1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements the ELF-specific dumper for llvm-readobj.
12 //===----------------------------------------------------------------------===//
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "ObjDumper.h"
17 #include "StackMapPrinter.h"
18 #include "llvm-readobj.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
31 #include "llvm/BinaryFormat/ELF.h"
32 #include "llvm/BinaryFormat/MsgPackDocument.h"
33 #include "llvm/Demangle/Demangle.h"
34 #include "llvm/Object/Archive.h"
35 #include "llvm/Object/ELF.h"
36 #include "llvm/Object/ELFObjectFile.h"
37 #include "llvm/Object/ELFTypes.h"
38 #include "llvm/Object/Error.h"
39 #include "llvm/Object/ObjectFile.h"
40 #include "llvm/Object/RelocationResolver.h"
41 #include "llvm/Object/StackMapParser.h"
42 #include "llvm/Support/AMDGPUMetadata.h"
43 #include "llvm/Support/ARMAttributeParser.h"
44 #include "llvm/Support/ARMBuildAttributes.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Endian.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/FormatVariadic.h"
51 #include "llvm/Support/FormattedStream.h"
52 #include "llvm/Support/HexagonAttributeParser.h"
53 #include "llvm/Support/LEB128.h"
54 #include "llvm/Support/MSP430AttributeParser.h"
55 #include "llvm/Support/MSP430Attributes.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/MipsABIFlags.h"
58 #include "llvm/Support/RISCVAttributeParser.h"
59 #include "llvm/Support/RISCVAttributes.h"
60 #include "llvm/Support/ScopedPrinter.h"
61 #include "llvm/Support/SystemZ/zOSSupport.h"
62 #include "llvm/Support/raw_ostream.h"
73 #include <system_error>
77 using namespace llvm::object
;
78 using namespace llvm::support
;
81 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \
85 #define ENUM_ENT(enum, altName) \
86 { #enum, altName, ELF::enum }
88 #define ENUM_ENT_1(enum) \
89 { #enum, #enum, ELF::enum }
93 template <class ELFT
> struct RelSymbol
{
94 RelSymbol(const typename
ELFT::Sym
*S
, StringRef N
)
95 : Sym(S
), Name(N
.str()) {}
96 const typename
ELFT::Sym
*Sym
;
100 /// Represents a contiguous uniform range in the file. We cannot just create a
101 /// range directly because when creating one of these from the .dynamic table
102 /// the size, entity size and virtual address are different entries in arbitrary
103 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
104 struct DynRegionInfo
{
105 DynRegionInfo(const Binary
&Owner
, const ObjDumper
&D
)
106 : Obj(&Owner
), Dumper(&D
) {}
107 DynRegionInfo(const Binary
&Owner
, const ObjDumper
&D
, const uint8_t *A
,
108 uint64_t S
, uint64_t ES
)
109 : Addr(A
), Size(S
), EntSize(ES
), Obj(&Owner
), Dumper(&D
) {}
111 /// Address in current address space.
112 const uint8_t *Addr
= nullptr;
113 /// Size in bytes of the region.
115 /// Size of each entity in the region.
116 uint64_t EntSize
= 0;
118 /// Owner object. Used for error reporting.
120 /// Dumper used for error reporting.
121 const ObjDumper
*Dumper
;
122 /// Error prefix. Used for error reporting to provide more information.
124 /// Region size name. Used for error reporting.
125 StringRef SizePrintName
= "size";
126 /// Entry size name. Used for error reporting. If this field is empty, errors
127 /// will not mention the entry size.
128 StringRef EntSizePrintName
= "entry size";
130 template <typename Type
> ArrayRef
<Type
> getAsArrayRef() const {
131 const Type
*Start
= reinterpret_cast<const Type
*>(Addr
);
133 return {Start
, Start
};
135 const uint64_t Offset
=
136 Addr
- (const uint8_t *)Obj
->getMemoryBufferRef().getBufferStart();
137 const uint64_t ObjSize
= Obj
->getMemoryBufferRef().getBufferSize();
139 if (Size
> ObjSize
- Offset
) {
140 Dumper
->reportUniqueWarning(
141 "unable to read data at 0x" + Twine::utohexstr(Offset
) +
142 " of size 0x" + Twine::utohexstr(Size
) + " (" + SizePrintName
+
143 "): it goes past the end of the file of size 0x" +
144 Twine::utohexstr(ObjSize
));
145 return {Start
, Start
};
148 if (EntSize
== sizeof(Type
) && (Size
% EntSize
== 0))
149 return {Start
, Start
+ (Size
/ EntSize
)};
152 if (!Context
.empty())
153 Msg
+= Context
+ " has ";
155 Msg
+= ("invalid " + SizePrintName
+ " (0x" + Twine::utohexstr(Size
) + ")")
157 if (!EntSizePrintName
.empty())
159 (" or " + EntSizePrintName
+ " (0x" + Twine::utohexstr(EntSize
) + ")")
162 Dumper
->reportUniqueWarning(Msg
);
163 return {Start
, Start
};
172 struct GroupSection
{
174 std::string Signature
;
180 std::vector
<GroupMember
> Members
;
192 template <class ELFT
> class Relocation
{
194 Relocation(const typename
ELFT::Rel
&R
, bool IsMips64EL
)
195 : Type(R
.getType(IsMips64EL
)), Symbol(R
.getSymbol(IsMips64EL
)),
196 Offset(R
.r_offset
), Info(R
.r_info
) {}
198 Relocation(const typename
ELFT::Rela
&R
, bool IsMips64EL
)
199 : Relocation((const typename
ELFT::Rel
&)R
, IsMips64EL
) {
205 typename
ELFT::uint Offset
;
206 typename
ELFT::uint Info
;
207 std::optional
<int64_t> Addend
;
210 template <class ELFT
> class MipsGOTParser
;
212 template <typename ELFT
> class ELFDumper
: public ObjDumper
{
213 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
216 ELFDumper(const object::ELFObjectFile
<ELFT
> &ObjF
, ScopedPrinter
&Writer
);
218 void printUnwindInfo() override
;
219 void printNeededLibraries() override
;
220 void printHashTable() override
;
221 void printGnuHashTable() override
;
222 void printLoadName() override
;
223 void printVersionInfo() override
;
224 void printArchSpecificInfo() override
;
225 void printStackMap() const override
;
226 void printMemtag() override
;
227 ArrayRef
<uint8_t> getMemtagGlobalsSectionContents(uint64_t ExpectedAddr
);
229 // Hash histogram shows statistics of how efficient the hash was for the
230 // dynamic symbol table. The table shows the number of hash buckets for
231 // different lengths of chains as an absolute number and percentage of the
232 // total buckets, and the cumulative coverage of symbols for each set of
234 void printHashHistograms() override
;
236 const object::ELFObjectFile
<ELFT
> &getElfObject() const { return ObjF
; };
238 std::string
describe(const Elf_Shdr
&Sec
) const;
240 unsigned getHashTableEntSize() const {
241 // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
242 // sections. This violates the ELF specification.
243 if (Obj
.getHeader().e_machine
== ELF::EM_S390
||
244 Obj
.getHeader().e_machine
== ELF::EM_ALPHA
)
249 std::vector
<EnumEntry
<unsigned>>
250 getOtherFlagsFromSymbol(const Elf_Ehdr
&Header
, const Elf_Sym
&Symbol
) const;
252 Elf_Dyn_Range
dynamic_table() const {
253 // A valid .dynamic section contains an array of entries terminated
254 // with a DT_NULL entry. However, sometimes the section content may
255 // continue past the DT_NULL entry, so to dump the section correctly,
256 // we first find the end of the entries by iterating over them.
257 Elf_Dyn_Range Table
= DynamicTable
.template getAsArrayRef
<Elf_Dyn
>();
260 while (Size
< Table
.size())
261 if (Table
[Size
++].getTag() == DT_NULL
)
264 return Table
.slice(0, Size
);
267 Elf_Sym_Range
dynamic_symbols() const {
269 return Elf_Sym_Range();
270 return DynSymRegion
->template getAsArrayRef
<Elf_Sym
>();
273 const Elf_Shdr
*findSectionByName(StringRef Name
) const;
275 StringRef
getDynamicStringTable() const { return DynamicStringTable
; }
278 virtual void printVersionSymbolSection(const Elf_Shdr
*Sec
) = 0;
279 virtual void printVersionDefinitionSection(const Elf_Shdr
*Sec
) = 0;
280 virtual void printVersionDependencySection(const Elf_Shdr
*Sec
) = 0;
283 printDependentLibsHelper(function_ref
<void(const Elf_Shdr
&)> OnSectionStart
,
284 function_ref
<void(StringRef
, uint64_t)> OnLibEntry
);
286 virtual void printRelRelaReloc(const Relocation
<ELFT
> &R
,
287 const RelSymbol
<ELFT
> &RelSym
) = 0;
288 virtual void printDynamicRelocHeader(unsigned Type
, StringRef Name
,
289 const DynRegionInfo
&Reg
) {}
290 void printReloc(const Relocation
<ELFT
> &R
, unsigned RelIndex
,
291 const Elf_Shdr
&Sec
, const Elf_Shdr
*SymTab
);
292 void printDynamicReloc(const Relocation
<ELFT
> &R
);
293 void printDynamicRelocationsHelper();
294 void printRelocationsHelper(const Elf_Shdr
&Sec
);
295 void forEachRelocationDo(
297 llvm::function_ref
<void(const Relocation
<ELFT
> &, unsigned,
298 const Elf_Shdr
&, const Elf_Shdr
*)>
301 virtual void printSymtabMessage(const Elf_Shdr
*Symtab
, size_t Offset
,
302 bool NonVisibilityBitsUsed
,
303 bool ExtraSymInfo
) const {};
304 virtual void printSymbol(const Elf_Sym
&Symbol
, unsigned SymIndex
,
305 DataRegion
<Elf_Word
> ShndxTable
,
306 std::optional
<StringRef
> StrTable
, bool IsDynamic
,
307 bool NonVisibilityBitsUsed
,
308 bool ExtraSymInfo
) const = 0;
310 virtual void printMipsABIFlags() = 0;
311 virtual void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) = 0;
312 virtual void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) = 0;
314 virtual void printMemtag(
315 const ArrayRef
<std::pair
<std::string
, std::string
>> DynamicEntries
,
316 const ArrayRef
<uint8_t> AndroidNoteDesc
,
317 const ArrayRef
<std::pair
<uint64_t, uint64_t>> Descriptors
) = 0;
319 virtual void printHashHistogram(const Elf_Hash
&HashTable
) const;
320 virtual void printGnuHashHistogram(const Elf_GnuHash
&GnuHashTable
) const;
321 virtual void printHashHistogramStats(size_t NBucket
, size_t MaxChain
,
322 size_t TotalSyms
, ArrayRef
<size_t> Count
,
323 bool IsGnu
) const = 0;
325 Expected
<ArrayRef
<Elf_Versym
>>
326 getVersionTable(const Elf_Shdr
&Sec
, ArrayRef
<Elf_Sym
> *SymTab
,
327 StringRef
*StrTab
, const Elf_Shdr
**SymTabSec
) const;
328 StringRef
getPrintableSectionName(const Elf_Shdr
&Sec
) const;
330 std::vector
<GroupSection
> getGroups();
332 // Returns the function symbol index for the given address. Matches the
333 // symbol's section with FunctionSec when specified.
334 // Returns std::nullopt if no function symbol can be found for the address or
335 // in case it is not defined in the specified section.
336 SmallVector
<uint32_t> getSymbolIndexesForFunctionAddress(
337 uint64_t SymValue
, std::optional
<const Elf_Shdr
*> FunctionSec
);
338 bool printFunctionStackSize(uint64_t SymValue
,
339 std::optional
<const Elf_Shdr
*> FunctionSec
,
340 const Elf_Shdr
&StackSizeSec
, DataExtractor Data
,
342 void printStackSize(const Relocation
<ELFT
> &R
, const Elf_Shdr
&RelocSec
,
343 unsigned Ndx
, const Elf_Shdr
*SymTab
,
344 const Elf_Shdr
*FunctionSec
, const Elf_Shdr
&StackSizeSec
,
345 const RelocationResolver
&Resolver
, DataExtractor Data
);
346 virtual void printStackSizeEntry(uint64_t Size
,
347 ArrayRef
<std::string
> FuncNames
) = 0;
349 void printRelocatableStackSizes(std::function
<void()> PrintHeader
);
350 void printNonRelocatableStackSizes(std::function
<void()> PrintHeader
);
352 const object::ELFObjectFile
<ELFT
> &ObjF
;
353 const ELFFile
<ELFT
> &Obj
;
356 Expected
<DynRegionInfo
> createDRI(uint64_t Offset
, uint64_t Size
,
358 if (Offset
+ Size
< Offset
|| Offset
+ Size
> Obj
.getBufSize())
359 return createError("offset (0x" + Twine::utohexstr(Offset
) +
360 ") + size (0x" + Twine::utohexstr(Size
) +
361 ") is greater than the file size (0x" +
362 Twine::utohexstr(Obj
.getBufSize()) + ")");
363 return DynRegionInfo(ObjF
, *this, Obj
.base() + Offset
, Size
, EntSize
);
366 void printAttributes(unsigned, std::unique_ptr
<ELFAttributeParser
>,
368 void printMipsReginfo();
369 void printMipsOptions();
371 std::pair
<const Elf_Phdr
*, const Elf_Shdr
*> findDynamic();
372 void loadDynamicTable();
373 void parseDynamicTable();
375 Expected
<StringRef
> getSymbolVersion(const Elf_Sym
&Sym
,
376 bool &IsDefault
) const;
377 Expected
<SmallVector
<std::optional
<VersionEntry
>, 0> *> getVersionMap() const;
379 DynRegionInfo DynRelRegion
;
380 DynRegionInfo DynRelaRegion
;
381 DynRegionInfo DynCrelRegion
;
382 DynRegionInfo DynRelrRegion
;
383 DynRegionInfo DynPLTRelRegion
;
384 std::optional
<DynRegionInfo
> DynSymRegion
;
385 DynRegionInfo DynSymTabShndxRegion
;
386 DynRegionInfo DynamicTable
;
387 StringRef DynamicStringTable
;
388 const Elf_Hash
*HashTable
= nullptr;
389 const Elf_GnuHash
*GnuHashTable
= nullptr;
390 const Elf_Shdr
*DotSymtabSec
= nullptr;
391 const Elf_Shdr
*DotDynsymSec
= nullptr;
392 const Elf_Shdr
*DotAddrsigSec
= nullptr;
393 DenseMap
<const Elf_Shdr
*, ArrayRef
<Elf_Word
>> ShndxTables
;
394 std::optional
<uint64_t> SONameOffset
;
395 std::optional
<DenseMap
<uint64_t, std::vector
<uint32_t>>> AddressToIndexMap
;
397 const Elf_Shdr
*SymbolVersionSection
= nullptr; // .gnu.version
398 const Elf_Shdr
*SymbolVersionNeedSection
= nullptr; // .gnu.version_r
399 const Elf_Shdr
*SymbolVersionDefSection
= nullptr; // .gnu.version_d
401 std::string
getFullSymbolName(const Elf_Sym
&Symbol
, unsigned SymIndex
,
402 DataRegion
<Elf_Word
> ShndxTable
,
403 std::optional
<StringRef
> StrTable
,
404 bool IsDynamic
) const;
406 getSymbolSectionIndex(const Elf_Sym
&Symbol
, unsigned SymIndex
,
407 DataRegion
<Elf_Word
> ShndxTable
) const;
408 Expected
<StringRef
> getSymbolSectionName(const Elf_Sym
&Symbol
,
409 unsigned SectionIndex
) const;
410 std::string
getStaticSymbolName(uint32_t Index
) const;
411 StringRef
getDynamicString(uint64_t Value
) const;
413 std::pair
<Elf_Sym_Range
, std::optional
<StringRef
>> getSymtabAndStrtab() const;
414 void printSymbolsHelper(bool IsDynamic
, bool ExtraSymInfo
) const;
415 std::string
getDynamicEntry(uint64_t Type
, uint64_t Value
) const;
417 Expected
<RelSymbol
<ELFT
>> getRelocationTarget(const Relocation
<ELFT
> &R
,
418 const Elf_Shdr
*SymTab
) const;
420 ArrayRef
<Elf_Word
> getShndxTable(const Elf_Shdr
*Symtab
) const;
423 mutable SmallVector
<std::optional
<VersionEntry
>, 0> VersionMap
;
426 template <class ELFT
>
427 std::string ELFDumper
<ELFT
>::describe(const Elf_Shdr
&Sec
) const {
428 return ::describe(Obj
, Sec
);
433 template <class ELFT
> struct SymtabLink
{
434 typename
ELFT::SymRange Symbols
;
435 StringRef StringTable
;
436 const typename
ELFT::Shdr
*SymTab
;
439 // Returns the linked symbol table, symbols and associated string table for a
441 template <class ELFT
>
442 Expected
<SymtabLink
<ELFT
>> getLinkAsSymtab(const ELFFile
<ELFT
> &Obj
,
443 const typename
ELFT::Shdr
&Sec
,
444 unsigned ExpectedType
) {
445 Expected
<const typename
ELFT::Shdr
*> SymtabOrErr
=
446 Obj
.getSection(Sec
.sh_link
);
448 return createError("invalid section linked to " + describe(Obj
, Sec
) +
449 ": " + toString(SymtabOrErr
.takeError()));
451 if ((*SymtabOrErr
)->sh_type
!= ExpectedType
)
453 "invalid section linked to " + describe(Obj
, Sec
) + ": expected " +
454 object::getELFSectionTypeName(Obj
.getHeader().e_machine
, ExpectedType
) +
456 object::getELFSectionTypeName(Obj
.getHeader().e_machine
,
457 (*SymtabOrErr
)->sh_type
));
459 Expected
<StringRef
> StrTabOrErr
= Obj
.getLinkAsStrtab(**SymtabOrErr
);
462 "can't get a string table for the symbol table linked to " +
463 describe(Obj
, Sec
) + ": " + toString(StrTabOrErr
.takeError()));
465 Expected
<typename
ELFT::SymRange
> SymsOrErr
= Obj
.symbols(*SymtabOrErr
);
467 return createError("unable to read symbols from the " + describe(Obj
, Sec
) +
468 ": " + toString(SymsOrErr
.takeError()));
470 return SymtabLink
<ELFT
>{*SymsOrErr
, *StrTabOrErr
, *SymtabOrErr
};
475 template <class ELFT
>
476 Expected
<ArrayRef
<typename
ELFT::Versym
>>
477 ELFDumper
<ELFT
>::getVersionTable(const Elf_Shdr
&Sec
, ArrayRef
<Elf_Sym
> *SymTab
,
479 const Elf_Shdr
**SymTabSec
) const {
480 assert((!SymTab
&& !StrTab
&& !SymTabSec
) || (SymTab
&& StrTab
&& SymTabSec
));
481 if (reinterpret_cast<uintptr_t>(Obj
.base() + Sec
.sh_offset
) %
484 return createError("the " + describe(Sec
) + " is misaligned");
486 Expected
<ArrayRef
<Elf_Versym
>> VersionsOrErr
=
487 Obj
.template getSectionContentsAsArray
<Elf_Versym
>(Sec
);
489 return createError("cannot read content of " + describe(Sec
) + ": " +
490 toString(VersionsOrErr
.takeError()));
492 Expected
<SymtabLink
<ELFT
>> SymTabOrErr
=
493 getLinkAsSymtab(Obj
, Sec
, SHT_DYNSYM
);
495 reportUniqueWarning(SymTabOrErr
.takeError());
496 return *VersionsOrErr
;
499 if (SymTabOrErr
->Symbols
.size() != VersionsOrErr
->size())
500 reportUniqueWarning(describe(Sec
) + ": the number of entries (" +
501 Twine(VersionsOrErr
->size()) +
502 ") does not match the number of symbols (" +
503 Twine(SymTabOrErr
->Symbols
.size()) +
504 ") in the symbol table with index " +
508 *SymTab
= SymTabOrErr
->Symbols
;
509 *StrTab
= SymTabOrErr
->StringTable
;
510 *SymTabSec
= SymTabOrErr
->SymTab
;
512 return *VersionsOrErr
;
515 template <class ELFT
>
516 std::pair
<typename ELFDumper
<ELFT
>::Elf_Sym_Range
, std::optional
<StringRef
>>
517 ELFDumper
<ELFT
>::getSymtabAndStrtab() const {
518 assert(DotSymtabSec
);
519 Elf_Sym_Range
Syms(nullptr, nullptr);
520 std::optional
<StringRef
> StrTable
;
521 if (Expected
<StringRef
> StrTableOrErr
=
522 Obj
.getStringTableForSymtab(*DotSymtabSec
))
523 StrTable
= *StrTableOrErr
;
526 "unable to get the string table for the SHT_SYMTAB section: " +
527 toString(StrTableOrErr
.takeError()));
529 if (Expected
<Elf_Sym_Range
> SymsOrErr
= Obj
.symbols(DotSymtabSec
))
532 reportUniqueWarning("unable to read symbols from the SHT_SYMTAB section: " +
533 toString(SymsOrErr
.takeError()));
534 return {Syms
, StrTable
};
537 template <class ELFT
>
538 void ELFDumper
<ELFT
>::printSymbolsHelper(bool IsDynamic
,
539 bool ExtraSymInfo
) const {
540 std::optional
<StringRef
> StrTable
;
542 Elf_Sym_Range
Syms(nullptr, nullptr);
543 const Elf_Shdr
*SymtabSec
= IsDynamic
? DotDynsymSec
: DotSymtabSec
;
546 StrTable
= DynamicStringTable
;
547 Syms
= dynamic_symbols();
548 Entries
= Syms
.size();
549 } else if (DotSymtabSec
) {
550 std::tie(Syms
, StrTable
) = getSymtabAndStrtab();
551 Entries
= DotSymtabSec
->getEntityCount();
556 // The st_other field has 2 logical parts. The first two bits hold the symbol
557 // visibility (STV_*) and the remainder hold other platform-specific values.
