 CheckedTemporaries CheckedTemps
;
2462 return CheckEvaluationResult(
2463 CheckEvaluationResultKind::FullyInitialized
, Info
, DiagLoc
, Type
, Value
,
2464 ConstantExprKind::Normal
, SourceLocation(), CheckedTemps
);
2467 /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
2468 /// "the allocated storage is deallocated within the evaluation".
2469 static bool CheckMemoryLeaks(EvalInfo
&Info
) {
2470 if (!Info
.HeapAllocs
.empty()) {
2471 // We can still fold to a constant despite a compile-time memory leak,
2472 // so long as the heap allocation isn't referenced in the result (we check
2473 // that in CheckConstantExpression).
2474 Info
.CCEDiag(Info
.HeapAllocs
.begin()->second
.AllocExpr
,
2475 diag::note_constexpr_memory_leak
)
2476 << unsigned(Info
.HeapAllocs
.size() - 1);
2481 static bool EvalPointerValueAsBool(const APValue
&Value
, bool &Result
) {
2482 // A null base expression indicates a null pointer. These are always
2483 // evaluatable, and they are false unless the offset is zero.
2484 if (!Value
.getLValueBase()) {
2485 Result
= !Value
.getLValueOffset().isZero();
2489 // We have a non-null base. These are generally known to be true, but if it's
2490 // a weak declaration it can be null at runtime.
2492 const ValueDecl
*Decl
= Value
.getLValueBase().dyn_cast
<const ValueDecl
*>();
2493 return !Decl
|| !Decl
->isWeak();
2496 static bool HandleConversionToBool(const APValue
&Val
, bool &Result
) {
2497 switch (Val
.getKind()) {
2499 case APValue::Indeterminate
:
2502 Result
= Val
.getInt().getBoolValue();
2504 case APValue::FixedPoint
:
2505 Result
= Val
.getFixedPoint().getBoolValue();
2507 case APValue::Float
:
2508 Result
= !Val
.getFloat().isZero();
2510 case APValue::ComplexInt
:
2511 Result
= Val
.getComplexIntReal().getBoolValue() ||
2512 Val
.getComplexIntImag().getBoolValue();
2514 case APValue::ComplexFloat
:
2515 Result
= !Val
.getComplexFloatReal().isZero() ||
2516 !Val
.getComplexFloatImag().isZero();
2518 case APValue::LValue
:
2519 return EvalPointerValueAsBool(Val
, Result
);
2520 case APValue::MemberPointer
:
2521 Result
= Val
.getMemberPointerDecl();
2523 case APValue::Vector
:
2524 case APValue::Array
:
2525 case APValue::Struct
:
2526 case APValue::Union
:
2527 case APValue::AddrLabelDiff
:
2531 llvm_unreachable("unknown APValue kind");
2534 static bool EvaluateAsBooleanCondition(const Expr
*E
, bool &Result
,
2536 assert(!E
->isValueDependent());
2537 assert(E
->isPRValue() && "missing lvalue-to-rvalue conv in bool condition");
2539 if (!Evaluate(Val
, Info
, E
))
2541 return HandleConversionToBool(Val
, Result
);
2544 template<typename T
>
2545 static bool HandleOverflow(EvalInfo
&Info
, const Expr
*E
,
2546 const T
&SrcValue
, QualType DestType
) {
2547 Info
.CCEDiag(E
, diag::note_constexpr_overflow
)
2548 << SrcValue
<< DestType
;
2549 return Info
.noteUndefinedBehavior();
2552 static bool HandleFloatToIntCast(EvalInfo
&Info
, const Expr
*E
,
2553 QualType SrcType
, const APFloat
&Value
,
2554 QualType DestType
, APSInt
&Result
) {
2555 unsigned DestWidth
= Info
.Ctx
.getIntWidth(DestType
);
2556 // Determine whether we are converting to unsigned or signed.
2557 bool DestSigned
= DestType
->isSignedIntegerOrEnumerationType();
2559 Result
= APSInt(DestWidth
, !DestSigned
);
2561 if (Value
.convertToInteger(Result
, llvm::APFloat::rmTowardZero
, &ignored
)
2562 & APFloat::opInvalidOp
)
2563 return HandleOverflow(Info
, E
, Value
, DestType
);
2567 /// Get rounding mode to use in evaluation of the specified expression.
2569 /// If rounding mode is unknown at compile time, still try to evaluate the
2570 /// expression. If the result is exact, it does not depend on rounding mode.
2571 /// So return "tonearest" mode instead of "dynamic".
2572 static llvm::RoundingMode
getActiveRoundingMode(EvalInfo
&Info
, const Expr
*E
) {
2573 llvm::RoundingMode RM
=
2574 E
->getFPFeaturesInEffect(Info
.Ctx
.getLangOpts()).getRoundingMode();
2575 if (RM
== llvm::RoundingMode::Dynamic
)
2576 RM
= llvm::RoundingMode::NearestTiesToEven
;
2580 /// Check if the given evaluation result is allowed for constant evaluation.
2581 static bool checkFloatingPointResult(EvalInfo
&Info
, const Expr
*E
,
2582 APFloat::opStatus St
) {
2583 // In a constant context, assume that any dynamic rounding mode or FP
2584 // exception state matches the default floating-point environment.
2585 if (Info
.InConstantContext
)
2588 FPOptions FPO
= E
->getFPFeaturesInEffect(Info
.Ctx
.getLangOpts());
2589 if ((St
& APFloat::opInexact
) &&
2590 FPO
.getRoundingMode() == llvm::RoundingMode::Dynamic
) {
2591 // Inexact result means that it depends on rounding mode. If the requested
2592 // mode is dynamic, the evaluation cannot be made in compile time.
2593 Info
.FFDiag(E
, diag::note_constexpr_dynamic_rounding
);
2597 if ((St
!= APFloat::opOK
) &&
2598 (FPO
.getRoundingMode() == llvm::RoundingMode::Dynamic
||
2599 FPO
.getExceptionMode() != LangOptions::FPE_Ignore
||
2600 FPO
.getAllowFEnvAccess())) {
2601 Info
.FFDiag(E
, diag::note_constexpr_float_arithmetic_strict
);
2605 if ((St
& APFloat::opStatus::opInvalidOp
) &&
2606 FPO
.getExceptionMode() != LangOptions::FPE_Ignore
) {
2607 // There is no usefully definable result.
2613 // - evaluation triggered other FP exception, and
2614 // - exception mode is not "ignore", and
2615 // - the expression being evaluated is not a part of global variable
2617 // the evaluation probably need to be rejected.
2621 static bool HandleFloatToFloatCast(EvalInfo
&Info
, const Expr
*E
,
2622 QualType SrcType
, QualType DestType
,
2624 assert(isa
<CastExpr
>(E
) || isa
<CompoundAssignOperator
>(E
));
2625 llvm::RoundingMode RM
= getActiveRoundingMode(Info
, E
);
2626 APFloat::opStatus St
;
2627 APFloat Value
= Result
;
2629 St
= Result
.convert(Info
.Ctx
.getFloatTypeSemantics(DestType
), RM
, &ignored
);
2630 return checkFloatingPointResult(Info
, E
, St
);
2633 static APSInt
HandleIntToIntCast(EvalInfo
&Info
, const Expr
*E
,
2634 QualType DestType
, QualType SrcType
,
2635 const APSInt
&Value
) {
2636 unsigned DestWidth
= Info
.Ctx
.getIntWidth(DestType
);
2637 // Figure out if this is a truncate, extend or noop cast.
2638 // If the input is signed, do a sign extend, noop, or truncate.
2639 APSInt Result
= Value
.extOrTrunc(DestWidth
);
2640 Result
.setIsUnsigned(DestType
->isUnsignedIntegerOrEnumerationType());
2641 if (DestType
->isBooleanType())
2642 Result
= Value
.getBoolValue();
2646 static bool HandleIntToFloatCast(EvalInfo
&Info
, const Expr
*E
,
2647 const FPOptions FPO
,
2648 QualType SrcType
, const APSInt
&Value
,
2649 QualType DestType
, APFloat
&Result
) {
2650 Result
= APFloat(Info
.Ctx
.getFloatTypeSemantics(DestType
), 1);
2651 APFloat::opStatus St
= Result
.convertFromAPInt(Value
, Value
.isSigned(),
2652 APFloat::rmNearestTiesToEven
);
2653 if (!Info
.InConstantContext
&& St
!= llvm::APFloatBase::opOK
&&
2654 FPO
.isFPConstrained()) {
2655 Info
.FFDiag(E
, diag::note_constexpr_float_arithmetic_strict
);
2661 static bool truncateBitfieldValue(EvalInfo
&Info
, const Expr
*E
,
2662 APValue
&Value
, const FieldDecl
*FD
) {
2663 assert(FD
->isBitField() && "truncateBitfieldValue on non-bitfield");
2665 if (!Value
.isInt()) {
2666 // Trying to store a pointer-cast-to-integer into a bitfield.
2667 // FIXME: In this case, we should provide the diagnostic for casting
2668 // a pointer to an integer.
2669 assert(Value
.isLValue() && "integral value neither int nor lvalue?");
2674 APSInt
&Int
= Value
.getInt();
2675 unsigned OldBitWidth
= Int
.getBitWidth();
2676 unsigned NewBitWidth
= FD
->getBitWidthValue(Info
.Ctx
);
2677 if (NewBitWidth
< OldBitWidth
)
2678 Int
= Int
.trunc(NewBitWidth
).extend(OldBitWidth
);
2682 static bool EvalAndBitcastToAPInt(EvalInfo
&Info
, const Expr
*E
,
2685 if (!Evaluate(SVal
, Info
, E
))
2688 Res
= SVal
.getInt();
2691 if (SVal
.isFloat()) {
2692 Res
= SVal
.getFloat().bitcastToAPInt();
2695 if (SVal
.isVector()) {
2696 QualType VecTy
= E
->getType();
2697 unsigned VecSize
= Info
.Ctx
.getTypeSize(VecTy
);
2698 QualType EltTy
= VecTy
->castAs
<VectorType
>()->getElementType();
2699 unsigned EltSize
= Info
.Ctx
.getTypeSize(EltTy
);
2700 bool BigEndian
= Info
.Ctx
.getTargetInfo().isBigEndian();
2701 Res
= llvm::APInt::getZero(VecSize
);
2702 for (unsigned i
= 0; i
< SVal
.getVectorLength(); i
++) {
2703 APValue
&Elt
= SVal
.getVectorElt(i
);
2704 llvm::APInt EltAsInt
;
2706 EltAsInt
= Elt
.getInt();
2707 } else if (Elt
.isFloat()) {
2708 EltAsInt
= Elt
.getFloat().bitcastToAPInt();
2710 // Don't try to handle vectors of anything other than int or float
2711 // (not sure if it's possible to hit this case).
2712 Info
.FFDiag(E
, diag::note_invalid_subexpr_in_const_expr
);
2715 unsigned BaseEltSize
= EltAsInt
.getBitWidth();
2717 Res
|= EltAsInt
.zextOrTrunc(VecSize
).rotr(i
*EltSize
+BaseEltSize
);
2719 Res
|= EltAsInt
.zextOrTrunc(VecSize
).rotl(i
*EltSize
);
2723 // Give up if the input isn't an int, float, or vector. For example, we
2724 // reject "(v4i16)(intptr_t)&a".
2725 Info
.FFDiag(E
, diag::note_invalid_subexpr_in_const_expr
);
2729 /// Perform the given integer operation, which is known to need at most BitWidth
2730 /// bits, and check for overflow in the original type (if that type was not an
2732 template<typename Operation
>
2733 static bool CheckedIntArithmetic(EvalInfo
&Info
, const Expr
*E
,
2734 const APSInt
&LHS
, const APSInt
&RHS
,
2735 unsigned BitWidth
, Operation Op
,
2737 if (LHS
.isUnsigned()) {
2738 Result
= Op(LHS
, RHS
);
2742 APSInt
Value(Op(LHS
.extend(BitWidth
), RHS
.extend(BitWidth
)), false);
2743 Result
= Value
.trunc(LHS
.getBitWidth());
2744 if (Result
.extend(BitWidth
) != Value
) {
2745 if (Info
.checkingForUndefinedBehavior())
2746 Info
.Ctx
.getDiagnostics().Report(E
->getExprLoc(),
2747 diag::warn_integer_constant_overflow
)
2748 << toString(Result
, 10) << E
->getType();
2749 return HandleOverflow(Info
, E
, Value
, E
->getType());
2754 /// Perform the given binary integer operation.
2755 static bool handleIntIntBinOp(EvalInfo
&Info
, const Expr
*E
, const APSInt
&LHS
,
2756 BinaryOperatorKind Opcode
, APSInt RHS
,
2763 return CheckedIntArithmetic(Info
, E
, LHS
, RHS
, LHS
.getBitWidth() * 2,
2764 std::multiplies
<APSInt
>(), Result
);
2766 return CheckedIntArithmetic(Info
, E
, LHS
, RHS
, LHS
.getBitWidth() + 1,
2767 std::plus
<APSInt
>(), Result
);
2769 return CheckedIntArithmetic(Info
, E
, LHS
, RHS
, LHS
.getBitWidth() + 1,
2770 std::minus
<APSInt
>(), Result
);
2771 case BO_And
: Result
= LHS
& RHS
; return true;
2772 case BO_Xor
: Result
= LHS
^ RHS
; return true;
2773 case BO_Or
: Result
= LHS
| RHS
; return true;
2777 Info
.FFDiag(E
, diag::note_expr_divide_by_zero
);
2780 Result
= (Opcode
== BO_Rem
? LHS
% RHS
: LHS
/ RHS
);
2781 // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
2782 // this operation and gives the two's complement result.
2783 if (RHS
.isNegative() && RHS
.isAllOnes() && LHS
.isSigned() &&
2784 LHS
.isMinSignedValue())
2785 return HandleOverflow(Info
, E
, -LHS
.extend(LHS
.getBitWidth() + 1),
2789 if (Info
.getLangOpts().OpenCL
)
2790 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2791 RHS
&= APSInt(llvm::APInt(RHS
.getBitWidth(),
2792 static_cast<uint64_t>(LHS
.getBitWidth() - 1)),
2794 else if (RHS
.isSigned() && RHS
.isNegative()) {
2795 // During constant-folding, a negative shift is an opposite shift. Such
2796 // a shift is not a constant expression.
2797 Info
.CCEDiag(E
, diag::note_constexpr_negative_shift
) << RHS
;
2802 // C++11 [expr.shift]p1: Shift width must be less than the bit width of
2803 // the shifted type.
2804 unsigned SA
= (unsigned) RHS
.getLimitedValue(LHS
.getBitWidth()-1);
2806 Info
.CCEDiag(E
, diag::note_constexpr_large_shift
)
2807 << RHS
<< E
->getType() << LHS
.getBitWidth();
2808 } else if (LHS
.isSigned() && !Info
.getLangOpts().CPlusPlus20
) {
2809 // C++11 [expr.shift]p2: A signed left shift must have a non-negative
2810 // operand, and must not overflow the corresponding unsigned type.
2811 // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
2812 // E1 x 2^E2 module 2^N.
2813 if (LHS
.isNegative())
2814 Info
.CCEDiag(E
, diag::note_constexpr_lshift_of_negative
) << LHS
;
2815 else if (LHS
.countLeadingZeros() < SA
)
2816 Info
.CCEDiag(E
, diag::note_constexpr_lshift_discards
);
2822 if (Info
.getLangOpts().OpenCL
)
2823 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2824 RHS
&= APSInt(llvm::APInt(RHS
.getBitWidth(),
2825 static_cast<uint64_t>(LHS
.getBitWidth() - 1)),
2827 else if (RHS
.isSigned() && RHS
.isNegative()) {
2828 // During constant-folding, a negative shift is an opposite shift. Such a
2829 // shift is not a constant expression.
2830 Info
.CCEDiag(E
, diag::note_constexpr_negative_shift
) << RHS
;
2835 // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
2837 unsigned SA
= (unsigned) RHS
.getLimitedValue(LHS
.getBitWidth()-1);
2839 Info
.CCEDiag(E
, diag::note_constexpr_large_shift
)
2840 << RHS
<< E
->getType() << LHS
.getBitWidth();
2845 case BO_LT
: Result
= LHS
< RHS
; return true;
2846 case BO_GT
: Result
= LHS
> RHS
; return true;
2847 case BO_LE
: Result
= LHS
<= RHS
; return true;
2848 case BO_GE
: Result
= LHS
>= RHS
; return true;
2849 case BO_EQ
: Result
= LHS
== RHS
; return true;
2850 case BO_NE
: Result
= LHS
!= RHS
; return true;
2852 llvm_unreachable("BO_Cmp should be handled elsewhere");
2856 /// Perform the given binary floating-point operation, in-place, on LHS.
2857 static bool handleFloatFloatBinOp(EvalInfo
&Info
, const BinaryOperator
*E
,
2858 APFloat
&LHS
, BinaryOperatorKind Opcode
,
2859 const APFloat
&RHS
) {
2860 llvm::RoundingMode RM
= getActiveRoundingMode(Info
, E
);
2861 APFloat::opStatus St
;
2867 St
= LHS
.multiply(RHS
, RM
);
2870 St
= LHS
.add(RHS
, RM
);
2873 St
= LHS
.subtract(RHS
, RM
);
2877 // If the second operand of / or % is zero the behavior is undefined.
2879 Info
.CCEDiag(E
, diag::note_expr_divide_by_zero
);
2880 St
= LHS
.divide(RHS
, RM
);
2885 // If during the evaluation of an expression, the result is not
2886 // mathematically defined [...], the behavior is undefined.
2887 // FIXME: C++ rules require us to not conform to IEEE 754 here.
2889 Info
.CCEDiag(E
, diag::note_constexpr_float_arithmetic
) << LHS
.isNaN();
2890 return Info
.noteUndefinedBehavior();
2893 return checkFloatingPointResult(Info
, E
, St
);
2896 static bool handleLogicalOpForVector(const APInt
&LHSValue
,
2897 BinaryOperatorKind Opcode
,
2898 const APInt
&RHSValue
, APInt
&Result
) {
2899 bool LHS
= (LHSValue
!= 0);
2900 bool RHS
= (RHSValue
!= 0);
2902 if (Opcode
== BO_LAnd
)
2903 Result
= LHS
&& RHS
;
2905 Result
= LHS
|| RHS
;
2908 static bool handleLogicalOpForVector(const APFloat
&LHSValue
,
2909 BinaryOperatorKind Opcode
,
2910 const APFloat
&RHSValue
, APInt
&Result
) {
2911 bool LHS
= !LHSValue
.isZero();
2912 bool RHS
= !RHSValue
.isZero();
2914 if (Opcode
== BO_LAnd
)
2915 Result
= LHS
&& RHS
;
2917 Result
= LHS
|| RHS
;
2921 static bool handleLogicalOpForVector(const APValue
&LHSValue
,
2922 BinaryOperatorKind Opcode
,
2923 const APValue
&RHSValue
, APInt
&Result
) {
2924 // The result is always an int type, however operands match the first.
2925 if (LHSValue
.getKind() == APValue::Int
)
2926 return handleLogicalOpForVector(LHSValue
.getInt(), Opcode
,
2927 RHSValue
.getInt(), Result
);
2928 assert(LHSValue
.getKind() == APValue::Float
&& "Should be no other options");
2929 return handleLogicalOpForVector(LHSValue
.getFloat(), Opcode
,
2930 RHSValue
.getFloat(), Result
);
2933 template <typename APTy
>
2935 handleCompareOpForVectorHelper(const APTy
&LHSValue
, BinaryOperatorKind Opcode
,
2936 const APTy
&RHSValue
, APInt
&Result
) {
2939 llvm_unreachable("unsupported binary operator");
2941 Result
= (LHSValue
== RHSValue
);
2944 Result
= (LHSValue
!= RHSValue
);
2947 Result
= (LHSValue
< RHSValue
);
2950 Result
= (LHSValue
> RHSValue
);
2953 Result
= (LHSValue
<= RHSValue
);
2956 Result
= (LHSValue
>= RHSValue
);
2960 // The boolean operations on these vector types use an instruction that
2961 // results in a mask of '-1' for the 'truth' value. Ensure that we negate 1
2962 // to -1 to make sure that we produce the correct value.
2968 static bool handleCompareOpForVector(const APValue
&LHSValue
,
2969 BinaryOperatorKind Opcode
,
2970 const APValue
&RHSValue
, APInt
&Result
) {
2971 // The result is always an int type, however operands match the first.
2972 if (LHSValue
.getKind() == APValue::Int
)
2973 return handleCompareOpForVectorHelper(LHSValue
.getInt(), Opcode
,
2974 RHSValue
.getInt(), Result
);
2975 assert(LHSValue
.getKind() == APValue::Float
&& "Should be no other options");
2976 return handleCompareOpForVectorHelper(LHSValue
.getFloat(), Opcode
,
2977 RHSValue
.getFloat(), Result
);
2980 // Perform binary operations for vector types, in place on the LHS.
2981 static bool handleVectorVectorBinOp(EvalInfo
&Info
, const BinaryOperator
*E
,
2982 BinaryOperatorKind Opcode
,
2984 const APValue
&RHSValue
) {
2985 assert(Opcode
!= BO_PtrMemD
&& Opcode
!= BO_PtrMemI
&&
2986 "Operation not supported on vector types");
2988 const auto *VT
= E
->getType()->castAs
<VectorType
>();
2989 unsigned NumElements
= VT
->getNumElements();
2990 QualType EltTy
= VT
->getElementType();
2992 // In the cases (typically C as I've observed) where we aren't evaluating
2993 // constexpr but are checking for cases where the LHS isn't yet evaluatable,
2995 if (!LHSValue
.isVector()) {
2996 assert(LHSValue
.isLValue() &&
2997 "A vector result that isn't a vector OR uncalculated LValue");
3002 assert(LHSValue
.getVectorLength() == NumElements
&&
3003 RHSValue
.getVectorLength() == NumElements
&& "Different vector sizes");
3005 SmallVector
<APValue
, 4> ResultElements
;
3007 for (unsigned EltNum
= 0; EltNum
< NumElements
; ++EltNum
) {
3008 APValue LHSElt
= LHSValue
.getVectorElt(EltNum
);
3009 APValue RHSElt
= RHSValue
.getVectorElt(EltNum
);
3011 if (EltTy
->isIntegerType()) {
3012 APSInt EltResult
{Info
.Ctx
.getIntWidth(EltTy
),
3013 EltTy
->isUnsignedIntegerType()};
3014 bool Success
= true;
3016 if (BinaryOperator::isLogicalOp(Opcode
))
3017 Success
= handleLogicalOpForVector(LHSElt
, Opcode
, RHSElt
, EltResult
);
3018 else if (BinaryOperator::isComparisonOp(Opcode
))
3019 Success
= handleCompareOpForVector(LHSElt
, Opcode
, RHSElt
, EltResult
);
3021 Success
= handleIntIntBinOp(Info
, E
, LHSElt
.getInt(), Opcode
,
3022 RHSElt
.getInt(), EltResult
);
3028 ResultElements
.emplace_back(EltResult
);
3030 } else if (EltTy
->isFloatingType()) {
3031 assert(LHSElt
.getKind() == APValue::Float
&&
3032 RHSElt
.getKind() == APValue::Float
&&
3033 "Mismatched LHS/RHS/Result Type");
3034 APFloat LHSFloat
= LHSElt
.getFloat();
3036 if (!handleFloatFloatBinOp(Info
, E
, LHSFloat
, Opcode
,
3037 RHSElt
.getFloat())) {
3042 ResultElements
.emplace_back(LHSFloat
);
3046 LHSValue
= APValue(ResultElements
.data(), ResultElements
.size());
3050 /// Cast an lvalue referring to a base subobject to a derived class, by
3051 /// truncating the lvalue's path to the given length.
3052 static bool CastToDerivedClass(EvalInfo
&Info
, const Expr
*E
, LValue
&Result
,
3053 const RecordDecl
*TruncatedType
,
3054 unsigned TruncatedElements
) {
3055 SubobjectDesignator
&D
= Result
.Designator
;
3057 // Check we actually point to a derived class object.
3058 if (TruncatedElements
== D
.Entries
.size())
3060 assert(TruncatedElements
>= D
.MostDerivedPathLength
&&
3061 "not casting to a derived class");
3062 if (!Result
.checkSubobject(Info
, E
, CSK_Derived
))
3065 // Truncate the path to the subobject, and remove any derived-to-base offsets.
3066 const RecordDecl
*RD
= TruncatedType
;
3067 for (unsigned I
= TruncatedElements
, N
= D
.Entries
.size(); I
!= N
; ++I
) {
3068 if (RD
->isInvalidDecl()) return false;
3069 const ASTRecordLayout
&Layout
= Info
.Ctx
.getASTRecordLayout(RD
);
3070 const CXXRecordDecl
*Base
= getAsBaseClass(D
.Entries
[I
]);
3071 if (isVirtualBaseClass(D
.Entries
[I
]))
3072 Result
.Offset
-= Layout
.getVBaseClassOffset(Base
);
3074 Result
.Offset
-= Layout
.getBaseClassOffset(Base
);
3077 D
.Entries
.resize(TruncatedElements
);
3081 static bool HandleLValueDirectBase(EvalInfo
&Info
, const Expr
*E
, LValue
&Obj
,
3082 const CXXRecordDecl
*Derived
,
3083 const CXXRecordDecl
*Base
,
3084 const ASTRecordLayout
*RL
= nullptr) {
3086 if (Derived
->isInvalidDecl()) return false;
3087 RL
= &Info
.Ctx
.getASTRecordLayout(Derived
);
3090 Obj
.getLValueOffset() += RL
->getBaseClassOffset(Base
);
3091 Obj
.addDecl(Info
, E
, Base
, /*Virtual*/ false);
3095 static bool HandleLValueBase(EvalInfo
&Info
, const Expr
*E
, LValue
&Obj
,
3096 const CXXRecordDecl
*DerivedDecl
,
3097 const CXXBaseSpecifier
*Base
) {
3098 const CXXRecordDecl
*BaseDecl
= Base
->getType()->getAsCXXRecordDecl();
3100 if (!Base
->isVirtual())
3101 return HandleLValueDirectBase(Info
, E
, Obj
, DerivedDecl
, BaseDecl
);
3103 SubobjectDesignator
&D
= Obj
.Designator
;
3107 // Extract most-derived object and corresponding type.
3108 DerivedDecl
= D
.MostDerivedType
->getAsCXXRecordDecl();
3109 if (!CastToDerivedClass(Info
, E
, Obj
, DerivedDecl
, D
.MostDerivedPathLength
))
3112 // Find the virtual base class.
3113 if (DerivedDecl
->isInvalidDecl()) return false;
3114 const ASTRecordLayout
&Layout
= Info
.Ctx
.getASTRecordLayout(DerivedDecl
);
3115 Obj
.getLValueOffset() += Layout
.getVBaseClassOffset(BaseDecl
);
3116 Obj
.addDecl(Info
, E
, BaseDecl
, /*Virtual*/ true);
3120 static bool HandleLValueBasePath(EvalInfo
&Info
, const CastExpr
*E
,
3121 QualType Type
, LValue
&Result
) {
3122 for (CastExpr::path_const_iterator PathI
= E
->path_begin(),
3123 PathE
= E
->path_end();
3124 PathI
!= PathE
; ++PathI
) {
3125 if (!HandleLValueBase(Info
, E
, Result
, Type
->getAsCXXRecordDecl(),
3128 Type
= (*PathI
)->getType();
3133 /// Cast an lvalue referring to a derived class to a known base subobject.
3134 static bool CastToBaseClass(EvalInfo
&Info
, const Expr
*E
, LValue
&Result
,
3135 const CXXRecordDecl
*DerivedRD
,
3136 const CXXRecordDecl
*BaseRD
) {
3137 CXXBasePaths
Paths(/*FindAmbiguities=*/false,
3138 /*RecordPaths=*/true, /*DetectVirtual=*/false);
3139 if (!DerivedRD
->isDerivedFrom(BaseRD
, Paths
))
3140 llvm_unreachable("Class must be derived from the passed in base class!");
3142 for (CXXBasePathElement
&Elem
: Paths
.front())
3143 if (!HandleLValueBase(Info
, E
, Result
, Elem
.Class
, Elem
.Base
))
3148 /// Update LVal to refer to the given field, which must be a member of the type
3149 /// currently described by LVal.
3150 static bool HandleLValueMember(EvalInfo
&Info
, const Expr
*E
, LValue
&LVal
,
3151 const FieldDecl
*FD
,
3152 const ASTRecordLayout
*RL
= nullptr) {
3154 if (FD
->getParent()->isInvalidDecl()) return false;
3155 RL
= &Info
.Ctx
.getASTRecordLayout(FD
->getParent());
3158 unsigned I
= FD
->getFieldIndex();
3159 LVal
.adjustOffset(Info
.Ctx
.toCharUnitsFromBits(RL
->getFieldOffset(I
)));
3160 LVal
.addDecl(Info
, E
, FD
);
3164 /// Update LVal to refer to the given indirect field.
3165 static bool HandleLValueIndirectMember(EvalInfo
&Info
, const Expr
*E
,
3167 const IndirectFieldDecl
*IFD
) {
3168 for (const auto *C
: IFD
->chain())
3169 if (!HandleLValueMember(Info
, E
, LVal
, cast
<FieldDecl
>(C
)))
3174 /// Get the size of the given type in char units.
3175 static bool HandleSizeof(EvalInfo
&Info
, SourceLocation Loc
,
3176 QualType Type
, CharUnits
&Size
) {
3177 // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
3179 if (Type
->isVoidType() || Type
->isFunctionType()) {
3180 Size
= CharUnits::One();
3184 if (Type
->isDependentType()) {
3189 if (!Type
->isConstantSizeType()) {
3190 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
3191 // FIXME: Better diagnostic.
3196 Size
= Info
.Ctx
.getTypeSizeInChars(Type
);
3200 /// Update a pointer value to model pointer arithmetic.
3201 /// \param Info - Information about the ongoing evaluation.
3202 /// \param E - The expression being evaluated, for diagnostic purposes.
3203 /// \param LVal - The pointer value to be updated.
3204 /// \param EltTy - The pointee type represented by LVal.
3205 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
3206 static bool HandleLValueArrayAdjustment(EvalInfo
&Info
, const Expr
*E
,
3207 LValue
&LVal
, QualType EltTy
,
3208 APSInt Adjustment
) {
3209 CharUnits SizeOfPointee
;
3210 if (!HandleSizeof(Info
, E
->getExprLoc(), EltTy
, SizeOfPointee
))
3213 LVal
.adjustOffsetAndIndex(Info
, E
, Adjustment
, SizeOfPointee
);
3217 static bool HandleLValueArrayAdjustment(EvalInfo
&Info
, const Expr
*E
,
3218 LValue
&LVal
, QualType EltTy
,
3219 int64_t Adjustment
) {
3220 return HandleLValueArrayAdjustment(Info
, E
, LVal
, EltTy
,
3221 APSInt::get(Adjustment
));
3224 /// Update an lvalue to refer to a component of a complex number.
3225 /// \param Info - Information about the ongoing evaluation.
3226 /// \param LVal - The lvalue to be updated.
3227 /// \param EltTy - The complex number's component type.
3228 /// \param Imag - False for the real component, true for the imaginary.
3229 static bool HandleLValueComplexElement(EvalInfo
&Info
, const Expr
*E
,
3230 LValue
&LVal
, QualType EltTy
,
3233 CharUnits SizeOfComponent
;
3234 if (!HandleSizeof(Info
, E
->getExprLoc(), EltTy
, SizeOfComponent
))
3236 LVal
.Offset
+= SizeOfComponent
;
3238 LVal
.addComplex(Info
, E
, EltTy
, Imag
);
3242 /// Try to evaluate the initializer for a variable declaration.
3244 /// \param Info Information about the ongoing evaluation.
3245 /// \param E An expression to be used when printing diagnostics.
3246 /// \param VD The variable whose initializer should be obtained.
3247 /// \param Version The version of the variable within the frame.
3248 /// \param Frame The frame in which the variable was created. Must be null
3249 /// if this variable is not local to the evaluation.
3250 /// \param Result Filled in with a pointer to the value of the variable.
3251 static bool evaluateVarDeclInit(EvalInfo
&Info
, const Expr
*E
,
3252 const VarDecl
*VD
, CallStackFrame
*Frame
,
3253 unsigned Version
, APValue
*&Result
) {
3254 APValue::LValueBase
Base(VD
, Frame
? Frame
->Index
: 0, Version
);
3256 // If this is a local variable, dig out its value.
3258 Result
= Frame
->getTemporary(VD
, Version
);
3262 if (!isa
<ParmVarDecl
>(VD
)) {
3263 // Assume variables referenced within a lambda's call operator that were
3264 // not declared within the call operator are captures and during checking
3265 // of a potential constant expression, assume they are unknown constant
3267 assert(isLambdaCallOperator(Frame
->Callee
) &&
3268 (VD
->getDeclContext() != Frame
->Callee
|| VD
->isInitCapture()) &&
3269 "missing value for local variable");
3270 if (Info
.checkingPotentialConstantExpression())
3272 // FIXME: This diagnostic is bogus; we do support captures. Is this code
3273 // still reachable at all?
3274 Info
.FFDiag(E
->getBeginLoc(),
3275 diag::note_unimplemented_constexpr_lambda_feature_ast
)
3276 << "captures not currently allowed";
3281 // If we're currently evaluating the initializer of this declaration, use that
3283 if (Info
.EvaluatingDecl
== Base
) {
3284 Result
= Info
.EvaluatingDeclValue
;
3288 if (isa
<ParmVarDecl
>(VD
)) {
3289 // Assume parameters of a potential constant expression are usable in
3290 // constant expressions.
3291 if (!Info
.checkingPotentialConstantExpression() ||
3292 !Info
.CurrentCall
->Callee
||
3293 !Info
.CurrentCall
->Callee
->Equals(VD
->getDeclContext())) {
3294 if (Info
.getLangOpts().CPlusPlus11
) {
3295 Info
.FFDiag(E
, diag::note_constexpr_function_param_value_unknown
)
3297 NoteLValueLocation(Info
, Base
);
3305 // Dig out the initializer, and use the declaration which it's attached to.
3306 // FIXME: We should eventually check whether the variable has a reachable
3307 // initializing declaration.
3308 const Expr
*Init
= VD
->getAnyInitializer(VD
);
3310 // Don't diagnose during potential constant expression checking; an
3311 // initializer might be added later.
3312 if (!Info
.checkingPotentialConstantExpression()) {
3313 Info
.FFDiag(E
, diag::note_constexpr_var_init_unknown
, 1)
3315 NoteLValueLocation(Info
, Base
);
3320 if (Init
->isValueDependent()) {
3321 // The DeclRefExpr is not value-dependent, but the variable it refers to
3322 // has a value-dependent initializer. This should only happen in
3323 // constant-folding cases, where the variable is not actually of a suitable
3324 // type for use in a constant expression (otherwise the DeclRefExpr would
3325 // have been value-dependent too), so diagnose that.
3326 assert(!VD
->mightBeUsableInConstantExpressions(Info
.Ctx
));
3327 if (!Info
.checkingPotentialConstantExpression()) {
3328 Info
.FFDiag(E
, Info
.getLangOpts().CPlusPlus11
3329 ? diag::note_constexpr_ltor_non_constexpr
3330 : diag::note_constexpr_ltor_non_integral
, 1)
3331 << VD
<< VD
->getType();
3332 NoteLValueLocation(Info
, Base
);
3337 // Check that we can fold the initializer. In C++, we will have already done
3338 // this in the cases where it matters for conformance.
3339 if (!VD
->evaluateValue()) {
3340 Info
.FFDiag(E
, diag::note_constexpr_var_init_non_constant
, 1) << VD
;
3341 NoteLValueLocation(Info
, Base
);
3345 // Check that the variable is actually usable in constant expressions. For a
3346 // const integral variable or a reference, we might have a non-constant
3347 // initializer that we can nonetheless evaluate the initializer for. Such
3348 // variables are not usable in constant expressions. In C++98, the
3349 // initializer also syntactically needs to be an ICE.
3351 // FIXME: We don't diagnose cases that aren't potentially usable in constant
3352 // expressions here; doing so would regress diagnostics for things like
3353 // reading from a volatile constexpr variable.
3354 if ((Info
.getLangOpts().CPlusPlus
&& !VD
->hasConstantInitialization() &&
3355 VD
->mightBeUsableInConstantExpressions(Info
.Ctx
)) ||
3356 ((Info
.getLangOpts().CPlusPlus
|| Info
.getLangOpts().OpenCL
) &&
3357 !Info
.getLangOpts().CPlusPlus11
&& !VD
->hasICEInitializer(Info
.Ctx
))) {
3358 Info
.CCEDiag(E
, diag::note_constexpr_var_init_non_constant
, 1) << VD
;
3359 NoteLValueLocation(Info
, Base
);
3362 // Never use the initializer of a weak variable, not even for constant
3363 // folding. We can't be sure that this is the definition that will be used.
3365 Info
.FFDiag(E
, diag::note_constexpr_var_init_weak
) << VD
;
3366 NoteLValueLocation(Info
, Base
);
3370 Result
= VD
->getEvaluatedValue();
3374 /// Get the base index of the given base class within an APValue representing
3375 /// the given derived class.
3376 static unsigned getBaseIndex(const CXXRecordDecl
*Derived
,
3377 const CXXRecordDecl
*Base
) {
3378 Base
= Base
->getCanonicalDecl();
3380 for (CXXRecordDecl::base_class_const_iterator I
= Derived
->bases_begin(),
3381 E
= Derived
->bases_end(); I
!= E
; ++I
, ++Index
) {
3382 if (I
->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base
)
3386 llvm_unreachable("base class missing from derived class's bases list");
3389 /// Extract the value of a character from a string literal.
3390 static APSInt
extractStringLiteralCharacter(EvalInfo
&Info
, const Expr
*Lit
,
3392 assert(!isa
<SourceLocExpr
>(Lit
) &&
3393 "SourceLocExpr should have already been converted to a StringLiteral");
3395 // FIXME: Support MakeStringConstant
3396 if (const auto *ObjCEnc
= dyn_cast
<ObjCEncodeExpr
>(Lit
)) {
3398 Info
.Ctx
.getObjCEncodingForType(ObjCEnc
->getEncodedType(), Str
);
3399 assert(Index
<= Str
.size() && "Index too large");
3400 return APSInt::getUnsigned(Str
.c_str()[Index
]);
3403 if (auto PE
= dyn_cast
<PredefinedExpr
>(Lit
))
3404 Lit
= PE
->getFunctionName();
3405 const StringLiteral
*S
= cast
<StringLiteral
>(Lit
);
3406 const ConstantArrayType
*CAT
=
3407 Info
.Ctx
.getAsConstantArrayType(S
->getType());
3408 assert(CAT
&& "string literal isn't an array");
3409 QualType CharType
= CAT
->getElementType();
3410 assert(CharType
->isIntegerType() && "unexpected character type");
3412 APSInt
Value(S
->getCharByteWidth() * Info
.Ctx
.getCharWidth(),
3413 CharType
->isUnsignedIntegerType());
3414 if (Index
< S
->getLength())
3415 Value
= S
->getCodeUnit(Index
);
3419 // Expand a string literal into an array of characters.
3421 // FIXME: This is inefficient; we should probably introduce something similar
3422 // to the LLVM ConstantDataArray to make this cheaper.
3423 static void expandStringLiteral(EvalInfo
&Info
, const StringLiteral
*S
,
3425 QualType AllocType
= QualType()) {
3426 const ConstantArrayType
*CAT
= Info
.Ctx
.getAsConstantArrayType(
3427 AllocType
.isNull() ? S
->getType() : AllocType
);
3428 assert(CAT
&& "string literal isn't an array");
3429 QualType CharType
= CAT
->getElementType();
3430 assert(CharType
->isIntegerType() && "unexpected character type");
3432 unsigned Elts
= CAT
->getSize().getZExtValue();
3433 Result
= APValue(APValue::UninitArray(),
3434 std::min(S
->getLength(), Elts
), Elts
);
3435 APSInt
Value(S
->getCharByteWidth() * Info
.Ctx
.getCharWidth(),
3436 CharType
->isUnsignedIntegerType());
3437 if (Result
.hasArrayFiller())
3438 Result
.getArrayFiller() = APValue(Value
);
3439 for (unsigned I
= 0, N
= Result
.getArrayInitializedElts(); I
!= N
; ++I
) {
3440 Value
= S
->getCodeUnit(I
);
3441 Result
.getArrayInitializedElt(I
) = APValue(Value
);
3445 // Expand an array so that it has more than Index filled elements.
3446 static void expandArray(APValue
&Array
, unsigned Index
) {
3447 unsigned Size
= Array
.getArraySize();
3448 assert(Index
< Size
);
3450 // Always at least double the number of elements for which we store a value.
3451 unsigned OldElts
= Array
.getArrayInitializedElts();
3452 unsigned NewElts
= std::max(Index
+1, OldElts
* 2);
3453 NewElts
= std::min(Size
, std::max(NewElts
, 8u));
3455 // Copy the data across.
3456 APValue
NewValue(APValue::UninitArray(), NewElts
, Size
);
3457 for (unsigned I
= 0; I
!= OldElts
; ++I
)
3458 NewValue
.getArrayInitializedElt(I
).swap(Array
.getArrayInitializedElt(I
));
3459 for (unsigned I
= OldElts
; I
!= NewElts
; ++I
)
3460 NewValue
.getArrayInitializedElt(I
) = Array
.getArrayFiller();
3461 if (NewValue
.hasArrayFiller())
3462 NewValue
.getArrayFiller() = Array
.getArrayFiller();
3463 Array
.swap(NewValue
);
3466 /// Determine whether a type would actually be read by an lvalue-to-rvalue
3467 /// conversion. If it's of class type, we may assume that the copy operation
3468 /// is trivial. Note that this is never true for a union type with fields
3469 /// (because the copy always "reads" the active member) and always true for
3470 /// a non-class type.
3471 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl
*RD
);
3472 static bool isReadByLvalueToRvalueConversion(QualType T
) {
3473 CXXRecordDecl
*RD
= T
->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3474 return !RD
|| isReadByLvalueToRvalueConversion(RD
);
3476 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl
*RD
) {
3477 // FIXME: A trivial copy of a union copies the object representation, even if
3478 // the union is empty.
3480 return !RD
->field_empty();
3484 for (auto *Field
: RD
->fields())
3485 if (!Field
->isUnnamedBitfield() &&
3486 isReadByLvalueToRvalueConversion(Field
->getType()))
3489 for (auto &BaseSpec
: RD
->bases())
3490 if (isReadByLvalueToRvalueConversion(BaseSpec
.getType()))
3496 /// Diagnose an attempt to read from any unreadable field within the specified
3497 /// type, which might be a class type.
3498 static bool diagnoseMutableFields(EvalInfo
&Info
, const Expr
*E
, AccessKinds AK
,
3500 CXXRecordDecl
*RD
= T
->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3504 if (!RD
->hasMutableFields())
3507 for (auto *Field
: RD
->fields()) {
3508 // If we're actually going to read this field in some way, then it can't
3509 // be mutable. If we're in a union, then assigning to a mutable field
3510 // (even an empty one) can change the active member, so that's not OK.
3511 // FIXME: Add core issue number for the union case.
3512 if (Field
->isMutable() &&
3513 (RD
->isUnion() || isReadByLvalueToRvalueConversion(Field
->getType()))) {
3514 Info
.FFDiag(E
, diag::note_constexpr_access_mutable
, 1) << AK
<< Field
;
3515 Info
.Note(Field
->getLocation(), diag::note_declared_at
);
3519 if (diagnoseMutableFields(Info
, E
, AK
, Field
->getType()))
3523 for (auto &BaseSpec
: RD
->bases())
3524 if (diagnoseMutableFields(Info
, E
, AK
, BaseSpec
.getType()))
3527 // All mutable fields were empty, and thus not actually read.
3531 static bool lifetimeStartedInEvaluation(EvalInfo
&Info
,
3532 APValue::LValueBase Base
,
3533 bool MutableSubobject
= false) {
3534 // A temporary or transient heap allocation we created.
3535 if (Base
.getCallIndex() || Base
.is
<DynamicAllocLValue
>())
3538 switch (Info
.IsEvaluatingDecl
) {
3539 case EvalInfo::EvaluatingDeclKind::None
:
3542 case EvalInfo::EvaluatingDeclKind::Ctor
:
3543 // The variable whose initializer we're evaluating.
3544 if (Info
.EvaluatingDecl
== Base
)
3547 // A temporary lifetime-extended by the variable whose initializer we're
3549 if (auto *BaseE
= Base
.dyn_cast
<const Expr
*>())
3550 if (auto *BaseMTE
= dyn_cast
<MaterializeTemporaryExpr
>(BaseE
))
3551 return Info
.EvaluatingDecl
== BaseMTE
->getExtendingDecl();
3554 case EvalInfo::EvaluatingDeclKind::Dtor
:
3555 // C++2a [expr.const]p6:
3556 // [during constant destruction] the lifetime of a and its non-mutable
3557 // subobjects (but not its mutable subobjects) [are] considered to start
3559 if (MutableSubobject
|| Base
!= Info
.EvaluatingDecl
)
3561 // FIXME: We can meaningfully extend this to cover non-const objects, but
3562 // we will need special handling: we should be able to access only
3563 // subobjects of such objects that are themselves declared const.
3564 QualType T
= getType(Base
);
3565 return T
.isConstQualified() || T
->isReferenceType();
3568 llvm_unreachable("unknown evaluating decl kind");
3572 /// A handle to a complete object (an object that is not a subobject of
3573 /// another object).
3574 struct CompleteObject
{
3575 /// The identity of the object.
3576 APValue::LValueBase Base
;
3577 /// The value of the complete object.
3579 /// The type of the complete object.
3582 CompleteObject() : Value(nullptr) {}
3583 CompleteObject(APValue::LValueBase Base
, APValue
*Value
, QualType Type
)
3584 : Base(Base
), Value(Value
), Type(Type
) {}
3586 bool mayAccessMutableMembers(EvalInfo
&Info
, AccessKinds AK
) const {
3587 // If this isn't a "real" access (eg, if it's just accessing the type
3588 // info), allow it. We assume the type doesn't change dynamically for
3589 // subobjects of constexpr objects (even though we'd hit UB here if it
3590 // did). FIXME: Is this right?
3591 if (!isAnyAccess(AK
))
3594 // In C++14 onwards, it is permitted to read a mutable member whose
3595 // lifetime began within the evaluation.
3596 // FIXME: Should we also allow this in C++11?
3597 if (!Info
.getLangOpts().CPlusPlus14
)
3599 return lifetimeStartedInEvaluation(Info
, Base
, /*MutableSubobject*/true);
3602 explicit operator bool() const { return !Type
.isNull(); }
3604 } // end anonymous namespace
3606 static QualType
getSubobjectType(QualType ObjType
, QualType SubobjType
,
3607 bool IsMutable
= false) {
3608 // C++ [basic.type.qualifier]p1:
3609 // - A const object is an object of type const T or a non-mutable subobject
3610 // of a const object.
3611 if (ObjType
.isConstQualified() && !IsMutable
)
3612 SubobjType
.addConst();
3613 // - A volatile object is an object of type const T or a subobject of a
3615 if (ObjType
.isVolatileQualified())
3616 SubobjType
.addVolatile();
3620 /// Find the designated sub-object of an rvalue.
3621 template<typename SubobjectHandler
>
3622 typename
SubobjectHandler::result_type
3623 findSubobject(EvalInfo
&Info
, const Expr
*E
, const CompleteObject
&Obj
,
3624 const SubobjectDesignator
&Sub
, SubobjectHandler
&handler
) {
3626 // A diagnostic will have already been produced.
3627 return handler
.failed();
3628 if (Sub
.isOnePastTheEnd() || Sub
.isMostDerivedAnUnsizedArray()) {
3629 if (Info
.getLangOpts().CPlusPlus11
)
3630 Info
.FFDiag(E
, Sub
.isOnePastTheEnd()
3631 ? diag::note_constexpr_access_past_end
3632 : diag::note_constexpr_access_unsized_array
)
3633 << handler
.AccessKind
;
3636 return handler
.failed();
3639 APValue
*O
= Obj
.Value
;
3640 QualType ObjType
= Obj
.Type
;
3641 const FieldDecl
*LastField
= nullptr;
3642 const FieldDecl
*VolatileField
= nullptr;
3644 // Walk the designator's path to find the subobject.
3645 for (unsigned I
= 0, N
= Sub
.Entries
.size(); /**/; ++I
) {
3646 // Reading an indeterminate value is undefined, but assigning over one is OK.
3647 if ((O
->isAbsent() && !(handler
.AccessKind
== AK_Construct
&& I
== N
)) ||
3648 (O
->isIndeterminate() &&
3649 !isValidIndeterminateAccess(handler
.AccessKind
))) {
3650 if (!Info
.checkingPotentialConstantExpression())
3651 Info
.FFDiag(E
, diag::note_constexpr_access_uninit
)
3652 << handler
.AccessKind
<< O
->isIndeterminate();
3653 return handler
.failed();
3656 // C++ [class.ctor]p5, C++ [class.dtor]p5:
3657 // const and volatile semantics are not applied on an object under
3658 // {con,de}struction.
3659 if ((ObjType
.isConstQualified() || ObjType
.isVolatileQualified()) &&
3660 ObjType
->isRecordType() &&
3661 Info
.isEvaluatingCtorDtor(
3662 Obj
.Base
, llvm::makeArrayRef(Sub
.Entries
.begin(),
3663 Sub
.Entries
.begin() + I
)) !=
3664 ConstructionPhase::None
) {
3665 ObjType
= Info
.Ctx
.getCanonicalType(ObjType
);
3666 ObjType
.removeLocalConst();
3667 ObjType
.removeLocalVolatile();
3670 // If this is our last pass, check that the final object type is OK.
3671 if (I
== N
|| (I
== N
- 1 && ObjType
->isAnyComplexType())) {
3672 // Accesses to volatile objects are prohibited.
3673 if (ObjType
.isVolatileQualified() && isFormalAccess(handler
.AccessKind
)) {
3674 if (Info
.getLangOpts().CPlusPlus
) {
3677 const NamedDecl
*Decl
= nullptr;
3678 if (VolatileField
) {
3680 Loc
= VolatileField
->getLocation();
3681 Decl
= VolatileField
;
3682 } else if (auto *VD
= Obj
.Base
.dyn_cast
<const ValueDecl
*>()) {
3684 Loc
= VD
->getLocation();
3688 if (auto *E
= Obj
.Base
.dyn_cast
<const Expr
*>())
3689 Loc
= E
->getExprLoc();
3691 Info
.FFDiag(E
, diag::note_constexpr_access_volatile_obj
, 1)
3692 << handler
.AccessKind
<< DiagKind
<< Decl
;
3693 Info
.Note(Loc
, diag::note_constexpr_volatile_here
) << DiagKind
;
3695 Info
.FFDiag(E
, diag::note_invalid_subexpr_in_const_expr
);
3697 return handler
.failed();
3700 // If we are reading an object of class type, there may still be more
3701 // things we need to check: if there are any mutable subobjects, we
3702 // cannot perform this read. (This only happens when performing a trivial
3703 // copy or assignment.)
3704 if (ObjType
->isRecordType() &&
3705 !Obj
.mayAccessMutableMembers(Info
, handler
.AccessKind
) &&
3706 diagnoseMutableFields(Info
, E
, handler
.AccessKind
, ObjType
))
3707 return handler
.failed();
3711 if (!handler
.found(*O
, ObjType
))
3714 // If we modified a bit-field, truncate it to the right width.
3715 if (isModification(handler
.AccessKind
) &&
3716 LastField
&& LastField
->isBitField() &&
3717 !truncateBitfieldValue(Info
, E
, *O
, LastField
))
3723 LastField
= nullptr;
3724 if (ObjType
->isArrayType()) {
3725 // Next subobject is an array element.
3726 const ConstantArrayType
*CAT
= Info
.Ctx
.getAsConstantArrayType(ObjType
);
3727 assert(CAT
&& "vla in literal type?");
3728 uint64_t Index
= Sub
.Entries
[I
].getAsArrayIndex();
3729 if (CAT
->getSize().ule(Index
)) {
3730 // Note, it should not be possible to form a pointer with a valid
3731 // designator which points more than one past the end of the array.
3732 if (Info
.getLangOpts().CPlusPlus11
)
3733 Info
.FFDiag(E
, diag::note_constexpr_access_past_end
)
3734 << handler
.AccessKind
;
3737 return handler
.failed();
3740 ObjType
= CAT
->getElementType();
3742 if (O
->getArrayInitializedElts() > Index
)
3743 O
= &O
->getArrayInitializedElt(Index
);
3744 else if (!isRead(handler
.AccessKind
)) {
3745 expandArray(*O
, Index
);
3746 O
= &O
->getArrayInitializedElt(Index
);
3748 O
= &O
->getArrayFiller();
3749 } else if (ObjType
->isAnyComplexType()) {
3750 // Next subobject is a complex number.
3751 uint64_t Index
= Sub
.Entries
[I
].getAsArrayIndex();
3753 if (Info
.getLangOpts().CPlusPlus11
)
3754 Info
.FFDiag(E
, diag::note_constexpr_access_past_end
)
3755 << handler
.AccessKind
;
3758 return handler
.failed();
3761 ObjType
= getSubobjectType(
3762 ObjType
, ObjType
->castAs
<ComplexType
>()->getElementType());
3764 assert(I
== N
- 1 && "extracting subobject of scalar?");
3765 if (O
->isComplexInt()) {
3766 return handler
.found(Index
? O
->getComplexIntImag()
3767 : O
->getComplexIntReal(), ObjType
);
3769 assert(O
->isComplexFloat());
3770 return handler
.found(Index
? O
->getComplexFloatImag()
3771 : O
->getComplexFloatReal(), ObjType
);
3773 } else if (const FieldDecl
*Field
= getAsField(Sub
.Entries
[I
])) {
3774 if (Field
->isMutable() &&
3775 !Obj
.mayAccessMutableMembers(Info
, handler
.AccessKind
)) {
3776 Info
.FFDiag(E
, diag::note_constexpr_access_mutable
, 1)
3777 << handler
.AccessKind
<< Field
;
3778 Info
.Note(Field
->getLocation(), diag::note_declared_at
);
3779 return handler
.failed();
3782 // Next subobject is a class, struct or union field.
3783 RecordDecl
*RD
= ObjType
->castAs
<RecordType
>()->getDecl();
3784 if (RD
->isUnion()) {
3785 const FieldDecl
*UnionField
= O
->getUnionField();
3787 UnionField
->getCanonicalDecl() != Field
->getCanonicalDecl()) {
3788 if (I
== N
- 1 && handler
.AccessKind
== AK_Construct
) {
3789 // Placement new onto an inactive union member makes it active.
3790 O
->setUnion(Field
, APValue());
3792 // FIXME: If O->getUnionValue() is absent, report that there's no
3793 // active union member rather than reporting the prior active union
3794 // member. We'll need to fix nullptr_t to not use APValue() as its
3795 // representation first.
3796 Info
.FFDiag(E
, diag::note_constexpr_access_inactive_union_member
)
3797 << handler
.AccessKind
<< Field
<< !UnionField
<< UnionField
;
3798 return handler
.failed();
3801 O
= &O
->getUnionValue();
3803 O
= &O
->getStructField(Field
->getFieldIndex());
3805 ObjType
= getSubobjectType(ObjType
, Field
->getType(), Field
->isMutable());
3807 if (Field
->getType().isVolatileQualified())
3808 VolatileField
= Field
;
3810 // Next subobject is a base class.
3811 const CXXRecordDecl
*Derived
= ObjType
->getAsCXXRecordDecl();
3812 const CXXRecordDecl
*Base
= getAsBaseClass(Sub
.Entries
[I
]);
3813 O
= &O
->getStructBase(getBaseIndex(Derived
, Base
));
3815 ObjType
= getSubobjectType(ObjType
, Info
.Ctx
.getRecordType(Base
));
3821 struct ExtractSubobjectHandler
{
3825 const AccessKinds AccessKind
;
3827 typedef bool result_type
;
3828 bool failed() { return false; }
3829 bool found(APValue
&Subobj
, QualType SubobjType
) {
3831 if (AccessKind
== AK_ReadObjectRepresentation
)
3833 return CheckFullyInitialized(Info
, E
->getExprLoc(), SubobjType
, Result
);
3835 bool found(APSInt
&Value
, QualType SubobjType
) {
3836 Result
= APValue(Value
);
3839 bool found(APFloat
&Value
, QualType SubobjType
) {
3840 Result
= APValue(Value
);
3844 } // end anonymous namespace
3846 /// Extract the designated sub-object of an rvalue.
3847 static bool extractSubobject(EvalInfo
&Info
, const Expr
*E
,
3848 const CompleteObject
&Obj
,
3849 const SubobjectDesignator
&Sub
, APValue
&Result
,
3850 AccessKinds AK
= AK_Read
) {
3851 assert(AK
== AK_Read
|| AK
== AK_ReadObjectRepresentation
);
3852 ExtractSubobjectHandler Handler
= {Info
, E
, Result
, AK
};
3853 return findSubobject(Info
, E
, Obj
, Sub
, Handler
);
3857 struct ModifySubobjectHandler
{
3862 typedef bool result_type
;
3863 static const AccessKinds AccessKind
= AK_Assign
;
3865 bool checkConst(QualType QT
) {
3866 // Assigning to a const object has undefined behavior.
3867 if (QT
.isConstQualified()) {
3868 Info
.FFDiag(E
, diag::note_constexpr_modify_const_type
) << QT
;
3874 bool failed() { return false; }
3875 bool found(APValue
&Subobj
, QualType SubobjType
) {
3876 if (!checkConst(SubobjType
))
3878 // We've been given ownership of NewVal, so just swap it in.
3879 Subobj
.swap(NewVal
);
3882 bool found(APSInt
&Value
, QualType SubobjType
) {
3883 if (!checkConst(SubobjType
))
3885 if (!NewVal
.isInt()) {
3886 // Maybe trying to write a cast pointer value into a complex?
3890 Value
= NewVal
.getInt();
3893 bool found(APFloat
&Value
, QualType SubobjType
) {
3894 if (!checkConst(SubobjType
))
3896 Value
= NewVal
.getFloat();
3900 } // end anonymous namespace
3902 const AccessKinds
ModifySubobjectHandler::AccessKind
;
3904 /// Update the designated sub-object of an rvalue to the given value.
3905 static bool modifySubobject(EvalInfo
&Info
, const Expr
*E
,
3906 const CompleteObject
&Obj
,
3907 const SubobjectDesignator
&Sub
,
3909 ModifySubobjectHandler Handler
= { Info
, NewVal
, E
};
3910 return findSubobject(Info
, E
, Obj
, Sub
, Handler
);
3913 /// Find the position where two subobject designators diverge, or equivalently
3914 /// the length of the common initial subsequence.
3915 static unsigned FindDesignatorMismatch(QualType ObjType
,
3916 const SubobjectDesignator
&A
,
3917 const SubobjectDesignator
&B
,
3918 bool &WasArrayIndex
) {
3919 unsigned I
= 0, N
= std::min(A
.Entries
.size(), B
.Entries
.size());
3920 for (/**/; I
!= N
; ++I
) {
3921 if (!ObjType
.isNull() &&
3922 (ObjType
->isArrayType() || ObjType
->isAnyComplexType())) {
3923 // Next subobject is an array element.
3924 if (A
.Entries
[I
].getAsArrayIndex() != B
.Entries
[I
].getAsArrayIndex()) {
3925 WasArrayIndex
= true;
3928 if (ObjType
->isAnyComplexType())
3929 ObjType
= ObjType
->castAs
<ComplexType
>()->getElementType();
3931 ObjType
= ObjType
->castAsArrayTypeUnsafe()->getElementType();
3933 if (A
.Entries
[I
].getAsBaseOrMember() !=
3934 B
.Entries
[I
].getAsBaseOrMember()) {
3935 WasArrayIndex
= false;
3938 if (const FieldDecl
*FD
= getAsField(A
.Entries
[I
]))
3939 // Next subobject is a field.
3940 ObjType
= FD
->getType();
3942 // Next subobject is a base class.
3943 ObjType
= QualType();
3946 WasArrayIndex
= false;
3950 /// Determine whether the given subobject designators refer to elements of the
3951 /// same array object.
3952 static bool AreElementsOfSameArray(QualType ObjType
,
3953 const SubobjectDesignator
&A
,
3954 const SubobjectDesignator
&B
) {
3955 if (A
.Entries
.size() != B
.Entries
.size())
3958 bool IsArray
= A
.MostDerivedIsArrayElement
;
3959 if (IsArray
&& A
.MostDerivedPathLength
!= A
.Entries
.size())
3960 // A is a subobject of the array element.
3963 // If A (and B) designates an array element, the last entry will be the array
3964 // index. That doesn't have to match. Otherwise, we're in the 'implicit array
3965 // of length 1' case, and the entire path must match.
3967 unsigned CommonLength
= FindDesignatorMismatch(ObjType
, A
, B
, WasArrayIndex
);
3968 return CommonLength
>= A
.Entries
.size() - IsArray
;
3971 /// Find the complete object to which an LValue refers.
3972 static CompleteObject
findCompleteObject(EvalInfo
&Info
, const Expr
*E
,
3973 AccessKinds AK
, const LValue
&LVal
,
3974 QualType LValType
) {
3975 if (LVal
.InvalidBase
) {
3977 return CompleteObject();
3981 Info
.FFDiag(E
, diag::note_constexpr_access_null
) << AK
;
3982 return CompleteObject();
3985 CallStackFrame
*Frame
= nullptr;
3987 if (LVal
.getLValueCallIndex()) {
3988 std::tie(Frame
, Depth
) =
3989 Info
.getCallFrameAndDepth(LVal
.getLValueCallIndex());
3991 Info
.FFDiag(E
, diag::note_constexpr_lifetime_ended
, 1)
3992 << AK
<< LVal
.Base
.is
<const ValueDecl
*>();
3993 NoteLValueLocation(Info
, LVal
.Base
);
3994 return CompleteObject();
3998 bool IsAccess
= isAnyAccess(AK
);
4000 // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
4001 // is not a constant expression (even if the object is non-volatile). We also
4002 // apply this rule to C++98, in order to conform to the expected 'volatile'
4004 if (isFormalAccess(AK
) && LValType
.isVolatileQualified()) {
4005 if (Info
.getLangOpts().CPlusPlus
)
4006 Info
.FFDiag(E
, diag::note_constexpr_access_volatile_type
)
4010 return CompleteObject();
4013 // Compute value storage location and type of base object.
4014 APValue
*BaseVal
= nullptr;
4015 QualType BaseType
= getType(LVal
.Base
);
4017 if (Info
.getLangOpts().CPlusPlus14
&& LVal
.Base
== Info
.EvaluatingDecl
&&
4018 lifetimeStartedInEvaluation(Info
, LVal
.Base
)) {
4019 // This is the object whose initializer we're evaluating, so its lifetime
4020 // started in the current evaluation.
4021 BaseVal
= Info
.EvaluatingDeclValue
;
4022 } else if (const ValueDecl
*D
= LVal
.Base
.dyn_cast
<const ValueDecl
*>()) {
4023 // Allow reading from a GUID declaration.
4024 if (auto *GD
= dyn_cast
<MSGuidDecl
>(D
)) {
4025 if (isModification(AK
)) {
4026 // All the remaining cases do not permit modification of the object.
4027 Info
.FFDiag(E
, diag::note_constexpr_modify_global
);
4028 return CompleteObject();
4030 APValue
&V
= GD
->getAsAPValue();
4032 Info
.FFDiag(E
, diag::note_constexpr_unsupported_layout
)
4034 return CompleteObject();
4036 return CompleteObject(LVal
.Base
, &V
, GD
->getType());
4039 // Allow reading the APValue from an UnnamedGlobalConstantDecl.
4040 if (auto *GCD
= dyn_cast
<UnnamedGlobalConstantDecl
>(D
)) {
4041 if (isModification(AK
)) {
4042 Info
.FFDiag(E
, diag::note_constexpr_modify_global
);
4043 return CompleteObject();
4045 return CompleteObject(LVal
.Base
, const_cast<APValue
*>(&GCD
->getValue()),
4049 // Allow reading from template parameter objects.
4050 if (auto *TPO
= dyn_cast
<TemplateParamObjectDecl
>(D
)) {
4051 if (isModification(AK
)) {
4052 Info
.FFDiag(E
, diag::note_constexpr_modify_global
);
4053 return CompleteObject();
4055 return CompleteObject(LVal
.Base
, const_cast<APValue
*>(&TPO
->getValue()),
4059 // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
4060 // In C++11, constexpr, non-volatile variables initialized with constant
4061 // expressions are constant expressions too. Inside constexpr functions,
4062 // parameters are constant expressions even if they're non-const.
4063 // In C++1y, objects local to a constant expression (those with a Frame) are
4064 // both readable and writable inside constant expressions.
4065 // In C, such things can also be folded, although they are not ICEs.
4066 const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
);
4068 if (const VarDecl
*VDef
= VD
->getDefinition(Info
.Ctx
))
4071 if (!VD
|| VD
->isInvalidDecl()) {
4073 return CompleteObject();
4076 bool IsConstant
= BaseType
.isConstant(Info
.Ctx
);
4078 // Unless we're looking at a local variable or argument in a constexpr call,
4079 // the variable we're reading must be const.
4081 if (IsAccess
&& isa
<ParmVarDecl
>(VD
)) {
4082 // Access of a parameter that's not associated with a frame isn't going
4083 // to work out, but we can leave it to evaluateVarDeclInit to provide a
4084 // suitable diagnostic.
4085 } else if (Info
.getLangOpts().CPlusPlus14
&&
4086 lifetimeStartedInEvaluation(Info
, LVal
.Base
)) {
4087 // OK, we can read and modify an object if we're in the process of
4088 // evaluating its initializer, because its lifetime began in this
4090 } else if (isModification(AK
)) {
4091 // All the remaining cases do not permit modification of the object.
4092 Info
.FFDiag(E
, diag::note_constexpr_modify_global
);
4093 return CompleteObject();
4094 } else if (VD
->isConstexpr()) {
4095 // OK, we can read this variable.
4096 } else if (BaseType
->isIntegralOrEnumerationType()) {
4099 return CompleteObject(LVal
.getLValueBase(), nullptr, BaseType
);
4100 if (Info
.getLangOpts().CPlusPlus
) {
4101 Info
.FFDiag(E
, diag::note_constexpr_ltor_non_const_int
, 1) << VD
;
4102 Info
.Note(VD
->getLocation(), diag::note_declared_at
);
4106 return CompleteObject();
4108 } else if (!IsAccess
) {
4109 return CompleteObject(LVal
.getLValueBase(), nullptr, BaseType
);
4110 } else if (IsConstant
&& Info
.checkingPotentialConstantExpression() &&
4111 BaseType
->isLiteralType(Info
.Ctx
) && !VD
->hasDefinition()) {
4112 // This variable might end up being constexpr. Don't diagnose it yet.
4113 } else if (IsConstant
) {
4114 // Keep evaluating to see what we can do. In particular, we support
4115 // folding of const floating-point types, in order to make static const
4116 // data members of such types (supported as an extension) more useful.
4117 if (Info
.getLangOpts().CPlusPlus
) {
4118 Info
.CCEDiag(E
, Info
.getLangOpts().CPlusPlus11
4119 ? diag::note_constexpr_ltor_non_constexpr
4120 : diag::note_constexpr_ltor_non_integral
, 1)
4122 Info
.Note(VD
->getLocation(), diag::note_declared_at
);
4127 // Never allow reading a non-const value.