558 bool NonVisibilityBitsUsed
=
559 llvm::any_of(Syms
, [](const Elf_Sym
&S
) { return S
.st_other
& ~0x3; });
561 DataRegion
<Elf_Word
> ShndxTable
=
562 IsDynamic
? DataRegion
<Elf_Word
>(
563 (const Elf_Word
*)this->DynSymTabShndxRegion
.Addr
,
564 this->getElfObject().getELFFile().end())
565 : DataRegion
<Elf_Word
>(this->getShndxTable(SymtabSec
));
567 printSymtabMessage(SymtabSec
, Entries
, NonVisibilityBitsUsed
, ExtraSymInfo
);
568 for (const Elf_Sym
&Sym
: Syms
)
569 printSymbol(Sym
, &Sym
- Syms
.begin(), ShndxTable
, StrTable
, IsDynamic
,
570 NonVisibilityBitsUsed
, ExtraSymInfo
);
573 template <typename ELFT
> class GNUELFDumper
: public ELFDumper
<ELFT
> {
574 formatted_raw_ostream
&OS
;
577 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
579 GNUELFDumper(const object::ELFObjectFile
<ELFT
> &ObjF
, ScopedPrinter
&Writer
)
580 : ELFDumper
<ELFT
>(ObjF
, Writer
),
581 OS(static_cast<formatted_raw_ostream
&>(Writer
.getOStream())) {
582 assert(&this->W
.getOStream() == &llvm::fouts());
585 void printFileSummary(StringRef FileStr
, ObjectFile
&Obj
,
586 ArrayRef
<std::string
> InputFilenames
,
587 const Archive
*A
) override
;
588 void printFileHeaders() override
;
589 void printGroupSections() override
;
590 void printRelocations() override
;
591 void printSectionHeaders() override
;
592 void printSymbols(bool PrintSymbols
, bool PrintDynamicSymbols
,
593 bool ExtraSymInfo
) override
;
594 void printHashSymbols() override
;
595 void printSectionDetails() override
;
596 void printDependentLibs() override
;
597 void printDynamicTable() override
;
598 void printDynamicRelocations() override
;
599 void printSymtabMessage(const Elf_Shdr
*Symtab
, size_t Offset
,
600 bool NonVisibilityBitsUsed
,
601 bool ExtraSymInfo
) const override
;
602 void printProgramHeaders(bool PrintProgramHeaders
,
603 cl::boolOrDefault PrintSectionMapping
) override
;
604 void printVersionSymbolSection(const Elf_Shdr
*Sec
) override
;
605 void printVersionDefinitionSection(const Elf_Shdr
*Sec
) override
;
606 void printVersionDependencySection(const Elf_Shdr
*Sec
) override
;
607 void printCGProfile() override
;
608 void printBBAddrMaps(bool PrettyPGOAnalysis
) override
;
609 void printAddrsig() override
;
610 void printNotes() override
;
611 void printELFLinkerOptions() override
;
612 void printStackSizes() override
;
614 const ArrayRef
<std::pair
<std::string
, std::string
>> DynamicEntries
,
615 const ArrayRef
<uint8_t> AndroidNoteDesc
,
616 const ArrayRef
<std::pair
<uint64_t, uint64_t>> Descriptors
) override
;
617 void printHashHistogramStats(size_t NBucket
, size_t MaxChain
,
618 size_t TotalSyms
, ArrayRef
<size_t> Count
,
619 bool IsGnu
) const override
;
622 void printHashTableSymbols(const Elf_Hash
&HashTable
);
623 void printGnuHashTableSymbols(const Elf_GnuHash
&GnuHashTable
);
629 Field(StringRef S
, unsigned Col
) : Str(std::string(S
)), Column(Col
) {}
630 Field(unsigned Col
) : Column(Col
) {}
633 template <typename T
, typename TEnum
>
634 std::string
printFlags(T Value
, ArrayRef
<EnumEntry
<TEnum
>> EnumValues
,
635 TEnum EnumMask1
= {}, TEnum EnumMask2
= {},
636 TEnum EnumMask3
= {}) const {
638 for (const EnumEntry
<TEnum
> &Flag
: EnumValues
) {
643 if (Flag
.Value
& EnumMask1
)
644 EnumMask
= EnumMask1
;
645 else if (Flag
.Value
& EnumMask2
)
646 EnumMask
= EnumMask2
;
647 else if (Flag
.Value
& EnumMask3
)
648 EnumMask
= EnumMask3
;
649 bool IsEnum
= (Flag
.Value
& EnumMask
) != 0;
650 if ((!IsEnum
&& (Value
& Flag
.Value
) == Flag
.Value
) ||
651 (IsEnum
&& (Value
& EnumMask
) == Flag
.Value
)) {
660 formatted_raw_ostream
&printField(struct Field F
) const {
662 OS
.PadToColumn(F
.Column
);
667 void printHashedSymbol(const Elf_Sym
*Sym
, unsigned SymIndex
,
668 DataRegion
<Elf_Word
> ShndxTable
, StringRef StrTable
,
670 void printRelr(const Elf_Shdr
&Sec
);
671 void printRelRelaReloc(const Relocation
<ELFT
> &R
,
672 const RelSymbol
<ELFT
> &RelSym
) override
;
673 void printSymbol(const Elf_Sym
&Symbol
, unsigned SymIndex
,
674 DataRegion
<Elf_Word
> ShndxTable
,
675 std::optional
<StringRef
> StrTable
, bool IsDynamic
,
676 bool NonVisibilityBitsUsed
,
677 bool ExtraSymInfo
) const override
;
678 void printDynamicRelocHeader(unsigned Type
, StringRef Name
,
679 const DynRegionInfo
&Reg
) override
;
681 std::string
getSymbolSectionNdx(const Elf_Sym
&Symbol
, unsigned SymIndex
,
682 DataRegion
<Elf_Word
> ShndxTable
,
683 bool ExtraSymInfo
= false) const;
684 void printProgramHeaders() override
;
685 void printSectionMapping() override
;
686 void printGNUVersionSectionProlog(const typename
ELFT::Shdr
&Sec
,
687 const Twine
&Label
, unsigned EntriesNum
);
689 void printStackSizeEntry(uint64_t Size
,
690 ArrayRef
<std::string
> FuncNames
) override
;
692 void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) override
;
693 void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) override
;
694 void printMipsABIFlags() override
;
697 template <typename ELFT
> class LLVMELFDumper
: public ELFDumper
<ELFT
> {
699 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
701 LLVMELFDumper(const object::ELFObjectFile
<ELFT
> &ObjF
, ScopedPrinter
&Writer
)
702 : ELFDumper
<ELFT
>(ObjF
, Writer
), W(Writer
) {}
704 void printFileHeaders() override
;
705 void printGroupSections() override
;
706 void printRelocations() override
;
707 void printSectionHeaders() override
;
708 void printSymbols(bool PrintSymbols
, bool PrintDynamicSymbols
,
709 bool ExtraSymInfo
) override
;
710 void printDependentLibs() override
;
711 void printDynamicTable() override
;
712 void printDynamicRelocations() override
;
713 void printProgramHeaders(bool PrintProgramHeaders
,
714 cl::boolOrDefault PrintSectionMapping
) override
;
715 void printVersionSymbolSection(const Elf_Shdr
*Sec
) override
;
716 void printVersionDefinitionSection(const Elf_Shdr
*Sec
) override
;
717 void printVersionDependencySection(const Elf_Shdr
*Sec
) override
;
718 void printCGProfile() override
;
719 void printBBAddrMaps(bool PrettyPGOAnalysis
) override
;
720 void printAddrsig() override
;
721 void printNotes() override
;
722 void printELFLinkerOptions() override
;
723 void printStackSizes() override
;
725 const ArrayRef
<std::pair
<std::string
, std::string
>> DynamicEntries
,
726 const ArrayRef
<uint8_t> AndroidNoteDesc
,
727 const ArrayRef
<std::pair
<uint64_t, uint64_t>> Descriptors
) override
;
728 void printSymbolSection(const Elf_Sym
&Symbol
, unsigned SymIndex
,
729 DataRegion
<Elf_Word
> ShndxTable
) const;
730 void printHashHistogramStats(size_t NBucket
, size_t MaxChain
,
731 size_t TotalSyms
, ArrayRef
<size_t> Count
,
732 bool IsGnu
) const override
;
735 void printRelRelaReloc(const Relocation
<ELFT
> &R
,
736 const RelSymbol
<ELFT
> &RelSym
) override
;
738 void printSymbol(const Elf_Sym
&Symbol
, unsigned SymIndex
,
739 DataRegion
<Elf_Word
> ShndxTable
,
740 std::optional
<StringRef
> StrTable
, bool IsDynamic
,
741 bool /*NonVisibilityBitsUsed*/,
742 bool /*ExtraSymInfo*/) const override
;
743 void printProgramHeaders() override
;
744 void printSectionMapping() override
{}
745 void printStackSizeEntry(uint64_t Size
,
746 ArrayRef
<std::string
> FuncNames
) override
;
748 void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) override
;
749 void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) override
;
750 void printMipsABIFlags() override
;
751 virtual void printZeroSymbolOtherField(const Elf_Sym
&Symbol
) const;
754 virtual std::string
getGroupSectionHeaderName() const;
755 void printSymbolOtherField(const Elf_Sym
&Symbol
) const;
756 virtual void printExpandedRelRelaReloc(const Relocation
<ELFT
> &R
,
757 StringRef SymbolName
,
758 StringRef RelocName
);
759 virtual void printDefaultRelRelaReloc(const Relocation
<ELFT
> &R
,
760 StringRef SymbolName
,
761 StringRef RelocName
);
762 virtual void printRelocationSectionInfo(const Elf_Shdr
&Sec
, StringRef Name
,
763 const unsigned SecNdx
);
764 virtual void printSectionGroupMembers(StringRef Name
, uint64_t Idx
) const;
765 virtual void printEmptyGroupMessage() const;
770 // JSONELFDumper shares most of the same implementation as LLVMELFDumper except
771 // it uses a JSONScopedPrinter.
772 template <typename ELFT
> class JSONELFDumper
: public LLVMELFDumper
<ELFT
> {
774 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
776 JSONELFDumper(const object::ELFObjectFile
<ELFT
> &ObjF
, ScopedPrinter
&Writer
)
777 : LLVMELFDumper
<ELFT
>(ObjF
, Writer
) {}
779 std::string
getGroupSectionHeaderName() const override
;
781 void printFileSummary(StringRef FileStr
, ObjectFile
&Obj
,
782 ArrayRef
<std::string
> InputFilenames
,
783 const Archive
*A
) override
;
784 virtual void printZeroSymbolOtherField(const Elf_Sym
&Symbol
) const override
;
786 void printDefaultRelRelaReloc(const Relocation
<ELFT
> &R
,
787 StringRef SymbolName
,
788 StringRef RelocName
) override
;
790 void printRelocationSectionInfo(const Elf_Shdr
&Sec
, StringRef Name
,
791 const unsigned SecNdx
) override
;
793 void printSectionGroupMembers(StringRef Name
, uint64_t Idx
) const override
;
795 void printEmptyGroupMessage() const override
;
797 void printDynamicTable() override
;
800 void printAuxillaryDynamicTableEntryInfo(const Elf_Dyn
&Entry
);
802 std::unique_ptr
<DictScope
> FileScope
;
805 } // end anonymous namespace
809 template <class ELFT
>
810 static std::unique_ptr
<ObjDumper
>
811 createELFDumper(const ELFObjectFile
<ELFT
> &Obj
, ScopedPrinter
&Writer
) {
812 if (opts::Output
== opts::GNU
)
813 return std::make_unique
<GNUELFDumper
<ELFT
>>(Obj
, Writer
);
814 else if (opts::Output
== opts::JSON
)
815 return std::make_unique
<JSONELFDumper
<ELFT
>>(Obj
, Writer
);
816 return std::make_unique
<LLVMELFDumper
<ELFT
>>(Obj
, Writer
);
819 std::unique_ptr
<ObjDumper
> createELFDumper(const object::ELFObjectFileBase
&Obj
,
820 ScopedPrinter
&Writer
) {
821 // Little-endian 32-bit
822 if (const ELF32LEObjectFile
*ELFObj
= dyn_cast
<ELF32LEObjectFile
>(&Obj
))
823 return createELFDumper(*ELFObj
, Writer
);
826 if (const ELF32BEObjectFile
*ELFObj
= dyn_cast
<ELF32BEObjectFile
>(&Obj
))
827 return createELFDumper(*ELFObj
, Writer
);
829 // Little-endian 64-bit
830 if (const ELF64LEObjectFile
*ELFObj
= dyn_cast
<ELF64LEObjectFile
>(&Obj
))
831 return createELFDumper(*ELFObj
, Writer
);
834 return createELFDumper(*cast
<ELF64BEObjectFile
>(&Obj
), Writer
);
837 } // end namespace llvm
839 template <class ELFT
>
840 Expected
<SmallVector
<std::optional
<VersionEntry
>, 0> *>
841 ELFDumper
<ELFT
>::getVersionMap() const {
842 // If the VersionMap has already been loaded or if there is no dynamic symtab
843 // or version table, there is nothing to do.
844 if (!VersionMap
.empty() || !DynSymRegion
|| !SymbolVersionSection
)
847 Expected
<SmallVector
<std::optional
<VersionEntry
>, 0>> MapOrErr
=
848 Obj
.loadVersionMap(SymbolVersionNeedSection
, SymbolVersionDefSection
);
850 VersionMap
= *MapOrErr
;
852 return MapOrErr
.takeError();
857 template <typename ELFT
>
858 Expected
<StringRef
> ELFDumper
<ELFT
>::getSymbolVersion(const Elf_Sym
&Sym
,
859 bool &IsDefault
) const {
860 // This is a dynamic symbol. Look in the GNU symbol version table.
861 if (!SymbolVersionSection
) {
867 assert(DynSymRegion
&& "DynSymRegion has not been initialised");
868 // Determine the position in the symbol table of this entry.
869 size_t EntryIndex
= (reinterpret_cast<uintptr_t>(&Sym
) -
870 reinterpret_cast<uintptr_t>(DynSymRegion
->Addr
)) /
873 // Get the corresponding version index entry.
874 Expected
<const Elf_Versym
*> EntryOrErr
=
875 Obj
.template getEntry
<Elf_Versym
>(*SymbolVersionSection
, EntryIndex
);
877 return EntryOrErr
.takeError();
879 unsigned Version
= (*EntryOrErr
)->vs_index
;
880 if (Version
== VER_NDX_LOCAL
|| Version
== VER_NDX_GLOBAL
) {
885 Expected
<SmallVector
<std::optional
<VersionEntry
>, 0> *> MapOrErr
=
888 return MapOrErr
.takeError();
890 return Obj
.getSymbolVersionByIndex(Version
, IsDefault
, **MapOrErr
,
891 Sym
.st_shndx
== ELF::SHN_UNDEF
);
894 template <typename ELFT
>
895 Expected
<RelSymbol
<ELFT
>>
896 ELFDumper
<ELFT
>::getRelocationTarget(const Relocation
<ELFT
> &R
,
897 const Elf_Shdr
*SymTab
) const {
899 return RelSymbol
<ELFT
>(nullptr, "");
901 Expected
<const Elf_Sym
*> SymOrErr
=
902 Obj
.template getEntry
<Elf_Sym
>(*SymTab
, R
.Symbol
);
904 return createError("unable to read an entry with index " + Twine(R
.Symbol
) +
905 " from " + describe(*SymTab
) + ": " +
906 toString(SymOrErr
.takeError()));
907 const Elf_Sym
*Sym
= *SymOrErr
;
909 return RelSymbol
<ELFT
>(nullptr, "");
911 Expected
<StringRef
> StrTableOrErr
= Obj
.getStringTableForSymtab(*SymTab
);
913 return StrTableOrErr
.takeError();
915 const Elf_Sym
*FirstSym
=
916 cantFail(Obj
.template getEntry
<Elf_Sym
>(*SymTab
, 0));
917 std::string SymbolName
=
918 getFullSymbolName(*Sym
, Sym
- FirstSym
, getShndxTable(SymTab
),
919 *StrTableOrErr
, SymTab
->sh_type
== SHT_DYNSYM
);
920 return RelSymbol
<ELFT
>(Sym
, SymbolName
);
923 template <typename ELFT
>
924 ArrayRef
<typename
ELFT::Word
>
925 ELFDumper
<ELFT
>::getShndxTable(const Elf_Shdr
*Symtab
) const {
927 auto It
= ShndxTables
.find(Symtab
);
928 if (It
!= ShndxTables
.end())
934 static std::string
maybeDemangle(StringRef Name
) {
935 return opts::Demangle
? demangle(Name
) : Name
.str();
938 template <typename ELFT
>
939 std::string ELFDumper
<ELFT
>::getStaticSymbolName(uint32_t Index
) const {
940 auto Warn
= [&](Error E
) -> std::string
{
941 reportUniqueWarning("unable to read the name of symbol with index " +
942 Twine(Index
) + ": " + toString(std::move(E
)));
946 Expected
<const typename
ELFT::Sym
*> SymOrErr
=
947 Obj
.getSymbol(DotSymtabSec
, Index
);
949 return Warn(SymOrErr
.takeError());
951 Expected
<StringRef
> StrTabOrErr
= Obj
.getStringTableForSymtab(*DotSymtabSec
);
953 return Warn(StrTabOrErr
.takeError());
955 Expected
<StringRef
> NameOrErr
= (*SymOrErr
)->getName(*StrTabOrErr
);
957 return Warn(NameOrErr
.takeError());
958 return maybeDemangle(*NameOrErr
);
961 template <typename ELFT
>
962 std::string ELFDumper
<ELFT
>::getFullSymbolName(
963 const Elf_Sym
&Symbol
, unsigned SymIndex
, DataRegion
<Elf_Word
> ShndxTable
,
964 std::optional
<StringRef
> StrTable
, bool IsDynamic
) const {
968 std::string SymbolName
;
969 if (Expected
<StringRef
> NameOrErr
= Symbol
.getName(*StrTable
)) {
970 SymbolName
= maybeDemangle(*NameOrErr
);
972 reportUniqueWarning(NameOrErr
.takeError());
976 if (SymbolName
.empty() && Symbol
.getType() == ELF::STT_SECTION
) {
977 Expected
<unsigned> SectionIndex
=
978 getSymbolSectionIndex(Symbol
, SymIndex
, ShndxTable
);
980 reportUniqueWarning(SectionIndex
.takeError());
983 Expected
<StringRef
> NameOrErr
= getSymbolSectionName(Symbol
, *SectionIndex
);
985 reportUniqueWarning(NameOrErr
.takeError());
986 return ("<section " + Twine(*SectionIndex
) + ">").str();
988 return std::string(*NameOrErr
);
995 Expected
<StringRef
> VersionOrErr
= getSymbolVersion(Symbol
, IsDefault
);
997 reportUniqueWarning(VersionOrErr
.takeError());
998 return SymbolName
+ "@<corrupt>";
1001 if (!VersionOrErr
->empty()) {
1002 SymbolName
+= (IsDefault
? "@@" : "@");
1003 SymbolName
+= *VersionOrErr
;
1008 template <typename ELFT
>
1010 ELFDumper
<ELFT
>::getSymbolSectionIndex(const Elf_Sym
&Symbol
, unsigned SymIndex
,
1011 DataRegion
<Elf_Word
> ShndxTable
) const {
1012 unsigned Ndx
= Symbol
.st_shndx
;
1013 if (Ndx
== SHN_XINDEX
)
1014 return object::getExtendedSymbolTableIndex
<ELFT
>(Symbol
, SymIndex
,
1016 if (Ndx
!= SHN_UNDEF
&& Ndx
< SHN_LORESERVE
)
1019 auto CreateErr
= [&](const Twine
&Name
,
1020 std::optional
<unsigned> Offset
= std::nullopt
) {
1023 Desc
= (Name
+ "+0x" + Twine::utohexstr(*Offset
)).str();
1027 "unable to get section index for symbol with st_shndx = 0x" +
1028 Twine::utohexstr(Ndx
) + " (" + Desc
+ ")");
1031 if (Ndx
>= ELF::SHN_LOPROC
&& Ndx
<= ELF::SHN_HIPROC
)
1032 return CreateErr("SHN_LOPROC", Ndx
- ELF::SHN_LOPROC
);
1033 if (Ndx
>= ELF::SHN_LOOS
&& Ndx
<= ELF::SHN_HIOS
)
1034 return CreateErr("SHN_LOOS", Ndx
- ELF::SHN_LOOS
);
1035 if (Ndx
== ELF::SHN_UNDEF
)
1036 return CreateErr("SHN_UNDEF");
1037 if (Ndx
== ELF::SHN_ABS
)
1038 return CreateErr("SHN_ABS");
1039 if (Ndx
== ELF::SHN_COMMON
)
1040 return CreateErr("SHN_COMMON");
1041 return CreateErr("SHN_LORESERVE", Ndx
- SHN_LORESERVE
);
1044 template <typename ELFT
>
1046 ELFDumper
<ELFT
>::getSymbolSectionName(const Elf_Sym
&Symbol
,
1047 unsigned SectionIndex
) const {
1048 Expected
<const Elf_Shdr
*> SecOrErr
= Obj
.getSection(SectionIndex
);
1050 return SecOrErr
.takeError();
1051 return Obj
.getSectionName(**SecOrErr
);
1054 template <class ELFO
>
1055 static const typename
ELFO::Elf_Shdr
*
1056 findNotEmptySectionByAddress(const ELFO
&Obj
, StringRef FileName
,
1058 for (const typename
ELFO::Elf_Shdr
&Shdr
: cantFail(Obj
.sections()))
1059 if (Shdr
.sh_addr
== Addr
&& Shdr
.sh_size
> 0)
1064 const EnumEntry
<unsigned> ElfClass
[] = {
1065 {"None", "none", ELF::ELFCLASSNONE
},
1066 {"32-bit", "ELF32", ELF::ELFCLASS32
},
1067 {"64-bit", "ELF64", ELF::ELFCLASS64
},
1070 const EnumEntry
<unsigned> ElfDataEncoding
[] = {
1071 {"None", "none", ELF::ELFDATANONE
},
1072 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB
},
1073 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB
},
1076 const EnumEntry
<unsigned> ElfObjectFileType
[] = {
1077 {"None", "NONE (none)", ELF::ET_NONE
},
1078 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL
},
1079 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC
},
1080 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN
},
1081 {"Core", "CORE (Core file)", ELF::ET_CORE
},
1084 const EnumEntry
<unsigned> ElfOSABI
[] = {
1085 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE
},
1086 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX
},
1087 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD
},
1088 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX
},
1089 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD
},
1090 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS
},
1091 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX
},
1092 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX
},
1093 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD
},
1094 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64
},
1095 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO
},
1096 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD
},
1097 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS
},
1098 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK
},
1099 {"AROS", "AROS", ELF::ELFOSABI_AROS
},
1100 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS
},
1101 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI
},
1102 {"CUDA", "NVIDIA - CUDA", ELF::ELFOSABI_CUDA
},
1103 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE
}
1106 const EnumEntry
<unsigned> AMDGPUElfOSABI
[] = {
1107 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA
},
1108 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL
},
1109 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D
}
1112 const EnumEntry
<unsigned> ARMElfOSABI
[] = {
1113 {"ARM", "ARM", ELF::ELFOSABI_ARM
},
1114 {"ARM FDPIC", "ARM FDPIC", ELF::ELFOSABI_ARM_FDPIC
},
1117 const EnumEntry
<unsigned> C6000ElfOSABI
[] = {
1118 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI
},
1119 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX
}
1122 const EnumEntry
<unsigned> ElfMachineType
[] = {
1123 ENUM_ENT(EM_NONE
, "None"),
1124 ENUM_ENT(EM_M32
, "WE32100"),
1125 ENUM_ENT(EM_SPARC
, "Sparc"),
1126 ENUM_ENT(EM_386
, "Intel 80386"),
1127 ENUM_ENT(EM_68K
, "MC68000"),
1128 ENUM_ENT(EM_88K
, "MC88000"),
1129 ENUM_ENT(EM_IAMCU
, "EM_IAMCU"),
1130 ENUM_ENT(EM_860
, "Intel 80860"),
1131 ENUM_ENT(EM_MIPS
, "MIPS R3000"),
1132 ENUM_ENT(EM_S370
, "IBM System/370"),
1133 ENUM_ENT(EM_MIPS_RS3_LE
, "MIPS R3000 little-endian"),
1134 ENUM_ENT(EM_PARISC
, "HPPA"),
1135 ENUM_ENT(EM_VPP500
, "Fujitsu VPP500"),
1136 ENUM_ENT(EM_SPARC32PLUS
, "Sparc v8+"),
1137 ENUM_ENT(EM_960
, "Intel 80960"),
1138 ENUM_ENT(EM_PPC
, "PowerPC"),
1139 ENUM_ENT(EM_PPC64
, "PowerPC64"),
1140 ENUM_ENT(EM_S390
, "IBM S/390"),
1141 ENUM_ENT(EM_SPU
, "SPU"),
1142 ENUM_ENT(EM_V800
, "NEC V800 series"),
1143 ENUM_ENT(EM_FR20
, "Fujistsu FR20"),
1144 ENUM_ENT(EM_RH32
, "TRW RH-32"),
1145 ENUM_ENT(EM_RCE
, "Motorola RCE"),
1146 ENUM_ENT(EM_ARM
, "ARM"),
1147 ENUM_ENT(EM_ALPHA
, "EM_ALPHA"),
1148 ENUM_ENT(EM_SH
, "Hitachi SH"),
1149 ENUM_ENT(EM_SPARCV9
, "Sparc v9"),
1150 ENUM_ENT(EM_TRICORE
, "Siemens Tricore"),
1151 ENUM_ENT(EM_ARC
, "ARC"),
1152 ENUM_ENT(EM_H8_300
, "Hitachi H8/300"),
1153 ENUM_ENT(EM_H8_300H
, "Hitachi H8/300H"),
1154 ENUM_ENT(EM_H8S
, "Hitachi H8S"),
1155 ENUM_ENT(EM_H8_500
, "Hitachi H8/500"),
1156 ENUM_ENT(EM_IA_64
, "Intel IA-64"),
1157 ENUM_ENT(EM_MIPS_X
, "Stanford MIPS-X"),
1158 ENUM_ENT(EM_COLDFIRE
, "Motorola Coldfire"),
1159 ENUM_ENT(EM_68HC12
, "Motorola MC68HC12 Microcontroller"),
1160 ENUM_ENT(EM_MMA
, "Fujitsu Multimedia Accelerator"),
1161 ENUM_ENT(EM_PCP
, "Siemens PCP"),
1162 ENUM_ENT(EM_NCPU
, "Sony nCPU embedded RISC processor"),
1163 ENUM_ENT(EM_NDR1
, "Denso NDR1 microprocesspr"),
1164 ENUM_ENT(EM_STARCORE
, "Motorola Star*Core processor"),
1165 ENUM_ENT(EM_ME16
, "Toyota ME16 processor"),
1166 ENUM_ENT(EM_ST100
, "STMicroelectronics ST100 processor"),
1167 ENUM_ENT(EM_TINYJ
, "Advanced Logic Corp. TinyJ embedded processor"),
1168 ENUM_ENT(EM_X86_64
, "Advanced Micro Devices X86-64"),
1169 ENUM_ENT(EM_PDSP
, "Sony DSP processor"),
1170 ENUM_ENT(EM_PDP10
, "Digital Equipment Corp. PDP-10"),
1171 ENUM_ENT(EM_PDP11
, "Digital Equipment Corp. PDP-11"),
1172 ENUM_ENT(EM_FX66
, "Siemens FX66 microcontroller"),
1173 ENUM_ENT(EM_ST9PLUS
, "STMicroelectronics ST9+ 8/16 bit microcontroller"),
1174 ENUM_ENT(EM_ST7
, "STMicroelectronics ST7 8-bit microcontroller"),
1175 ENUM_ENT(EM_68HC16
, "Motorola MC68HC16 Microcontroller"),
1176 ENUM_ENT(EM_68HC11
, "Motorola MC68HC11 Microcontroller"),
1177 ENUM_ENT(EM_68HC08
, "Motorola MC68HC08 Microcontroller"),
1178 ENUM_ENT(EM_68HC05
, "Motorola MC68HC05 Microcontroller"),
1179 ENUM_ENT(EM_SVX
, "Silicon Graphics SVx"),
1180 ENUM_ENT(EM_ST19
, "STMicroelectronics ST19 8-bit microcontroller"),
1181 ENUM_ENT(EM_VAX
, "Digital VAX"),
1182 ENUM_ENT(EM_CRIS
, "Axis Communications 32-bit embedded processor"),
1183 ENUM_ENT(EM_JAVELIN
, "Infineon Technologies 32-bit embedded cpu"),
1184 ENUM_ENT(EM_FIREPATH
, "Element 14 64-bit DSP processor"),
1185 ENUM_ENT(EM_ZSP
, "LSI Logic's 16-bit DSP processor"),
1186 ENUM_ENT(EM_MMIX
, "Donald Knuth's educational 64-bit processor"),
1187 ENUM_ENT(EM_HUANY
, "Harvard Universitys's machine-independent object format"),
1188 ENUM_ENT(EM_PRISM
, "Vitesse Prism"),
1189 ENUM_ENT(EM_AVR
, "Atmel AVR 8-bit microcontroller"),
1190 ENUM_ENT(EM_FR30
, "Fujitsu FR30"),
1191 ENUM_ENT(EM_D10V
, "Mitsubishi D10V"),
1192 ENUM_ENT(EM_D30V
, "Mitsubishi D30V"),
1193 ENUM_ENT(EM_V850
, "NEC v850"),
1194 ENUM_ENT(EM_M32R
, "Renesas M32R (formerly Mitsubishi M32r)"),
1195 ENUM_ENT(EM_MN10300
, "Matsushita MN10300"),
1196 ENUM_ENT(EM_MN10200
, "Matsushita MN10200"),
1197 ENUM_ENT(EM_PJ
, "picoJava"),
1198 ENUM_ENT(EM_OPENRISC
, "OpenRISC 32-bit embedded processor"),
1199 ENUM_ENT(EM_ARC_COMPACT
, "EM_ARC_COMPACT"),
1200 ENUM_ENT(EM_XTENSA
, "Tensilica Xtensa Processor"),
1201 ENUM_ENT(EM_VIDEOCORE
, "Alphamosaic VideoCore processor"),
1202 ENUM_ENT(EM_TMM_GPP
, "Thompson Multimedia General Purpose Processor"),
1203 ENUM_ENT(EM_NS32K
, "National Semiconductor 32000 series"),
1204 ENUM_ENT(EM_TPC
, "Tenor Network TPC processor"),
1205 ENUM_ENT(EM_SNP1K
, "EM_SNP1K"),
1206 ENUM_ENT(EM_ST200
, "STMicroelectronics ST200 microcontroller"),
1207 ENUM_ENT(EM_IP2K
, "Ubicom IP2xxx 8-bit microcontrollers"),
1208 ENUM_ENT(EM_MAX
, "MAX Processor"),
1209 ENUM_ENT(EM_CR
, "National Semiconductor CompactRISC"),
1210 ENUM_ENT(EM_F2MC16
, "Fujitsu F2MC16"),
1211 ENUM_ENT(EM_MSP430
, "Texas Instruments msp430 microcontroller"),
1212 ENUM_ENT(EM_BLACKFIN
, "Analog Devices Blackfin"),
1213 ENUM_ENT(EM_SE_C33
, "S1C33 Family of Seiko Epson processors"),
1214 ENUM_ENT(EM_SEP
, "Sharp embedded microprocessor"),
1215 ENUM_ENT(EM_ARCA
, "Arca RISC microprocessor"),
1216 ENUM_ENT(EM_UNICORE
, "Unicore"),
1217 ENUM_ENT(EM_EXCESS
, "eXcess 16/32/64-bit configurable embedded CPU"),
1218 ENUM_ENT(EM_DXP
, "Icera Semiconductor Inc. Deep Execution Processor"),
1219 ENUM_ENT(EM_ALTERA_NIOS2
, "Altera Nios"),
1220 ENUM_ENT(EM_CRX
, "National Semiconductor CRX microprocessor"),
1221 ENUM_ENT(EM_XGATE
, "Motorola XGATE embedded processor"),
1222 ENUM_ENT(EM_C166
, "Infineon Technologies xc16x"),
1223 ENUM_ENT(EM_M16C
, "Renesas M16C"),
1224 ENUM_ENT(EM_DSPIC30F
, "Microchip Technology dsPIC30F Digital Signal Controller"),
1225 ENUM_ENT(EM_CE
, "Freescale Communication Engine RISC core"),
1226 ENUM_ENT(EM_M32C
, "Renesas M32C"),
1227 ENUM_ENT(EM_TSK3000
, "Altium TSK3000 core"),
1228 ENUM_ENT(EM_RS08
, "Freescale RS08 embedded processor"),
1229 ENUM_ENT(EM_SHARC
, "EM_SHARC"),
1230 ENUM_ENT(EM_ECOG2
, "Cyan Technology eCOG2 microprocessor"),
1231 ENUM_ENT(EM_SCORE7
, "SUNPLUS S+Core"),
1232 ENUM_ENT(EM_DSP24
, "New Japan Radio (NJR) 24-bit DSP Processor"),
1233 ENUM_ENT(EM_VIDEOCORE3
, "Broadcom VideoCore III processor"),
1234 ENUM_ENT(EM_LATTICEMICO32
, "Lattice Mico32"),
1235 ENUM_ENT(EM_SE_C17
, "Seiko Epson C17 family"),
1236 ENUM_ENT(EM_TI_C6000
, "Texas Instruments TMS320C6000 DSP family"),
1237 ENUM_ENT(EM_TI_C2000
, "Texas Instruments TMS320C2000 DSP family"),
1238 ENUM_ENT(EM_TI_C5500
, "Texas Instruments TMS320C55x DSP family"),
1239 ENUM_ENT(EM_MMDSP_PLUS
, "STMicroelectronics 64bit VLIW Data Signal Processor"),
1240 ENUM_ENT(EM_CYPRESS_M8C
, "Cypress M8C microprocessor"),
1241 ENUM_ENT(EM_R32C
, "Renesas R32C series microprocessors"),
1242 ENUM_ENT(EM_TRIMEDIA
, "NXP Semiconductors TriMedia architecture family"),
1243 ENUM_ENT(EM_HEXAGON
, "Qualcomm Hexagon"),
1244 ENUM_ENT(EM_8051
, "Intel 8051 and variants"),
1245 ENUM_ENT(EM_STXP7X
, "STMicroelectronics STxP7x family"),
1246 ENUM_ENT(EM_NDS32
, "Andes Technology compact code size embedded RISC processor family"),
1247 ENUM_ENT(EM_ECOG1
, "Cyan Technology eCOG1 microprocessor"),
1248 // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1249 // an identical number to EM_ECOG1.