4128 if (Info
.getLangOpts().CPlusPlus
) {
4129 Info
.FFDiag(E
, Info
.getLangOpts().CPlusPlus11
4130 ? diag::note_constexpr_ltor_non_constexpr
4131 : diag::note_constexpr_ltor_non_integral
, 1)
4133 Info
.Note(VD
->getLocation(), diag::note_declared_at
);
4137 return CompleteObject();
4141 if (!evaluateVarDeclInit(Info
, E
, VD
, Frame
, LVal
.getLValueVersion(), BaseVal
))
4142 return CompleteObject();
4143 } else if (DynamicAllocLValue DA
= LVal
.Base
.dyn_cast
<DynamicAllocLValue
>()) {
4144 Optional
<DynAlloc
*> Alloc
= Info
.lookupDynamicAlloc(DA
);
4146 Info
.FFDiag(E
, diag::note_constexpr_access_deleted_object
) << AK
;
4147 return CompleteObject();
4149 return CompleteObject(LVal
.Base
, &(*Alloc
)->Value
,
4150 LVal
.Base
.getDynamicAllocType());
4152 const Expr
*Base
= LVal
.Base
.dyn_cast
<const Expr
*>();
4155 if (const MaterializeTemporaryExpr
*MTE
=
4156 dyn_cast_or_null
<MaterializeTemporaryExpr
>(Base
)) {
4157 assert(MTE
->getStorageDuration() == SD_Static
&&
4158 "should have a frame for a non-global materialized temporary");
4160 // C++20 [expr.const]p4: [DR2126]
4161 // An object or reference is usable in constant expressions if it is
4162 // - a temporary object of non-volatile const-qualified literal type
4163 // whose lifetime is extended to that of a variable that is usable
4164 // in constant expressions
4166 // C++20 [expr.const]p5:
4167 // an lvalue-to-rvalue conversion [is not allowed unless it applies to]
4168 // - a non-volatile glvalue that refers to an object that is usable
4169 // in constant expressions, or
4170 // - a non-volatile glvalue of literal type that refers to a
4171 // non-volatile object whose lifetime began within the evaluation
4174 // C++11 misses the 'began within the evaluation of e' check and
4175 // instead allows all temporaries, including things like:
4178 // constexpr int k = r;
4179 // Therefore we use the C++14-onwards rules in C++11 too.
4181 // Note that temporaries whose lifetimes began while evaluating a
4182 // variable's constructor are not usable while evaluating the
4183 // corresponding destructor, not even if they're of const-qualified
4185 if (!MTE
->isUsableInConstantExpressions(Info
.Ctx
) &&
4186 !lifetimeStartedInEvaluation(Info
, LVal
.Base
)) {
4188 return CompleteObject(LVal
.getLValueBase(), nullptr, BaseType
);
4189 Info
.FFDiag(E
, diag::note_constexpr_access_static_temporary
, 1) << AK
;
4190 Info
.Note(MTE
->getExprLoc(), diag::note_constexpr_temporary_here
);
4191 return CompleteObject();
4194 BaseVal
= MTE
->getOrCreateValue(false);
4195 assert(BaseVal
&& "got reference to unevaluated temporary");
4198 return CompleteObject(LVal
.getLValueBase(), nullptr, BaseType
);
4201 Info
.FFDiag(E
, diag::note_constexpr_access_unreadable_object
)
4203 << Val
.getAsString(Info
.Ctx
,
4204 Info
.Ctx
.getLValueReferenceType(LValType
));
4205 NoteLValueLocation(Info
, LVal
.Base
);
4206 return CompleteObject();
4209 BaseVal
= Frame
->getTemporary(Base
, LVal
.Base
.getVersion());
4210 assert(BaseVal
&& "missing value for temporary");
4214 // In C++14, we can't safely access any mutable state when we might be
4215 // evaluating after an unmodeled side effect. Parameters are modeled as state
4216 // in the caller, but aren't visible once the call returns, so they can be
4217 // modified in a speculatively-evaluated call.
4219 // FIXME: Not all local state is mutable. Allow local constant subobjects
4220 // to be read here (but take care with 'mutable' fields).
4221 unsigned VisibleDepth
= Depth
;
4222 if (llvm::isa_and_nonnull
<ParmVarDecl
>(
4223 LVal
.Base
.dyn_cast
<const ValueDecl
*>()))
4225 if ((Frame
&& Info
.getLangOpts().CPlusPlus14
&&
4226 Info
.EvalStatus
.HasSideEffects
) ||
4227 (isModification(AK
) && VisibleDepth
< Info
.SpeculativeEvaluationDepth
))
4228 return CompleteObject();
4230 return CompleteObject(LVal
.getLValueBase(), BaseVal
, BaseType
);
4233 /// Perform an lvalue-to-rvalue conversion on the given glvalue. This
4234 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
4235 /// glvalue referred to by an entity of reference type.
4237 /// \param Info - Information about the ongoing evaluation.
4238 /// \param Conv - The expression for which we are performing the conversion.
4239 /// Used for diagnostics.
4240 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
4241 /// case of a non-class type).
4242 /// \param LVal - The glvalue on which we are attempting to perform this action.
4243 /// \param RVal - The produced value will be placed here.
4244 /// \param WantObjectRepresentation - If true, we're looking for the object
4245 /// representation rather than the value, and in particular,
4246 /// there is no requirement that the result be fully initialized.
4248 handleLValueToRValueConversion(EvalInfo
&Info
, const Expr
*Conv
, QualType Type
,
4249 const LValue
&LVal
, APValue
&RVal
,
4250 bool WantObjectRepresentation
= false) {
4251 if (LVal
.Designator
.Invalid
)
4254 // Check for special cases where there is no existing APValue to look at.
4255 const Expr
*Base
= LVal
.Base
.dyn_cast
<const Expr
*>();
4258 WantObjectRepresentation
? AK_ReadObjectRepresentation
: AK_Read
;
4260 if (Base
&& !LVal
.getLValueCallIndex() && !Type
.isVolatileQualified()) {
4261 if (const CompoundLiteralExpr
*CLE
= dyn_cast
<CompoundLiteralExpr
>(Base
)) {
4262 // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
4263 // initializer until now for such expressions. Such an expression can't be
4264 // an ICE in C, so this only matters for fold.
4265 if (Type
.isVolatileQualified()) {
4271 if (!Evaluate(Lit
, Info
, CLE
->getInitializer()))
4274 // According to GCC info page:
4276 // 6.28 Compound Literals
4278 // As an optimization, G++ sometimes gives array compound literals longer
4279 // lifetimes: when the array either appears outside a function or has a
4280 // const-qualified type. If foo and its initializer had elements of type
4281 // char *const rather than char *, or if foo were a global variable, the
4282 // array would have static storage duration. But it is probably safest
4283 // just to avoid the use of array compound literals in C++ code.
4285 // Obey that rule by checking constness for converted array types.
4287 QualType CLETy
= CLE
->getType();
4288 if (CLETy
->isArrayType() && !Type
->isArrayType()) {
4289 if (!CLETy
.isConstant(Info
.Ctx
)) {
4291 Info
.Note(CLE
->getExprLoc(), diag::note_declared_at
);
4296 CompleteObject
LitObj(LVal
.Base
, &Lit
, Base
->getType());
4297 return extractSubobject(Info
, Conv
, LitObj
, LVal
.Designator
, RVal
, AK
);
4298 } else if (isa
<StringLiteral
>(Base
) || isa
<PredefinedExpr
>(Base
)) {
4299 // Special-case character extraction so we don't have to construct an
4300 // APValue for the whole string.
4301 assert(LVal
.Designator
.Entries
.size() <= 1 &&
4302 "Can only read characters from string literals");
4303 if (LVal
.Designator
.Entries
.empty()) {
4304 // Fail for now for LValue to RValue conversion of an array.
4305 // (This shouldn't show up in C/C++, but it could be triggered by a
4306 // weird EvaluateAsRValue call from a tool.)
4310 if (LVal
.Designator
.isOnePastTheEnd()) {
4311 if (Info
.getLangOpts().CPlusPlus11
)
4312 Info
.FFDiag(Conv
, diag::note_constexpr_access_past_end
) << AK
;
4317 uint64_t CharIndex
= LVal
.Designator
.Entries
[0].getAsArrayIndex();
4318 RVal
= APValue(extractStringLiteralCharacter(Info
, Base
, CharIndex
));
4323 CompleteObject Obj
= findCompleteObject(Info
, Conv
, AK
, LVal
, Type
);
4324 return Obj
&& extractSubobject(Info
, Conv
, Obj
, LVal
.Designator
, RVal
, AK
);
4327 /// Perform an assignment of Val to LVal. Takes ownership of Val.
4328 static bool handleAssignment(EvalInfo
&Info
, const Expr
*E
, const LValue
&LVal
,
4329 QualType LValType
, APValue
&Val
) {
4330 if (LVal
.Designator
.Invalid
)
4333 if (!Info
.getLangOpts().CPlusPlus14
) {
4338 CompleteObject Obj
= findCompleteObject(Info
, E
, AK_Assign
, LVal
, LValType
);
4339 return Obj
&& modifySubobject(Info
, E
, Obj
, LVal
.Designator
, Val
);
4343 struct CompoundAssignSubobjectHandler
{
4345 const CompoundAssignOperator
*E
;
4346 QualType PromotedLHSType
;
4347 BinaryOperatorKind Opcode
;
4350 static const AccessKinds AccessKind
= AK_Assign
;
4352 typedef bool result_type
;
4354 bool checkConst(QualType QT
) {
4355 // Assigning to a const object has undefined behavior.
4356 if (QT
.isConstQualified()) {
4357 Info
.FFDiag(E
, diag::note_constexpr_modify_const_type
) << QT
;
4363 bool failed() { return false; }
4364 bool found(APValue
&Subobj
, QualType SubobjType
) {
4365 switch (Subobj
.getKind()) {
4367 return found(Subobj
.getInt(), SubobjType
);
4368 case APValue::Float
:
4369 return found(Subobj
.getFloat(), SubobjType
);
4370 case APValue::ComplexInt
:
4371 case APValue::ComplexFloat
:
4372 // FIXME: Implement complex compound assignment.
4375 case APValue::LValue
:
4376 return foundPointer(Subobj
, SubobjType
);
4377 case APValue::Vector
:
4378 return foundVector(Subobj
, SubobjType
);
4380 // FIXME: can this happen?
4386 bool foundVector(APValue
&Value
, QualType SubobjType
) {
4387 if (!checkConst(SubobjType
))
4390 if (!SubobjType
->isVectorType()) {
4394 return handleVectorVectorBinOp(Info
, E
, Opcode
, Value
, RHS
);
4397 bool found(APSInt
&Value
, QualType SubobjType
) {
4398 if (!checkConst(SubobjType
))
4401 if (!SubobjType
->isIntegerType()) {
4402 // We don't support compound assignment on integer-cast-to-pointer
4410 HandleIntToIntCast(Info
, E
, PromotedLHSType
, SubobjType
, Value
);
4411 if (!handleIntIntBinOp(Info
, E
, LHS
, Opcode
, RHS
.getInt(), LHS
))
4413 Value
= HandleIntToIntCast(Info
, E
, SubobjType
, PromotedLHSType
, LHS
);
4415 } else if (RHS
.isFloat()) {
4416 const FPOptions FPO
= E
->getFPFeaturesInEffect(
4417 Info
.Ctx
.getLangOpts());
4418 APFloat
FValue(0.0);
4419 return HandleIntToFloatCast(Info
, E
, FPO
, SubobjType
, Value
,
4420 PromotedLHSType
, FValue
) &&
4421 handleFloatFloatBinOp(Info
, E
, FValue
, Opcode
, RHS
.getFloat()) &&
4422 HandleFloatToIntCast(Info
, E
, PromotedLHSType
, FValue
, SubobjType
,
4429 bool found(APFloat
&Value
, QualType SubobjType
) {
4430 return checkConst(SubobjType
) &&
4431 HandleFloatToFloatCast(Info
, E
, SubobjType
, PromotedLHSType
,
4433 handleFloatFloatBinOp(Info
, E
, Value
, Opcode
, RHS
.getFloat()) &&
4434 HandleFloatToFloatCast(Info
, E
, PromotedLHSType
, SubobjType
, Value
);
4436 bool foundPointer(APValue
&Subobj
, QualType SubobjType
) {
4437 if (!checkConst(SubobjType
))
4440 QualType PointeeType
;
4441 if (const PointerType
*PT
= SubobjType
->getAs
<PointerType
>())
4442 PointeeType
= PT
->getPointeeType();
4444 if (PointeeType
.isNull() || !RHS
.isInt() ||
4445 (Opcode
!= BO_Add
&& Opcode
!= BO_Sub
)) {
4450 APSInt Offset
= RHS
.getInt();
4451 if (Opcode
== BO_Sub
)
4452 negateAsSigned(Offset
);
4455 LVal
.setFrom(Info
.Ctx
, Subobj
);
4456 if (!HandleLValueArrayAdjustment(Info
, E
, LVal
, PointeeType
, Offset
))
4458 LVal
.moveInto(Subobj
);
4462 } // end anonymous namespace
4464 const AccessKinds
CompoundAssignSubobjectHandler::AccessKind
;
4466 /// Perform a compound assignment of LVal <op>= RVal.
4467 static bool handleCompoundAssignment(EvalInfo
&Info
,
4468 const CompoundAssignOperator
*E
,
4469 const LValue
&LVal
, QualType LValType
,
4470 QualType PromotedLValType
,
4471 BinaryOperatorKind Opcode
,
4472 const APValue
&RVal
) {
4473 if (LVal
.Designator
.Invalid
)
4476 if (!Info
.getLangOpts().CPlusPlus14
) {
4481 CompleteObject Obj
= findCompleteObject(Info
, E
, AK_Assign
, LVal
, LValType
);
4482 CompoundAssignSubobjectHandler Handler
= { Info
, E
, PromotedLValType
, Opcode
,
4484 return Obj
&& findSubobject(Info
, E
, Obj
, LVal
.Designator
, Handler
);
4488 struct IncDecSubobjectHandler
{
4490 const UnaryOperator
*E
;
4491 AccessKinds AccessKind
;
4494 typedef bool result_type
;
4496 bool checkConst(QualType QT
) {
4497 // Assigning to a const object has undefined behavior.
4498 if (QT
.isConstQualified()) {
4499 Info
.FFDiag(E
, diag::note_constexpr_modify_const_type
) << QT
;
4505 bool failed() { return false; }
4506 bool found(APValue
&Subobj
, QualType SubobjType
) {
4507 // Stash the old value. Also clear Old, so we don't clobber it later
4508 // if we're post-incrementing a complex.
4514 switch (Subobj
.getKind()) {
4516 return found(Subobj
.getInt(), SubobjType
);
4517 case APValue::Float
:
4518 return found(Subobj
.getFloat(), SubobjType
);
4519 case APValue::ComplexInt
:
4520 return found(Subobj
.getComplexIntReal(),
4521 SubobjType
->castAs
<ComplexType
>()->getElementType()
4522 .withCVRQualifiers(SubobjType
.getCVRQualifiers()));
4523 case APValue::ComplexFloat
:
4524 return found(Subobj
.getComplexFloatReal(),
4525 SubobjType
->castAs
<ComplexType
>()->getElementType()
4526 .withCVRQualifiers(SubobjType
.getCVRQualifiers()));
4527 case APValue::LValue
:
4528 return foundPointer(Subobj
, SubobjType
);
4530 // FIXME: can this happen?
4535 bool found(APSInt
&Value
, QualType SubobjType
) {
4536 if (!checkConst(SubobjType
))
4539 if (!SubobjType
->isIntegerType()) {
4540 // We don't support increment / decrement on integer-cast-to-pointer
4546 if (Old
) *Old
= APValue(Value
);
4548 // bool arithmetic promotes to int, and the conversion back to bool
4549 // doesn't reduce mod 2^n, so special-case it.
4550 if (SubobjType
->isBooleanType()) {
4551 if (AccessKind
== AK_Increment
)
4558 bool WasNegative
= Value
.isNegative();
4559 if (AccessKind
== AK_Increment
) {
4562 if (!WasNegative
&& Value
.isNegative() && E
->canOverflow()) {
4563 APSInt
ActualValue(Value
, /*IsUnsigned*/true);
4564 return HandleOverflow(Info
, E
, ActualValue
, SubobjType
);
4569 if (WasNegative
&& !Value
.isNegative() && E
->canOverflow()) {
4570 unsigned BitWidth
= Value
.getBitWidth();
4571 APSInt
ActualValue(Value
.sext(BitWidth
+ 1), /*IsUnsigned*/false);
4572 ActualValue
.setBit(BitWidth
);
4573 return HandleOverflow(Info
, E
, ActualValue
, SubobjType
);
4578 bool found(APFloat
&Value
, QualType SubobjType
) {
4579 if (!checkConst(SubobjType
))
4582 if (Old
) *Old
= APValue(Value
);
4584 APFloat
One(Value
.getSemantics(), 1);
4585 if (AccessKind
== AK_Increment
)
4586 Value
.add(One
, APFloat::rmNearestTiesToEven
);
4588 Value
.subtract(One
, APFloat::rmNearestTiesToEven
);
4591 bool foundPointer(APValue
&Subobj
, QualType SubobjType
) {
4592 if (!checkConst(SubobjType
))
4595 QualType PointeeType
;
4596 if (const PointerType
*PT
= SubobjType
->getAs
<PointerType
>())
4597 PointeeType
= PT
->getPointeeType();
4604 LVal
.setFrom(Info
.Ctx
, Subobj
);
4605 if (!HandleLValueArrayAdjustment(Info
, E
, LVal
, PointeeType
,
4606 AccessKind
== AK_Increment
? 1 : -1))
4608 LVal
.moveInto(Subobj
);
4612 } // end anonymous namespace
4614 /// Perform an increment or decrement on LVal.
4615 static bool handleIncDec(EvalInfo
&Info
, const Expr
*E
, const LValue
&LVal
,
4616 QualType LValType
, bool IsIncrement
, APValue
*Old
) {
4617 if (LVal
.Designator
.Invalid
)
4620 if (!Info
.getLangOpts().CPlusPlus14
) {
4625 AccessKinds AK
= IsIncrement
? AK_Increment
: AK_Decrement
;
4626 CompleteObject Obj
= findCompleteObject(Info
, E
, AK
, LVal
, LValType
);
4627 IncDecSubobjectHandler Handler
= {Info
, cast
<UnaryOperator
>(E
), AK
, Old
};
4628 return Obj
&& findSubobject(Info
, E
, Obj
, LVal
.Designator
, Handler
);
4631 /// Build an lvalue for the object argument of a member function call.
4632 static bool EvaluateObjectArgument(EvalInfo
&Info
, const Expr
*Object
,
4634 if (Object
->getType()->isPointerType() && Object
->isPRValue())
4635 return EvaluatePointer(Object
, This
, Info
);
4637 if (Object
->isGLValue())
4638 return EvaluateLValue(Object
, This
, Info
);
4640 if (Object
->getType()->isLiteralType(Info
.Ctx
))
4641 return EvaluateTemporary(Object
, This
, Info
);
4643 Info
.FFDiag(Object
, diag::note_constexpr_nonliteral
) << Object
->getType();
4647 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
4648 /// lvalue referring to the result.
4650 /// \param Info - Information about the ongoing evaluation.
4651 /// \param LV - An lvalue referring to the base of the member pointer.
4652 /// \param RHS - The member pointer expression.
4653 /// \param IncludeMember - Specifies whether the member itself is included in
4654 /// the resulting LValue subobject designator. This is not possible when
4655 /// creating a bound member function.
4656 /// \return The field or method declaration to which the member pointer refers,
4657 /// or 0 if evaluation fails.
4658 static const ValueDecl
*HandleMemberPointerAccess(EvalInfo
&Info
,
4662 bool IncludeMember
= true) {
4664 if (!EvaluateMemberPointer(RHS
, MemPtr
, Info
))
4667 // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
4668 // member value, the behavior is undefined.
4669 if (!MemPtr
.getDecl()) {
4670 // FIXME: Specific diagnostic.
4675 if (MemPtr
.isDerivedMember()) {
4676 // This is a member of some derived class. Truncate LV appropriately.
4677 // The end of the derived-to-base path for the base object must match the
4678 // derived-to-base path for the member pointer.
4679 if (LV
.Designator
.MostDerivedPathLength
+ MemPtr
.Path
.size() >
4680 LV
.Designator
.Entries
.size()) {
4684 unsigned PathLengthToMember
=
4685 LV
.Designator
.Entries
.size() - MemPtr
.Path
.size();
4686 for (unsigned I
= 0, N
= MemPtr
.Path
.size(); I
!= N
; ++I
) {
4687 const CXXRecordDecl
*LVDecl
= getAsBaseClass(
4688 LV
.Designator
.Entries
[PathLengthToMember
+ I
]);
4689 const CXXRecordDecl
*MPDecl
= MemPtr
.Path
[I
];
4690 if (LVDecl
->getCanonicalDecl() != MPDecl
->getCanonicalDecl()) {
4696 // Truncate the lvalue to the appropriate derived class.
4697 if (!CastToDerivedClass(Info
, RHS
, LV
, MemPtr
.getContainingRecord(),
4698 PathLengthToMember
))
4700 } else if (!MemPtr
.Path
.empty()) {
4701 // Extend the LValue path with the member pointer's path.
4702 LV
.Designator
.Entries
.reserve(LV
.Designator
.Entries
.size() +
4703 MemPtr
.Path
.size() + IncludeMember
);
4705 // Walk down to the appropriate base class.
4706 if (const PointerType
*PT
= LVType
->getAs
<PointerType
>())
4707 LVType
= PT
->getPointeeType();
4708 const CXXRecordDecl
*RD
= LVType
->getAsCXXRecordDecl();
4709 assert(RD
&& "member pointer access on non-class-type expression");
4710 // The first class in the path is that of the lvalue.
4711 for (unsigned I
= 1, N
= MemPtr
.Path
.size(); I
!= N
; ++I
) {
4712 const CXXRecordDecl
*Base
= MemPtr
.Path
[N
- I
- 1];
4713 if (!HandleLValueDirectBase(Info
, RHS
, LV
, RD
, Base
))
4717 // Finally cast to the class containing the member.
4718 if (!HandleLValueDirectBase(Info
, RHS
, LV
, RD
,
4719 MemPtr
.getContainingRecord()))
4723 // Add the member. Note that we cannot build bound member functions here.
4724 if (IncludeMember
) {
4725 if (const FieldDecl
*FD
= dyn_cast
<FieldDecl
>(MemPtr
.getDecl())) {
4726 if (!HandleLValueMember(Info
, RHS
, LV
, FD
))
4728 } else if (const IndirectFieldDecl
*IFD
=
4729 dyn_cast
<IndirectFieldDecl
>(MemPtr
.getDecl())) {
4730 if (!HandleLValueIndirectMember(Info
, RHS
, LV
, IFD
))
4733 llvm_unreachable("can't construct reference to bound member function");
4737 return MemPtr
.getDecl();
4740 static const ValueDecl
*HandleMemberPointerAccess(EvalInfo
&Info
,
4741 const BinaryOperator
*BO
,
4743 bool IncludeMember
= true) {
4744 assert(BO
->getOpcode() == BO_PtrMemD
|| BO
->getOpcode() == BO_PtrMemI
);
4746 if (!EvaluateObjectArgument(Info
, BO
->getLHS(), LV
)) {
4747 if (Info
.noteFailure()) {
4749 EvaluateMemberPointer(BO
->getRHS(), MemPtr
, Info
);
4754 return HandleMemberPointerAccess(Info
, BO
->getLHS()->getType(), LV
,
4755 BO
->getRHS(), IncludeMember
);
4758 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
4759 /// the provided lvalue, which currently refers to the base object.
4760 static bool HandleBaseToDerivedCast(EvalInfo
&Info
, const CastExpr
*E
,
4762 SubobjectDesignator
&D
= Result
.Designator
;
4763 if (D
.Invalid
|| !Result
.checkNullPointer(Info
, E
, CSK_Derived
))
4766 QualType TargetQT
= E
->getType();
4767 if (const PointerType
*PT
= TargetQT
->getAs
<PointerType
>())
4768 TargetQT
= PT
->getPointeeType();
4770 // Check this cast lands within the final derived-to-base subobject path.
4771 if (D
.MostDerivedPathLength
+ E
->path_size() > D
.Entries
.size()) {
4772 Info
.CCEDiag(E
, diag::note_constexpr_invalid_downcast
)
4773 << D
.MostDerivedType
<< TargetQT
;
4777 // Check the type of the final cast. We don't need to check the path,
4778 // since a cast can only be formed if the path is unique.
4779 unsigned NewEntriesSize
= D
.Entries
.size() - E
->path_size();
4780 const CXXRecordDecl
*TargetType
= TargetQT
->getAsCXXRecordDecl();
4781 const CXXRecordDecl
*FinalType
;
4782 if (NewEntriesSize
== D
.MostDerivedPathLength
)
4783 FinalType
= D
.MostDerivedType
->getAsCXXRecordDecl();
4785 FinalType
= getAsBaseClass(D
.Entries
[NewEntriesSize
- 1]);
4786 if (FinalType
->getCanonicalDecl() != TargetType
->getCanonicalDecl()) {
4787 Info
.CCEDiag(E
, diag::note_constexpr_invalid_downcast
)
4788 << D
.MostDerivedType
<< TargetQT
;
4792 // Truncate the lvalue to the appropriate derived class.
4793 return CastToDerivedClass(Info
, E
, Result
, TargetType
, NewEntriesSize
);
4796 /// Get the value to use for a default-initialized object of type T.
4797 /// Return false if it encounters something invalid.
4798 static bool getDefaultInitValue(QualType T
, APValue
&Result
) {
4799 bool Success
= true;
4800 if (auto *RD
= T
->getAsCXXRecordDecl()) {
4801 if (RD
->isInvalidDecl()) {
4805 if (RD
->isUnion()) {
4806 Result
= APValue((const FieldDecl
*)nullptr);
4809 Result
= APValue(APValue::UninitStruct(), RD
->getNumBases(),
4810 std::distance(RD
->field_begin(), RD
->field_end()));
4813 for (CXXRecordDecl::base_class_const_iterator I
= RD
->bases_begin(),
4814 End
= RD
->bases_end();
4815 I
!= End
; ++I
, ++Index
)
4816 Success
&= getDefaultInitValue(I
->getType(), Result
.getStructBase(Index
));
4818 for (const auto *I
: RD
->fields()) {
4819 if (I
->isUnnamedBitfield())
4821 Success
&= getDefaultInitValue(I
->getType(),
4822 Result
.getStructField(I
->getFieldIndex()));
4828 dyn_cast_or_null
<ConstantArrayType
>(T
->getAsArrayTypeUnsafe())) {
4829 Result
= APValue(APValue::UninitArray(), 0, AT
->getSize().getZExtValue());
4830 if (Result
.hasArrayFiller())
4832 getDefaultInitValue(AT
->getElementType(), Result
.getArrayFiller());
4837 Result
= APValue::IndeterminateValue();
4842 enum EvalStmtResult
{
4843 /// Evaluation failed.
4845 /// Hit a 'return' statement.
4847 /// Evaluation succeeded.
4849 /// Hit a 'continue' statement.
4851 /// Hit a 'break' statement.
4853 /// Still scanning for 'case' or 'default' statement.
4858 static bool EvaluateVarDecl(EvalInfo
&Info
, const VarDecl
*VD
) {
4859 if (VD
->isInvalidDecl())
4861 // We don't need to evaluate the initializer for a static local.
4862 if (!VD
->hasLocalStorage())
4866 APValue
&Val
= Info
.CurrentCall
->createTemporary(VD
, VD
->getType(),
4867 ScopeKind::Block
, Result
);
4869 const Expr
*InitE
= VD
->getInit();
4871 if (VD
->getType()->isDependentType())
4872 return Info
.noteSideEffect();
4873 return getDefaultInitValue(VD
->getType(), Val
);
4875 if (InitE
->isValueDependent())
4878 if (!EvaluateInPlace(Val
, Info
, Result
, InitE
)) {
4879 // Wipe out any partially-computed value, to allow tracking that this
4880 // evaluation failed.
4888 static bool EvaluateDecl(EvalInfo
&Info
, const Decl
*D
) {
4891 if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
))
4892 OK
&= EvaluateVarDecl(Info
, VD
);
4894 if (const DecompositionDecl
*DD
= dyn_cast
<DecompositionDecl
>(D
))
4895 for (auto *BD
: DD
->bindings())
4896 if (auto *VD
= BD
->getHoldingVar())
4897 OK
&= EvaluateDecl(Info
, VD
);
4902 static bool EvaluateDependentExpr(const Expr
*E
, EvalInfo
&Info
) {
4903 assert(E
->isValueDependent());
4904 if (Info
.noteSideEffect())
4906 assert(E
->containsErrors() && "valid value-dependent expression should never "
4907 "reach invalid code path.");
4911 /// Evaluate a condition (either a variable declaration or an expression).
4912 static bool EvaluateCond(EvalInfo
&Info
, const VarDecl
*CondDecl
,
4913 const Expr
*Cond
, bool &Result
) {
4914 if (Cond
->isValueDependent())
4916 FullExpressionRAII
Scope(Info
);
4917 if (CondDecl
&& !EvaluateDecl(Info
, CondDecl
))
4919 if (!EvaluateAsBooleanCondition(Cond
, Result
, Info
))
4921 return Scope
.destroy();
4925 /// A location where the result (returned value) of evaluating a
4926 /// statement should be stored.
4928 /// The APValue that should be filled in with the returned value.
4930 /// The location containing the result, if any (used to support RVO).
4934 struct TempVersionRAII
{
4935 CallStackFrame
&Frame
;
4937 TempVersionRAII(CallStackFrame
&Frame
) : Frame(Frame
) {
4938 Frame
.pushTempVersion();
4941 ~TempVersionRAII() {
4942 Frame
.popTempVersion();
4948 static EvalStmtResult
EvaluateStmt(StmtResult
&Result
, EvalInfo
&Info
,
4950 const SwitchCase
*SC
= nullptr);
4952 /// Evaluate the body of a loop, and translate the result as appropriate.
4953 static EvalStmtResult
EvaluateLoopBody(StmtResult
&Result
, EvalInfo
&Info
,
4955 const SwitchCase
*Case
= nullptr) {
4956 BlockScopeRAII
Scope(Info
);
4958 EvalStmtResult ESR
= EvaluateStmt(Result
, Info
, Body
, Case
);
4959 if (ESR
!= ESR_Failed
&& ESR
!= ESR_CaseNotFound
&& !Scope
.destroy())
4964 return ESR_Succeeded
;
4967 return ESR_Continue
;
4970 case ESR_CaseNotFound
:
4973 llvm_unreachable("Invalid EvalStmtResult!");
4976 /// Evaluate a switch statement.
4977 static EvalStmtResult
EvaluateSwitch(StmtResult
&Result
, EvalInfo
&Info
,
4978 const SwitchStmt
*SS
) {
4979 BlockScopeRAII
Scope(Info
);
4981 // Evaluate the switch condition.
4984 if (const Stmt
*Init
= SS
->getInit()) {
4985 EvalStmtResult ESR
= EvaluateStmt(Result
, Info
, Init
);
4986 if (ESR
!= ESR_Succeeded
) {
4987 if (ESR
!= ESR_Failed
&& !Scope
.destroy())
4993 FullExpressionRAII
CondScope(Info
);
4994 if (SS
->getConditionVariable() &&
4995 !EvaluateDecl(Info
, SS
->getConditionVariable()))
4997 if (SS
->getCond()->isValueDependent()) {
4998 if (!EvaluateDependentExpr(SS
->getCond(), Info
))
5001 if (!EvaluateInteger(SS
->getCond(), Value
, Info
))
5004 if (!CondScope
.destroy())
5008 // Find the switch case corresponding to the value of the condition.
5009 // FIXME: Cache this lookup.
5010 const SwitchCase
*Found
= nullptr;
5011 for (const SwitchCase
*SC
= SS
->getSwitchCaseList(); SC
;
5012 SC
= SC
->getNextSwitchCase()) {
5013 if (isa
<DefaultStmt
>(SC
)) {
5018 const CaseStmt
*CS
= cast
<CaseStmt
>(SC
);
5019 APSInt LHS
= CS
->getLHS()->EvaluateKnownConstInt(Info
.Ctx
);
5020 APSInt RHS
= CS
->getRHS() ? CS
->getRHS()->EvaluateKnownConstInt(Info
.Ctx
)
5022 if (LHS
<= Value
&& Value
<= RHS
) {
5029 return Scope
.destroy() ? ESR_Succeeded
: ESR_Failed
;
5031 // Search the switch body for the switch case and evaluate it from there.
5032 EvalStmtResult ESR
= EvaluateStmt(Result
, Info
, SS
->getBody(), Found
);
5033 if (ESR
!= ESR_Failed
&& ESR
!= ESR_CaseNotFound
&& !Scope
.destroy())
5038 return ESR_Succeeded
;
5044 case ESR_CaseNotFound
:
5045 // This can only happen if the switch case is nested within a statement
5046 // expression. We have no intention of supporting that.
5047 Info
.FFDiag(Found
->getBeginLoc(),
5048 diag::note_constexpr_stmt_expr_unsupported
);
5051 llvm_unreachable("Invalid EvalStmtResult!");
5054 static bool CheckLocalVariableDeclaration(EvalInfo
&Info
, const VarDecl
*VD
) {
5055 // An expression E is a core constant expression unless the evaluation of E
5056 // would evaluate one of the following: [C++2b] - a control flow that passes
5057 // through a declaration of a variable with static or thread storage duration.
5058 if (VD
->isLocalVarDecl() && VD
->isStaticLocal()) {
5059 Info
.CCEDiag(VD
->getLocation(), diag::note_constexpr_static_local
)
5060 << (VD
->getTSCSpec() == TSCS_unspecified
? 0 : 1) << VD
;
5066 // Evaluate a statement.
5067 static EvalStmtResult
EvaluateStmt(StmtResult
&Result
, EvalInfo
&Info
,
5068 const Stmt
*S
, const SwitchCase
*Case
) {
5069 if (!Info
.nextStep(S
))
5072 // If we're hunting down a 'case' or 'default' label, recurse through
5073 // substatements until we hit the label.
5075 switch (S
->getStmtClass()) {
5076 case Stmt::CompoundStmtClass
:
5077 // FIXME: Precompute which substatement of a compound statement we
5078 // would jump to, and go straight there rather than performing a
5079 // linear scan each time.
5080 case Stmt::LabelStmtClass
:
5081 case Stmt::AttributedStmtClass
:
5082 case Stmt::DoStmtClass
:
5085 case Stmt::CaseStmtClass
:
5086 case Stmt::DefaultStmtClass
:
5091 case Stmt::IfStmtClass
: {
5092 // FIXME: Precompute which side of an 'if' we would jump to, and go
5093 // straight there rather than scanning both sides.
5094 const IfStmt
*IS
= cast
<IfStmt
>(S
);
5096 // Wrap the evaluation in a block scope, in case it's a DeclStmt
5097 // preceded by our switch label.
5098 BlockScopeRAII
Scope(Info
);
5100 // Step into the init statement in case it brings an (uninitialized)
5101 // variable into scope.
5102 if (const Stmt
*Init
= IS
->getInit()) {
5103 EvalStmtResult ESR
= EvaluateStmt(Result
, Info
, Init
, Case
);
5104 if (ESR
!= ESR_CaseNotFound
) {
5105 assert(ESR
!= ESR_Succeeded
);
5110 // Condition variable must be initialized if it exists.
5111 // FIXME: We can skip evaluating the body if there's a condition
5112 // variable, as there can't be any case labels within it.
5113 // (The same is true for 'for' statements.)
5115 EvalStmtResult ESR
= EvaluateStmt(Result
, Info
, IS
->getThen(), Case
);
5116 if (ESR
== ESR_Failed
)
5118 if (ESR
!= ESR_CaseNotFound
)
5119 return Scope
.destroy() ? ESR
: ESR_Failed
;
5121 return ESR_CaseNotFound
;
5123 ESR
= EvaluateStmt(Result
, Info
, IS
->getElse(), Case
);
5124 if (ESR
== ESR_Failed
)
5126 if (ESR
!= ESR_CaseNotFound
)
5127 return Scope
.destroy() ? ESR
: ESR_Failed
;
5128 return ESR_CaseNotFound
;
5131 case Stmt::WhileStmtClass
: {
5132 EvalStmtResult ESR
=
5133 EvaluateLoopBody(Result
, Info
, cast
<WhileStmt
>(S
)->getBody(), Case
);
5134 if (ESR
!= ESR_Continue
)
5139 case Stmt::ForStmtClass
: {
5140 const ForStmt
*FS
= cast
<ForStmt
>(S
);
5141 BlockScopeRAII
Scope(Info
);
5143 // Step into the init statement in case it brings an (uninitialized)
5144 // variable into scope.
5145 if (const Stmt
*Init
= FS
->getInit()) {
5146 EvalStmtResult ESR
= EvaluateStmt(Result
, Info
, Init
, Case
);
5147 if (ESR
!= ESR_CaseNotFound
) {
5148 assert(ESR
!= ESR_Succeeded
);
5153 EvalStmtResult ESR
=
5154 EvaluateLoopBody(Result
, Info
, FS
->getBody(), Case
);
5155 if (ESR
!= ESR_Continue
)
5157 if (const auto *Inc
= FS
->getInc()) {
5158 if (Inc
->isValueDependent()) {
5159 if (!EvaluateDependentExpr(Inc
, Info
))
5162 FullExpressionRAII
IncScope(Info
);
5163 if (!EvaluateIgnoredValue(Info
, Inc
) || !IncScope
.destroy())
5170 case Stmt::DeclStmtClass
: {
5171 // Start the lifetime of any uninitialized variables we encounter. They
5172 // might be used by the selected branch of the switch.
5173 const DeclStmt
*DS
= cast
<DeclStmt
>(S
);
5174 for (const auto *D
: DS
->decls()) {
5175 if (const auto *VD
= dyn_cast
<VarDecl
>(D
)) {
5176 if (!CheckLocalVariableDeclaration(Info
, VD
))
5178 if (VD
->hasLocalStorage() && !VD
->getInit())
5179 if (!EvaluateVarDecl(Info
, VD
))
5181 // FIXME: If the variable has initialization that can't be jumped
5182 // over, bail out of any immediately-surrounding compound-statement
5183 // too. There can't be any case labels here.
5186 return ESR_CaseNotFound
;
5190 return ESR_CaseNotFound
;
5194 switch (S
->getStmtClass()) {
5196 if (const Expr
*E
= dyn_cast
<Expr
>(S
)) {
5197 if (E
->isValueDependent()) {
5198 if (!EvaluateDependentExpr(E
, Info
))
5201 // Don't bother evaluating beyond an expression-statement which couldn't
5203 // FIXME: Do we need the FullExpressionRAII object here?
5204 // VisitExprWithCleanups should create one when necessary.
5205 FullExpressionRAII
Scope(Info
);
5206 if (!EvaluateIgnoredValue(Info
, E
) || !Scope
.destroy())
5209 return ESR_Succeeded
;
5212 Info
.FFDiag(S
->getBeginLoc());
5215 case Stmt::NullStmtClass
:
5216 return ESR_Succeeded
;
5218 case Stmt::DeclStmtClass
: {
5219 const DeclStmt
*DS
= cast
<DeclStmt
>(S
);
5220 for (const auto *D
: DS
->decls()) {
5221 const VarDecl
*VD
= dyn_cast_or_null
<VarDecl
>(D
);
5222 if (VD
&& !CheckLocalVariableDeclaration(Info
, VD
))
5224 // Each declaration initialization is its own full-expression.
5225 FullExpressionRAII
Scope(Info
);
5226 if (!EvaluateDecl(Info
, D
) && !Info
.noteFailure())
5228 if (!Scope
.destroy())
5231 return ESR_Succeeded
;
5234 case Stmt::ReturnStmtClass
: {
5235 const Expr
*RetExpr
= cast
<ReturnStmt
>(S
)->getRetValue();
5236 FullExpressionRAII
Scope(Info
);
5237 if (RetExpr
&& RetExpr
->isValueDependent()) {
5238 EvaluateDependentExpr(RetExpr
, Info
);
5239 // We know we returned, but we don't know what the value is.
5244 ? EvaluateInPlace(Result
.Value
, Info
, *Result
.Slot
, RetExpr
)
5245 : Evaluate(Result
.Value
, Info
, RetExpr
)))
5247 return Scope
.destroy() ? ESR_Returned
: ESR_Failed
;
5250 case Stmt::CompoundStmtClass
: {
5251 BlockScopeRAII
Scope(Info
);
5253 const CompoundStmt
*CS
= cast
<CompoundStmt
>(S
);
5254 for (const auto *BI
: CS
->body()) {
5255 EvalStmtResult ESR
= EvaluateStmt(Result
, Info
, BI
, Case
);
5256 if (ESR
== ESR_Succeeded
)
5258 else if (ESR
!= ESR_CaseNotFound
) {
5259 if (ESR
!= ESR_Failed
&& !Scope
.destroy())
5265 return ESR_CaseNotFound
;
5266 return Scope
.destroy() ? ESR_Succeeded
: ESR_Failed
;
5269 case Stmt::IfStmtClass
: {
5270 const IfStmt
*IS
= cast
<IfStmt
>(S
);
5272 // Evaluate the condition, as either a var decl or as an expression.
5273 BlockScopeRAII
Scope(Info
);
5274 if (const Stmt
*Init
= IS
->getInit()) {
5275 EvalStmtResult ESR
= EvaluateStmt(Result
, Info
, Init
);
5276 if (ESR
!= ESR_Succeeded
) {
5277 if (ESR
!= ESR_Failed
&& !Scope
.destroy())
5283 if (IS
->isConsteval()) {
5284 Cond
= IS
->isNonNegatedConsteval();
5285 // If we are not in a constant context, if consteval should not evaluate
5287 if (!Info
.InConstantContext
)
5289 } else if (!EvaluateCond(Info
, IS
->getConditionVariable(), IS
->getCond(),
5293 if (const Stmt
*SubStmt
= Cond
? IS
->getThen() : IS
->getElse()) {
5294 EvalStmtResult ESR
= EvaluateStmt(Result
, Info
, SubStmt
);
5295 if (ESR
!= ESR_Succeeded
) {
5296 if (ESR
!= ESR_Failed
&& !Scope
.destroy())
5301 return Scope
.destroy() ? ESR_Succeeded
: ESR_Failed
;
5304 case Stmt::WhileStmtClass
: {
5305 const WhileStmt
*WS
= cast
<WhileStmt
>(S
);
5307 BlockScopeRAII
Scope(Info
);
5309 if (!EvaluateCond(Info
, WS
->getConditionVariable(), WS
->getCond(),
5315 EvalStmtResult ESR
= EvaluateLoopBody(Result
, Info
, WS
->getBody());
5316 if (ESR
!= ESR_Continue
) {
5317 if (ESR
!= ESR_Failed
&& !Scope
.destroy())
5321 if (!Scope
.destroy())
5324 return ESR_Succeeded
;
5327 case Stmt::DoStmtClass
: {
5328 const DoStmt
*DS
= cast
<DoStmt
>(S
);
5331 EvalStmtResult ESR
= EvaluateLoopBody(Result
, Info
, DS
->getBody(), Case
);
5332 if (ESR
!= ESR_Continue
)
5336 if (DS
->getCond()->isValueDependent()) {
5337 EvaluateDependentExpr(DS
->getCond(), Info
);
5338 // Bailout as we don't know whether to keep going or terminate the loop.
5341 FullExpressionRAII
CondScope(Info
);
5342 if (!EvaluateAsBooleanCondition(DS
->getCond(), Continue
, Info
) ||
5343 !CondScope
.destroy())
5346 return ESR_Succeeded
;
5349 case Stmt::ForStmtClass
: {
5350 const ForStmt
*FS
= cast
<ForStmt
>(S
);
5351 BlockScopeRAII
ForScope(Info
);
5352 if (FS
->getInit()) {
5353 EvalStmtResult ESR
= EvaluateStmt(Result
, Info
, FS
->getInit());
5354 if (ESR
!= ESR_Succeeded
) {
5355 if (ESR
!= ESR_Failed
&& !ForScope
.destroy())
5361 BlockScopeRAII
IterScope(Info
);
5362 bool Continue
= true;
5363 if (FS
->getCond() && !EvaluateCond(Info
, FS
->getConditionVariable(),
5364 FS
->getCond(), Continue
))
5369 EvalStmtResult ESR
= EvaluateLoopBody(Result
, Info
, FS
->getBody());
5370 if (ESR
!= ESR_Continue
) {
5371 if (ESR
!= ESR_Failed
&& (!IterScope
.destroy() || !ForScope
.destroy()))
5376 if (const auto *Inc
= FS
->getInc()) {
5377 if (Inc
->isValueDependent()) {
5378 if (!EvaluateDependentExpr(Inc
, Info
))
5381 FullExpressionRAII
IncScope(Info
);
5382 if (!EvaluateIgnoredValue(Info
, Inc
) || !IncScope
.destroy())
5387 if (!IterScope
.destroy())
5390 return ForScope
.destroy() ? ESR_Succeeded
: ESR_Failed
;
5393 case Stmt::CXXForRangeStmtClass
: {
5394 const CXXForRangeStmt
*FS
= cast
<CXXForRangeStmt
>(S
);
5395 BlockScopeRAII
Scope(Info
);
5397 // Evaluate the init-statement if present.
5398 if (FS
->getInit()) {
5399 EvalStmtResult ESR
= EvaluateStmt(Result
, Info
, FS
->getInit());
5400 if (ESR
!= ESR_Succeeded
) {
5401 if (ESR
!= ESR_Failed
&& !Scope
.destroy())
5407 // Initialize the __range variable.
5408 EvalStmtResult ESR
= EvaluateStmt(Result
, Info
, FS
->getRangeStmt());
5409 if (ESR
!= ESR_Succeeded
) {
5410 if (ESR
!= ESR_Failed
&& !Scope
.destroy())
5415 // In error-recovery cases it's possible to get here even if we failed to
5416 // synthesize the __begin and __end variables.
5417 if (!FS
->getBeginStmt() || !FS
->getEndStmt() || !FS
->getCond())
5420 // Create the __begin and __end iterators.
5421 ESR
= EvaluateStmt(Result
, Info
, FS
->getBeginStmt());
5422 if (ESR
!= ESR_Succeeded
) {
5423 if (ESR
!= ESR_Failed
&& !Scope
.destroy())
5427 ESR
= EvaluateStmt(Result
, Info
, FS
->getEndStmt());
5428 if (ESR
!= ESR_Succeeded
) {
5429 if (ESR
!= ESR_Failed
&& !Scope
.destroy())
5435 // Condition: __begin != __end.
5437 if (FS
->getCond()->isValueDependent()) {
5438 EvaluateDependentExpr(FS
->getCond(), Info
);
5439 // We don't know whether to keep going or terminate the loop.
5442 bool Continue
= true;
5443 FullExpressionRAII
CondExpr(Info
);
5444 if (!EvaluateAsBooleanCondition(FS
->getCond(), Continue
, Info
))
5450 // User's variable declaration, initialized by *__begin.
5451 BlockScopeRAII
InnerScope(Info
);
5452 ESR
= EvaluateStmt(Result
, Info
, FS
->getLoopVarStmt());
5453 if (ESR
!= ESR_Succeeded
) {
5454 if (ESR
!= ESR_Failed
&& (!InnerScope
.destroy() || !Scope
.destroy()))
5460 ESR
= EvaluateLoopBody(Result
, Info
, FS
->getBody());
5461 if (ESR
!= ESR_Continue
) {
5462 if (ESR
!= ESR_Failed
&& (!InnerScope
.destroy() || !Scope
.destroy()))
5466 if (FS
->getInc()->isValueDependent()) {
5467 if (!EvaluateDependentExpr(FS
->getInc(), Info
))
5470 // Increment: ++__begin
5471 if (!EvaluateIgnoredValue(Info
, FS
->getInc()))
5475 if (!InnerScope
.destroy())
5479 return Scope
.destroy() ? ESR_Succeeded
: ESR_Failed
;
5482 case Stmt::SwitchStmtClass
:
5483 return EvaluateSwitch(Result
, Info
, cast
<SwitchStmt
>(S
));
5485 case Stmt::ContinueStmtClass
:
5486 return ESR_Continue
;
5488 case Stmt::BreakStmtClass
:
5491 case Stmt::LabelStmtClass
:
5492 return EvaluateStmt(Result
, Info
, cast
<LabelStmt
>(S
)->getSubStmt(), Case
);
5494 case Stmt::AttributedStmtClass
:
5495 // As a general principle, C++11 attributes can be ignored without
5496 // any semantic impact.
5497 return EvaluateStmt(Result
, Info
, cast
<AttributedStmt
>(S
)->getSubStmt(),
5500 case Stmt::CaseStmtClass
:
5501 case Stmt::DefaultStmtClass
:
5502 return EvaluateStmt(Result
, Info
, cast
<SwitchCase
>(S
)->getSubStmt(), Case
);
5503 case Stmt::CXXTryStmtClass
:
5504 // Evaluate try blocks by evaluating all sub statements.
5505 return EvaluateStmt(Result
, Info
, cast
<CXXTryStmt
>(S
)->getTryBlock(), Case
);
5509 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
5510 /// default constructor. If so, we'll fold it whether or not it's marked as
5511 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
5512 /// so we need special handling.
5513 static bool CheckTrivialDefaultConstructor(EvalInfo
&Info
, SourceLocation Loc
,
5514 const CXXConstructorDecl
*CD
,
5515 bool IsValueInitialization
) {
5516 if (!CD
->isTrivial() || !CD
->isDefaultConstructor())
5519 // Value-initialization does not call a trivial default constructor, so such a
5520 // call is a core constant expression whether or not the constructor is
5522 if (!CD
->isConstexpr() && !IsValueInitialization
) {
5523 if (Info
.getLangOpts().CPlusPlus11
) {
5524 // FIXME: If DiagDecl is an implicitly-declared special member function,
5525 // we should be much more explicit about why it's not constexpr.
5526 Info
.CCEDiag(Loc
, diag::note_constexpr_invalid_function
, 1)
5527 << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD
;
5528 Info
.Note(CD
->getLocation(), diag::note_declared_at
);
5530 Info
.CCEDiag(Loc
, diag::note_invalid_subexpr_in_const_expr
);
5536 /// CheckConstexprFunction - Check that a function can be called in a constant
5538 static bool CheckConstexprFunction(EvalInfo
&Info
, SourceLocation CallLoc
,
5539 const FunctionDecl
*Declaration
,
5540 const FunctionDecl
*Definition
,
5542 // Potential constant expressions can contain calls to declared, but not yet
5543 // defined, constexpr functions.
5544 if (Info
.checkingPotentialConstantExpression() && !Definition
&&
5545 Declaration
->isConstexpr())
5548 // Bail out if the function declaration itself is invalid. We will
5549 // have produced a relevant diagnostic while parsing it, so just
5550 // note the problematic sub-expression.
5551 if (Declaration
->isInvalidDecl()) {
5552 Info
.FFDiag(CallLoc
, diag::note_invalid_subexpr_in_const_expr
);
5556 // DR1872: An instantiated virtual constexpr function can't be called in a
5557 // constant expression (prior to C++20). We can still constant-fold such a
5559 if (!Info
.Ctx
.getLangOpts().CPlusPlus20
&& isa
<CXXMethodDecl
>(Declaration
) &&
5560 cast
<CXXMethodDecl
>(Declaration
)->isVirtual())
5561 Info
.CCEDiag(CallLoc
, diag::note_constexpr_virtual_call
);
5563 if (Definition
&& Definition
->isInvalidDecl()) {
5564 Info
.FFDiag(CallLoc
, diag::note_invalid_subexpr_in_const_expr
);
5568 // Can we evaluate this function call?
5569 if (Definition
&& Definition
->isConstexpr() && Body
)
5572 if (Info
.getLangOpts().CPlusPlus11
) {
5573 const FunctionDecl
*DiagDecl
= Definition
? Definition
: Declaration
;
5575 // If this function is not constexpr because it is an inherited
5576 // non-constexpr constructor, diagnose that directly.
5577 auto *CD
= dyn_cast
<CXXConstructorDecl
>(DiagDecl
);
5578 if (CD
&& CD
->isInheritingConstructor()) {
5579 auto *Inherited
= CD
->getInheritedConstructor().getConstructor();
5580 if (!Inherited
->isConstexpr())
5581 DiagDecl
= CD
= Inherited
;
5584 // FIXME: If DiagDecl is an implicitly-declared special member function
5585 // or an inheriting constructor, we should be much more explicit about why
5586 // it's not constexpr.
5587 if (CD
&& CD
->isInheritingConstructor())
5588 Info
.FFDiag(CallLoc
, diag::note_constexpr_invalid_inhctor
, 1)
5589 << CD
->getInheritedConstructor().getConstructor()->getParent();
5591 Info
.FFDiag(CallLoc
, diag::note_constexpr_invalid_function
, 1)
5592 << DiagDecl
->isConstexpr() << (bool)CD
<< DiagDecl
;
5593 Info
.Note(DiagDecl
->getLocation(), diag::note_declared_at
);
5595 Info
.FFDiag(CallLoc
, diag::note_invalid_subexpr_in_const_expr
);
5601 struct CheckDynamicTypeHandler
{
5602 AccessKinds AccessKind
;
5603 typedef bool result_type
;
5604 bool failed() { return false; }
5605 bool found(APValue
&Subobj
, QualType SubobjType
) { return true; }
5606 bool found(APSInt
&Value
, QualType SubobjType
) { return true; }
5607 bool found(APFloat
&Value
, QualType SubobjType
) { return true; }
5609 } // end anonymous namespace
5611 /// Check that we can access the notional vptr of an object / determine its
5613 static bool checkDynamicType(EvalInfo
&Info
, const Expr
*E
, const LValue
&This
,
5614 AccessKinds AK
, bool Polymorphic
) {
5615 if (This
.Designator
.Invalid
)
5618 CompleteObject Obj
= findCompleteObject(Info
, E
, AK
, This
, QualType());
5624 // The object is not usable in constant expressions, so we can't inspect
5625 // its value to see if it's in-lifetime or what the active union members
5626 // are. We can still check for a one-past-the-end lvalue.
5627 if (This
.Designator
.isOnePastTheEnd() ||
5628 This
.Designator
.isMostDerivedAnUnsizedArray()) {
5629 Info
.FFDiag(E
, This
.Designator
.isOnePastTheEnd()
5630 ? diag::note_constexpr_access_past_end
5631 : diag::note_constexpr_access_unsized_array
)
5634 } else if (Polymorphic
) {
5635 // Conservatively refuse to perform a polymorphic operation if we would
5636 // not be able to read a notional 'vptr' value.
5639 QualType StarThisType
=
5640 Info
.Ctx
.getLValueReferenceType(This
.Designator
.getType(Info
.Ctx
));
5641 Info
.FFDiag(E
, diag::note_constexpr_polymorphic_unknown_dynamic_type
)
5642 << AK
<< Val
.getAsString(Info
.Ctx
, StarThisType
);
5648 CheckDynamicTypeHandler Handler
{AK
};
5649 return Obj
&& findSubobject(Info
, E
, Obj
, This
.Designator
, Handler
);
5652 /// Check that the pointee of the 'this' pointer in a member function call is
5653 /// either within its lifetime or in its period of construction or destruction.
5655 checkNonVirtualMemberCallThisPointer(EvalInfo
&Info
, const Expr
*E
,
5657 const CXXMethodDecl
*NamedMember
) {
5658 return checkDynamicType(
5660 isa
<CXXDestructorDecl
>(NamedMember
) ? AK_Destroy
: AK_MemberCall
, false);
5663 struct DynamicType
{
5664 /// The dynamic class type of the object.
5665 const CXXRecordDecl
*Type
;
5666 /// The corresponding path length in the lvalue.
5667 unsigned PathLength
;
5670 static const CXXRecordDecl
*getBaseClassType(SubobjectDesignator
&Designator
,
5671 unsigned PathLength
) {
5672 assert(PathLength
>= Designator
.MostDerivedPathLength
&& PathLength
<=
5673 Designator
.Entries
.size() && "invalid path length");
5674 return (PathLength
== Designator
.MostDerivedPathLength
)
5675 ? Designator
.MostDerivedType
->getAsCXXRecordDecl()
5676 : getAsBaseClass(Designator
.Entries
[PathLength
- 1]);
5679 /// Determine the dynamic type of an object.
5680 static Optional
<DynamicType
> ComputeDynamicType(EvalInfo
&Info
, const Expr
*E
,
5681 LValue
&This
, AccessKinds AK
) {
5682 // If we don't have an lvalue denoting an object of class type, there is no
5683 // meaningful dynamic type. (We consider objects of non-class type to have no
5685 if (!checkDynamicType(Info
, E
, This
, AK
, true))
5688 // Refuse to compute a dynamic type in the presence of virtual bases. This
5689 // shouldn't happen other than in constant-folding situations, since literal
5690 // types can't have virtual bases.
5692 // Note that consumers of DynamicType assume that the type has no virtual
5693 // bases, and will need modifications if this restriction is relaxed.
5694 const CXXRecordDecl
*Class
=
5695 This
.Designator
.MostDerivedType
->getAsCXXRecordDecl();
5696 if (!Class
|| Class
->getNumVBases()) {
5701 // FIXME: For very deep class hierarchies, it might be beneficial to use a
5702 // binary search here instead. But the overwhelmingly common case is that
5703 // we're not in the middle of a constructor, so it probably doesn't matter
5705 ArrayRef
<APValue::LValuePathEntry
> Path
= This
.Designator
.Entries
;
5706 for (unsigned PathLength
= This
.Designator
.MostDerivedPathLength
;
5707 PathLength
<= Path
.size(); ++PathLength
) {
5708 switch (Info
.isEvaluatingCtorDtor(This
.getLValueBase(),
5709 Path
.slice(0, PathLength
))) {
5710 case ConstructionPhase::Bases
:
5711 case ConstructionPhase::DestroyingBases
:
5712 // We're constructing or destroying a base class. This is not the dynamic
5716 case ConstructionPhase::None
:
5717 case ConstructionPhase::AfterBases
:
5718 case ConstructionPhase::AfterFields
:
5719 case ConstructionPhase::Destroying
:
5720 // We've finished constructing the base classes and not yet started
5721 // destroying them again, so this is the dynamic type.
5722 return DynamicType
{getBaseClassType(This
.Designator
, PathLength
),
5727 // CWG issue 1517: we're constructing a base class of the object described by
5728 // 'This', so that object has not yet begun its period of construction and
5729 // any polymorphic operation on it results in undefined behavior.
5734 /// Perform virtual dispatch.
5735 static const CXXMethodDecl
*HandleVirtualDispatch(
5736 EvalInfo
&Info
, const Expr
*E
, LValue
&This
, const CXXMethodDecl
*Found
,
5737 llvm::SmallVectorImpl
<QualType
> &CovariantAdjustmentPath
) {
5738 Optional
<DynamicType
> DynType
= ComputeDynamicType(
5740 isa
<CXXDestructorDecl
>(Found
) ? AK_Destroy
: AK_MemberCall
);
5744 // Find the final overrider. It must be declared in one of the classes on the
5745 // path from the dynamic type to the static type.
5746 // FIXME: If we ever allow literal types to have virtual base classes, that
5748 const CXXMethodDecl
*Callee
= Found
;
5749 unsigned PathLength
= DynType
->PathLength
;
5750 for (/**/; PathLength
<= This
.Designator
.Entries
.size(); ++PathLength
) {
5751 const CXXRecordDecl
*Class
= getBaseClassType(This
.Designator
, PathLength
);
5752 const CXXMethodDecl
*Overrider
=
5753 Found
->getCorrespondingMethodDeclaredInClass(Class
, false);
5760 // C++2a [class.abstract]p6:
5761 // the effect of making a virtual call to a pure virtual function [...] is
5763 if (Callee
->isPure()) {
5764 Info
.FFDiag(E
, diag::note_constexpr_pure_virtual_call
, 1) << Callee
;
5765 Info
.Note(Callee
->getLocation(), diag::note_declared_at
);
5769 // If necessary, walk the rest of the path to determine the sequence of
5770 // covariant adjustment steps to apply.
5771 if (!Info
.Ctx
.hasSameUnqualifiedType(Callee
->getReturnType(),
5772 Found
->getReturnType())) {
5773 CovariantAdjustmentPath
.push_back(Callee
->getReturnType());
5774 for (unsigned CovariantPathLength
= PathLength
+ 1;
5775 CovariantPathLength
!= This
.Designator
.Entries
.size();
5776 ++CovariantPathLength
) {
5777 const CXXRecordDecl
*NextClass
=
5778 getBaseClassType(This
.Designator
, CovariantPathLength
);
5779 const CXXMethodDecl
*Next
=
5780 Found
->getCorrespondingMethodDeclaredInClass(NextClass
, false);
5781 if (Next
&& !Info
.Ctx
.hasSameUnqualifiedType(
5782 Next
->getReturnType(), CovariantAdjustmentPath
.back()))
5783 CovariantAdjustmentPath
.push_back(Next
->getReturnType());
5785 if (!Info
.Ctx
.hasSameUnqualifiedType(Found
->getReturnType(),
5786 CovariantAdjustmentPath
.back()))
5787 CovariantAdjustmentPath
.push_back(Found
->getReturnType());
5790 // Perform 'this' adjustment.
5791 if (!CastToDerivedClass(Info
, E
, This
, Callee
->getParent(), PathLength
))
5797 /// Perform the adjustment from a value returned by a virtual function to
5798 /// a value of the statically expected type, which may be a pointer or
5799 /// reference to a base class of the returned type.
5800 static bool HandleCovariantReturnAdjustment(EvalInfo
&Info
, const Expr
*E
,
5802 ArrayRef
<QualType
> Path
) {
5803 assert(Result
.isLValue() &&
5804 "unexpected kind of APValue for covariant return");
5805 if (Result
.isNullPointer())
5809 LVal
.setFrom(Info
.Ctx
, Result
);
5811 const CXXRecordDecl
*OldClass
= Path
[0]->getPointeeCXXRecordDecl();
5812 for (unsigned I
= 1; I
!= Path
.size(); ++I
) {
5813 const CXXRecordDecl
*NewClass
= Path
[I
]->getPointeeCXXRecordDecl();
5814 assert(OldClass
&& NewClass
&& "unexpected kind of covariant return");
5815 if (OldClass
!= NewClass
&&
5816 !CastToBaseClass(Info
, E
, LVal
, OldClass
, NewClass
))
5818 OldClass
= NewClass
;
5821 LVal
.moveInto(Result
);
5825 /// Determine whether \p Base, which is known to be a direct base class of
5826 /// \p Derived, is a public base class.
5827 static bool isBaseClassPublic(const CXXRecordDecl
*Derived
,
5828 const CXXRecordDecl
*Base
) {
5829 for (const CXXBaseSpecifier
&BaseSpec
: Derived
->bases()) {
5830 auto *BaseClass
= BaseSpec
.getType()->getAsCXXRecordDecl();
5831 if (BaseClass
&& declaresSameEntity(BaseClass
, Base
))
5832 return BaseSpec
.getAccessSpecifier() == AS_public
;
5834 llvm_unreachable("Base is not a direct base of Derived");
5837 /// Apply the given dynamic cast operation on the provided lvalue.
5839 /// This implements the hard case of dynamic_cast, requiring a "runtime check"
5840 /// to find a suitable target subobject.
5841 static bool HandleDynamicCast(EvalInfo
&Info
, const ExplicitCastExpr
*E
,
5843 // We can't do anything with a non-symbolic pointer value.
5844 SubobjectDesignator
&D
= Ptr
.Designator
;
5848 // C++ [expr.dynamic.cast]p6:
5849 // If v is a null pointer value, the result is a null pointer value.
5850 if (Ptr
.isNullPointer() && !E
->isGLValue())
5853 // For all the other cases, we need the pointer to point to an object within
5854 // its lifetime / period of construction / destruction, and we need to know
5855 // its dynamic type.
5856 Optional
<DynamicType
> DynType
=
5857 ComputeDynamicType(Info
, E
, Ptr
, AK_DynamicCast
);
5861 // C++ [expr.dynamic.cast]p7:
5862 // If T is "pointer to cv void", then the result is a pointer to the most
5864 if (E
->getType()->isVoidPointerType())
5865 return CastToDerivedClass(Info
, E
, Ptr
, DynType
->Type
, DynType
->PathLength
);
5867 const CXXRecordDecl
*C
= E
->getTypeAsWritten()->getPointeeCXXRecordDecl();
5868 assert(C
&& "dynamic_cast target is not void pointer nor class");
5869 CanQualType CQT
= Info
.Ctx
.getCanonicalType(Info
.Ctx
.getRecordType(C
));
5871 auto RuntimeCheckFailed
= [&] (CXXBasePaths
*Paths
) {
5872 // C++ [expr.dynamic.cast]p9:
5873 if (!E
->isGLValue()) {
5874 // The value of a failed cast to pointer type is the null pointer value
5875 // of the required result type.
5876 Ptr
.setNull(Info
.Ctx
, E
->getType());
5880 // A failed cast to reference type throws [...] std::bad_cast.
5882 if (!Paths
&& (declaresSameEntity(DynType
->Type
, C
) ||
5883 DynType
->Type
->isDerivedFrom(C
)))
5885 else if (!Paths
|| Paths
->begin() == Paths
->end())
5887 else if (Paths
->isAmbiguous(CQT
))
5890 assert(Paths
->front().Access
!= AS_public
&& "why did the cast fail?");
5893 Info
.FFDiag(E
, diag::note_constexpr_dynamic_cast_to_reference_failed
)
5894 << DiagKind
<< Ptr
.Designator
.getType(Info
.Ctx
)
5895 << Info
.Ctx
.getRecordType(DynType
->Type
)
5896 << E
->getType().getUnqualifiedType();
5900 // Runtime check, phase 1:
5901 // Walk from the base subobject towards the derived object looking for the
5903 for (int PathLength
= Ptr
.Designator
.Entries
.size();
5904 PathLength
>= (int)DynType
->PathLength
; --PathLength
) {
5905 const CXXRecordDecl
*Class
= getBaseClassType(Ptr
.Designator
, PathLength
);
5906 if (declaresSameEntity(Class
, C
))
5907 return CastToDerivedClass(Info
, E
, Ptr
, Class
, PathLength
);
5908 // We can only walk across public inheritance edges.
5909 if (PathLength
> (int)DynType
->PathLength
&&
5910 !isBaseClassPublic(getBaseClassType(Ptr
.Designator
, PathLength
- 1),
5912 return RuntimeCheckFailed(nullptr);
5915 // Runtime check, phase 2:
5916 // Search the dynamic type for an unambiguous public base of type C.
5917 CXXBasePaths
Paths(/*FindAmbiguities=*/true,
5918 /*RecordPaths=*/true, /*DetectVirtual=*/false);
5919 if (DynType
->Type
->isDerivedFrom(C
, Paths
) && !Paths
.isAmbiguous(CQT
) &&
5920 Paths
.front().Access
== AS_public
) {
5921 // Downcast to the dynamic type...
5922 if (!CastToDerivedClass(Info
, E
, Ptr
, DynType
->Type
, DynType
->PathLength
))
5924 // ... then upcast to the chosen base class subobject.
5925 for (CXXBasePathElement
&Elem
: Paths
.front())
5926 if (!HandleLValueBase(Info
, E
, Ptr
, Elem
.Class
, Elem
.Base
))
5931 // Otherwise, the runtime check fails.
5932 return RuntimeCheckFailed(&Paths
);
5936 struct StartLifetimeOfUnionMemberHandler
{
5938 const Expr
*LHSExpr
;
5939 const FieldDecl
*Field
;
5941 bool Failed
= false;
5942 static const AccessKinds AccessKind
= AK_Assign
;
5944 typedef bool result_type
;
5945 bool failed() { return Failed
; }
5946 bool found(APValue
&Subobj
, QualType SubobjType
) {
5947 // We are supposed to perform no initialization but begin the lifetime of
5948 // the object. We interpret that as meaning to do what default
5949 // initialization of the object would do if all constructors involved were
5951 // * All base, non-variant member, and array element subobjects' lifetimes
5953 // * No variant members' lifetimes begin
5954 // * All scalar subobjects whose lifetimes begin have indeterminate values
5955 assert(SubobjType
->isUnionType());
5956 if (declaresSameEntity(Subobj
.getUnionField(), Field
)) {
5957 // This union member is already active. If it's also in-lifetime, there's
5959 if (Subobj
.getUnionValue().hasValue())
5961 } else if (DuringInit
) {
5962 // We're currently in the process of initializing a different union
5963 // member. If we carried on, that initialization would attempt to
5964 // store to an inactive union member, resulting in undefined behavior.