1250 ENUM_ENT(EM_ECOG1X
, "Cyan Technology eCOG1X family"),
1251 ENUM_ENT(EM_MAXQ30
, "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1252 ENUM_ENT(EM_XIMO16
, "New Japan Radio (NJR) 16-bit DSP Processor"),
1253 ENUM_ENT(EM_MANIK
, "M2000 Reconfigurable RISC Microprocessor"),
1254 ENUM_ENT(EM_CRAYNV2
, "Cray Inc. NV2 vector architecture"),
1255 ENUM_ENT(EM_RX
, "Renesas RX"),
1256 ENUM_ENT(EM_METAG
, "Imagination Technologies Meta processor architecture"),
1257 ENUM_ENT(EM_MCST_ELBRUS
, "MCST Elbrus general purpose hardware architecture"),
1258 ENUM_ENT(EM_ECOG16
, "Cyan Technology eCOG16 family"),
1259 ENUM_ENT(EM_CR16
, "National Semiconductor CompactRISC 16-bit processor"),
1260 ENUM_ENT(EM_ETPU
, "Freescale Extended Time Processing Unit"),
1261 ENUM_ENT(EM_SLE9X
, "Infineon Technologies SLE9X core"),
1262 ENUM_ENT(EM_L10M
, "EM_L10M"),
1263 ENUM_ENT(EM_K10M
, "EM_K10M"),
1264 ENUM_ENT(EM_AARCH64
, "AArch64"),
1265 ENUM_ENT(EM_AVR32
, "Atmel Corporation 32-bit microprocessor family"),
1266 ENUM_ENT(EM_STM8
, "STMicroeletronics STM8 8-bit microcontroller"),
1267 ENUM_ENT(EM_TILE64
, "Tilera TILE64 multicore architecture family"),
1268 ENUM_ENT(EM_TILEPRO
, "Tilera TILEPro multicore architecture family"),
1269 ENUM_ENT(EM_MICROBLAZE
, "Xilinx MicroBlaze 32-bit RISC soft processor core"),
1270 ENUM_ENT(EM_CUDA
, "NVIDIA CUDA architecture"),
1271 ENUM_ENT(EM_TILEGX
, "Tilera TILE-Gx multicore architecture family"),
1272 ENUM_ENT(EM_CLOUDSHIELD
, "EM_CLOUDSHIELD"),
1273 ENUM_ENT(EM_COREA_1ST
, "EM_COREA_1ST"),
1274 ENUM_ENT(EM_COREA_2ND
, "EM_COREA_2ND"),
1275 ENUM_ENT(EM_ARC_COMPACT2
, "EM_ARC_COMPACT2"),
1276 ENUM_ENT(EM_OPEN8
, "EM_OPEN8"),
1277 ENUM_ENT(EM_RL78
, "Renesas RL78"),
1278 ENUM_ENT(EM_VIDEOCORE5
, "Broadcom VideoCore V processor"),
1279 ENUM_ENT(EM_78KOR
, "EM_78KOR"),
1280 ENUM_ENT(EM_56800EX
, "EM_56800EX"),
1281 ENUM_ENT(EM_AMDGPU
, "EM_AMDGPU"),
1282 ENUM_ENT(EM_RISCV
, "RISC-V"),
1283 ENUM_ENT(EM_LANAI
, "EM_LANAI"),
1284 ENUM_ENT(EM_BPF
, "EM_BPF"),
1285 ENUM_ENT(EM_VE
, "NEC SX-Aurora Vector Engine"),
1286 ENUM_ENT(EM_LOONGARCH
, "LoongArch"),
1289 const EnumEntry
<unsigned> ElfSymbolBindings
[] = {
1290 {"Local", "LOCAL", ELF::STB_LOCAL
},
1291 {"Global", "GLOBAL", ELF::STB_GLOBAL
},
1292 {"Weak", "WEAK", ELF::STB_WEAK
},
1293 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE
}};
1295 const EnumEntry
<unsigned> ElfSymbolVisibilities
[] = {
1296 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT
},
1297 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL
},
1298 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN
},
1299 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED
}};
1301 const EnumEntry
<unsigned> AMDGPUSymbolTypes
[] = {
1302 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL
}
1305 static const char *getGroupType(uint32_t Flag
) {
1306 if (Flag
& ELF::GRP_COMDAT
)
1312 const EnumEntry
<unsigned> ElfSectionFlags
[] = {
1313 ENUM_ENT(SHF_WRITE
, "W"),
1314 ENUM_ENT(SHF_ALLOC
, "A"),
1315 ENUM_ENT(SHF_EXECINSTR
, "X"),
1316 ENUM_ENT(SHF_MERGE
, "M"),
1317 ENUM_ENT(SHF_STRINGS
, "S"),
1318 ENUM_ENT(SHF_INFO_LINK
, "I"),
1319 ENUM_ENT(SHF_LINK_ORDER
, "L"),
1320 ENUM_ENT(SHF_OS_NONCONFORMING
, "O"),
1321 ENUM_ENT(SHF_GROUP
, "G"),
1322 ENUM_ENT(SHF_TLS
, "T"),
1323 ENUM_ENT(SHF_COMPRESSED
, "C"),
1324 ENUM_ENT(SHF_EXCLUDE
, "E"),
1327 const EnumEntry
<unsigned> ElfGNUSectionFlags
[] = {
1328 ENUM_ENT(SHF_GNU_RETAIN
, "R")
1331 const EnumEntry
<unsigned> ElfSolarisSectionFlags
[] = {
1332 ENUM_ENT(SHF_SUNW_NODISCARD
, "R")
1335 const EnumEntry
<unsigned> ElfXCoreSectionFlags
[] = {
1336 ENUM_ENT(XCORE_SHF_CP_SECTION
, ""),
1337 ENUM_ENT(XCORE_SHF_DP_SECTION
, "")
1340 const EnumEntry
<unsigned> ElfARMSectionFlags
[] = {
1341 ENUM_ENT(SHF_ARM_PURECODE
, "y")
1344 const EnumEntry
<unsigned> ElfHexagonSectionFlags
[] = {
1345 ENUM_ENT(SHF_HEX_GPREL
, "")
1348 const EnumEntry
<unsigned> ElfMipsSectionFlags
[] = {
1349 ENUM_ENT(SHF_MIPS_NODUPES
, ""),
1350 ENUM_ENT(SHF_MIPS_NAMES
, ""),
1351 ENUM_ENT(SHF_MIPS_LOCAL
, ""),
1352 ENUM_ENT(SHF_MIPS_NOSTRIP
, ""),
1353 ENUM_ENT(SHF_MIPS_GPREL
, ""),
1354 ENUM_ENT(SHF_MIPS_MERGE
, ""),
1355 ENUM_ENT(SHF_MIPS_ADDR
, ""),
1356 ENUM_ENT(SHF_MIPS_STRING
, "")
1359 const EnumEntry
<unsigned> ElfX86_64SectionFlags
[] = {
1360 ENUM_ENT(SHF_X86_64_LARGE
, "l")
1363 static std::vector
<EnumEntry
<unsigned>>
1364 getSectionFlagsForTarget(unsigned EOSAbi
, unsigned EMachine
) {
1365 std::vector
<EnumEntry
<unsigned>> Ret(std::begin(ElfSectionFlags
),
1366 std::end(ElfSectionFlags
));
1368 case ELFOSABI_SOLARIS
:
1369 Ret
.insert(Ret
.end(), std::begin(ElfSolarisSectionFlags
),
1370 std::end(ElfSolarisSectionFlags
));
1373 Ret
.insert(Ret
.end(), std::begin(ElfGNUSectionFlags
),
1374 std::end(ElfGNUSectionFlags
));
1379 Ret
.insert(Ret
.end(), std::begin(ElfARMSectionFlags
),
1380 std::end(ElfARMSectionFlags
));
1383 Ret
.insert(Ret
.end(), std::begin(ElfHexagonSectionFlags
),
1384 std::end(ElfHexagonSectionFlags
));
1387 Ret
.insert(Ret
.end(), std::begin(ElfMipsSectionFlags
),
1388 std::end(ElfMipsSectionFlags
));
1391 Ret
.insert(Ret
.end(), std::begin(ElfX86_64SectionFlags
),
1392 std::end(ElfX86_64SectionFlags
));
1395 Ret
.insert(Ret
.end(), std::begin(ElfXCoreSectionFlags
),
1396 std::end(ElfXCoreSectionFlags
));
1404 static std::string
getGNUFlags(unsigned EOSAbi
, unsigned EMachine
,
1406 // Here we are trying to build the flags string in the same way as GNU does.
1407 // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1408 // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1409 // GNU readelf will not print "E" or "Ep" in this case, but will print just
1410 // "p". It only will print "E" when no other processor flag is set.
1412 bool HasUnknownFlag
= false;
1413 bool HasOSFlag
= false;
1414 bool HasProcFlag
= false;
1415 std::vector
<EnumEntry
<unsigned>> FlagsList
=
1416 getSectionFlagsForTarget(EOSAbi
, EMachine
);
1418 // Take the least significant bit as a flag.
1419 uint64_t Flag
= Flags
& -Flags
;
1422 // Find the flag in the known flags list.
1423 auto I
= llvm::find_if(FlagsList
, [=](const EnumEntry
<unsigned> &E
) {
1424 // Flags with empty names are not printed in GNU style output.
1425 return E
.Value
== Flag
&& !E
.AltName
.empty();
1427 if (I
!= FlagsList
.end()) {
1432 // If we did not find a matching regular flag, then we deal with an OS
1433 // specific flag, processor specific flag or an unknown flag.
1434 if (Flag
& ELF::SHF_MASKOS
) {
1436 Flags
&= ~ELF::SHF_MASKOS
;
1437 } else if (Flag
& ELF::SHF_MASKPROC
) {
1439 // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1440 // bit if set so that it doesn't also get printed.
1441 Flags
&= ~ELF::SHF_MASKPROC
;
1443 HasUnknownFlag
= true;
1447 // "o", "p" and "x" are printed last.
1457 static StringRef
segmentTypeToString(unsigned Arch
, unsigned Type
) {
1458 // Check potentially overlapped processor-specific program header type.
1461 switch (Type
) { LLVM_READOBJ_ENUM_CASE(ELF
, PT_ARM_EXIDX
); }
1464 case ELF::EM_MIPS_RS3_LE
:
1466 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_REGINFO
);
1467 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_RTPROC
);
1468 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_OPTIONS
);
1469 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_ABIFLAGS
);
1473 switch (Type
) { LLVM_READOBJ_ENUM_CASE(ELF
, PT_RISCV_ATTRIBUTES
); }
1477 LLVM_READOBJ_ENUM_CASE(ELF
, PT_NULL
);
1478 LLVM_READOBJ_ENUM_CASE(ELF
, PT_LOAD
);
1479 LLVM_READOBJ_ENUM_CASE(ELF
, PT_DYNAMIC
);
1480 LLVM_READOBJ_ENUM_CASE(ELF
, PT_INTERP
);
1481 LLVM_READOBJ_ENUM_CASE(ELF
, PT_NOTE
);
1482 LLVM_READOBJ_ENUM_CASE(ELF
, PT_SHLIB
);
1483 LLVM_READOBJ_ENUM_CASE(ELF
, PT_PHDR
);
1484 LLVM_READOBJ_ENUM_CASE(ELF
, PT_TLS
);
1486 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_EH_FRAME
);
1487 LLVM_READOBJ_ENUM_CASE(ELF
, PT_SUNW_UNWIND
);
1489 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_STACK
);
1490 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_RELRO
);
1491 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_PROPERTY
);
1493 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_MUTABLE
);
1494 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_RANDOMIZE
);
1495 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_WXNEEDED
);
1496 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_NOBTCFI
);
1497 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_SYSCALLS
);
1498 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_BOOTDATA
);
1504 static std::string
getGNUPtType(unsigned Arch
, unsigned Type
) {
1505 StringRef Seg
= segmentTypeToString(Arch
, Type
);
1507 return std::string("<unknown>: ") + to_string(format_hex(Type
, 1));
1509 // E.g. "PT_ARM_EXIDX" -> "EXIDX".
1510 if (Seg
.consume_front("PT_ARM_"))
1513 // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
1514 if (Seg
.consume_front("PT_MIPS_"))
1517 // E.g. "PT_RISCV_ATTRIBUTES"
1518 if (Seg
.consume_front("PT_RISCV_"))
1521 // E.g. "PT_LOAD" -> "LOAD".
1522 assert(Seg
.starts_with("PT_"));
1523 return Seg
.drop_front(3).str();
1526 const EnumEntry
<unsigned> ElfSegmentFlags
[] = {
1527 LLVM_READOBJ_ENUM_ENT(ELF
, PF_X
),
1528 LLVM_READOBJ_ENUM_ENT(ELF
, PF_W
),
1529 LLVM_READOBJ_ENUM_ENT(ELF
, PF_R
)
1532 const EnumEntry
<unsigned> ElfHeaderMipsFlags
[] = {
1533 ENUM_ENT(EF_MIPS_NOREORDER
, "noreorder"),
1534 ENUM_ENT(EF_MIPS_PIC
, "pic"),
1535 ENUM_ENT(EF_MIPS_CPIC
, "cpic"),
1536 ENUM_ENT(EF_MIPS_ABI2
, "abi2"),
1537 ENUM_ENT(EF_MIPS_32BITMODE
, "32bitmode"),
1538 ENUM_ENT(EF_MIPS_FP64
, "fp64"),
1539 ENUM_ENT(EF_MIPS_NAN2008
, "nan2008"),
1540 ENUM_ENT(EF_MIPS_ABI_O32
, "o32"),
1541 ENUM_ENT(EF_MIPS_ABI_O64
, "o64"),
1542 ENUM_ENT(EF_MIPS_ABI_EABI32
, "eabi32"),
1543 ENUM_ENT(EF_MIPS_ABI_EABI64
, "eabi64"),
1544 ENUM_ENT(EF_MIPS_MACH_3900
, "3900"),
1545 ENUM_ENT(EF_MIPS_MACH_4010
, "4010"),
1546 ENUM_ENT(EF_MIPS_MACH_4100
, "4100"),
1547 ENUM_ENT(EF_MIPS_MACH_4650
, "4650"),
1548 ENUM_ENT(EF_MIPS_MACH_4120
, "4120"),
1549 ENUM_ENT(EF_MIPS_MACH_4111
, "4111"),
1550 ENUM_ENT(EF_MIPS_MACH_SB1
, "sb1"),
1551 ENUM_ENT(EF_MIPS_MACH_OCTEON
, "octeon"),
1552 ENUM_ENT(EF_MIPS_MACH_XLR
, "xlr"),
1553 ENUM_ENT(EF_MIPS_MACH_OCTEON2
, "octeon2"),
1554 ENUM_ENT(EF_MIPS_MACH_OCTEON3
, "octeon3"),
1555 ENUM_ENT(EF_MIPS_MACH_5400
, "5400"),
1556 ENUM_ENT(EF_MIPS_MACH_5900
, "5900"),
1557 ENUM_ENT(EF_MIPS_MACH_5500
, "5500"),
1558 ENUM_ENT(EF_MIPS_MACH_9000
, "9000"),
1559 ENUM_ENT(EF_MIPS_MACH_LS2E
, "loongson-2e"),
1560 ENUM_ENT(EF_MIPS_MACH_LS2F
, "loongson-2f"),
1561 ENUM_ENT(EF_MIPS_MACH_LS3A
, "loongson-3a"),
1562 ENUM_ENT(EF_MIPS_MICROMIPS
, "micromips"),
1563 ENUM_ENT(EF_MIPS_ARCH_ASE_M16
, "mips16"),
1564 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX
, "mdmx"),
1565 ENUM_ENT(EF_MIPS_ARCH_1
, "mips1"),
1566 ENUM_ENT(EF_MIPS_ARCH_2
, "mips2"),
1567 ENUM_ENT(EF_MIPS_ARCH_3
, "mips3"),
1568 ENUM_ENT(EF_MIPS_ARCH_4
, "mips4"),
1569 ENUM_ENT(EF_MIPS_ARCH_5
, "mips5"),
1570 ENUM_ENT(EF_MIPS_ARCH_32
, "mips32"),
1571 ENUM_ENT(EF_MIPS_ARCH_64
, "mips64"),
1572 ENUM_ENT(EF_MIPS_ARCH_32R2
, "mips32r2"),
1573 ENUM_ENT(EF_MIPS_ARCH_64R2
, "mips64r2"),
1574 ENUM_ENT(EF_MIPS_ARCH_32R6
, "mips32r6"),
1575 ENUM_ENT(EF_MIPS_ARCH_64R6
, "mips64r6")
1579 #define AMDGPU_MACH_ENUM_ENTS \
1580 ENUM_ENT(EF_AMDGPU_MACH_NONE, "none"), \
1581 ENUM_ENT(EF_AMDGPU_MACH_R600_R600, "r600"), \
1582 ENUM_ENT(EF_AMDGPU_MACH_R600_R630, "r630"), \
1583 ENUM_ENT(EF_AMDGPU_MACH_R600_RS880, "rs880"), \
1584 ENUM_ENT(EF_AMDGPU_MACH_R600_RV670, "rv670"), \
1585 ENUM_ENT(EF_AMDGPU_MACH_R600_RV710, "rv710"), \
1586 ENUM_ENT(EF_AMDGPU_MACH_R600_RV730, "rv730"), \
1587 ENUM_ENT(EF_AMDGPU_MACH_R600_RV770, "rv770"), \
1588 ENUM_ENT(EF_AMDGPU_MACH_R600_CEDAR, "cedar"), \
1589 ENUM_ENT(EF_AMDGPU_MACH_R600_CYPRESS, "cypress"), \
1590 ENUM_ENT(EF_AMDGPU_MACH_R600_JUNIPER, "juniper"), \
1591 ENUM_ENT(EF_AMDGPU_MACH_R600_REDWOOD, "redwood"), \
1592 ENUM_ENT(EF_AMDGPU_MACH_R600_SUMO, "sumo"), \
1593 ENUM_ENT(EF_AMDGPU_MACH_R600_BARTS, "barts"), \
1594 ENUM_ENT(EF_AMDGPU_MACH_R600_CAICOS, "caicos"), \
1595 ENUM_ENT(EF_AMDGPU_MACH_R600_CAYMAN, "cayman"), \
1596 ENUM_ENT(EF_AMDGPU_MACH_R600_TURKS, "turks"), \
1597 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX600, "gfx600"), \
1598 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX601, "gfx601"), \
1599 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX602, "gfx602"), \
1600 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX700, "gfx700"), \
1601 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX701, "gfx701"), \
1602 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX702, "gfx702"), \
1603 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX703, "gfx703"), \
1604 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX704, "gfx704"), \
1605 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX705, "gfx705"), \
1606 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX801, "gfx801"), \
1607 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX802, "gfx802"), \
1608 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX803, "gfx803"), \
1609 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX805, "gfx805"), \
1610 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX810, "gfx810"), \
1611 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX900, "gfx900"), \
1612 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX902, "gfx902"), \
1613 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX904, "gfx904"), \
1614 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX906, "gfx906"), \
1615 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX908, "gfx908"), \
1616 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX909, "gfx909"), \
1617 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX90A, "gfx90a"), \
1618 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX90C, "gfx90c"), \
1619 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX940, "gfx940"), \
1620 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX941, "gfx941"), \
1621 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX942, "gfx942"), \
1622 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX950, "gfx950"), \
1623 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1010, "gfx1010"), \
1624 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1011, "gfx1011"), \
1625 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1012, "gfx1012"), \
1626 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1013, "gfx1013"), \
1627 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1030, "gfx1030"), \
1628 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1031, "gfx1031"), \
1629 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1032, "gfx1032"), \
1630 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1033, "gfx1033"), \
1631 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1034, "gfx1034"), \
1632 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1035, "gfx1035"), \
1633 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1036, "gfx1036"), \
1634 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1100, "gfx1100"), \
1635 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1101, "gfx1101"), \
1636 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1102, "gfx1102"), \
1637 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1103, "gfx1103"), \
1638 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1150, "gfx1150"), \
1639 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1151, "gfx1151"), \
1640 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1152, "gfx1152"), \
1641 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1153, "gfx1153"), \
1642 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1200, "gfx1200"), \
1643 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1201, "gfx1201"), \
1644 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX9_GENERIC, "gfx9-generic"), \
1645 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX9_4_GENERIC, "gfx9-4-generic"), \
1646 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX10_1_GENERIC, "gfx10-1-generic"), \
1647 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX10_3_GENERIC, "gfx10-3-generic"), \
1648 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX11_GENERIC, "gfx11-generic"), \
1649 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX12_GENERIC, "gfx12-generic")
1652 const EnumEntry
<unsigned> ElfHeaderAMDGPUFlagsABIVersion3
[] = {
1653 AMDGPU_MACH_ENUM_ENTS
,
1654 ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_V3
, "xnack"),
1655 ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_V3
, "sramecc"),
1658 const EnumEntry
<unsigned> ElfHeaderAMDGPUFlagsABIVersion4
[] = {
1659 AMDGPU_MACH_ENUM_ENTS
,
1660 ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_ANY_V4
, "xnack"),
1661 ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_OFF_V4
, "xnack-"),
1662 ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_ON_V4
, "xnack+"),
1663 ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_ANY_V4
, "sramecc"),
1664 ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_OFF_V4
, "sramecc-"),
1665 ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_ON_V4
, "sramecc+"),
1668 const EnumEntry
<unsigned> ElfHeaderNVPTXFlags
[] = {
1669 ENUM_ENT(EF_CUDA_SM20
, "sm_20"), ENUM_ENT(EF_CUDA_SM21
, "sm_21"),
1670 ENUM_ENT(EF_CUDA_SM30
, "sm_30"), ENUM_ENT(EF_CUDA_SM32
, "sm_32"),
1671 ENUM_ENT(EF_CUDA_SM35
, "sm_35"), ENUM_ENT(EF_CUDA_SM37
, "sm_37"),
1672 ENUM_ENT(EF_CUDA_SM50
, "sm_50"), ENUM_ENT(EF_CUDA_SM52
, "sm_52"),
1673 ENUM_ENT(EF_CUDA_SM53
, "sm_53"), ENUM_ENT(EF_CUDA_SM60
, "sm_60"),
1674 ENUM_ENT(EF_CUDA_SM61
, "sm_61"), ENUM_ENT(EF_CUDA_SM62
, "sm_62"),
1675 ENUM_ENT(EF_CUDA_SM70
, "sm_70"), ENUM_ENT(EF_CUDA_SM72
, "sm_72"),
1676 ENUM_ENT(EF_CUDA_SM75
, "sm_75"), ENUM_ENT(EF_CUDA_SM80
, "sm_80"),
1677 ENUM_ENT(EF_CUDA_SM86
, "sm_86"), ENUM_ENT(EF_CUDA_SM87
, "sm_87"),
1678 ENUM_ENT(EF_CUDA_SM89
, "sm_89"), ENUM_ENT(EF_CUDA_SM90
, "sm_90"),
1681 const EnumEntry
<unsigned> ElfHeaderRISCVFlags
[] = {
1682 ENUM_ENT(EF_RISCV_RVC
, "RVC"),
1683 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE
, "single-float ABI"),
1684 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE
, "double-float ABI"),
1685 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD
, "quad-float ABI"),
1686 ENUM_ENT(EF_RISCV_RVE
, "RVE"),
1687 ENUM_ENT(EF_RISCV_TSO
, "TSO"),
1690 const EnumEntry
<unsigned> ElfHeaderSPARCFlags
[] = {
1691 ENUM_ENT(EF_SPARC_32PLUS
, "V8+ ABI"),
1692 ENUM_ENT(EF_SPARC_SUN_US1
, "Sun UltraSPARC I extensions"),
1693 ENUM_ENT(EF_SPARC_HAL_R1
, "HAL/Fujitsu R1 extensions"),
1694 ENUM_ENT(EF_SPARC_SUN_US3
, "Sun UltraSPARC III extensions"),
1695 ENUM_ENT(EF_SPARCV9_TSO
, "Total Store Ordering"),
1696 ENUM_ENT(EF_SPARCV9_PSO
, "Partial Store Ordering"),
1697 ENUM_ENT(EF_SPARCV9_RMO
, "Relaxed Memory Ordering"),
1700 const EnumEntry
<unsigned> ElfHeaderAVRFlags
[] = {
1701 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR1
),
1702 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR2
),
1703 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR25
),
1704 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR3
),
1705 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR31
),
1706 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR35
),
1707 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR4
),
1708 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR5
),
1709 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR51
),
1710 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR6
),
1711 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVRTINY
),
1712 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_XMEGA1
),
1713 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_XMEGA2
),
1714 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_XMEGA3
),
1715 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_XMEGA4
),
1716 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_XMEGA5
),
1717 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_XMEGA6
),
1718 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_XMEGA7
),
1719 ENUM_ENT(EF_AVR_LINKRELAX_PREPARED
, "relaxable"),
1722 const EnumEntry
<unsigned> ElfHeaderLoongArchFlags
[] = {
1723 ENUM_ENT(EF_LOONGARCH_ABI_SOFT_FLOAT
, "SOFT-FLOAT"),
1724 ENUM_ENT(EF_LOONGARCH_ABI_SINGLE_FLOAT
, "SINGLE-FLOAT"),
1725 ENUM_ENT(EF_LOONGARCH_ABI_DOUBLE_FLOAT
, "DOUBLE-FLOAT"),
1726 ENUM_ENT(EF_LOONGARCH_OBJABI_V0
, "OBJ-v0"),
1727 ENUM_ENT(EF_LOONGARCH_OBJABI_V1
, "OBJ-v1"),
1730 static const EnumEntry
<unsigned> ElfHeaderXtensaFlags
[] = {
1731 LLVM_READOBJ_ENUM_ENT(ELF
, EF_XTENSA_MACH_NONE
),
1732 LLVM_READOBJ_ENUM_ENT(ELF
, EF_XTENSA_XT_INSN
),
1733 LLVM_READOBJ_ENUM_ENT(ELF
, EF_XTENSA_XT_LIT
)
1736 const EnumEntry
<unsigned> ElfSymOtherFlags
[] = {
1737 LLVM_READOBJ_ENUM_ENT(ELF
, STV_INTERNAL
),
1738 LLVM_READOBJ_ENUM_ENT(ELF
, STV_HIDDEN
),
1739 LLVM_READOBJ_ENUM_ENT(ELF
, STV_PROTECTED
)
1742 const EnumEntry
<unsigned> ElfMipsSymOtherFlags
[] = {
1743 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_OPTIONAL
),
1744 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PLT
),
1745 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PIC
),
1746 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_MICROMIPS
)
1749 const EnumEntry
<unsigned> ElfAArch64SymOtherFlags
[] = {
1750 LLVM_READOBJ_ENUM_ENT(ELF
, STO_AARCH64_VARIANT_PCS
)
1753 const EnumEntry
<unsigned> ElfMips16SymOtherFlags
[] = {
1754 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_OPTIONAL
),
1755 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PLT
),
1756 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_MIPS16
)
1759 const EnumEntry
<unsigned> ElfRISCVSymOtherFlags
[] = {
1760 LLVM_READOBJ_ENUM_ENT(ELF
, STO_RISCV_VARIANT_CC
)};
1762 static const char *getElfMipsOptionsOdkType(unsigned Odk
) {
1764 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_NULL
);
1765 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_REGINFO
);
1766 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_EXCEPTIONS
);
1767 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_PAD
);
1768 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWPATCH
);
1769 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_FILL
);
1770 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_TAGS
);
1771 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWAND
);
1772 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWOR
);
1773 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_GP_GROUP
);
1774 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_IDENT
);
1775 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_PAGESIZE
);
1781 template <typename ELFT
>
1782 std::pair
<const typename
ELFT::Phdr
*, const typename
ELFT::Shdr
*>
1783 ELFDumper
<ELFT
>::findDynamic() {
1784 // Try to locate the PT_DYNAMIC header.
1785 const Elf_Phdr
*DynamicPhdr
= nullptr;
1786 if (Expected
<ArrayRef
<Elf_Phdr
>> PhdrsOrErr
= Obj
.program_headers()) {
1787 for (const Elf_Phdr
&Phdr
: *PhdrsOrErr
) {
1788 if (Phdr
.p_type
!= ELF::PT_DYNAMIC
)
1790 DynamicPhdr
= &Phdr
;
1794 reportUniqueWarning(
1795 "unable to read program headers to locate the PT_DYNAMIC segment: " +
1796 toString(PhdrsOrErr
.takeError()));
1799 // Try to locate the .dynamic section in the sections header table.
1800 const Elf_Shdr
*DynamicSec
= nullptr;
1801 for (const Elf_Shdr
&Sec
: cantFail(Obj
.sections())) {
1802 if (Sec
.sh_type
!= ELF::SHT_DYNAMIC
)
1808 if (DynamicPhdr
&& ((DynamicPhdr
->p_offset
+ DynamicPhdr
->p_filesz
>
1809 ObjF
.getMemoryBufferRef().getBufferSize()) ||
1810 (DynamicPhdr
->p_offset
+ DynamicPhdr
->p_filesz
<
1811 DynamicPhdr
->p_offset
))) {
1812 reportUniqueWarning(
1813 "PT_DYNAMIC segment offset (0x" +
1814 Twine::utohexstr(DynamicPhdr
->p_offset
) + ") + file size (0x" +
1815 Twine::utohexstr(DynamicPhdr
->p_filesz
) +
1816 ") exceeds the size of the file (0x" +
1817 Twine::utohexstr(ObjF
.getMemoryBufferRef().getBufferSize()) + ")");
1818 // Don't use the broken dynamic header.
1819 DynamicPhdr
= nullptr;
1822 if (DynamicPhdr
&& DynamicSec
) {
1823 if (DynamicSec
->sh_addr
+ DynamicSec
->sh_size
>
1824 DynamicPhdr
->p_vaddr
+ DynamicPhdr
->p_memsz
||
1825 DynamicSec
->sh_addr
< DynamicPhdr
->p_vaddr
)
1826 reportUniqueWarning(describe(*DynamicSec
) +
1827 " is not contained within the "
1828 "PT_DYNAMIC segment");
1830 if (DynamicSec
->sh_addr
!= DynamicPhdr
->p_vaddr
)
1831 reportUniqueWarning(describe(*DynamicSec
) + " is not at the start of "
1832 "PT_DYNAMIC segment");
1835 return std::make_pair(DynamicPhdr
, DynamicSec
);
1838 template <typename ELFT
>
1839 void ELFDumper
<ELFT
>::loadDynamicTable() {
1840 const Elf_Phdr
*DynamicPhdr
;
1841 const Elf_Shdr
*DynamicSec
;
1842 std::tie(DynamicPhdr
, DynamicSec
) = findDynamic();
1843 if (!DynamicPhdr
&& !DynamicSec
)
1846 DynRegionInfo
FromPhdr(ObjF
, *this);
1847 bool IsPhdrTableValid
= false;
1849 // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
1850 // validated in findDynamic() and so createDRI() is not expected to fail.
1851 FromPhdr
= cantFail(createDRI(DynamicPhdr
->p_offset
, DynamicPhdr
->p_filesz
,
1853 FromPhdr
.SizePrintName
= "PT_DYNAMIC size";
1854 FromPhdr
.EntSizePrintName
= "";
1855 IsPhdrTableValid
= !FromPhdr
.template getAsArrayRef
<Elf_Dyn
>().empty();
1858 // Locate the dynamic table described in a section header.
1859 // Ignore sh_entsize and use the expected value for entry size explicitly.
1860 // This allows us to dump dynamic sections with a broken sh_entsize
1862 DynRegionInfo
FromSec(ObjF
, *this);
1863 bool IsSecTableValid
= false;
1865 Expected
<DynRegionInfo
> RegOrErr
=
1866 createDRI(DynamicSec
->sh_offset
, DynamicSec
->sh_size
, sizeof(Elf_Dyn
));
1868 FromSec
= *RegOrErr
;
1869 FromSec
.Context
= describe(*DynamicSec
);
1870 FromSec
.EntSizePrintName
= "";
1871 IsSecTableValid
= !FromSec
.template getAsArrayRef
<Elf_Dyn
>().empty();
1873 reportUniqueWarning("unable to read the dynamic table from " +
1874 describe(*DynamicSec
) + ": " +
1875 toString(RegOrErr
.takeError()));
1879 // When we only have information from one of the SHT_DYNAMIC section header or
1880 // PT_DYNAMIC program header, just use that.
1881 if (!DynamicPhdr
|| !DynamicSec
) {
1882 if ((DynamicPhdr
&& IsPhdrTableValid
) || (DynamicSec
&& IsSecTableValid
)) {
1883 DynamicTable
= DynamicPhdr
? FromPhdr
: FromSec
;
1884 parseDynamicTable();
1886 reportUniqueWarning("no valid dynamic table was found");
1891 // At this point we have tables found from the section header and from the
1892 // dynamic segment. Usually they match, but we have to do sanity checks to
1895 if (FromPhdr
.Addr
!= FromSec
.Addr
)
1896 reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
1897 "program header disagree about "
1898 "the location of the dynamic table");
1900 if (!IsPhdrTableValid
&& !IsSecTableValid
) {
1901 reportUniqueWarning("no valid dynamic table was found");
1905 // Information in the PT_DYNAMIC program header has priority over the
1906 // information in a section header.