5965 Info
.FFDiag(LHSExpr
,
5966 diag::note_constexpr_union_member_change_during_init
);
5970 Failed
= !getDefaultInitValue(Field
->getType(), Result
);
5971 Subobj
.setUnion(Field
, Result
);
5974 bool found(APSInt
&Value
, QualType SubobjType
) {
5975 llvm_unreachable("wrong value kind for union object");
5977 bool found(APFloat
&Value
, QualType SubobjType
) {
5978 llvm_unreachable("wrong value kind for union object");
5981 } // end anonymous namespace
5983 const AccessKinds
StartLifetimeOfUnionMemberHandler::AccessKind
;
5985 /// Handle a builtin simple-assignment or a call to a trivial assignment
5986 /// operator whose left-hand side might involve a union member access. If it
5987 /// does, implicitly start the lifetime of any accessed union elements per
5988 /// C++20 [class.union]5.
5989 static bool HandleUnionActiveMemberChange(EvalInfo
&Info
, const Expr
*LHSExpr
,
5990 const LValue
&LHS
) {
5991 if (LHS
.InvalidBase
|| LHS
.Designator
.Invalid
)
5994 llvm::SmallVector
<std::pair
<unsigned, const FieldDecl
*>, 4> UnionPathLengths
;
5995 // C++ [class.union]p5:
5996 // define the set S(E) of subexpressions of E as follows:
5997 unsigned PathLength
= LHS
.Designator
.Entries
.size();
5998 for (const Expr
*E
= LHSExpr
; E
!= nullptr;) {
5999 // -- If E is of the form A.B, S(E) contains the elements of S(A)...
6000 if (auto *ME
= dyn_cast
<MemberExpr
>(E
)) {
6001 auto *FD
= dyn_cast
<FieldDecl
>(ME
->getMemberDecl());
6002 // Note that we can't implicitly start the lifetime of a reference,
6003 // so we don't need to proceed any further if we reach one.
6004 if (!FD
|| FD
->getType()->isReferenceType())
6007 // ... and also contains A.B if B names a union member ...
6008 if (FD
->getParent()->isUnion()) {
6009 // ... of a non-class, non-array type, or of a class type with a
6010 // trivial default constructor that is not deleted, or an array of
6013 FD
->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6014 if (!RD
|| RD
->hasTrivialDefaultConstructor())
6015 UnionPathLengths
.push_back({PathLength
- 1, FD
});
6020 assert(declaresSameEntity(FD
,
6021 LHS
.Designator
.Entries
[PathLength
]
6022 .getAsBaseOrMember().getPointer()));
6024 // -- If E is of the form A[B] and is interpreted as a built-in array
6025 // subscripting operator, S(E) is [S(the array operand, if any)].
6026 } else if (auto *ASE
= dyn_cast
<ArraySubscriptExpr
>(E
)) {
6027 // Step over an ArrayToPointerDecay implicit cast.
6028 auto *Base
= ASE
->getBase()->IgnoreImplicit();
6029 if (!Base
->getType()->isArrayType())
6035 } else if (auto *ICE
= dyn_cast
<ImplicitCastExpr
>(E
)) {
6036 // Step over a derived-to-base conversion.
6037 E
= ICE
->getSubExpr();
6038 if (ICE
->getCastKind() == CK_NoOp
)
6040 if (ICE
->getCastKind() != CK_DerivedToBase
&&
6041 ICE
->getCastKind() != CK_UncheckedDerivedToBase
)
6043 // Walk path backwards as we walk up from the base to the derived class.
6044 for (const CXXBaseSpecifier
*Elt
: llvm::reverse(ICE
->path())) {
6047 assert(declaresSameEntity(Elt
->getType()->getAsCXXRecordDecl(),
6048 LHS
.Designator
.Entries
[PathLength
]
6049 .getAsBaseOrMember().getPointer()));
6052 // -- Otherwise, S(E) is empty.
6058 // Common case: no unions' lifetimes are started.
6059 if (UnionPathLengths
.empty())
6062 // if modification of X [would access an inactive union member], an object
6063 // of the type of X is implicitly created
6064 CompleteObject Obj
=
6065 findCompleteObject(Info
, LHSExpr
, AK_Assign
, LHS
, LHSExpr
->getType());
6068 for (std::pair
<unsigned, const FieldDecl
*> LengthAndField
:
6069 llvm::reverse(UnionPathLengths
)) {
6070 // Form a designator for the union object.
6071 SubobjectDesignator D
= LHS
.Designator
;
6072 D
.truncate(Info
.Ctx
, LHS
.Base
, LengthAndField
.first
);
6074 bool DuringInit
= Info
.isEvaluatingCtorDtor(LHS
.Base
, D
.Entries
) ==
6075 ConstructionPhase::AfterBases
;
6076 StartLifetimeOfUnionMemberHandler StartLifetime
{
6077 Info
, LHSExpr
, LengthAndField
.second
, DuringInit
};
6078 if (!findSubobject(Info
, LHSExpr
, Obj
, D
, StartLifetime
))
6085 static bool EvaluateCallArg(const ParmVarDecl
*PVD
, const Expr
*Arg
,
6086 CallRef Call
, EvalInfo
&Info
,
6087 bool NonNull
= false) {
6089 // Create the parameter slot and register its destruction. For a vararg
6090 // argument, create a temporary.
6091 // FIXME: For calling conventions that destroy parameters in the callee,
6092 // should we consider performing destruction when the function returns
6094 APValue
&V
= PVD
? Info
.CurrentCall
->createParam(Call
, PVD
, LV
)
6095 : Info
.CurrentCall
->createTemporary(Arg
, Arg
->getType(),
6096 ScopeKind::Call
, LV
);
6097 if (!EvaluateInPlace(V
, Info
, LV
, Arg
))
6100 // Passing a null pointer to an __attribute__((nonnull)) parameter results in
6101 // undefined behavior, so is non-constant.
6102 if (NonNull
&& V
.isLValue() && V
.isNullPointer()) {
6103 Info
.CCEDiag(Arg
, diag::note_non_null_attribute_failed
);
6110 /// Evaluate the arguments to a function call.
6111 static bool EvaluateArgs(ArrayRef
<const Expr
*> Args
, CallRef Call
,
6112 EvalInfo
&Info
, const FunctionDecl
*Callee
,
6113 bool RightToLeft
= false) {
6114 bool Success
= true;
6115 llvm::SmallBitVector ForbiddenNullArgs
;
6116 if (Callee
->hasAttr
<NonNullAttr
>()) {
6117 ForbiddenNullArgs
.resize(Args
.size());
6118 for (const auto *Attr
: Callee
->specific_attrs
<NonNullAttr
>()) {
6119 if (!Attr
->args_size()) {
6120 ForbiddenNullArgs
.set();
6123 for (auto Idx
: Attr
->args()) {
6124 unsigned ASTIdx
= Idx
.getASTIndex();
6125 if (ASTIdx
>= Args
.size())
6127 ForbiddenNullArgs
[ASTIdx
] = true;
6131 for (unsigned I
= 0; I
< Args
.size(); I
++) {
6132 unsigned Idx
= RightToLeft
? Args
.size() - I
- 1 : I
;
6133 const ParmVarDecl
*PVD
=
6134 Idx
< Callee
->getNumParams() ? Callee
->getParamDecl(Idx
) : nullptr;
6135 bool NonNull
= !ForbiddenNullArgs
.empty() && ForbiddenNullArgs
[Idx
];
6136 if (!EvaluateCallArg(PVD
, Args
[Idx
], Call
, Info
, NonNull
)) {
6137 // If we're checking for a potential constant expression, evaluate all
6138 // initializers even if some of them fail.
6139 if (!Info
.noteFailure())
6147 /// Perform a trivial copy from Param, which is the parameter of a copy or move
6148 /// constructor or assignment operator.
6149 static bool handleTrivialCopy(EvalInfo
&Info
, const ParmVarDecl
*Param
,
6150 const Expr
*E
, APValue
&Result
,
6151 bool CopyObjectRepresentation
) {
6152 // Find the reference argument.
6153 CallStackFrame
*Frame
= Info
.CurrentCall
;
6154 APValue
*RefValue
= Info
.getParamSlot(Frame
->Arguments
, Param
);
6160 // Copy out the contents of the RHS object.
6162 RefLValue
.setFrom(Info
.Ctx
, *RefValue
);
6163 return handleLValueToRValueConversion(
6164 Info
, E
, Param
->getType().getNonReferenceType(), RefLValue
, Result
,
6165 CopyObjectRepresentation
);
6168 /// Evaluate a function call.
6169 static bool HandleFunctionCall(SourceLocation CallLoc
,
6170 const FunctionDecl
*Callee
, const LValue
*This
,
6171 ArrayRef
<const Expr
*> Args
, CallRef Call
,
6172 const Stmt
*Body
, EvalInfo
&Info
,
6173 APValue
&Result
, const LValue
*ResultSlot
) {
6174 if (!Info
.CheckCallLimit(CallLoc
))
6177 CallStackFrame
Frame(Info
, CallLoc
, Callee
, This
, Call
);
6179 // For a trivial copy or move assignment, perform an APValue copy. This is
6180 // essential for unions, where the operations performed by the assignment
6181 // operator cannot be represented as statements.
6183 // Skip this for non-union classes with no fields; in that case, the defaulted
6184 // copy/move does not actually read the object.
6185 const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(Callee
);
6186 if (MD
&& MD
->isDefaulted() &&
6187 (MD
->getParent()->isUnion() ||
6189 isReadByLvalueToRvalueConversion(MD
->getParent())))) {
6191 (MD
->isCopyAssignmentOperator() || MD
->isMoveAssignmentOperator()));
6193 if (!handleTrivialCopy(Info
, MD
->getParamDecl(0), Args
[0], RHSValue
,
6194 MD
->getParent()->isUnion()))
6196 if (!handleAssignment(Info
, Args
[0], *This
, MD
->getThisType(),
6199 This
->moveInto(Result
);
6201 } else if (MD
&& isLambdaCallOperator(MD
)) {
6202 // We're in a lambda; determine the lambda capture field maps unless we're
6203 // just constexpr checking a lambda's call operator. constexpr checking is
6204 // done before the captures have been added to the closure object (unless
6205 // we're inferring constexpr-ness), so we don't have access to them in this
6206 // case. But since we don't need the captures to constexpr check, we can
6207 // just ignore them.
6208 if (!Info
.checkingPotentialConstantExpression())
6209 MD
->getParent()->getCaptureFields(Frame
.LambdaCaptureFields
,
6210 Frame
.LambdaThisCaptureField
);
6213 StmtResult Ret
= {Result
, ResultSlot
};
6214 EvalStmtResult ESR
= EvaluateStmt(Ret
, Info
, Body
);
6215 if (ESR
== ESR_Succeeded
) {
6216 if (Callee
->getReturnType()->isVoidType())
6218 Info
.FFDiag(Callee
->getEndLoc(), diag::note_constexpr_no_return
);
6220 return ESR
== ESR_Returned
;
6223 /// Evaluate a constructor call.
6224 static bool HandleConstructorCall(const Expr
*E
, const LValue
&This
,
6226 const CXXConstructorDecl
*Definition
,
6227 EvalInfo
&Info
, APValue
&Result
) {
6228 SourceLocation CallLoc
= E
->getExprLoc();
6229 if (!Info
.CheckCallLimit(CallLoc
))
6232 const CXXRecordDecl
*RD
= Definition
->getParent();
6233 if (RD
->getNumVBases()) {
6234 Info
.FFDiag(CallLoc
, diag::note_constexpr_virtual_base
) << RD
;
6238 EvalInfo::EvaluatingConstructorRAII
EvalObj(
6240 ObjectUnderConstruction
{This
.getLValueBase(), This
.Designator
.Entries
},
6242 CallStackFrame
Frame(Info
, CallLoc
, Definition
, &This
, Call
);
6244 // FIXME: Creating an APValue just to hold a nonexistent return value is
6247 StmtResult Ret
= {RetVal
, nullptr};
6249 // If it's a delegating constructor, delegate.
6250 if (Definition
->isDelegatingConstructor()) {
6251 CXXConstructorDecl::init_const_iterator I
= Definition
->init_begin();
6252 if ((*I
)->getInit()->isValueDependent()) {
6253 if (!EvaluateDependentExpr((*I
)->getInit(), Info
))
6256 FullExpressionRAII
InitScope(Info
);
6257 if (!EvaluateInPlace(Result
, Info
, This
, (*I
)->getInit()) ||
6258 !InitScope
.destroy())
6261 return EvaluateStmt(Ret
, Info
, Definition
->getBody()) != ESR_Failed
;
6264 // For a trivial copy or move constructor, perform an APValue copy. This is
6265 // essential for unions (or classes with anonymous union members), where the
6266 // operations performed by the constructor cannot be represented by
6267 // ctor-initializers.
6269 // Skip this for empty non-union classes; we should not perform an
6270 // lvalue-to-rvalue conversion on them because their copy constructor does not
6271 // actually read them.
6272 if (Definition
->isDefaulted() && Definition
->isCopyOrMoveConstructor() &&
6273 (Definition
->getParent()->isUnion() ||
6274 (Definition
->isTrivial() &&
6275 isReadByLvalueToRvalueConversion(Definition
->getParent())))) {
6276 return handleTrivialCopy(Info
, Definition
->getParamDecl(0), E
, Result
,
6277 Definition
->getParent()->isUnion());
6280 // Reserve space for the struct members.
6281 if (!Result
.hasValue()) {
6283 Result
= APValue(APValue::UninitStruct(), RD
->getNumBases(),
6284 std::distance(RD
->field_begin(), RD
->field_end()));
6286 // A union starts with no active member.
6287 Result
= APValue((const FieldDecl
*)nullptr);
6290 if (RD
->isInvalidDecl()) return false;
6291 const ASTRecordLayout
&Layout
= Info
.Ctx
.getASTRecordLayout(RD
);
6293 // A scope for temporaries lifetime-extended by reference members.
6294 BlockScopeRAII
LifetimeExtendedScope(Info
);
6296 bool Success
= true;
6297 unsigned BasesSeen
= 0;
6299 CXXRecordDecl::base_class_const_iterator BaseIt
= RD
->bases_begin();
6301 CXXRecordDecl::field_iterator FieldIt
= RD
->field_begin();
6302 auto SkipToField
= [&](FieldDecl
*FD
, bool Indirect
) {
6303 // We might be initializing the same field again if this is an indirect
6304 // field initialization.
6305 if (FieldIt
== RD
->field_end() ||
6306 FieldIt
->getFieldIndex() > FD
->getFieldIndex()) {
6307 assert(Indirect
&& "fields out of order?");
6311 // Default-initialize any fields with no explicit initializer.
6312 for (; !declaresSameEntity(*FieldIt
, FD
); ++FieldIt
) {
6313 assert(FieldIt
!= RD
->field_end() && "missing field?");
6314 if (!FieldIt
->isUnnamedBitfield())
6315 Success
&= getDefaultInitValue(
6317 Result
.getStructField(FieldIt
->getFieldIndex()));
6321 for (const auto *I
: Definition
->inits()) {
6322 LValue Subobject
= This
;
6323 LValue SubobjectParent
= This
;
6324 APValue
*Value
= &Result
;
6326 // Determine the subobject to initialize.
6327 FieldDecl
*FD
= nullptr;
6328 if (I
->isBaseInitializer()) {
6329 QualType
BaseType(I
->getBaseClass(), 0);
6331 // Non-virtual base classes are initialized in the order in the class
6332 // definition. We have already checked for virtual base classes.
6333 assert(!BaseIt
->isVirtual() && "virtual base for literal type");
6334 assert(Info
.Ctx
.hasSameType(BaseIt
->getType(), BaseType
) &&
6335 "base class initializers not in expected order");
6338 if (!HandleLValueDirectBase(Info
, I
->getInit(), Subobject
, RD
,
6339 BaseType
->getAsCXXRecordDecl(), &Layout
))
6341 Value
= &Result
.getStructBase(BasesSeen
++);
6342 } else if ((FD
= I
->getMember())) {
6343 if (!HandleLValueMember(Info
, I
->getInit(), Subobject
, FD
, &Layout
))
6345 if (RD
->isUnion()) {
6346 Result
= APValue(FD
);
6347 Value
= &Result
.getUnionValue();
6349 SkipToField(FD
, false);
6350 Value
= &Result
.getStructField(FD
->getFieldIndex());
6352 } else if (IndirectFieldDecl
*IFD
= I
->getIndirectMember()) {
6353 // Walk the indirect field decl's chain to find the object to initialize,
6354 // and make sure we've initialized every step along it.
6355 auto IndirectFieldChain
= IFD
->chain();
6356 for (auto *C
: IndirectFieldChain
) {
6357 FD
= cast
<FieldDecl
>(C
);
6358 CXXRecordDecl
*CD
= cast
<CXXRecordDecl
>(FD
->getParent());
6359 // Switch the union field if it differs. This happens if we had
6360 // preceding zero-initialization, and we're now initializing a union
6361 // subobject other than the first.
6362 // FIXME: In this case, the values of the other subobjects are
6363 // specified, since zero-initialization sets all padding bits to zero.
6364 if (!Value
->hasValue() ||
6365 (Value
->isUnion() && Value
->getUnionField() != FD
)) {
6367 *Value
= APValue(FD
);
6369 // FIXME: This immediately starts the lifetime of all members of
6370 // an anonymous struct. It would be preferable to strictly start
6371 // member lifetime in initialization order.
6372 Success
&= getDefaultInitValue(Info
.Ctx
.getRecordType(CD
), *Value
);
6374 // Store Subobject as its parent before updating it for the last element
6376 if (C
== IndirectFieldChain
.back())
6377 SubobjectParent
= Subobject
;
6378 if (!HandleLValueMember(Info
, I
->getInit(), Subobject
, FD
))
6381 Value
= &Value
->getUnionValue();
6383 if (C
== IndirectFieldChain
.front() && !RD
->isUnion())
6384 SkipToField(FD
, true);
6385 Value
= &Value
->getStructField(FD
->getFieldIndex());
6389 llvm_unreachable("unknown base initializer kind");
6392 // Need to override This for implicit field initializers as in this case
6393 // This refers to innermost anonymous struct/union containing initializer,
6394 // not to currently constructed class.
6395 const Expr
*Init
= I
->getInit();
6396 if (Init
->isValueDependent()) {
6397 if (!EvaluateDependentExpr(Init
, Info
))
6400 ThisOverrideRAII
ThisOverride(*Info
.CurrentCall
, &SubobjectParent
,
6401 isa
<CXXDefaultInitExpr
>(Init
));
6402 FullExpressionRAII
InitScope(Info
);
6403 if (!EvaluateInPlace(*Value
, Info
, Subobject
, Init
) ||
6404 (FD
&& FD
->isBitField() &&
6405 !truncateBitfieldValue(Info
, Init
, *Value
, FD
))) {
6406 // If we're checking for a potential constant expression, evaluate all
6407 // initializers even if some of them fail.
6408 if (!Info
.noteFailure())
6414 // This is the point at which the dynamic type of the object becomes this
6416 if (I
->isBaseInitializer() && BasesSeen
== RD
->getNumBases())
6417 EvalObj
.finishedConstructingBases();
6420 // Default-initialize any remaining fields.
6421 if (!RD
->isUnion()) {
6422 for (; FieldIt
!= RD
->field_end(); ++FieldIt
) {
6423 if (!FieldIt
->isUnnamedBitfield())
6424 Success
&= getDefaultInitValue(
6426 Result
.getStructField(FieldIt
->getFieldIndex()));
6430 EvalObj
.finishedConstructingFields();
6433 EvaluateStmt(Ret
, Info
, Definition
->getBody()) != ESR_Failed
&&
6434 LifetimeExtendedScope
.destroy();
6437 static bool HandleConstructorCall(const Expr
*E
, const LValue
&This
,
6438 ArrayRef
<const Expr
*> Args
,
6439 const CXXConstructorDecl
*Definition
,
6440 EvalInfo
&Info
, APValue
&Result
) {
6441 CallScopeRAII
CallScope(Info
);
6442 CallRef Call
= Info
.CurrentCall
->createCall(Definition
);
6443 if (!EvaluateArgs(Args
, Call
, Info
, Definition
))
6446 return HandleConstructorCall(E
, This
, Call
, Definition
, Info
, Result
) &&
6447 CallScope
.destroy();
6450 static bool HandleDestructionImpl(EvalInfo
&Info
, SourceLocation CallLoc
,
6451 const LValue
&This
, APValue
&Value
,
6453 // Objects can only be destroyed while they're within their lifetimes.
6454 // FIXME: We have no representation for whether an object of type nullptr_t
6455 // is in its lifetime; it usually doesn't matter. Perhaps we should model it
6456 // as indeterminate instead?
6457 if (Value
.isAbsent() && !T
->isNullPtrType()) {
6459 This
.moveInto(Printable
);
6460 Info
.FFDiag(CallLoc
, diag::note_constexpr_destroy_out_of_lifetime
)
6461 << Printable
.getAsString(Info
.Ctx
, Info
.Ctx
.getLValueReferenceType(T
));
6465 // Invent an expression for location purposes.
6466 // FIXME: We shouldn't need to do this.
6467 OpaqueValueExpr
LocE(CallLoc
, Info
.Ctx
.IntTy
, VK_PRValue
);
6469 // For arrays, destroy elements right-to-left.
6470 if (const ConstantArrayType
*CAT
= Info
.Ctx
.getAsConstantArrayType(T
)) {
6471 uint64_t Size
= CAT
->getSize().getZExtValue();
6472 QualType ElemT
= CAT
->getElementType();
6474 LValue ElemLV
= This
;
6475 ElemLV
.addArray(Info
, &LocE
, CAT
);
6476 if (!HandleLValueArrayAdjustment(Info
, &LocE
, ElemLV
, ElemT
, Size
))
6479 // Ensure that we have actual array elements available to destroy; the
6480 // destructors might mutate the value, so we can't run them on the array
6482 if (Size
&& Size
> Value
.getArrayInitializedElts())
6483 expandArray(Value
, Value
.getArraySize() - 1);
6485 for (; Size
!= 0; --Size
) {
6486 APValue
&Elem
= Value
.getArrayInitializedElt(Size
- 1);
6487 if (!HandleLValueArrayAdjustment(Info
, &LocE
, ElemLV
, ElemT
, -1) ||
6488 !HandleDestructionImpl(Info
, CallLoc
, ElemLV
, Elem
, ElemT
))
6492 // End the lifetime of this array now.
6497 const CXXRecordDecl
*RD
= T
->getAsCXXRecordDecl();
6499 if (T
.isDestructedType()) {
6500 Info
.FFDiag(CallLoc
, diag::note_constexpr_unsupported_destruction
) << T
;
6508 if (RD
->getNumVBases()) {
6509 Info
.FFDiag(CallLoc
, diag::note_constexpr_virtual_base
) << RD
;
6513 const CXXDestructorDecl
*DD
= RD
->getDestructor();
6514 if (!DD
&& !RD
->hasTrivialDestructor()) {
6515 Info
.FFDiag(CallLoc
);
6519 if (!DD
|| DD
->isTrivial() ||
6520 (RD
->isAnonymousStructOrUnion() && RD
->isUnion())) {
6521 // A trivial destructor just ends the lifetime of the object. Check for
6522 // this case before checking for a body, because we might not bother
6523 // building a body for a trivial destructor. Note that it doesn't matter
6524 // whether the destructor is constexpr in this case; all trivial
6525 // destructors are constexpr.
6527 // If an anonymous union would be destroyed, some enclosing destructor must
6528 // have been explicitly defined, and the anonymous union destruction should
6534 if (!Info
.CheckCallLimit(CallLoc
))
6537 const FunctionDecl
*Definition
= nullptr;
6538 const Stmt
*Body
= DD
->getBody(Definition
);
6540 if (!CheckConstexprFunction(Info
, CallLoc
, DD
, Definition
, Body
))
6543 CallStackFrame
Frame(Info
, CallLoc
, Definition
, &This
, CallRef());
6545 // We're now in the period of destruction of this object.
6546 unsigned BasesLeft
= RD
->getNumBases();
6547 EvalInfo::EvaluatingDestructorRAII
EvalObj(
6549 ObjectUnderConstruction
{This
.getLValueBase(), This
.Designator
.Entries
});
6550 if (!EvalObj
.DidInsert
) {
6551 // C++2a [class.dtor]p19:
6552 // the behavior is undefined if the destructor is invoked for an object
6553 // whose lifetime has ended
6554 // (Note that formally the lifetime ends when the period of destruction
6555 // begins, even though certain uses of the object remain valid until the
6556 // period of destruction ends.)
6557 Info
.FFDiag(CallLoc
, diag::note_constexpr_double_destroy
);
6561 // FIXME: Creating an APValue just to hold a nonexistent return value is
6564 StmtResult Ret
= {RetVal
, nullptr};
6565 if (EvaluateStmt(Ret
, Info
, Definition
->getBody()) == ESR_Failed
)
6568 // A union destructor does not implicitly destroy its members.
6572 const ASTRecordLayout
&Layout
= Info
.Ctx
.getASTRecordLayout(RD
);
6574 // We don't have a good way to iterate fields in reverse, so collect all the
6575 // fields first and then walk them backwards.
6576 SmallVector
<FieldDecl
*, 16> Fields(RD
->fields());
6577 for (const FieldDecl
*FD
: llvm::reverse(Fields
)) {
6578 if (FD
->isUnnamedBitfield())
6581 LValue Subobject
= This
;
6582 if (!HandleLValueMember(Info
, &LocE
, Subobject
, FD
, &Layout
))
6585 APValue
*SubobjectValue
= &Value
.getStructField(FD
->getFieldIndex());
6586 if (!HandleDestructionImpl(Info
, CallLoc
, Subobject
, *SubobjectValue
,
6592 EvalObj
.startedDestroyingBases();
6594 // Destroy base classes in reverse order.
6595 for (const CXXBaseSpecifier
&Base
: llvm::reverse(RD
->bases())) {
6598 QualType BaseType
= Base
.getType();
6599 LValue Subobject
= This
;
6600 if (!HandleLValueDirectBase(Info
, &LocE
, Subobject
, RD
,
6601 BaseType
->getAsCXXRecordDecl(), &Layout
))
6604 APValue
*SubobjectValue
= &Value
.getStructBase(BasesLeft
);
6605 if (!HandleDestructionImpl(Info
, CallLoc
, Subobject
, *SubobjectValue
,
6609 assert(BasesLeft
== 0 && "NumBases was wrong?");
6611 // The period of destruction ends now. The object is gone.
6617 struct DestroyObjectHandler
{
6621 const AccessKinds AccessKind
;
6623 typedef bool result_type
;
6624 bool failed() { return false; }
6625 bool found(APValue
&Subobj
, QualType SubobjType
) {
6626 return HandleDestructionImpl(Info
, E
->getExprLoc(), This
, Subobj
,
6629 bool found(APSInt
&Value
, QualType SubobjType
) {
6630 Info
.FFDiag(E
, diag::note_constexpr_destroy_complex_elem
);
6633 bool found(APFloat
&Value
, QualType SubobjType
) {
6634 Info
.FFDiag(E
, diag::note_constexpr_destroy_complex_elem
);
6640 /// Perform a destructor or pseudo-destructor call on the given object, which
6641 /// might in general not be a complete object.
6642 static bool HandleDestruction(EvalInfo
&Info
, const Expr
*E
,
6643 const LValue
&This
, QualType ThisType
) {
6644 CompleteObject Obj
= findCompleteObject(Info
, E
, AK_Destroy
, This
, ThisType
);
6645 DestroyObjectHandler Handler
= {Info
, E
, This
, AK_Destroy
};
6646 return Obj
&& findSubobject(Info
, E
, Obj
, This
.Designator
, Handler
);
6649 /// Destroy and end the lifetime of the given complete object.
6650 static bool HandleDestruction(EvalInfo
&Info
, SourceLocation Loc
,
6651 APValue::LValueBase LVBase
, APValue
&Value
,
6653 // If we've had an unmodeled side-effect, we can't rely on mutable state
6654 // (such as the object we're about to destroy) being correct.
6655 if (Info
.EvalStatus
.HasSideEffects
)
6660 return HandleDestructionImpl(Info
, Loc
, LV
, Value
, T
);
6663 /// Perform a call to 'perator new' or to `__builtin_operator_new'.
6664 static bool HandleOperatorNewCall(EvalInfo
&Info
, const CallExpr
*E
,
6666 if (Info
.checkingPotentialConstantExpression() ||
6667 Info
.SpeculativeEvaluationDepth
)
6670 // This is permitted only within a call to std::allocator<T>::allocate.
6671 auto Caller
= Info
.getStdAllocatorCaller("allocate");
6673 Info
.FFDiag(E
->getExprLoc(), Info
.getLangOpts().CPlusPlus20
6674 ? diag::note_constexpr_new_untyped
6675 : diag::note_constexpr_new
);
6679 QualType ElemType
= Caller
.ElemType
;
6680 if (ElemType
->isIncompleteType() || ElemType
->isFunctionType()) {
6681 Info
.FFDiag(E
->getExprLoc(),
6682 diag::note_constexpr_new_not_complete_object_type
)
6683 << (ElemType
->isIncompleteType() ? 0 : 1) << ElemType
;
6688 if (!EvaluateInteger(E
->getArg(0), ByteSize
, Info
))
6690 bool IsNothrow
= false;
6691 for (unsigned I
= 1, N
= E
->getNumArgs(); I
!= N
; ++I
) {
6692 EvaluateIgnoredValue(Info
, E
->getArg(I
));
6693 IsNothrow
|= E
->getType()->isNothrowT();
6697 if (!HandleSizeof(Info
, E
->getExprLoc(), ElemType
, ElemSize
))
6699 APInt Size
, Remainder
;
6700 APInt
ElemSizeAP(ByteSize
.getBitWidth(), ElemSize
.getQuantity());
6701 APInt::udivrem(ByteSize
, ElemSizeAP
, Size
, Remainder
);
6702 if (Remainder
!= 0) {
6703 // This likely indicates a bug in the implementation of 'std::allocator'.
6704 Info
.FFDiag(E
->getExprLoc(), diag::note_constexpr_operator_new_bad_size
)
6705 << ByteSize
<< APSInt(ElemSizeAP
, true) << ElemType
;
6709 if (ByteSize
.getActiveBits() > ConstantArrayType::getMaxSizeBits(Info
.Ctx
)) {
6711 Result
.setNull(Info
.Ctx
, E
->getType());
6715 Info
.FFDiag(E
, diag::note_constexpr_new_too_large
) << APSInt(Size
, true);
6719 QualType AllocType
= Info
.Ctx
.getConstantArrayType(ElemType
, Size
, nullptr,
6720 ArrayType::Normal
, 0);
6721 APValue
*Val
= Info
.createHeapAlloc(E
, AllocType
, Result
);
6722 *Val
= APValue(APValue::UninitArray(), 0, Size
.getZExtValue());
6723 Result
.addArray(Info
, E
, cast
<ConstantArrayType
>(AllocType
));
6727 static bool hasVirtualDestructor(QualType T
) {
6728 if (CXXRecordDecl
*RD
= T
->getAsCXXRecordDecl())
6729 if (CXXDestructorDecl
*DD
= RD
->getDestructor())
6730 return DD
->isVirtual();
6734 static const FunctionDecl
*getVirtualOperatorDelete(QualType T
) {
6735 if (CXXRecordDecl
*RD
= T
->getAsCXXRecordDecl())
6736 if (CXXDestructorDecl
*DD
= RD
->getDestructor())
6737 return DD
->isVirtual() ? DD
->getOperatorDelete() : nullptr;
6741 /// Check that the given object is a suitable pointer to a heap allocation that
6742 /// still exists and is of the right kind for the purpose of a deletion.
6744 /// On success, returns the heap allocation to deallocate. On failure, produces
6745 /// a diagnostic and returns None.
6746 static Optional
<DynAlloc
*> CheckDeleteKind(EvalInfo
&Info
, const Expr
*E
,
6747 const LValue
&Pointer
,
6748 DynAlloc::Kind DeallocKind
) {
6749 auto PointerAsString
= [&] {
6750 return Pointer
.toString(Info
.Ctx
, Info
.Ctx
.VoidPtrTy
);
6753 DynamicAllocLValue DA
= Pointer
.Base
.dyn_cast
<DynamicAllocLValue
>();
6755 Info
.FFDiag(E
, diag::note_constexpr_delete_not_heap_alloc
)
6756 << PointerAsString();
6758 NoteLValueLocation(Info
, Pointer
.Base
);
6762 Optional
<DynAlloc
*> Alloc
= Info
.lookupDynamicAlloc(DA
);
6764 Info
.FFDiag(E
, diag::note_constexpr_double_delete
);
6768 QualType AllocType
= Pointer
.Base
.getDynamicAllocType();
6769 if (DeallocKind
!= (*Alloc
)->getKind()) {
6770 Info
.FFDiag(E
, diag::note_constexpr_new_delete_mismatch
)
6771 << DeallocKind
<< (*Alloc
)->getKind() << AllocType
;
6772 NoteLValueLocation(Info
, Pointer
.Base
);
6776 bool Subobject
= false;
6777 if (DeallocKind
== DynAlloc::New
) {
6778 Subobject
= Pointer
.Designator
.MostDerivedPathLength
!= 0 ||
6779 Pointer
.Designator
.isOnePastTheEnd();
6781 Subobject
= Pointer
.Designator
.Entries
.size() != 1 ||
6782 Pointer
.Designator
.Entries
[0].getAsArrayIndex() != 0;
6785 Info
.FFDiag(E
, diag::note_constexpr_delete_subobject
)
6786 << PointerAsString() << Pointer
.Designator
.isOnePastTheEnd();
6793 // Perform a call to 'operator delete' or '__builtin_operator_delete'.
6794 bool HandleOperatorDeleteCall(EvalInfo
&Info
, const CallExpr
*E
) {
6795 if (Info
.checkingPotentialConstantExpression() ||
6796 Info
.SpeculativeEvaluationDepth
)
6799 // This is permitted only within a call to std::allocator<T>::deallocate.
6800 if (!Info
.getStdAllocatorCaller("deallocate")) {
6801 Info
.FFDiag(E
->getExprLoc());
6806 if (!EvaluatePointer(E
->getArg(0), Pointer
, Info
))
6808 for (unsigned I
= 1, N
= E
->getNumArgs(); I
!= N
; ++I
)
6809 EvaluateIgnoredValue(Info
, E
->getArg(I
));
6811 if (Pointer
.Designator
.Invalid
)
6814 // Deleting a null pointer would have no effect, but it's not permitted by
6815 // std::allocator<T>::deallocate's contract.
6816 if (Pointer
.isNullPointer()) {
6817 Info
.CCEDiag(E
->getExprLoc(), diag::note_constexpr_deallocate_null
);
6821 if (!CheckDeleteKind(Info
, E
, Pointer
, DynAlloc::StdAllocator
))
6824 Info
.HeapAllocs
.erase(Pointer
.Base
.get
<DynamicAllocLValue
>());
6828 //===----------------------------------------------------------------------===//
6829 // Generic Evaluation
6830 //===----------------------------------------------------------------------===//
6833 class BitCastBuffer
{
6834 // FIXME: We're going to need bit-level granularity when we support
6836 // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
6837 // we don't support a host or target where that is the case. Still, we should
6838 // use a more generic type in case we ever do.
6839 SmallVector
<Optional
<unsigned char>, 32> Bytes
;
6841 static_assert(std::numeric_limits
<unsigned char>::digits
>= 8,
6842 "Need at least 8 bit unsigned char");
6844 bool TargetIsLittleEndian
;
6847 BitCastBuffer(CharUnits Width
, bool TargetIsLittleEndian
)
6848 : Bytes(Width
.getQuantity()),
6849 TargetIsLittleEndian(TargetIsLittleEndian
) {}
6851 [[nodiscard
]] bool readObject(CharUnits Offset
, CharUnits Width
,
6852 SmallVectorImpl
<unsigned char> &Output
) const {
6853 for (CharUnits I
= Offset
, E
= Offset
+ Width
; I
!= E
; ++I
) {
6854 // If a byte of an integer is uninitialized, then the whole integer is
6856 if (!Bytes
[I
.getQuantity()])
6858 Output
.push_back(*Bytes
[I
.getQuantity()]);
6860 if (llvm::sys::IsLittleEndianHost
!= TargetIsLittleEndian
)
6861 std::reverse(Output
.begin(), Output
.end());
6865 void writeObject(CharUnits Offset
, SmallVectorImpl
<unsigned char> &Input
) {
6866 if (llvm::sys::IsLittleEndianHost
!= TargetIsLittleEndian
)
6867 std::reverse(Input
.begin(), Input
.end());
6870 for (unsigned char Byte
: Input
) {
6871 assert(!Bytes
[Offset
.getQuantity() + Index
] && "overwriting a byte?");
6872 Bytes
[Offset
.getQuantity() + Index
] = Byte
;
6877 size_t size() { return Bytes
.size(); }
6880 /// Traverse an APValue to produce an BitCastBuffer, emulating how the current
6881 /// target would represent the value at runtime.
6882 class APValueToBufferConverter
{
6884 BitCastBuffer Buffer
;
6885 const CastExpr
*BCE
;
6887 APValueToBufferConverter(EvalInfo
&Info
, CharUnits ObjectWidth
,
6888 const CastExpr
*BCE
)
6890 Buffer(ObjectWidth
, Info
.Ctx
.getTargetInfo().isLittleEndian()),
6893 bool visit(const APValue
&Val
, QualType Ty
) {
6894 return visit(Val
, Ty
, CharUnits::fromQuantity(0));
6897 // Write out Val with type Ty into Buffer starting at Offset.
6898 bool visit(const APValue
&Val
, QualType Ty
, CharUnits Offset
) {
6899 assert((size_t)Offset
.getQuantity() <= Buffer
.size());
6901 // As a special case, nullptr_t has an indeterminate value.
6902 if (Ty
->isNullPtrType())
6905 // Dig through Src to find the byte at SrcOffset.
6906 switch (Val
.getKind()) {
6907 case APValue::Indeterminate
:
6912 return visitInt(Val
.getInt(), Ty
, Offset
);
6913 case APValue::Float
:
6914 return visitFloat(Val
.getFloat(), Ty
, Offset
);
6915 case APValue::Array
:
6916 return visitArray(Val
, Ty
, Offset
);
6917 case APValue::Struct
:
6918 return visitRecord(Val
, Ty
, Offset
);
6920 case APValue::ComplexInt
:
6921 case APValue::ComplexFloat
:
6922 case APValue::Vector
:
6923 case APValue::FixedPoint
:
6924 // FIXME: We should support these.
6926 case APValue::Union
:
6927 case APValue::MemberPointer
:
6928 case APValue::AddrLabelDiff
: {
6929 Info
.FFDiag(BCE
->getBeginLoc(),
6930 diag::note_constexpr_bit_cast_unsupported_type
)
6935 case APValue::LValue
:
6936 llvm_unreachable("LValue subobject in bit_cast?");
6938 llvm_unreachable("Unhandled APValue::ValueKind");
6941 bool visitRecord(const APValue
&Val
, QualType Ty
, CharUnits Offset
) {
6942 const RecordDecl
*RD
= Ty
->getAsRecordDecl();
6943 const ASTRecordLayout
&Layout
= Info
.Ctx
.getASTRecordLayout(RD
);
6945 // Visit the base classes.
6946 if (auto *CXXRD
= dyn_cast
<CXXRecordDecl
>(RD
)) {
6947 for (size_t I
= 0, E
= CXXRD
->getNumBases(); I
!= E
; ++I
) {
6948 const CXXBaseSpecifier
&BS
= CXXRD
->bases_begin()[I
];
6949 CXXRecordDecl
*BaseDecl
= BS
.getType()->getAsCXXRecordDecl();
6951 if (!visitRecord(Val
.getStructBase(I
), BS
.getType(),
6952 Layout
.getBaseClassOffset(BaseDecl
) + Offset
))
6957 // Visit the fields.
6958 unsigned FieldIdx
= 0;
6959 for (FieldDecl
*FD
: RD
->fields()) {
6960 if (FD
->isBitField()) {
6961 Info
.FFDiag(BCE
->getBeginLoc(),
6962 diag::note_constexpr_bit_cast_unsupported_bitfield
);
6966 uint64_t FieldOffsetBits
= Layout
.getFieldOffset(FieldIdx
);
6968 assert(FieldOffsetBits
% Info
.Ctx
.getCharWidth() == 0 &&
6969 "only bit-fields can have sub-char alignment");
6970 CharUnits FieldOffset
=
6971 Info
.Ctx
.toCharUnitsFromBits(FieldOffsetBits
) + Offset
;
6972 QualType FieldTy
= FD
->getType();
6973 if (!visit(Val
.getStructField(FieldIdx
), FieldTy
, FieldOffset
))
6981 bool visitArray(const APValue
&Val
, QualType Ty
, CharUnits Offset
) {
6983 dyn_cast_or_null
<ConstantArrayType
>(Ty
->getAsArrayTypeUnsafe());
6987 CharUnits ElemWidth
= Info
.Ctx
.getTypeSizeInChars(CAT
->getElementType());
6988 unsigned NumInitializedElts
= Val
.getArrayInitializedElts();
6989 unsigned ArraySize
= Val
.getArraySize();
6990 // First, initialize the initialized elements.
6991 for (unsigned I
= 0; I
!= NumInitializedElts
; ++I
) {
6992 const APValue
&SubObj
= Val
.getArrayInitializedElt(I
);
6993 if (!visit(SubObj
, CAT
->getElementType(), Offset
+ I
* ElemWidth
))
6997 // Next, initialize the rest of the array using the filler.
6998 if (Val
.hasArrayFiller()) {
6999 const APValue
&Filler
= Val
.getArrayFiller();
7000 for (unsigned I
= NumInitializedElts
; I
!= ArraySize
; ++I
) {
7001 if (!visit(Filler
, CAT
->getElementType(), Offset
+ I
* ElemWidth
))
7009 bool visitInt(const APSInt
&Val
, QualType Ty
, CharUnits Offset
) {
7010 APSInt AdjustedVal
= Val
;
7011 unsigned Width
= AdjustedVal
.getBitWidth();
7012 if (Ty
->isBooleanType()) {
7013 Width
= Info
.Ctx
.getTypeSize(Ty
);
7014 AdjustedVal
= AdjustedVal
.extend(Width
);
7017 SmallVector
<unsigned char, 8> Bytes(Width
/ 8);
7018 llvm::StoreIntToMemory(AdjustedVal
, &*Bytes
.begin(), Width
/ 8);
7019 Buffer
.writeObject(Offset
, Bytes
);
7023 bool visitFloat(const APFloat
&Val
, QualType Ty
, CharUnits Offset
) {
7024 APSInt
AsInt(Val
.bitcastToAPInt());
7025 return visitInt(AsInt
, Ty
, Offset
);
7029 static Optional
<BitCastBuffer
> convert(EvalInfo
&Info
, const APValue
&Src
,
7030 const CastExpr
*BCE
) {
7031 CharUnits DstSize
= Info
.Ctx
.getTypeSizeInChars(BCE
->getType());
7032 APValueToBufferConverter
Converter(Info
, DstSize
, BCE
);
7033 if (!Converter
.visit(Src
, BCE
->getSubExpr()->getType()))
7035 return Converter
.Buffer
;
7039 /// Write an BitCastBuffer into an APValue.
7040 class BufferToAPValueConverter
{
7042 const BitCastBuffer
&Buffer
;
7043 const CastExpr
*BCE
;
7045 BufferToAPValueConverter(EvalInfo
&Info
, const BitCastBuffer
&Buffer
,
7046 const CastExpr
*BCE
)
7047 : Info(Info
), Buffer(Buffer
), BCE(BCE
) {}
7049 // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
7050 // with an invalid type, so anything left is a deficiency on our part (FIXME).
7051 // Ideally this will be unreachable.
7052 llvm::NoneType
unsupportedType(QualType Ty
) {
7053 Info
.FFDiag(BCE
->getBeginLoc(),
7054 diag::note_constexpr_bit_cast_unsupported_type
)
7059 llvm::NoneType
unrepresentableValue(QualType Ty
, const APSInt
&Val
) {
7060 Info
.FFDiag(BCE
->getBeginLoc(),
7061 diag::note_constexpr_bit_cast_unrepresentable_value
)
7062 << Ty
<< toString(Val
, /*Radix=*/10);
7066 Optional
<APValue
> visit(const BuiltinType
*T
, CharUnits Offset
,
7067 const EnumType
*EnumSugar
= nullptr) {
7068 if (T
->isNullPtrType()) {
7069 uint64_t NullValue
= Info
.Ctx
.getTargetNullPointerValue(QualType(T
, 0));
7070 return APValue((Expr
*)nullptr,
7071 /*Offset=*/CharUnits::fromQuantity(NullValue
),
7072 APValue::NoLValuePath
{}, /*IsNullPtr=*/true);
7075 CharUnits SizeOf
= Info
.Ctx
.getTypeSizeInChars(T
);
7077 // Work around floating point types that contain unused padding bytes. This
7078 // is really just `long double` on x86, which is the only fundamental type
7079 // with padding bytes.
7080 if (T
->isRealFloatingType()) {
7081 const llvm::fltSemantics
&Semantics
=
7082 Info
.Ctx
.getFloatTypeSemantics(QualType(T
, 0));
7083 unsigned NumBits
= llvm::APFloatBase::getSizeInBits(Semantics
);
7084 assert(NumBits
% 8 == 0);
7085 CharUnits NumBytes
= CharUnits::fromQuantity(NumBits
/ 8);
7086 if (NumBytes
!= SizeOf
)
7090 SmallVector
<uint8_t, 8> Bytes
;
7091 if (!Buffer
.readObject(Offset
, SizeOf
, Bytes
)) {
7092 // If this is std::byte or unsigned char, then its okay to store an
7093 // indeterminate value.
7094 bool IsStdByte
= EnumSugar
&& EnumSugar
->isStdByteType();
7096 !EnumSugar
&& (T
->isSpecificBuiltinType(BuiltinType::UChar
) ||
7097 T
->isSpecificBuiltinType(BuiltinType::Char_U
));
7098 if (!IsStdByte
&& !IsUChar
) {
7099 QualType
DisplayType(EnumSugar
? (const Type
*)EnumSugar
: T
, 0);
7100 Info
.FFDiag(BCE
->getExprLoc(),
7101 diag::note_constexpr_bit_cast_indet_dest
)
7102 << DisplayType
<< Info
.Ctx
.getLangOpts().CharIsSigned
;
7106 return APValue::IndeterminateValue();
7109 APSInt
Val(SizeOf
.getQuantity() * Info
.Ctx
.getCharWidth(), true);
7110 llvm::LoadIntFromMemory(Val
, &*Bytes
.begin(), Bytes
.size());
7112 if (T
->isIntegralOrEnumerationType()) {
7113 Val
.setIsSigned(T
->isSignedIntegerOrEnumerationType());
7115 unsigned IntWidth
= Info
.Ctx
.getIntWidth(QualType(T
, 0));
7116 if (IntWidth
!= Val
.getBitWidth()) {
7117 APSInt Truncated
= Val
.trunc(IntWidth
);
7118 if (Truncated
.extend(Val
.getBitWidth()) != Val
)
7119 return unrepresentableValue(QualType(T
, 0), Val
);
7123 return APValue(Val
);
7126 if (T
->isRealFloatingType()) {
7127 const llvm::fltSemantics
&Semantics
=
7128 Info
.Ctx
.getFloatTypeSemantics(QualType(T
, 0));
7129 return APValue(APFloat(Semantics
, Val
));
7132 return unsupportedType(QualType(T
, 0));
7135 Optional
<APValue
> visit(const RecordType
*RTy
, CharUnits Offset
) {
7136 const RecordDecl
*RD
= RTy
->getAsRecordDecl();
7137 const ASTRecordLayout
&Layout
= Info
.Ctx
.getASTRecordLayout(RD
);
7139 unsigned NumBases
= 0;
7140 if (auto *CXXRD
= dyn_cast
<CXXRecordDecl
>(RD
))
7141 NumBases
= CXXRD
->getNumBases();
7143 APValue
ResultVal(APValue::UninitStruct(), NumBases
,
7144 std::distance(RD
->field_begin(), RD
->field_end()));
7146 // Visit the base classes.
7147 if (auto *CXXRD
= dyn_cast
<CXXRecordDecl
>(RD
)) {
7148 for (size_t I
= 0, E
= CXXRD
->getNumBases(); I
!= E
; ++I
) {
7149 const CXXBaseSpecifier
&BS
= CXXRD
->bases_begin()[I
];
7150 CXXRecordDecl
*BaseDecl
= BS
.getType()->getAsCXXRecordDecl();
7151 if (BaseDecl
->isEmpty() ||
7152 Info
.Ctx
.getASTRecordLayout(BaseDecl
).getNonVirtualSize().isZero())
7155 Optional
<APValue
> SubObj
= visitType(
7156 BS
.getType(), Layout
.getBaseClassOffset(BaseDecl
) + Offset
);
7159 ResultVal
.getStructBase(I
) = *SubObj
;
7163 // Visit the fields.
7164 unsigned FieldIdx
= 0;
7165 for (FieldDecl
*FD
: RD
->fields()) {
7166 // FIXME: We don't currently support bit-fields. A lot of the logic for
7167 // this is in CodeGen, so we need to factor it around.
7168 if (FD
->isBitField()) {
7169 Info
.FFDiag(BCE
->getBeginLoc(),
7170 diag::note_constexpr_bit_cast_unsupported_bitfield
);
7174 uint64_t FieldOffsetBits
= Layout
.getFieldOffset(FieldIdx
);
7175 assert(FieldOffsetBits
% Info
.Ctx
.getCharWidth() == 0);
7177 CharUnits FieldOffset
=
7178 CharUnits::fromQuantity(FieldOffsetBits
/ Info
.Ctx
.getCharWidth()) +
7180 QualType FieldTy
= FD
->getType();
7181 Optional
<APValue
> SubObj
= visitType(FieldTy
, FieldOffset
);
7184 ResultVal
.getStructField(FieldIdx
) = *SubObj
;
7191 Optional
<APValue
> visit(const EnumType
*Ty
, CharUnits Offset
) {
7192 QualType RepresentationType
= Ty
->getDecl()->getIntegerType();
7193 assert(!RepresentationType
.isNull() &&
7194 "enum forward decl should be caught by Sema");
7195 const auto *AsBuiltin
=
7196 RepresentationType
.getCanonicalType()->castAs
<BuiltinType
>();
7197 // Recurse into the underlying type. Treat std::byte transparently as
7199 return visit(AsBuiltin
, Offset
, /*EnumTy=*/Ty
);
7202 Optional
<APValue
> visit(const ConstantArrayType
*Ty
, CharUnits Offset
) {
7203 size_t Size
= Ty
->getSize().getLimitedValue();
7204 CharUnits ElementWidth
= Info
.Ctx
.getTypeSizeInChars(Ty
->getElementType());
7206 APValue
ArrayValue(APValue::UninitArray(), Size
, Size
);
7207 for (size_t I
= 0; I
!= Size
; ++I
) {
7208 Optional
<APValue
> ElementValue
=
7209 visitType(Ty
->getElementType(), Offset
+ I
* ElementWidth
);
7212 ArrayValue
.getArrayInitializedElt(I
) = std::move(*ElementValue
);
7218 Optional
<APValue
> visit(const Type
*Ty
, CharUnits Offset
) {
7219 return unsupportedType(QualType(Ty
, 0));
7222 Optional
<APValue
> visitType(QualType Ty
, CharUnits Offset
) {
7223 QualType Can
= Ty
.getCanonicalType();
7225 switch (Can
->getTypeClass()) {
7226 #define TYPE(Class, Base) \
7228 return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
7229 #define ABSTRACT_TYPE(Class, Base)
7230 #define NON_CANONICAL_TYPE(Class, Base) \
7232 llvm_unreachable("non-canonical type should be impossible!");
7233 #define DEPENDENT_TYPE(Class, Base) \
7236 "dependent types aren't supported in the constant evaluator!");
7237 #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base) \
7239 llvm_unreachable("either dependent or not canonical!");
7240 #include "clang/AST/TypeNodes.inc"
7242 llvm_unreachable("Unhandled Type::TypeClass");
7246 // Pull out a full value of type DstType.
7247 static Optional
<APValue
> convert(EvalInfo
&Info
, BitCastBuffer
&Buffer
,
7248 const CastExpr
*BCE
) {
7249 BufferToAPValueConverter
Converter(Info
, Buffer
, BCE
);
7250 return Converter
.visitType(BCE
->getType(), CharUnits::fromQuantity(0));
7254 static bool checkBitCastConstexprEligibilityType(SourceLocation Loc
,
7255 QualType Ty
, EvalInfo
*Info
,
7256 const ASTContext
&Ctx
,
7257 bool CheckingDest
) {
7258 Ty
= Ty
.getCanonicalType();
7260 auto diag
= [&](int Reason
) {
7262 Info
->FFDiag(Loc
, diag::note_constexpr_bit_cast_invalid_type
)
7263 << CheckingDest
<< (Reason
== 4) << Reason
;
7266 auto note
= [&](int Construct
, QualType NoteTy
, SourceLocation NoteLoc
) {
7268 Info
->Note(NoteLoc
, diag::note_constexpr_bit_cast_invalid_subtype
)
7269 << NoteTy
<< Construct
<< Ty
;
7273 if (Ty
->isUnionType())
7275 if (Ty
->isPointerType())
7277 if (Ty
->isMemberPointerType())
7279 if (Ty
.isVolatileQualified())
7282 if (RecordDecl
*Record
= Ty
->getAsRecordDecl()) {
7283 if (auto *CXXRD
= dyn_cast
<CXXRecordDecl
>(Record
)) {
7284 for (CXXBaseSpecifier
&BS
: CXXRD
->bases())
7285 if (!checkBitCastConstexprEligibilityType(Loc
, BS
.getType(), Info
, Ctx
,
7287 return note(1, BS
.getType(), BS
.getBeginLoc());
7289 for (FieldDecl
*FD
: Record
->fields()) {
7290 if (FD
->getType()->isReferenceType())
7292 if (!checkBitCastConstexprEligibilityType(Loc
, FD
->getType(), Info
, Ctx
,
7294 return note(0, FD
->getType(), FD
->getBeginLoc());
7298 if (Ty
->isArrayType() &&
7299 !checkBitCastConstexprEligibilityType(Loc
, Ctx
.getBaseElementType(Ty
),
7300 Info
, Ctx
, CheckingDest
))
7306 static bool checkBitCastConstexprEligibility(EvalInfo
*Info
,
7307 const ASTContext
&Ctx
,
7308 const CastExpr
*BCE
) {
7309 bool DestOK
= checkBitCastConstexprEligibilityType(
7310 BCE
->getBeginLoc(), BCE
->getType(), Info
, Ctx
, true);
7311 bool SourceOK
= DestOK
&& checkBitCastConstexprEligibilityType(
7313 BCE
->getSubExpr()->getType(), Info
, Ctx
, false);
7317 static bool handleLValueToRValueBitCast(EvalInfo
&Info
, APValue
&DestValue
,
7318 APValue
&SourceValue
,
7319 const CastExpr
*BCE
) {
7320 assert(CHAR_BIT
== 8 && Info
.Ctx
.getTargetInfo().getCharWidth() == 8 &&
7321 "no host or target supports non 8-bit chars");
7322 assert(SourceValue
.isLValue() &&
7323 "LValueToRValueBitcast requires an lvalue operand!");
7325 if (!checkBitCastConstexprEligibility(&Info
, Info
.Ctx
, BCE
))
7328 LValue SourceLValue
;
7329 APValue SourceRValue
;
7330 SourceLValue
.setFrom(Info
.Ctx
, SourceValue
);
7331 if (!handleLValueToRValueConversion(
7332 Info
, BCE
, BCE
->getSubExpr()->getType().withConst(), SourceLValue
,
7333 SourceRValue
, /*WantObjectRepresentation=*/true))
7336 // Read out SourceValue into a char buffer.
7337 Optional
<BitCastBuffer
> Buffer
=
7338 APValueToBufferConverter::convert(Info
, SourceRValue
, BCE
);
7342 // Write out the buffer into a new APValue.
7343 Optional
<APValue
> MaybeDestValue
=
7344 BufferToAPValueConverter::convert(Info
, *Buffer
, BCE
);
7345 if (!MaybeDestValue
)
7348 DestValue
= std::move(*MaybeDestValue
);
7352 template <class Derived
>
7353 class ExprEvaluatorBase
7354 : public ConstStmtVisitor
<Derived
, bool> {
7356 Derived
&getDerived() { return static_cast<Derived
&>(*this); }
7357 bool DerivedSuccess(const APValue
&V
, const Expr
*E
) {
7358 return getDerived().Success(V
, E
);
7360 bool DerivedZeroInitialization(const Expr
*E
) {
7361 return getDerived().ZeroInitialization(E
);
7364 // Check whether a conditional operator with a non-constant condition is a
7365 // potential constant expression. If neither arm is a potential constant
7366 // expression, then the conditional operator is not either.
7367 template<typename ConditionalOperator
>
7368 void CheckPotentialConstantConditional(const ConditionalOperator
*E
) {
7369 assert(Info
.checkingPotentialConstantExpression());
7371 // Speculatively evaluate both arms.
7372 SmallVector
<PartialDiagnosticAt
, 8> Diag
;
7374 SpeculativeEvaluationRAII
Speculate(Info
, &Diag
);
7375 StmtVisitorTy::Visit(E
->getFalseExpr());
7381 SpeculativeEvaluationRAII
Speculate(Info
, &Diag
);
7383 StmtVisitorTy::Visit(E
->getTrueExpr());
7388 Error(E
, diag::note_constexpr_conditional_never_const
);
7392 template<typename ConditionalOperator
>
7393 bool HandleConditionalOperator(const ConditionalOperator
*E
) {
7395 if (!EvaluateAsBooleanCondition(E
->getCond(), BoolResult
, Info
)) {
7396 if (Info
.checkingPotentialConstantExpression() && Info
.noteFailure()) {
7397 CheckPotentialConstantConditional(E
);
7400 if (Info
.noteFailure()) {
7401 StmtVisitorTy::Visit(E
->getTrueExpr());
7402 StmtVisitorTy::Visit(E
->getFalseExpr());
7407 Expr
*EvalExpr
= BoolResult
? E
->getTrueExpr() : E
->getFalseExpr();
7408 return StmtVisitorTy::Visit(EvalExpr
);
7413 typedef ConstStmtVisitor
<Derived
, bool> StmtVisitorTy
;
7414 typedef ExprEvaluatorBase ExprEvaluatorBaseTy
;
7416 OptionalDiagnostic
CCEDiag(const Expr
*E
, diag::kind D
) {
7417 return Info
.CCEDiag(E
, D
);
7420 bool ZeroInitialization(const Expr
*E
) { return Error(E
); }
7422 bool IsConstantEvaluatedBuiltinCall(const CallExpr
*E
) {
7423 unsigned BuiltinOp
= E
->getBuiltinCallee();
7424 return BuiltinOp
!= 0 &&
7425 Info
.Ctx
.BuiltinInfo
.isConstantEvaluated(BuiltinOp
);
7429 ExprEvaluatorBase(EvalInfo
&Info
) : Info(Info
) {}
7431 EvalInfo
&getEvalInfo() { return Info
; }
7433 /// Report an evaluation error. This should only be called when an error is
7434 /// first discovered. When propagating an error, just return false.
7435 bool Error(const Expr
*E
, diag::kind D
) {
7439 bool Error(const Expr
*E
) {
7440 return Error(E
, diag::note_invalid_subexpr_in_const_expr
);
7443 bool VisitStmt(const Stmt
*) {
7444 llvm_unreachable("Expression evaluator should not be called on stmts");
7446 bool VisitExpr(const Expr
*E
) {
7450 bool VisitConstantExpr(const ConstantExpr
*E
) {
7451 if (E
->hasAPValueResult())
7452 return DerivedSuccess(E
->getAPValueResult(), E
);
7454 return StmtVisitorTy::Visit(E
->getSubExpr());
7457 bool VisitParenExpr(const ParenExpr
*E
)
7458 { return StmtVisitorTy::Visit(E
->getSubExpr()); }
7459 bool VisitUnaryExtension(const UnaryOperator
*E
)
7460 { return StmtVisitorTy::Visit(E
->getSubExpr()); }
7461 bool VisitUnaryPlus(const UnaryOperator
*E
)
7462 { return StmtVisitorTy::Visit(E
->getSubExpr()); }
7463 bool VisitChooseExpr(const ChooseExpr
*E
)
7464 { return StmtVisitorTy::Visit(E
->getChosenSubExpr()); }
7465 bool VisitGenericSelectionExpr(const GenericSelectionExpr
*E
)
7466 { return StmtVisitorTy::Visit(E
->getResultExpr()); }
7467 bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr
*E
)
7468 { return StmtVisitorTy::Visit(E
->getReplacement()); }
7469 bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr
*E
) {
7470 TempVersionRAII
RAII(*Info
.CurrentCall
);
7471 SourceLocExprScopeGuard
Guard(E
, Info
.CurrentCall
->CurSourceLocExprScope
);
7472 return StmtVisitorTy::Visit(E
->getExpr());
7474 bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr
*E
) {
7475 TempVersionRAII
RAII(*Info
.CurrentCall
);
7476 // The initializer may not have been parsed yet, or might be erroneous.
7479 SourceLocExprScopeGuard
Guard(E
, Info
.CurrentCall
->CurSourceLocExprScope
);
7480 return StmtVisitorTy::Visit(E
->getExpr());
7483 bool VisitExprWithCleanups(const ExprWithCleanups
*E
) {
7484 FullExpressionRAII
Scope(Info
);
7485 return StmtVisitorTy::Visit(E
->getSubExpr()) && Scope
.destroy();
7488 // Temporaries are registered when created, so we don't care about
7489 // CXXBindTemporaryExpr.
7490 bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr
*E
) {
7491 return StmtVisitorTy::Visit(E
->getSubExpr());
7494 bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr
*E
) {
7495 CCEDiag(E
, diag::note_constexpr_invalid_cast
) << 0;
7496 return static_cast<Derived
*>(this)->VisitCastExpr(E
);
7498 bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr
*E
) {
7499 if (!Info
.Ctx
.getLangOpts().CPlusPlus20
)
7500 CCEDiag(E
, diag::note_constexpr_invalid_cast
) << 1;
7501 return static_cast<Derived
*>(this)->VisitCastExpr(E
);
7503 bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr
*E
) {
7504 return static_cast<Derived
*>(this)->VisitCastExpr(E
);
7507 bool VisitBinaryOperator(const BinaryOperator
*E
) {
7508 switch (E
->getOpcode()) {
7513 VisitIgnoredValue(E
->getLHS());
7514 return StmtVisitorTy::Visit(E
->getRHS());
7519 if (!HandleMemberPointerAccess(Info
, E
, Obj
))
7522 if (!handleLValueToRValueConversion(Info
, E
, E
->getType(), Obj
, Result
))
7524 return DerivedSuccess(Result
, E
);
7529 bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator
*E
) {
7530 return StmtVisitorTy::Visit(E
->getSemanticForm());
7533 bool VisitBinaryConditionalOperator(const BinaryConditionalOperator
*E
) {
7534 // Evaluate and cache the common expression. We treat it as a temporary,
7535 // even though it's not quite the same thing.
7537 if (!Evaluate(Info
.CurrentCall
->createTemporary(
7538 E
->getOpaqueValue(),
7539 getStorageType(Info
.Ctx
, E
->getOpaqueValue()),
7540 ScopeKind::FullExpression
, CommonLV
),
7541 Info
, E
->getCommon()))
7544 return HandleConditionalOperator(E
);
7547 bool VisitConditionalOperator(const ConditionalOperator
*E
) {
7548 bool IsBcpCall
= false;
7549 // If the condition (ignoring parens) is a __builtin_constant_p call,
7550 // the result is a constant expression if it can be folded without
7551 // side-effects. This is an important GNU extension. See GCC PR38377
7553 if (const CallExpr
*CallCE
=
7554 dyn_cast
<CallExpr
>(E
->getCond()->IgnoreParenCasts()))
7555 if (CallCE
->getBuiltinCallee() == Builtin::BI__builtin_constant_p
)
7558 // Always assume __builtin_constant_p(...) ? ... : ... is a potential
7559 // constant expression; we can't check whether it's potentially foldable.
7560 // FIXME: We should instead treat __builtin_constant_p as non-constant if
7561 // it would return 'false' in this mode.
7562 if (Info
.checkingPotentialConstantExpression() && IsBcpCall
)
7565 FoldConstant
Fold(Info
, IsBcpCall
);
7566 if (!HandleConditionalOperator(E
)) {
7567 Fold
.keepDiagnostics();
7574 bool VisitOpaqueValueExpr(const OpaqueValueExpr
*E
) {
7575 if (APValue
*Value
= Info
.CurrentCall
->getCurrentTemporary(E
))
7576 return DerivedSuccess(*Value
, E
);
7578 const Expr
*Source
= E
->getSourceExpr();
7582 assert(0 && "OpaqueValueExpr recursively refers to itself");
7585 return StmtVisitorTy::Visit(Source
);
7588 bool VisitPseudoObjectExpr(const PseudoObjectExpr
*E
) {
7589 for (const Expr
*SemE
: E
->semantics()) {
7590 if (auto *OVE
= dyn_cast
<OpaqueValueExpr
>(SemE
)) {
7591 // FIXME: We can't handle the case where an OpaqueValueExpr is also the
7592 // result expression: there could be two different LValues that would
7593 // refer to the same object in that case, and we can't model that.
7594 if (SemE
== E
->getResultExpr())
7597 // Unique OVEs get evaluated if and when we encounter them when
7598 // emitting the rest of the semantic form, rather than eagerly.
7599 if (OVE
->isUnique())
7603 if (!Evaluate(Info
.CurrentCall
->createTemporary(
7604 OVE
, getStorageType(Info
.Ctx
, OVE
),
7605 ScopeKind::FullExpression
, LV
),
7606 Info
, OVE
->getSourceExpr()))
7608 } else if (SemE
== E
->getResultExpr()) {
7609 if (!StmtVisitorTy::Visit(SemE
))
7612 if (!EvaluateIgnoredValue(Info
, SemE
))
7619 bool VisitCallExpr(const CallExpr
*E
) {
7621 if (!handleCallExpr(E
, Result
, nullptr))
7623 return DerivedSuccess(Result
, E
);
7626 bool handleCallExpr(const CallExpr
*E
, APValue
&Result
,
7627 const LValue
*ResultSlot
) {
7628 CallScopeRAII
CallScope(Info
);
7630 const Expr
*Callee
= E
->getCallee()->IgnoreParens();
7631 QualType CalleeType
= Callee
->getType();
7633 const FunctionDecl
*FD
= nullptr;
7634 LValue
*This
= nullptr, ThisVal
;
7635 auto Args
= llvm::makeArrayRef(E
->getArgs(), E
->getNumArgs());
7636 bool HasQualifier
= false;
7640 // Extract function decl and 'this' pointer from the callee.
7641 if (CalleeType
->isSpecificBuiltinType(BuiltinType::BoundMember
)) {
7642 const CXXMethodDecl
*Member
= nullptr;
7643 if (const MemberExpr
*ME
= dyn_cast
<MemberExpr
>(Callee
)) {
7644 // Explicit bound member calls, such as x.f() or p->g();
7645 if (!EvaluateObjectArgument(Info
, ME
->getBase(), ThisVal
))
7647 Member
= dyn_cast
<CXXMethodDecl
>(ME
->getMemberDecl());
7649 return Error(Callee
);
7651 HasQualifier
= ME
->hasQualifier();
7652 } else if (const BinaryOperator
*BE
= dyn_cast
<BinaryOperator
>(Callee
)) {
7653 // Indirect bound member calls ('.*' or '->*').
7654 const ValueDecl
*D
=
7655 HandleMemberPointerAccess(Info
, BE
, ThisVal
, false);
7658 Member
= dyn_cast
<CXXMethodDecl
>(D
);
7660 return Error(Callee
);
7662 } else if (const auto *PDE
= dyn_cast
<CXXPseudoDestructorExpr
>(Callee
)) {
7663 if (!Info
.getLangOpts().CPlusPlus20
)
7664 Info
.CCEDiag(PDE
, diag::note_constexpr_pseudo_destructor
);
7665 return EvaluateObjectArgument(Info
, PDE
->getBase(), ThisVal
) &&
7666 HandleDestruction(Info
, PDE
, ThisVal
, PDE
->getDestroyedType());
7668 return Error(Callee
);
7670 } else if (CalleeType
->isFunctionPointerType()) {
7672 if (!EvaluatePointer(Callee
, CalleeLV
, Info
))
7675 if (!CalleeLV
.getLValueOffset().isZero())
7676 return Error(Callee
);
7677 FD
= dyn_cast_or_null
<FunctionDecl
>(
7678 CalleeLV
.getLValueBase().dyn_cast
<const ValueDecl
*>());
7680 return Error(Callee
);
7681 // Don't call function pointers which have been cast to some other type.
7682 // Per DR (no number yet), the caller and callee can differ in noexcept.
7683 if (!Info
.Ctx
.hasSameFunctionTypeIgnoringExceptionSpec(
7684 CalleeType
->getPointeeType(), FD
->getType())) {
7688 // For an (overloaded) assignment expression, evaluate the RHS before the
7690 auto *OCE
= dyn_cast
<CXXOperatorCallExpr
>(E
);
7691 if (OCE
&& OCE
->isAssignmentOp()) {
7692 assert(Args
.size() == 2 && "wrong number of arguments in assignment");
7693 Call
= Info
.CurrentCall
->createCall(FD
);
7694 if (!EvaluateArgs(isa
<CXXMethodDecl
>(FD
) ? Args
.slice(1) : Args
, Call
,
7695 Info
, FD
, /*RightToLeft=*/true))
7699 // Overloaded operator calls to member functions are represented as normal
7700 // calls with '*this' as the first argument.
7701 const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
);
7702 if (MD
&& !MD
->isStatic()) {
7703 // FIXME: When selecting an implicit conversion for an overloaded
7704 // operator delete, we sometimes try to evaluate calls to conversion
7705 // operators without a 'this' parameter!
7709 if (!EvaluateObjectArgument(Info
, Args
[0], ThisVal
))
7713 // If this is syntactically a simple assignment using a trivial
7714 // assignment operator, start the lifetimes of union members as needed,
7715 // per C++20 [class.union]5.
7716 if (Info
.getLangOpts().CPlusPlus20
&& OCE
&&
7717 OCE
->getOperator() == OO_Equal
&& MD
->isTrivial() &&
7718 !HandleUnionActiveMemberChange(Info
, Args
[0], ThisVal
))
7721 Args
= Args
.slice(1);
7722 } else if (MD
&& MD
->isLambdaStaticInvoker()) {
7723 // Map the static invoker for the lambda back to the call operator.
7724 // Conveniently, we don't have to slice out the 'this' argument (as is
7725 // being done for the non-static case), since a static member function
7726 // doesn't have an implicit argument passed in.
7727 const CXXRecordDecl
*ClosureClass
= MD
->getParent();
7729 ClosureClass
->captures_begin() == ClosureClass
->captures_end() &&
7730 "Number of captures must be zero for conversion to function-ptr");
7732 const CXXMethodDecl
*LambdaCallOp
=
7733 ClosureClass
->getLambdaCallOperator();
7735 // Set 'FD', the function that will be called below, to the call
7736 // operator. If the closure object represents a generic lambda, find
7737 // the corresponding specialization of the call operator.
7739 if (ClosureClass
->isGenericLambda()) {
7740 assert(MD
->isFunctionTemplateSpecialization() &&
7741 "A generic lambda's static-invoker function must be a "
7742 "template specialization");
7743 const TemplateArgumentList
*TAL
= MD
->getTemplateSpecializationArgs();
7744 FunctionTemplateDecl
*CallOpTemplate
=
7745 LambdaCallOp
->getDescribedFunctionTemplate();
7746 void *InsertPos
= nullptr;
7747 FunctionDecl
*CorrespondingCallOpSpecialization
=
7748 CallOpTemplate
->findSpecialization(TAL
->asArray(), InsertPos
);
7749 assert(CorrespondingCallOpSpecialization
&&
7750 "We must always have a function call operator specialization "
7751 "that corresponds to our static invoker specialization");
7752 FD
= cast
<CXXMethodDecl
>(CorrespondingCallOpSpecialization
);
7755 } else if (FD
->isReplaceableGlobalAllocationFunction()) {
7756 if (FD
->getDeclName().getCXXOverloadedOperator() == OO_New
||
7757 FD
->getDeclName().getCXXOverloadedOperator() == OO_Array_New
) {
7759 if (!HandleOperatorNewCall(Info
, E
, Ptr
))
7761 Ptr
.moveInto(Result
);
7762 return CallScope
.destroy();
7764 return HandleOperatorDeleteCall(Info
, E
) && CallScope
.destroy();
7770 // Evaluate the arguments now if we've not already done so.
7772 Call
= Info
.CurrentCall
->createCall(FD
);
7773 if (!EvaluateArgs(Args
, Call
, Info
, FD
))
7777 SmallVector
<QualType
, 4> CovariantAdjustmentPath
;
7779 auto *NamedMember
= dyn_cast
<CXXMethodDecl
>(FD
);
7780 if (NamedMember
&& NamedMember
->isVirtual() && !HasQualifier
) {
7781 // Perform virtual dispatch, if necessary.
7782 FD
= HandleVirtualDispatch(Info
, E
, *This
, NamedMember
,
7783 CovariantAdjustmentPath
);
7787 // Check that the 'this' pointer points to an object of the right type.
7788 // FIXME: If this is an assignment operator call, we may need to change
7789 // the active union member before we check this.
7790 if (!checkNonVirtualMemberCallThisPointer(Info
, E
, *This
, NamedMember
))
7795 // Destructor calls are different enough that they have their own codepath.
7796 if (auto *DD
= dyn_cast
<CXXDestructorDecl
>(FD
)) {
7797 assert(This
&& "no 'this' pointer for destructor call");
7798 return HandleDestruction(Info
, E
, *This
,
7799 Info
.Ctx
.getRecordType(DD
->getParent())) &&
7800 CallScope
.destroy();
7803 const FunctionDecl
*Definition
= nullptr;
7804 Stmt
*Body
= FD
->getBody(Definition
);
7806 if (!CheckConstexprFunction(Info
, E
->getExprLoc(), FD
, Definition
, Body
) ||
7807 !HandleFunctionCall(E
->getExprLoc(), Definition
, This
, Args
, Call
,
7808 Body
, Info
, Result
, ResultSlot
))
7811 if (!CovariantAdjustmentPath
.empty() &&
7812 !HandleCovariantReturnAdjustment(Info
, E
, Result
,
7813 CovariantAdjustmentPath
))
7816 return CallScope
.destroy();
7819 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr
*E
) {
7820 return StmtVisitorTy::Visit(E
->getInitializer());
7822 bool VisitInitListExpr(const InitListExpr
*E
) {
7823 if (E
->getNumInits() == 0)
7824 return DerivedZeroInitialization(E
);
7825 if (E
->getNumInits() == 1)
7826 return StmtVisitorTy::Visit(E
->getInit(0));
7829 bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr
*E
) {
7830 return DerivedZeroInitialization(E
);
7832 bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr
*E
) {
7833 return DerivedZeroInitialization(E
);
7835 bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr
*E
) {
7836 return DerivedZeroInitialization(E
);
7839 /// A member expression where the object is a prvalue is itself a prvalue.
7840 bool VisitMemberExpr(const MemberExpr
*E
) {
7841 assert(!Info
.Ctx
.getLangOpts().CPlusPlus11
&&
7842 "missing temporary materialization conversion");
7843 assert(!E
->isArrow() && "missing call to bound member function?");
7846 if (!Evaluate(Val
, Info
, E
->getBase()))
7849 QualType BaseTy
= E
->getBase()->getType();
7851 const FieldDecl
*FD
= dyn_cast
<FieldDecl
>(E
->getMemberDecl());
7852 if (!FD
) return Error(E
);
7853 assert(!FD
->getType()->isReferenceType() && "prvalue reference?");
7854 assert(BaseTy
->castAs
<RecordType
>()->getDecl()->getCanonicalDecl() ==
7855 FD
->getParent()->getCanonicalDecl() && "record / field mismatch");
7857 // Note: there is no lvalue base here. But this case should only ever
7858 // happen in C or in C++98, where we cannot be evaluating a constexpr
7859 // constructor, which is the only case the base matters.
7860 CompleteObject
Obj(APValue::LValueBase(), &Val
, BaseTy
);
7861 SubobjectDesignator
Designator(BaseTy
);
7862 Designator
.addDeclUnchecked(FD
);
7865 return extractSubobject(Info
, E
, Obj
, Designator
, Result
) &&
7866 DerivedSuccess(Result
, E
);
7869 bool VisitExtVectorElementExpr(const ExtVectorElementExpr
*E
) {
7871 if (!Evaluate(Val
, Info
, E
->getBase()))
7874 if (Val
.isVector()) {
7875 SmallVector
<uint32_t, 4> Indices
;
7876 E
->getEncodedElementAccess(Indices
);
7877 if (Indices
.size() == 1) {
7879 return DerivedSuccess(Val
.getVectorElt(Indices
[0]), E
);
7881 // Construct new APValue vector.
7882 SmallVector
<APValue
, 4> Elts
;
7883 for (unsigned I
= 0; I
< Indices
.size(); ++I
) {
7884 Elts
.push_back(Val
.getVectorElt(Indices
[I
]));
7886 APValue
VecResult(Elts
.data(), Indices
.size());
7887 return DerivedSuccess(VecResult
, E
);
7894 bool VisitCastExpr(const CastExpr
*E
) {
7895 switch (E
->getCastKind()) {
7899 case CK_AtomicToNonAtomic
: {
7901 // This does not need to be done in place even for class/array types:
7902 // atomic-to-non-atomic conversion implies copying the object
7904 if (!Evaluate(AtomicVal
, Info
, E
->getSubExpr()))
7906 return DerivedSuccess(AtomicVal
, E
);
7910 case CK_UserDefinedConversion
:
7911 return StmtVisitorTy::Visit(E
->getSubExpr());
7913 case CK_LValueToRValue
: {
7915 if (!EvaluateLValue(E
->getSubExpr(), LVal
, Info
))
7918 // Note, we use the subexpression's type in order to retain cv-qualifiers.
7919 if (!handleLValueToRValueConversion(Info
, E
, E
->getSubExpr()->getType(),
7922 return DerivedSuccess(RVal
, E
);
7924 case CK_LValueToRValueBitCast
: {
7925 APValue DestValue
, SourceValue
;
7926 if (!Evaluate(SourceValue
, Info
, E
->getSubExpr()))
7928 if (!handleLValueToRValueBitCast(Info
, DestValue
, SourceValue
, E
))
7930 return DerivedSuccess(DestValue
, E
);
7933 case CK_AddressSpaceConversion
: {
7935 if (!Evaluate(Value
, Info
, E
->getSubExpr()))
7937 return DerivedSuccess(Value
, E
);
7944 bool VisitUnaryPostInc(const UnaryOperator
*UO
) {
7945 return VisitUnaryPostIncDec(UO
);
7947 bool VisitUnaryPostDec(const UnaryOperator
*UO
) {
7948 return VisitUnaryPostIncDec(UO
);
7950 bool VisitUnaryPostIncDec(const UnaryOperator
*UO
) {
7951 if (!Info
.getLangOpts().CPlusPlus14
&& !Info
.keepEvaluatingAfterFailure())
7955 if (!EvaluateLValue(UO
->getSubExpr(), LVal
, Info
))
7958 if (!handleIncDec(this->Info
, UO
, LVal
, UO
->getSubExpr()->getType(),
7959 UO
->isIncrementOp(), &RVal
))
7961 return DerivedSuccess(RVal
, UO
);
7964 bool VisitStmtExpr(const StmtExpr
*E
) {
7965 // We will have checked the full-expressions inside the statement expression
7966 // when they were completed, and don't need to check them again now.
7967 llvm::SaveAndRestore
<bool> NotCheckingForUB(
7968 Info
.CheckingForUndefinedBehavior
, false);
7970 const CompoundStmt
*CS
= E
->getSubStmt();
7971 if (CS
->body_empty())
7974 BlockScopeRAII
Scope(Info
);
7975 for (CompoundStmt::const_body_iterator BI
= CS
->body_begin(),
7976 BE
= CS
->body_end();
7979 const Expr
*FinalExpr
= dyn_cast
<Expr
>(*BI
);
7981 Info
.FFDiag((*BI
)->getBeginLoc(),
7982 diag::note_constexpr_stmt_expr_unsupported
);
7985 return this->Visit(FinalExpr
) && Scope
.destroy();
7988 APValue ReturnValue
;
7989 StmtResult Result
= { ReturnValue
, nullptr };
7990 EvalStmtResult ESR
= EvaluateStmt(Result
, Info
, *BI
);
7991 if (ESR
!= ESR_Succeeded
) {
7992 // FIXME: If the statement-expression terminated due to 'return',
7993 // 'break', or 'continue', it would be nice to propagate that to
7994 // the outer statement evaluation rather than bailing out.
7995 if (ESR
!= ESR_Failed
)
7996 Info
.FFDiag((*BI
)->getBeginLoc(),
7997 diag::note_constexpr_stmt_expr_unsupported
);
8002 llvm_unreachable("Return from function from the loop above.");
8005 /// Visit a value which is evaluated, but whose value is ignored.
8006 void VisitIgnoredValue(const Expr
*E
) {
8007 EvaluateIgnoredValue(Info
, E
);
8010 /// Potentially visit a MemberExpr's base expression.
8011 void VisitIgnoredBaseExpression(const Expr
*E
) {
8012 // While MSVC doesn't evaluate the base expression, it does diagnose the
8013 // presence of side-effecting behavior.
8014 if (Info
.getLangOpts().MSVCCompat
&& !E
->HasSideEffects(Info
.Ctx
))
8016 VisitIgnoredValue(E
);
8022 //===----------------------------------------------------------------------===//
8023 // Common base class for lvalue and temporary evaluation.
8024 //===----------------------------------------------------------------------===//
8026 template<class Derived
>
8027 class LValueExprEvaluatorBase
8028 : public ExprEvaluatorBase
<Derived
> {
8032 typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy
;
8033 typedef ExprEvaluatorBase
<Derived
> ExprEvaluatorBaseTy
;
8035 bool Success(APValue::LValueBase B
) {
8040 bool evaluatePointer(const Expr
*E
, LValue
&Result
) {
8041 return EvaluatePointer(E
, Result
, this->Info
, InvalidBaseOK
);
8045 LValueExprEvaluatorBase(EvalInfo
&Info
, LValue
&Result
, bool InvalidBaseOK
)
8046 : ExprEvaluatorBaseTy(Info
), Result(Result
),
8047 InvalidBaseOK(InvalidBaseOK
) {}
8049 bool Success(const APValue
&V
, const Expr
*E
) {
8050 Result
.setFrom(this->Info
.Ctx
, V
);
8054 bool VisitMemberExpr(const MemberExpr
*E
) {
8055 // Handle non-static data members.
8059 EvalOK
= evaluatePointer(E
->getBase(), Result
);
8060 BaseTy
= E
->getBase()->getType()->castAs
<PointerType
>()->getPointeeType();
8061 } else if (E
->getBase()->isPRValue()) {
8062 assert(E
->getBase()->getType()->isRecordType());
8063 EvalOK
= EvaluateTemporary(E
->getBase(), Result
, this->Info
);
8064 BaseTy
= E
->getBase()->getType();
8066 EvalOK
= this->Visit(E
->getBase());
8067 BaseTy
= E
->getBase()->getType();
8072 Result
.setInvalid(E
);
8076 const ValueDecl
*MD
= E
->getMemberDecl();
8077 if (const FieldDecl
*FD
= dyn_cast
<FieldDecl
>(E
->getMemberDecl())) {
8078 assert(BaseTy
->castAs
<RecordType
>()->getDecl()->getCanonicalDecl() ==
8079 FD
->getParent()->getCanonicalDecl() && "record / field mismatch");
8081 if (!HandleLValueMember(this->Info
, E
, Result
, FD
))
8083 } else if (const IndirectFieldDecl
*IFD
= dyn_cast
<IndirectFieldDecl
>(MD
)) {
8084 if (!HandleLValueIndirectMember(this->Info
, E
, Result
, IFD
))
8087 return this->Error(E
);
8089 if (MD
->getType()->isReferenceType()) {
8091 if (!handleLValueToRValueConversion(this->Info
, E
, MD
->getType(), Result
,
8094 return Success(RefValue
, E
);
8099 bool VisitBinaryOperator(const BinaryOperator
*E
) {
8100 switch (E
->getOpcode()) {
8102 return ExprEvaluatorBaseTy::VisitBinaryOperator(E
);
8106 return HandleMemberPointerAccess(this->Info
, E
, Result
);
8110 bool VisitCastExpr(const CastExpr
*E
) {
8111 switch (E
->getCastKind()) {
8113 return ExprEvaluatorBaseTy::VisitCastExpr(E
);
8115 case CK_DerivedToBase
:
8116 case CK_UncheckedDerivedToBase
:
8117 if (!this->Visit(E
->getSubExpr()))
8120 // Now figure out the necessary offset to add to the base LV to get from
8121 // the derived class to the base class.
8122 return HandleLValueBasePath(this->Info
, E
, E
->getSubExpr()->getType(),
8129 //===----------------------------------------------------------------------===//
8130 // LValue Evaluation
8132 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
8133 // function designators (in C), decl references to void objects (in C), and
8134 // temporaries (if building with -Wno-address-of-temporary).
8136 // LValue evaluation produces values comprising a base expression of one of the
8142 // * CompoundLiteralExpr in C (and in global scope in C++)
8145 // * ObjCStringLiteralExpr
8149 // * CallExpr for a MakeStringConstant builtin
8150 // - typeid(T) expressions, as TypeInfoLValues
8151 // - Locals and temporaries
8152 // * MaterializeTemporaryExpr
8153 // * Any Expr, with a CallIndex indicating the function in which the temporary
8154 // was evaluated, for cases where the MaterializeTemporaryExpr is missing
8155 // from the AST (FIXME).
8156 // * A MaterializeTemporaryExpr that has static storage duration, with no
8157 // CallIndex, for a lifetime-extended temporary.
8158 // * The ConstantExpr that is currently being evaluated during evaluation of an
8159 // immediate invocation.
8160 // plus an offset in bytes.
8161 //===----------------------------------------------------------------------===//
8163 class LValueExprEvaluator
8164 : public LValueExprEvaluatorBase
<LValueExprEvaluator
> {
8166 LValueExprEvaluator(EvalInfo
&Info
, LValue
&Result
, bool InvalidBaseOK
) :
8167 LValueExprEvaluatorBaseTy(Info
, Result
, InvalidBaseOK
) {}
8169 bool VisitVarDecl(const Expr
*E
, const VarDecl
*VD
);
8170 bool VisitUnaryPreIncDec(const UnaryOperator
*UO
);
8172 bool VisitCallExpr(const CallExpr
*E
);
8173 bool VisitDeclRefExpr(const DeclRefExpr
*E
);
8174 bool VisitPredefinedExpr(const PredefinedExpr
*E
) { return Success(E
); }
8175 bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr
*E
);
8176 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr
*E
);
8177 bool VisitMemberExpr(const MemberExpr
*E
);
8178 bool VisitStringLiteral(const StringLiteral
*E
) { return Success(E
); }
8179 bool VisitObjCEncodeExpr(const ObjCEncodeExpr
*E
) { return Success(E
); }
8180 bool VisitCXXTypeidExpr(const CXXTypeidExpr
*E
);
8181 bool VisitCXXUuidofExpr(const CXXUuidofExpr
*E
);
8182 bool VisitArraySubscriptExpr(const ArraySubscriptExpr
*E
);
8183 bool VisitUnaryDeref(const UnaryOperator
*E
);
8184 bool VisitUnaryReal(const UnaryOperator
*E
);
8185 bool VisitUnaryImag(const UnaryOperator
*E
);
8186 bool VisitUnaryPreInc(const UnaryOperator
*UO
) {
8187 return VisitUnaryPreIncDec(UO
);
8189 bool VisitUnaryPreDec(const UnaryOperator
*UO
) {
8190 return VisitUnaryPreIncDec(UO
);
8192 bool VisitBinAssign(const BinaryOperator
*BO
);
8193 bool VisitCompoundAssignOperator(const CompoundAssignOperator
*CAO
);
8195 bool VisitCastExpr(const CastExpr
*E
) {
8196 switch (E
->getCastKind()) {
8198 return LValueExprEvaluatorBaseTy::VisitCastExpr(E
);
8200 case CK_LValueBitCast
:
8201 this->CCEDiag(E
, diag::note_constexpr_invalid_cast
)
8202 << 2 << Info
.Ctx
.getLangOpts().CPlusPlus
;
8203 if (!Visit(E
->getSubExpr()))
8205 Result
.Designator
.setInvalid();
8208 case CK_BaseToDerived
:
8209 if (!Visit(E
->getSubExpr()))
8211 return HandleBaseToDerivedCast(Info
, E
, Result
);
8214 if (!Visit(E
->getSubExpr()))
8216 return HandleDynamicCast(Info
, cast
<ExplicitCastExpr
>(E
), Result
);
8220 } // end anonymous namespace
8222 /// Evaluate an expression as an lvalue. This can be legitimately called on
8223 /// expressions which are not glvalues, in three cases:
8224 /// * function designators in C, and
8225 /// * "extern void" objects
8226 /// * @selector() expressions in Objective-C
8227 static bool EvaluateLValue(const Expr
*E
, LValue
&Result
, EvalInfo
&Info
,
8228 bool InvalidBaseOK
) {
8229 assert(!E
->isValueDependent());
8230 assert(E
->isGLValue() || E
->getType()->isFunctionType() ||
8231 E
->getType()->isVoidType() || isa
<ObjCSelectorExpr
>(E
));
8232 return LValueExprEvaluator(Info
, Result
, InvalidBaseOK
).Visit(E
);
8235 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr
*E
) {
8236 const NamedDecl
*D
= E
->getDecl();
8237 if (isa
<FunctionDecl
, MSGuidDecl
, TemplateParamObjectDecl
,
8238 UnnamedGlobalConstantDecl
>(D
))
8239 return Success(cast
<ValueDecl
>(D
));
8240 if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
))
8241 return VisitVarDecl(E
, VD
);
8242 if (const BindingDecl
*BD
= dyn_cast
<BindingDecl
>(D
))
8243 return Visit(BD
->getBinding());
8248 bool LValueExprEvaluator::VisitVarDecl(const Expr
*E
, const VarDecl
*VD
) {
8250 // If we are within a lambda's call operator, check whether the 'VD' referred
8251 // to within 'E' actually represents a lambda-capture that maps to a
8252 // data-member/field within the closure object, and if so, evaluate to the
8253 // field or what the field refers to.
8254 if (Info
.CurrentCall
&& isLambdaCallOperator(Info
.CurrentCall
->Callee
) &&
8255 isa
<DeclRefExpr
>(E
) &&
8256 cast
<DeclRefExpr
>(E
)->refersToEnclosingVariableOrCapture()) {
8257 // We don't always have a complete capture-map when checking or inferring if
8258 // the function call operator meets the requirements of a constexpr function
8259 // - but we don't need to evaluate the captures to determine constexprness
8260 // (dcl.constexpr C++17).
8261 if (Info
.checkingPotentialConstantExpression())
8264 if (auto *FD
= Info
.CurrentCall
->LambdaCaptureFields
.lookup(VD
)) {
8265 // Start with 'Result' referring to the complete closure object...
8266 Result
= *Info
.CurrentCall
->This
;
8267 // ... then update it to refer to the field of the closure object
8268 // that represents the capture.
8269 if (!HandleLValueMember(Info
, E
, Result
, FD
))
8271 // And if the field is of reference type, update 'Result' to refer to what
8272 // the field refers to.
8273 if (FD
->getType()->isReferenceType()) {
8275 if (!handleLValueToRValueConversion(Info
, E
, FD
->getType(), Result
,
8278 Result
.setFrom(Info
.Ctx
, RVal
);
8284 CallStackFrame
*Frame
= nullptr;
8285 unsigned Version
= 0;
8286 if (VD
->hasLocalStorage()) {
8287 // Only if a local variable was declared in the function currently being
8288 // evaluated, do we expect to be able to find its value in the current
8289 // frame. (Otherwise it was likely declared in an enclosing context and
8290 // could either have a valid evaluatable value (for e.g. a constexpr
8291 // variable) or be ill-formed (and trigger an appropriate evaluation
8293 CallStackFrame
*CurrFrame
= Info
.CurrentCall
;
8294 if (CurrFrame
->Callee
&& CurrFrame
->Callee
->Equals(VD
->getDeclContext())) {
8295 // Function parameters are stored in some caller's frame. (Usually the
8296 // immediate caller, but for an inherited constructor they may be more
8298 if (auto *PVD
= dyn_cast
<ParmVarDecl
>(VD
)) {
8299 if (CurrFrame
->Arguments
) {
8300 VD
= CurrFrame
->Arguments
.getOrigParam(PVD
);
8302 Info
.getCallFrameAndDepth(CurrFrame
->Arguments
.CallIndex
).first
;
8303 Version
= CurrFrame
->Arguments
.Version
;
8307 Version
= CurrFrame
->getCurrentTemporaryVersion(VD
);
8312 if (!VD
->getType()->isReferenceType()) {
8314 Result
.set({VD
, Frame
->Index
, Version
});
8320 if (!Info
.getLangOpts().CPlusPlus11
) {
8321 Info
.CCEDiag(E
, diag::note_constexpr_ltor_non_integral
, 1)
8322 << VD
<< VD
->getType();
8323 Info
.Note(VD
->getLocation(), diag::note_declared_at
);
8327 if (!evaluateVarDeclInit(Info
, E
, VD
, Frame
, Version
, V
))
8329 if (!V
->hasValue()) {
8330 // FIXME: Is it possible for V to be indeterminate here? If so, we should
8331 // adjust the diagnostic to say that.
8332 if (!Info
.checkingPotentialConstantExpression())
8333 Info
.FFDiag(E
, diag::note_constexpr_use_uninit_reference
);
8336 return Success(*V
, E
);
8339 bool LValueExprEvaluator::VisitCallExpr(const CallExpr
*E
) {
8340 if (!IsConstantEvaluatedBuiltinCall(E
))
8341 return ExprEvaluatorBaseTy::VisitCallExpr(E
);
8343 switch (E
->getBuiltinCallee()) {
8346 case Builtin::BIas_const
:
8347 case Builtin::BIforward
:
8348 case Builtin::BImove
:
8349 case Builtin::BImove_if_noexcept
:
8350 if (cast
<FunctionDecl
>(E
->getCalleeDecl())->isConstexpr())
8351 return Visit(E
->getArg(0));
8355 return ExprEvaluatorBaseTy::VisitCallExpr(E
);
8358 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
8359 const MaterializeTemporaryExpr
*E
) {
8360 // Walk through the expression to find the materialized temporary itself.
8361 SmallVector
<const Expr
*, 2> CommaLHSs
;
8362 SmallVector
<SubobjectAdjustment
, 2> Adjustments
;
8364 E
->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs
, Adjustments
);
8366 // If we passed any comma operators, evaluate their LHSs.
8367 for (unsigned I
= 0, N
= CommaLHSs
.size(); I
!= N
; ++I
)
8368 if (!EvaluateIgnoredValue(Info
, CommaLHSs
[I
]))
8371 // A materialized temporary with static storage duration can appear within the
8372 // result of a constant expression evaluation, so we need to preserve its
8373 // value for use outside this evaluation.
8375 if (E
->getStorageDuration() == SD_Static
) {
8376 // FIXME: What about SD_Thread?
8377 Value
= E
->getOrCreateValue(true);
8381 Value
= &Info
.CurrentCall
->createTemporary(
8383 E
->getStorageDuration() == SD_FullExpression
? ScopeKind::FullExpression
8388 QualType Type
= Inner
->getType();
8390 // Materialize the temporary itself.
8391 if (!EvaluateInPlace(*Value
, Info
, Result
, Inner
)) {
8396 // Adjust our lvalue to refer to the desired subobject.
8397 for (unsigned I
= Adjustments
.size(); I
!= 0; /**/) {
8399 switch (Adjustments
[I
].Kind
) {
8400 case SubobjectAdjustment::DerivedToBaseAdjustment
:
8401 if (!HandleLValueBasePath(Info
, Adjustments
[I
].DerivedToBase
.BasePath
,
8404 Type
= Adjustments
[I
].DerivedToBase
.BasePath
->getType();
8407 case SubobjectAdjustment::FieldAdjustment
:
8408 if (!HandleLValueMember(Info
, E
, Result
, Adjustments
[I
].Field
))
8410 Type
= Adjustments
[I
].Field
->getType();
8413 case SubobjectAdjustment::MemberPointerAdjustment
:
8414 if (!HandleMemberPointerAccess(this->Info
, Type
, Result
,
8415 Adjustments
[I
].Ptr
.RHS
))
8417 Type
= Adjustments
[I
].Ptr
.MPT
->getPointeeType();
8426 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr
*E
) {
8427 assert((!Info
.getLangOpts().CPlusPlus
|| E
->isFileScope()) &&
8428 "lvalue compound literal in c++?");
8429 // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
8430 // only see this when folding in C, so there's no standard to follow here.
8434 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr
*E
) {
8435 TypeInfoLValue TypeInfo
;
8437 if (!E
->isPotentiallyEvaluated()) {
8438 if (E
->isTypeOperand())
8439 TypeInfo
= TypeInfoLValue(E
->getTypeOperand(Info
.Ctx
).getTypePtr());
8441 TypeInfo
= TypeInfoLValue(E
->getExprOperand()->getType().getTypePtr());
8443 if (!Info
.Ctx
.getLangOpts().CPlusPlus20
) {
8444 Info
.CCEDiag(E
, diag::note_constexpr_typeid_polymorphic
)
8445 << E
->getExprOperand()->getType()
8446 << E
->getExprOperand()->getSourceRange();
8449 if (!Visit(E
->getExprOperand()))
8452 Optional
<DynamicType
> DynType
=
8453 ComputeDynamicType(Info
, E
, Result
, AK_TypeId
);
8458 TypeInfoLValue(Info
.Ctx
.getRecordType(DynType
->Type
).getTypePtr());
8461 return Success(APValue::LValueBase::getTypeInfo(TypeInfo
, E
->getType()));
8464 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr
*E
) {
8465 return Success(E
->getGuidDecl());
8468 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr
*E
) {
8469 // Handle static data members.
8470 if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(E
->getMemberDecl())) {
8471 VisitIgnoredBaseExpression(E
->getBase());
8472 return VisitVarDecl(E
, VD
);
8475 // Handle static member functions.
8476 if (const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(E
->getMemberDecl())) {
8477 if (MD
->isStatic()) {
8478 VisitIgnoredBaseExpression(E
->getBase());
8483 // Handle non-static data members.
8484 return LValueExprEvaluatorBaseTy::VisitMemberExpr(E
);
8487 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr
*E
) {
8488 // FIXME: Deal with vectors as array subscript bases.
8489 if (E
->getBase()->getType()->isVectorType() ||
8490 E
->getBase()->getType()->isVLSTBuiltinType())
8494 bool Success
= true;
8496 // C++17's rules require us to evaluate the LHS first, regardless of which
8497 // side is the base.
8498 for (const Expr
*SubExpr
: {E
->getLHS(), E
->getRHS()}) {
8499 if (SubExpr
== E
->getBase() ? !evaluatePointer(SubExpr
, Result
)
8500 : !EvaluateInteger(SubExpr
, Index
, Info
)) {
8501 if (!Info
.noteFailure())
8508 HandleLValueArrayAdjustment(Info
, E
, Result
, E
->getType(), Index
);
8511 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator
*E
) {
8512 return evaluatePointer(E
->getSubExpr(), Result
);
8515 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator
*E
) {
8516 if (!Visit(E
->getSubExpr()))
8518 // __real is a no-op on scalar lvalues.
8519 if (E
->getSubExpr()->getType()->isAnyComplexType())
8520 HandleLValueComplexElement(Info
, E
, Result
, E
->getType(), false);
8524 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator
*E
) {
8525 assert(E
->getSubExpr()->getType()->isAnyComplexType() &&
8526 "lvalue __imag__ on scalar?");
8527 if (!Visit(E
->getSubExpr()))
8529 HandleLValueComplexElement(Info
, E
, Result
, E
->getType(), true);
8533 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator
*UO
) {
8534 if (!Info
.getLangOpts().CPlusPlus14
&& !Info
.keepEvaluatingAfterFailure())
8537 if (!this->Visit(UO
->getSubExpr()))
8540 return handleIncDec(
8541 this->Info
, UO
, Result
, UO
->getSubExpr()->getType(),
8542 UO
->isIncrementOp(), nullptr);
8545 bool LValueExprEvaluator::VisitCompoundAssignOperator(
8546 const CompoundAssignOperator
*CAO
) {
8547 if (!Info
.getLangOpts().CPlusPlus14
&& !Info
.keepEvaluatingAfterFailure())
8550 bool Success
= true;
8552 // C++17 onwards require that we evaluate the RHS first.
8554 if (!Evaluate(RHS
, this->Info
, CAO
->getRHS())) {
8555 if (!Info
.noteFailure())
8560 // The overall lvalue result is the result of evaluating the LHS.
8561 if (!this->Visit(CAO
->getLHS()) || !Success
)
8564 return handleCompoundAssignment(
8566 Result
, CAO
->getLHS()->getType(), CAO
->getComputationLHSType(),
8567 CAO
->getOpForCompoundAssignment(CAO
->getOpcode()), RHS
);
8570 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator
*E
) {
8571 if (!Info
.getLangOpts().CPlusPlus14
&& !Info
.keepEvaluatingAfterFailure())
8574 bool Success
= true;
8576 // C++17 onwards require that we evaluate the RHS first.
8578 if (!Evaluate(NewVal
, this->Info
, E
->getRHS())) {
8579 if (!Info
.noteFailure())
8584 if (!this->Visit(E
->getLHS()) || !Success
)
8587 if (Info
.getLangOpts().CPlusPlus20
&&
8588 !HandleUnionActiveMemberChange(Info
, E
->getLHS(), Result
))
8591 return handleAssignment(this->Info
, E
, Result
, E
->getLHS()->getType(),
8595 //===----------------------------------------------------------------------===//
8596 // Pointer Evaluation
8597 //===----------------------------------------------------------------------===//
8599 /// Attempts to compute the number of bytes available at the pointer
8600 /// returned by a function with the alloc_size attribute. Returns true if we
8601 /// were successful. Places an unsigned number into `Result`.
8603 /// This expects the given CallExpr to be a call to a function with an
8604 /// alloc_size attribute.
8605 static bool getBytesReturnedByAllocSizeCall(const ASTContext
&Ctx
,
8606 const CallExpr
*Call
,
8607 llvm::APInt
&Result
) {
8608 const AllocSizeAttr
*AllocSize
= getAllocSizeAttr(Call
);
8610 assert(AllocSize
&& AllocSize
->getElemSizeParam().isValid());
8611 unsigned SizeArgNo
= AllocSize
->getElemSizeParam().getASTIndex();
8612 unsigned BitsInSizeT
= Ctx
.getTypeSize(Ctx
.getSizeType());
8613 if (Call
->getNumArgs() <= SizeArgNo
)
8616 auto EvaluateAsSizeT
= [&](const Expr
*E
, APSInt
&Into
) {
8617 Expr::EvalResult ExprResult
;
8618 if (!E
->EvaluateAsInt(ExprResult
, Ctx
, Expr::SE_AllowSideEffects
))
8620 Into
= ExprResult
.Val
.getInt();
8621 if (Into
.isNegative() || !Into
.isIntN(BitsInSizeT
))
8623 Into
= Into
.zext(BitsInSizeT
);
8628 if (!EvaluateAsSizeT(Call
->getArg(SizeArgNo
), SizeOfElem
))
8631 if (!AllocSize
->getNumElemsParam().isValid()) {
8632 Result
= std::move(SizeOfElem
);
8636 APSInt NumberOfElems
;
8637 unsigned NumArgNo
= AllocSize
->getNumElemsParam().getASTIndex();
8638 if (!EvaluateAsSizeT(Call
->getArg(NumArgNo
), NumberOfElems
))
8642 llvm::APInt BytesAvailable
= SizeOfElem
.umul_ov(NumberOfElems
, Overflow
);
8646 Result
= std::move(BytesAvailable
);
8650 /// Convenience function. LVal's base must be a call to an alloc_size
8652 static bool getBytesReturnedByAllocSizeCall(const ASTContext
&Ctx
,
8654 llvm::APInt
&Result
) {
8655 assert(isBaseAnAllocSizeCall(LVal
.getLValueBase()) &&
8656 "Can't get the size of a non alloc_size function");
8657 const auto *Base
= LVal
.getLValueBase().get
<const Expr
*>();
8658 const CallExpr
*CE
= tryUnwrapAllocSizeCall(Base
);
8659 return getBytesReturnedByAllocSizeCall(Ctx
, CE
, Result
);
8662 /// Attempts to evaluate the given LValueBase as the result of a call to
8663 /// a function with the alloc_size attribute. If it was possible to do so, this
8664 /// function will return true, make Result's Base point to said function call,
8665 /// and mark Result's Base as invalid.
8666 static bool evaluateLValueAsAllocSize(EvalInfo
&Info
, APValue::LValueBase Base
,
8671 // Because we do no form of static analysis, we only support const variables.
8673 // Additionally, we can't support parameters, nor can we support static
8674 // variables (in the latter case, use-before-assign isn't UB; in the former,
8675 // we have no clue what they'll be assigned to).
8677 dyn_cast_or_null
<VarDecl
>(Base
.dyn_cast
<const ValueDecl
*>());
8678 if (!VD
|| !VD
->isLocalVarDecl() || !VD
->getType().isConstQualified())
8681 const Expr
*Init
= VD
->getAnyInitializer();
8682 if (!Init
|| Init
->getType().isNull())
8685 const Expr
*E
= Init
->IgnoreParens();
8686 if (!tryUnwrapAllocSizeCall(E
))
8689 // Store E instead of E unwrapped so that the type of the LValue's base is
8690 // what the user wanted.
8691 Result
.setInvalid(E
);
8693 QualType Pointee
= E
->getType()->castAs
<PointerType
>()->getPointeeType();
8694 Result
.addUnsizedArray(Info
, E
, Pointee
);
8699 class PointerExprEvaluator
8700 : public ExprEvaluatorBase
<PointerExprEvaluator
> {
8704 bool Success(const Expr
*E
) {
8709 bool evaluateLValue(const Expr
*E
, LValue
&Result
) {
8710 return EvaluateLValue(E
, Result
, Info
, InvalidBaseOK
);
8713 bool evaluatePointer(const Expr
*E
, LValue
&Result
) {
8714 return EvaluatePointer(E
, Result
, Info
, InvalidBaseOK
);
8717 bool visitNonBuiltinCallExpr(const CallExpr
*E
);
8720 PointerExprEvaluator(EvalInfo
&info
, LValue
&Result
, bool InvalidBaseOK
)
8721 : ExprEvaluatorBaseTy(info
), Result(Result
),
8722 InvalidBaseOK(InvalidBaseOK
) {}
8724 bool Success(const APValue
&V
, const Expr
*E
) {
8725 Result
.setFrom(Info
.Ctx
, V
);
8728 bool ZeroInitialization(const Expr
*E
) {
8729 Result
.setNull(Info
.Ctx
, E
->getType());
8733 bool VisitBinaryOperator(const BinaryOperator
*E
);
8734 bool VisitCastExpr(const CastExpr
* E
);
8735 bool VisitUnaryAddrOf(const UnaryOperator
*E
);
8736 bool VisitObjCStringLiteral(const ObjCStringLiteral
*E
)
8737 { return Success(E
); }
8738 bool VisitObjCBoxedExpr(const ObjCBoxedExpr
*E
) {
8739 if (E
->isExpressibleAsConstantInitializer())
8741 if (Info
.noteFailure())
8742 EvaluateIgnoredValue(Info
, E
->getSubExpr());
8745 bool VisitAddrLabelExpr(const AddrLabelExpr
*E
)
8746 { return Success(E
); }
8747 bool VisitCallExpr(const CallExpr
*E
);
8748 bool VisitBuiltinCallExpr(const CallExpr
*E
, unsigned BuiltinOp
);
8749 bool VisitBlockExpr(const BlockExpr
*E
) {
8750 if (!E
->getBlockDecl()->hasCaptures())
8754 bool VisitCXXThisExpr(const CXXThisExpr
*E
) {
8755 // Can't look at 'this' when checking a potential constant expression.
8756 if (Info
.checkingPotentialConstantExpression())
8758 if (!Info
.CurrentCall
->This
) {
8759 if (Info
.getLangOpts().CPlusPlus11
)
8760 Info
.FFDiag(E
, diag::note_constexpr_this
) << E
->isImplicit();
8765 Result
= *Info
.CurrentCall
->This
;
8766 // If we are inside a lambda's call operator, the 'this' expression refers
8767 // to the enclosing '*this' object (either by value or reference) which is
8768 // either copied into the closure object's field that represents the '*this'
8769 // or refers to '*this'.
8770 if (isLambdaCallOperator(Info
.CurrentCall
->Callee
)) {
8771 // Ensure we actually have captured 'this'. (an error will have
8772 // been previously reported if not).
8773 if (!Info
.CurrentCall
->LambdaThisCaptureField
)
8776 // Update 'Result' to refer to the data member/field of the closure object
8777 // that represents the '*this' capture.
8778 if (!HandleLValueMember(Info
, E
, Result
,
8779 Info
.CurrentCall
->LambdaThisCaptureField
))
8781 // If we captured '*this' by reference, replace the field with its referent.
8782 if (Info
.CurrentCall
->LambdaThisCaptureField
->getType()
8783 ->isPointerType()) {
8785 if (!handleLValueToRValueConversion(Info
, E
, E
->getType(), Result
,
8789 Result
.setFrom(Info
.Ctx
, RVal
);
8795 bool VisitCXXNewExpr(const CXXNewExpr
*E
);
8797 bool VisitSourceLocExpr(const SourceLocExpr
*E
) {
8798 assert(!E
->isIntType() && "SourceLocExpr isn't a pointer type?");
8799 APValue LValResult
= E
->EvaluateInContext(
8800 Info
.Ctx
, Info
.CurrentCall
->CurSourceLocExprScope
.getDefaultExpr());
8801 Result
.setFrom(Info
.Ctx
, LValResult
);
8805 bool VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr
*E
) {
8806 std::string ResultStr
= E
->ComputeName(Info
.Ctx
);
8808 QualType CharTy
= Info
.Ctx
.CharTy
.withConst();
8809 APInt
Size(Info
.Ctx
.getTypeSize(Info
.Ctx
.getSizeType()),
8810 ResultStr
.size() + 1);
8811 QualType ArrayTy
= Info
.Ctx
.getConstantArrayType(CharTy
, Size
, nullptr,
8812 ArrayType::Normal
, 0);
8815 StringLiteral::Create(Info
.Ctx
, ResultStr
, StringLiteral::Ordinary
,
8816 /*Pascal*/ false, ArrayTy
, E
->getLocation());
8818 evaluateLValue(SL
, Result
);
8819 Result
.addArray(Info
, E
, cast
<ConstantArrayType
>(ArrayTy
));
8823 // FIXME: Missing: @protocol, @selector
8825 } // end anonymous namespace
8827 static bool EvaluatePointer(const Expr
* E
, LValue
& Result
, EvalInfo
&Info
,
8828 bool InvalidBaseOK
) {
8829 assert(!E
->isValueDependent());
8830 assert(E
->isPRValue() && E
->getType()->hasPointerRepresentation());
8831 return PointerExprEvaluator(Info
, Result
, InvalidBaseOK
).Visit(E
);
8834 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator
*E
) {
8835 if (E
->getOpcode() != BO_Add
&&
8836 E
->getOpcode() != BO_Sub
)
8837 return ExprEvaluatorBaseTy::VisitBinaryOperator(E
);
8839 const Expr
*PExp
= E
->getLHS();
8840 const Expr
*IExp
= E
->getRHS();
8841 if (IExp
->getType()->isPointerType())
8842 std::swap(PExp
, IExp
);
8844 bool EvalPtrOK
= evaluatePointer(PExp
, Result
);
8845 if (!EvalPtrOK
&& !Info
.noteFailure())
8848 llvm::APSInt Offset
;
8849 if (!EvaluateInteger(IExp
, Offset
, Info
) || !EvalPtrOK
)
8852 if (E
->getOpcode() == BO_Sub
)
8853 negateAsSigned(Offset
);
8855 QualType Pointee
= PExp
->getType()->castAs
<PointerType
>()->getPointeeType();
8856 return HandleLValueArrayAdjustment(Info
, E
, Result
, Pointee
, Offset
);
8859 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator
*E
) {
8860 return evaluateLValue(E
->getSubExpr(), Result
);
8863 // Is the provided decl 'std::source_location::current'?
8864 static bool IsDeclSourceLocationCurrent(const FunctionDecl
*FD
) {
8867 const IdentifierInfo
*FnII
= FD
->getIdentifier();
8868 if (!FnII
|| !FnII
->isStr("current"))
8871 const auto *RD
= dyn_cast
<RecordDecl
>(FD
->getParent());
8875 const IdentifierInfo
*ClassII
= RD
->getIdentifier();
8876 return RD
->isInStdNamespace() && ClassII
&& ClassII
->isStr("source_location");
8879 bool PointerExprEvaluator::VisitCastExpr(const CastExpr
*E
) {
8880 const Expr
*SubExpr
= E
->getSubExpr();
8882 switch (E
->getCastKind()) {
8886 case CK_CPointerToObjCPointerCast
:
8887 case CK_BlockPointerToObjCPointerCast
:
8888 case CK_AnyPointerToBlockPointerCast
:
8889 case CK_AddressSpaceConversion
:
8890 if (!Visit(SubExpr
))
8892 // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
8893 // permitted in constant expressions in C++11. Bitcasts from cv void* are
8894 // also static_casts, but we disallow them as a resolution to DR1312.
8895 if (!E
->getType()->isVoidPointerType()) {
8896 // In some circumstances, we permit casting from void* to cv1 T*, when the
8897 // actual pointee object is actually a cv2 T.
8898 bool VoidPtrCastMaybeOK
=
8899 !Result
.InvalidBase
&& !Result
.Designator
.Invalid
&&
8900 !Result
.IsNullPtr
&&
8901 Info
.Ctx
.hasSameUnqualifiedType(Result
.Designator
.getType(Info
.Ctx
),
8902 E
->getType()->getPointeeType());
8903 // 1. We'll allow it in std::allocator::allocate, and anything which that
8905 // 2. HACK 2022-03-28: Work around an issue with libstdc++'s
8906 // <source_location> header. Fixed in GCC 12 and later (2022-04-??).
8907 // We'll allow it in the body of std::source_location::current. GCC's
8908 // implementation had a parameter of type `void*`, and casts from
8909 // that back to `const __impl*` in its body.
8910 if (VoidPtrCastMaybeOK
&&
8911 (Info
.getStdAllocatorCaller("allocate") ||
8912 IsDeclSourceLocationCurrent(Info
.CurrentCall
->Callee
))) {
8915 Result
.Designator
.setInvalid();
8916 if (SubExpr
->getType()->isVoidPointerType())
8917 CCEDiag(E
, diag::note_constexpr_invalid_cast
)
8918 << 3 << SubExpr
->getType();
8920 CCEDiag(E
, diag::note_constexpr_invalid_cast
)
8921 << 2 << Info
.Ctx
.getLangOpts().CPlusPlus
;
8924 if (E
->getCastKind() == CK_AddressSpaceConversion
&& Result
.IsNullPtr
)
8925 ZeroInitialization(E
);
8928 case CK_DerivedToBase
:
8929 case CK_UncheckedDerivedToBase
:
8930 if (!evaluatePointer(E
->getSubExpr(), Result
))
8932 if (!Result
.Base
&& Result
.Offset
.isZero())
8935 // Now figure out the necessary offset to add to the base LV to get from
8936 // the derived class to the base class.
8937 return HandleLValueBasePath(Info
, E
, E
->getSubExpr()->getType()->
8938 castAs
<PointerType
>()->getPointeeType(),
8941 case CK_BaseToDerived
:
8942 if (!Visit(E
->getSubExpr()))
8944 if (!Result
.Base
&& Result
.Offset
.isZero())
8946 return HandleBaseToDerivedCast(Info
, E
, Result
);
8949 if (!Visit(E
->getSubExpr()))
8951 return HandleDynamicCast(Info
, cast
<ExplicitCastExpr
>(E
), Result
);
8953 case CK_NullToPointer
:
8954 VisitIgnoredValue(E
->getSubExpr());
8955 return ZeroInitialization(E
);
8957 case CK_IntegralToPointer
: {
8958 CCEDiag(E
, diag::note_constexpr_invalid_cast
)
8959 << 2 << Info
.Ctx
.getLangOpts().CPlusPlus
;
8962 if (!EvaluateIntegerOrLValue(SubExpr
, Value
, Info
))
8965 if (Value
.isInt()) {
8966 unsigned Size
= Info
.Ctx
.getTypeSize(E
->getType());
8967 uint64_t N
= Value
.getInt().extOrTrunc(Size
).getZExtValue();
8968 Result
.Base
= (Expr
*)nullptr;
8969 Result
.InvalidBase
= false;
8970 Result
.Offset
= CharUnits::fromQuantity(N
);
8971 Result
.Designator
.setInvalid();
8972 Result
.IsNullPtr
= false;
8975 // Cast is of an lvalue, no need to change value.
8976 Result
.setFrom(Info
.Ctx
, Value
);
8981 case CK_ArrayToPointerDecay
: {
8982 if (SubExpr
->isGLValue()) {
8983 if (!evaluateLValue(SubExpr
, Result
))
8986 APValue
&Value
= Info
.CurrentCall
->createTemporary(
8987 SubExpr
, SubExpr
->getType(), ScopeKind::FullExpression
, Result
);
8988 if (!EvaluateInPlace(Value
, Info
, Result
, SubExpr
))
8991 // The result is a pointer to the first element of the array.
8992 auto *AT
= Info
.Ctx
.getAsArrayType(SubExpr
->getType());
8993 if (auto *CAT
= dyn_cast
<ConstantArrayType
>(AT
))
8994 Result
.addArray(Info
, E
, CAT
);
8996 Result
.addUnsizedArray(Info
, E
, AT
->getElementType());
9000 case CK_FunctionToPointerDecay
:
9001 return evaluateLValue(SubExpr
, Result
);
9003 case CK_LValueToRValue
: {
9005 if (!evaluateLValue(E
->getSubExpr(), LVal
))
9009 // Note, we use the subexpression's type in order to retain cv-qualifiers.
9010 if (!handleLValueToRValueConversion(Info
, E
, E
->getSubExpr()->getType(),
9012 return InvalidBaseOK
&&
9013 evaluateLValueAsAllocSize(Info
, LVal
.Base
, Result
);
9014 return Success(RVal
, E
);
9018 return ExprEvaluatorBaseTy::VisitCastExpr(E
);
9021 static CharUnits
GetAlignOfType(EvalInfo
&Info
, QualType T
,
9022 UnaryExprOrTypeTrait ExprKind
) {
9023 // C++ [expr.alignof]p3:
9024 // When alignof is applied to a reference type, the result is the
9025 // alignment of the referenced type.
9026 if (const ReferenceType
*Ref
= T
->getAs
<ReferenceType
>())
9027 T
= Ref
->getPointeeType();
9029 if (T
.getQualifiers().hasUnaligned())
9030 return CharUnits::One();
9032 const bool AlignOfReturnsPreferred
=
9033 Info
.Ctx
.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7
;
9035 // __alignof is defined to return the preferred alignment.
9036 // Before 8, clang returned the preferred alignment for alignof and _Alignof
9038 if (ExprKind
== UETT_PreferredAlignOf
|| AlignOfReturnsPreferred
)
9039 return Info
.Ctx
.toCharUnitsFromBits(
9040 Info
.Ctx
.getPreferredTypeAlign(T
.getTypePtr()));
9041 // alignof and _Alignof are defined to return the ABI alignment.
9042 else if (ExprKind
== UETT_AlignOf
)
9043 return Info
.Ctx
.getTypeAlignInChars(T
.getTypePtr());
9045 llvm_unreachable("GetAlignOfType on a non-alignment ExprKind");
9048 static CharUnits
GetAlignOfExpr(EvalInfo
&Info
, const Expr
*E
,
9049 UnaryExprOrTypeTrait ExprKind
) {
9050 E
= E
->IgnoreParens();
9052 // The kinds of expressions that we have special-case logic here for
9053 // should be kept up to date with the special checks for those
9054 // expressions in Sema.
9056 // alignof decl is always accepted, even if it doesn't make sense: we default
9057 // to 1 in those cases.
9058 if (const DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(E
))
9059 return Info
.Ctx
.getDeclAlign(DRE
->getDecl(),
9060 /*RefAsPointee*/true);
9062 if (const MemberExpr
*ME
= dyn_cast
<MemberExpr
>(E
))
9063 return Info
.Ctx
.getDeclAlign(ME
->getMemberDecl(),
9064 /*RefAsPointee*/true);
9066 return GetAlignOfType(Info
, E
->getType(), ExprKind
);
9069 static CharUnits
getBaseAlignment(EvalInfo
&Info
, const LValue
&Value
) {
9070 if (const auto *VD
= Value
.Base
.dyn_cast
<const ValueDecl
*>())
9071 return Info
.Ctx
.getDeclAlign(VD
);
9072 if (const auto *E
= Value
.Base
.dyn_cast
<const Expr
*>())
9073 return GetAlignOfExpr(Info
, E
, UETT_AlignOf
);
9074 return GetAlignOfType(Info
, Value
.Base
.getTypeInfoType(), UETT_AlignOf
);
9077 /// Evaluate the value of the alignment argument to __builtin_align_{up,down},
9078 /// __builtin_is_aligned and __builtin_assume_aligned.
9079 static bool getAlignmentArgument(const Expr
*E
, QualType ForType
,
9080 EvalInfo
&Info
, APSInt
&Alignment
) {
9081 if (!EvaluateInteger(E
, Alignment
, Info
))
9083 if (Alignment
< 0 || !Alignment
.isPowerOf2()) {
9084 Info
.FFDiag(E
, diag::note_constexpr_invalid_alignment
) << Alignment
;
9087 unsigned SrcWidth
= Info
.Ctx
.getIntWidth(ForType
);
9088 APSInt
MaxValue(APInt::getOneBitSet(SrcWidth
, SrcWidth
- 1));
9089 if (APSInt::compareValues(Alignment
, MaxValue
) > 0) {
9090 Info
.FFDiag(E
, diag::note_constexpr_alignment_too_big
)
9091 << MaxValue
<< ForType
<< Alignment
;
9094 // Ensure both alignment and source value have the same bit width so that we
9095 // don't assert when computing the resulting value.
9096 APSInt ExtAlignment
=
9097 APSInt(Alignment
.zextOrTrunc(SrcWidth
), /*isUnsigned=*/true);
9098 assert(APSInt::compareValues(Alignment
, ExtAlignment
) == 0 &&
9099 "Alignment should not be changed by ext/trunc");
9100 Alignment
= ExtAlignment
;
9101 assert(Alignment
.getBitWidth() == SrcWidth
);
9105 // To be clear: this happily visits unsupported builtins. Better name welcomed.
9106 bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr
*E
) {
9107 if (ExprEvaluatorBaseTy::VisitCallExpr(E
))
9110 if (!(InvalidBaseOK
&& getAllocSizeAttr(E
)))
9113 Result
.setInvalid(E
);
9114 QualType PointeeTy
= E
->getType()->castAs
<PointerType
>()->getPointeeType();
9115 Result
.addUnsizedArray(Info
, E
, PointeeTy
);
9119 bool PointerExprEvaluator::VisitCallExpr(const CallExpr
*E
) {
9120 if (!IsConstantEvaluatedBuiltinCall(E
))
9121 return visitNonBuiltinCallExpr(E
);
9122 return VisitBuiltinCallExpr(E
, E
->getBuiltinCallee());
9125 // Determine if T is a character type for which we guarantee that
9127 static bool isOneByteCharacterType(QualType T
) {
9128 return T
->isCharType() || T
->isChar8Type();
9131 bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr
*E
,
9132 unsigned BuiltinOp
) {
9136 switch (BuiltinOp
) {
9137 case Builtin::BIaddressof
:
9138 case Builtin::BI__addressof
:
9139 case Builtin::BI__builtin_addressof
:
9140 return evaluateLValue(E
->getArg(0), Result
);
9141 case Builtin::BI__builtin_assume_aligned
: {
9142 // We need to be very careful here because: if the pointer does not have the
9143 // asserted alignment, then the behavior is undefined, and undefined
9144 // behavior is non-constant.
9145 if (!evaluatePointer(E
->getArg(0), Result
))
9148 LValue
OffsetResult(Result
);
9150 if (!getAlignmentArgument(E
->getArg(1), E
->getArg(0)->getType(), Info
,
9153 CharUnits Align
= CharUnits::fromQuantity(Alignment
.getZExtValue());
9155 if (E
->getNumArgs() > 2) {
9157 if (!EvaluateInteger(E
->getArg(2), Offset
, Info
))
9160 int64_t AdditionalOffset
= -Offset
.getZExtValue();
9161 OffsetResult
.Offset
+= CharUnits::fromQuantity(AdditionalOffset
);
9164 // If there is a base object, then it must have the correct alignment.
9165 if (OffsetResult
.Base
) {
9166 CharUnits BaseAlignment
= getBaseAlignment(Info
, OffsetResult
);
9168 if (BaseAlignment
< Align
) {
9169 Result
.Designator
.setInvalid();
9170 // FIXME: Add support to Diagnostic for long / long long.
9171 CCEDiag(E
->getArg(0),
9172 diag::note_constexpr_baa_insufficient_alignment
) << 0
9173 << (unsigned)BaseAlignment
.getQuantity()
9174 << (unsigned)Align
.getQuantity();
9179 // The offset must also have the correct alignment.
9180 if (OffsetResult
.Offset
.alignTo(Align
) != OffsetResult
.Offset
) {
9181 Result
.Designator
.setInvalid();
9184 ? CCEDiag(E
->getArg(0),
9185 diag::note_constexpr_baa_insufficient_alignment
) << 1
9186 : CCEDiag(E
->getArg(0),
9187 diag::note_constexpr_baa_value_insufficient_alignment
))
9188 << (int)OffsetResult
.Offset
.getQuantity()
9189 << (unsigned)Align
.getQuantity();
9195 case Builtin::BI__builtin_align_up
:
9196 case Builtin::BI__builtin_align_down
: {
9197 if (!evaluatePointer(E
->getArg(0), Result
))
9200 if (!getAlignmentArgument(E
->getArg(1), E
->getArg(0)->getType(), Info
,
9203 CharUnits BaseAlignment
= getBaseAlignment(Info
, Result
);
9204 CharUnits PtrAlign
= BaseAlignment
.alignmentAtOffset(Result
.Offset
);
9205 // For align_up/align_down, we can return the same value if the alignment
9206 // is known to be greater or equal to the requested value.
9207 if (PtrAlign
.getQuantity() >= Alignment
)
9210 // The alignment could be greater than the minimum at run-time, so we cannot
9211 // infer much about the resulting pointer value. One case is possible:
9212 // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we
9213 // can infer the correct index if the requested alignment is smaller than
9214 // the base alignment so we can perform the computation on the offset.
9215 if (BaseAlignment
.getQuantity() >= Alignment
) {
9216 assert(Alignment
.getBitWidth() <= 64 &&
9217 "Cannot handle > 64-bit address-space");
9218 uint64_t Alignment64
= Alignment
.getZExtValue();
9219 CharUnits NewOffset
= CharUnits::fromQuantity(
9220 BuiltinOp
== Builtin::BI__builtin_align_down
9221 ? llvm::alignDown(Result
.Offset
.getQuantity(), Alignment64
)
9222 : llvm::alignTo(Result
.Offset
.getQuantity(), Alignment64
));
9223 Result
.adjustOffset(NewOffset
- Result
.Offset
);
9224 // TODO: diagnose out-of-bounds values/only allow for arrays?
9227 // Otherwise, we cannot constant-evaluate the result.
9228 Info
.FFDiag(E
->getArg(0), diag::note_constexpr_alignment_adjust
)
9232 case Builtin::BI__builtin_operator_new
:
9233 return HandleOperatorNewCall(Info
, E
, Result
);
9234 case Builtin::BI__builtin_launder
:
9235 return evaluatePointer(E
->getArg(0), Result
);
9236 case Builtin::BIstrchr
:
9237 case Builtin::BIwcschr
:
9238 case Builtin::BImemchr
:
9239 case Builtin::BIwmemchr
:
9240 if (Info
.getLangOpts().CPlusPlus11
)
9241 Info
.CCEDiag(E
, diag::note_constexpr_invalid_function
)
9242 << /*isConstexpr*/0 << /*isConstructor*/0
9243 << (std::string("'") + Info
.Ctx
.BuiltinInfo
.getName(BuiltinOp
) + "'");
9245 Info
.CCEDiag(E
, diag::note_invalid_subexpr_in_const_expr
);
9247 case Builtin::BI__builtin_strchr
:
9248 case Builtin::BI__builtin_wcschr
:
9249 case Builtin::BI__builtin_memchr
:
9250 case Builtin::BI__builtin_char_memchr
:
9251 case Builtin::BI__builtin_wmemchr
: {
9252 if (!Visit(E
->getArg(0)))
9255 if (!EvaluateInteger(E
->getArg(1), Desired
, Info
))
9257 uint64_t MaxLength
= uint64_t(-1);
9258 if (BuiltinOp
!= Builtin::BIstrchr
&&
9259 BuiltinOp
!= Builtin::BIwcschr
&&
9260 BuiltinOp
!= Builtin::BI__builtin_strchr
&&
9261 BuiltinOp
!= Builtin::BI__builtin_wcschr
) {
9263 if (!EvaluateInteger(E
->getArg(2), N
, Info
))
9265 MaxLength
= N
.getExtValue();
9267 // We cannot find the value if there are no candidates to match against.
9268 if (MaxLength
== 0u)
9269 return ZeroInitialization(E
);
9270 if (!Result
.checkNullPointerForFoldAccess(Info
, E
, AK_Read
) ||
9271 Result
.Designator
.Invalid
)
9273 QualType CharTy
= Result
.Designator
.getType(Info
.Ctx
);
9274 bool IsRawByte
= BuiltinOp
== Builtin::BImemchr
||
9275 BuiltinOp
== Builtin::BI__builtin_memchr
;
9277 Info
.Ctx
.hasSameUnqualifiedType(
9278 CharTy
, E
->getArg(0)->getType()->getPointeeType()));
9279 // Pointers to const void may point to objects of incomplete type.
9280 if (IsRawByte
&& CharTy
->isIncompleteType()) {
9281 Info
.FFDiag(E
, diag::note_constexpr_ltor_incomplete_type
) << CharTy
;
9284 // Give up on byte-oriented matching against multibyte elements.
9285 // FIXME: We can compare the bytes in the correct order.
9286 if (IsRawByte
&& !isOneByteCharacterType(CharTy
)) {
9287 Info
.FFDiag(E
, diag::note_constexpr_memchr_unsupported
)
9288 << (std::string("'") + Info
.Ctx
.BuiltinInfo
.getName(BuiltinOp
) + "'")
9292 // Figure out what value we're actually looking for (after converting to
9293 // the corresponding unsigned type if necessary).
9294 uint64_t DesiredVal
;
9295 bool StopAtNull
= false;
9296 switch (BuiltinOp
) {
9297 case Builtin::BIstrchr
:
9298 case Builtin::BI__builtin_strchr
:
9299 // strchr compares directly to the passed integer, and therefore
9300 // always fails if given an int that is not a char.
9301 if (!APSInt::isSameValue(HandleIntToIntCast(Info
, E
, CharTy
,
9302 E
->getArg(1)->getType(),
9305 return ZeroInitialization(E
);
9308 case Builtin::BImemchr
:
9309 case Builtin::BI__builtin_memchr
:
9310 case Builtin::BI__builtin_char_memchr
:
9311 // memchr compares by converting both sides to unsigned char. That's also
9312 // correct for strchr if we get this far (to cope with plain char being
9313 // unsigned in the strchr case).
9314 DesiredVal
= Desired
.trunc(Info
.Ctx
.getCharWidth()).getZExtValue();
9317 case Builtin::BIwcschr
:
9318 case Builtin::BI__builtin_wcschr
:
9321 case Builtin::BIwmemchr
:
9322 case Builtin::BI__builtin_wmemchr
:
9323 // wcschr and wmemchr are given a wchar_t to look for. Just use it.
9324 DesiredVal
= Desired
.getZExtValue();
9328 for (; MaxLength
; --MaxLength
) {
9330 if (!handleLValueToRValueConversion(Info
, E
, CharTy
, Result
, Char
) ||
9333 if (Char
.getInt().getZExtValue() == DesiredVal
)
9335 if (StopAtNull
&& !Char
.getInt())
9337 if (!HandleLValueArrayAdjustment(Info
, E
, Result
, CharTy
, 1))
9340 // Not found: return nullptr.
9341 return ZeroInitialization(E
);
9344 case Builtin::BImemcpy
:
9345 case Builtin::BImemmove
:
9346 case Builtin::BIwmemcpy
:
9347 case Builtin::BIwmemmove
:
9348 if (Info
.getLangOpts().CPlusPlus11
)
9349 Info
.CCEDiag(E
, diag::note_constexpr_invalid_function
)
9350 << /*isConstexpr*/0 << /*isConstructor*/0
9351 << (std::string("'") + Info
.Ctx
.BuiltinInfo
.getName(BuiltinOp
) + "'");
9353 Info
.CCEDiag(E
, diag::note_invalid_subexpr_in_const_expr
);
9355 case Builtin::BI__builtin_memcpy
:
9356 case Builtin::BI__builtin_memmove
:
9357 case Builtin::BI__builtin_wmemcpy
:
9358 case Builtin::BI__builtin_wmemmove
: {
9359 bool WChar
= BuiltinOp
== Builtin::BIwmemcpy
||
9360 BuiltinOp
== Builtin::BIwmemmove
||
9361 BuiltinOp
== Builtin::BI__builtin_wmemcpy
||
9362 BuiltinOp
== Builtin::BI__builtin_wmemmove
;
9363 bool Move
= BuiltinOp
== Builtin::BImemmove
||
9364 BuiltinOp
== Builtin::BIwmemmove
||
9365 BuiltinOp
== Builtin::BI__builtin_memmove
||
9366 BuiltinOp
== Builtin::BI__builtin_wmemmove
;
9368 // The result of mem* is the first argument.
9369 if (!Visit(E
->getArg(0)))
9371 LValue Dest
= Result
;
9374 if (!EvaluatePointer(E
->getArg(1), Src
, Info
))
9378 if (!EvaluateInteger(E
->getArg(2), N
, Info
))
9380 assert(!N
.isSigned() && "memcpy and friends take an unsigned size");
9382 // If the size is zero, we treat this as always being a valid no-op.
9383 // (Even if one of the src and dest pointers is null.)
9387 // Otherwise, if either of the operands is null, we can't proceed. Don't
9388 // try to determine the type of the copied objects, because there aren't
9390 if (!Src
.Base
|| !Dest
.Base
) {
9392 (!Src
.Base
? Src
: Dest
).moveInto(Val
);
9393 Info
.FFDiag(E
, diag::note_constexpr_memcpy_null
)
9394 << Move
<< WChar
<< !!Src
.Base
9395 << Val
.getAsString(Info
.Ctx
, E
->getArg(0)->getType());
9398 if (Src
.Designator
.Invalid
|| Dest
.Designator
.Invalid
)
9401 // We require that Src and Dest are both pointers to arrays of
9402 // trivially-copyable type. (For the wide version, the designator will be
9403 // invalid if the designated object is not a wchar_t.)