1907 if (IsPhdrTableValid
) {
1908 if (!IsSecTableValid
)
1909 reportUniqueWarning(
1910 "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
1911 DynamicTable
= FromPhdr
;
1913 reportUniqueWarning(
1914 "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
1915 DynamicTable
= FromSec
;
1918 parseDynamicTable();
1921 template <typename ELFT
>
1922 ELFDumper
<ELFT
>::ELFDumper(const object::ELFObjectFile
<ELFT
> &O
,
1923 ScopedPrinter
&Writer
)
1924 : ObjDumper(Writer
, O
.getFileName()), ObjF(O
), Obj(O
.getELFFile()),
1925 FileName(O
.getFileName()), DynRelRegion(O
, *this),
1926 DynRelaRegion(O
, *this), DynCrelRegion(O
, *this), DynRelrRegion(O
, *this),
1927 DynPLTRelRegion(O
, *this), DynSymTabShndxRegion(O
, *this),
1928 DynamicTable(O
, *this) {
1929 if (!O
.IsContentValid())
1932 typename
ELFT::ShdrRange Sections
= cantFail(Obj
.sections());
1933 for (const Elf_Shdr
&Sec
: Sections
) {
1934 switch (Sec
.sh_type
) {
1935 case ELF::SHT_SYMTAB
:
1937 DotSymtabSec
= &Sec
;
1939 case ELF::SHT_DYNSYM
:
1941 DotDynsymSec
= &Sec
;
1943 if (!DynSymRegion
) {
1944 Expected
<DynRegionInfo
> RegOrErr
=
1945 createDRI(Sec
.sh_offset
, Sec
.sh_size
, Sec
.sh_entsize
);
1947 DynSymRegion
= *RegOrErr
;
1948 DynSymRegion
->Context
= describe(Sec
);
1950 if (Expected
<StringRef
> E
= Obj
.getStringTableForSymtab(Sec
))
1951 DynamicStringTable
= *E
;
1953 reportUniqueWarning("unable to get the string table for the " +
1954 describe(Sec
) + ": " + toString(E
.takeError()));
1956 reportUniqueWarning("unable to read dynamic symbols from " +
1957 describe(Sec
) + ": " +
1958 toString(RegOrErr
.takeError()));
1962 case ELF::SHT_SYMTAB_SHNDX
: {
1963 uint32_t SymtabNdx
= Sec
.sh_link
;
1964 if (SymtabNdx
>= Sections
.size()) {
1965 reportUniqueWarning(
1966 "unable to get the associated symbol table for " + describe(Sec
) +
1967 ": sh_link (" + Twine(SymtabNdx
) +
1968 ") is greater than or equal to the total number of sections (" +
1969 Twine(Sections
.size()) + ")");
1973 if (Expected
<ArrayRef
<Elf_Word
>> ShndxTableOrErr
=
1974 Obj
.getSHNDXTable(Sec
)) {
1975 if (!ShndxTables
.insert({&Sections
[SymtabNdx
], *ShndxTableOrErr
})
1977 reportUniqueWarning(
1978 "multiple SHT_SYMTAB_SHNDX sections are linked to " +
1981 reportUniqueWarning(ShndxTableOrErr
.takeError());
1985 case ELF::SHT_GNU_versym
:
1986 if (!SymbolVersionSection
)
1987 SymbolVersionSection
= &Sec
;
1989 case ELF::SHT_GNU_verdef
:
1990 if (!SymbolVersionDefSection
)
1991 SymbolVersionDefSection
= &Sec
;
1993 case ELF::SHT_GNU_verneed
:
1994 if (!SymbolVersionNeedSection
)
1995 SymbolVersionNeedSection
= &Sec
;
1997 case ELF::SHT_LLVM_ADDRSIG
:
1999 DotAddrsigSec
= &Sec
;
2007 template <typename ELFT
> void ELFDumper
<ELFT
>::parseDynamicTable() {
2008 auto toMappedAddr
= [&](uint64_t Tag
, uint64_t VAddr
) -> const uint8_t * {
2009 auto MappedAddrOrError
= Obj
.toMappedAddr(VAddr
, [&](const Twine
&Msg
) {
2010 this->reportUniqueWarning(Msg
);
2011 return Error::success();
2013 if (!MappedAddrOrError
) {
2014 this->reportUniqueWarning("unable to parse DT_" +
2015 Obj
.getDynamicTagAsString(Tag
) + ": " +
2016 llvm::toString(MappedAddrOrError
.takeError()));
2019 return MappedAddrOrError
.get();
2022 const char *StringTableBegin
= nullptr;
2023 uint64_t StringTableSize
= 0;
2024 std::optional
<DynRegionInfo
> DynSymFromTable
;
2025 for (const Elf_Dyn
&Dyn
: dynamic_table()) {
2026 if (Obj
.getHeader().e_machine
== EM_AARCH64
) {
2027 switch (Dyn
.d_tag
) {
2028 case ELF::DT_AARCH64_AUTH_RELRSZ
:
2029 DynRelrRegion
.Size
= Dyn
.getVal();
2030 DynRelrRegion
.SizePrintName
= "DT_AARCH64_AUTH_RELRSZ value";
2032 case ELF::DT_AARCH64_AUTH_RELRENT
:
2033 DynRelrRegion
.EntSize
= Dyn
.getVal();
2034 DynRelrRegion
.EntSizePrintName
= "DT_AARCH64_AUTH_RELRENT value";
2038 switch (Dyn
.d_tag
) {
2040 HashTable
= reinterpret_cast<const Elf_Hash
*>(
2041 toMappedAddr(Dyn
.getTag(), Dyn
.getPtr()));
2043 case ELF::DT_GNU_HASH
:
2044 GnuHashTable
= reinterpret_cast<const Elf_GnuHash
*>(
2045 toMappedAddr(Dyn
.getTag(), Dyn
.getPtr()));
2047 case ELF::DT_STRTAB
:
2048 StringTableBegin
= reinterpret_cast<const char *>(
2049 toMappedAddr(Dyn
.getTag(), Dyn
.getPtr()));
2052 StringTableSize
= Dyn
.getVal();
2054 case ELF::DT_SYMTAB
: {
2055 // If we can't map the DT_SYMTAB value to an address (e.g. when there are
2056 // no program headers), we ignore its value.
2057 if (const uint8_t *VA
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr())) {
2058 DynSymFromTable
.emplace(ObjF
, *this);
2059 DynSymFromTable
->Addr
= VA
;
2060 DynSymFromTable
->EntSize
= sizeof(Elf_Sym
);
2061 DynSymFromTable
->EntSizePrintName
= "";
2065 case ELF::DT_SYMENT
: {
2066 uint64_t Val
= Dyn
.getVal();
2067 if (Val
!= sizeof(Elf_Sym
))
2068 this->reportUniqueWarning("DT_SYMENT value of 0x" +
2069 Twine::utohexstr(Val
) +
2070 " is not the size of a symbol (0x" +
2071 Twine::utohexstr(sizeof(Elf_Sym
)) + ")");
2075 DynRelaRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
2077 case ELF::DT_RELASZ
:
2078 DynRelaRegion
.Size
= Dyn
.getVal();
2079 DynRelaRegion
.SizePrintName
= "DT_RELASZ value";
2081 case ELF::DT_RELAENT
:
2082 DynRelaRegion
.EntSize
= Dyn
.getVal();
2083 DynRelaRegion
.EntSizePrintName
= "DT_RELAENT value";
2086 DynCrelRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
2088 case ELF::DT_SONAME
:
2089 SONameOffset
= Dyn
.getVal();
2092 DynRelRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
2095 DynRelRegion
.Size
= Dyn
.getVal();
2096 DynRelRegion
.SizePrintName
= "DT_RELSZ value";
2098 case ELF::DT_RELENT
:
2099 DynRelRegion
.EntSize
= Dyn
.getVal();
2100 DynRelRegion
.EntSizePrintName
= "DT_RELENT value";
2103 case ELF::DT_ANDROID_RELR
:
2104 case ELF::DT_AARCH64_AUTH_RELR
:
2105 DynRelrRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
2107 case ELF::DT_RELRSZ
:
2108 case ELF::DT_ANDROID_RELRSZ
:
2109 case ELF::DT_AARCH64_AUTH_RELRSZ
:
2110 DynRelrRegion
.Size
= Dyn
.getVal();
2111 DynRelrRegion
.SizePrintName
= Dyn
.d_tag
== ELF::DT_RELRSZ
2113 : "DT_ANDROID_RELRSZ value";
2115 case ELF::DT_RELRENT
:
2116 case ELF::DT_ANDROID_RELRENT
:
2117 case ELF::DT_AARCH64_AUTH_RELRENT
:
2118 DynRelrRegion
.EntSize
= Dyn
.getVal();
2119 DynRelrRegion
.EntSizePrintName
= Dyn
.d_tag
== ELF::DT_RELRENT
2120 ? "DT_RELRENT value"
2121 : "DT_ANDROID_RELRENT value";
2123 case ELF::DT_PLTREL
:
2124 if (Dyn
.getVal() == DT_REL
)
2125 DynPLTRelRegion
.EntSize
= sizeof(Elf_Rel
);
2126 else if (Dyn
.getVal() == DT_RELA
)
2127 DynPLTRelRegion
.EntSize
= sizeof(Elf_Rela
);
2128 else if (Dyn
.getVal() == DT_CREL
)
2129 DynPLTRelRegion
.EntSize
= 1;
2131 reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
2132 Twine((uint64_t)Dyn
.getVal()));
2133 DynPLTRelRegion
.EntSizePrintName
= "PLTREL entry size";
2135 case ELF::DT_JMPREL
:
2136 DynPLTRelRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
2138 case ELF::DT_PLTRELSZ
:
2139 DynPLTRelRegion
.Size
= Dyn
.getVal();
2140 DynPLTRelRegion
.SizePrintName
= "DT_PLTRELSZ value";
2142 case ELF::DT_SYMTAB_SHNDX
:
2143 DynSymTabShndxRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
2144 DynSymTabShndxRegion
.EntSize
= sizeof(Elf_Word
);
2149 if (StringTableBegin
) {
2150 const uint64_t FileSize
= Obj
.getBufSize();
2151 const uint64_t Offset
= (const uint8_t *)StringTableBegin
- Obj
.base();
2152 if (StringTableSize
> FileSize
- Offset
)
2153 reportUniqueWarning(
2154 "the dynamic string table at 0x" + Twine::utohexstr(Offset
) +
2155 " goes past the end of the file (0x" + Twine::utohexstr(FileSize
) +
2156 ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize
));
2158 DynamicStringTable
= StringRef(StringTableBegin
, StringTableSize
);
2161 const bool IsHashTableSupported
= getHashTableEntSize() == 4;
2163 // Often we find the information about the dynamic symbol table
2164 // location in the SHT_DYNSYM section header. However, the value in
2165 // DT_SYMTAB has priority, because it is used by dynamic loaders to
2166 // locate .dynsym at runtime. The location we find in the section header
2167 // and the location we find here should match.
2168 if (DynSymFromTable
&& DynSymFromTable
->Addr
!= DynSymRegion
->Addr
)
2169 reportUniqueWarning(
2170 createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
2171 "the location of the dynamic symbol table"));
2173 // According to the ELF gABI: "The number of symbol table entries should
2174 // equal nchain". Check to see if the DT_HASH hash table nchain value
2175 // conflicts with the number of symbols in the dynamic symbol table
2176 // according to the section header.
2177 if (HashTable
&& IsHashTableSupported
) {
2178 if (DynSymRegion
->EntSize
== 0)
2179 reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
2180 else if (HashTable
->nchain
!= DynSymRegion
->Size
/ DynSymRegion
->EntSize
)
2181 reportUniqueWarning(
2182 "hash table nchain (" + Twine(HashTable
->nchain
) +
2183 ") differs from symbol count derived from SHT_DYNSYM section "
2185 Twine(DynSymRegion
->Size
/ DynSymRegion
->EntSize
) + ")");
2189 // Delay the creation of the actual dynamic symbol table until now, so that
2190 // checks can always be made against the section header-based properties,
2191 // without worrying about tag order.
2192 if (DynSymFromTable
) {
2193 if (!DynSymRegion
) {
2194 DynSymRegion
= DynSymFromTable
;
2196 DynSymRegion
->Addr
= DynSymFromTable
->Addr
;
2197 DynSymRegion
->EntSize
= DynSymFromTable
->EntSize
;
2198 DynSymRegion
->EntSizePrintName
= DynSymFromTable
->EntSizePrintName
;
2202 // Derive the dynamic symbol table size from the DT_HASH hash table, if
2204 if (HashTable
&& IsHashTableSupported
&& DynSymRegion
) {
2205 const uint64_t FileSize
= Obj
.getBufSize();
2206 const uint64_t DerivedSize
=
2207 (uint64_t)HashTable
->nchain
* DynSymRegion
->EntSize
;
2208 const uint64_t Offset
= (const uint8_t *)DynSymRegion
->Addr
- Obj
.base();
2209 if (DerivedSize
> FileSize
- Offset
)
2210 reportUniqueWarning(
2211 "the size (0x" + Twine::utohexstr(DerivedSize
) +
2212 ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset
) +
2213 ", derived from the hash table, goes past the end of the file (0x" +
2214 Twine::utohexstr(FileSize
) + ") and will be ignored");
2216 DynSymRegion
->Size
= HashTable
->nchain
* DynSymRegion
->EntSize
;
2220 template <typename ELFT
> void ELFDumper
<ELFT
>::printVersionInfo() {
2221 // Dump version symbol section.
2222 printVersionSymbolSection(SymbolVersionSection
);
2224 // Dump version definition section.
2225 printVersionDefinitionSection(SymbolVersionDefSection
);
2227 // Dump version dependency section.
2228 printVersionDependencySection(SymbolVersionNeedSection
);
2231 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
2232 { #enum, prefix##_##enum }
2234 const EnumEntry
<unsigned> ElfDynamicDTFlags
[] = {
2235 LLVM_READOBJ_DT_FLAG_ENT(DF
, ORIGIN
),
2236 LLVM_READOBJ_DT_FLAG_ENT(DF
, SYMBOLIC
),
2237 LLVM_READOBJ_DT_FLAG_ENT(DF
, TEXTREL
),
2238 LLVM_READOBJ_DT_FLAG_ENT(DF
, BIND_NOW
),
2239 LLVM_READOBJ_DT_FLAG_ENT(DF
, STATIC_TLS
)
2242 const EnumEntry
<unsigned> ElfDynamicDTFlags1
[] = {
2243 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOW
),
2244 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GLOBAL
),
2245 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GROUP
),
2246 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODELETE
),
2247 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, LOADFLTR
),
2248 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, INITFIRST
),
2249 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOOPEN
),
2250 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, ORIGIN
),
2251 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DIRECT
),
2252 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, TRANS
),
2253 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, INTERPOSE
),
2254 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODEFLIB
),
2255 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODUMP
),
2256 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, CONFALT
),
2257 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, ENDFILTEE
),
2258 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DISPRELDNE
),
2259 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DISPRELPND
),
2260 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODIRECT
),
2261 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, IGNMULDEF
),
2262 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOKSYMS
),
2263 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOHDR
),
2264 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, EDITED
),
2265 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NORELOC
),
2266 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, SYMINTPOSE
),
2267 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GLOBAUDIT
),
2268 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, SINGLETON
),
2269 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, PIE
),
2272 const EnumEntry
<unsigned> ElfDynamicDTMipsFlags
[] = {
2273 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NONE
),
2274 LLVM_READOBJ_DT_FLAG_ENT(RHF
, QUICKSTART
),
2275 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NOTPOT
),
2276 LLVM_READOBJ_DT_FLAG_ENT(RHS
, NO_LIBRARY_REPLACEMENT
),
2277 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NO_MOVE
),
2278 LLVM_READOBJ_DT_FLAG_ENT(RHF
, SGI_ONLY
),
2279 LLVM_READOBJ_DT_FLAG_ENT(RHF
, GUARANTEE_INIT
),
2280 LLVM_READOBJ_DT_FLAG_ENT(RHF
, DELTA_C_PLUS_PLUS
),
2281 LLVM_READOBJ_DT_FLAG_ENT(RHF
, GUARANTEE_START_INIT
),
2282 LLVM_READOBJ_DT_FLAG_ENT(RHF
, PIXIE
),
2283 LLVM_READOBJ_DT_FLAG_ENT(RHF
, DEFAULT_DELAY_LOAD
),
2284 LLVM_READOBJ_DT_FLAG_ENT(RHF
, REQUICKSTART
),
2285 LLVM_READOBJ_DT_FLAG_ENT(RHF
, REQUICKSTARTED
),
2286 LLVM_READOBJ_DT_FLAG_ENT(RHF
, CORD
),
2287 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NO_UNRES_UNDEF
),
2288 LLVM_READOBJ_DT_FLAG_ENT(RHF
, RLD_ORDER_SAFE
)
2291 #undef LLVM_READOBJ_DT_FLAG_ENT
2293 template <typename T
, typename TFlag
>
2294 void printFlags(T Value
, ArrayRef
<EnumEntry
<TFlag
>> Flags
, raw_ostream
&OS
) {
2295 SmallVector
<EnumEntry
<TFlag
>, 10> SetFlags
;
2296 for (const EnumEntry
<TFlag
> &Flag
: Flags
)
2297 if (Flag
.Value
!= 0 && (Value
& Flag
.Value
) == Flag
.Value
)
2298 SetFlags
.push_back(Flag
);
2300 for (const EnumEntry
<TFlag
> &Flag
: SetFlags
)
2301 OS
<< Flag
.Name
<< " ";
2304 template <class ELFT
>
2305 const typename
ELFT::Shdr
*
2306 ELFDumper
<ELFT
>::findSectionByName(StringRef Name
) const {
2307 for (const Elf_Shdr
&Shdr
: cantFail(Obj
.sections())) {
2308 if (Expected
<StringRef
> NameOrErr
= Obj
.getSectionName(Shdr
)) {