9404 QualType T
= Dest
.Designator
.getType(Info
.Ctx
);
9405 QualType SrcT
= Src
.Designator
.getType(Info
.Ctx
);
9406 if (!Info
.Ctx
.hasSameUnqualifiedType(T
, SrcT
)) {
9407 // FIXME: Consider using our bit_cast implementation to support this.
9408 Info
.FFDiag(E
, diag::note_constexpr_memcpy_type_pun
) << Move
<< SrcT
<< T
;
9411 if (T
->isIncompleteType()) {
9412 Info
.FFDiag(E
, diag::note_constexpr_memcpy_incomplete_type
) << Move
<< T
;
9415 if (!T
.isTriviallyCopyableType(Info
.Ctx
)) {
9416 Info
.FFDiag(E
, diag::note_constexpr_memcpy_nontrivial
) << Move
<< T
;
9420 // Figure out how many T's we're copying.
9421 uint64_t TSize
= Info
.Ctx
.getTypeSizeInChars(T
).getQuantity();
9424 llvm::APInt OrigN
= N
;
9425 llvm::APInt::udivrem(OrigN
, TSize
, N
, Remainder
);
9427 Info
.FFDiag(E
, diag::note_constexpr_memcpy_unsupported
)
9428 << Move
<< WChar
<< 0 << T
<< toString(OrigN
, 10, /*Signed*/false)
9434 // Check that the copying will remain within the arrays, just so that we
9435 // can give a more meaningful diagnostic. This implicitly also checks that
9436 // N fits into 64 bits.
9437 uint64_t RemainingSrcSize
= Src
.Designator
.validIndexAdjustments().second
;
9438 uint64_t RemainingDestSize
= Dest
.Designator
.validIndexAdjustments().second
;
9439 if (N
.ugt(RemainingSrcSize
) || N
.ugt(RemainingDestSize
)) {
9440 Info
.FFDiag(E
, diag::note_constexpr_memcpy_unsupported
)
9441 << Move
<< WChar
<< (N
.ugt(RemainingSrcSize
) ? 1 : 2) << T
9442 << toString(N
, 10, /*Signed*/false);
9445 uint64_t NElems
= N
.getZExtValue();
9446 uint64_t NBytes
= NElems
* TSize
;
9448 // Check for overlap.
9450 if (HasSameBase(Src
, Dest
)) {
9451 uint64_t SrcOffset
= Src
.getLValueOffset().getQuantity();
9452 uint64_t DestOffset
= Dest
.getLValueOffset().getQuantity();
9453 if (DestOffset
>= SrcOffset
&& DestOffset
- SrcOffset
< NBytes
) {
9454 // Dest is inside the source region.
9456 Info
.FFDiag(E
, diag::note_constexpr_memcpy_overlap
) << WChar
;
9459 // For memmove and friends, copy backwards.
9460 if (!HandleLValueArrayAdjustment(Info
, E
, Src
, T
, NElems
- 1) ||
9461 !HandleLValueArrayAdjustment(Info
, E
, Dest
, T
, NElems
- 1))
9464 } else if (!Move
&& SrcOffset
>= DestOffset
&&
9465 SrcOffset
- DestOffset
< NBytes
) {
9466 // Src is inside the destination region for memcpy: invalid.
9467 Info
.FFDiag(E
, diag::note_constexpr_memcpy_overlap
) << WChar
;
9474 // FIXME: Set WantObjectRepresentation to true if we're copying a
9476 if (!handleLValueToRValueConversion(Info
, E
, T
, Src
, Val
) ||
9477 !handleAssignment(Info
, E
, Dest
, T
, Val
))
9479 // Do not iterate past the last element; if we're copying backwards, that
9480 // might take us off the start of the array.
9483 if (!HandleLValueArrayAdjustment(Info
, E
, Src
, T
, Direction
) ||
9484 !HandleLValueArrayAdjustment(Info
, E
, Dest
, T
, Direction
))
9494 static bool EvaluateArrayNewInitList(EvalInfo
&Info
, LValue
&This
,
9495 APValue
&Result
, const InitListExpr
*ILE
,
9496 QualType AllocType
);
9497 static bool EvaluateArrayNewConstructExpr(EvalInfo
&Info
, LValue
&This
,
9499 const CXXConstructExpr
*CCE
,
9500 QualType AllocType
);
9502 bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr
*E
) {
9503 if (!Info
.getLangOpts().CPlusPlus20
)
9504 Info
.CCEDiag(E
, diag::note_constexpr_new
);
9506 // We cannot speculatively evaluate a delete expression.
9507 if (Info
.SpeculativeEvaluationDepth
)
9510 FunctionDecl
*OperatorNew
= E
->getOperatorNew();
9512 bool IsNothrow
= false;
9513 bool IsPlacement
= false;
9514 if (OperatorNew
->isReservedGlobalPlacementOperator() &&
9515 Info
.CurrentCall
->isStdFunction() && !E
->isArray()) {
9516 // FIXME Support array placement new.
9517 assert(E
->getNumPlacementArgs() == 1);
9518 if (!EvaluatePointer(E
->getPlacementArg(0), Result
, Info
))
9520 if (Result
.Designator
.Invalid
)
9523 } else if (!OperatorNew
->isReplaceableGlobalAllocationFunction()) {
9524 Info
.FFDiag(E
, diag::note_constexpr_new_non_replaceable
)
9525 << isa
<CXXMethodDecl
>(OperatorNew
) << OperatorNew
;
9527 } else if (E
->getNumPlacementArgs()) {
9528 // The only new-placement list we support is of the form (std::nothrow).
9530 // FIXME: There is no restriction on this, but it's not clear that any
9531 // other form makes any sense. We get here for cases such as:
9533 // new (std::align_val_t{N}) X(int)
9535 // (which should presumably be valid only if N is a multiple of
9536 // alignof(int), and in any case can't be deallocated unless N is
9537 // alignof(X) and X has new-extended alignment).
9538 if (E
->getNumPlacementArgs() != 1 ||
9539 !E
->getPlacementArg(0)->getType()->isNothrowT())
9540 return Error(E
, diag::note_constexpr_new_placement
);
9543 if (!EvaluateLValue(E
->getPlacementArg(0), Nothrow
, Info
))
9548 const Expr
*Init
= E
->getInitializer();
9549 const InitListExpr
*ResizedArrayILE
= nullptr;
9550 const CXXConstructExpr
*ResizedArrayCCE
= nullptr;
9551 bool ValueInit
= false;
9553 QualType AllocType
= E
->getAllocatedType();
9554 if (Optional
<const Expr
*> ArraySize
= E
->getArraySize()) {
9555 const Expr
*Stripped
= *ArraySize
;
9556 for (; auto *ICE
= dyn_cast
<ImplicitCastExpr
>(Stripped
);
9557 Stripped
= ICE
->getSubExpr())
9558 if (ICE
->getCastKind() != CK_NoOp
&&
9559 ICE
->getCastKind() != CK_IntegralCast
)
9562 llvm::APSInt ArrayBound
;
9563 if (!EvaluateInteger(Stripped
, ArrayBound
, Info
))
9566 // C++ [expr.new]p9:
9567 // The expression is erroneous if:
9568 // -- [...] its value before converting to size_t [or] applying the
9569 // second standard conversion sequence is less than zero
9570 if (ArrayBound
.isSigned() && ArrayBound
.isNegative()) {
9572 return ZeroInitialization(E
);
9574 Info
.FFDiag(*ArraySize
, diag::note_constexpr_new_negative
)
9575 << ArrayBound
<< (*ArraySize
)->getSourceRange();
9579 // -- its value is such that the size of the allocated object would
9580 // exceed the implementation-defined limit
9581 if (ConstantArrayType::getNumAddressingBits(Info
.Ctx
, AllocType
,
9583 ConstantArrayType::getMaxSizeBits(Info
.Ctx
)) {
9585 return ZeroInitialization(E
);
9587 Info
.FFDiag(*ArraySize
, diag::note_constexpr_new_too_large
)
9588 << ArrayBound
<< (*ArraySize
)->getSourceRange();
9592 // -- the new-initializer is a braced-init-list and the number of
9593 // array elements for which initializers are provided [...]
9594 // exceeds the number of elements to initialize
9596 // No initialization is performed.
9597 } else if (isa
<CXXScalarValueInitExpr
>(Init
) ||
9598 isa
<ImplicitValueInitExpr
>(Init
)) {
9600 } else if (auto *CCE
= dyn_cast
<CXXConstructExpr
>(Init
)) {
9601 ResizedArrayCCE
= CCE
;
9603 auto *CAT
= Info
.Ctx
.getAsConstantArrayType(Init
->getType());
9604 assert(CAT
&& "unexpected type for array initializer");
9607 std::max(CAT
->getSize().getBitWidth(), ArrayBound
.getBitWidth());
9608 llvm::APInt InitBound
= CAT
->getSize().zext(Bits
);
9609 llvm::APInt AllocBound
= ArrayBound
.zext(Bits
);
9610 if (InitBound
.ugt(AllocBound
)) {
9612 return ZeroInitialization(E
);
9614 Info
.FFDiag(*ArraySize
, diag::note_constexpr_new_too_small
)
9615 << toString(AllocBound
, 10, /*Signed=*/false)
9616 << toString(InitBound
, 10, /*Signed=*/false)
9617 << (*ArraySize
)->getSourceRange();
9621 // If the sizes differ, we must have an initializer list, and we need
9622 // special handling for this case when we initialize.
9623 if (InitBound
!= AllocBound
)
9624 ResizedArrayILE
= cast
<InitListExpr
>(Init
);
9627 AllocType
= Info
.Ctx
.getConstantArrayType(AllocType
, ArrayBound
, nullptr,
9628 ArrayType::Normal
, 0);
9630 assert(!AllocType
->isArrayType() &&
9631 "array allocation with non-array new");
9636 AccessKinds AK
= AK_Construct
;
9637 struct FindObjectHandler
{
9641 const AccessKinds AccessKind
;
9644 typedef bool result_type
;
9645 bool failed() { return false; }
9646 bool found(APValue
&Subobj
, QualType SubobjType
) {
9647 // FIXME: Reject the cases where [basic.life]p8 would not permit the
9648 // old name of the object to be used to name the new object.
9649 if (!Info
.Ctx
.hasSameUnqualifiedType(SubobjType
, AllocType
)) {
9650 Info
.FFDiag(E
, diag::note_constexpr_placement_new_wrong_type
) <<
9651 SubobjType
<< AllocType
;
9657 bool found(APSInt
&Value
, QualType SubobjType
) {
9658 Info
.FFDiag(E
, diag::note_constexpr_construct_complex_elem
);
9661 bool found(APFloat
&Value
, QualType SubobjType
) {
9662 Info
.FFDiag(E
, diag::note_constexpr_construct_complex_elem
);
9665 } Handler
= {Info
, E
, AllocType
, AK
, nullptr};
9667 CompleteObject Obj
= findCompleteObject(Info
, E
, AK
, Result
, AllocType
);
9668 if (!Obj
|| !findSubobject(Info
, E
, Obj
, Result
.Designator
, Handler
))
9671 Val
= Handler
.Value
;
9674 // The lifetime of an object o of type T ends when [...] the storage
9675 // which the object occupies is [...] reused by an object that is not
9676 // nested within o (6.6.2).
9679 // Perform the allocation and obtain a pointer to the resulting object.
9680 Val
= Info
.createHeapAlloc(E
, AllocType
, Result
);
9686 ImplicitValueInitExpr
VIE(AllocType
);
9687 if (!EvaluateInPlace(*Val
, Info
, Result
, &VIE
))
9689 } else if (ResizedArrayILE
) {
9690 if (!EvaluateArrayNewInitList(Info
, Result
, *Val
, ResizedArrayILE
,
9693 } else if (ResizedArrayCCE
) {
9694 if (!EvaluateArrayNewConstructExpr(Info
, Result
, *Val
, ResizedArrayCCE
,
9698 if (!EvaluateInPlace(*Val
, Info
, Result
, Init
))
9700 } else if (!getDefaultInitValue(AllocType
, *Val
)) {
9704 // Array new returns a pointer to the first element, not a pointer to the
9706 if (auto *AT
= AllocType
->getAsArrayTypeUnsafe())
9707 Result
.addArray(Info
, E
, cast
<ConstantArrayType
>(AT
));
9711 //===----------------------------------------------------------------------===//
9712 // Member Pointer Evaluation
9713 //===----------------------------------------------------------------------===//
9716 class MemberPointerExprEvaluator
9717 : public ExprEvaluatorBase
<MemberPointerExprEvaluator
> {
9720 bool Success(const ValueDecl
*D
) {
9721 Result
= MemberPtr(D
);
9726 MemberPointerExprEvaluator(EvalInfo
&Info
, MemberPtr
&Result
)
9727 : ExprEvaluatorBaseTy(Info
), Result(Result
) {}
9729 bool Success(const APValue
&V
, const Expr
*E
) {
9733 bool ZeroInitialization(const Expr
*E
) {
9734 return Success((const ValueDecl
*)nullptr);
9737 bool VisitCastExpr(const CastExpr
*E
);
9738 bool VisitUnaryAddrOf(const UnaryOperator
*E
);
9740 } // end anonymous namespace
9742 static bool EvaluateMemberPointer(const Expr
*E
, MemberPtr
&Result
,
9744 assert(!E
->isValueDependent());
9745 assert(E
->isPRValue() && E
->getType()->isMemberPointerType());
9746 return MemberPointerExprEvaluator(Info
, Result
).Visit(E
);
9749 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr
*E
) {
9750 switch (E
->getCastKind()) {
9752 return ExprEvaluatorBaseTy::VisitCastExpr(E
);
9754 case CK_NullToMemberPointer
:
9755 VisitIgnoredValue(E
->getSubExpr());
9756 return ZeroInitialization(E
);
9758 case CK_BaseToDerivedMemberPointer
: {
9759 if (!Visit(E
->getSubExpr()))
9761 if (E
->path_empty())
9763 // Base-to-derived member pointer casts store the path in derived-to-base
9764 // order, so iterate backwards. The CXXBaseSpecifier also provides us with
9765 // the wrong end of the derived->base arc, so stagger the path by one class.
9766 typedef std::reverse_iterator
<CastExpr::path_const_iterator
> ReverseIter
;
9767 for (ReverseIter
PathI(E
->path_end() - 1), PathE(E
->path_begin());
9768 PathI
!= PathE
; ++PathI
) {
9769 assert(!(*PathI
)->isVirtual() && "memptr cast through vbase");
9770 const CXXRecordDecl
*Derived
= (*PathI
)->getType()->getAsCXXRecordDecl();
9771 if (!Result
.castToDerived(Derived
))
9774 const Type
*FinalTy
= E
->getType()->castAs
<MemberPointerType
>()->getClass();
9775 if (!Result
.castToDerived(FinalTy
->getAsCXXRecordDecl()))
9780 case CK_DerivedToBaseMemberPointer
:
9781 if (!Visit(E
->getSubExpr()))
9783 for (CastExpr::path_const_iterator PathI
= E
->path_begin(),
9784 PathE
= E
->path_end(); PathI
!= PathE
; ++PathI
) {
9785 assert(!(*PathI
)->isVirtual() && "memptr cast through vbase");
9786 const CXXRecordDecl
*Base
= (*PathI
)->getType()->getAsCXXRecordDecl();
9787 if (!Result
.castToBase(Base
))
9794 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator
*E
) {
9795 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
9796 // member can be formed.
9797 return Success(cast
<DeclRefExpr
>(E
->getSubExpr())->getDecl());
9800 //===----------------------------------------------------------------------===//
9801 // Record Evaluation
9802 //===----------------------------------------------------------------------===//
9805 class RecordExprEvaluator
9806 : public ExprEvaluatorBase
<RecordExprEvaluator
> {
9811 RecordExprEvaluator(EvalInfo
&info
, const LValue
&This
, APValue
&Result
)
9812 : ExprEvaluatorBaseTy(info
), This(This
), Result(Result
) {}
9814 bool Success(const APValue
&V
, const Expr
*E
) {
9818 bool ZeroInitialization(const Expr
*E
) {
9819 return ZeroInitialization(E
, E
->getType());
9821 bool ZeroInitialization(const Expr
*E
, QualType T
);
9823 bool VisitCallExpr(const CallExpr
*E
) {
9824 return handleCallExpr(E
, Result
, &This
);
9826 bool VisitCastExpr(const CastExpr
*E
);
9827 bool VisitInitListExpr(const InitListExpr
*E
);
9828 bool VisitCXXConstructExpr(const CXXConstructExpr
*E
) {
9829 return VisitCXXConstructExpr(E
, E
->getType());
9831 bool VisitLambdaExpr(const LambdaExpr
*E
);
9832 bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr
*E
);
9833 bool VisitCXXConstructExpr(const CXXConstructExpr
*E
, QualType T
);
9834 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr
*E
);
9835 bool VisitBinCmp(const BinaryOperator
*E
);
9839 /// Perform zero-initialization on an object of non-union class type.
9840 /// C++11 [dcl.init]p5:
9841 /// To zero-initialize an object or reference of type T means:
9843 /// -- if T is a (possibly cv-qualified) non-union class type,
9844 /// each non-static data member and each base-class subobject is
9845 /// zero-initialized
9846 static bool HandleClassZeroInitialization(EvalInfo
&Info
, const Expr
*E
,
9847 const RecordDecl
*RD
,
9848 const LValue
&This
, APValue
&Result
) {
9849 assert(!RD
->isUnion() && "Expected non-union class type");
9850 const CXXRecordDecl
*CD
= dyn_cast
<CXXRecordDecl
>(RD
);
9851 Result
= APValue(APValue::UninitStruct(), CD
? CD
->getNumBases() : 0,
9852 std::distance(RD
->field_begin(), RD
->field_end()));
9854 if (RD
->isInvalidDecl()) return false;
9855 const ASTRecordLayout
&Layout
= Info
.Ctx
.getASTRecordLayout(RD
);
9859 for (CXXRecordDecl::base_class_const_iterator I
= CD
->bases_begin(),
9860 End
= CD
->bases_end(); I
!= End
; ++I
, ++Index
) {
9861 const CXXRecordDecl
*Base
= I
->getType()->getAsCXXRecordDecl();
9862 LValue Subobject
= This
;
9863 if (!HandleLValueDirectBase(Info
, E
, Subobject
, CD
, Base
, &Layout
))
9865 if (!HandleClassZeroInitialization(Info
, E
, Base
, Subobject
,
9866 Result
.getStructBase(Index
)))
9871 for (const auto *I
: RD
->fields()) {
9872 // -- if T is a reference type, no initialization is performed.
9873 if (I
->isUnnamedBitfield() || I
->getType()->isReferenceType())
9876 LValue Subobject
= This
;
9877 if (!HandleLValueMember(Info
, E
, Subobject
, I
, &Layout
))
9880 ImplicitValueInitExpr
VIE(I
->getType());
9881 if (!EvaluateInPlace(
9882 Result
.getStructField(I
->getFieldIndex()), Info
, Subobject
, &VIE
))
9889 bool RecordExprEvaluator::ZeroInitialization(const Expr
*E
, QualType T
) {
9890 const RecordDecl
*RD
= T
->castAs
<RecordType
>()->getDecl();
9891 if (RD
->isInvalidDecl()) return false;
9892 if (RD
->isUnion()) {
9893 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
9894 // object's first non-static named data member is zero-initialized
9895 RecordDecl::field_iterator I
= RD
->field_begin();
9896 while (I
!= RD
->field_end() && (*I
)->isUnnamedBitfield())
9898 if (I
== RD
->field_end()) {
9899 Result
= APValue((const FieldDecl
*)nullptr);
9903 LValue Subobject
= This
;
9904 if (!HandleLValueMember(Info
, E
, Subobject
, *I
))
9906 Result
= APValue(*I
);
9907 ImplicitValueInitExpr
VIE(I
->getType());
9908 return EvaluateInPlace(Result
.getUnionValue(), Info
, Subobject
, &VIE
);
9911 if (isa
<CXXRecordDecl
>(RD
) && cast
<CXXRecordDecl
>(RD
)->getNumVBases()) {
9912 Info
.FFDiag(E
, diag::note_constexpr_virtual_base
) << RD
;
9916 return HandleClassZeroInitialization(Info
, E
, RD
, This
, Result
);
9919 bool RecordExprEvaluator::VisitCastExpr(const CastExpr
*E
) {
9920 switch (E
->getCastKind()) {
9922 return ExprEvaluatorBaseTy::VisitCastExpr(E
);
9924 case CK_ConstructorConversion
:
9925 return Visit(E
->getSubExpr());
9927 case CK_DerivedToBase
:
9928 case CK_UncheckedDerivedToBase
: {
9929 APValue DerivedObject
;
9930 if (!Evaluate(DerivedObject
, Info
, E
->getSubExpr()))
9932 if (!DerivedObject
.isStruct())
9933 return Error(E
->getSubExpr());
9935 // Derived-to-base rvalue conversion: just slice off the derived part.
9936 APValue
*Value
= &DerivedObject
;
9937 const CXXRecordDecl
*RD
= E
->getSubExpr()->getType()->getAsCXXRecordDecl();
9938 for (CastExpr::path_const_iterator PathI
= E
->path_begin(),
9939 PathE
= E
->path_end(); PathI
!= PathE
; ++PathI
) {
9940 assert(!(*PathI
)->isVirtual() && "record rvalue with virtual base");
9941 const CXXRecordDecl
*Base
= (*PathI
)->getType()->getAsCXXRecordDecl();
9942 Value
= &Value
->getStructBase(getBaseIndex(RD
, Base
));
9951 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr
*E
) {
9952 if (E
->isTransparent())
9953 return Visit(E
->getInit(0));
9955 const RecordDecl
*RD
= E
->getType()->castAs
<RecordType
>()->getDecl();
9956 if (RD
->isInvalidDecl()) return false;
9957 const ASTRecordLayout
&Layout
= Info
.Ctx
.getASTRecordLayout(RD
);
9958 auto *CXXRD
= dyn_cast
<CXXRecordDecl
>(RD
);
9960 EvalInfo::EvaluatingConstructorRAII
EvalObj(
9962 ObjectUnderConstruction
{This
.getLValueBase(), This
.Designator
.Entries
},
9963 CXXRD
&& CXXRD
->getNumBases());
9965 if (RD
->isUnion()) {
9966 const FieldDecl
*Field
= E
->getInitializedFieldInUnion();
9967 Result
= APValue(Field
);
9971 // If the initializer list for a union does not contain any elements, the
9972 // first element of the union is value-initialized.
9973 // FIXME: The element should be initialized from an initializer list.
9974 // Is this difference ever observable for initializer lists which
9976 ImplicitValueInitExpr
VIE(Field
->getType());
9977 const Expr
*InitExpr
= E
->getNumInits() ? E
->getInit(0) : &VIE
;
9979 LValue Subobject
= This
;
9980 if (!HandleLValueMember(Info
, InitExpr
, Subobject
, Field
, &Layout
))
9983 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
9984 ThisOverrideRAII
ThisOverride(*Info
.CurrentCall
, &This
,
9985 isa
<CXXDefaultInitExpr
>(InitExpr
));
9987 if (EvaluateInPlace(Result
.getUnionValue(), Info
, Subobject
, InitExpr
)) {
9988 if (Field
->isBitField())
9989 return truncateBitfieldValue(Info
, InitExpr
, Result
.getUnionValue(),
9997 if (!Result
.hasValue())
9998 Result
= APValue(APValue::UninitStruct(), CXXRD
? CXXRD
->getNumBases() : 0,
9999 std::distance(RD
->field_begin(), RD
->field_end()));
10000 unsigned ElementNo
= 0;
10001 bool Success
= true;
10003 // Initialize base classes.
10004 if (CXXRD
&& CXXRD
->getNumBases()) {
10005 for (const auto &Base
: CXXRD
->bases()) {
10006 assert(ElementNo
< E
->getNumInits() && "missing init for base class");
10007 const Expr
*Init
= E
->getInit(ElementNo
);
10009 LValue Subobject
= This
;
10010 if (!HandleLValueBase(Info
, Init
, Subobject
, CXXRD
, &Base
))
10013 APValue
&FieldVal
= Result
.getStructBase(ElementNo
);
10014 if (!EvaluateInPlace(FieldVal
, Info
, Subobject
, Init
)) {
10015 if (!Info
.noteFailure())
10022 EvalObj
.finishedConstructingBases();
10025 // Initialize members.
10026 for (const auto *Field
: RD
->fields()) {
10027 // Anonymous bit-fields are not considered members of the class for
10028 // purposes of aggregate initialization.
10029 if (Field
->isUnnamedBitfield())
10032 LValue Subobject
= This
;
10034 bool HaveInit
= ElementNo
< E
->getNumInits();
10036 // FIXME: Diagnostics here should point to the end of the initializer
10037 // list, not the start.
10038 if (!HandleLValueMember(Info
, HaveInit
? E
->getInit(ElementNo
) : E
,
10039 Subobject
, Field
, &Layout
))
10042 // Perform an implicit value-initialization for members beyond the end of
10043 // the initializer list.
10044 ImplicitValueInitExpr
VIE(HaveInit
? Info
.Ctx
.IntTy
: Field
->getType());
10045 const Expr
*Init
= HaveInit
? E
->getInit(ElementNo
++) : &VIE
;
10047 if (Field
->getType()->isIncompleteArrayType()) {
10048 if (auto *CAT
= Info
.Ctx
.getAsConstantArrayType(Init
->getType())) {
10049 if (!CAT
->getSize().isZero()) {
10050 // Bail out for now. This might sort of "work", but the rest of the
10051 // code isn't really prepared to handle it.
10052 Info
.FFDiag(Init
, diag::note_constexpr_unsupported_flexible_array
);
10058 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
10059 ThisOverrideRAII
ThisOverride(*Info
.CurrentCall
, &This
,
10060 isa
<CXXDefaultInitExpr
>(Init
));
10062 APValue
&FieldVal
= Result
.getStructField(Field
->getFieldIndex());
10063 if (!EvaluateInPlace(FieldVal
, Info
, Subobject
, Init
) ||
10064 (Field
->isBitField() && !truncateBitfieldValue(Info
, Init
,
10065 FieldVal
, Field
))) {
10066 if (!Info
.noteFailure())
10072 EvalObj
.finishedConstructingFields();
10077 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr
*E
,
10079 // Note that E's type is not necessarily the type of our class here; we might
10080 // be initializing an array element instead.
10081 const CXXConstructorDecl
*FD
= E
->getConstructor();
10082 if (FD
->isInvalidDecl() || FD
->getParent()->isInvalidDecl()) return false;
10084 bool ZeroInit
= E
->requiresZeroInitialization();
10085 if (CheckTrivialDefaultConstructor(Info
, E
->getExprLoc(), FD
, ZeroInit
)) {
10086 // If we've already performed zero-initialization, we're already done.
10087 if (Result
.hasValue())
10091 return ZeroInitialization(E
, T
);
10093 return getDefaultInitValue(T
, Result
);
10096 const FunctionDecl
*Definition
= nullptr;
10097 auto Body
= FD
->getBody(Definition
);
10099 if (!CheckConstexprFunction(Info
, E
->getExprLoc(), FD
, Definition
, Body
))
10102 // Avoid materializing a temporary for an elidable copy/move constructor.
10103 if (E
->isElidable() && !ZeroInit
) {
10104 // FIXME: This only handles the simplest case, where the source object
10105 // is passed directly as the first argument to the constructor.
10106 // This should also handle stepping though implicit casts and
10107 // and conversion sequences which involve two steps, with a
10108 // conversion operator followed by a converting constructor.
10109 const Expr
*SrcObj
= E
->getArg(0);
10110 assert(SrcObj
->isTemporaryObject(Info
.Ctx
, FD
->getParent()));
10111 assert(Info
.Ctx
.hasSameUnqualifiedType(E
->getType(), SrcObj
->getType()));
10112 if (const MaterializeTemporaryExpr
*ME
=
10113 dyn_cast
<MaterializeTemporaryExpr
>(SrcObj
))
10114 return Visit(ME
->getSubExpr());
10117 if (ZeroInit
&& !ZeroInitialization(E
, T
))
10120 auto Args
= llvm::makeArrayRef(E
->getArgs(), E
->getNumArgs());
10121 return HandleConstructorCall(E
, This
, Args
,
10122 cast
<CXXConstructorDecl
>(Definition
), Info
,
10126 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
10127 const CXXInheritedCtorInitExpr
*E
) {
10128 if (!Info
.CurrentCall
) {
10129 assert(Info
.checkingPotentialConstantExpression());
10133 const CXXConstructorDecl
*FD
= E
->getConstructor();
10134 if (FD
->isInvalidDecl() || FD
->getParent()->isInvalidDecl())
10137 const FunctionDecl
*Definition
= nullptr;
10138 auto Body
= FD
->getBody(Definition
);
10140 if (!CheckConstexprFunction(Info
, E
->getExprLoc(), FD
, Definition
, Body
))
10143 return HandleConstructorCall(E
, This
, Info
.CurrentCall
->Arguments
,
10144 cast
<CXXConstructorDecl
>(Definition
), Info
,
10148 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
10149 const CXXStdInitializerListExpr
*E
) {
10150 const ConstantArrayType
*ArrayType
=
10151 Info
.Ctx
.getAsConstantArrayType(E
->getSubExpr()->getType());
10154 if (!EvaluateLValue(E
->getSubExpr(), Array
, Info
))
10157 // Get a pointer to the first element of the array.
10158 Array
.addArray(Info
, E
, ArrayType
);
10160 auto InvalidType
= [&] {
10161 Info
.FFDiag(E
, diag::note_constexpr_unsupported_layout
)
10166 // FIXME: Perform the checks on the field types in SemaInit.
10167 RecordDecl
*Record
= E
->getType()->castAs
<RecordType
>()->getDecl();
10168 RecordDecl::field_iterator Field
= Record
->field_begin();
10169 if (Field
== Record
->field_end())
10170 return InvalidType();
10173 if (!Field
->getType()->isPointerType() ||
10174 !Info
.Ctx
.hasSameType(Field
->getType()->getPointeeType(),
10175 ArrayType
->getElementType()))
10176 return InvalidType();
10178 // FIXME: What if the initializer_list type has base classes, etc?
10179 Result
= APValue(APValue::UninitStruct(), 0, 2);
10180 Array
.moveInto(Result
.getStructField(0));
10182 if (++Field
== Record
->field_end())
10183 return InvalidType();
10185 if (Field
->getType()->isPointerType() &&
10186 Info
.Ctx
.hasSameType(Field
->getType()->getPointeeType(),
10187 ArrayType
->getElementType())) {
10189 if (!HandleLValueArrayAdjustment(Info
, E
, Array
,
10190 ArrayType
->getElementType(),
10191 ArrayType
->getSize().getZExtValue()))
10193 Array
.moveInto(Result
.getStructField(1));
10194 } else if (Info
.Ctx
.hasSameType(Field
->getType(), Info
.Ctx
.getSizeType()))
10196 Result
.getStructField(1) = APValue(APSInt(ArrayType
->getSize()));
10198 return InvalidType();
10200 if (++Field
!= Record
->field_end())
10201 return InvalidType();
10206 bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr
*E
) {
10207 const CXXRecordDecl
*ClosureClass
= E
->getLambdaClass();
10208 if (ClosureClass
->isInvalidDecl())
10211 const size_t NumFields
=
10212 std::distance(ClosureClass
->field_begin(), ClosureClass
->field_end());
10214 assert(NumFields
== (size_t)std::distance(E
->capture_init_begin(),
10215 E
->capture_init_end()) &&
10216 "The number of lambda capture initializers should equal the number of "
10217 "fields within the closure type");
10219 Result
= APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields
);
10220 // Iterate through all the lambda's closure object's fields and initialize
10222 auto *CaptureInitIt
= E
->capture_init_begin();
10223 bool Success
= true;
10224 const ASTRecordLayout
&Layout
= Info
.Ctx
.getASTRecordLayout(ClosureClass
);
10225 for (const auto *Field
: ClosureClass
->fields()) {
10226 assert(CaptureInitIt
!= E
->capture_init_end());
10227 // Get the initializer for this field
10228 Expr
*const CurFieldInit
= *CaptureInitIt
++;
10230 // If there is no initializer, either this is a VLA or an error has
10235 LValue Subobject
= This
;
10237 if (!HandleLValueMember(Info
, E
, Subobject
, Field
, &Layout
))
10240 APValue
&FieldVal
= Result
.getStructField(Field
->getFieldIndex());
10241 if (!EvaluateInPlace(FieldVal
, Info
, Subobject
, CurFieldInit
)) {
10242 if (!Info
.keepEvaluatingAfterFailure())
10250 static bool EvaluateRecord(const Expr
*E
, const LValue
&This
,
10251 APValue
&Result
, EvalInfo
&Info
) {
10252 assert(!E
->isValueDependent());
10253 assert(E
->isPRValue() && E
->getType()->isRecordType() &&
10254 "can't evaluate expression as a record rvalue");
10255 return RecordExprEvaluator(Info
, This
, Result
).Visit(E
);
10258 //===----------------------------------------------------------------------===//
10259 // Temporary Evaluation
10261 // Temporaries are represented in the AST as rvalues, but generally behave like
10262 // lvalues. The full-object of which the temporary is a subobject is implicitly
10263 // materialized so that a reference can bind to it.
10264 //===----------------------------------------------------------------------===//
10266 class TemporaryExprEvaluator
10267 : public LValueExprEvaluatorBase
<TemporaryExprEvaluator
> {
10269 TemporaryExprEvaluator(EvalInfo
&Info
, LValue
&Result
) :
10270 LValueExprEvaluatorBaseTy(Info
, Result
, false) {}
10272 /// Visit an expression which constructs the value of this temporary.
10273 bool VisitConstructExpr(const Expr
*E
) {
10274 APValue
&Value
= Info
.CurrentCall
->createTemporary(
10275 E
, E
->getType(), ScopeKind::FullExpression
, Result
);
10276 return EvaluateInPlace(Value
, Info
, Result
, E
);
10279 bool VisitCastExpr(const CastExpr
*E
) {
10280 switch (E
->getCastKind()) {
10282 return LValueExprEvaluatorBaseTy::VisitCastExpr(E
);
10284 case CK_ConstructorConversion
:
10285 return VisitConstructExpr(E
->getSubExpr());
10288 bool VisitInitListExpr(const InitListExpr
*E
) {
10289 return VisitConstructExpr(E
);
10291 bool VisitCXXConstructExpr(const CXXConstructExpr
*E
) {
10292 return VisitConstructExpr(E
);
10294 bool VisitCallExpr(const CallExpr
*E
) {
10295 return VisitConstructExpr(E
);
10297 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr
*E
) {
10298 return VisitConstructExpr(E
);
10300 bool VisitLambdaExpr(const LambdaExpr
*E
) {
10301 return VisitConstructExpr(E
);
10304 } // end anonymous namespace
10306 /// Evaluate an expression of record type as a temporary.
10307 static bool EvaluateTemporary(const Expr
*E
, LValue
&Result
, EvalInfo
&Info
) {
10308 assert(!E
->isValueDependent());
10309 assert(E
->isPRValue() && E
->getType()->isRecordType());
10310 return TemporaryExprEvaluator(Info
, Result
).Visit(E
);
10313 //===----------------------------------------------------------------------===//
10314 // Vector Evaluation
10315 //===----------------------------------------------------------------------===//
10318 class VectorExprEvaluator
10319 : public ExprEvaluatorBase
<VectorExprEvaluator
> {
10323 VectorExprEvaluator(EvalInfo
&info
, APValue
&Result
)
10324 : ExprEvaluatorBaseTy(info
), Result(Result
) {}
10326 bool Success(ArrayRef
<APValue
> V
, const Expr
*E
) {
10327 assert(V
.size() == E
->getType()->castAs
<VectorType
>()->getNumElements());
10328 // FIXME: remove this APValue copy.
10329 Result
= APValue(V
.data(), V
.size());
10332 bool Success(const APValue
&V
, const Expr
*E
) {
10333 assert(V
.isVector());
10337 bool ZeroInitialization(const Expr
*E
);
10339 bool VisitUnaryReal(const UnaryOperator
*E
)
10340 { return Visit(E
->getSubExpr()); }
10341 bool VisitCastExpr(const CastExpr
* E
);
10342 bool VisitInitListExpr(const InitListExpr
*E
);
10343 bool VisitUnaryImag(const UnaryOperator
*E
);
10344 bool VisitBinaryOperator(const BinaryOperator
*E
);
10345 bool VisitUnaryOperator(const UnaryOperator
*E
);
10346 // FIXME: Missing: conditional operator (for GNU
10347 // conditional select), shufflevector, ExtVectorElementExpr
10349 } // end anonymous namespace
10351 static bool EvaluateVector(const Expr
* E
, APValue
& Result
, EvalInfo
&Info
) {
10352 assert(E
->isPRValue() && E
->getType()->isVectorType() &&
10353 "not a vector prvalue");
10354 return VectorExprEvaluator(Info
, Result
).Visit(E
);
10357 bool VectorExprEvaluator::VisitCastExpr(const CastExpr
*E
) {
10358 const VectorType
*VTy
= E
->getType()->castAs
<VectorType
>();
10359 unsigned NElts
= VTy
->getNumElements();
10361 const Expr
*SE
= E
->getSubExpr();
10362 QualType SETy
= SE
->getType();
10364 switch (E
->getCastKind()) {
10365 case CK_VectorSplat
: {
10366 APValue Val
= APValue();
10367 if (SETy
->isIntegerType()) {
10369 if (!EvaluateInteger(SE
, IntResult
, Info
))
10371 Val
= APValue(std::move(IntResult
));
10372 } else if (SETy
->isRealFloatingType()) {
10373 APFloat
FloatResult(0.0);
10374 if (!EvaluateFloat(SE
, FloatResult
, Info
))
10376 Val
= APValue(std::move(FloatResult
));
10381 // Splat and create vector APValue.
10382 SmallVector
<APValue
, 4> Elts(NElts
, Val
);
10383 return Success(Elts
, E
);
10386 // Evaluate the operand into an APInt we can extract from.
10387 llvm::APInt SValInt
;
10388 if (!EvalAndBitcastToAPInt(Info
, SE
, SValInt
))
10390 // Extract the elements
10391 QualType EltTy
= VTy
->getElementType();
10392 unsigned EltSize
= Info
.Ctx
.getTypeSize(EltTy
);
10393 bool BigEndian
= Info
.Ctx
.getTargetInfo().isBigEndian();
10394 SmallVector
<APValue
, 4> Elts
;
10395 if (EltTy
->isRealFloatingType()) {
10396 const llvm::fltSemantics
&Sem
= Info
.Ctx
.getFloatTypeSemantics(EltTy
);
10397 unsigned FloatEltSize
= EltSize
;
10398 if (&Sem
== &APFloat::x87DoubleExtended())
10400 for (unsigned i
= 0; i
< NElts
; i
++) {
10403 Elt
= SValInt
.rotl(i
* EltSize
+ FloatEltSize
).trunc(FloatEltSize
);
10405 Elt
= SValInt
.rotr(i
* EltSize
).trunc(FloatEltSize
);
10406 Elts
.push_back(APValue(APFloat(Sem
, Elt
)));
10408 } else if (EltTy
->isIntegerType()) {
10409 for (unsigned i
= 0; i
< NElts
; i
++) {
10412 Elt
= SValInt
.rotl(i
*EltSize
+EltSize
).zextOrTrunc(EltSize
);
10414 Elt
= SValInt
.rotr(i
*EltSize
).zextOrTrunc(EltSize
);
10415 Elts
.push_back(APValue(APSInt(Elt
, !EltTy
->isSignedIntegerType())));
10420 return Success(Elts
, E
);
10423 return ExprEvaluatorBaseTy::VisitCastExpr(E
);
10428 VectorExprEvaluator::VisitInitListExpr(const InitListExpr
*E
) {
10429 const VectorType
*VT
= E
->getType()->castAs
<VectorType
>();
10430 unsigned NumInits
= E
->getNumInits();
10431 unsigned NumElements
= VT
->getNumElements();
10433 QualType EltTy
= VT
->getElementType();
10434 SmallVector
<APValue
, 4> Elements
;
10436 // The number of initializers can be less than the number of
10437 // vector elements. For OpenCL, this can be due to nested vector
10438 // initialization. For GCC compatibility, missing trailing elements
10439 // should be initialized with zeroes.
10440 unsigned CountInits
= 0, CountElts
= 0;
10441 while (CountElts
< NumElements
) {
10442 // Handle nested vector initialization.
10443 if (CountInits
< NumInits
10444 && E
->getInit(CountInits
)->getType()->isVectorType()) {
10446 if (!EvaluateVector(E
->getInit(CountInits
), v
, Info
))
10448 unsigned vlen
= v
.getVectorLength();
10449 for (unsigned j
= 0; j
< vlen
; j
++)
10450 Elements
.push_back(v
.getVectorElt(j
));
10452 } else if (EltTy
->isIntegerType()) {
10453 llvm::APSInt
sInt(32);
10454 if (CountInits
< NumInits
) {
10455 if (!EvaluateInteger(E
->getInit(CountInits
), sInt
, Info
))
10457 } else // trailing integer zero.
10458 sInt
= Info
.Ctx
.MakeIntValue(0, EltTy
);
10459 Elements
.push_back(APValue(sInt
));
10462 llvm::APFloat
f(0.0);
10463 if (CountInits
< NumInits
) {
10464 if (!EvaluateFloat(E
->getInit(CountInits
), f
, Info
))
10466 } else // trailing float zero.
10467 f
= APFloat::getZero(Info
.Ctx
.getFloatTypeSemantics(EltTy
));
10468 Elements
.push_back(APValue(f
));
10473 return Success(Elements
, E
);
10477 VectorExprEvaluator::ZeroInitialization(const Expr
*E
) {
10478 const auto *VT
= E
->getType()->castAs
<VectorType
>();
10479 QualType EltTy
= VT
->getElementType();
10480 APValue ZeroElement
;
10481 if (EltTy
->isIntegerType())
10482 ZeroElement
= APValue(Info
.Ctx
.MakeIntValue(0, EltTy
));
10485 APValue(APFloat::getZero(Info
.Ctx
.getFloatTypeSemantics(EltTy
)));
10487 SmallVector
<APValue
, 4> Elements(VT
->getNumElements(), ZeroElement
);
10488 return Success(Elements
, E
);
10491 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator
*E
) {
10492 VisitIgnoredValue(E
->getSubExpr());
10493 return ZeroInitialization(E
);
10496 bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator
*E
) {
10497 BinaryOperatorKind Op
= E
->getOpcode();
10498 assert(Op
!= BO_PtrMemD
&& Op
!= BO_PtrMemI
&& Op
!= BO_Cmp
&&
10499 "Operation not supported on vector types");
10501 if (Op
== BO_Comma
)
10502 return ExprEvaluatorBaseTy::VisitBinaryOperator(E
);
10504 Expr
*LHS
= E
->getLHS();
10505 Expr
*RHS
= E
->getRHS();
10507 assert(LHS
->getType()->isVectorType() && RHS
->getType()->isVectorType() &&
10508 "Must both be vector types");
10509 // Checking JUST the types are the same would be fine, except shifts don't
10510 // need to have their types be the same (since you always shift by an int).
10511 assert(LHS
->getType()->castAs
<VectorType
>()->getNumElements() ==
10512 E
->getType()->castAs
<VectorType
>()->getNumElements() &&
10513 RHS
->getType()->castAs
<VectorType
>()->getNumElements() ==
10514 E
->getType()->castAs
<VectorType
>()->getNumElements() &&
10515 "All operands must be the same size.");
10519 bool LHSOK
= Evaluate(LHSValue
, Info
, LHS
);
10520 if (!LHSOK
&& !Info
.noteFailure())
10522 if (!Evaluate(RHSValue
, Info
, RHS
) || !LHSOK
)
10525 if (!handleVectorVectorBinOp(Info
, E
, Op
, LHSValue
, RHSValue
))
10528 return Success(LHSValue
, E
);
10531 static llvm::Optional
<APValue
> handleVectorUnaryOperator(ASTContext
&Ctx
,
10533 UnaryOperatorKind Op
,
10537 // Nothing to do here.
10540 if (Elt
.getKind() == APValue::Int
) {
10541 Elt
.getInt().negate();
10543 assert(Elt
.getKind() == APValue::Float
&&
10544 "Vector can only be int or float type");
10545 Elt
.getFloat().changeSign();
10549 // This is only valid for integral types anyway, so we don't have to handle
10551 assert(Elt
.getKind() == APValue::Int
&&
10552 "Vector operator ~ can only be int");
10553 Elt
.getInt().flipAllBits();
10556 if (Elt
.getKind() == APValue::Int
) {
10557 Elt
.getInt() = !Elt
.getInt();
10558 // operator ! on vectors returns -1 for 'truth', so negate it.
10559 Elt
.getInt().negate();
10562 assert(Elt
.getKind() == APValue::Float
&&
10563 "Vector can only be int or float type");
10564 // Float types result in an int of the same size, but -1 for true, or 0 for
10566 APSInt EltResult
{Ctx
.getIntWidth(ResultTy
),
10567 ResultTy
->isUnsignedIntegerType()};
10568 if (Elt
.getFloat().isZero())
10569 EltResult
.setAllBits();
10571 EltResult
.clearAllBits();
10573 return APValue
{EltResult
};
10576 // FIXME: Implement the rest of the unary operators.
10581 bool VectorExprEvaluator::VisitUnaryOperator(const UnaryOperator
*E
) {
10582 Expr
*SubExpr
= E
->getSubExpr();
10583 const auto *VD
= SubExpr
->getType()->castAs
<VectorType
>();
10584 // This result element type differs in the case of negating a floating point
10585 // vector, since the result type is the a vector of the equivilant sized
10587 const QualType ResultEltTy
= VD
->getElementType();
10588 UnaryOperatorKind Op
= E
->getOpcode();
10590 APValue SubExprValue
;
10591 if (!Evaluate(SubExprValue
, Info
, SubExpr
))
10594 // FIXME: This vector evaluator someday needs to be changed to be LValue
10595 // aware/keep LValue information around, rather than dealing with just vector
10596 // types directly. Until then, we cannot handle cases where the operand to
10597 // these unary operators is an LValue. The only case I've been able to see
10598 // cause this is operator++ assigning to a member expression (only valid in
10599 // altivec compilations) in C mode, so this shouldn't limit us too much.
10600 if (SubExprValue
.isLValue())
10603 assert(SubExprValue
.getVectorLength() == VD
->getNumElements() &&
10604 "Vector length doesn't match type?");
10606 SmallVector
<APValue
, 4> ResultElements
;
10607 for (unsigned EltNum
= 0; EltNum
< VD
->getNumElements(); ++EltNum
) {
10608 llvm::Optional
<APValue
> Elt
= handleVectorUnaryOperator(
10609 Info
.Ctx
, ResultEltTy
, Op
, SubExprValue
.getVectorElt(EltNum
));
10612 ResultElements
.push_back(*Elt
);
10614 return Success(APValue(ResultElements
.data(), ResultElements
.size()), E
);
10617 //===----------------------------------------------------------------------===//
10618 // Array Evaluation
10619 //===----------------------------------------------------------------------===//
10622 class ArrayExprEvaluator
10623 : public ExprEvaluatorBase
<ArrayExprEvaluator
> {
10624 const LValue
&This
;
10628 ArrayExprEvaluator(EvalInfo
&Info
, const LValue
&This
, APValue
&Result
)
10629 : ExprEvaluatorBaseTy(Info
), This(This
), Result(Result
) {}
10631 bool Success(const APValue
&V
, const Expr
*E
) {
10632 assert(V
.isArray() && "expected array");
10637 bool ZeroInitialization(const Expr
*E
) {
10638 const ConstantArrayType
*CAT
=
10639 Info
.Ctx
.getAsConstantArrayType(E
->getType());
10641 if (E
->getType()->isIncompleteArrayType()) {
10642 // We can be asked to zero-initialize a flexible array member; this
10643 // is represented as an ImplicitValueInitExpr of incomplete array
10644 // type. In this case, the array has zero elements.
10645 Result
= APValue(APValue::UninitArray(), 0, 0);
10648 // FIXME: We could handle VLAs here.
10652 Result
= APValue(APValue::UninitArray(), 0,
10653 CAT
->getSize().getZExtValue());
10654 if (!Result
.hasArrayFiller())
10657 // Zero-initialize all elements.
10658 LValue Subobject
= This
;
10659 Subobject
.addArray(Info
, E
, CAT
);
10660 ImplicitValueInitExpr
VIE(CAT
->getElementType());
10661 return EvaluateInPlace(Result
.getArrayFiller(), Info
, Subobject
, &VIE
);
10664 bool VisitCallExpr(const CallExpr
*E
) {
10665 return handleCallExpr(E
, Result
, &This
);
10667 bool VisitInitListExpr(const InitListExpr
*E
,
10668 QualType AllocType
= QualType());
10669 bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr
*E
);
10670 bool VisitCXXConstructExpr(const CXXConstructExpr
*E
);
10671 bool VisitCXXConstructExpr(const CXXConstructExpr
*E
,
10672 const LValue
&Subobject
,
10673 APValue
*Value
, QualType Type
);
10674 bool VisitStringLiteral(const StringLiteral
*E
,
10675 QualType AllocType
= QualType()) {
10676 expandStringLiteral(Info
, E
, Result
, AllocType
);
10680 } // end anonymous namespace
10682 static bool EvaluateArray(const Expr
*E
, const LValue
&This
,
10683 APValue
&Result
, EvalInfo
&Info
) {
10684 assert(!E
->isValueDependent());
10685 assert(E
->isPRValue() && E
->getType()->isArrayType() &&
10686 "not an array prvalue");
10687 return ArrayExprEvaluator(Info
, This
, Result
).Visit(E
);
10690 static bool EvaluateArrayNewInitList(EvalInfo
&Info
, LValue
&This
,
10691 APValue
&Result
, const InitListExpr
*ILE
,
10692 QualType AllocType
) {
10693 assert(!ILE
->isValueDependent());
10694 assert(ILE
->isPRValue() && ILE
->getType()->isArrayType() &&
10695 "not an array prvalue");
10696 return ArrayExprEvaluator(Info
, This
, Result
)
10697 .VisitInitListExpr(ILE
, AllocType
);
10700 static bool EvaluateArrayNewConstructExpr(EvalInfo
&Info
, LValue
&This
,
10702 const CXXConstructExpr
*CCE
,
10703 QualType AllocType
) {
10704 assert(!CCE
->isValueDependent());
10705 assert(CCE
->isPRValue() && CCE
->getType()->isArrayType() &&
10706 "not an array prvalue");
10707 return ArrayExprEvaluator(Info
, This
, Result
)
10708 .VisitCXXConstructExpr(CCE
, This
, &Result
, AllocType
);
10711 // Return true iff the given array filler may depend on the element index.
10712 static bool MaybeElementDependentArrayFiller(const Expr
*FillerExpr
) {
10713 // For now, just allow non-class value-initialization and initialization
10714 // lists comprised of them.
10715 if (isa
<ImplicitValueInitExpr
>(FillerExpr
))
10717 if (const InitListExpr
*ILE
= dyn_cast
<InitListExpr
>(FillerExpr
)) {
10718 for (unsigned I
= 0, E
= ILE
->getNumInits(); I
!= E
; ++I
) {
10719 if (MaybeElementDependentArrayFiller(ILE
->getInit(I
)))
10723 if (ILE
->hasArrayFiller() &&
10724 MaybeElementDependentArrayFiller(ILE
->getArrayFiller()))
10732 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr
*E
,
10733 QualType AllocType
) {
10734 const ConstantArrayType
*CAT
= Info
.Ctx
.getAsConstantArrayType(
10735 AllocType
.isNull() ? E
->getType() : AllocType
);
10739 // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
10740 // an appropriately-typed string literal enclosed in braces.
10741 if (E
->isStringLiteralInit()) {
10742 auto *SL
= dyn_cast
<StringLiteral
>(E
->getInit(0)->IgnoreParenImpCasts());
10743 // FIXME: Support ObjCEncodeExpr here once we support it in
10744 // ArrayExprEvaluator generally.
10747 return VisitStringLiteral(SL
, AllocType
);
10749 // Any other transparent list init will need proper handling of the
10750 // AllocType; we can't just recurse to the inner initializer.
10751 assert(!E
->isTransparent() &&
10752 "transparent array list initialization is not string literal init?");
10754 bool Success
= true;
10756 assert((!Result
.isArray() || Result
.getArrayInitializedElts() == 0) &&
10757 "zero-initialized array shouldn't have any initialized elts");
10759 if (Result
.isArray() && Result
.hasArrayFiller())
10760 Filler
= Result
.getArrayFiller();
10762 unsigned NumEltsToInit
= E
->getNumInits();
10763 unsigned NumElts
= CAT
->getSize().getZExtValue();
10764 const Expr
*FillerExpr
= E
->hasArrayFiller() ? E
->getArrayFiller() : nullptr;
10766 // If the initializer might depend on the array index, run it for each
10768 if (NumEltsToInit
!= NumElts
&& MaybeElementDependentArrayFiller(FillerExpr
))
10769 NumEltsToInit
= NumElts
;
10771 LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
10772 << NumEltsToInit
<< ".\n");
10774 Result
= APValue(APValue::UninitArray(), NumEltsToInit
, NumElts
);
10776 // If the array was previously zero-initialized, preserve the
10777 // zero-initialized values.
10778 if (Filler
.hasValue()) {
10779 for (unsigned I
= 0, E
= Result
.getArrayInitializedElts(); I
!= E
; ++I
)
10780 Result
.getArrayInitializedElt(I
) = Filler
;
10781 if (Result
.hasArrayFiller())
10782 Result
.getArrayFiller() = Filler
;
10785 LValue Subobject
= This
;
10786 Subobject
.addArray(Info
, E
, CAT
);
10787 for (unsigned Index
= 0; Index
!= NumEltsToInit
; ++Index
) {
10789 Index
< E
->getNumInits() ? E
->getInit(Index
) : FillerExpr
;
10790 if (!EvaluateInPlace(Result
.getArrayInitializedElt(Index
),
10791 Info
, Subobject
, Init
) ||
10792 !HandleLValueArrayAdjustment(Info
, Init
, Subobject
,
10793 CAT
->getElementType(), 1)) {
10794 if (!Info
.noteFailure())
10800 if (!Result
.hasArrayFiller())
10803 // If we get here, we have a trivial filler, which we can just evaluate
10804 // once and splat over the rest of the array elements.
10805 assert(FillerExpr
&& "no array filler for incomplete init list");
10806 return EvaluateInPlace(Result
.getArrayFiller(), Info
, Subobject
,
10807 FillerExpr
) && Success
;
10810 bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr
*E
) {
10812 if (E
->getCommonExpr() &&
10813 !Evaluate(Info
.CurrentCall
->createTemporary(
10814 E
->getCommonExpr(),
10815 getStorageType(Info
.Ctx
, E
->getCommonExpr()),
10816 ScopeKind::FullExpression
, CommonLV
),
10817 Info
, E
->getCommonExpr()->getSourceExpr()))
10820 auto *CAT
= cast
<ConstantArrayType
>(E
->getType()->castAsArrayTypeUnsafe());
10822 uint64_t Elements
= CAT
->getSize().getZExtValue();
10823 Result
= APValue(APValue::UninitArray(), Elements
, Elements
);
10825 LValue Subobject
= This
;
10826 Subobject
.addArray(Info
, E
, CAT
);
10828 bool Success
= true;
10829 for (EvalInfo::ArrayInitLoopIndex
Index(Info
); Index
!= Elements
; ++Index
) {
10830 if (!EvaluateInPlace(Result
.getArrayInitializedElt(Index
),
10831 Info
, Subobject
, E
->getSubExpr()) ||
10832 !HandleLValueArrayAdjustment(Info
, E
, Subobject
,
10833 CAT
->getElementType(), 1)) {
10834 if (!Info
.noteFailure())
10843 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr
*E
) {
10844 return VisitCXXConstructExpr(E
, This
, &Result
, E
->getType());
10847 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr
*E
,
10848 const LValue
&Subobject
,
10851 bool HadZeroInit
= Value
->hasValue();
10853 if (const ConstantArrayType
*CAT
= Info
.Ctx
.getAsConstantArrayType(Type
)) {
10854 unsigned FinalSize
= CAT
->getSize().getZExtValue();
10856 // Preserve the array filler if we had prior zero-initialization.
10858 HadZeroInit
&& Value
->hasArrayFiller() ? Value
->getArrayFiller()
10861 *Value
= APValue(APValue::UninitArray(), 0, FinalSize
);
10862 if (FinalSize
== 0)
10865 bool HasTrivialConstructor
= CheckTrivialDefaultConstructor(
10866 Info
, E
->getExprLoc(), E
->getConstructor(),
10867 E
->requiresZeroInitialization());
10868 LValue ArrayElt
= Subobject
;
10869 ArrayElt
.addArray(Info
, E
, CAT
);
10870 // We do the whole initialization in two passes, first for just one element,
10871 // then for the whole array. It's possible we may find out we can't do const
10872 // init in the first pass, in which case we avoid allocating a potentially
10873 // large array. We don't do more passes because expanding array requires
10874 // copying the data, which is wasteful.
10875 for (const unsigned N
: {1u, FinalSize
}) {
10876 unsigned OldElts
= Value
->getArrayInitializedElts();
10880 // Expand the array to appropriate size.
10881 APValue
NewValue(APValue::UninitArray(), N
, FinalSize
);
10882 for (unsigned I
= 0; I
< OldElts
; ++I
)
10883 NewValue
.getArrayInitializedElt(I
).swap(
10884 Value
->getArrayInitializedElt(I
));
10885 Value
->swap(NewValue
);
10888 for (unsigned I
= OldElts
; I
< N
; ++I
)
10889 Value
->getArrayInitializedElt(I
) = Filler
;
10891 if (HasTrivialConstructor
&& N
== FinalSize
) {
10892 // If we have a trivial constructor, only evaluate it once and copy
10893 // the result into all the array elements.
10894 APValue
&FirstResult
= Value
->getArrayInitializedElt(0);
10895 for (unsigned I
= OldElts
; I
< FinalSize
; ++I
)
10896 Value
->getArrayInitializedElt(I
) = FirstResult
;
10898 for (unsigned I
= OldElts
; I
< N
; ++I
) {
10899 if (!VisitCXXConstructExpr(E
, ArrayElt
,
10900 &Value
->getArrayInitializedElt(I
),
10901 CAT
->getElementType()) ||
10902 !HandleLValueArrayAdjustment(Info
, E
, ArrayElt
,
10903 CAT
->getElementType(), 1))
10905 // When checking for const initilization any diagnostic is considered
10907 if (Info
.EvalStatus
.Diag
&& !Info
.EvalStatus
.Diag
->empty() &&
10908 !Info
.keepEvaluatingAfterFailure())
10917 if (!Type
->isRecordType())
10920 return RecordExprEvaluator(Info
, Subobject
, *Value
)
10921 .VisitCXXConstructExpr(E
, Type
);
10924 //===----------------------------------------------------------------------===//
10925 // Integer Evaluation
10927 // As a GNU extension, we support casting pointers to sufficiently-wide integer
10928 // types and back in constant folding. Integer values are thus represented
10929 // either as an integer-valued APValue, or as an lvalue-valued APValue.
10930 //===----------------------------------------------------------------------===//
10933 class IntExprEvaluator
10934 : public ExprEvaluatorBase
<IntExprEvaluator
> {
10937 IntExprEvaluator(EvalInfo
&info
, APValue
&result
)
10938 : ExprEvaluatorBaseTy(info
), Result(result
) {}
10940 bool Success(const llvm::APSInt
&SI
, const Expr
*E
, APValue
&Result
) {
10941 assert(E
->getType()->isIntegralOrEnumerationType() &&
10942 "Invalid evaluation result.");
10943 assert(SI
.isSigned() == E
->getType()->isSignedIntegerOrEnumerationType() &&
10944 "Invalid evaluation result.");
10945 assert(SI
.getBitWidth() == Info
.Ctx
.getIntWidth(E
->getType()) &&
10946 "Invalid evaluation result.");
10947 Result
= APValue(SI
);
10950 bool Success(const llvm::APSInt
&SI
, const Expr
*E
) {
10951 return Success(SI
, E
, Result
);
10954 bool Success(const llvm::APInt
&I
, const Expr
*E
, APValue
&Result
) {
10955 assert(E
->getType()->isIntegralOrEnumerationType() &&
10956 "Invalid evaluation result.");
10957 assert(I
.getBitWidth() == Info
.Ctx
.getIntWidth(E
->getType()) &&
10958 "Invalid evaluation result.");
10959 Result
= APValue(APSInt(I
));
10960 Result
.getInt().setIsUnsigned(
10961 E
->getType()->isUnsignedIntegerOrEnumerationType());
10964 bool Success(const llvm::APInt
&I
, const Expr
*E
) {
10965 return Success(I
, E
, Result
);
10968 bool Success(uint64_t Value
, const Expr
*E
, APValue
&Result
) {
10969 assert(E
->getType()->isIntegralOrEnumerationType() &&
10970 "Invalid evaluation result.");
10971 Result
= APValue(Info
.Ctx
.MakeIntValue(Value
, E
->getType()));
10974 bool Success(uint64_t Value
, const Expr
*E
) {
10975 return Success(Value
, E
, Result
);
10978 bool Success(CharUnits Size
, const Expr
*E
) {
10979 return Success(Size
.getQuantity(), E
);
10982 bool Success(const APValue
&V
, const Expr
*E
) {
10983 if (V
.isLValue() || V
.isAddrLabelDiff() || V
.isIndeterminate()) {
10987 return Success(V
.getInt(), E
);
10990 bool ZeroInitialization(const Expr
*E
) { return Success(0, E
); }
10992 //===--------------------------------------------------------------------===//
10994 //===--------------------------------------------------------------------===//
10996 bool VisitIntegerLiteral(const IntegerLiteral
*E
) {
10997 return Success(E
->getValue(), E
);
10999 bool VisitCharacterLiteral(const CharacterLiteral
*E
) {
11000 return Success(E
->getValue(), E
);
11003 bool CheckReferencedDecl(const Expr
*E
, const Decl
*D
);
11004 bool VisitDeclRefExpr(const DeclRefExpr
*E
) {
11005 if (CheckReferencedDecl(E
, E
->getDecl()))
11008 return ExprEvaluatorBaseTy::VisitDeclRefExpr(E
);
11010 bool VisitMemberExpr(const MemberExpr
*E
) {
11011 if (CheckReferencedDecl(E
, E
->getMemberDecl())) {
11012 VisitIgnoredBaseExpression(E
->getBase());
11016 return ExprEvaluatorBaseTy::VisitMemberExpr(E
);
11019 bool VisitCallExpr(const CallExpr
*E
);
11020 bool VisitBuiltinCallExpr(const CallExpr
*E
, unsigned BuiltinOp
);
11021 bool VisitBinaryOperator(const BinaryOperator
*E
);
11022 bool VisitOffsetOfExpr(const OffsetOfExpr
*E
);
11023 bool VisitUnaryOperator(const UnaryOperator
*E
);
11025 bool VisitCastExpr(const CastExpr
* E
);
11026 bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr
*E
);
11028 bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr
*E
) {
11029 return Success(E
->getValue(), E
);
11032 bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr
*E
) {
11033 return Success(E
->getValue(), E
);
11036 bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr
*E
) {
11037 if (Info
.ArrayInitIndex
== uint64_t(-1)) {
11038 // We were asked to evaluate this subexpression independent of the
11039 // enclosing ArrayInitLoopExpr. We can't do that.
11043 return Success(Info
.ArrayInitIndex
, E
);
11046 // Note, GNU defines __null as an integer, not a pointer.
11047 bool VisitGNUNullExpr(const GNUNullExpr
*E
) {
11048 return ZeroInitialization(E
);
11051 bool VisitTypeTraitExpr(const TypeTraitExpr
*E
) {
11052 return Success(E
->getValue(), E
);
11055 bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr
*E
) {
11056 return Success(E
->getValue(), E
);
11059 bool VisitExpressionTraitExpr(const ExpressionTraitExpr
*E
) {
11060 return Success(E
->getValue(), E
);
11063 bool VisitUnaryReal(const UnaryOperator
*E
);
11064 bool VisitUnaryImag(const UnaryOperator
*E
);
11066 bool VisitCXXNoexceptExpr(const CXXNoexceptExpr
*E
);
11067 bool VisitSizeOfPackExpr(const SizeOfPackExpr
*E
);
11068 bool VisitSourceLocExpr(const SourceLocExpr
*E
);
11069 bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr
*E
);
11070 bool VisitRequiresExpr(const RequiresExpr
*E
);
11071 // FIXME: Missing: array subscript of vector, member of vector
11074 class FixedPointExprEvaluator
11075 : public ExprEvaluatorBase
<FixedPointExprEvaluator
> {
11079 FixedPointExprEvaluator(EvalInfo
&info
, APValue
&result
)
11080 : ExprEvaluatorBaseTy(info
), Result(result
) {}
11082 bool Success(const llvm::APInt
&I
, const Expr
*E
) {
11084 APFixedPoint(I
, Info
.Ctx
.getFixedPointSemantics(E
->getType())), E
);
11087 bool Success(uint64_t Value
, const Expr
*E
) {
11089 APFixedPoint(Value
, Info
.Ctx
.getFixedPointSemantics(E
->getType())), E
);
11092 bool Success(const APValue
&V
, const Expr
*E
) {
11093 return Success(V
.getFixedPoint(), E
);
11096 bool Success(const APFixedPoint
&V
, const Expr
*E
) {
11097 assert(E
->getType()->isFixedPointType() && "Invalid evaluation result.");
11098 assert(V
.getWidth() == Info
.Ctx
.getIntWidth(E
->getType()) &&
11099 "Invalid evaluation result.");
11100 Result
= APValue(V
);
11104 //===--------------------------------------------------------------------===//
11106 //===--------------------------------------------------------------------===//
11108 bool VisitFixedPointLiteral(const FixedPointLiteral
*E
) {
11109 return Success(E
->getValue(), E
);
11112 bool VisitCastExpr(const CastExpr
*E
);
11113 bool VisitUnaryOperator(const UnaryOperator
*E
);
11114 bool VisitBinaryOperator(const BinaryOperator
*E
);
11116 } // end anonymous namespace
11118 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
11119 /// produce either the integer value or a pointer.
11121 /// GCC has a heinous extension which folds casts between pointer types and
11122 /// pointer-sized integral types. We support this by allowing the evaluation of
11123 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
11124 /// Some simple arithmetic on such values is supported (they are treated much
11126 static bool EvaluateIntegerOrLValue(const Expr
*E
, APValue
&Result
,
11128 assert(!E
->isValueDependent());
11129 assert(E
->isPRValue() && E
->getType()->isIntegralOrEnumerationType());
11130 return IntExprEvaluator(Info
, Result
).Visit(E
);
11133 static bool EvaluateInteger(const Expr
*E
, APSInt
&Result
, EvalInfo
&Info
) {
11134 assert(!E
->isValueDependent());
11136 if (!EvaluateIntegerOrLValue(E
, Val
, Info
))
11138 if (!Val
.isInt()) {
11139 // FIXME: It would be better to produce the diagnostic for casting
11140 // a pointer to an integer.
11141 Info
.FFDiag(E
, diag::note_invalid_subexpr_in_const_expr
);
11144 Result
= Val
.getInt();
11148 bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr
*E
) {
11149 APValue Evaluated
= E
->EvaluateInContext(
11150 Info
.Ctx
, Info
.CurrentCall
->CurSourceLocExprScope
.getDefaultExpr());
11151 return Success(Evaluated
, E
);
11154 static bool EvaluateFixedPoint(const Expr
*E
, APFixedPoint
&Result
,
11156 assert(!E
->isValueDependent());
11157 if (E
->getType()->isFixedPointType()) {
11159 if (!FixedPointExprEvaluator(Info
, Val
).Visit(E
))
11161 if (!Val
.isFixedPoint())
11164 Result
= Val
.getFixedPoint();
11170 static bool EvaluateFixedPointOrInteger(const Expr
*E
, APFixedPoint
&Result
,
11172 assert(!E
->isValueDependent());
11173 if (E
->getType()->isIntegerType()) {
11174 auto FXSema
= Info
.Ctx
.getFixedPointSemantics(E
->getType());
11176 if (!EvaluateInteger(E
, Val
, Info
))
11178 Result
= APFixedPoint(Val
, FXSema
);
11180 } else if (E
->getType()->isFixedPointType()) {
11181 return EvaluateFixedPoint(E
, Result
, Info
);
11186 /// Check whether the given declaration can be directly converted to an integral
11187 /// rvalue. If not, no diagnostic is produced; there are other things we can
11189 bool IntExprEvaluator::CheckReferencedDecl(const Expr
* E
, const Decl
* D
) {
11190 // Enums are integer constant exprs.
11191 if (const EnumConstantDecl
*ECD
= dyn_cast
<EnumConstantDecl
>(D
)) {
11192 // Check for signedness/width mismatches between E type and ECD value.
11193 bool SameSign
= (ECD
->getInitVal().isSigned()
11194 == E
->getType()->isSignedIntegerOrEnumerationType());
11195 bool SameWidth
= (ECD
->getInitVal().getBitWidth()
11196 == Info
.Ctx
.getIntWidth(E
->getType()));
11197 if (SameSign
&& SameWidth
)
11198 return Success(ECD
->getInitVal(), E
);
11200 // Get rid of mismatch (otherwise Success assertions will fail)
11201 // by computing a new value matching the type of E.
11202 llvm::APSInt Val
= ECD
->getInitVal();
11204 Val
.setIsSigned(!ECD
->getInitVal().isSigned());
11206 Val
= Val
.extOrTrunc(Info
.Ctx
.getIntWidth(E
->getType()));
11207 return Success(Val
, E
);
11213 /// Values returned by __builtin_classify_type, chosen to match the values
11214 /// produced by GCC's builtin.
11215 enum class GCCTypeClass
{
11219 // GCC reserves 2 for character types, but instead classifies them as
11224 // GCC reserves 6 for references, but appears to never use it (because
11225 // expressions never have reference type, presumably).
11226 PointerToDataMember
= 7,
11229 // GCC reserves 10 for functions, but does not use it since GCC version 6 due
11230 // to decay to pointer. (Prior to version 6 it was only used in C++ mode).
11231 // GCC claims to reserve 11 for pointers to member functions, but *actually*
11232 // uses 12 for that purpose, same as for a class or struct. Maybe it
11233 // internally implements a pointer to member as a struct? Who knows.
11234 PointerToMemberFunction
= 12, // Not a bug, see above.
11235 ClassOrStruct
= 12,
11237 // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to
11238 // decay to pointer. (Prior to version 6 it was only used in C++ mode).
11239 // GCC reserves 15 for strings, but actually uses 5 (pointer) for string
11243 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11245 static GCCTypeClass
11246 EvaluateBuiltinClassifyType(QualType T
, const LangOptions
&LangOpts
) {
11247 assert(!T
->isDependentType() && "unexpected dependent type");
11249 QualType CanTy
= T
.getCanonicalType();
11250 const BuiltinType
*BT
= dyn_cast
<BuiltinType
>(CanTy
);
11252 switch (CanTy
->getTypeClass()) {
11253 #define TYPE(ID, BASE)
11254 #define DEPENDENT_TYPE(ID, BASE) case Type::ID:
11255 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
11256 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
11257 #include "clang/AST/TypeNodes.inc"
11259 case Type::DeducedTemplateSpecialization
:
11260 llvm_unreachable("unexpected non-canonical or dependent type");
11262 case Type::Builtin
:
11263 switch (BT
->getKind()) {
11264 #define BUILTIN_TYPE(ID, SINGLETON_ID)
11265 #define SIGNED_TYPE(ID, SINGLETON_ID) \
11266 case BuiltinType::ID: return GCCTypeClass::Integer;
11267 #define FLOATING_TYPE(ID, SINGLETON_ID) \
11268 case BuiltinType::ID: return GCCTypeClass::RealFloat;
11269 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
11270 case BuiltinType::ID: break;
11271 #include "clang/AST/BuiltinTypes.def"
11272 case BuiltinType::Void
:
11273 return GCCTypeClass::Void
;
11275 case BuiltinType::Bool
:
11276 return GCCTypeClass::Bool
;
11278 case BuiltinType::Char_U
:
11279 case BuiltinType::UChar
:
11280 case BuiltinType::WChar_U
:
11281 case BuiltinType::Char8
:
11282 case BuiltinType::Char16
:
11283 case BuiltinType::Char32
:
11284 case BuiltinType::UShort
:
11285 case BuiltinType::UInt
:
11286 case BuiltinType::ULong
:
11287 case BuiltinType::ULongLong
:
11288 case BuiltinType::UInt128
:
11289 return GCCTypeClass::Integer
;
11291 case BuiltinType::UShortAccum
:
11292 case BuiltinType::UAccum
:
11293 case BuiltinType::ULongAccum
:
11294 case BuiltinType::UShortFract
:
11295 case BuiltinType::UFract
:
11296 case BuiltinType::ULongFract
:
11297 case BuiltinType::SatUShortAccum
:
11298 case BuiltinType::SatUAccum
:
11299 case BuiltinType::SatULongAccum
:
11300 case BuiltinType::SatUShortFract
:
11301 case BuiltinType::SatUFract
:
11302 case BuiltinType::SatULongFract
:
11303 return GCCTypeClass::None
;
11305 case BuiltinType::NullPtr
:
11307 case BuiltinType::ObjCId
:
11308 case BuiltinType::ObjCClass
:
11309 case BuiltinType::ObjCSel
:
11310 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
11311 case BuiltinType::Id:
11312 #include "clang/Basic/OpenCLImageTypes.def"
11313 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
11314 case BuiltinType::Id:
11315 #include "clang/Basic/OpenCLExtensionTypes.def"
11316 case BuiltinType::OCLSampler
:
11317 case BuiltinType::OCLEvent
:
11318 case BuiltinType::OCLClkEvent
:
11319 case BuiltinType::OCLQueue
:
11320 case BuiltinType::OCLReserveID
:
11321 #define SVE_TYPE(Name, Id, SingletonId) \
11322 case BuiltinType::Id:
11323 #include "clang/Basic/AArch64SVEACLETypes.def"
11324 #define PPC_VECTOR_TYPE(Name, Id, Size) \
11325 case BuiltinType::Id:
11326 #include "clang/Basic/PPCTypes.def"
11327 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
11328 #include "clang/Basic/RISCVVTypes.def"
11329 return GCCTypeClass::None
;
11331 case BuiltinType::Dependent
:
11332 llvm_unreachable("unexpected dependent type");
11334 llvm_unreachable("unexpected placeholder type");
11337 return LangOpts
.CPlusPlus
? GCCTypeClass::Enum
: GCCTypeClass::Integer
;
11339 case Type::Pointer
:
11340 case Type::ConstantArray
:
11341 case Type::VariableArray
:
11342 case Type::IncompleteArray
:
11343 case Type::FunctionNoProto
:
11344 case Type::FunctionProto
:
11345 return GCCTypeClass::Pointer
;
11347 case Type::MemberPointer
:
11348 return CanTy
->isMemberDataPointerType()
11349 ? GCCTypeClass::PointerToDataMember
11350 : GCCTypeClass::PointerToMemberFunction
;
11352 case Type::Complex
:
11353 return GCCTypeClass::Complex
;
11356 return CanTy
->isUnionType() ? GCCTypeClass::Union
11357 : GCCTypeClass::ClassOrStruct
;
11360 // GCC classifies _Atomic T the same as T.
11361 return EvaluateBuiltinClassifyType(
11362 CanTy
->castAs
<AtomicType
>()->getValueType(), LangOpts
);
11364 case Type::BlockPointer
:
11366 case Type::ExtVector
:
11367 case Type::ConstantMatrix
:
11368 case Type::ObjCObject
:
11369 case Type::ObjCInterface
:
11370 case Type::ObjCObjectPointer
:
11373 // GCC classifies vectors as None. We follow its lead and classify all
11374 // other types that don't fit into the regular classification the same way.
11375 return GCCTypeClass::None
;
11377 case Type::LValueReference
:
11378 case Type::RValueReference
:
11379 llvm_unreachable("invalid type for expression");
11382 llvm_unreachable("unexpected type class");
11385 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11387 static GCCTypeClass
11388 EvaluateBuiltinClassifyType(const CallExpr
*E
, const LangOptions
&LangOpts
) {
11389 // If no argument was supplied, default to None. This isn't
11390 // ideal, however it is what gcc does.
11391 if (E
->getNumArgs() == 0)
11392 return GCCTypeClass::None
;
11394 // FIXME: Bizarrely, GCC treats a call with more than one argument as not
11395 // being an ICE, but still folds it to a constant using the type of the first
11397 return EvaluateBuiltinClassifyType(E
->getArg(0)->getType(), LangOpts
);
11400 /// EvaluateBuiltinConstantPForLValue - Determine the result of
11401 /// __builtin_constant_p when applied to the given pointer.
11403 /// A pointer is only "constant" if it is null (or a pointer cast to integer)
11404 /// or it points to the first character of a string literal.
11405 static bool EvaluateBuiltinConstantPForLValue(const APValue
&LV
) {
11406 APValue::LValueBase Base
= LV
.getLValueBase();
11407 if (Base
.isNull()) {
11408 // A null base is acceptable.
11410 } else if (const Expr
*E
= Base
.dyn_cast
<const Expr
*>()) {
11411 if (!isa
<StringLiteral
>(E
))
11413 return LV
.getLValueOffset().isZero();
11414 } else if (Base
.is
<TypeInfoLValue
>()) {
11415 // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
11416 // evaluate to true.
11419 // Any other base is not constant enough for GCC.
11424 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
11425 /// GCC as we can manage.
11426 static bool EvaluateBuiltinConstantP(EvalInfo
&Info
, const Expr
*Arg
) {
11427 // This evaluation is not permitted to have side-effects, so evaluate it in
11428 // a speculative evaluation context.
11429 SpeculativeEvaluationRAII
SpeculativeEval(Info
);
11431 // Constant-folding is always enabled for the operand of __builtin_constant_p
11432 // (even when the enclosing evaluation context otherwise requires a strict
11433 // language-specific constant expression).
11434 FoldConstant
Fold(Info
, true);
11436 QualType ArgType
= Arg
->getType();
11438 // __builtin_constant_p always has one operand. The rules which gcc follows
11439 // are not precisely documented, but are as follows:
11441 // - If the operand is of integral, floating, complex or enumeration type,
11442 // and can be folded to a known value of that type, it returns 1.
11443 // - If the operand can be folded to a pointer to the first character
11444 // of a string literal (or such a pointer cast to an integral type)
11445 // or to a null pointer or an integer cast to a pointer, it returns 1.
11447 // Otherwise, it returns 0.
11449 // FIXME: GCC also intends to return 1 for literals of aggregate types, but
11450 // its support for this did not work prior to GCC 9 and is not yet well
11452 if (ArgType
->isIntegralOrEnumerationType() || ArgType
->isFloatingType() ||
11453 ArgType
->isAnyComplexType() || ArgType
->isPointerType() ||
11454 ArgType
->isNullPtrType()) {
11456 if (!::EvaluateAsRValue(Info
, Arg
, V
) || Info
.EvalStatus
.HasSideEffects
) {
11457 Fold
.keepDiagnostics();
11461 // For a pointer (possibly cast to integer), there are special rules.
11462 if (V
.getKind() == APValue::LValue
)
11463 return EvaluateBuiltinConstantPForLValue(V
);
11465 // Otherwise, any constant value is good enough.
11466 return V
.hasValue();
11469 // Anything else isn't considered to be sufficiently constant.
11473 /// Retrieves the "underlying object type" of the given expression,
11474 /// as used by __builtin_object_size.
11475 static QualType
getObjectType(APValue::LValueBase B
) {
11476 if (const ValueDecl
*D
= B
.dyn_cast
<const ValueDecl
*>()) {
11477 if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
))
11478 return VD
->getType();
11479 } else if (const Expr
*E
= B
.dyn_cast
<const Expr
*>()) {
11480 if (isa
<CompoundLiteralExpr
>(E
))
11481 return E
->getType();
11482 } else if (B
.is
<TypeInfoLValue
>()) {
11483 return B
.getTypeInfoType();
11484 } else if (B
.is
<DynamicAllocLValue
>()) {
11485 return B
.getDynamicAllocType();
11491 /// A more selective version of E->IgnoreParenCasts for
11492 /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
11493 /// to change the type of E.
11494 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
11496 /// Always returns an RValue with a pointer representation.
11497 static const Expr
*ignorePointerCastsAndParens(const Expr
*E
) {
11498 assert(E
->isPRValue() && E
->getType()->hasPointerRepresentation());
11500 auto *NoParens
= E
->IgnoreParens();
11501 auto *Cast
= dyn_cast
<CastExpr
>(NoParens
);
11502 if (Cast
== nullptr)
11505 // We only conservatively allow a few kinds of casts, because this code is
11506 // inherently a simple solution that seeks to support the common case.
11507 auto CastKind
= Cast
->getCastKind();
11508 if (CastKind
!= CK_NoOp
&& CastKind
!= CK_BitCast
&&
11509 CastKind
!= CK_AddressSpaceConversion
)
11512 auto *SubExpr
= Cast
->getSubExpr();
11513 if (!SubExpr
->getType()->hasPointerRepresentation() || !SubExpr
->isPRValue())
11515 return ignorePointerCastsAndParens(SubExpr
);
11518 /// Checks to see if the given LValue's Designator is at the end of the LValue's
11519 /// record layout. e.g.
11520 /// struct { struct { int a, b; } fst, snd; } obj;
11523 /// obj.fst.a // no
11524 /// obj.fst.b // no
11525 /// obj.snd.a // no
11526 /// obj.snd.b // yes
11528 /// Please note: this function is specialized for how __builtin_object_size
11529 /// views "objects".
11531 /// If this encounters an invalid RecordDecl or otherwise cannot determine the
11532 /// correct result, it will always return true.
11533 static bool isDesignatorAtObjectEnd(const ASTContext
&Ctx
, const LValue
&LVal
) {
11534 assert(!LVal
.Designator
.Invalid
);
11536 auto IsLastOrInvalidFieldDecl
= [&Ctx
](const FieldDecl
*FD
, bool &Invalid
) {
11537 const RecordDecl
*Parent
= FD
->getParent();
11538 Invalid
= Parent
->isInvalidDecl();
11539 if (Invalid
|| Parent
->isUnion())
11541 const ASTRecordLayout
&Layout
= Ctx
.getASTRecordLayout(Parent
);
11542 return FD
->getFieldIndex() + 1 == Layout
.getFieldCount();
11545 auto &Base
= LVal
.getLValueBase();
11546 if (auto *ME
= dyn_cast_or_null
<MemberExpr
>(Base
.dyn_cast
<const Expr
*>())) {
11547 if (auto *FD
= dyn_cast
<FieldDecl
>(ME
->getMemberDecl())) {
11549 if (!IsLastOrInvalidFieldDecl(FD
, Invalid
))
11551 } else if (auto *IFD
= dyn_cast
<IndirectFieldDecl
>(ME
->getMemberDecl())) {
11552 for (auto *FD
: IFD
->chain()) {
11554 if (!IsLastOrInvalidFieldDecl(cast
<FieldDecl
>(FD
), Invalid
))
11561 QualType BaseType
= getType(Base
);
11562 if (LVal
.Designator
.FirstEntryIsAnUnsizedArray
) {
11563 // If we don't know the array bound, conservatively assume we're looking at
11564 // the final array element.
11566 if (BaseType
->isIncompleteArrayType())
11567 BaseType
= Ctx
.getAsArrayType(BaseType
)->getElementType();
11569 BaseType
= BaseType
->castAs
<PointerType
>()->getPointeeType();
11572 for (unsigned E
= LVal
.Designator
.Entries
.size(); I
!= E
; ++I
) {
11573 const auto &Entry
= LVal
.Designator
.Entries
[I
];
11574 if (BaseType
->isArrayType()) {
11575 // Because __builtin_object_size treats arrays as objects, we can ignore
11576 // the index iff this is the last array in the Designator.
11579 const auto *CAT
= cast
<ConstantArrayType
>(Ctx
.getAsArrayType(BaseType
));
11580 uint64_t Index
= Entry
.getAsArrayIndex();
11581 if (Index
+ 1 != CAT
->getSize())
11583 BaseType
= CAT
->getElementType();
11584 } else if (BaseType
->isAnyComplexType()) {
11585 const auto *CT
= BaseType
->castAs
<ComplexType
>();
11586 uint64_t Index
= Entry
.getAsArrayIndex();
11589 BaseType
= CT
->getElementType();
11590 } else if (auto *FD
= getAsField(Entry
)) {
11592 if (!IsLastOrInvalidFieldDecl(FD
, Invalid
))
11594 BaseType
= FD
->getType();
11596 assert(getAsBaseClass(Entry
) && "Expecting cast to a base class");
11603 /// Tests to see if the LValue has a user-specified designator (that isn't
11604 /// necessarily valid). Note that this always returns 'true' if the LValue has
11605 /// an unsized array as its first designator entry, because there's currently no
11606 /// way to tell if the user typed *foo or foo[0].
11607 static bool refersToCompleteObject(const LValue
&LVal
) {
11608 if (LVal
.Designator
.Invalid
)
11611 if (!LVal
.Designator
.Entries
.empty())
11612 return LVal
.Designator
.isMostDerivedAnUnsizedArray();
11614 if (!LVal
.InvalidBase
)
11617 // If `E` is a MemberExpr, then the first part of the designator is hiding in
11619 const auto *E
= LVal
.Base
.dyn_cast
<const Expr
*>();
11620 return !E
|| !isa
<MemberExpr
>(E
);
11623 /// Attempts to detect a user writing into a piece of memory that's impossible
11624 /// to figure out the size of by just using types.
11625 static bool isUserWritingOffTheEnd(const ASTContext
&Ctx
, const LValue
&LVal
) {
11626 const SubobjectDesignator
&Designator
= LVal
.Designator
;
11628 // - Users can only write off of the end when we have an invalid base. Invalid
11629 // bases imply we don't know where the memory came from.
11630 // - We used to be a bit more aggressive here; we'd only be conservative if
11631 // the array at the end was flexible, or if it had 0 or 1 elements. This
11632 // broke some common standard library extensions (PR30346), but was
11633 // otherwise seemingly fine. It may be useful to reintroduce this behavior
11634 // with some sort of list. OTOH, it seems that GCC is always
11635 // conservative with the last element in structs (if it's an array), so our
11636 // current behavior is more compatible than an explicit list approach would
11638 auto isFlexibleArrayMember
= [&] {
11639 using FAMKind
= LangOptions::StrictFlexArraysLevelKind
;
11640 FAMKind StrictFlexArraysLevel
=
11641 Ctx
.getLangOpts().getStrictFlexArraysLevel();
11643 if (Designator
.isMostDerivedAnUnsizedArray())
11646 if (StrictFlexArraysLevel
== FAMKind::Default
)
11649 if (Designator
.getMostDerivedArraySize() == 0 &&
11650 StrictFlexArraysLevel
!= FAMKind::IncompleteOnly
)
11653 if (Designator
.getMostDerivedArraySize() == 1 &&
11654 StrictFlexArraysLevel
== FAMKind::OneZeroOrIncomplete
)
11660 return LVal
.InvalidBase
&&
11661 Designator
.Entries
.size() == Designator
.MostDerivedPathLength
&&
11662 Designator
.MostDerivedIsArrayElement
&& isFlexibleArrayMember() &&
11663 isDesignatorAtObjectEnd(Ctx
, LVal
);
11666 /// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
11667 /// Fails if the conversion would cause loss of precision.
11668 static bool convertUnsignedAPIntToCharUnits(const llvm::APInt
&Int
,
11669 CharUnits
&Result
) {
11670 auto CharUnitsMax
= std::numeric_limits
<CharUnits::QuantityType
>::max();
11671 if (Int
.ugt(CharUnitsMax
))
11673 Result
= CharUnits::fromQuantity(Int
.getZExtValue());
11677 /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
11678 /// determine how many bytes exist from the beginning of the object to either
11679 /// the end of the current subobject, or the end of the object itself, depending
11680 /// on what the LValue looks like + the value of Type.
11682 /// If this returns false, the value of Result is undefined.
11683 static bool determineEndOffset(EvalInfo
&Info
, SourceLocation ExprLoc
,
11684 unsigned Type
, const LValue
&LVal
,
11685 CharUnits
&EndOffset
) {
11686 bool DetermineForCompleteObject
= refersToCompleteObject(LVal
);
11688 auto CheckedHandleSizeof
= [&](QualType Ty
, CharUnits
&Result
) {
11689 if (Ty
.isNull() || Ty
->isIncompleteType() || Ty
->isFunctionType())
11691 return HandleSizeof(Info
, ExprLoc
, Ty
, Result
);
11694 // We want to evaluate the size of the entire object. This is a valid fallback
11695 // for when Type=1 and the designator is invalid, because we're asked for an
11697 if (!(Type
& 1) || LVal
.Designator
.Invalid
|| DetermineForCompleteObject
) {
11698 // Type=3 wants a lower bound, so we can't fall back to this.
11699 if (Type
== 3 && !DetermineForCompleteObject
)
11702 llvm::APInt APEndOffset
;
11703 if (isBaseAnAllocSizeCall(LVal
.getLValueBase()) &&
11704 getBytesReturnedByAllocSizeCall(Info
.Ctx
, LVal
, APEndOffset
))
11705 return convertUnsignedAPIntToCharUnits(APEndOffset
, EndOffset
);
11707 if (LVal
.InvalidBase
)
11710 QualType BaseTy
= getObjectType(LVal
.getLValueBase());
11711 return CheckedHandleSizeof(BaseTy
, EndOffset
);
11714 // We want to evaluate the size of a subobject.
11715 const SubobjectDesignator
&Designator
= LVal
.Designator
;
11717 // The following is a moderately common idiom in C:
11719 // struct Foo { int a; char c[1]; };
11720 // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
11721 // strcpy(&F->c[0], Bar);
11723 // In order to not break too much legacy code, we need to support it.
11724 if (isUserWritingOffTheEnd(Info
.Ctx
, LVal
)) {
11725 // If we can resolve this to an alloc_size call, we can hand that back,
11726 // because we know for certain how many bytes there are to write to.
11727 llvm::APInt APEndOffset
;
11728 if (isBaseAnAllocSizeCall(LVal
.getLValueBase()) &&
11729 getBytesReturnedByAllocSizeCall(Info
.Ctx
, LVal
, APEndOffset
))
11730 return convertUnsignedAPIntToCharUnits(APEndOffset
, EndOffset
);
11732 // If we cannot determine the size of the initial allocation, then we can't
11733 // given an accurate upper-bound. However, we are still able to give
11734 // conservative lower-bounds for Type=3.
11739 CharUnits BytesPerElem
;
11740 if (!CheckedHandleSizeof(Designator
.MostDerivedType
, BytesPerElem
))
11743 // According to the GCC documentation, we want the size of the subobject
11744 // denoted by the pointer. But that's not quite right -- what we actually
11745 // want is the size of the immediately-enclosing array, if there is one.
11746 int64_t ElemsRemaining
;
11747 if (Designator
.MostDerivedIsArrayElement
&&
11748 Designator
.Entries
.size() == Designator
.MostDerivedPathLength
) {
11749 uint64_t ArraySize
= Designator
.getMostDerivedArraySize();
11750 uint64_t ArrayIndex
= Designator
.Entries
.back().getAsArrayIndex();
11751 ElemsRemaining
= ArraySize
<= ArrayIndex
? 0 : ArraySize
- ArrayIndex
;
11753 ElemsRemaining
= Designator
.isOnePastTheEnd() ? 0 : 1;
11756 EndOffset
= LVal
.getLValueOffset() + BytesPerElem
* ElemsRemaining
;
11760 /// Tries to evaluate the __builtin_object_size for @p E. If successful,
11761 /// returns true and stores the result in @p Size.
11763 /// If @p WasError is non-null, this will report whether the failure to evaluate
11764 /// is to be treated as an Error in IntExprEvaluator.
11765 static bool tryEvaluateBuiltinObjectSize(const Expr
*E
, unsigned Type
,
11766 EvalInfo
&Info
, uint64_t &Size
) {
11767 // Determine the denoted object.
11770 // The operand of __builtin_object_size is never evaluated for side-effects.
11771 // If there are any, but we can determine the pointed-to object anyway, then
11772 // ignore the side-effects.
11773 SpeculativeEvaluationRAII
SpeculativeEval(Info
);
11774 IgnoreSideEffectsRAII
Fold(Info
);
11776 if (E
->isGLValue()) {
11777 // It's possible for us to be given GLValues if we're called via
11778 // Expr::tryEvaluateObjectSize.
11780 if (!EvaluateAsRValue(Info
, E
, RVal
))
11782 LVal
.setFrom(Info
.Ctx
, RVal
);
11783 } else if (!EvaluatePointer(ignorePointerCastsAndParens(E
), LVal
, Info
,
11784 /*InvalidBaseOK=*/true))
11788 // If we point to before the start of the object, there are no accessible
11790 if (LVal
.getLValueOffset().isNegative()) {
11795 CharUnits EndOffset
;
11796 if (!determineEndOffset(Info
, E
->getExprLoc(), Type
, LVal
, EndOffset
))
11799 // If we've fallen outside of the end offset, just pretend there's nothing to
11800 // write to/read from.
11801 if (EndOffset
<= LVal
.getLValueOffset())
11804 Size
= (EndOffset
- LVal
.getLValueOffset()).getQuantity();
11808 bool IntExprEvaluator::VisitCallExpr(const CallExpr
*E
) {
11809 if (!IsConstantEvaluatedBuiltinCall(E
))
11810 return ExprEvaluatorBaseTy::VisitCallExpr(E
);
11811 return VisitBuiltinCallExpr(E
, E
->getBuiltinCallee());
11814 static bool getBuiltinAlignArguments(const CallExpr
*E
, EvalInfo
&Info
,
11815 APValue
&Val
, APSInt
&Alignment
) {
11816 QualType SrcTy
= E
->getArg(0)->getType();
11817 if (!getAlignmentArgument(E
->getArg(1), SrcTy
, Info
, Alignment
))
11819 // Even though we are evaluating integer expressions we could get a pointer
11820 // argument for the __builtin_is_aligned() case.
11821 if (SrcTy
->isPointerType()) {
11823 if (!EvaluatePointer(E
->getArg(0), Ptr
, Info
))
11826 } else if (!SrcTy
->isIntegralOrEnumerationType()) {
11827 Info
.FFDiag(E
->getArg(0));
11831 if (!EvaluateInteger(E
->getArg(0), SrcInt
, Info
))
11833 assert(SrcInt
.getBitWidth() >= Alignment
.getBitWidth() &&
11834 "Bit widths must be the same");
11835 Val
= APValue(SrcInt
);
11837 assert(Val
.hasValue());
11841 bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr
*E
,
11842 unsigned BuiltinOp
) {
11843 switch (BuiltinOp
) {
11847 case Builtin::BI__builtin_dynamic_object_size
:
11848 case Builtin::BI__builtin_object_size
: {
11849 // The type was checked when we built the expression.
11851 E
->getArg(1)->EvaluateKnownConstInt(Info
.Ctx
).getZExtValue();
11852 assert(Type
<= 3 && "unexpected type");
11855 if (tryEvaluateBuiltinObjectSize(E
->getArg(0), Type
, Info
, Size
))
11856 return Success(Size
, E
);
11858 if (E
->getArg(0)->HasSideEffects(Info
.Ctx
))
11859 return Success((Type
& 2) ? 0 : -1, E
);
11861 // Expression had no side effects, but we couldn't statically determine the
11862 // size of the referenced object.
11863 switch (Info
.EvalMode
) {
11864 case EvalInfo::EM_ConstantExpression
:
11865 case EvalInfo::EM_ConstantFold
:
11866 case EvalInfo::EM_IgnoreSideEffects
:
11867 // Leave it to IR generation.
11869 case EvalInfo::EM_ConstantExpressionUnevaluated
:
11870 // Reduce it to a constant now.
11871 return Success((Type
& 2) ? 0 : -1, E
);
11874 llvm_unreachable("unexpected EvalMode");
11877 case Builtin::BI__builtin_os_log_format_buffer_size
: {
11878 analyze_os_log::OSLogBufferLayout Layout
;
11879 analyze_os_log::computeOSLogBufferLayout(Info
.Ctx
, E
, Layout
);
11880 return Success(Layout
.size().getQuantity(), E
);
11883 case Builtin::BI__builtin_is_aligned
: {
11886 if (!getBuiltinAlignArguments(E
, Info
, Src
, Alignment
))
11888 if (Src
.isLValue()) {
11889 // If we evaluated a pointer, check the minimum known alignment.
11891 Ptr
.setFrom(Info
.Ctx
, Src
);
11892 CharUnits BaseAlignment
= getBaseAlignment(Info
, Ptr
);
11893 CharUnits PtrAlign
= BaseAlignment
.alignmentAtOffset(Ptr
.Offset
);
11894 // We can return true if the known alignment at the computed offset is
11895 // greater than the requested alignment.
11896 assert(PtrAlign
.isPowerOfTwo());
11897 assert(Alignment
.isPowerOf2());
11898 if (PtrAlign
.getQuantity() >= Alignment
)
11899 return Success(1, E
);
11900 // If the alignment is not known to be sufficient, some cases could still
11901 // be aligned at run time. However, if the requested alignment is less or
11902 // equal to the base alignment and the offset is not aligned, we know that
11903 // the run-time value can never be aligned.
11904 if (BaseAlignment
.getQuantity() >= Alignment
&&
11905 PtrAlign
.getQuantity() < Alignment
)
11906 return Success(0, E
);
11907 // Otherwise we can't infer whether the value is sufficiently aligned.
11908 // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N)
11909 // in cases where we can't fully evaluate the pointer.
11910 Info
.FFDiag(E
->getArg(0), diag::note_constexpr_alignment_compute
)
11914 assert(Src
.isInt());
11915 return Success((Src
.getInt() & (Alignment
- 1)) == 0 ? 1 : 0, E
);
11917 case Builtin::BI__builtin_align_up
: {
11920 if (!getBuiltinAlignArguments(E
, Info
, Src
, Alignment
))
11924 APSInt AlignedVal
=
11925 APSInt((Src
.getInt() + (Alignment
- 1)) & ~(Alignment
- 1),
11926 Src
.getInt().isUnsigned());
11927 assert(AlignedVal
.getBitWidth() == Src
.getInt().getBitWidth());
11928 return Success(AlignedVal
, E
);
11930 case Builtin::BI__builtin_align_down
: {
11933 if (!getBuiltinAlignArguments(E
, Info
, Src
, Alignment
))
11937 APSInt AlignedVal
=
11938 APSInt(Src
.getInt() & ~(Alignment
- 1), Src
.getInt().isUnsigned());
11939 assert(AlignedVal
.getBitWidth() == Src
.getInt().getBitWidth());
11940 return Success(AlignedVal
, E
);
11943 case Builtin::BI__builtin_bitreverse8
:
11944 case Builtin::BI__builtin_bitreverse16
:
11945 case Builtin::BI__builtin_bitreverse32
:
11946 case Builtin::BI__builtin_bitreverse64
: {
11948 if (!EvaluateInteger(E
->getArg(0), Val
, Info
))
11951 return Success(Val
.reverseBits(), E
);
11954 case Builtin::BI__builtin_bswap16
:
11955 case Builtin::BI__builtin_bswap32
:
11956 case Builtin::BI__builtin_bswap64
: {
11958 if (!EvaluateInteger(E
->getArg(0), Val
, Info
))
11961 return Success(Val
.byteSwap(), E
);
11964 case Builtin::BI__builtin_classify_type
:
11965 return Success((int)EvaluateBuiltinClassifyType(E
, Info
.getLangOpts()), E
);
11967 case Builtin::BI__builtin_clrsb
:
11968 case Builtin::BI__builtin_clrsbl
:
11969 case Builtin::BI__builtin_clrsbll
: {
11971 if (!EvaluateInteger(E
->getArg(0), Val
, Info
))
11974 return Success(Val
.getBitWidth() - Val
.getMinSignedBits(), E
);
11977 case Builtin::BI__builtin_clz
:
11978 case Builtin::BI__builtin_clzl
:
11979 case Builtin::BI__builtin_clzll
:
11980 case Builtin::BI__builtin_clzs
: {
11982 if (!EvaluateInteger(E
->getArg(0), Val
, Info
))
11987 return Success(Val
.countLeadingZeros(), E
);
11990 case Builtin::BI__builtin_constant_p
: {
11991 const Expr
*Arg
= E
->getArg(0);
11992 if (EvaluateBuiltinConstantP(Info
, Arg
))
11993 return Success(true, E
);
11994 if (Info
.InConstantContext
|| Arg
->HasSideEffects(Info
.Ctx
)) {
11995 // Outside a constant context, eagerly evaluate to false in the presence
11996 // of side-effects in order to avoid -Wunsequenced false-positives in
11997 // a branch on __builtin_constant_p(expr).
11998 return Success(false, E
);
12000 Info
.FFDiag(E
, diag::note_invalid_subexpr_in_const_expr
);
12004 case Builtin::BI__builtin_is_constant_evaluated
: {
12005 const auto *Callee
= Info
.CurrentCall
->getCallee();
12006 if (Info
.InConstantContext
&& !Info
.CheckingPotentialConstantExpression
&&
12007 (Info
.CallStackDepth
== 1 ||
12008 (Info
.CallStackDepth
== 2 && Callee
->isInStdNamespace() &&
12009 Callee
->getIdentifier() &&
12010 Callee
->getIdentifier()->isStr("is_constant_evaluated")))) {
12011 // FIXME: Find a better way to avoid duplicated diagnostics.
12012 if (Info
.EvalStatus
.Diag
)
12013 Info
.report((Info
.CallStackDepth
== 1) ? E
->getExprLoc()
12014 : Info
.CurrentCall
->CallLoc
,
12015 diag::warn_is_constant_evaluated_always_true_constexpr
)
12016 << (Info
.CallStackDepth
== 1 ? "__builtin_is_constant_evaluated"
12017 : "std::is_constant_evaluated");
12020 return Success(Info
.InConstantContext
, E
);
12023 case Builtin::BI__builtin_ctz
:
12024 case Builtin::BI__builtin_ctzl
:
12025 case Builtin::BI__builtin_ctzll
:
12026 case Builtin::BI__builtin_ctzs
: {
12028 if (!EvaluateInteger(E
->getArg(0), Val
, Info
))
12033 return Success(Val
.countTrailingZeros(), E
);
12036 case Builtin::BI__builtin_eh_return_data_regno
: {
12037 int Operand
= E
->getArg(0)->EvaluateKnownConstInt(Info
.Ctx
).getZExtValue();
12038 Operand
= Info
.Ctx
.getTargetInfo().getEHDataRegisterNumber(Operand
);
12039 return Success(Operand
, E
);
12042 case Builtin::BI__builtin_expect
:
12043 case Builtin::BI__builtin_expect_with_probability
:
12044 return Visit(E
->getArg(0));
12046 case Builtin::BI__builtin_ffs
:
12047 case Builtin::BI__builtin_ffsl
:
12048 case Builtin::BI__builtin_ffsll
: {
12050 if (!EvaluateInteger(E
->getArg(0), Val
, Info
))
12053 unsigned N
= Val
.countTrailingZeros();
12054 return Success(N
== Val
.getBitWidth() ? 0 : N
+ 1, E
);
12057 case Builtin::BI__builtin_fpclassify
: {
12059 if (!EvaluateFloat(E
->getArg(5), Val
, Info
))
12062 switch (Val
.getCategory()) {
12063 case APFloat::fcNaN
: Arg
= 0; break;
12064 case APFloat::fcInfinity
: Arg
= 1; break;
12065 case APFloat::fcNormal
: Arg
= Val
.isDenormal() ? 3 : 2; break;
12066 case APFloat::fcZero
: Arg
= 4; break;
12068 return Visit(E
->getArg(Arg
));
12071 case Builtin::BI__builtin_isinf_sign
: {
12073 return EvaluateFloat(E
->getArg(0), Val
, Info
) &&
12074 Success(Val
.isInfinity() ? (Val
.isNegative() ? -1 : 1) : 0, E
);
12077 case Builtin::BI__builtin_isinf
: {
12079 return EvaluateFloat(E
->getArg(0), Val
, Info
) &&
12080 Success(Val
.isInfinity() ? 1 : 0, E
);
12083 case Builtin::BI__builtin_isfinite
: {
12085 return EvaluateFloat(E
->getArg(0), Val
, Info
) &&
12086 Success(Val
.isFinite() ? 1 : 0, E
);
12089 case Builtin::BI__builtin_isnan
: {
12091 return EvaluateFloat(E
->getArg(0), Val
, Info
) &&
12092 Success(Val
.isNaN() ? 1 : 0, E
);
12095 case Builtin::BI__builtin_isnormal
: {
12097 return EvaluateFloat(E
->getArg(0), Val
, Info
) &&
12098 Success(Val
.isNormal() ? 1 : 0, E
);
12101 case Builtin::BI__builtin_parity
:
12102 case Builtin::BI__builtin_parityl
:
12103 case Builtin::BI__builtin_parityll
: {
12105 if (!EvaluateInteger(E
->getArg(0), Val
, Info
))
12108 return Success(Val
.countPopulation() % 2, E
);
12111 case Builtin::BI__builtin_popcount
:
12112 case Builtin::BI__builtin_popcountl
:
12113 case Builtin::BI__builtin_popcountll
: {
12115 if (!EvaluateInteger(E
->getArg(0), Val
, Info
))
12118 return Success(Val
.countPopulation(), E
);
12121 case Builtin::BI__builtin_rotateleft8
:
12122 case Builtin::BI__builtin_rotateleft16
:
12123 case Builtin::BI__builtin_rotateleft32
:
12124 case Builtin::BI__builtin_rotateleft64
:
12125 case Builtin::BI_rotl8
: // Microsoft variants of rotate right
12126 case Builtin::BI_rotl16
:
12127 case Builtin::BI_rotl
:
12128 case Builtin::BI_lrotl
:
12129 case Builtin::BI_rotl64
: {
12131 if (!EvaluateInteger(E
->getArg(0), Val
, Info
) ||
12132 !EvaluateInteger(E
->getArg(1), Amt
, Info
))
12135 return Success(Val
.rotl(Amt
.urem(Val
.getBitWidth())), E
);
12138 case Builtin::BI__builtin_rotateright8
:
12139 case Builtin::BI__builtin_rotateright16
:
12140 case Builtin::BI__builtin_rotateright32
:
12141 case Builtin::BI__builtin_rotateright64
:
12142 case Builtin::BI_rotr8
: // Microsoft variants of rotate right
12143 case Builtin::BI_rotr16
:
12144 case Builtin::BI_rotr
:
12145 case Builtin::BI_lrotr
:
12146 case Builtin::BI_rotr64
: {
12148 if (!EvaluateInteger(E
->getArg(0), Val
, Info
) ||
12149 !EvaluateInteger(E
->getArg(1), Amt
, Info
))
12152 return Success(Val
.rotr(Amt
.urem(Val
.getBitWidth())), E
);
12155 case Builtin::BIstrlen
:
12156 case Builtin::BIwcslen
:
12157 // A call to strlen is not a constant expression.
12158 if (Info
.getLangOpts().CPlusPlus11
)
12159 Info
.CCEDiag(E
, diag::note_constexpr_invalid_function
)
12160 << /*isConstexpr*/0 << /*isConstructor*/0
12161 << (std::string("'") + Info
.Ctx
.BuiltinInfo
.getName(BuiltinOp
) + "'");
12163 Info
.CCEDiag(E
, diag::note_invalid_subexpr_in_const_expr
);
12165 case Builtin::BI__builtin_strlen
:
12166 case Builtin::BI__builtin_wcslen
: {
12167 // As an extension, we support __builtin_strlen() as a constant expression,
12168 // and support folding strlen() to a constant.
12170 if (EvaluateBuiltinStrLen(E
->getArg(0), StrLen
, Info
))
12171 return Success(StrLen
, E
);
12175 case Builtin::BIstrcmp
:
12176 case Builtin::BIwcscmp
:
12177 case Builtin::BIstrncmp
:
12178 case Builtin::BIwcsncmp
:
12179 case Builtin::BImemcmp
:
12180 case Builtin::BIbcmp
:
12181 case Builtin::BIwmemcmp
:
12182 // A call to strlen is not a constant expression.
12183 if (Info
.getLangOpts().CPlusPlus11
)
12184 Info
.CCEDiag(E
, diag::note_constexpr_invalid_function
)
12185 << /*isConstexpr*/0 << /*isConstructor*/0
12186 << (std::string("'") + Info
.Ctx
.BuiltinInfo
.getName(BuiltinOp
) + "'");
12188 Info
.CCEDiag(E
, diag::note_invalid_subexpr_in_const_expr
);
12190 case Builtin::BI__builtin_strcmp
:
12191 case Builtin::BI__builtin_wcscmp
:
12192 case Builtin::BI__builtin_strncmp
:
12193 case Builtin::BI__builtin_wcsncmp
:
12194 case Builtin::BI__builtin_memcmp
:
12195 case Builtin::BI__builtin_bcmp
:
12196 case Builtin::BI__builtin_wmemcmp
: {
12197 LValue String1
, String2
;
12198 if (!EvaluatePointer(E
->getArg(0), String1
, Info
) ||
12199 !EvaluatePointer(E
->getArg(1), String2
, Info
))
12202 uint64_t MaxLength
= uint64_t(-1);
12203 if (BuiltinOp
!= Builtin::BIstrcmp
&&
12204 BuiltinOp
!= Builtin::BIwcscmp
&&
12205 BuiltinOp
!= Builtin::BI__builtin_strcmp
&&
12206 BuiltinOp
!= Builtin::BI__builtin_wcscmp
) {
12208 if (!EvaluateInteger(E
->getArg(2), N
, Info
))
12210 MaxLength
= N
.getExtValue();
12213 // Empty substrings compare equal by definition.
12214 if (MaxLength
== 0u)
12215 return Success(0, E
);
12217 if (!String1
.checkNullPointerForFoldAccess(Info
, E
, AK_Read
) ||
12218 !String2
.checkNullPointerForFoldAccess(Info
, E
, AK_Read
) ||
12219 String1
.Designator
.Invalid
|| String2
.Designator
.Invalid
)
12222 QualType CharTy1
= String1
.Designator
.getType(Info
.Ctx
);
12223 QualType CharTy2
= String2
.Designator
.getType(Info
.Ctx
);
12225 bool IsRawByte
= BuiltinOp
== Builtin::BImemcmp
||
12226 BuiltinOp
== Builtin::BIbcmp
||
12227 BuiltinOp
== Builtin::BI__builtin_memcmp
||
12228 BuiltinOp
== Builtin::BI__builtin_bcmp
;
12230 assert(IsRawByte
||
12231 (Info
.Ctx
.hasSameUnqualifiedType(
12232 CharTy1
, E
->getArg(0)->getType()->getPointeeType()) &&
12233 Info
.Ctx
.hasSameUnqualifiedType(CharTy1
, CharTy2
)));
12235 // For memcmp, allow comparing any arrays of '[[un]signed] char' or
12236 // 'char8_t', but no other types.
12238 !(isOneByteCharacterType(CharTy1
) && isOneByteCharacterType(CharTy2
))) {
12239 // FIXME: Consider using our bit_cast implementation to support this.
12240 Info
.FFDiag(E
, diag::note_constexpr_memcmp_unsupported
)
12241 << (std::string("'") + Info
.Ctx
.BuiltinInfo
.getName(BuiltinOp
) + "'")
12242 << CharTy1
<< CharTy2
;
12246 const auto &ReadCurElems
= [&](APValue
&Char1
, APValue
&Char2
) {
12247 return handleLValueToRValueConversion(Info
, E
, CharTy1
, String1
, Char1
) &&
12248 handleLValueToRValueConversion(Info
, E
, CharTy2
, String2
, Char2
) &&
12249 Char1
.isInt() && Char2
.isInt();
12251 const auto &AdvanceElems
= [&] {
12252 return HandleLValueArrayAdjustment(Info
, E
, String1
, CharTy1
, 1) &&
12253 HandleLValueArrayAdjustment(Info
, E
, String2
, CharTy2
, 1);
12257 (BuiltinOp
!= Builtin::BImemcmp
&& BuiltinOp
!= Builtin::BIbcmp
&&
12258 BuiltinOp
!= Builtin::BIwmemcmp
&&
12259 BuiltinOp
!= Builtin::BI__builtin_memcmp
&&
12260 BuiltinOp
!= Builtin::BI__builtin_bcmp
&&
12261 BuiltinOp
!= Builtin::BI__builtin_wmemcmp
);
12262 bool IsWide
= BuiltinOp
== Builtin::BIwcscmp
||
12263 BuiltinOp
== Builtin::BIwcsncmp
||
12264 BuiltinOp
== Builtin::BIwmemcmp
||
12265 BuiltinOp
== Builtin::BI__builtin_wcscmp
||
12266 BuiltinOp
== Builtin::BI__builtin_wcsncmp
||
12267 BuiltinOp
== Builtin::BI__builtin_wmemcmp
;
12269 for (; MaxLength
; --MaxLength
) {
12270 APValue Char1
, Char2
;
12271 if (!ReadCurElems(Char1
, Char2
))
12273 if (Char1
.getInt().ne(Char2
.getInt())) {
12274 if (IsWide
) // wmemcmp compares with wchar_t signedness.
12275 return Success(Char1
.getInt() < Char2
.getInt() ? -1 : 1, E
);
12276 // memcmp always compares unsigned chars.
12277 return Success(Char1
.getInt().ult(Char2
.getInt()) ? -1 : 1, E
);
12279 if (StopAtNull
&& !Char1
.getInt())
12280 return Success(0, E
);
12281 assert(!(StopAtNull
&& !Char2
.getInt()));
12282 if (!AdvanceElems())
12285 // We hit the strncmp / memcmp limit.
12286 return Success(0, E
);
12289 case Builtin::BI__atomic_always_lock_free
:
12290 case Builtin::BI__atomic_is_lock_free
:
12291 case Builtin::BI__c11_atomic_is_lock_free
: {
12293 if (!EvaluateInteger(E
->getArg(0), SizeVal
, Info
))
12296 // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
12297 // of two less than or equal to the maximum inline atomic width, we know it
12298 // is lock-free. If the size isn't a power of two, or greater than the
12299 // maximum alignment where we promote atomics, we know it is not lock-free
12300 // (at least not in the sense of atomic_is_lock_free). Otherwise,
12301 // the answer can only be determined at runtime; for example, 16-byte
12302 // atomics have lock-free implementations on some, but not all,
12303 // x86-64 processors.
12305 // Check power-of-two.
12306 CharUnits Size
= CharUnits::fromQuantity(SizeVal
.getZExtValue());
12307 if (Size
.isPowerOfTwo()) {
12308 // Check against inlining width.
12309 unsigned InlineWidthBits
=
12310 Info
.Ctx
.getTargetInfo().getMaxAtomicInlineWidth();
12311 if (Size
<= Info
.Ctx
.toCharUnitsFromBits(InlineWidthBits
)) {
12312 if (BuiltinOp
== Builtin::BI__c11_atomic_is_lock_free
||
12313 Size
== CharUnits::One() ||
12314 E
->getArg(1)->isNullPointerConstant(Info
.Ctx
,
12315 Expr::NPC_NeverValueDependent
))
12316 // OK, we will inline appropriately-aligned operations of this size,
12317 // and _Atomic(T) is appropriately-aligned.
12318 return Success(1, E
);
12320 QualType PointeeType
= E
->getArg(1)->IgnoreImpCasts()->getType()->
12321 castAs
<PointerType
>()->getPointeeType();
12322 if (!PointeeType
->isIncompleteType() &&
12323 Info
.Ctx
.getTypeAlignInChars(PointeeType
) >= Size
) {
12324 // OK, we will inline operations on this object.
12325 return Success(1, E
);
12330 return BuiltinOp
== Builtin::BI__atomic_always_lock_free
?
12331 Success(0, E
) : Error(E
);
12333 case Builtin::BI__builtin_add_overflow
:
12334 case Builtin::BI__builtin_sub_overflow
:
12335 case Builtin::BI__builtin_mul_overflow
:
12336 case Builtin::BI__builtin_sadd_overflow
:
12337 case Builtin::BI__builtin_uadd_overflow
:
12338 case Builtin::BI__builtin_uaddl_overflow
:
12339 case Builtin::BI__builtin_uaddll_overflow
:
12340 case Builtin::BI__builtin_usub_overflow
:
12341 case Builtin::BI__builtin_usubl_overflow
:
12342 case Builtin::BI__builtin_usubll_overflow
:
12343 case Builtin::BI__builtin_umul_overflow
:
12344 case Builtin::BI__builtin_umull_overflow
:
12345 case Builtin::BI__builtin_umulll_overflow
:
12346 case Builtin::BI__builtin_saddl_overflow
:
12347 case Builtin::BI__builtin_saddll_overflow
:
12348 case Builtin::BI__builtin_ssub_overflow
:
12349 case Builtin::BI__builtin_ssubl_overflow
:
12350 case Builtin::BI__builtin_ssubll_overflow
:
12351 case Builtin::BI__builtin_smul_overflow
:
12352 case Builtin::BI__builtin_smull_overflow
:
12353 case Builtin::BI__builtin_smulll_overflow
: {
12354 LValue ResultLValue
;
12357 QualType ResultType
= E
->getArg(2)->getType()->getPointeeType();
12358 if (!EvaluateInteger(E
->getArg(0), LHS
, Info
) ||
12359 !EvaluateInteger(E
->getArg(1), RHS
, Info
) ||
12360 !EvaluatePointer(E
->getArg(2), ResultLValue
, Info
))
12364 bool DidOverflow
= false;
12366 // If the types don't have to match, enlarge all 3 to the largest of them.
12367 if (BuiltinOp
== Builtin::BI__builtin_add_overflow
||
12368 BuiltinOp
== Builtin::BI__builtin_sub_overflow
||
12369 BuiltinOp
== Builtin::BI__builtin_mul_overflow
) {
12370 bool IsSigned
= LHS
.isSigned() || RHS
.isSigned() ||
12371 ResultType
->isSignedIntegerOrEnumerationType();
12372 bool AllSigned
= LHS
.isSigned() && RHS
.isSigned() &&
12373 ResultType
->isSignedIntegerOrEnumerationType();
12374 uint64_t LHSSize
= LHS
.getBitWidth();
12375 uint64_t RHSSize
= RHS
.getBitWidth();
12376 uint64_t ResultSize
= Info
.Ctx
.getTypeSize(ResultType
);
12377 uint64_t MaxBits
= std::max(std::max(LHSSize
, RHSSize
), ResultSize
);
12379 // Add an additional bit if the signedness isn't uniformly agreed to. We
12380 // could do this ONLY if there is a signed and an unsigned that both have
12381 // MaxBits, but the code to check that is pretty nasty. The issue will be
12382 // caught in the shrink-to-result later anyway.
12383 if (IsSigned
&& !AllSigned
)
12386 LHS
= APSInt(LHS
.extOrTrunc(MaxBits
), !IsSigned
);
12387 RHS
= APSInt(RHS
.extOrTrunc(MaxBits
), !IsSigned
);
12388 Result
= APSInt(MaxBits
, !IsSigned
);
12391 // Find largest int.
12392 switch (BuiltinOp
) {
12394 llvm_unreachable("Invalid value for BuiltinOp");
12395 case Builtin::BI__builtin_add_overflow
:
12396 case Builtin::BI__builtin_sadd_overflow
:
12397 case Builtin::BI__builtin_saddl_overflow
:
12398 case Builtin::BI__builtin_saddll_overflow
:
12399 case Builtin::BI__builtin_uadd_overflow
:
12400 case Builtin::BI__builtin_uaddl_overflow
:
12401 case Builtin::BI__builtin_uaddll_overflow
:
12402 Result
= LHS
.isSigned() ? LHS
.sadd_ov(RHS
, DidOverflow
)
12403 : LHS
.uadd_ov(RHS
, DidOverflow
);
12405 case Builtin::BI__builtin_sub_overflow
:
12406 case Builtin::BI__builtin_ssub_overflow
:
12407 case Builtin::BI__builtin_ssubl_overflow
:
12408 case Builtin::BI__builtin_ssubll_overflow
:
12409 case Builtin::BI__builtin_usub_overflow
:
12410 case Builtin::BI__builtin_usubl_overflow
:
12411 case Builtin::BI__builtin_usubll_overflow
:
12412 Result
= LHS
.isSigned() ? LHS
.ssub_ov(RHS
, DidOverflow
)
12413 : LHS
.usub_ov(RHS
, DidOverflow
);
12415 case Builtin::BI__builtin_mul_overflow
:
12416 case Builtin::BI__builtin_smul_overflow
:
12417 case Builtin::BI__builtin_smull_overflow
:
12418 case Builtin::BI__builtin_smulll_overflow
:
12419 case Builtin::BI__builtin_umul_overflow
:
12420 case Builtin::BI__builtin_umull_overflow
:
12421 case Builtin::BI__builtin_umulll_overflow
:
12422 Result
= LHS
.isSigned() ? LHS
.smul_ov(RHS
, DidOverflow
)
12423 : LHS
.umul_ov(RHS
, DidOverflow
);
12427 // In the case where multiple sizes are allowed, truncate and see if
12428 // the values are the same.
12429 if (BuiltinOp
== Builtin::BI__builtin_add_overflow
||
12430 BuiltinOp
== Builtin::BI__builtin_sub_overflow
||
12431 BuiltinOp
== Builtin::BI__builtin_mul_overflow
) {
12432 // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
12433 // since it will give us the behavior of a TruncOrSelf in the case where
12434 // its parameter <= its size. We previously set Result to be at least the
12435 // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
12436 // will work exactly like TruncOrSelf.
12437 APSInt Temp
= Result
.extOrTrunc(Info
.Ctx
.getTypeSize(ResultType
));
12438 Temp
.setIsSigned(ResultType
->isSignedIntegerOrEnumerationType());
12440 if (!APSInt::isSameValue(Temp
, Result
))
12441 DidOverflow
= true;
12445 APValue APV
{Result
};
12446 if (!handleAssignment(Info
, E
, ResultLValue
, ResultType
, APV
))
12448 return Success(DidOverflow
, E
);
12453 /// Determine whether this is a pointer past the end of the complete
12454 /// object referred to by the lvalue.
12455 static bool isOnePastTheEndOfCompleteObject(const ASTContext
&Ctx
,
12456 const LValue
&LV
) {
12457 // A null pointer can be viewed as being "past the end" but we don't
12458 // choose to look at it that way here.
12459 if (!LV
.getLValueBase())
12462 // If the designator is valid and refers to a subobject, we're not pointing
12464 if (!LV
.getLValueDesignator().Invalid
&&
12465 !LV
.getLValueDesignator().isOnePastTheEnd())
12468 // A pointer to an incomplete type might be past-the-end if the type's size is
12469 // zero. We cannot tell because the type is incomplete.
12470 QualType Ty
= getType(LV
.getLValueBase());
12471 if (Ty
->isIncompleteType())
12474 // We're a past-the-end pointer if we point to the byte after the object,
12475 // no matter what our type or path is.
12476 auto Size
= Ctx
.getTypeSizeInChars(Ty
);
12477 return LV
.getLValueOffset() == Size
;
12482 /// Data recursive integer evaluator of certain binary operators.
12484 /// We use a data recursive algorithm for binary operators so that we are able
12485 /// to handle extreme cases of chained binary operators without causing stack
12487 class DataRecursiveIntBinOpEvaluator
{
12488 struct EvalResult
{
12492 EvalResult() : Failed(false) { }
12494 void swap(EvalResult
&RHS
) {
12496 Failed
= RHS
.Failed
;
12497 RHS
.Failed
= false;
12503 EvalResult LHSResult
; // meaningful only for binary operator expression.
12504 enum { AnyExprKind
, BinOpKind
, BinOpVisitedLHSKind
} Kind
;
12507 Job(Job
&&) = default;
12509 void startSpeculativeEval(EvalInfo
&Info
) {
12510 SpecEvalRAII
= SpeculativeEvaluationRAII(Info
);
12514 SpeculativeEvaluationRAII SpecEvalRAII
;
12517 SmallVector
<Job
, 16> Queue
;
12519 IntExprEvaluator
&IntEval
;
12521 APValue
&FinalResult
;
12524 DataRecursiveIntBinOpEvaluator(IntExprEvaluator
&IntEval
, APValue
&Result
)
12525 : IntEval(IntEval
), Info(IntEval
.getEvalInfo()), FinalResult(Result
) { }
12527 /// True if \param E is a binary operator that we are going to handle
12528 /// data recursively.
12529 /// We handle binary operators that are comma, logical, or that have operands
12530 /// with integral or enumeration type.
12531 static bool shouldEnqueue(const BinaryOperator
*E
) {
12532 return E
->getOpcode() == BO_Comma
|| E
->isLogicalOp() ||
12533 (E
->isPRValue() && E
->getType()->isIntegralOrEnumerationType() &&
12534 E
->getLHS()->getType()->isIntegralOrEnumerationType() &&
12535 E
->getRHS()->getType()->isIntegralOrEnumerationType());
12538 bool Traverse(const BinaryOperator
*E
) {
12540 EvalResult PrevResult
;
12541 while (!Queue
.empty())
12542 process(PrevResult
);
12544 if (PrevResult
.Failed
) return false;
12546 FinalResult
.swap(PrevResult
.Val
);
12551 bool Success(uint64_t Value
, const Expr
*E
, APValue
&Result
) {
12552 return IntEval
.Success(Value
, E
, Result
);
12554 bool Success(const APSInt
&Value
, const Expr
*E
, APValue
&Result
) {
12555 return IntEval
.Success(Value
, E
, Result
);
12557 bool Error(const Expr
*E
) {
12558 return IntEval
.Error(E
);
12560 bool Error(const Expr
*E
, diag::kind D
) {
12561 return IntEval
.Error(E
, D
);
12564 OptionalDiagnostic
CCEDiag(const Expr
*E
, diag::kind D
) {
12565 return Info
.CCEDiag(E
, D
);
12568 // Returns true if visiting the RHS is necessary, false otherwise.
12569 bool VisitBinOpLHSOnly(EvalResult
&LHSResult
, const BinaryOperator
*E
,
12570 bool &SuppressRHSDiags
);
12572 bool VisitBinOp(const EvalResult
&LHSResult
, const EvalResult
&RHSResult
,
12573 const BinaryOperator
*E
, APValue
&Result
);
12575 void EvaluateExpr(const Expr
*E
, EvalResult
&Result
) {
12576 Result
.Failed
= !Evaluate(Result
.Val
, Info
, E
);
12578 Result
.Val
= APValue();
12581 void process(EvalResult
&Result
);
12583 void enqueue(const Expr
*E
) {
12584 E
= E
->IgnoreParens();
12585 Queue
.resize(Queue
.size()+1);
12586 Queue
.back().E
= E
;
12587 Queue
.back().Kind
= Job::AnyExprKind
;
12593 bool DataRecursiveIntBinOpEvaluator::
12594 VisitBinOpLHSOnly(EvalResult
&LHSResult
, const BinaryOperator
*E
,
12595 bool &SuppressRHSDiags
) {
12596 if (E
->getOpcode() == BO_Comma
) {
12597 // Ignore LHS but note if we could not evaluate it.
12598 if (LHSResult
.Failed
)
12599 return Info
.noteSideEffect();
12603 if (E
->isLogicalOp()) {
12605 if (!LHSResult
.Failed
&& HandleConversionToBool(LHSResult
.Val
, LHSAsBool
)) {
12606 // We were able to evaluate the LHS, see if we can get away with not
12607 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
12608 if (LHSAsBool
== (E
->getOpcode() == BO_LOr
)) {
12609 Success(LHSAsBool
, E
, LHSResult
.Val
);
12610 return false; // Ignore RHS
12613 LHSResult
.Failed
= true;
12615 // Since we weren't able to evaluate the left hand side, it
12616 // might have had side effects.
12617 if (!Info
.noteSideEffect())
12620 // We can't evaluate the LHS; however, sometimes the result
12621 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12622 // Don't ignore RHS and suppress diagnostics from this arm.
12623 SuppressRHSDiags
= true;
12629 assert(E
->getLHS()->getType()->isIntegralOrEnumerationType() &&
12630 E
->getRHS()->getType()->isIntegralOrEnumerationType());
12632 if (LHSResult
.Failed
&& !Info
.noteFailure())
12633 return false; // Ignore RHS;
12638 static void addOrSubLValueAsInteger(APValue
&LVal
, const APSInt
&Index
,
12640 // Compute the new offset in the appropriate width, wrapping at 64 bits.
12641 // FIXME: When compiling for a 32-bit target, we should use 32-bit
12643 assert(!LVal
.hasLValuePath() && "have designator for integer lvalue");
12644 CharUnits
&Offset
= LVal
.getLValueOffset();
12645 uint64_t Offset64
= Offset
.getQuantity();
12646 uint64_t Index64
= Index
.extOrTrunc(64).getZExtValue();
12647 Offset
= CharUnits::fromQuantity(IsSub
? Offset64
- Index64
12648 : Offset64
+ Index64
);
12651 bool DataRecursiveIntBinOpEvaluator::
12652 VisitBinOp(const EvalResult
&LHSResult
, const EvalResult
&RHSResult
,
12653 const BinaryOperator
*E
, APValue
&Result
) {
12654 if (E
->getOpcode() == BO_Comma
) {
12655 if (RHSResult
.Failed
)
12657 Result
= RHSResult
.Val
;
12661 if (E
->isLogicalOp()) {
12662 bool lhsResult
, rhsResult
;
12663 bool LHSIsOK
= HandleConversionToBool(LHSResult
.Val
, lhsResult
);
12664 bool RHSIsOK
= HandleConversionToBool(RHSResult
.Val
, rhsResult
);
12668 if (E
->getOpcode() == BO_LOr
)
12669 return Success(lhsResult
|| rhsResult
, E
, Result
);
12671 return Success(lhsResult
&& rhsResult
, E
, Result
);
12675 // We can't evaluate the LHS; however, sometimes the result
12676 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12677 if (rhsResult
== (E
->getOpcode() == BO_LOr
))
12678 return Success(rhsResult
, E
, Result
);
12685 assert(E
->getLHS()->getType()->isIntegralOrEnumerationType() &&
12686 E
->getRHS()->getType()->isIntegralOrEnumerationType());
12688 if (LHSResult
.Failed
|| RHSResult
.Failed
)
12691 const APValue
&LHSVal
= LHSResult
.Val
;
12692 const APValue
&RHSVal
= RHSResult
.Val
;
12694 // Handle cases like (unsigned long)&a + 4.
12695 if (E
->isAdditiveOp() && LHSVal
.isLValue() && RHSVal
.isInt()) {
12697 addOrSubLValueAsInteger(Result
, RHSVal
.getInt(), E
->getOpcode() == BO_Sub
);
12701 // Handle cases like 4 + (unsigned long)&a
12702 if (E
->getOpcode() == BO_Add
&&
12703 RHSVal
.isLValue() && LHSVal
.isInt()) {
12705 addOrSubLValueAsInteger(Result
, LHSVal
.getInt(), /*IsSub*/false);
12709 if (E
->getOpcode() == BO_Sub
&& LHSVal
.isLValue() && RHSVal
.isLValue()) {
12710 // Handle (intptr_t)&&A - (intptr_t)&&B.
12711 if (!LHSVal
.getLValueOffset().isZero() ||
12712 !RHSVal
.getLValueOffset().isZero())
12714 const Expr
*LHSExpr
= LHSVal
.getLValueBase().dyn_cast
<const Expr
*>();
12715 const Expr
*RHSExpr
= RHSVal
.getLValueBase().dyn_cast
<const Expr
*>();
12716 if (!LHSExpr
|| !RHSExpr
)
12718 const AddrLabelExpr
*LHSAddrExpr
= dyn_cast
<AddrLabelExpr
>(LHSExpr
);
12719 const AddrLabelExpr
*RHSAddrExpr
= dyn_cast
<AddrLabelExpr
>(RHSExpr
);
12720 if (!LHSAddrExpr
|| !RHSAddrExpr
)
12722 // Make sure both labels come from the same function.
12723 if (LHSAddrExpr
->getLabel()->getDeclContext() !=
12724 RHSAddrExpr
->getLabel()->getDeclContext())
12726 Result
= APValue(LHSAddrExpr
, RHSAddrExpr
);
12730 // All the remaining cases expect both operands to be an integer
12731 if (!LHSVal
.isInt() || !RHSVal
.isInt())
12734 // Set up the width and signedness manually, in case it can't be deduced
12735 // from the operation we're performing.
12736 // FIXME: Don't do this in the cases where we can deduce it.