2309 if (*NameOrErr
== Name
)
2312 reportUniqueWarning("unable to read the name of " + describe(Shdr
) +
2313 ": " + toString(NameOrErr
.takeError()));
2319 template <class ELFT
>
2320 std::string ELFDumper
<ELFT
>::getDynamicEntry(uint64_t Type
,
2321 uint64_t Value
) const {
2322 auto FormatHexValue
= [](uint64_t V
) {
2324 raw_string_ostream
OS(Str
);
2325 const char *ConvChar
=
2326 (opts::Output
== opts::GNU
) ? "0x%" PRIx64
: "0x%" PRIX64
;
2327 OS
<< format(ConvChar
, V
);
2331 auto FormatFlags
= [](uint64_t V
,
2332 llvm::ArrayRef
<llvm::EnumEntry
<unsigned int>> Array
) {
2334 raw_string_ostream
OS(Str
);
2335 printFlags(V
, Array
, OS
);
2339 // Handle custom printing of architecture specific tags
2340 switch (Obj
.getHeader().e_machine
) {
2343 case DT_AARCH64_BTI_PLT
:
2344 case DT_AARCH64_PAC_PLT
:
2345 case DT_AARCH64_VARIANT_PCS
:
2346 case DT_AARCH64_MEMTAG_GLOBALSSZ
:
2347 return std::to_string(Value
);
2348 case DT_AARCH64_MEMTAG_MODE
:
2351 return "Synchronous (0)";
2353 return "Asynchronous (1)";
2355 return (Twine("Unknown (") + Twine(Value
) + ")").str();
2357 case DT_AARCH64_MEMTAG_HEAP
:
2358 case DT_AARCH64_MEMTAG_STACK
:
2361 return "Disabled (0)";
2363 return "Enabled (1)";
2365 return (Twine("Unknown (") + Twine(Value
) + ")").str();
2367 case DT_AARCH64_MEMTAG_GLOBALS
:
2368 return (Twine("0x") + utohexstr(Value
, /*LowerCase=*/true)).str();
2375 case DT_HEXAGON_VER
:
2376 return std::to_string(Value
);
2377 case DT_HEXAGON_SYMSZ
:
2378 case DT_HEXAGON_PLT
:
2379 return FormatHexValue(Value
);
2386 case DT_MIPS_RLD_VERSION
:
2387 case DT_MIPS_LOCAL_GOTNO
:
2388 case DT_MIPS_SYMTABNO
:
2389 case DT_MIPS_UNREFEXTNO
:
2390 return std::to_string(Value
);
2391 case DT_MIPS_TIME_STAMP
:
2392 case DT_MIPS_ICHECKSUM
:
2393 case DT_MIPS_IVERSION
:
2394 case DT_MIPS_BASE_ADDRESS
:
2396 case DT_MIPS_CONFLICT
:
2397 case DT_MIPS_LIBLIST
:
2398 case DT_MIPS_CONFLICTNO
:
2399 case DT_MIPS_LIBLISTNO
:
2400 case DT_MIPS_GOTSYM
:
2401 case DT_MIPS_HIPAGENO
:
2402 case DT_MIPS_RLD_MAP
:
2403 case DT_MIPS_DELTA_CLASS
:
2404 case DT_MIPS_DELTA_CLASS_NO
:
2405 case DT_MIPS_DELTA_INSTANCE
:
2406 case DT_MIPS_DELTA_RELOC
:
2407 case DT_MIPS_DELTA_RELOC_NO
:
2408 case DT_MIPS_DELTA_SYM
:
2409 case DT_MIPS_DELTA_SYM_NO
:
2410 case DT_MIPS_DELTA_CLASSSYM
:
2411 case DT_MIPS_DELTA_CLASSSYM_NO
:
2412 case DT_MIPS_CXX_FLAGS
:
2413 case DT_MIPS_PIXIE_INIT
:
2414 case DT_MIPS_SYMBOL_LIB
:
2415 case DT_MIPS_LOCALPAGE_GOTIDX
:
2416 case DT_MIPS_LOCAL_GOTIDX
:
2417 case DT_MIPS_HIDDEN_GOTIDX
:
2418 case DT_MIPS_PROTECTED_GOTIDX
:
2419 case DT_MIPS_OPTIONS
:
2420 case DT_MIPS_INTERFACE
:
2421 case DT_MIPS_DYNSTR_ALIGN
:
2422 case DT_MIPS_INTERFACE_SIZE
:
2423 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR
:
2424 case DT_MIPS_PERF_SUFFIX
:
2425 case DT_MIPS_COMPACT_SIZE
:
2426 case DT_MIPS_GP_VALUE
:
2427 case DT_MIPS_AUX_DYNAMIC
:
2428 case DT_MIPS_PLTGOT
:
2430 case DT_MIPS_RLD_MAP_REL
:
2432 return FormatHexValue(Value
);
2434 return FormatFlags(Value
, ArrayRef(ElfDynamicDTMipsFlags
));
2445 if (Value
== DT_REL
)
2447 if (Value
== DT_RELA
)
2449 if (Value
== DT_CREL
)
2463 case DT_PREINIT_ARRAY
:
2471 return FormatHexValue(Value
);
2476 return std::to_string(Value
);
2484 case DT_INIT_ARRAYSZ
:
2485 case DT_FINI_ARRAYSZ
:
2486 case DT_PREINIT_ARRAYSZ
:
2489 case DT_AARCH64_AUTH_RELRSZ
:
2490 case DT_AARCH64_AUTH_RELRENT
:
2491 case DT_ANDROID_RELSZ
:
2492 case DT_ANDROID_RELASZ
:
2493 return std::to_string(Value
) + " (bytes)";
2501 const std::map
<uint64_t, const char *> TagNames
= {
2502 {DT_NEEDED
, "Shared library"}, {DT_SONAME
, "Library soname"},
2503 {DT_AUXILIARY
, "Auxiliary library"}, {DT_USED
, "Not needed object"},
2504 {DT_FILTER
, "Filter library"}, {DT_RPATH
, "Library rpath"},
2505 {DT_RUNPATH
, "Library runpath"},
2508 return (Twine(TagNames
.at(Type
)) + ": [" + getDynamicString(Value
) + "]")
2512 return FormatFlags(Value
, ArrayRef(ElfDynamicDTFlags
));
2514 return FormatFlags(Value
, ArrayRef(ElfDynamicDTFlags1
));
2516 return FormatHexValue(Value
);
2520 template <class ELFT
>
2521 StringRef ELFDumper
<ELFT
>::getDynamicString(uint64_t Value
) const {
2522 if (DynamicStringTable
.empty() && !DynamicStringTable
.data()) {
2523 reportUniqueWarning("string table was not found");
2527 auto WarnAndReturn
= [this](const Twine
&Msg
, uint64_t Offset
) {
2528 reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset
) +
2533 const uint64_t FileSize
= Obj
.getBufSize();
2534 const uint64_t Offset
=
2535 (const uint8_t *)DynamicStringTable
.data() - Obj
.base();
2536 if (DynamicStringTable
.size() > FileSize
- Offset
)
2537 return WarnAndReturn(" with size 0x" +
2538 Twine::utohexstr(DynamicStringTable
.size()) +
2539 " goes past the end of the file (0x" +
2540 Twine::utohexstr(FileSize
) + ")",
2543 if (Value
>= DynamicStringTable
.size())
2544 return WarnAndReturn(
2545 ": unable to read the string at 0x" + Twine::utohexstr(Offset
+ Value
) +
2546 ": it goes past the end of the table (0x" +
2547 Twine::utohexstr(Offset
+ DynamicStringTable
.size()) + ")",
2550 if (DynamicStringTable
.back() != '\0')
2551 return WarnAndReturn(": unable to read the string at 0x" +
2552 Twine::utohexstr(Offset
+ Value
) +
2553 ": the string table is not null-terminated",
2556 return DynamicStringTable
.data() + Value
;
2559 template <class ELFT
> void ELFDumper
<ELFT
>::printUnwindInfo() {
2560 DwarfCFIEH::PrinterContext
<ELFT
> Ctx(W
, ObjF
);
2561 Ctx
.printUnwindInformation();
2564 // The namespace is needed to fix the compilation with GCC older than 7.0+.
2566 template <> void ELFDumper
<ELF32LE
>::printUnwindInfo() {
2567 if (Obj
.getHeader().e_machine
== EM_ARM
) {
2568 ARM::EHABI::PrinterContext
<ELF32LE
> Ctx(W
, Obj
, ObjF
.getFileName(),
2570 Ctx
.PrintUnwindInformation();
2572 DwarfCFIEH::PrinterContext
<ELF32LE
> Ctx(W
, ObjF
);
2573 Ctx
.printUnwindInformation();
2577 template <class ELFT
> void ELFDumper
<ELFT
>::printNeededLibraries() {
2578 ListScope
D(W
, "NeededLibraries");
2580 std::vector
<StringRef
> Libs
;
2581 for (const auto &Entry
: dynamic_table())
2582 if (Entry
.d_tag
== ELF::DT_NEEDED
)
2583 Libs
.push_back(getDynamicString(Entry
.d_un
.d_val
));
2587 for (StringRef L
: Libs
)
2591 template <class ELFT
>
2592 static Error
checkHashTable(const ELFDumper
<ELFT
> &Dumper
,
2593 const typename
ELFT::Hash
*H
,
2594 bool *IsHeaderValid
= nullptr) {
2595 const ELFFile
<ELFT
> &Obj
= Dumper
.getElfObject().getELFFile();
2596 const uint64_t SecOffset
= (const uint8_t *)H
- Obj
.base();
2597 if (Dumper
.getHashTableEntSize() == 8) {
2598 auto It
= llvm::find_if(ElfMachineType
, [&](const EnumEntry
<unsigned> &E
) {
2599 return E
.Value
== Obj
.getHeader().e_machine
;
2602 *IsHeaderValid
= false;
2603 return createError("the hash table at 0x" + Twine::utohexstr(SecOffset
) +
2604 " is not supported: it contains non-standard 8 "
2605 "byte entries on " +
2606 It
->AltName
+ " platform");
2609 auto MakeError
= [&](const Twine
&Msg
= "") {
2610 return createError("the hash table at offset 0x" +
2611 Twine::utohexstr(SecOffset
) +
2612 " goes past the end of the file (0x" +
2613 Twine::utohexstr(Obj
.getBufSize()) + ")" + Msg
);
2616 // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2617 const unsigned HeaderSize
= 2 * sizeof(typename
ELFT::Word
);
2620 *IsHeaderValid
= Obj
.getBufSize() - SecOffset
>= HeaderSize
;
2622 if (Obj
.getBufSize() - SecOffset
< HeaderSize
)
2625 if (Obj
.getBufSize() - SecOffset
- HeaderSize
<
2626 ((uint64_t)H
->nbucket
+ H
->nchain
) * sizeof(typename
ELFT::Word
))
2627 return MakeError(", nbucket = " + Twine(H
->nbucket
) +
2628 ", nchain = " + Twine(H
->nchain
));
2629 return Error::success();
2632 template <class ELFT
>
2633 static Error
checkGNUHashTable(const ELFFile
<ELFT
> &Obj
,
2634 const typename
ELFT::GnuHash
*GnuHashTable
,
2635 bool *IsHeaderValid
= nullptr) {
2636 const uint8_t *TableData
= reinterpret_cast<const uint8_t *>(GnuHashTable
);
2637 assert(TableData
>= Obj
.base() && TableData
< Obj
.base() + Obj
.getBufSize() &&
2638 "GnuHashTable must always point to a location inside the file");
2640 uint64_t TableOffset
= TableData
- Obj
.base();
2642 *IsHeaderValid
= TableOffset
+ /*Header size:*/ 16 < Obj
.getBufSize();
2643 if (TableOffset
+ 16 + (uint64_t)GnuHashTable
->nbuckets
* 4 +
2644 (uint64_t)GnuHashTable
->maskwords
* sizeof(typename
ELFT::Off
) >=
2646 return createError("unable to dump the SHT_GNU_HASH "
2648 Twine::utohexstr(TableOffset
) +
2649 ": it goes past the end of the file");
2650 return Error::success();
2653 template <typename ELFT
> void ELFDumper
<ELFT
>::printHashTable() {
2654 DictScope
D(W
, "HashTable");
2659 Error Err
= checkHashTable(*this, HashTable
, &IsHeaderValid
);
2660 if (IsHeaderValid
) {
2661 W
.printNumber("Num Buckets", HashTable
->nbucket
);
2662 W
.printNumber("Num Chains", HashTable
->nchain
);
2666 reportUniqueWarning(std::move(Err
));
2670 W
.printList("Buckets", HashTable
->buckets());
2671 W
.printList("Chains", HashTable
->chains());
2674 template <class ELFT
>
2675 static Expected
<ArrayRef
<typename
ELFT::Word
>>
2676 getGnuHashTableChains(std::optional
<DynRegionInfo
> DynSymRegion
,
2677 const typename
ELFT::GnuHash
*GnuHashTable
) {
2679 return createError("no dynamic symbol table found");
2681 ArrayRef
<typename
ELFT::Sym
> DynSymTable
=
2682 DynSymRegion
->template getAsArrayRef
<typename
ELFT::Sym
>();
2683 size_t NumSyms
= DynSymTable
.size();
2685 return createError("the dynamic symbol table is empty");
2687 if (GnuHashTable
->symndx
< NumSyms
)
2688 return GnuHashTable
->values(NumSyms
);
2690 // A normal empty GNU hash table section produced by linker might have
2691 // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2692 // and have dummy null values in the Bloom filter and in the buckets
2693 // vector (or no values at all). It happens because the value of symndx is not
2694 // important for dynamic loaders when the GNU hash table is empty. They just
2695 // skip the whole object during symbol lookup. In such cases, the symndx value
2696 // is irrelevant and we should not report a warning.
2697 ArrayRef
<typename
ELFT::Word
> Buckets
= GnuHashTable
->buckets();
2698 if (!llvm::all_of(Buckets
, [](typename
ELFT::Word V
) { return V
== 0; }))
2700 "the first hashed symbol index (" + Twine(GnuHashTable
->symndx
) +
2701 ") is greater than or equal to the number of dynamic symbols (" +
2702 Twine(NumSyms
) + ")");
2703 // There is no way to represent an array of (dynamic symbols count - symndx)
2705 return ArrayRef
<typename
ELFT::Word
>();
2708 template <typename ELFT
>
2709 void ELFDumper
<ELFT
>::printGnuHashTable() {
2710 DictScope
D(W
, "GnuHashTable");
2715 Error Err
= checkGNUHashTable
<ELFT
>(Obj
, GnuHashTable
, &IsHeaderValid
);
2716 if (IsHeaderValid
) {
2717 W
.printNumber("Num Buckets", GnuHashTable
->nbuckets
);
2718 W
.printNumber("First Hashed Symbol Index", GnuHashTable
->symndx
);
2719 W
.printNumber("Num Mask Words", GnuHashTable
->maskwords
);
2720 W
.printNumber("Shift Count", GnuHashTable
->shift2
);
2724 reportUniqueWarning(std::move(Err
));
2728 ArrayRef
<typename
ELFT::Off
> BloomFilter
= GnuHashTable
->filter();
2729 W
.printHexList("Bloom Filter", BloomFilter
);
2731 ArrayRef
<Elf_Word
> Buckets
= GnuHashTable
->buckets();
2732 W
.printList("Buckets", Buckets
);
2734 Expected
<ArrayRef
<Elf_Word
>> Chains
=
2735 getGnuHashTableChains
<ELFT
>(DynSymRegion
, GnuHashTable
);
2737 reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
2739 toString(Chains
.takeError()));
2743 W
.printHexList("Values", *Chains
);
2746 template <typename ELFT
> void ELFDumper
<ELFT
>::printHashHistograms() {
2747 // Print histogram for the .hash section.
2748 if (this->HashTable
) {
2749 if (Error E
= checkHashTable
<ELFT
>(*this, this->HashTable
))
2750 this->reportUniqueWarning(std::move(E
));
2752 printHashHistogram(*this->HashTable
);
2755 // Print histogram for the .gnu.hash section.
2756 if (this->GnuHashTable
) {
2757 if (Error E
= checkGNUHashTable
<ELFT
>(this->Obj
, this->GnuHashTable
))
2758 this->reportUniqueWarning(std::move(E
));
2760 printGnuHashHistogram(*this->GnuHashTable
);
2764 template <typename ELFT
>
2765 void ELFDumper
<ELFT
>::printHashHistogram(const Elf_Hash
&HashTable
) const {
2766 size_t NBucket
= HashTable
.nbucket
;
2767 size_t NChain
= HashTable
.nchain
;
2768 ArrayRef
<Elf_Word
> Buckets
= HashTable
.buckets();
2769 ArrayRef
<Elf_Word
> Chains
= HashTable
.chains();
2770 size_t TotalSyms
= 0;
2771 // If hash table is correct, we have at least chains with 0 length.
2772 size_t MaxChain
= 1;
2774 if (NChain
== 0 || NBucket
== 0)
2777 std::vector
<size_t> ChainLen(NBucket
, 0);
2778 // Go over all buckets and note chain lengths of each bucket (total
2779 // unique chain lengths).
2780 for (size_t B
= 0; B
< NBucket
; ++B
) {
2781 BitVector
Visited(NChain
);
2782 for (size_t C
= Buckets
[B
]; C
< NChain
; C
= Chains
[C
]) {
2783 if (C
== ELF::STN_UNDEF
)
2786 this->reportUniqueWarning(
2787 ".hash section is invalid: bucket " + Twine(C
) +
2788 ": a cycle was detected in the linked chain");
2792 if (MaxChain
<= ++ChainLen
[B
])
2795 TotalSyms
+= ChainLen
[B
];
2801 std::vector
<size_t> Count(MaxChain
, 0);
2802 // Count how long is the chain for each bucket.
2803 for (size_t B
= 0; B
< NBucket
; B
++)
2804 ++Count
[ChainLen
[B
]];
2805 // Print Number of buckets with each chain lengths and their cumulative
2806 // coverage of the symbols.
2807 printHashHistogramStats(NBucket
, MaxChain
, TotalSyms
, Count
, /*IsGnu=*/false);
2810 template <class ELFT
>
2811 void ELFDumper
<ELFT
>::printGnuHashHistogram(
2812 const Elf_GnuHash
&GnuHashTable
) const {
2813 Expected
<ArrayRef
<Elf_Word
>> ChainsOrErr
=
2814 getGnuHashTableChains
<ELFT
>(this->DynSymRegion
, &GnuHashTable
);
2816 this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
2817 toString(ChainsOrErr
.takeError()));
2821 ArrayRef
<Elf_Word
> Chains
= *ChainsOrErr
;
2822 size_t Symndx
= GnuHashTable
.symndx
;
2823 size_t TotalSyms
= 0;
2824 size_t MaxChain
= 1;
2826 size_t NBucket
= GnuHashTable
.nbuckets
;
2827 if (Chains
.empty() || NBucket
== 0)
2830 ArrayRef
<Elf_Word
> Buckets
= GnuHashTable
.buckets();
2831 std::vector
<size_t> ChainLen(NBucket
, 0);
2832 for (size_t B
= 0; B
< NBucket
; ++B
) {
2836 for (size_t C
= Buckets
[B
] - Symndx
;
2837 C
< Chains
.size() && (Chains
[C
] & 1) == 0; ++C
)
2838 if (MaxChain
< ++Len
)
2848 std::vector
<size_t> Count(MaxChain
, 0);
2849 for (size_t B
= 0; B
< NBucket
; ++B
)
2850 ++Count
[ChainLen
[B
]];
2851 // Print Number of buckets with each chain lengths and their cumulative
2852 // coverage of the symbols.