12737 APSInt
Value(Info
.Ctx
.getIntWidth(E
->getType()),
12738 E
->getType()->isUnsignedIntegerOrEnumerationType());
12739 if (!handleIntIntBinOp(Info
, E
, LHSVal
.getInt(), E
->getOpcode(),
12740 RHSVal
.getInt(), Value
))
12742 return Success(Value
, E
, Result
);
12745 void DataRecursiveIntBinOpEvaluator::process(EvalResult
&Result
) {
12746 Job
&job
= Queue
.back();
12748 switch (job
.Kind
) {
12749 case Job::AnyExprKind
: {
12750 if (const BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(job
.E
)) {
12751 if (shouldEnqueue(Bop
)) {
12752 job
.Kind
= Job::BinOpKind
;
12753 enqueue(Bop
->getLHS());
12758 EvaluateExpr(job
.E
, Result
);
12763 case Job::BinOpKind
: {
12764 const BinaryOperator
*Bop
= cast
<BinaryOperator
>(job
.E
);
12765 bool SuppressRHSDiags
= false;
12766 if (!VisitBinOpLHSOnly(Result
, Bop
, SuppressRHSDiags
)) {
12770 if (SuppressRHSDiags
)
12771 job
.startSpeculativeEval(Info
);
12772 job
.LHSResult
.swap(Result
);
12773 job
.Kind
= Job::BinOpVisitedLHSKind
;
12774 enqueue(Bop
->getRHS());
12778 case Job::BinOpVisitedLHSKind
: {
12779 const BinaryOperator
*Bop
= cast
<BinaryOperator
>(job
.E
);
12782 Result
.Failed
= !VisitBinOp(job
.LHSResult
, RHS
, Bop
, Result
.Val
);
12788 llvm_unreachable("Invalid Job::Kind!");
12792 enum class CmpResult
{
12801 template <class SuccessCB
, class AfterCB
>
12803 EvaluateComparisonBinaryOperator(EvalInfo
&Info
, const BinaryOperator
*E
,
12804 SuccessCB
&&Success
, AfterCB
&&DoAfter
) {
12805 assert(!E
->isValueDependent());
12806 assert(E
->isComparisonOp() && "expected comparison operator");
12807 assert((E
->getOpcode() == BO_Cmp
||
12808 E
->getType()->isIntegralOrEnumerationType()) &&
12809 "unsupported binary expression evaluation");
12810 auto Error
= [&](const Expr
*E
) {
12811 Info
.FFDiag(E
, diag::note_invalid_subexpr_in_const_expr
);
12815 bool IsRelational
= E
->isRelationalOp() || E
->getOpcode() == BO_Cmp
;
12816 bool IsEquality
= E
->isEqualityOp();
12818 QualType LHSTy
= E
->getLHS()->getType();
12819 QualType RHSTy
= E
->getRHS()->getType();
12821 if (LHSTy
->isIntegralOrEnumerationType() &&
12822 RHSTy
->isIntegralOrEnumerationType()) {
12824 bool LHSOK
= EvaluateInteger(E
->getLHS(), LHS
, Info
);
12825 if (!LHSOK
&& !Info
.noteFailure())
12827 if (!EvaluateInteger(E
->getRHS(), RHS
, Info
) || !LHSOK
)
12830 return Success(CmpResult::Less
, E
);
12832 return Success(CmpResult::Greater
, E
);
12833 return Success(CmpResult::Equal
, E
);
12836 if (LHSTy
->isFixedPointType() || RHSTy
->isFixedPointType()) {
12837 APFixedPoint
LHSFX(Info
.Ctx
.getFixedPointSemantics(LHSTy
));
12838 APFixedPoint
RHSFX(Info
.Ctx
.getFixedPointSemantics(RHSTy
));
12840 bool LHSOK
= EvaluateFixedPointOrInteger(E
->getLHS(), LHSFX
, Info
);
12841 if (!LHSOK
&& !Info
.noteFailure())
12843 if (!EvaluateFixedPointOrInteger(E
->getRHS(), RHSFX
, Info
) || !LHSOK
)
12846 return Success(CmpResult::Less
, E
);
12848 return Success(CmpResult::Greater
, E
);
12849 return Success(CmpResult::Equal
, E
);
12852 if (LHSTy
->isAnyComplexType() || RHSTy
->isAnyComplexType()) {
12853 ComplexValue LHS
, RHS
;
12855 if (E
->isAssignmentOp()) {
12857 EvaluateLValue(E
->getLHS(), LV
, Info
);
12859 } else if (LHSTy
->isRealFloatingType()) {
12860 LHSOK
= EvaluateFloat(E
->getLHS(), LHS
.FloatReal
, Info
);
12862 LHS
.makeComplexFloat();
12863 LHS
.FloatImag
= APFloat(LHS
.FloatReal
.getSemantics());
12866 LHSOK
= EvaluateComplex(E
->getLHS(), LHS
, Info
);
12868 if (!LHSOK
&& !Info
.noteFailure())
12871 if (E
->getRHS()->getType()->isRealFloatingType()) {
12872 if (!EvaluateFloat(E
->getRHS(), RHS
.FloatReal
, Info
) || !LHSOK
)
12874 RHS
.makeComplexFloat();
12875 RHS
.FloatImag
= APFloat(RHS
.FloatReal
.getSemantics());
12876 } else if (!EvaluateComplex(E
->getRHS(), RHS
, Info
) || !LHSOK
)
12879 if (LHS
.isComplexFloat()) {
12880 APFloat::cmpResult CR_r
=
12881 LHS
.getComplexFloatReal().compare(RHS
.getComplexFloatReal());
12882 APFloat::cmpResult CR_i
=
12883 LHS
.getComplexFloatImag().compare(RHS
.getComplexFloatImag());
12884 bool IsEqual
= CR_r
== APFloat::cmpEqual
&& CR_i
== APFloat::cmpEqual
;
12885 return Success(IsEqual
? CmpResult::Equal
: CmpResult::Unequal
, E
);
12887 assert(IsEquality
&& "invalid complex comparison");
12888 bool IsEqual
= LHS
.getComplexIntReal() == RHS
.getComplexIntReal() &&
12889 LHS
.getComplexIntImag() == RHS
.getComplexIntImag();
12890 return Success(IsEqual
? CmpResult::Equal
: CmpResult::Unequal
, E
);
12894 if (LHSTy
->isRealFloatingType() &&
12895 RHSTy
->isRealFloatingType()) {
12896 APFloat
RHS(0.0), LHS(0.0);
12898 bool LHSOK
= EvaluateFloat(E
->getRHS(), RHS
, Info
);
12899 if (!LHSOK
&& !Info
.noteFailure())
12902 if (!EvaluateFloat(E
->getLHS(), LHS
, Info
) || !LHSOK
)
12905 assert(E
->isComparisonOp() && "Invalid binary operator!");
12906 llvm::APFloatBase::cmpResult APFloatCmpResult
= LHS
.compare(RHS
);
12907 if (!Info
.InConstantContext
&&
12908 APFloatCmpResult
== APFloat::cmpUnordered
&&
12909 E
->getFPFeaturesInEffect(Info
.Ctx
.getLangOpts()).isFPConstrained()) {
12910 // Note: Compares may raise invalid in some cases involving NaN or sNaN.
12911 Info
.FFDiag(E
, diag::note_constexpr_float_arithmetic_strict
);
12914 auto GetCmpRes
= [&]() {
12915 switch (APFloatCmpResult
) {
12916 case APFloat::cmpEqual
:
12917 return CmpResult::Equal
;
12918 case APFloat::cmpLessThan
:
12919 return CmpResult::Less
;
12920 case APFloat::cmpGreaterThan
:
12921 return CmpResult::Greater
;
12922 case APFloat::cmpUnordered
:
12923 return CmpResult::Unordered
;
12925 llvm_unreachable("Unrecognised APFloat::cmpResult enum");
12927 return Success(GetCmpRes(), E
);
12930 if (LHSTy
->isPointerType() && RHSTy
->isPointerType()) {
12931 LValue LHSValue
, RHSValue
;
12933 bool LHSOK
= EvaluatePointer(E
->getLHS(), LHSValue
, Info
);
12934 if (!LHSOK
&& !Info
.noteFailure())
12937 if (!EvaluatePointer(E
->getRHS(), RHSValue
, Info
) || !LHSOK
)
12940 // Reject differing bases from the normal codepath; we special-case
12941 // comparisons to null.
12942 if (!HasSameBase(LHSValue
, RHSValue
)) {
12943 // Inequalities and subtractions between unrelated pointers have
12944 // unspecified or undefined behavior.
12946 Info
.FFDiag(E
, diag::note_constexpr_pointer_comparison_unspecified
);
12949 // A constant address may compare equal to the address of a symbol.
12950 // The one exception is that address of an object cannot compare equal
12951 // to a null pointer constant.
12952 if ((!LHSValue
.Base
&& !LHSValue
.Offset
.isZero()) ||
12953 (!RHSValue
.Base
&& !RHSValue
.Offset
.isZero()))
12955 // It's implementation-defined whether distinct literals will have
12956 // distinct addresses. In clang, the result of such a comparison is
12957 // unspecified, so it is not a constant expression. However, we do know
12958 // that the address of a literal will be non-null.
12959 if ((IsLiteralLValue(LHSValue
) || IsLiteralLValue(RHSValue
)) &&
12960 LHSValue
.Base
&& RHSValue
.Base
)
12962 // We can't tell whether weak symbols will end up pointing to the same
12964 if (IsWeakLValue(LHSValue
) || IsWeakLValue(RHSValue
))
12966 // We can't compare the address of the start of one object with the
12967 // past-the-end address of another object, per C++ DR1652.
12968 if ((LHSValue
.Base
&& LHSValue
.Offset
.isZero() &&
12969 isOnePastTheEndOfCompleteObject(Info
.Ctx
, RHSValue
)) ||
12970 (RHSValue
.Base
&& RHSValue
.Offset
.isZero() &&
12971 isOnePastTheEndOfCompleteObject(Info
.Ctx
, LHSValue
)))
12973 // We can't tell whether an object is at the same address as another
12974 // zero sized object.
12975 if ((RHSValue
.Base
&& isZeroSized(LHSValue
)) ||
12976 (LHSValue
.Base
&& isZeroSized(RHSValue
)))
12978 return Success(CmpResult::Unequal
, E
);
12981 const CharUnits
&LHSOffset
= LHSValue
.getLValueOffset();
12982 const CharUnits
&RHSOffset
= RHSValue
.getLValueOffset();
12984 SubobjectDesignator
&LHSDesignator
= LHSValue
.getLValueDesignator();
12985 SubobjectDesignator
&RHSDesignator
= RHSValue
.getLValueDesignator();
12987 // C++11 [expr.rel]p3:
12988 // Pointers to void (after pointer conversions) can be compared, with a
12989 // result defined as follows: If both pointers represent the same
12990 // address or are both the null pointer value, the result is true if the
12991 // operator is <= or >= and false otherwise; otherwise the result is
12993 // We interpret this as applying to pointers to *cv* void.
12994 if (LHSTy
->isVoidPointerType() && LHSOffset
!= RHSOffset
&& IsRelational
)
12995 Info
.CCEDiag(E
, diag::note_constexpr_void_comparison
);
12997 // C++11 [expr.rel]p2:
12998 // - If two pointers point to non-static data members of the same object,
12999 // or to subobjects or array elements fo such members, recursively, the
13000 // pointer to the later declared member compares greater provided the
13001 // two members have the same access control and provided their class is
13004 // - Otherwise pointer comparisons are unspecified.
13005 if (!LHSDesignator
.Invalid
&& !RHSDesignator
.Invalid
&& IsRelational
) {
13006 bool WasArrayIndex
;
13007 unsigned Mismatch
= FindDesignatorMismatch(
13008 getType(LHSValue
.Base
), LHSDesignator
, RHSDesignator
, WasArrayIndex
);
13009 // At the point where the designators diverge, the comparison has a
13010 // specified value if:
13011 // - we are comparing array indices
13012 // - we are comparing fields of a union, or fields with the same access
13013 // Otherwise, the result is unspecified and thus the comparison is not a
13014 // constant expression.
13015 if (!WasArrayIndex
&& Mismatch
< LHSDesignator
.Entries
.size() &&
13016 Mismatch
< RHSDesignator
.Entries
.size()) {
13017 const FieldDecl
*LF
= getAsField(LHSDesignator
.Entries
[Mismatch
]);
13018 const FieldDecl
*RF
= getAsField(RHSDesignator
.Entries
[Mismatch
]);
13020 Info
.CCEDiag(E
, diag::note_constexpr_pointer_comparison_base_classes
);
13022 Info
.CCEDiag(E
, diag::note_constexpr_pointer_comparison_base_field
)
13023 << getAsBaseClass(LHSDesignator
.Entries
[Mismatch
])
13024 << RF
->getParent() << RF
;
13026 Info
.CCEDiag(E
, diag::note_constexpr_pointer_comparison_base_field
)
13027 << getAsBaseClass(RHSDesignator
.Entries
[Mismatch
])
13028 << LF
->getParent() << LF
;
13029 else if (!LF
->getParent()->isUnion() &&
13030 LF
->getAccess() != RF
->getAccess())
13032 diag::note_constexpr_pointer_comparison_differing_access
)
13033 << LF
<< LF
->getAccess() << RF
<< RF
->getAccess()
13034 << LF
->getParent();
13038 // The comparison here must be unsigned, and performed with the same
13039 // width as the pointer.
13040 unsigned PtrSize
= Info
.Ctx
.getTypeSize(LHSTy
);
13041 uint64_t CompareLHS
= LHSOffset
.getQuantity();
13042 uint64_t CompareRHS
= RHSOffset
.getQuantity();
13043 assert(PtrSize
<= 64 && "Unexpected pointer width");
13044 uint64_t Mask
= ~0ULL >> (64 - PtrSize
);
13045 CompareLHS
&= Mask
;
13046 CompareRHS
&= Mask
;
13048 // If there is a base and this is a relational operator, we can only
13049 // compare pointers within the object in question; otherwise, the result
13050 // depends on where the object is located in memory.
13051 if (!LHSValue
.Base
.isNull() && IsRelational
) {
13052 QualType BaseTy
= getType(LHSValue
.Base
);
13053 if (BaseTy
->isIncompleteType())
13055 CharUnits Size
= Info
.Ctx
.getTypeSizeInChars(BaseTy
);
13056 uint64_t OffsetLimit
= Size
.getQuantity();
13057 if (CompareLHS
> OffsetLimit
|| CompareRHS
> OffsetLimit
)
13061 if (CompareLHS
< CompareRHS
)
13062 return Success(CmpResult::Less
, E
);
13063 if (CompareLHS
> CompareRHS
)
13064 return Success(CmpResult::Greater
, E
);
13065 return Success(CmpResult::Equal
, E
);
13068 if (LHSTy
->isMemberPointerType()) {
13069 assert(IsEquality
&& "unexpected member pointer operation");
13070 assert(RHSTy
->isMemberPointerType() && "invalid comparison");
13072 MemberPtr LHSValue
, RHSValue
;
13074 bool LHSOK
= EvaluateMemberPointer(E
->getLHS(), LHSValue
, Info
);
13075 if (!LHSOK
&& !Info
.noteFailure())
13078 if (!EvaluateMemberPointer(E
->getRHS(), RHSValue
, Info
) || !LHSOK
)
13081 // C++11 [expr.eq]p2:
13082 // If both operands are null, they compare equal. Otherwise if only one is
13083 // null, they compare unequal.
13084 if (!LHSValue
.getDecl() || !RHSValue
.getDecl()) {
13085 bool Equal
= !LHSValue
.getDecl() && !RHSValue
.getDecl();
13086 return Success(Equal
? CmpResult::Equal
: CmpResult::Unequal
, E
);
13089 // Otherwise if either is a pointer to a virtual member function, the
13090 // result is unspecified.
13091 if (const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(LHSValue
.getDecl()))
13092 if (MD
->isVirtual())
13093 Info
.CCEDiag(E
, diag::note_constexpr_compare_virtual_mem_ptr
) << MD
;
13094 if (const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(RHSValue
.getDecl()))
13095 if (MD
->isVirtual())
13096 Info
.CCEDiag(E
, diag::note_constexpr_compare_virtual_mem_ptr
) << MD
;
13098 // Otherwise they compare equal if and only if they would refer to the
13099 // same member of the same most derived object or the same subobject if
13100 // they were dereferenced with a hypothetical object of the associated
13102 bool Equal
= LHSValue
== RHSValue
;
13103 return Success(Equal
? CmpResult::Equal
: CmpResult::Unequal
, E
);
13106 if (LHSTy
->isNullPtrType()) {
13107 assert(E
->isComparisonOp() && "unexpected nullptr operation");
13108 assert(RHSTy
->isNullPtrType() && "missing pointer conversion");
13109 // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
13110 // are compared, the result is true of the operator is <=, >= or ==, and
13111 // false otherwise.
13112 return Success(CmpResult::Equal
, E
);
13118 bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator
*E
) {
13119 if (!CheckLiteralType(Info
, E
))
13122 auto OnSuccess
= [&](CmpResult CR
, const BinaryOperator
*E
) {
13123 ComparisonCategoryResult CCR
;
13125 case CmpResult::Unequal
:
13126 llvm_unreachable("should never produce Unequal for three-way comparison");
13127 case CmpResult::Less
:
13128 CCR
= ComparisonCategoryResult::Less
;
13130 case CmpResult::Equal
:
13131 CCR
= ComparisonCategoryResult::Equal
;
13133 case CmpResult::Greater
:
13134 CCR
= ComparisonCategoryResult::Greater
;
13136 case CmpResult::Unordered
:
13137 CCR
= ComparisonCategoryResult::Unordered
;
13140 // Evaluation succeeded. Lookup the information for the comparison category
13141 // type and fetch the VarDecl for the result.
13142 const ComparisonCategoryInfo
&CmpInfo
=
13143 Info
.Ctx
.CompCategories
.getInfoForType(E
->getType());
13144 const VarDecl
*VD
= CmpInfo
.getValueInfo(CmpInfo
.makeWeakResult(CCR
))->VD
;
13145 // Check and evaluate the result as a constant expression.
13148 if (!handleLValueToRValueConversion(Info
, E
, E
->getType(), LV
, Result
))
13150 return CheckConstantExpression(Info
, E
->getExprLoc(), E
->getType(), Result
,
13151 ConstantExprKind::Normal
);
13153 return EvaluateComparisonBinaryOperator(Info
, E
, OnSuccess
, [&]() {
13154 return ExprEvaluatorBaseTy::VisitBinCmp(E
);
13158 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator
*E
) {
13159 // We don't support assignment in C. C++ assignments don't get here because
13160 // assignment is an lvalue in C++.
13161 if (E
->isAssignmentOp()) {
13163 if (!Info
.noteFailure())
13167 if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E
))
13168 return DataRecursiveIntBinOpEvaluator(*this, Result
).Traverse(E
);
13170 assert((!E
->getLHS()->getType()->isIntegralOrEnumerationType() ||
13171 !E
->getRHS()->getType()->isIntegralOrEnumerationType()) &&
13172 "DataRecursiveIntBinOpEvaluator should have handled integral types");
13174 if (E
->isComparisonOp()) {
13175 // Evaluate builtin binary comparisons by evaluating them as three-way
13176 // comparisons and then translating the result.
13177 auto OnSuccess
= [&](CmpResult CR
, const BinaryOperator
*E
) {
13178 assert((CR
!= CmpResult::Unequal
|| E
->isEqualityOp()) &&
13179 "should only produce Unequal for equality comparisons");
13180 bool IsEqual
= CR
== CmpResult::Equal
,
13181 IsLess
= CR
== CmpResult::Less
,
13182 IsGreater
= CR
== CmpResult::Greater
;
13183 auto Op
= E
->getOpcode();
13186 llvm_unreachable("unsupported binary operator");
13189 return Success(IsEqual
== (Op
== BO_EQ
), E
);
13191 return Success(IsLess
, E
);
13193 return Success(IsGreater
, E
);
13195 return Success(IsEqual
|| IsLess
, E
);
13197 return Success(IsEqual
|| IsGreater
, E
);
13200 return EvaluateComparisonBinaryOperator(Info
, E
, OnSuccess
, [&]() {
13201 return ExprEvaluatorBaseTy::VisitBinaryOperator(E
);
13205 QualType LHSTy
= E
->getLHS()->getType();
13206 QualType RHSTy
= E
->getRHS()->getType();
13208 if (LHSTy
->isPointerType() && RHSTy
->isPointerType() &&
13209 E
->getOpcode() == BO_Sub
) {
13210 LValue LHSValue
, RHSValue
;
13212 bool LHSOK
= EvaluatePointer(E
->getLHS(), LHSValue
, Info
);
13213 if (!LHSOK
&& !Info
.noteFailure())
13216 if (!EvaluatePointer(E
->getRHS(), RHSValue
, Info
) || !LHSOK
)
13219 // Reject differing bases from the normal codepath; we special-case
13220 // comparisons to null.
13221 if (!HasSameBase(LHSValue
, RHSValue
)) {
13222 // Handle &&A - &&B.
13223 if (!LHSValue
.Offset
.isZero() || !RHSValue
.Offset
.isZero())
13225 const Expr
*LHSExpr
= LHSValue
.Base
.dyn_cast
<const Expr
*>();
13226 const Expr
*RHSExpr
= RHSValue
.Base
.dyn_cast
<const Expr
*>();
13227 if (!LHSExpr
|| !RHSExpr
)
13229 const AddrLabelExpr
*LHSAddrExpr
= dyn_cast
<AddrLabelExpr
>(LHSExpr
);
13230 const AddrLabelExpr
*RHSAddrExpr
= dyn_cast
<AddrLabelExpr
>(RHSExpr
);
13231 if (!LHSAddrExpr
|| !RHSAddrExpr
)
13233 // Make sure both labels come from the same function.
13234 if (LHSAddrExpr
->getLabel()->getDeclContext() !=
13235 RHSAddrExpr
->getLabel()->getDeclContext())
13237 return Success(APValue(LHSAddrExpr
, RHSAddrExpr
), E
);
13239 const CharUnits
&LHSOffset
= LHSValue
.getLValueOffset();
13240 const CharUnits
&RHSOffset
= RHSValue
.getLValueOffset();
13242 SubobjectDesignator
&LHSDesignator
= LHSValue
.getLValueDesignator();
13243 SubobjectDesignator
&RHSDesignator
= RHSValue
.getLValueDesignator();
13245 // C++11 [expr.add]p6:
13246 // Unless both pointers point to elements of the same array object, or
13247 // one past the last element of the array object, the behavior is
13249 if (!LHSDesignator
.Invalid
&& !RHSDesignator
.Invalid
&&
13250 !AreElementsOfSameArray(getType(LHSValue
.Base
), LHSDesignator
,
13252 Info
.CCEDiag(E
, diag::note_constexpr_pointer_subtraction_not_same_array
);
13254 QualType Type
= E
->getLHS()->getType();
13255 QualType ElementType
= Type
->castAs
<PointerType
>()->getPointeeType();
13257 CharUnits ElementSize
;
13258 if (!HandleSizeof(Info
, E
->getExprLoc(), ElementType
, ElementSize
))
13261 // As an extension, a type may have zero size (empty struct or union in
13262 // C, array of zero length). Pointer subtraction in such cases has
13263 // undefined behavior, so is not constant.
13264 if (ElementSize
.isZero()) {
13265 Info
.FFDiag(E
, diag::note_constexpr_pointer_subtraction_zero_size
)
13270 // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
13271 // and produce incorrect results when it overflows. Such behavior
13272 // appears to be non-conforming, but is common, so perhaps we should
13273 // assume the standard intended for such cases to be undefined behavior
13274 // and check for them.
13276 // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
13277 // overflow in the final conversion to ptrdiff_t.
13278 APSInt
LHS(llvm::APInt(65, (int64_t)LHSOffset
.getQuantity(), true), false);
13279 APSInt
RHS(llvm::APInt(65, (int64_t)RHSOffset
.getQuantity(), true), false);
13280 APSInt
ElemSize(llvm::APInt(65, (int64_t)ElementSize
.getQuantity(), true),
13282 APSInt TrueResult
= (LHS
- RHS
) / ElemSize
;
13283 APSInt Result
= TrueResult
.trunc(Info
.Ctx
.getIntWidth(E
->getType()));
13285 if (Result
.extend(65) != TrueResult
&&
13286 !HandleOverflow(Info
, E
, TrueResult
, E
->getType()))
13288 return Success(Result
, E
);
13291 return ExprEvaluatorBaseTy::VisitBinaryOperator(E
);
13294 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
13295 /// a result as the expression's type.
13296 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
13297 const UnaryExprOrTypeTraitExpr
*E
) {
13298 switch(E
->getKind()) {
13299 case UETT_PreferredAlignOf
:
13300 case UETT_AlignOf
: {
13301 if (E
->isArgumentType())
13302 return Success(GetAlignOfType(Info
, E
->getArgumentType(), E
->getKind()),
13305 return Success(GetAlignOfExpr(Info
, E
->getArgumentExpr(), E
->getKind()),
13309 case UETT_VecStep
: {
13310 QualType Ty
= E
->getTypeOfArgument();
13312 if (Ty
->isVectorType()) {
13313 unsigned n
= Ty
->castAs
<VectorType
>()->getNumElements();
13315 // The vec_step built-in functions that take a 3-component
13316 // vector return 4. (OpenCL 1.1 spec 6.11.12)
13320 return Success(n
, E
);
13322 return Success(1, E
);
13325 case UETT_SizeOf
: {
13326 QualType SrcTy
= E
->getTypeOfArgument();
13327 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
13328 // the result is the size of the referenced type."
13329 if (const ReferenceType
*Ref
= SrcTy
->getAs
<ReferenceType
>())
13330 SrcTy
= Ref
->getPointeeType();
13333 if (!HandleSizeof(Info
, E
->getExprLoc(), SrcTy
, Sizeof
))
13335 return Success(Sizeof
, E
);
13337 case UETT_OpenMPRequiredSimdAlign
:
13338 assert(E
->isArgumentType());
13340 Info
.Ctx
.toCharUnitsFromBits(
13341 Info
.Ctx
.getOpenMPDefaultSimdAlign(E
->getArgumentType()))
13346 llvm_unreachable("unknown expr/type trait");
13349 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr
*OOE
) {
13351 unsigned n
= OOE
->getNumComponents();
13354 QualType CurrentType
= OOE
->getTypeSourceInfo()->getType();
13355 for (unsigned i
= 0; i
!= n
; ++i
) {
13356 OffsetOfNode ON
= OOE
->getComponent(i
);
13357 switch (ON
.getKind()) {
13358 case OffsetOfNode::Array
: {
13359 const Expr
*Idx
= OOE
->getIndexExpr(ON
.getArrayExprIndex());
13361 if (!EvaluateInteger(Idx
, IdxResult
, Info
))
13363 const ArrayType
*AT
= Info
.Ctx
.getAsArrayType(CurrentType
);
13366 CurrentType
= AT
->getElementType();
13367 CharUnits ElementSize
= Info
.Ctx
.getTypeSizeInChars(CurrentType
);
13368 Result
+= IdxResult
.getSExtValue() * ElementSize
;
13372 case OffsetOfNode::Field
: {
13373 FieldDecl
*MemberDecl
= ON
.getField();
13374 const RecordType
*RT
= CurrentType
->getAs
<RecordType
>();
13377 RecordDecl
*RD
= RT
->getDecl();
13378 if (RD
->isInvalidDecl()) return false;
13379 const ASTRecordLayout
&RL
= Info
.Ctx
.getASTRecordLayout(RD
);
13380 unsigned i
= MemberDecl
->getFieldIndex();
13381 assert(i
< RL
.getFieldCount() && "offsetof field in wrong type");
13382 Result
+= Info
.Ctx
.toCharUnitsFromBits(RL
.getFieldOffset(i
));
13383 CurrentType
= MemberDecl
->getType().getNonReferenceType();
13387 case OffsetOfNode::Identifier
:
13388 llvm_unreachable("dependent __builtin_offsetof");
13390 case OffsetOfNode::Base
: {
13391 CXXBaseSpecifier
*BaseSpec
= ON
.getBase();
13392 if (BaseSpec
->isVirtual())
13395 // Find the layout of the class whose base we are looking into.
13396 const RecordType
*RT
= CurrentType
->getAs
<RecordType
>();
13399 RecordDecl
*RD
= RT
->getDecl();
13400 if (RD
->isInvalidDecl()) return false;
13401 const ASTRecordLayout
&RL
= Info
.Ctx
.getASTRecordLayout(RD
);
13403 // Find the base class itself.
13404 CurrentType
= BaseSpec
->getType();
13405 const RecordType
*BaseRT
= CurrentType
->getAs
<RecordType
>();
13409 // Add the offset to the base.
13410 Result
+= RL
.getBaseClassOffset(cast
<CXXRecordDecl
>(BaseRT
->getDecl()));
13415 return Success(Result
, OOE
);
13418 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator
*E
) {
13419 switch (E
->getOpcode()) {
13421 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
13425 // FIXME: Should extension allow i-c-e extension expressions in its scope?
13426 // If so, we could clear the diagnostic ID.
13427 return Visit(E
->getSubExpr());
13429 // The result is just the value.
13430 return Visit(E
->getSubExpr());
13432 if (!Visit(E
->getSubExpr()))
13434 if (!Result
.isInt()) return Error(E
);
13435 const APSInt
&Value
= Result
.getInt();
13436 if (Value
.isSigned() && Value
.isMinSignedValue() && E
->canOverflow() &&
13437 !HandleOverflow(Info
, E
, -Value
.extend(Value
.getBitWidth() + 1),
13440 return Success(-Value
, E
);
13443 if (!Visit(E
->getSubExpr()))
13445 if (!Result
.isInt()) return Error(E
);
13446 return Success(~Result
.getInt(), E
);
13450 if (!EvaluateAsBooleanCondition(E
->getSubExpr(), bres
, Info
))
13452 return Success(!bres
, E
);
13457 /// HandleCast - This is used to evaluate implicit or explicit casts where the
13458 /// result type is integer.
13459 bool IntExprEvaluator::VisitCastExpr(const CastExpr
*E
) {
13460 const Expr
*SubExpr
= E
->getSubExpr();
13461 QualType DestType
= E
->getType();
13462 QualType SrcType
= SubExpr
->getType();
13464 switch (E
->getCastKind()) {
13465 case CK_BaseToDerived
:
13466 case CK_DerivedToBase
:
13467 case CK_UncheckedDerivedToBase
:
13470 case CK_ArrayToPointerDecay
:
13471 case CK_FunctionToPointerDecay
:
13472 case CK_NullToPointer
:
13473 case CK_NullToMemberPointer
:
13474 case CK_BaseToDerivedMemberPointer
:
13475 case CK_DerivedToBaseMemberPointer
:
13476 case CK_ReinterpretMemberPointer
:
13477 case CK_ConstructorConversion
:
13478 case CK_IntegralToPointer
:
13480 case CK_VectorSplat
:
13481 case CK_IntegralToFloating
:
13482 case CK_FloatingCast
:
13483 case CK_CPointerToObjCPointerCast
:
13484 case CK_BlockPointerToObjCPointerCast
:
13485 case CK_AnyPointerToBlockPointerCast
:
13486 case CK_ObjCObjectLValueCast
:
13487 case CK_FloatingRealToComplex
:
13488 case CK_FloatingComplexToReal
:
13489 case CK_FloatingComplexCast
:
13490 case CK_FloatingComplexToIntegralComplex
:
13491 case CK_IntegralRealToComplex
:
13492 case CK_IntegralComplexCast
:
13493 case CK_IntegralComplexToFloatingComplex
:
13494 case CK_BuiltinFnToFnPtr
:
13495 case CK_ZeroToOCLOpaqueType
:
13496 case CK_NonAtomicToAtomic
:
13497 case CK_AddressSpaceConversion
:
13498 case CK_IntToOCLSampler
:
13499 case CK_FloatingToFixedPoint
:
13500 case CK_FixedPointToFloating
:
13501 case CK_FixedPointCast
:
13502 case CK_IntegralToFixedPoint
:
13503 case CK_MatrixCast
:
13504 llvm_unreachable("invalid cast kind for integral value");
13508 case CK_LValueBitCast
:
13509 case CK_ARCProduceObject
:
13510 case CK_ARCConsumeObject
:
13511 case CK_ARCReclaimReturnedObject
:
13512 case CK_ARCExtendBlockObject
:
13513 case CK_CopyAndAutoreleaseBlockObject
:
13516 case CK_UserDefinedConversion
:
13517 case CK_LValueToRValue
:
13518 case CK_AtomicToNonAtomic
:
13520 case CK_LValueToRValueBitCast
:
13521 return ExprEvaluatorBaseTy::VisitCastExpr(E
);
13523 case CK_MemberPointerToBoolean
:
13524 case CK_PointerToBoolean
:
13525 case CK_IntegralToBoolean
:
13526 case CK_FloatingToBoolean
:
13527 case CK_BooleanToSignedIntegral
:
13528 case CK_FloatingComplexToBoolean
:
13529 case CK_IntegralComplexToBoolean
: {
13531 if (!EvaluateAsBooleanCondition(SubExpr
, BoolResult
, Info
))
13533 uint64_t IntResult
= BoolResult
;
13534 if (BoolResult
&& E
->getCastKind() == CK_BooleanToSignedIntegral
)
13535 IntResult
= (uint64_t)-1;
13536 return Success(IntResult
, E
);
13539 case CK_FixedPointToIntegral
: {
13540 APFixedPoint
Src(Info
.Ctx
.getFixedPointSemantics(SrcType
));
13541 if (!EvaluateFixedPoint(SubExpr
, Src
, Info
))
13544 llvm::APSInt Result
= Src
.convertToInt(
13545 Info
.Ctx
.getIntWidth(DestType
),
13546 DestType
->isSignedIntegerOrEnumerationType(), &Overflowed
);
13547 if (Overflowed
&& !HandleOverflow(Info
, E
, Result
, DestType
))
13549 return Success(Result
, E
);
13552 case CK_FixedPointToBoolean
: {
13553 // Unsigned padding does not affect this.
13555 if (!Evaluate(Val
, Info
, SubExpr
))
13557 return Success(Val
.getFixedPoint().getBoolValue(), E
);
13560 case CK_IntegralCast
: {
13561 if (!Visit(SubExpr
))
13564 if (!Result
.isInt()) {
13565 // Allow casts of address-of-label differences if they are no-ops
13566 // or narrowing. (The narrowing case isn't actually guaranteed to
13567 // be constant-evaluatable except in some narrow cases which are hard
13568 // to detect here. We let it through on the assumption the user knows
13569 // what they are doing.)
13570 if (Result
.isAddrLabelDiff())
13571 return Info
.Ctx
.getTypeSize(DestType
) <= Info
.Ctx
.getTypeSize(SrcType
);
13572 // Only allow casts of lvalues if they are lossless.
13573 return Info
.Ctx
.getTypeSize(DestType
) == Info
.Ctx
.getTypeSize(SrcType
);
13576 if (Info
.Ctx
.getLangOpts().CPlusPlus
&& Info
.InConstantContext
&&
13577 Info
.EvalMode
== EvalInfo::EM_ConstantExpression
&&
13578 DestType
->isEnumeralType()) {
13580 bool ConstexprVar
= true;
13582 // We know if we are here that we are in a context that we might require
13583 // a constant expression or a context that requires a constant
13584 // value. But if we are initializing a value we don't know if it is a
13585 // constexpr variable or not. We can check the EvaluatingDecl to determine
13586 // if it constexpr or not. If not then we don't want to emit a diagnostic.
13587 if (const auto *VD
= dyn_cast_or_null
<VarDecl
>(
13588 Info
.EvaluatingDecl
.dyn_cast
<const ValueDecl
*>()))
13589 ConstexprVar
= VD
->isConstexpr();
13591 const EnumType
*ET
= dyn_cast
<EnumType
>(DestType
.getCanonicalType());
13592 const EnumDecl
*ED
= ET
->getDecl();
13593 // Check that the value is within the range of the enumeration values.
13595 // This corressponds to [expr.static.cast]p10 which says:
13596 // A value of integral or enumeration type can be explicitly converted
13597 // to a complete enumeration type ... If the enumeration type does not
13598 // have a fixed underlying type, the value is unchanged if the original
13599 // value is within the range of the enumeration values ([dcl.enum]), and
13600 // otherwise, the behavior is undefined.
13602 // This was resolved as part of DR2338 which has CD5 status.
13603 if (!ED
->isFixed()) {
13607 ED
->getValueRange(Max
, Min
);
13610 if (ED
->getNumNegativeBits() && ConstexprVar
&&
13611 (Max
.slt(Result
.getInt().getSExtValue()) ||
13612 Min
.sgt(Result
.getInt().getSExtValue())))
13613 Info
.Ctx
.getDiagnostics().Report(
13614 E
->getExprLoc(), diag::warn_constexpr_unscoped_enum_out_of_range
)
13615 << llvm::toString(Result
.getInt(), 10) << Min
.getSExtValue()
13616 << Max
.getSExtValue();
13617 else if (!ED
->getNumNegativeBits() && ConstexprVar
&&
13618 Max
.ult(Result
.getInt().getZExtValue()))
13619 Info
.Ctx
.getDiagnostics().Report(E
->getExprLoc(),
13620 diag::warn_constexpr_unscoped_enum_out_of_range
)
13621 << llvm::toString(Result
.getInt(),10) << Min
.getZExtValue() << Max
.getZExtValue();
13625 return Success(HandleIntToIntCast(Info
, E
, DestType
, SrcType
,
13626 Result
.getInt()), E
);
13629 case CK_PointerToIntegral
: {
13630 CCEDiag(E
, diag::note_constexpr_invalid_cast
)
13631 << 2 << Info
.Ctx
.getLangOpts().CPlusPlus
;
13634 if (!EvaluatePointer(SubExpr
, LV
, Info
))
13637 if (LV
.getLValueBase()) {
13638 // Only allow based lvalue casts if they are lossless.
13639 // FIXME: Allow a larger integer size than the pointer size, and allow
13640 // narrowing back down to pointer width in subsequent integral casts.
13641 // FIXME: Check integer type's active bits, not its type size.
13642 if (Info
.Ctx
.getTypeSize(DestType
) != Info
.Ctx
.getTypeSize(SrcType
))
13645 LV
.Designator
.setInvalid();
13646 LV
.moveInto(Result
);
13653 if (!V
.toIntegralConstant(AsInt
, SrcType
, Info
.Ctx
))
13654 llvm_unreachable("Can't cast this!");
13656 return Success(HandleIntToIntCast(Info
, E
, DestType
, SrcType
, AsInt
), E
);
13659 case CK_IntegralComplexToReal
: {
13661 if (!EvaluateComplex(SubExpr
, C
, Info
))
13663 return Success(C
.getComplexIntReal(), E
);
13666 case CK_FloatingToIntegral
: {
13668 if (!EvaluateFloat(SubExpr
, F
, Info
))
13672 if (!HandleFloatToIntCast(Info
, E
, SrcType
, F
, DestType
, Value
))
13674 return Success(Value
, E
);
13678 llvm_unreachable("unknown cast resulting in integral value");
13681 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator
*E
) {
13682 if (E
->getSubExpr()->getType()->isAnyComplexType()) {
13684 if (!EvaluateComplex(E
->getSubExpr(), LV
, Info
))
13686 if (!LV
.isComplexInt())
13688 return Success(LV
.getComplexIntReal(), E
);
13691 return Visit(E
->getSubExpr());
13694 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator
*E
) {
13695 if (E
->getSubExpr()->getType()->isComplexIntegerType()) {
13697 if (!EvaluateComplex(E
->getSubExpr(), LV
, Info
))
13699 if (!LV
.isComplexInt())
13701 return Success(LV
.getComplexIntImag(), E
);
13704 VisitIgnoredValue(E
->getSubExpr());
13705 return Success(0, E
);
13708 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr
*E
) {
13709 return Success(E
->getPackLength(), E
);
13712 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr
*E
) {
13713 return Success(E
->getValue(), E
);
13716 bool IntExprEvaluator::VisitConceptSpecializationExpr(
13717 const ConceptSpecializationExpr
*E
) {
13718 return Success(E
->isSatisfied(), E
);
13721 bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr
*E
) {
13722 return Success(E
->isSatisfied(), E
);
13725 bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator
*E
) {
13726 switch (E
->getOpcode()) {
13728 // Invalid unary operators
13731 // The result is just the value.
13732 return Visit(E
->getSubExpr());
13734 if (!Visit(E
->getSubExpr())) return false;
13735 if (!Result
.isFixedPoint())
13738 APFixedPoint Negated
= Result
.getFixedPoint().negate(&Overflowed
);
13739 if (Overflowed
&& !HandleOverflow(Info
, E
, Negated
, E
->getType()))
13741 return Success(Negated
, E
);
13745 if (!EvaluateAsBooleanCondition(E
->getSubExpr(), bres
, Info
))
13747 return Success(!bres
, E
);
13752 bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr
*E
) {
13753 const Expr
*SubExpr
= E
->getSubExpr();
13754 QualType DestType
= E
->getType();
13755 assert(DestType
->isFixedPointType() &&
13756 "Expected destination type to be a fixed point type");
13757 auto DestFXSema
= Info
.Ctx
.getFixedPointSemantics(DestType
);
13759 switch (E
->getCastKind()) {
13760 case CK_FixedPointCast
: {
13761 APFixedPoint
Src(Info
.Ctx
.getFixedPointSemantics(SubExpr
->getType()));
13762 if (!EvaluateFixedPoint(SubExpr
, Src
, Info
))
13765 APFixedPoint Result
= Src
.convert(DestFXSema
, &Overflowed
);
13767 if (Info
.checkingForUndefinedBehavior())
13768 Info
.Ctx
.getDiagnostics().Report(E
->getExprLoc(),
13769 diag::warn_fixedpoint_constant_overflow
)
13770 << Result
.toString() << E
->getType();
13771 if (!HandleOverflow(Info
, E
, Result
, E
->getType()))
13774 return Success(Result
, E
);
13776 case CK_IntegralToFixedPoint
: {
13778 if (!EvaluateInteger(SubExpr
, Src
, Info
))
13782 APFixedPoint IntResult
= APFixedPoint::getFromIntValue(
13783 Src
, Info
.Ctx
.getFixedPointSemantics(DestType
), &Overflowed
);
13786 if (Info
.checkingForUndefinedBehavior())
13787 Info
.Ctx
.getDiagnostics().Report(E
->getExprLoc(),
13788 diag::warn_fixedpoint_constant_overflow
)
13789 << IntResult
.toString() << E
->getType();
13790 if (!HandleOverflow(Info
, E
, IntResult
, E
->getType()))
13794 return Success(IntResult
, E
);
13796 case CK_FloatingToFixedPoint
: {
13798 if (!EvaluateFloat(SubExpr
, Src
, Info
))
13802 APFixedPoint Result
= APFixedPoint::getFromFloatValue(
13803 Src
, Info
.Ctx
.getFixedPointSemantics(DestType
), &Overflowed
);
13806 if (Info
.checkingForUndefinedBehavior())
13807 Info
.Ctx
.getDiagnostics().Report(E
->getExprLoc(),
13808 diag::warn_fixedpoint_constant_overflow
)
13809 << Result
.toString() << E
->getType();
13810 if (!HandleOverflow(Info
, E
, Result
, E
->getType()))
13814 return Success(Result
, E
);
13817 case CK_LValueToRValue
:
13818 return ExprEvaluatorBaseTy::VisitCastExpr(E
);
13824 bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator
*E
) {
13825 if (E
->isPtrMemOp() || E
->isAssignmentOp() || E
->getOpcode() == BO_Comma
)
13826 return ExprEvaluatorBaseTy::VisitBinaryOperator(E
);
13828 const Expr
*LHS
= E
->getLHS();
13829 const Expr
*RHS
= E
->getRHS();
13830 FixedPointSemantics ResultFXSema
=
13831 Info
.Ctx
.getFixedPointSemantics(E
->getType());
13833 APFixedPoint
LHSFX(Info
.Ctx
.getFixedPointSemantics(LHS
->getType()));
13834 if (!EvaluateFixedPointOrInteger(LHS
, LHSFX
, Info
))
13836 APFixedPoint
RHSFX(Info
.Ctx
.getFixedPointSemantics(RHS
->getType()));
13837 if (!EvaluateFixedPointOrInteger(RHS
, RHSFX
, Info
))
13840 bool OpOverflow
= false, ConversionOverflow
= false;
13841 APFixedPoint
Result(LHSFX
.getSemantics());
13842 switch (E
->getOpcode()) {
13844 Result
= LHSFX
.add(RHSFX
, &OpOverflow
)
13845 .convert(ResultFXSema
, &ConversionOverflow
);
13849 Result
= LHSFX
.sub(RHSFX
, &OpOverflow
)
13850 .convert(ResultFXSema
, &ConversionOverflow
);
13854 Result
= LHSFX
.mul(RHSFX
, &OpOverflow
)
13855 .convert(ResultFXSema
, &ConversionOverflow
);
13859 if (RHSFX
.getValue() == 0) {
13860 Info
.FFDiag(E
, diag::note_expr_divide_by_zero
);
13863 Result
= LHSFX
.div(RHSFX
, &OpOverflow
)
13864 .convert(ResultFXSema
, &ConversionOverflow
);
13869 FixedPointSemantics LHSSema
= LHSFX
.getSemantics();
13870 llvm::APSInt RHSVal
= RHSFX
.getValue();
13873 LHSSema
.getWidth() - (unsigned)LHSSema
.hasUnsignedPadding();
13874 unsigned Amt
= RHSVal
.getLimitedValue(ShiftBW
- 1);
13875 // Embedded-C 4.1.6.2.2:
13876 // The right operand must be nonnegative and less than the total number
13877 // of (nonpadding) bits of the fixed-point operand ...
13878 if (RHSVal
.isNegative())
13879 Info
.CCEDiag(E
, diag::note_constexpr_negative_shift
) << RHSVal
;
13880 else if (Amt
!= RHSVal
)
13881 Info
.CCEDiag(E
, diag::note_constexpr_large_shift
)
13882 << RHSVal
<< E
->getType() << ShiftBW
;
13884 if (E
->getOpcode() == BO_Shl
)
13885 Result
= LHSFX
.shl(Amt
, &OpOverflow
);
13887 Result
= LHSFX
.shr(Amt
, &OpOverflow
);
13893 if (OpOverflow
|| ConversionOverflow
) {
13894 if (Info
.checkingForUndefinedBehavior())
13895 Info
.Ctx
.getDiagnostics().Report(E
->getExprLoc(),
13896 diag::warn_fixedpoint_constant_overflow
)
13897 << Result
.toString() << E
->getType();
13898 if (!HandleOverflow(Info
, E
, Result
, E
->getType()))
13901 return Success(Result
, E
);
13904 //===----------------------------------------------------------------------===//
13905 // Float Evaluation
13906 //===----------------------------------------------------------------------===//
13909 class FloatExprEvaluator
13910 : public ExprEvaluatorBase
<FloatExprEvaluator
> {
13913 FloatExprEvaluator(EvalInfo
&info
, APFloat
&result
)
13914 : ExprEvaluatorBaseTy(info
), Result(result
) {}
13916 bool Success(const APValue
&V
, const Expr
*e
) {
13917 Result
= V
.getFloat();
13921 bool ZeroInitialization(const Expr
*E
) {
13922 Result
= APFloat::getZero(Info
.Ctx
.getFloatTypeSemantics(E
->getType()));
13926 bool VisitCallExpr(const CallExpr
*E
);
13928 bool VisitUnaryOperator(const UnaryOperator
*E
);
13929 bool VisitBinaryOperator(const BinaryOperator
*E
);
13930 bool VisitFloatingLiteral(const FloatingLiteral
*E
);
13931 bool VisitCastExpr(const CastExpr
*E
);
13933 bool VisitUnaryReal(const UnaryOperator
*E
);
13934 bool VisitUnaryImag(const UnaryOperator
*E
);
13936 // FIXME: Missing: array subscript of vector, member of vector
13938 } // end anonymous namespace
13940 static bool EvaluateFloat(const Expr
* E
, APFloat
& Result
, EvalInfo
&Info
) {
13941 assert(!E
->isValueDependent());
13942 assert(E
->isPRValue() && E
->getType()->isRealFloatingType());
13943 return FloatExprEvaluator(Info
, Result
).Visit(E
);
13946 static bool TryEvaluateBuiltinNaN(const ASTContext
&Context
,
13950 llvm::APFloat
&Result
) {
13951 const StringLiteral
*S
= dyn_cast
<StringLiteral
>(Arg
->IgnoreParenCasts());
13952 if (!S
) return false;
13954 const llvm::fltSemantics
&Sem
= Context
.getFloatTypeSemantics(ResultTy
);
13958 // Treat empty strings as if they were zero.
13959 if (S
->getString().empty())
13960 fill
= llvm::APInt(32, 0);
13961 else if (S
->getString().getAsInteger(0, fill
))
13964 if (Context
.getTargetInfo().isNan2008()) {
13966 Result
= llvm::APFloat::getSNaN(Sem
, false, &fill
);
13968 Result
= llvm::APFloat::getQNaN(Sem
, false, &fill
);
13970 // Prior to IEEE 754-2008, architectures were allowed to choose whether
13971 // the first bit of their significand was set for qNaN or sNaN. MIPS chose
13972 // a different encoding to what became a standard in 2008, and for pre-
13973 // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
13974 // sNaN. This is now known as "legacy NaN" encoding.
13976 Result
= llvm::APFloat::getQNaN(Sem
, false, &fill
);
13978 Result
= llvm::APFloat::getSNaN(Sem
, false, &fill
);
13984 bool FloatExprEvaluator::VisitCallExpr(const CallExpr
*E
) {
13985 if (!IsConstantEvaluatedBuiltinCall(E
))
13986 return ExprEvaluatorBaseTy::VisitCallExpr(E
);
13988 switch (E
->getBuiltinCallee()) {
13992 case Builtin::BI__builtin_huge_val
:
13993 case Builtin::BI__builtin_huge_valf
:
13994 case Builtin::BI__builtin_huge_vall
:
13995 case Builtin::BI__builtin_huge_valf16
:
13996 case Builtin::BI__builtin_huge_valf128
:
13997 case Builtin::BI__builtin_inf
:
13998 case Builtin::BI__builtin_inff
:
13999 case Builtin::BI__builtin_infl
:
14000 case Builtin::BI__builtin_inff16
:
14001 case Builtin::BI__builtin_inff128
: {
14002 const llvm::fltSemantics
&Sem
=
14003 Info
.Ctx
.getFloatTypeSemantics(E
->getType());
14004 Result
= llvm::APFloat::getInf(Sem
);
14008 case Builtin::BI__builtin_nans
:
14009 case Builtin::BI__builtin_nansf
:
14010 case Builtin::BI__builtin_nansl
:
14011 case Builtin::BI__builtin_nansf16
:
14012 case Builtin::BI__builtin_nansf128
:
14013 if (!TryEvaluateBuiltinNaN(Info
.Ctx
, E
->getType(), E
->getArg(0),
14018 case Builtin::BI__builtin_nan
:
14019 case Builtin::BI__builtin_nanf
:
14020 case Builtin::BI__builtin_nanl
:
14021 case Builtin::BI__builtin_nanf16
:
14022 case Builtin::BI__builtin_nanf128
:
14023 // If this is __builtin_nan() turn this into a nan, otherwise we
14024 // can't constant fold it.
14025 if (!TryEvaluateBuiltinNaN(Info
.Ctx
, E
->getType(), E
->getArg(0),
14030 case Builtin::BI__builtin_fabs
:
14031 case Builtin::BI__builtin_fabsf
:
14032 case Builtin::BI__builtin_fabsl
:
14033 case Builtin::BI__builtin_fabsf128
:
14034 // The C standard says "fabs raises no floating-point exceptions,
14035 // even if x is a signaling NaN. The returned value is independent of
14036 // the current rounding direction mode." Therefore constant folding can
14037 // proceed without regard to the floating point settings.
14038 // Reference, WG14 N2478 F.10.4.3
14039 if (!EvaluateFloat(E
->getArg(0), Result
, Info
))
14042 if (Result
.isNegative())
14043 Result
.changeSign();
14046 case Builtin::BI__arithmetic_fence
:
14047 return EvaluateFloat(E
->getArg(0), Result
, Info
);
14049 // FIXME: Builtin::BI__builtin_powi
14050 // FIXME: Builtin::BI__builtin_powif
14051 // FIXME: Builtin::BI__builtin_powil
14053 case Builtin::BI__builtin_copysign
:
14054 case Builtin::BI__builtin_copysignf
:
14055 case Builtin::BI__builtin_copysignl
:
14056 case Builtin::BI__builtin_copysignf128
: {
14058 if (!EvaluateFloat(E
->getArg(0), Result
, Info
) ||
14059 !EvaluateFloat(E
->getArg(1), RHS
, Info
))
14061 Result
.copySign(RHS
);
14065 case Builtin::BI__builtin_fmax
:
14066 case Builtin::BI__builtin_fmaxf
:
14067 case Builtin::BI__builtin_fmaxl
:
14068 case Builtin::BI__builtin_fmaxf16
:
14069 case Builtin::BI__builtin_fmaxf128
: {
14070 // TODO: Handle sNaN.
14072 if (!EvaluateFloat(E
->getArg(0), Result
, Info
) ||
14073 !EvaluateFloat(E
->getArg(1), RHS
, Info
))
14075 // When comparing zeroes, return +0.0 if one of the zeroes is positive.
14076 if (Result
.isZero() && RHS
.isZero() && Result
.isNegative())
14078 else if (Result
.isNaN() || RHS
> Result
)
14083 case Builtin::BI__builtin_fmin
:
14084 case Builtin::BI__builtin_fminf
:
14085 case Builtin::BI__builtin_fminl
:
14086 case Builtin::BI__builtin_fminf16
:
14087 case Builtin::BI__builtin_fminf128
: {
14088 // TODO: Handle sNaN.
14090 if (!EvaluateFloat(E
->getArg(0), Result
, Info
) ||
14091 !EvaluateFloat(E
->getArg(1), RHS
, Info
))
14093 // When comparing zeroes, return -0.0 if one of the zeroes is negative.
14094 if (Result
.isZero() && RHS
.isZero() && RHS
.isNegative())
14096 else if (Result
.isNaN() || RHS
< Result
)
14103 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator
*E
) {
14104 if (E
->getSubExpr()->getType()->isAnyComplexType()) {
14106 if (!EvaluateComplex(E
->getSubExpr(), CV
, Info
))
14108 Result
= CV
.FloatReal
;
14112 return Visit(E
->getSubExpr());
14115 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator
*E
) {
14116 if (E
->getSubExpr()->getType()->isAnyComplexType()) {
14118 if (!EvaluateComplex(E
->getSubExpr(), CV
, Info
))
14120 Result
= CV
.FloatImag
;
14124 VisitIgnoredValue(E
->getSubExpr());
14125 const llvm::fltSemantics
&Sem
= Info
.Ctx
.getFloatTypeSemantics(E
->getType());
14126 Result
= llvm::APFloat::getZero(Sem
);
14130 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator
*E
) {
14131 switch (E
->getOpcode()) {
14132 default: return Error(E
);
14134 return EvaluateFloat(E
->getSubExpr(), Result
, Info
);
14136 // In C standard, WG14 N2478 F.3 p4
14137 // "the unary - raises no floating point exceptions,
14138 // even if the operand is signalling."
14139 if (!EvaluateFloat(E
->getSubExpr(), Result
, Info
))
14141 Result
.changeSign();
14146 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator
*E
) {
14147 if (E
->isPtrMemOp() || E
->isAssignmentOp() || E
->getOpcode() == BO_Comma
)
14148 return ExprEvaluatorBaseTy::VisitBinaryOperator(E
);
14151 bool LHSOK
= EvaluateFloat(E
->getLHS(), Result
, Info
);
14152 if (!LHSOK
&& !Info
.noteFailure())
14154 return EvaluateFloat(E
->getRHS(), RHS
, Info
) && LHSOK
&&
14155 handleFloatFloatBinOp(Info
, E
, Result
, E
->getOpcode(), RHS
);
14158 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral
*E
) {
14159 Result
= E
->getValue();
14163 bool FloatExprEvaluator::VisitCastExpr(const CastExpr
*E
) {
14164 const Expr
* SubExpr
= E
->getSubExpr();
14166 switch (E
->getCastKind()) {
14168 return ExprEvaluatorBaseTy::VisitCastExpr(E
);
14170 case CK_IntegralToFloating
: {
14172 const FPOptions FPO
= E
->getFPFeaturesInEffect(
14173 Info
.Ctx
.getLangOpts());
14174 return EvaluateInteger(SubExpr
, IntResult
, Info
) &&
14175 HandleIntToFloatCast(Info
, E
, FPO
, SubExpr
->getType(),
14176 IntResult
, E
->getType(), Result
);
14179 case CK_FixedPointToFloating
: {
14180 APFixedPoint
FixResult(Info
.Ctx
.getFixedPointSemantics(SubExpr
->getType()));
14181 if (!EvaluateFixedPoint(SubExpr
, FixResult
, Info
))
14184 FixResult
.convertToFloat(Info
.Ctx
.getFloatTypeSemantics(E
->getType()));
14188 case CK_FloatingCast
: {
14189 if (!Visit(SubExpr
))
14191 return HandleFloatToFloatCast(Info
, E
, SubExpr
->getType(), E
->getType(),
14195 case CK_FloatingComplexToReal
: {
14197 if (!EvaluateComplex(SubExpr
, V
, Info
))
14199 Result
= V
.getComplexFloatReal();
14205 //===----------------------------------------------------------------------===//
14206 // Complex Evaluation (for float and integer)
14207 //===----------------------------------------------------------------------===//
14210 class ComplexExprEvaluator
14211 : public ExprEvaluatorBase
<ComplexExprEvaluator
> {
14212 ComplexValue
&Result
;
14215 ComplexExprEvaluator(EvalInfo
&info
, ComplexValue
&Result
)
14216 : ExprEvaluatorBaseTy(info
), Result(Result
) {}
14218 bool Success(const APValue
&V
, const Expr
*e
) {
14223 bool ZeroInitialization(const Expr
*E
);
14225 //===--------------------------------------------------------------------===//
14227 //===--------------------------------------------------------------------===//
14229 bool VisitImaginaryLiteral(const ImaginaryLiteral
*E
);
14230 bool VisitCastExpr(const CastExpr
*E
);
14231 bool VisitBinaryOperator(const BinaryOperator
*E
);
14232 bool VisitUnaryOperator(const UnaryOperator
*E
);
14233 bool VisitInitListExpr(const InitListExpr
*E
);
14234 bool VisitCallExpr(const CallExpr
*E
);
14236 } // end anonymous namespace
14238 static bool EvaluateComplex(const Expr
*E
, ComplexValue
&Result
,
14240 assert(!E
->isValueDependent());
14241 assert(E
->isPRValue() && E
->getType()->isAnyComplexType());
14242 return ComplexExprEvaluator(Info
, Result
).Visit(E
);
14245 bool ComplexExprEvaluator::ZeroInitialization(const Expr
*E
) {
14246 QualType ElemTy
= E
->getType()->castAs
<ComplexType
>()->getElementType();
14247 if (ElemTy
->isRealFloatingType()) {
14248 Result
.makeComplexFloat();
14249 APFloat Zero
= APFloat::getZero(Info
.Ctx
.getFloatTypeSemantics(ElemTy
));
14250 Result
.FloatReal
= Zero
;
14251 Result
.FloatImag
= Zero
;
14253 Result
.makeComplexInt();
14254 APSInt Zero
= Info
.Ctx
.MakeIntValue(0, ElemTy
);
14255 Result
.IntReal
= Zero
;
14256 Result
.IntImag
= Zero
;
14261 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral
*E
) {
14262 const Expr
* SubExpr
= E
->getSubExpr();
14264 if (SubExpr
->getType()->isRealFloatingType()) {
14265 Result
.makeComplexFloat();
14266 APFloat
&Imag
= Result
.FloatImag
;
14267 if (!EvaluateFloat(SubExpr
, Imag
, Info
))
14270 Result
.FloatReal
= APFloat(Imag
.getSemantics());
14273 assert(SubExpr
->getType()->isIntegerType() &&
14274 "Unexpected imaginary literal.");
14276 Result
.makeComplexInt();
14277 APSInt
&Imag
= Result
.IntImag
;
14278 if (!EvaluateInteger(SubExpr
, Imag
, Info
))
14281 Result
.IntReal
= APSInt(Imag
.getBitWidth(), !Imag
.isSigned());
14286 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr
*E
) {
14288 switch (E
->getCastKind()) {
14290 case CK_BaseToDerived
:
14291 case CK_DerivedToBase
:
14292 case CK_UncheckedDerivedToBase
:
14295 case CK_ArrayToPointerDecay
:
14296 case CK_FunctionToPointerDecay
:
14297 case CK_NullToPointer
:
14298 case CK_NullToMemberPointer
:
14299 case CK_BaseToDerivedMemberPointer
:
14300 case CK_DerivedToBaseMemberPointer
:
14301 case CK_MemberPointerToBoolean
:
14302 case CK_ReinterpretMemberPointer
:
14303 case CK_ConstructorConversion
:
14304 case CK_IntegralToPointer
:
14305 case CK_PointerToIntegral
:
14306 case CK_PointerToBoolean
:
14308 case CK_VectorSplat
:
14309 case CK_IntegralCast
:
14310 case CK_BooleanToSignedIntegral
:
14311 case CK_IntegralToBoolean
:
14312 case CK_IntegralToFloating
:
14313 case CK_FloatingToIntegral
:
14314 case CK_FloatingToBoolean
:
14315 case CK_FloatingCast
:
14316 case CK_CPointerToObjCPointerCast
:
14317 case CK_BlockPointerToObjCPointerCast
:
14318 case CK_AnyPointerToBlockPointerCast
:
14319 case CK_ObjCObjectLValueCast
:
14320 case CK_FloatingComplexToReal
:
14321 case CK_FloatingComplexToBoolean
:
14322 case CK_IntegralComplexToReal
:
14323 case CK_IntegralComplexToBoolean
:
14324 case CK_ARCProduceObject
:
14325 case CK_ARCConsumeObject
:
14326 case CK_ARCReclaimReturnedObject
:
14327 case CK_ARCExtendBlockObject
:
14328 case CK_CopyAndAutoreleaseBlockObject
:
14329 case CK_BuiltinFnToFnPtr
:
14330 case CK_ZeroToOCLOpaqueType
:
14331 case CK_NonAtomicToAtomic
:
14332 case CK_AddressSpaceConversion
:
14333 case CK_IntToOCLSampler
:
14334 case CK_FloatingToFixedPoint
:
14335 case CK_FixedPointToFloating
:
14336 case CK_FixedPointCast
:
14337 case CK_FixedPointToBoolean
:
14338 case CK_FixedPointToIntegral
:
14339 case CK_IntegralToFixedPoint
:
14340 case CK_MatrixCast
:
14341 llvm_unreachable("invalid cast kind for complex value");
14343 case CK_LValueToRValue
:
14344 case CK_AtomicToNonAtomic
:
14346 case CK_LValueToRValueBitCast
:
14347 return ExprEvaluatorBaseTy::VisitCastExpr(E
);
14350 case CK_LValueBitCast
:
14351 case CK_UserDefinedConversion
:
14354 case CK_FloatingRealToComplex
: {
14355 APFloat
&Real
= Result
.FloatReal
;
14356 if (!EvaluateFloat(E
->getSubExpr(), Real
, Info
))
14359 Result
.makeComplexFloat();
14360 Result
.FloatImag
= APFloat(Real
.getSemantics());
14364 case CK_FloatingComplexCast
: {
14365 if (!Visit(E
->getSubExpr()))
14368 QualType To
= E
->getType()->castAs
<ComplexType
>()->getElementType();
14370 = E
->getSubExpr()->getType()->castAs
<ComplexType
>()->getElementType();
14372 return HandleFloatToFloatCast(Info
, E
, From
, To
, Result
.FloatReal
) &&
14373 HandleFloatToFloatCast(Info
, E
, From
, To
, Result
.FloatImag
);
14376 case CK_FloatingComplexToIntegralComplex
: {
14377 if (!Visit(E
->getSubExpr()))
14380 QualType To
= E
->getType()->castAs
<ComplexType
>()->getElementType();
14382 = E
->getSubExpr()->getType()->castAs
<ComplexType
>()->getElementType();
14383 Result
.makeComplexInt();
14384 return HandleFloatToIntCast(Info
, E
, From
, Result
.FloatReal
,
14385 To
, Result
.IntReal
) &&
14386 HandleFloatToIntCast(Info
, E
, From
, Result
.FloatImag
,
14387 To
, Result
.IntImag
);
14390 case CK_IntegralRealToComplex
: {
14391 APSInt
&Real
= Result
.IntReal
;
14392 if (!EvaluateInteger(E
->getSubExpr(), Real
, Info
))
14395 Result
.makeComplexInt();
14396 Result
.IntImag
= APSInt(Real
.getBitWidth(), !Real
.isSigned());
14400 case CK_IntegralComplexCast
: {
14401 if (!Visit(E
->getSubExpr()))
14404 QualType To
= E
->getType()->castAs
<ComplexType
>()->getElementType();
14406 = E
->getSubExpr()->getType()->castAs
<ComplexType
>()->getElementType();
14408 Result
.IntReal
= HandleIntToIntCast(Info
, E
, To
, From
, Result
.IntReal
);
14409 Result
.IntImag
= HandleIntToIntCast(Info
, E
, To
, From
, Result
.IntImag
);
14413 case CK_IntegralComplexToFloatingComplex
: {
14414 if (!Visit(E
->getSubExpr()))
14417 const FPOptions FPO
= E
->getFPFeaturesInEffect(
14418 Info
.Ctx
.getLangOpts());
14419 QualType To
= E
->getType()->castAs
<ComplexType
>()->getElementType();
14421 = E
->getSubExpr()->getType()->castAs
<ComplexType
>()->getElementType();
14422 Result
.makeComplexFloat();
14423 return HandleIntToFloatCast(Info
, E
, FPO
, From
, Result
.IntReal
,
14424 To
, Result
.FloatReal
) &&
14425 HandleIntToFloatCast(Info
, E
, FPO
, From
, Result
.IntImag
,
14426 To
, Result
.FloatImag
);
14430 llvm_unreachable("unknown cast resulting in complex value");
14433 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator
*E
) {
14434 if (E
->isPtrMemOp() || E
->isAssignmentOp() || E
->getOpcode() == BO_Comma
)
14435 return ExprEvaluatorBaseTy::VisitBinaryOperator(E
);
14437 // Track whether the LHS or RHS is real at the type system level. When this is
14438 // the case we can simplify our evaluation strategy.
14439 bool LHSReal
= false, RHSReal
= false;
14442 if (E
->getLHS()->getType()->isRealFloatingType()) {
14444 APFloat
&Real
= Result
.FloatReal
;
14445 LHSOK
= EvaluateFloat(E
->getLHS(), Real
, Info
);
14447 Result
.makeComplexFloat();
14448 Result
.FloatImag
= APFloat(Real
.getSemantics());
14451 LHSOK
= Visit(E
->getLHS());
14453 if (!LHSOK
&& !Info
.noteFailure())
14457 if (E
->getRHS()->getType()->isRealFloatingType()) {
14459 APFloat
&Real
= RHS
.FloatReal
;
14460 if (!EvaluateFloat(E
->getRHS(), Real
, Info
) || !LHSOK
)
14462 RHS
.makeComplexFloat();
14463 RHS
.FloatImag
= APFloat(Real
.getSemantics());
14464 } else if (!EvaluateComplex(E
->getRHS(), RHS
, Info
) || !LHSOK
)
14467 assert(!(LHSReal
&& RHSReal
) &&
14468 "Cannot have both operands of a complex operation be real.");
14469 switch (E
->getOpcode()) {
14470 default: return Error(E
);
14472 if (Result
.isComplexFloat()) {
14473 Result
.getComplexFloatReal().add(RHS
.getComplexFloatReal(),
14474 APFloat::rmNearestTiesToEven
);
14476 Result
.getComplexFloatImag() = RHS
.getComplexFloatImag();
14478 Result
.getComplexFloatImag().add(RHS
.getComplexFloatImag(),
14479 APFloat::rmNearestTiesToEven
);
14481 Result
.getComplexIntReal() += RHS
.getComplexIntReal();
14482 Result
.getComplexIntImag() += RHS
.getComplexIntImag();
14486 if (Result
.isComplexFloat()) {
14487 Result
.getComplexFloatReal().subtract(RHS
.getComplexFloatReal(),
14488 APFloat::rmNearestTiesToEven
);
14490 Result
.getComplexFloatImag() = RHS
.getComplexFloatImag();
14491 Result
.getComplexFloatImag().changeSign();
14492 } else if (!RHSReal
) {
14493 Result
.getComplexFloatImag().subtract(RHS
.getComplexFloatImag(),
14494 APFloat::rmNearestTiesToEven
);
14497 Result
.getComplexIntReal() -= RHS
.getComplexIntReal();
14498 Result
.getComplexIntImag() -= RHS
.getComplexIntImag();
14502 if (Result
.isComplexFloat()) {
14503 // This is an implementation of complex multiplication according to the
14504 // constraints laid out in C11 Annex G. The implementation uses the
14505 // following naming scheme:
14506 // (a + ib) * (c + id)
14507 ComplexValue LHS
= Result
;
14508 APFloat
&A
= LHS
.getComplexFloatReal();
14509 APFloat
&B
= LHS
.getComplexFloatImag();
14510 APFloat
&C
= RHS
.getComplexFloatReal();
14511 APFloat
&D
= RHS
.getComplexFloatImag();
14512 APFloat
&ResR
= Result
.getComplexFloatReal();
14513 APFloat
&ResI
= Result
.getComplexFloatImag();
14515 assert(!RHSReal
&& "Cannot have two real operands for a complex op!");
14518 } else if (RHSReal
) {
14522 // In the fully general case, we need to handle NaNs and infinities
14524 APFloat AC
= A
* C
;
14525 APFloat BD
= B
* D
;
14526 APFloat AD
= A
* D
;
14527 APFloat BC
= B
* C
;
14530 if (ResR
.isNaN() && ResI
.isNaN()) {
14531 bool Recalc
= false;
14532 if (A
.isInfinity() || B
.isInfinity()) {
14533 A
= APFloat::copySign(
14534 APFloat(A
.getSemantics(), A
.isInfinity() ? 1 : 0), A
);
14535 B
= APFloat::copySign(
14536 APFloat(B
.getSemantics(), B
.isInfinity() ? 1 : 0), B
);
14538 C
= APFloat::copySign(APFloat(C
.getSemantics()), C
);
14540 D
= APFloat::copySign(APFloat(D
.getSemantics()), D
);
14543 if (C
.isInfinity() || D
.isInfinity()) {
14544 C
= APFloat::copySign(
14545 APFloat(C
.getSemantics(), C
.isInfinity() ? 1 : 0), C
);
14546 D
= APFloat::copySign(
14547 APFloat(D
.getSemantics(), D
.isInfinity() ? 1 : 0), D
);
14549 A
= APFloat::copySign(APFloat(A
.getSemantics()), A
);
14551 B
= APFloat::copySign(APFloat(B
.getSemantics()), B
);
14554 if (!Recalc
&& (AC
.isInfinity() || BD
.isInfinity() ||
14555 AD
.isInfinity() || BC
.isInfinity())) {
14557 A
= APFloat::copySign(APFloat(A
.getSemantics()), A
);
14559 B
= APFloat::copySign(APFloat(B
.getSemantics()), B
);
14561 C
= APFloat::copySign(APFloat(C
.getSemantics()), C
);
14563 D
= APFloat::copySign(APFloat(D
.getSemantics()), D
);
14567 ResR
= APFloat::getInf(A
.getSemantics()) * (A
* C
- B
* D
);
14568 ResI
= APFloat::getInf(A
.getSemantics()) * (A
* D
+ B
* C
);
14573 ComplexValue LHS
= Result
;
14574 Result
.getComplexIntReal() =
14575 (LHS
.getComplexIntReal() * RHS
.getComplexIntReal() -
14576 LHS
.getComplexIntImag() * RHS
.getComplexIntImag());
14577 Result
.getComplexIntImag() =
14578 (LHS
.getComplexIntReal() * RHS
.getComplexIntImag() +
14579 LHS
.getComplexIntImag() * RHS
.getComplexIntReal());
14583 if (Result
.isComplexFloat()) {
14584 // This is an implementation of complex division according to the
14585 // constraints laid out in C11 Annex G. The implementation uses the
14586 // following naming scheme:
14587 // (a + ib) / (c + id)
14588 ComplexValue LHS
= Result
;
14589 APFloat
&A
= LHS
.getComplexFloatReal();
14590 APFloat
&B
= LHS
.getComplexFloatImag();
14591 APFloat
&C
= RHS
.getComplexFloatReal();
14592 APFloat
&D
= RHS
.getComplexFloatImag();
14593 APFloat
&ResR
= Result
.getComplexFloatReal();
14594 APFloat
&ResI
= Result
.getComplexFloatImag();
14600 // No real optimizations we can do here, stub out with zero.
14601 B
= APFloat::getZero(A
.getSemantics());
14604 APFloat MaxCD
= maxnum(abs(C
), abs(D
));
14605 if (MaxCD
.isFinite()) {
14606 DenomLogB
= ilogb(MaxCD
);
14607 C
= scalbn(C
, -DenomLogB
, APFloat::rmNearestTiesToEven
);
14608 D
= scalbn(D
, -DenomLogB
, APFloat::rmNearestTiesToEven
);
14610 APFloat Denom
= C
* C
+ D
* D
;
14611 ResR
= scalbn((A
* C
+ B
* D
) / Denom
, -DenomLogB
,
14612 APFloat::rmNearestTiesToEven
);
14613 ResI
= scalbn((B
* C
- A
* D
) / Denom
, -DenomLogB
,
14614 APFloat::rmNearestTiesToEven
);
14615 if (ResR
.isNaN() && ResI
.isNaN()) {
14616 if (Denom
.isPosZero() && (!A
.isNaN() || !B
.isNaN())) {
14617 ResR
= APFloat::getInf(ResR
.getSemantics(), C
.isNegative()) * A
;
14618 ResI
= APFloat::getInf(ResR
.getSemantics(), C
.isNegative()) * B
;
14619 } else if ((A
.isInfinity() || B
.isInfinity()) && C
.isFinite() &&
14621 A
= APFloat::copySign(
14622 APFloat(A
.getSemantics(), A
.isInfinity() ? 1 : 0), A
);
14623 B
= APFloat::copySign(
14624 APFloat(B
.getSemantics(), B
.isInfinity() ? 1 : 0), B
);
14625 ResR
= APFloat::getInf(ResR
.getSemantics()) * (A
* C
+ B
* D
);
14626 ResI
= APFloat::getInf(ResI
.getSemantics()) * (B
* C
- A
* D
);
14627 } else if (MaxCD
.isInfinity() && A
.isFinite() && B
.isFinite()) {
14628 C
= APFloat::copySign(
14629 APFloat(C
.getSemantics(), C
.isInfinity() ? 1 : 0), C
);
14630 D
= APFloat::copySign(
14631 APFloat(D
.getSemantics(), D
.isInfinity() ? 1 : 0), D
);
14632 ResR
= APFloat::getZero(ResR
.getSemantics()) * (A
* C
+ B
* D
);
14633 ResI
= APFloat::getZero(ResI
.getSemantics()) * (B
* C
- A
* D
);
14638 if (RHS
.getComplexIntReal() == 0 && RHS
.getComplexIntImag() == 0)
14639 return Error(E
, diag::note_expr_divide_by_zero
);
14641 ComplexValue LHS
= Result
;
14642 APSInt Den
= RHS
.getComplexIntReal() * RHS
.getComplexIntReal() +
14643 RHS
.getComplexIntImag() * RHS
.getComplexIntImag();
14644 Result
.getComplexIntReal() =
14645 (LHS
.getComplexIntReal() * RHS
.getComplexIntReal() +
14646 LHS
.getComplexIntImag() * RHS
.getComplexIntImag()) / Den
;
14647 Result
.getComplexIntImag() =
14648 (LHS
.getComplexIntImag() * RHS
.getComplexIntReal() -
14649 LHS
.getComplexIntReal() * RHS
.getComplexIntImag()) / Den
;
14657 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator
*E
) {
14658 // Get the operand value into 'Result'.
14659 if (!Visit(E
->getSubExpr()))
14662 switch (E
->getOpcode()) {
14668 // The result is always just the subexpr.
14671 if (Result
.isComplexFloat()) {
14672 Result
.getComplexFloatReal().changeSign();
14673 Result
.getComplexFloatImag().changeSign();
14676 Result
.getComplexIntReal() = -Result
.getComplexIntReal();
14677 Result
.getComplexIntImag() = -Result
.getComplexIntImag();
14681 if (Result
.isComplexFloat())
14682 Result
.getComplexFloatImag().changeSign();
14684 Result
.getComplexIntImag() = -Result
.getComplexIntImag();
14689 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr
*E
) {
14690 if (E
->getNumInits() == 2) {
14691 if (E
->getType()->isComplexType()) {
14692 Result
.makeComplexFloat();
14693 if (!EvaluateFloat(E
->getInit(0), Result
.FloatReal
, Info
))
14695 if (!EvaluateFloat(E
->getInit(1), Result
.FloatImag
, Info
))
14698 Result
.makeComplexInt();
14699 if (!EvaluateInteger(E
->getInit(0), Result
.IntReal
, Info
))
14701 if (!EvaluateInteger(E
->getInit(1), Result
.IntImag
, Info
))
14706 return ExprEvaluatorBaseTy::VisitInitListExpr(E
);
14709 bool ComplexExprEvaluator::VisitCallExpr(const CallExpr
*E
) {
14710 if (!IsConstantEvaluatedBuiltinCall(E
))
14711 return ExprEvaluatorBaseTy::VisitCallExpr(E
);
14713 switch (E
->getBuiltinCallee()) {
14714 case Builtin::BI__builtin_complex
:
14715 Result
.makeComplexFloat();
14716 if (!EvaluateFloat(E
->getArg(0), Result
.FloatReal
, Info
))
14718 if (!EvaluateFloat(E
->getArg(1), Result
.FloatImag
, Info
))
14727 //===----------------------------------------------------------------------===//
14728 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
14729 // implicit conversion.
14730 //===----------------------------------------------------------------------===//
14733 class AtomicExprEvaluator
:
14734 public ExprEvaluatorBase
<AtomicExprEvaluator
> {
14735 const LValue
*This
;
14738 AtomicExprEvaluator(EvalInfo
&Info
, const LValue
*This
, APValue
&Result
)
14739 : ExprEvaluatorBaseTy(Info
), This(This
), Result(Result
) {}
14741 bool Success(const APValue
&V
, const Expr
*E
) {
14746 bool ZeroInitialization(const Expr
*E
) {
14747 ImplicitValueInitExpr
VIE(
14748 E
->getType()->castAs
<AtomicType
>()->getValueType());
14749 // For atomic-qualified class (and array) types in C++, initialize the
14750 // _Atomic-wrapped subobject directly, in-place.
14751 return This
? EvaluateInPlace(Result
, Info
, *This
, &VIE
)
14752 : Evaluate(Result
, Info
, &VIE
);
14755 bool VisitCastExpr(const CastExpr
*E
) {
14756 switch (E
->getCastKind()) {
14758 return ExprEvaluatorBaseTy::VisitCastExpr(E
);
14759 case CK_NonAtomicToAtomic
:
14760 return This
? EvaluateInPlace(Result
, Info
, *This
, E
->getSubExpr())
14761 : Evaluate(Result
, Info
, E
->getSubExpr());
14765 } // end anonymous namespace
14767 static bool EvaluateAtomic(const Expr
*E
, const LValue
*This
, APValue
&Result
,
14769 assert(!E
->isValueDependent());
14770 assert(E
->isPRValue() && E
->getType()->isAtomicType());
14771 return AtomicExprEvaluator(Info
, This
, Result
).Visit(E
);
14774 //===----------------------------------------------------------------------===//
14775 // Void expression evaluation, primarily for a cast to void on the LHS of a
14777 //===----------------------------------------------------------------------===//
14780 class VoidExprEvaluator
14781 : public ExprEvaluatorBase
<VoidExprEvaluator
> {
14783 VoidExprEvaluator(EvalInfo
&Info
) : ExprEvaluatorBaseTy(Info
) {}
14785 bool Success(const APValue
&V
, const Expr
*e
) { return true; }
14787 bool ZeroInitialization(const Expr
*E
) { return true; }
14789 bool VisitCastExpr(const CastExpr
*E
) {
14790 switch (E
->getCastKind()) {
14792 return ExprEvaluatorBaseTy::VisitCastExpr(E
);
14794 VisitIgnoredValue(E
->getSubExpr());
14799 bool VisitCallExpr(const CallExpr
*E
) {
14800 if (!IsConstantEvaluatedBuiltinCall(E
))
14801 return ExprEvaluatorBaseTy::VisitCallExpr(E
);
14803 switch (E
->getBuiltinCallee()) {
14804 case Builtin::BI__assume
:
14805 case Builtin::BI__builtin_assume
:
14806 // The argument is not evaluated!
14809 case Builtin::BI__builtin_operator_delete
:
14810 return HandleOperatorDeleteCall(Info
, E
);
14817 bool VisitCXXDeleteExpr(const CXXDeleteExpr
*E
);
14819 } // end anonymous namespace
14821 bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr
*E
) {
14822 // We cannot speculatively evaluate a delete expression.
14823 if (Info
.SpeculativeEvaluationDepth
)
14826 FunctionDecl
*OperatorDelete
= E
->getOperatorDelete();
14827 if (!OperatorDelete
->isReplaceableGlobalAllocationFunction()) {
14828 Info
.FFDiag(E
, diag::note_constexpr_new_non_replaceable
)
14829 << isa
<CXXMethodDecl
>(OperatorDelete
) << OperatorDelete
;
14833 const Expr
*Arg
= E
->getArgument();
14836 if (!EvaluatePointer(Arg
, Pointer
, Info
))
14838 if (Pointer
.Designator
.Invalid
)
14841 // Deleting a null pointer has no effect.
14842 if (Pointer
.isNullPointer()) {
14843 // This is the only case where we need to produce an extension warning:
14844 // the only other way we can succeed is if we find a dynamic allocation,
14845 // and we will have warned when we allocated it in that case.
14846 if (!Info
.getLangOpts().CPlusPlus20
)
14847 Info
.CCEDiag(E
, diag::note_constexpr_new
);
14851 Optional
<DynAlloc
*> Alloc
= CheckDeleteKind(
14852 Info
, E
, Pointer
, E
->isArrayForm() ? DynAlloc::ArrayNew
: DynAlloc::New
);
14855 QualType AllocType
= Pointer
.Base
.getDynamicAllocType();
14857 // For the non-array case, the designator must be empty if the static type
14858 // does not have a virtual destructor.
14859 if (!E
->isArrayForm() && Pointer
.Designator
.Entries
.size() != 0 &&
14860 !hasVirtualDestructor(Arg
->getType()->getPointeeType())) {
14861 Info
.FFDiag(E
, diag::note_constexpr_delete_base_nonvirt_dtor
)
14862 << Arg
->getType()->getPointeeType() << AllocType
;
14866 // For a class type with a virtual destructor, the selected operator delete
14867 // is the one looked up when building the destructor.
14868 if (!E
->isArrayForm() && !E
->isGlobalDelete()) {
14869 const FunctionDecl
*VirtualDelete
= getVirtualOperatorDelete(AllocType
);
14870 if (VirtualDelete
&&
14871 !VirtualDelete
->isReplaceableGlobalAllocationFunction()) {
14872 Info
.FFDiag(E
, diag::note_constexpr_new_non_replaceable
)
14873 << isa
<CXXMethodDecl
>(VirtualDelete
) << VirtualDelete
;
14878 if (!HandleDestruction(Info
, E
->getExprLoc(), Pointer
.getLValueBase(),
14879 (*Alloc
)->Value
, AllocType
))
14882 if (!Info
.HeapAllocs
.erase(Pointer
.Base
.dyn_cast
<DynamicAllocLValue
>())) {
14883 // The element was already erased. This means the destructor call also
14884 // deleted the object.
14885 // FIXME: This probably results in undefined behavior before we get this
14886 // far, and should be diagnosed elsewhere first.
14887 Info
.FFDiag(E
, diag::note_constexpr_double_delete
);
14894 static bool EvaluateVoid(const Expr
*E
, EvalInfo
&Info
) {
14895 assert(!E
->isValueDependent());
14896 assert(E
->isPRValue() && E
->getType()->isVoidType());
14897 return VoidExprEvaluator(Info
).Visit(E
);
14900 //===----------------------------------------------------------------------===//
14901 // Top level Expr::EvaluateAsRValue method.
14902 //===----------------------------------------------------------------------===//
14904 static bool Evaluate(APValue
&Result
, EvalInfo
&Info
, const Expr
*E
) {
14905 assert(!E
->isValueDependent());
14906 // In C, function designators are not lvalues, but we evaluate them as if they
14908 QualType T
= E
->getType();
14909 if (E
->isGLValue() || T
->isFunctionType()) {
14911 if (!EvaluateLValue(E
, LV
, Info
))
14913 LV
.moveInto(Result
);
14914 } else if (T
->isVectorType()) {
14915 if (!EvaluateVector(E
, Result
, Info
))
14917 } else if (T
->isIntegralOrEnumerationType()) {
14918 if (!IntExprEvaluator(Info
, Result
).Visit(E
))
14920 } else if (T
->hasPointerRepresentation()) {
14922 if (!EvaluatePointer(E
, LV
, Info
))
14924 LV
.moveInto(Result
);
14925 } else if (T
->isRealFloatingType()) {
14926 llvm::APFloat
F(0.0);
14927 if (!EvaluateFloat(E
, F
, Info
))
14929 Result
= APValue(F
);
14930 } else if (T
->isAnyComplexType()) {
14932 if (!EvaluateComplex(E
, C
, Info
))
14934 C
.moveInto(Result
);
14935 } else if (T
->isFixedPointType()) {
14936 if (!FixedPointExprEvaluator(Info
, Result
).Visit(E
)) return false;
14937 } else if (T
->isMemberPointerType()) {
14939 if (!EvaluateMemberPointer(E
, P
, Info
))
14941 P
.moveInto(Result
);
14943 } else if (T
->isArrayType()) {
14946 Info
.CurrentCall
->createTemporary(E
, T
, ScopeKind::FullExpression
, LV
);
14947 if (!EvaluateArray(E
, LV
, Value
, Info
))
14950 } else if (T
->isRecordType()) {
14953 Info
.CurrentCall
->createTemporary(E
, T
, ScopeKind::FullExpression
, LV
);
14954 if (!EvaluateRecord(E
, LV
, Value
, Info
))
14957 } else if (T
->isVoidType()) {
14958 if (!Info
.getLangOpts().CPlusPlus11
)
14959 Info
.CCEDiag(E
, diag::note_constexpr_nonliteral
)
14961 if (!EvaluateVoid(E
, Info
))
14963 } else if (T
->isAtomicType()) {
14964 QualType Unqual
= T
.getAtomicUnqualifiedType();
14965 if (Unqual
->isArrayType() || Unqual
->isRecordType()) {
14967 APValue
&Value
= Info
.CurrentCall
->createTemporary(
14968 E
, Unqual
, ScopeKind::FullExpression
, LV
);
14969 if (!EvaluateAtomic(E
, &LV
, Value
, Info
))
14972 if (!EvaluateAtomic(E
, nullptr, Result
, Info
))
14975 } else if (Info
.getLangOpts().CPlusPlus11
) {
14976 Info
.FFDiag(E
, diag::note_constexpr_nonliteral
) << E
->getType();
14979 Info
.FFDiag(E
, diag::note_invalid_subexpr_in_const_expr
);
14986 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
14987 /// cases, the in-place evaluation is essential, since later initializers for
14988 /// an object can indirectly refer to subobjects which were initialized earlier.
14989 static bool EvaluateInPlace(APValue
&Result
, EvalInfo
&Info
, const LValue
&This
,
14990 const Expr
*E
, bool AllowNonLiteralTypes
) {
14991 assert(!E
->isValueDependent());
14993 if (!AllowNonLiteralTypes
&& !CheckLiteralType(Info
, E
, &This
))
14996 if (E
->isPRValue()) {
14997 // Evaluate arrays and record types in-place, so that later initializers can
14998 // refer to earlier-initialized members of the object.
14999 QualType T
= E
->getType();
15000 if (T
->isArrayType())
15001 return EvaluateArray(E
, This
, Result
, Info
);
15002 else if (T
->isRecordType())
15003 return EvaluateRecord(E
, This
, Result
, Info
);
15004 else if (T
->isAtomicType()) {
15005 QualType Unqual
= T
.getAtomicUnqualifiedType();
15006 if (Unqual
->isArrayType() || Unqual
->isRecordType())
15007 return EvaluateAtomic(E
, &This
, Result
, Info
);
15011 // For any other type, in-place evaluation is unimportant.
15012 return Evaluate(Result
, Info
, E
);
15015 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
15016 /// lvalue-to-rvalue cast if it is an lvalue.
15017 static bool EvaluateAsRValue(EvalInfo
&Info
, const Expr
*E
, APValue
&Result
) {
15018 assert(!E
->isValueDependent());
15020 if (E
->getType().isNull())
15023 if (!CheckLiteralType(Info
, E
))
15026 if (Info
.EnableNewConstInterp
) {
15027 if (!Info
.Ctx
.getInterpContext().evaluateAsRValue(Info
, E
, Result
))
15030 if (!::Evaluate(Result
, Info
, E
))
15034 // Implicit lvalue-to-rvalue cast.
15035 if (E
->isGLValue()) {
15037 LV
.setFrom(Info
.Ctx
, Result
);
15038 if (!handleLValueToRValueConversion(Info
, E
, E
->getType(), LV
, Result
))
15042 // Check this core constant expression is a constant expression.
15043 return CheckConstantExpression(Info
, E
->getExprLoc(), E
->getType(), Result
,
15044 ConstantExprKind::Normal
) &&
15045 CheckMemoryLeaks(Info
);
15048 static bool FastEvaluateAsRValue(const Expr
*Exp
, Expr::EvalResult
&Result
,
15049 const ASTContext
&Ctx
, bool &IsConst
) {
15050 // Fast-path evaluations of integer literals, since we sometimes see files
15051 // containing vast quantities of these.
15052 if (const IntegerLiteral
*L
= dyn_cast
<IntegerLiteral
>(Exp
)) {
15053 Result
.Val
= APValue(APSInt(L
->getValue(),
15054 L
->getType()->isUnsignedIntegerType()));
15059 // This case should be rare, but we need to check it before we check on
15061 if (Exp
->getType().isNull()) {
15066 // FIXME: Evaluating values of large array and record types can cause
15067 // performance problems. Only do so in C++11 for now.
15068 if (Exp
->isPRValue() &&
15069 (Exp
->getType()->isArrayType() || Exp
->getType()->isRecordType()) &&
15070 !Ctx
.getLangOpts().CPlusPlus11
) {
15077 static bool hasUnacceptableSideEffect(Expr::EvalStatus
&Result
,
15078 Expr::SideEffectsKind SEK
) {
15079 return (SEK
< Expr::SE_AllowSideEffects
&& Result
.HasSideEffects
) ||
15080 (SEK
< Expr::SE_AllowUndefinedBehavior
&& Result
.HasUndefinedBehavior
);
15083 static bool EvaluateAsRValue(const Expr
*E
, Expr::EvalResult
&Result
,
15084 const ASTContext
&Ctx
, EvalInfo
&Info
) {
15085 assert(!E
->isValueDependent());
15087 if (FastEvaluateAsRValue(E
, Result
, Ctx
, IsConst
))
15090 return EvaluateAsRValue(Info
, E
, Result
.Val
);
15093 static bool EvaluateAsInt(const Expr
*E
, Expr::EvalResult
&ExprResult
,
15094 const ASTContext
&Ctx
,
15095 Expr::SideEffectsKind AllowSideEffects
,
15097 assert(!E
->isValueDependent());
15098 if (!E
->getType()->isIntegralOrEnumerationType())
15101 if (!::EvaluateAsRValue(E
, ExprResult
, Ctx
, Info
) ||
15102 !ExprResult
.Val
.isInt() ||
15103 hasUnacceptableSideEffect(ExprResult
, AllowSideEffects
))
15109 static bool EvaluateAsFixedPoint(const Expr
*E
, Expr::EvalResult
&ExprResult
,
15110 const ASTContext
&Ctx
,
15111 Expr::SideEffectsKind AllowSideEffects
,
15113 assert(!E
->isValueDependent());
15114 if (!E
->getType()->isFixedPointType())
15117 if (!::EvaluateAsRValue(E
, ExprResult
, Ctx
, Info
))
15120 if (!ExprResult
.Val
.isFixedPoint() ||
15121 hasUnacceptableSideEffect(ExprResult
, AllowSideEffects
))
15127 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
15128 /// any crazy technique (that has nothing to do with language standards) that
15129 /// we want to. If this function returns true, it returns the folded constant
15130 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
15131 /// will be applied to the result.
15132 bool Expr::EvaluateAsRValue(EvalResult
&Result
, const ASTContext
&Ctx
,
15133 bool InConstantContext
) const {
15134 assert(!isValueDependent() &&
15135 "Expression evaluator can't be called on a dependent expression.");
15136 ExprTimeTraceScope
TimeScope(this, Ctx
, "EvaluateAsRValue");
15137 EvalInfo
Info(Ctx
, Result
, EvalInfo::EM_IgnoreSideEffects
);
15138 Info
.InConstantContext
= InConstantContext
;
15139 return ::EvaluateAsRValue(this, Result
, Ctx
, Info
);
15142 bool Expr::EvaluateAsBooleanCondition(bool &Result
, const ASTContext
&Ctx
,
15143 bool InConstantContext
) const {
15144 assert(!isValueDependent() &&
15145 "Expression evaluator can't be called on a dependent expression.");
15146 ExprTimeTraceScope
TimeScope(this, Ctx
, "EvaluateAsBooleanCondition");
15147 EvalResult Scratch
;
15148 return EvaluateAsRValue(Scratch
, Ctx
, InConstantContext
) &&
15149 HandleConversionToBool(Scratch
.Val
, Result
);
15152 bool Expr::EvaluateAsInt(EvalResult
&Result
, const ASTContext
&Ctx
,
15153 SideEffectsKind AllowSideEffects
,
15154 bool InConstantContext
) const {
15155 assert(!isValueDependent() &&
15156 "Expression evaluator can't be called on a dependent expression.");
15157 ExprTimeTraceScope
TimeScope(this, Ctx
, "EvaluateAsInt");
15158 EvalInfo
Info(Ctx
, Result
, EvalInfo::EM_IgnoreSideEffects
);
15159 Info
.InConstantContext
= InConstantContext
;
15160 return ::EvaluateAsInt(this, Result
, Ctx
, AllowSideEffects
, Info
);
15163 bool Expr::EvaluateAsFixedPoint(EvalResult
&Result
, const ASTContext
&Ctx
,
15164 SideEffectsKind AllowSideEffects
,
15165 bool InConstantContext
) const {
15166 assert(!isValueDependent() &&
15167 "Expression evaluator can't be called on a dependent expression.");
15168 ExprTimeTraceScope
TimeScope(this, Ctx
, "EvaluateAsFixedPoint");
15169 EvalInfo
Info(Ctx
, Result
, EvalInfo::EM_IgnoreSideEffects
);
15170 Info
.InConstantContext
= InConstantContext
;
15171 return ::EvaluateAsFixedPoint(this, Result
, Ctx
, AllowSideEffects
, Info
);
15174 bool Expr::EvaluateAsFloat(APFloat
&Result
, const ASTContext
&Ctx
,
15175 SideEffectsKind AllowSideEffects
,
15176 bool InConstantContext
) const {
15177 assert(!isValueDependent() &&
15178 "Expression evaluator can't be called on a dependent expression.");
15180 if (!getType()->isRealFloatingType())
15183 ExprTimeTraceScope
TimeScope(this, Ctx
, "EvaluateAsFloat");
15184 EvalResult ExprResult
;
15185 if (!EvaluateAsRValue(ExprResult
, Ctx
, InConstantContext
) ||
15186 !ExprResult
.Val
.isFloat() ||
15187 hasUnacceptableSideEffect(ExprResult
, AllowSideEffects
))
15190 Result
= ExprResult
.Val
.getFloat();
15194 bool Expr::EvaluateAsLValue(EvalResult
&Result
, const ASTContext
&Ctx
,
15195 bool InConstantContext
) const {
15196 assert(!isValueDependent() &&
15197 "Expression evaluator can't be called on a dependent expression.");
15199 ExprTimeTraceScope
TimeScope(this, Ctx
, "EvaluateAsLValue");
15200 EvalInfo
Info(Ctx
, Result
, EvalInfo::EM_ConstantFold
);
15201 Info
.InConstantContext
= InConstantContext
;
15203 CheckedTemporaries CheckedTemps
;
15204 if (!EvaluateLValue(this, LV
, Info
) || !Info
.discardCleanups() ||
15205 Result
.HasSideEffects
||
15206 !CheckLValueConstantExpression(Info
, getExprLoc(),
15207 Ctx
.getLValueReferenceType(getType()), LV
,
15208 ConstantExprKind::Normal
, CheckedTemps
))
15211 LV
.moveInto(Result
.Val
);
15215 static bool EvaluateDestruction(const ASTContext
&Ctx
, APValue::LValueBase Base
,
15216 APValue DestroyedValue
, QualType Type
,
15217 SourceLocation Loc
, Expr::EvalStatus
&EStatus
,
15218 bool IsConstantDestruction
) {
15219 EvalInfo
Info(Ctx
, EStatus
,
15220 IsConstantDestruction
? EvalInfo::EM_ConstantExpression
15221 : EvalInfo::EM_ConstantFold
);
15222 Info
.setEvaluatingDecl(Base
, DestroyedValue
,
15223 EvalInfo::EvaluatingDeclKind::Dtor
);
15224 Info
.InConstantContext
= IsConstantDestruction
;
15229 if (!HandleDestruction(Info
, Loc
, Base
, DestroyedValue
, Type
) ||
15230 EStatus
.HasSideEffects
)
15233 if (!Info
.discardCleanups())
15234 llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15239 bool Expr::EvaluateAsConstantExpr(EvalResult
&Result
, const ASTContext
&Ctx
,
15240 ConstantExprKind Kind
) const {
15241 assert(!isValueDependent() &&
15242 "Expression evaluator can't be called on a dependent expression.");
15244 ExprTimeTraceScope
TimeScope(this, Ctx
, "EvaluateAsConstantExpr");
15245 EvalInfo::EvaluationMode EM
= EvalInfo::EM_ConstantExpression
;
15246 EvalInfo
Info(Ctx
, Result
, EM
);
15247 Info
.InConstantContext
= true;
15249 // The type of the object we're initializing is 'const T' for a class NTTP.
15250 QualType T
= getType();
15251 if (Kind
== ConstantExprKind::ClassTemplateArgument
)
15254 // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to
15255 // represent the result of the evaluation. CheckConstantExpression ensures
15256 // this doesn't escape.
15257 MaterializeTemporaryExpr
BaseMTE(T
, const_cast<Expr
*>(this), true);
15258 APValue::LValueBase
Base(&BaseMTE
);
15260 Info
.setEvaluatingDecl(Base
, Result
.Val
);
15264 if (!::EvaluateInPlace(Result
.Val
, Info
, LVal
, this) || Result
.HasSideEffects
)
15267 if (!Info
.discardCleanups())
15268 llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15270 if (!CheckConstantExpression(Info
, getExprLoc(), getStorageType(Ctx
, this),
15273 if (!CheckMemoryLeaks(Info
))
15276 // If this is a class template argument, it's required to have constant
15277 // destruction too.
15278 if (Kind
== ConstantExprKind::ClassTemplateArgument
&&
15279 (!EvaluateDestruction(Ctx
, Base
, Result
.Val
, T
, getBeginLoc(), Result
,
15281 Result
.HasSideEffects
)) {
15282 // FIXME: Prefix a note to indicate that the problem is lack of constant
15290 bool Expr::EvaluateAsInitializer(APValue
&Value
, const ASTContext
&Ctx
,
15292 SmallVectorImpl
<PartialDiagnosticAt
> &Notes
,
15293 bool IsConstantInitialization
) const {
15294 assert(!isValueDependent() &&
15295 "Expression evaluator can't be called on a dependent expression.");
15297 llvm::TimeTraceScope
TimeScope("EvaluateAsInitializer", [&] {
15299 llvm::raw_string_ostream
OS(Name
);
15300 VD
->printQualifiedName(OS
);
15304 // FIXME: Evaluating initializers for large array and record types can cause
15305 // performance problems. Only do so in C++11 for now.
15306 if (isPRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
15307 !Ctx
.getLangOpts().CPlusPlus11
)
15310 Expr::EvalStatus EStatus
;
15311 EStatus
.Diag
= &Notes
;
15313 EvalInfo
Info(Ctx
, EStatus
,
15314 (IsConstantInitialization
&& Ctx
.getLangOpts().CPlusPlus11
)
15315 ? EvalInfo::EM_ConstantExpression
15316 : EvalInfo::EM_ConstantFold
);
15317 Info
.setEvaluatingDecl(VD
, Value
);
15318 Info
.InConstantContext
= IsConstantInitialization
;
15320 SourceLocation DeclLoc
= VD
->getLocation();
15321 QualType DeclTy
= VD
->getType();
15323 if (Info
.EnableNewConstInterp
) {
15324 auto &InterpCtx
= const_cast<ASTContext
&>(Ctx
).getInterpContext();
15325 if (!InterpCtx
.evaluateAsInitializer(Info
, VD
, Value
))
15331 if (!EvaluateInPlace(Value
, Info
, LVal
, this,
15332 /*AllowNonLiteralTypes=*/true) ||
15333 EStatus
.HasSideEffects
)
15336 // At this point, any lifetime-extended temporaries are completely
15338 Info
.performLifetimeExtension();
15340 if (!Info
.discardCleanups())
15341 llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15343 return CheckConstantExpression(Info
, DeclLoc
, DeclTy
, Value
,
15344 ConstantExprKind::Normal
) &&
15345 CheckMemoryLeaks(Info
);
15348 bool VarDecl::evaluateDestruction(
15349 SmallVectorImpl
<PartialDiagnosticAt
> &Notes
) const {
15350 Expr::EvalStatus EStatus
;
15351 EStatus
.Diag
= &Notes
;
15353 // Only treat the destruction as constant destruction if we formally have
15354 // constant initialization (or are usable in a constant expression).
15355 bool IsConstantDestruction
= hasConstantInitialization();
15357 // Make a copy of the value for the destructor to mutate, if we know it.
15358 // Otherwise, treat the value as default-initialized; if the destructor works
15359 // anyway, then the destruction is constant (and must be essentially empty).
15360 APValue DestroyedValue
;
15361 if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent())
15362 DestroyedValue
= *getEvaluatedValue();
15363 else if (!getDefaultInitValue(getType(), DestroyedValue
))
15366 if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue
),
15367 getType(), getLocation(), EStatus
,
15368 IsConstantDestruction
) ||
15369 EStatus
.HasSideEffects
)
15372 ensureEvaluatedStmt()->HasConstantDestruction
= true;
15376 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
15377 /// constant folded, but discard the result.
15378 bool Expr::isEvaluatable(const ASTContext
&Ctx
, SideEffectsKind SEK
) const {
15379 assert(!isValueDependent() &&
15380 "Expression evaluator can't be called on a dependent expression.");
15383 return EvaluateAsRValue(Result
, Ctx
, /* in constant context */ true) &&
15384 !hasUnacceptableSideEffect(Result
, SEK
);
15387 APSInt
Expr::EvaluateKnownConstInt(const ASTContext
&Ctx
,
15388 SmallVectorImpl
<PartialDiagnosticAt
> *Diag
) const {
15389 assert(!isValueDependent() &&
15390 "Expression evaluator can't be called on a dependent expression.");
15392 ExprTimeTraceScope
TimeScope(this, Ctx
, "EvaluateKnownConstInt");
15393 EvalResult EVResult
;
15394 EVResult
.Diag
= Diag
;
15395 EvalInfo
Info(Ctx
, EVResult
, EvalInfo::EM_IgnoreSideEffects
);
15396 Info
.InConstantContext
= true;
15398 bool Result
= ::EvaluateAsRValue(this, EVResult
, Ctx
, Info
);
15400 assert(Result
&& "Could not evaluate expression");
15401 assert(EVResult
.Val
.isInt() && "Expression did not evaluate to integer");
15403 return EVResult
.Val
.getInt();
15406 APSInt
Expr::EvaluateKnownConstIntCheckOverflow(
15407 const ASTContext
&Ctx
, SmallVectorImpl
<PartialDiagnosticAt
> *Diag
) const {
15408 assert(!isValueDependent() &&
15409 "Expression evaluator can't be called on a dependent expression.");
15411 ExprTimeTraceScope
TimeScope(this, Ctx
, "EvaluateKnownConstIntCheckOverflow");
15412 EvalResult EVResult
;
15413 EVResult
.Diag
= Diag
;
15414 EvalInfo
Info(Ctx
, EVResult
, EvalInfo::EM_IgnoreSideEffects
);
15415 Info
.InConstantContext
= true;
15416 Info
.CheckingForUndefinedBehavior
= true;
15418 bool Result
= ::EvaluateAsRValue(Info
, this, EVResult
.Val
);
15420 assert(Result
&& "Could not evaluate expression");
15421 assert(EVResult
.Val
.isInt() && "Expression did not evaluate to integer");
15423 return EVResult
.Val
.getInt();
15426 void Expr::EvaluateForOverflow(const ASTContext
&Ctx
) const {
15427 assert(!isValueDependent() &&
15428 "Expression evaluator can't be called on a dependent expression.");
15430 ExprTimeTraceScope
TimeScope(this, Ctx
, "EvaluateForOverflow");
15432 EvalResult EVResult
;
15433 if (!FastEvaluateAsRValue(this, EVResult
, Ctx
, IsConst
)) {
15434 EvalInfo
Info(Ctx
, EVResult
, EvalInfo::EM_IgnoreSideEffects
);
15435 Info
.CheckingForUndefinedBehavior
= true;
15436 (void)::EvaluateAsRValue(Info
, this, EVResult
.Val
);
15440 bool Expr::EvalResult::isGlobalLValue() const {
15441 assert(Val
.isLValue());
15442 return IsGlobalLValue(Val
.getLValueBase());
15445 /// isIntegerConstantExpr - this recursive routine will test if an expression is
15446 /// an integer constant expression.
15448 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
15451 // CheckICE - This function does the fundamental ICE checking: the returned
15452 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
15453 // and a (possibly null) SourceLocation indicating the location of the problem.
15455 // Note that to reduce code duplication, this helper does no evaluation
15456 // itself; the caller checks whether the expression is evaluatable, and
15457 // in the rare cases where CheckICE actually cares about the evaluated
15458 // value, it calls into Evaluate.
15463 /// This expression is an ICE.
15465 /// This expression is not an ICE, but if it isn't evaluated, it's
15466 /// a legal subexpression for an ICE. This return value is used to handle
15467 /// the comma operator in C99 mode, and non-constant subexpressions.
15468 IK_ICEIfUnevaluated
,
15469 /// This expression is not an ICE, and is not a legal subexpression for one.
15475 SourceLocation Loc
;
15477 ICEDiag(ICEKind IK
, SourceLocation l
) : Kind(IK
), Loc(l
) {}
15482 static ICEDiag
NoDiag() { return ICEDiag(IK_ICE
, SourceLocation()); }
15484 static ICEDiag
Worst(ICEDiag A
, ICEDiag B
) { return A
.Kind
>= B
.Kind
? A
: B
; }
15486 static ICEDiag
CheckEvalInICE(const Expr
* E
, const ASTContext
&Ctx
) {
15487 Expr::EvalResult EVResult
;
15488 Expr::EvalStatus Status
;
15489 EvalInfo
Info(Ctx
, Status
, EvalInfo::EM_ConstantExpression
);
15491 Info
.InConstantContext
= true;
15492 if (!::EvaluateAsRValue(E
, EVResult
, Ctx
, Info
) || EVResult
.HasSideEffects
||
15493 !EVResult
.Val
.isInt())
15494 return ICEDiag(IK_NotICE
, E
->getBeginLoc());
15499 static ICEDiag
CheckICE(const Expr
* E
, const ASTContext
&Ctx
) {
15500 assert(!E
->isValueDependent() && "Should not see value dependent exprs!");
15501 if (!E
->getType()->isIntegralOrEnumerationType())
15502 return ICEDiag(IK_NotICE
, E
->getBeginLoc());
15504 switch (E
->getStmtClass()) {
15505 #define ABSTRACT_STMT(Node)
15506 #define STMT(Node, Base) case Expr::Node##Class:
15507 #define EXPR(Node, Base)
15508 #include "clang/AST/StmtNodes.inc"
15509 case Expr::PredefinedExprClass
:
15510 case Expr::FloatingLiteralClass
:
15511 case Expr::ImaginaryLiteralClass
:
15512 case Expr::StringLiteralClass
:
15513 case Expr::ArraySubscriptExprClass
:
15514 case Expr::MatrixSubscriptExprClass
:
15515 case Expr::OMPArraySectionExprClass
:
15516 case Expr::OMPArrayShapingExprClass
:
15517 case Expr::OMPIteratorExprClass
:
15518 case Expr::MemberExprClass
:
15519 case Expr::CompoundAssignOperatorClass
:
15520 case Expr::CompoundLiteralExprClass
:
15521 case Expr::ExtVectorElementExprClass
:
15522 case Expr::DesignatedInitExprClass
:
15523 case Expr::ArrayInitLoopExprClass
:
15524 case Expr::ArrayInitIndexExprClass
:
15525 case Expr::NoInitExprClass
:
15526 case Expr::DesignatedInitUpdateExprClass
:
15527 case Expr::ImplicitValueInitExprClass
:
15528 case Expr::ParenListExprClass
:
15529 case Expr::VAArgExprClass
:
15530 case Expr::AddrLabelExprClass
:
15531 case Expr::StmtExprClass
:
15532 case Expr::CXXMemberCallExprClass
:
15533 case Expr::CUDAKernelCallExprClass
:
15534 case Expr::CXXAddrspaceCastExprClass
:
15535 case Expr::CXXDynamicCastExprClass
:
15536 case Expr::CXXTypeidExprClass
:
15537 case Expr::CXXUuidofExprClass
:
15538 case Expr::MSPropertyRefExprClass
:
15539 case Expr::MSPropertySubscriptExprClass
:
15540 case Expr::CXXNullPtrLiteralExprClass
:
15541 case Expr::UserDefinedLiteralClass
:
15542 case Expr::CXXThisExprClass
:
15543 case Expr::CXXThrowExprClass
:
15544 case Expr::CXXNewExprClass
:
15545 case Expr::CXXDeleteExprClass
:
15546 case Expr::CXXPseudoDestructorExprClass
:
15547 case Expr::UnresolvedLookupExprClass
:
15548 case Expr::TypoExprClass
:
15549 case Expr::RecoveryExprClass
:
15550 case Expr::DependentScopeDeclRefExprClass
:
15551 case Expr::CXXConstructExprClass
:
15552 case Expr::CXXInheritedCtorInitExprClass
:
15553 case Expr::CXXStdInitializerListExprClass
:
15554 case Expr::CXXBindTemporaryExprClass
:
15555 case Expr::ExprWithCleanupsClass
:
15556 case Expr::CXXTemporaryObjectExprClass
:
15557 case Expr::CXXUnresolvedConstructExprClass
:
15558 case Expr::CXXDependentScopeMemberExprClass
:
15559 case Expr::UnresolvedMemberExprClass
:
15560 case Expr::ObjCStringLiteralClass
:
15561 case Expr::ObjCBoxedExprClass
:
15562 case Expr::ObjCArrayLiteralClass
:
15563 case Expr::ObjCDictionaryLiteralClass
:
15564 case Expr::ObjCEncodeExprClass
:
15565 case Expr::ObjCMessageExprClass
:
15566 case Expr::ObjCSelectorExprClass
:
15567 case Expr::ObjCProtocolExprClass
:
15568 case Expr::ObjCIvarRefExprClass
:
15569 case Expr::ObjCPropertyRefExprClass
:
15570 case Expr::ObjCSubscriptRefExprClass
:
15571 case Expr::ObjCIsaExprClass
:
15572 case Expr::ObjCAvailabilityCheckExprClass
:
15573 case Expr::ShuffleVectorExprClass
:
15574 case Expr::ConvertVectorExprClass
:
15575 case Expr::BlockExprClass
:
15576 case Expr::NoStmtClass
:
15577 case Expr::OpaqueValueExprClass
:
15578 case Expr::PackExpansionExprClass
:
15579 case Expr::SubstNonTypeTemplateParmPackExprClass
:
15580 case Expr::FunctionParmPackExprClass
:
15581 case Expr::AsTypeExprClass
:
15582 case Expr::ObjCIndirectCopyRestoreExprClass
:
15583 case Expr::MaterializeTemporaryExprClass
:
15584 case Expr::PseudoObjectExprClass
:
15585 case Expr::AtomicExprClass
:
15586 case Expr::LambdaExprClass
:
15587 case Expr::CXXFoldExprClass
:
15588 case Expr::CoawaitExprClass
:
15589 case Expr::DependentCoawaitExprClass
:
15590 case Expr::CoyieldExprClass
:
15591 case Expr::SYCLUniqueStableNameExprClass
:
15592 return ICEDiag(IK_NotICE
, E
->getBeginLoc());
15594 case Expr::InitListExprClass
: {
15595 // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
15596 // form "T x = { a };" is equivalent to "T x = a;".
15597 // Unless we're initializing a reference, T is a scalar as it is known to be
15598 // of integral or enumeration type.
15599 if (E
->isPRValue())
15600 if (cast
<InitListExpr
>(E
)->getNumInits() == 1)
15601 return CheckICE(cast
<InitListExpr
>(E
)->getInit(0), Ctx
);
15602 return ICEDiag(IK_NotICE
, E
->getBeginLoc());
15605 case Expr::SizeOfPackExprClass
:
15606 case Expr::GNUNullExprClass
:
15607 case Expr::SourceLocExprClass
:
15610 case Expr::SubstNonTypeTemplateParmExprClass
:
15612 CheckICE(cast
<SubstNonTypeTemplateParmExpr
>(E
)->getReplacement(), Ctx
);
15614 case Expr::ConstantExprClass
:
15615 return CheckICE(cast
<ConstantExpr
>(E
)->getSubExpr(), Ctx
);
15617 case Expr::ParenExprClass
:
15618 return CheckICE(cast
<ParenExpr
>(E
)->getSubExpr(), Ctx
);
15619 case Expr::GenericSelectionExprClass
:
15620 return CheckICE(cast
<GenericSelectionExpr
>(E
)->getResultExpr(), Ctx
);
15621 case Expr::IntegerLiteralClass
:
15622 case Expr::FixedPointLiteralClass
:
15623 case Expr::CharacterLiteralClass
:
15624 case Expr::ObjCBoolLiteralExprClass
:
15625 case Expr::CXXBoolLiteralExprClass
:
15626 case Expr::CXXScalarValueInitExprClass
:
15627 case Expr::TypeTraitExprClass
:
15628 case Expr::ConceptSpecializationExprClass
:
15629 case Expr::RequiresExprClass
:
15630 case Expr::ArrayTypeTraitExprClass
:
15631 case Expr::ExpressionTraitExprClass
:
15632 case Expr::CXXNoexceptExprClass
:
15634 case Expr::CallExprClass
:
15635 case Expr::CXXOperatorCallExprClass
: {
15636 // C99 6.6/3 allows function calls within unevaluated subexpressions of
15637 // constant expressions, but they can never be ICEs because an ICE cannot
15638 // contain an operand of (pointer to) function type.
15639 const CallExpr
*CE
= cast
<CallExpr
>(E
);
15640 if (CE
->getBuiltinCallee())
15641 return CheckEvalInICE(E
, Ctx
);
15642 return ICEDiag(IK_NotICE
, E
->getBeginLoc());
15644 case Expr::CXXRewrittenBinaryOperatorClass
:
15645 return CheckICE(cast
<CXXRewrittenBinaryOperator
>(E
)->getSemanticForm(),
15647 case Expr::DeclRefExprClass
: {
15648 const NamedDecl
*D
= cast
<DeclRefExpr
>(E
)->getDecl();
15649 if (isa
<EnumConstantDecl
>(D
))
15652 // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified
15653 // integer variables in constant expressions:
15656 // A variable of non-volatile const-qualified integral or enumeration
15657 // type initialized by an ICE can be used in ICEs.
15659 // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In
15660 // that mode, use of reference variables should not be allowed.
15661 const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
);
15662 if (VD
&& VD
->isUsableInConstantExpressions(Ctx
) &&
15663 !VD
->getType()->isReferenceType())
15666 return ICEDiag(IK_NotICE
, E
->getBeginLoc());
15668 case Expr::UnaryOperatorClass
: {
15669 const UnaryOperator
*Exp
= cast
<UnaryOperator
>(E
);
15670 switch (Exp
->getOpcode()) {
15678 // C99 6.6/3 allows increment and decrement within unevaluated
15679 // subexpressions of constant expressions, but they can never be ICEs
15680 // because an ICE cannot contain an lvalue operand.
15681 return ICEDiag(IK_NotICE
, E
->getBeginLoc());
15689 return CheckICE(Exp
->getSubExpr(), Ctx
);
15691 llvm_unreachable("invalid unary operator class");
15693 case Expr::OffsetOfExprClass
: {
15694 // Note that per C99, offsetof must be an ICE. And AFAIK, using
15695 // EvaluateAsRValue matches the proposed gcc behavior for cases like
15696 // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
15697 // compliance: we should warn earlier for offsetof expressions with
15698 // array subscripts that aren't ICEs, and if the array subscripts
15699 // are ICEs, the value of the offsetof must be an integer constant.
15700 return CheckEvalInICE(E
, Ctx
);
15702 case Expr::UnaryExprOrTypeTraitExprClass
: {
15703 const UnaryExprOrTypeTraitExpr
*Exp
= cast
<UnaryExprOrTypeTraitExpr
>(E
);
15704 if ((Exp
->getKind() == UETT_SizeOf
) &&
15705 Exp
->getTypeOfArgument()->isVariableArrayType())
15706 return ICEDiag(IK_NotICE
, E
->getBeginLoc());
15709 case Expr::BinaryOperatorClass
: {
15710 const BinaryOperator
*Exp
= cast
<BinaryOperator
>(E
);
15711 switch (Exp
->getOpcode()) {
15725 // C99 6.6/3 allows assignments within unevaluated subexpressions of
15726 // constant expressions, but they can never be ICEs because an ICE cannot
15727 // contain an lvalue operand.
15728 return ICEDiag(IK_NotICE
, E
->getBeginLoc());
15748 ICEDiag LHSResult
= CheckICE(Exp
->getLHS(), Ctx
);
15749 ICEDiag RHSResult
= CheckICE(Exp
->getRHS(), Ctx
);
15750 if (Exp
->getOpcode() == BO_Div
||
15751 Exp
->getOpcode() == BO_Rem
) {
15752 // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
15753 // we don't evaluate one.
15754 if (LHSResult
.Kind
== IK_ICE
&& RHSResult
.Kind
== IK_ICE
) {
15755 llvm::APSInt REval
= Exp
->getRHS()->EvaluateKnownConstInt(Ctx
);
15757 return ICEDiag(IK_ICEIfUnevaluated
, E
->getBeginLoc());
15758 if (REval
.isSigned() && REval
.isAllOnes()) {
15759 llvm::APSInt LEval
= Exp
->getLHS()->EvaluateKnownConstInt(Ctx
);
15760 if (LEval
.isMinSignedValue())
15761 return ICEDiag(IK_ICEIfUnevaluated
, E
->getBeginLoc());
15765 if (Exp
->getOpcode() == BO_Comma
) {
15766 if (Ctx
.getLangOpts().C99
) {
15767 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
15768 // if it isn't evaluated.
15769 if (LHSResult
.Kind
== IK_ICE
&& RHSResult
.Kind
== IK_ICE
)
15770 return ICEDiag(IK_ICEIfUnevaluated
, E
->getBeginLoc());
15772 // In both C89 and C++, commas in ICEs are illegal.
15773 return ICEDiag(IK_NotICE
, E
->getBeginLoc());
15776 return Worst(LHSResult
, RHSResult
);
15780 ICEDiag LHSResult
= CheckICE(Exp
->getLHS(), Ctx
);
15781 ICEDiag RHSResult
= CheckICE(Exp
->getRHS(), Ctx
);
15782 if (LHSResult
.Kind
== IK_ICE
&& RHSResult
.Kind
== IK_ICEIfUnevaluated
) {
15783 // Rare case where the RHS has a comma "side-effect"; we need
15784 // to actually check the condition to see whether the side
15785 // with the comma is evaluated.
15786 if ((Exp
->getOpcode() == BO_LAnd
) !=
15787 (Exp
->getLHS()->EvaluateKnownConstInt(Ctx
) == 0))
15792 return Worst(LHSResult
, RHSResult
);
15795 llvm_unreachable("invalid binary operator kind");
15797 case Expr::ImplicitCastExprClass
:
15798 case Expr::CStyleCastExprClass
:
15799 case Expr::CXXFunctionalCastExprClass
:
15800 case Expr::CXXStaticCastExprClass
:
15801 case Expr::CXXReinterpretCastExprClass
:
15802 case Expr::CXXConstCastExprClass
:
15803 case Expr::ObjCBridgedCastExprClass
: {
15804 const Expr
*SubExpr
= cast
<CastExpr
>(E
)->getSubExpr();
15805 if (isa
<ExplicitCastExpr
>(E
)) {
15806 if (const FloatingLiteral
*FL
15807 = dyn_cast
<FloatingLiteral
>(SubExpr
->IgnoreParenImpCasts())) {
15808 unsigned DestWidth
= Ctx
.getIntWidth(E
->getType());
15809 bool DestSigned
= E
->getType()->isSignedIntegerOrEnumerationType();
15810 APSInt
IgnoredVal(DestWidth
, !DestSigned
);
15812 // If the value does not fit in the destination type, the behavior is
15813 // undefined, so we are not required to treat it as a constant
15815 if (FL
->getValue().convertToInteger(IgnoredVal
,
15816 llvm::APFloat::rmTowardZero
,
15817 &Ignored
) & APFloat::opInvalidOp
)
15818 return ICEDiag(IK_NotICE
, E
->getBeginLoc());
15822 switch (cast
<CastExpr
>(E
)->getCastKind()) {
15823 case CK_LValueToRValue
:
15824 case CK_AtomicToNonAtomic
:
15825 case CK_NonAtomicToAtomic
:
15827 case CK_IntegralToBoolean
:
15828 case CK_IntegralCast
:
15829 return CheckICE(SubExpr
, Ctx
);
15831 return ICEDiag(IK_NotICE
, E
->getBeginLoc());
15834 case Expr::BinaryConditionalOperatorClass
: {
15835 const BinaryConditionalOperator
*Exp
= cast
<BinaryConditionalOperator
>(E
);
15836 ICEDiag CommonResult
= CheckICE(Exp
->getCommon(), Ctx
);
15837 if (CommonResult
.Kind
== IK_NotICE
) return CommonResult
;
15838 ICEDiag FalseResult
= CheckICE(Exp
->getFalseExpr(), Ctx
);
15839 if (FalseResult
.Kind
== IK_NotICE
) return FalseResult
;
15840 if (CommonResult
.Kind
== IK_ICEIfUnevaluated
) return CommonResult
;
15841 if (FalseResult
.Kind
== IK_ICEIfUnevaluated
&&
15842 Exp
->getCommon()->EvaluateKnownConstInt(Ctx
) != 0) return NoDiag();
15843 return FalseResult
;
15845 case Expr::ConditionalOperatorClass
: {
15846 const ConditionalOperator
*Exp
= cast
<ConditionalOperator
>(E
);
15847 // If the condition (ignoring parens) is a __builtin_constant_p call,
15848 // then only the true side is actually considered in an integer constant
15849 // expression, and it is fully evaluated. This is an important GNU
15850 // extension. See GCC PR38377 for discussion.
15851 if (const CallExpr
*CallCE
15852 = dyn_cast
<CallExpr
>(Exp
->getCond()->IgnoreParenCasts()))
15853 if (CallCE
->getBuiltinCallee() == Builtin::BI__builtin_constant_p
)
15854 return CheckEvalInICE(E
, Ctx
);
15855 ICEDiag CondResult
= CheckICE(Exp
->getCond(), Ctx
);
15856 if (CondResult
.Kind
== IK_NotICE
)
15859 ICEDiag TrueResult
= CheckICE(Exp
->getTrueExpr(), Ctx
);
15860 ICEDiag FalseResult
= CheckICE(Exp
->getFalseExpr(), Ctx
);
15862 if (TrueResult
.Kind
== IK_NotICE
)
15864 if (FalseResult
.Kind
== IK_NotICE
)
15865 return FalseResult
;
15866 if (CondResult
.Kind
== IK_ICEIfUnevaluated
)
15868 if (TrueResult
.Kind
== IK_ICE
&& FalseResult
.Kind
== IK_ICE
)
15870 // Rare case where the diagnostics depend on which side is evaluated
15871 // Note that if we get here, CondResult is 0, and at least one of
15872 // TrueResult and FalseResult is non-zero.
15873 if (Exp
->getCond()->EvaluateKnownConstInt(Ctx
) == 0)
15874 return FalseResult
;
15877 case Expr::CXXDefaultArgExprClass
:
15878 return CheckICE(cast
<CXXDefaultArgExpr
>(E
)->getExpr(), Ctx
);
15879 case Expr::CXXDefaultInitExprClass
:
15880 return CheckICE(cast
<CXXDefaultInitExpr
>(E
)->getExpr(), Ctx
);
15881 case Expr::ChooseExprClass
: {
15882 return CheckICE(cast
<ChooseExpr
>(E
)->getChosenSubExpr(), Ctx
);
15884 case Expr::BuiltinBitCastExprClass
: {
15885 if (!checkBitCastConstexprEligibility(nullptr, Ctx
, cast
<CastExpr
>(E
)))
15886 return ICEDiag(IK_NotICE
, E
->getBeginLoc());
15887 return CheckICE(cast
<CastExpr
>(E
)->getSubExpr(), Ctx
);
15891 llvm_unreachable("Invalid StmtClass!");
15894 /// Evaluate an expression as a C++11 integral constant expression.
15895 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext
&Ctx
,
15897 llvm::APSInt
*Value
,
15898 SourceLocation
*Loc
) {
15899 if (!E
->getType()->isIntegralOrUnscopedEnumerationType()) {
15900 if (Loc
) *Loc
= E
->getExprLoc();
15905 if (!E
->isCXX11ConstantExpr(Ctx
, &Result
, Loc
))
15908 if (!Result
.isInt()) {
15909 if (Loc
) *Loc
= E
->getExprLoc();
15913 if (Value
) *Value
= Result
.getInt();
15917 bool Expr::isIntegerConstantExpr(const ASTContext
&Ctx
,
15918 SourceLocation
*Loc
) const {
15919 assert(!isValueDependent() &&
15920 "Expression evaluator can't be called on a dependent expression.");
15922 ExprTimeTraceScope
TimeScope(this, Ctx
, "isIntegerConstantExpr");
15924 if (Ctx
.getLangOpts().CPlusPlus11
)
15925 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx
, this, nullptr, Loc
);
15927 ICEDiag D
= CheckICE(this, Ctx
);
15928 if (D
.Kind
!= IK_ICE
) {
15929 if (Loc
) *Loc
= D
.Loc
;
15935 Optional
<llvm::APSInt
> Expr::getIntegerConstantExpr(const ASTContext
&Ctx
,
15936 SourceLocation
*Loc
,
15937 bool isEvaluated
) const {
15938 if (isValueDependent()) {
15939 // Expression evaluator can't succeed on a dependent expression.
15945 if (Ctx
.getLangOpts().CPlusPlus11
) {
15946 if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx
, this, &Value
, Loc
))
15951 if (!isIntegerConstantExpr(Ctx
, Loc
))
15954 // The only possible side-effects here are due to UB discovered in the
15955 // evaluation (for instance, INT_MAX + 1). In such a case, we are still
15956 // required to treat the expression as an ICE, so we produce the folded
15958 EvalResult ExprResult
;
15959 Expr::EvalStatus Status
;
15960 EvalInfo
Info(Ctx
, Status
, EvalInfo::EM_IgnoreSideEffects
);
15961 Info
.InConstantContext
= true;
15963 if (!::EvaluateAsInt(this, ExprResult
, Ctx
, SE_AllowSideEffects
, Info
))
15964 llvm_unreachable("ICE cannot be evaluated!");
15966 return ExprResult
.Val
.getInt();
15969 bool Expr::isCXX98IntegralConstantExpr(const ASTContext
&Ctx
) const {
15970 assert(!isValueDependent() &&
15971 "Expression evaluator can't be called on a dependent expression.");
15973 return CheckICE(this, Ctx
).Kind
== IK_ICE
;
15976 bool Expr::isCXX11ConstantExpr(const ASTContext
&Ctx
, APValue
*Result
,
15977 SourceLocation
*Loc
) const {
15978 assert(!isValueDependent() &&
15979 "Expression evaluator can't be called on a dependent expression.");
15981 // We support this checking in C++98 mode in order to diagnose compatibility
15983 assert(Ctx
.getLangOpts().CPlusPlus
);
15985 // Build evaluation settings.
15986 Expr::EvalStatus Status
;
15987 SmallVector
<PartialDiagnosticAt
, 8> Diags
;
15988 Status
.Diag
= &Diags
;
15989 EvalInfo
Info(Ctx
, Status
, EvalInfo::EM_ConstantExpression
);
15993 ::EvaluateAsRValue(Info
, this, Result
? *Result
: Scratch
) &&
15994 // FIXME: We don't produce a diagnostic for this, but the callers that
15995 // call us on arbitrary full-expressions should generally not care.
15996 Info
.discardCleanups() && !Status
.HasSideEffects
;
15998 if (!Diags
.empty()) {
15999 IsConstExpr
= false;
16000 if (Loc
) *Loc
= Diags
[0].first
;
16001 } else if (!IsConstExpr
) {
16002 // FIXME: This shouldn't happen.
16003 if (Loc
) *Loc
= getExprLoc();
16006 return IsConstExpr
;
16009 bool Expr::EvaluateWithSubstitution(APValue
&Value
, ASTContext
&Ctx
,
16010 const FunctionDecl
*Callee
,
16011 ArrayRef
<const Expr
*> Args
,
16012 const Expr
*This
) const {
16013 assert(!isValueDependent() &&
16014 "Expression evaluator can't be called on a dependent expression.");
16016 llvm::TimeTraceScope
TimeScope("EvaluateWithSubstitution", [&] {
16018 llvm::raw_string_ostream
OS(Name
);
16019 Callee
->getNameForDiagnostic(OS
, Ctx
.getPrintingPolicy(),
16020 /*Qualified=*/true);
16024 Expr::EvalStatus Status
;
16025 EvalInfo
Info(Ctx
, Status
, EvalInfo::EM_ConstantExpressionUnevaluated
);
16026 Info
.InConstantContext
= true;
16029 const LValue
*ThisPtr
= nullptr;
16032 auto *MD
= dyn_cast
<CXXMethodDecl
>(Callee
);
16033 assert(MD
&& "Don't provide `this` for non-methods.");
16034 assert(!MD
->isStatic() && "Don't provide `this` for static methods.");
16036 if (!This
->isValueDependent() &&
16037 EvaluateObjectArgument(Info
, This
, ThisVal
) &&
16038 !Info
.EvalStatus
.HasSideEffects
)
16039 ThisPtr
= &ThisVal
;
16041 // Ignore any side-effects from a failed evaluation. This is safe because
16042 // they can't interfere with any other argument evaluation.
16043 Info
.EvalStatus
.HasSideEffects
= false;
16046 CallRef Call
= Info
.CurrentCall
->createCall(Callee
);
16047 for (ArrayRef
<const Expr
*>::iterator I
= Args
.begin(), E
= Args
.end();
16049 unsigned Idx
= I
- Args
.begin();
16050 if (Idx
>= Callee
->getNumParams())
16052 const ParmVarDecl
*PVD
= Callee
->getParamDecl(Idx
);
16053 if ((*I
)->isValueDependent() ||
16054 !EvaluateCallArg(PVD
, *I
, Call
, Info
) ||
16055 Info
.EvalStatus
.HasSideEffects
) {
16056 // If evaluation fails, throw away the argument entirely.
16057 if (APValue
*Slot
= Info
.getParamSlot(Call
, PVD
))
16061 // Ignore any side-effects from a failed evaluation. This is safe because
16062 // they can't interfere with any other argument evaluation.
16063 Info
.EvalStatus
.HasSideEffects
= false;
16066 // Parameter cleanups happen in the caller and are not part of this
16068 Info
.discardCleanups();
16069 Info
.EvalStatus
.HasSideEffects
= false;
16071 // Build fake call to Callee.
16072 CallStackFrame
Frame(Info
, Callee
->getLocation(), Callee
, ThisPtr
, Call
);
16073 // FIXME: Missing ExprWithCleanups in enable_if conditions?
16074 FullExpressionRAII
Scope(Info
);
16075 return Evaluate(Value
, Info
, this) && Scope
.destroy() &&
16076 !Info
.EvalStatus
.HasSideEffects
;
16079 bool Expr::isPotentialConstantExpr(const FunctionDecl
*FD
,
16081 PartialDiagnosticAt
> &Diags
) {
16082 // FIXME: It would be useful to check constexpr function templates, but at the
16083 // moment the constant expression evaluator cannot cope with the non-rigorous
16084 // ASTs which we build for dependent expressions.
16085 if (FD
->isDependentContext())
16088 llvm::TimeTraceScope
TimeScope("isPotentialConstantExpr", [&] {
16090 llvm::raw_string_ostream
OS(Name
);
16091 FD
->getNameForDiagnostic(OS
, FD
->getASTContext().getPrintingPolicy(),
16092 /*Qualified=*/true);
16096 Expr::EvalStatus Status
;
16097 Status
.Diag
= &Diags
;
16099 EvalInfo
Info(FD
->getASTContext(), Status
, EvalInfo::EM_ConstantExpression
);
16100 Info
.InConstantContext
= true;
16101 Info
.CheckingPotentialConstantExpression
= true;
16103 // The constexpr VM attempts to compile all methods to bytecode here.
16104 if (Info
.EnableNewConstInterp
) {
16105 Info
.Ctx
.getInterpContext().isPotentialConstantExpr(Info
, FD
);
16106 return Diags
.empty();
16109 const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
);
16110 const CXXRecordDecl
*RD
= MD
? MD
->getParent()->getCanonicalDecl() : nullptr;
16112 // Fabricate an arbitrary expression on the stack and pretend that it
16113 // is a temporary being used as the 'this' pointer.
16115 ImplicitValueInitExpr
VIE(RD
? Info
.Ctx
.getRecordType(RD
) : Info
.Ctx
.IntTy
);
16116 This
.set({&VIE
, Info
.CurrentCall
->Index
});
16118 ArrayRef
<const Expr
*> Args
;
16121 if (const CXXConstructorDecl
*CD
= dyn_cast
<CXXConstructorDecl
>(FD
)) {
16122 // Evaluate the call as a constant initializer, to allow the construction
16123 // of objects of non-literal types.
16124 Info
.setEvaluatingDecl(This
.getLValueBase(), Scratch
);
16125 HandleConstructorCall(&VIE
, This
, Args
, CD
, Info
, Scratch
);
16127 SourceLocation Loc
= FD
->getLocation();
16128 HandleFunctionCall(Loc
, FD
, (MD
&& MD
->isInstance()) ? &This
: nullptr,
16129 Args
, CallRef(), FD
->getBody(), Info
, Scratch
, nullptr);
16132 return Diags
.empty();
16135 bool Expr::isPotentialConstantExprUnevaluated(Expr
*E
,
16136 const FunctionDecl
*FD
,
16138 PartialDiagnosticAt
> &Diags
) {
16139 assert(!E
->isValueDependent() &&
16140 "Expression evaluator can't be called on a dependent expression.");
16142 Expr::EvalStatus Status
;
16143 Status
.Diag
= &Diags
;
16145 EvalInfo
Info(FD
->getASTContext(), Status
,
16146 EvalInfo::EM_ConstantExpressionUnevaluated
);
16147 Info
.InConstantContext
= true;
16148 Info
.CheckingPotentialConstantExpression
= true;
16150 // Fabricate a call stack frame to give the arguments a plausible cover story.
16151 CallStackFrame
Frame(Info
, SourceLocation(), FD
, /*This*/ nullptr, CallRef());
16153 APValue ResultScratch
;
16154 Evaluate(ResultScratch
, Info
, E
);
16155 return Diags
.empty();
16158 bool Expr::tryEvaluateObjectSize(uint64_t &Result
, ASTContext
&Ctx
,
16159 unsigned Type
) const {
16160 if (!getType()->isPointerType())
16163 Expr::EvalStatus Status
;
16164 EvalInfo
Info(Ctx
, Status
, EvalInfo::EM_ConstantFold
);
16165 return tryEvaluateBuiltinObjectSize(this, Type
, Info
, Result
);
16168 static bool EvaluateBuiltinStrLen(const Expr
*E
, uint64_t &Result
,
16170 if (!E
->getType()->hasPointerRepresentation() || !E
->isPRValue())
16175 if (!EvaluatePointer(E
, String
, Info
))
16178 QualType CharTy
= E
->getType()->getPointeeType();
16180 // Fast path: if it's a string literal, search the string value.
16181 if (const StringLiteral
*S
= dyn_cast_or_null
<StringLiteral
>(
16182 String
.getLValueBase().dyn_cast
<const Expr
*>())) {
16183 StringRef Str
= S
->getBytes();
16184 int64_t Off
= String
.Offset
.getQuantity();
16185 if (Off
>= 0 && (uint64_t)Off
<= (uint64_t)Str
.size() &&
16186 S
->getCharByteWidth() == 1 &&
16187 // FIXME: Add fast-path for wchar_t too.
16188 Info
.Ctx
.hasSameUnqualifiedType(CharTy
, Info
.Ctx
.CharTy
)) {
16189 Str
= Str
.substr(Off
);
16191 StringRef::size_type Pos
= Str
.find(0);
16192 if (Pos
!= StringRef::npos
)
16193 Str
= Str
.substr(0, Pos
);
16195 Result
= Str
.size();
16199 // Fall through to slow path.
16202 // Slow path: scan the bytes of the string looking for the terminating 0.
16203 for (uint64_t Strlen
= 0; /**/; ++Strlen
) {
16205 if (!handleLValueToRValueConversion(Info
, E
, CharTy
, String
, Char
) ||
16208 if (!Char
.getInt()) {
16212 if (!HandleLValueArrayAdjustment(Info
, E
, String
, CharTy
, 1))
16217 bool Expr::tryEvaluateStrLen(uint64_t &Result
, ASTContext
&Ctx
) const {
16218 Expr::EvalStatus Status
;
16219 EvalInfo
Info(Ctx
, Status
, EvalInfo::EM_ConstantFold
);
16220 return EvaluateBuiltinStrLen(this, Result
, Info
);