2853 printHashHistogramStats(NBucket
, MaxChain
, TotalSyms
, Count
, /*IsGnu=*/true);
2856 template <typename ELFT
> void ELFDumper
<ELFT
>::printLoadName() {
2857 StringRef SOName
= "<Not found>";
2859 SOName
= getDynamicString(*SONameOffset
);
2860 W
.printString("LoadName", SOName
);
2863 template <class ELFT
> void ELFDumper
<ELFT
>::printArchSpecificInfo() {
2864 switch (Obj
.getHeader().e_machine
) {
2866 printAttributes(ELF::SHT_HEXAGON_ATTRIBUTES
,
2867 std::make_unique
<HexagonAttributeParser
>(&W
),
2868 llvm::endianness::little
);
2872 ELF::SHT_ARM_ATTRIBUTES
, std::make_unique
<ARMAttributeParser
>(&W
),
2873 Obj
.isLE() ? llvm::endianness::little
: llvm::endianness::big
);
2877 printAttributes(ELF::SHT_RISCV_ATTRIBUTES
,
2878 std::make_unique
<RISCVAttributeParser
>(&W
),
2879 llvm::endianness::little
);
2881 reportUniqueWarning("attribute printing not implemented for big-endian "
2885 printAttributes(ELF::SHT_MSP430_ATTRIBUTES
,
2886 std::make_unique
<MSP430AttributeParser
>(&W
),
2887 llvm::endianness::little
);
2890 printMipsABIFlags();
2893 MipsGOTParser
<ELFT
> Parser(*this);
2894 if (Error E
= Parser
.findGOT(dynamic_table(), dynamic_symbols()))
2895 reportUniqueWarning(std::move(E
));
2896 else if (!Parser
.isGotEmpty())
2897 printMipsGOT(Parser
);
2899 if (Error E
= Parser
.findPLT(dynamic_table()))
2900 reportUniqueWarning(std::move(E
));
2901 else if (!Parser
.isPltEmpty())
2902 printMipsPLT(Parser
);
2910 template <class ELFT
>
2911 void ELFDumper
<ELFT
>::printAttributes(
2912 unsigned AttrShType
, std::unique_ptr
<ELFAttributeParser
> AttrParser
,
2913 llvm::endianness Endianness
) {
2914 assert((AttrShType
!= ELF::SHT_NULL
) && AttrParser
&&
2915 "Incomplete ELF attribute implementation");
2916 DictScope
BA(W
, "BuildAttributes");
2917 for (const Elf_Shdr
&Sec
: cantFail(Obj
.sections())) {
2918 if (Sec
.sh_type
!= AttrShType
)
2921 ArrayRef
<uint8_t> Contents
;
2922 if (Expected
<ArrayRef
<uint8_t>> ContentOrErr
=
2923 Obj
.getSectionContents(Sec
)) {
2924 Contents
= *ContentOrErr
;
2925 if (Contents
.empty()) {
2926 reportUniqueWarning("the " + describe(Sec
) + " is empty");
2930 reportUniqueWarning("unable to read the content of the " + describe(Sec
) +
2931 ": " + toString(ContentOrErr
.takeError()));
2935 W
.printHex("FormatVersion", Contents
[0]);
2937 if (Error E
= AttrParser
->parse(Contents
, Endianness
))
2938 reportUniqueWarning("unable to dump attributes from the " +
2939 describe(Sec
) + ": " + toString(std::move(E
)));
2945 template <class ELFT
> class MipsGOTParser
{
2947 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
2948 using Entry
= typename
ELFT::Addr
;
2949 using Entries
= ArrayRef
<Entry
>;
2951 const bool IsStatic
;
2952 const ELFFile
<ELFT
> &Obj
;
2953 const ELFDumper
<ELFT
> &Dumper
;
2955 MipsGOTParser(const ELFDumper
<ELFT
> &D
);
2956 Error
findGOT(Elf_Dyn_Range DynTable
, Elf_Sym_Range DynSyms
);
2957 Error
findPLT(Elf_Dyn_Range DynTable
);
2959 bool isGotEmpty() const { return GotEntries
.empty(); }
2960 bool isPltEmpty() const { return PltEntries
.empty(); }
2962 uint64_t getGp() const;
2964 const Entry
*getGotLazyResolver() const;
2965 const Entry
*getGotModulePointer() const;
2966 const Entry
*getPltLazyResolver() const;
2967 const Entry
*getPltModulePointer() const;
2969 Entries
getLocalEntries() const;
2970 Entries
getGlobalEntries() const;
2971 Entries
getOtherEntries() const;
2972 Entries
getPltEntries() const;
2974 uint64_t getGotAddress(const Entry
* E
) const;
2975 int64_t getGotOffset(const Entry
* E
) const;
2976 const Elf_Sym
*getGotSym(const Entry
*E
) const;
2978 uint64_t getPltAddress(const Entry
* E
) const;
2979 const Elf_Sym
*getPltSym(const Entry
*E
) const;
2981 StringRef
getPltStrTable() const { return PltStrTable
; }
2982 const Elf_Shdr
*getPltSymTable() const { return PltSymTable
; }
2985 const Elf_Shdr
*GotSec
;
2989 const Elf_Shdr
*PltSec
;
2990 const Elf_Shdr
*PltRelSec
;
2991 const Elf_Shdr
*PltSymTable
;
2994 Elf_Sym_Range GotDynSyms
;
2995 StringRef PltStrTable
;
3001 } // end anonymous namespace
3003 template <class ELFT
>
3004 MipsGOTParser
<ELFT
>::MipsGOTParser(const ELFDumper
<ELFT
> &D
)
3005 : IsStatic(D
.dynamic_table().empty()), Obj(D
.getElfObject().getELFFile()),
3006 Dumper(D
), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
3007 PltRelSec(nullptr), PltSymTable(nullptr),
3008 FileName(D
.getElfObject().getFileName()) {}
3010 template <class ELFT
>
3011 Error MipsGOTParser
<ELFT
>::findGOT(Elf_Dyn_Range DynTable
,
3012 Elf_Sym_Range DynSyms
) {
3013 // See "Global Offset Table" in Chapter 5 in the following document
3014 // for detailed GOT description.
3015 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
3017 // Find static GOT secton.
3019 GotSec
= Dumper
.findSectionByName(".got");
3021 return Error::success();
3023 ArrayRef
<uint8_t> Content
=
3024 unwrapOrError(FileName
, Obj
.getSectionContents(*GotSec
));
3025 GotEntries
= Entries(reinterpret_cast<const Entry
*>(Content
.data()),
3026 Content
.size() / sizeof(Entry
));
3027 LocalNum
= GotEntries
.size();
3028 return Error::success();
3031 // Lookup dynamic table tags which define the GOT layout.
3032 std::optional
<uint64_t> DtPltGot
;
3033 std::optional
<uint64_t> DtLocalGotNum
;
3034 std::optional
<uint64_t> DtGotSym
;
3035 for (const auto &Entry
: DynTable
) {
3036 switch (Entry
.getTag()) {
3037 case ELF::DT_PLTGOT
:
3038 DtPltGot
= Entry
.getVal();
3040 case ELF::DT_MIPS_LOCAL_GOTNO
:
3041 DtLocalGotNum
= Entry
.getVal();
3043 case ELF::DT_MIPS_GOTSYM
:
3044 DtGotSym
= Entry
.getVal();
3049 if (!DtPltGot
&& !DtLocalGotNum
&& !DtGotSym
)
3050 return Error::success();
3053 return createError("cannot find PLTGOT dynamic tag");
3055 return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
3057 return createError("cannot find MIPS_GOTSYM dynamic tag");
3059 size_t DynSymTotal
= DynSyms
.size();
3060 if (*DtGotSym
> DynSymTotal
)
3061 return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym
) +
3062 ") exceeds the number of dynamic symbols (" +
3063 Twine(DynSymTotal
) + ")");
3065 GotSec
= findNotEmptySectionByAddress(Obj
, FileName
, *DtPltGot
);
3067 return createError("there is no non-empty GOT section at 0x" +
3068 Twine::utohexstr(*DtPltGot
));
3070 LocalNum
= *DtLocalGotNum
;
3071 GlobalNum
= DynSymTotal
- *DtGotSym
;
3073 ArrayRef
<uint8_t> Content
=
3074 unwrapOrError(FileName
, Obj
.getSectionContents(*GotSec
));
3075 GotEntries
= Entries(reinterpret_cast<const Entry
*>(Content
.data()),
3076 Content
.size() / sizeof(Entry
));
3077 GotDynSyms
= DynSyms
.drop_front(*DtGotSym
);
3079 return Error::success();
3082 template <class ELFT
>
3083 Error MipsGOTParser
<ELFT
>::findPLT(Elf_Dyn_Range DynTable
) {
3084 // Lookup dynamic table tags which define the PLT layout.
3085 std::optional
<uint64_t> DtMipsPltGot
;
3086 std::optional
<uint64_t> DtJmpRel
;
3087 for (const auto &Entry
: DynTable
) {
3088 switch (Entry
.getTag()) {
3089 case ELF::DT_MIPS_PLTGOT
:
3090 DtMipsPltGot
= Entry
.getVal();
3092 case ELF::DT_JMPREL
:
3093 DtJmpRel
= Entry
.getVal();
3098 if (!DtMipsPltGot
&& !DtJmpRel
)
3099 return Error::success();
3101 // Find PLT section.
3103 return createError("cannot find MIPS_PLTGOT dynamic tag");
3105 return createError("cannot find JMPREL dynamic tag");
3107 PltSec
= findNotEmptySectionByAddress(Obj
, FileName
, *DtMipsPltGot
);
3109 return createError("there is no non-empty PLTGOT section at 0x" +
3110 Twine::utohexstr(*DtMipsPltGot
));
3112 PltRelSec
= findNotEmptySectionByAddress(Obj
, FileName
, *DtJmpRel
);
3114 return createError("there is no non-empty RELPLT section at 0x" +
3115 Twine::utohexstr(*DtJmpRel
));
3117 if (Expected
<ArrayRef
<uint8_t>> PltContentOrErr
=
3118 Obj
.getSectionContents(*PltSec
))
3120 Entries(reinterpret_cast<const Entry
*>(PltContentOrErr
->data()),
3121 PltContentOrErr
->size() / sizeof(Entry
));
3123 return createError("unable to read PLTGOT section content: " +
3124 toString(PltContentOrErr
.takeError()));
3126 if (Expected
<const Elf_Shdr
*> PltSymTableOrErr
=
3127 Obj
.getSection(PltRelSec
->sh_link
))
3128 PltSymTable
= *PltSymTableOrErr
;
3130 return createError("unable to get a symbol table linked to the " +
3131 describe(Obj
, *PltRelSec
) + ": " +
3132 toString(PltSymTableOrErr
.takeError()));
3134 if (Expected
<StringRef
> StrTabOrErr
=
3135 Obj
.getStringTableForSymtab(*PltSymTable
))
3136 PltStrTable
= *StrTabOrErr
;
3138 return createError("unable to get a string table for the " +
3139 describe(Obj
, *PltSymTable
) + ": " +
3140 toString(StrTabOrErr
.takeError()));
3142 return Error::success();
3145 template <class ELFT
> uint64_t MipsGOTParser
<ELFT
>::getGp() const {
3146 return GotSec
->sh_addr
+ 0x7ff0;
3149 template <class ELFT
>
3150 const typename MipsGOTParser
<ELFT
>::Entry
*
3151 MipsGOTParser
<ELFT
>::getGotLazyResolver() const {
3152 return LocalNum
> 0 ? &GotEntries
[0] : nullptr;
3155 template <class ELFT
>
3156 const typename MipsGOTParser
<ELFT
>::Entry
*
3157 MipsGOTParser
<ELFT
>::getGotModulePointer() const {
3160 const Entry
&E
= GotEntries
[1];
3161 if ((E
>> (sizeof(Entry
) * 8 - 1)) == 0)
3166 template <class ELFT
>
3167 typename MipsGOTParser
<ELFT
>::Entries
3168 MipsGOTParser
<ELFT
>::getLocalEntries() const {
3169 size_t Skip
= getGotModulePointer() ? 2 : 1;
3170 if (LocalNum
- Skip
<= 0)
3172 return GotEntries
.slice(Skip
, LocalNum
- Skip
);
3175 template <class ELFT
>
3176 typename MipsGOTParser
<ELFT
>::Entries
3177 MipsGOTParser
<ELFT
>::getGlobalEntries() const {
3180 return GotEntries
.slice(LocalNum
, GlobalNum
);
3183 template <class ELFT
>
3184 typename MipsGOTParser
<ELFT
>::Entries
3185 MipsGOTParser
<ELFT
>::getOtherEntries() const {
3186 size_t OtherNum
= GotEntries
.size() - LocalNum
- GlobalNum
;
3189 return GotEntries
.slice(LocalNum
+ GlobalNum
, OtherNum
);
3192 template <class ELFT
>
3193 uint64_t MipsGOTParser
<ELFT
>::getGotAddress(const Entry
*E
) const {
3194 int64_t Offset
= std::distance(GotEntries
.data(), E
) * sizeof(Entry
);
3195 return GotSec
->sh_addr
+ Offset
;
3198 template <class ELFT
>
3199 int64_t MipsGOTParser
<ELFT
>::getGotOffset(const Entry
*E
) const {
3200 int64_t Offset
= std::distance(GotEntries
.data(), E
) * sizeof(Entry
);
3201 return Offset
- 0x7ff0;
3204 template <class ELFT
>
3205 const typename MipsGOTParser
<ELFT
>::Elf_Sym
*
3206 MipsGOTParser
<ELFT
>::getGotSym(const Entry
*E
) const {
3207 int64_t Offset
= std::distance(GotEntries
.data(), E
);
3208 return &GotDynSyms
[Offset
- LocalNum
];
3211 template <class ELFT
>
3212 const typename MipsGOTParser
<ELFT
>::Entry
*
3213 MipsGOTParser
<ELFT
>::getPltLazyResolver() const {
3214 return PltEntries
.empty() ? nullptr : &PltEntries
[0];
3217 template <class ELFT
>
3218 const typename MipsGOTParser
<ELFT
>::Entry
*
3219 MipsGOTParser
<ELFT
>::getPltModulePointer() const {
3220 return PltEntries
.size() < 2 ? nullptr : &PltEntries
[1];
3223 template <class ELFT
>
3224 typename MipsGOTParser
<ELFT
>::Entries
3225 MipsGOTParser
<ELFT
>::getPltEntries() const {
3226 if (PltEntries
.size() <= 2)
3228 return PltEntries
.slice(2, PltEntries
.size() - 2);
3231 template <class ELFT
>
3232 uint64_t MipsGOTParser
<ELFT
>::getPltAddress(const Entry
*E
) const {
3233 int64_t Offset
= std::distance(PltEntries
.data(), E
) * sizeof(Entry
);
3234 return PltSec
->sh_addr
+ Offset
;
3237 template <class ELFT
>
3238 const typename MipsGOTParser
<ELFT
>::Elf_Sym
*
3239 MipsGOTParser
<ELFT
>::getPltSym(const Entry
*E
) const {
3240 int64_t Offset
= std::distance(getPltEntries().data(), E
);
3241 if (PltRelSec
->sh_type
== ELF::SHT_REL
) {
3242 Elf_Rel_Range Rels
= unwrapOrError(FileName
, Obj
.rels(*PltRelSec
));
3243 return unwrapOrError(FileName
,
3244 Obj
.getRelocationSymbol(Rels
[Offset
], PltSymTable
));
3246 Elf_Rela_Range Rels
= unwrapOrError(FileName
, Obj
.relas(*PltRelSec
));
3247 return unwrapOrError(FileName
,
3248 Obj
.getRelocationSymbol(Rels
[Offset
], PltSymTable
));
3252 const EnumEntry
<unsigned> ElfMipsISAExtType
[] = {
3253 {"None", Mips::AFL_EXT_NONE
},
3254 {"Broadcom SB-1", Mips::AFL_EXT_SB1
},
3255 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON
},
3256 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2
},
3257 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP
},
3258 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3
},
3259 {"LSI R4010", Mips::AFL_EXT_4010
},
3260 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E
},
3261 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F
},
3262 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A
},
3263 {"MIPS R4650", Mips::AFL_EXT_4650
},
3264 {"MIPS R5900", Mips::AFL_EXT_5900
},
3265 {"MIPS R10000", Mips::AFL_EXT_10000
},
3266 {"NEC VR4100", Mips::AFL_EXT_4100
},
3267 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111
},
3268 {"NEC VR4120", Mips::AFL_EXT_4120
},
3269 {"NEC VR5400", Mips::AFL_EXT_5400
},
3270 {"NEC VR5500", Mips::AFL_EXT_5500
},
3271 {"RMI Xlr", Mips::AFL_EXT_XLR
},
3272 {"Toshiba R3900", Mips::AFL_EXT_3900
}
3275 const EnumEntry
<unsigned> ElfMipsASEFlags
[] = {
3276 {"DSP", Mips::AFL_ASE_DSP
},
3277 {"DSPR2", Mips::AFL_ASE_DSPR2
},
3278 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA
},
3279 {"MCU", Mips::AFL_ASE_MCU
},
3280 {"MDMX", Mips::AFL_ASE_MDMX
},
3281 {"MIPS-3D", Mips::AFL_ASE_MIPS3D
},
3282 {"MT", Mips::AFL_ASE_MT
},
3283 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS
},
3284 {"VZ", Mips::AFL_ASE_VIRT
},
3285 {"MSA", Mips::AFL_ASE_MSA
},
3286 {"MIPS16", Mips::AFL_ASE_MIPS16
},
3287 {"microMIPS", Mips::AFL_ASE_MICROMIPS
},
3288 {"XPA", Mips::AFL_ASE_XPA
},
3289 {"CRC", Mips::AFL_ASE_CRC
},
3290 {"GINV", Mips::AFL_ASE_GINV
},
3293 const EnumEntry
<unsigned> ElfMipsFpABIType
[] = {
3294 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY
},
3295 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE
},
3296 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE
},
3297 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT
},
3298 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
3299 Mips::Val_GNU_MIPS_ABI_FP_OLD_64
},
3300 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX
},
3301 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64
},
3302 {"Hard float compat (32-bit CPU, 64-bit FPU)",
3303 Mips::Val_GNU_MIPS_ABI_FP_64A
}
3306 static const EnumEntry
<unsigned> ElfMipsFlags1
[] {
3307 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG
},
3310 static int getMipsRegisterSize(uint8_t Flag
) {
3312 case Mips::AFL_REG_NONE
:
3314 case Mips::AFL_REG_32
:
3316 case Mips::AFL_REG_64
:
3318 case Mips::AFL_REG_128
:
3325 template <class ELFT
>
3326 static void printMipsReginfoData(ScopedPrinter
&W
,
3327 const Elf_Mips_RegInfo
<ELFT
> &Reginfo
) {
3328 W
.printHex("GP", Reginfo
.ri_gp_value
);
3329 W
.printHex("General Mask", Reginfo
.ri_gprmask
);
3330 W
.printHex("Co-Proc Mask0", Reginfo
.ri_cprmask
[0]);
3331 W
.printHex("Co-Proc Mask1", Reginfo
.ri_cprmask
[1]);
3332 W
.printHex("Co-Proc Mask2", Reginfo
.ri_cprmask
[2]);
3333 W
.printHex("Co-Proc Mask3", Reginfo
.ri_cprmask
[3]);
3336 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsReginfo() {
3337 const Elf_Shdr
*RegInfoSec
= findSectionByName(".reginfo");
3339 W
.startLine() << "There is no .reginfo section in the file.\n";
3343 Expected
<ArrayRef
<uint8_t>> ContentsOrErr
=
3344 Obj
.getSectionContents(*RegInfoSec
);
3345 if (!ContentsOrErr
) {
3346 this->reportUniqueWarning(
3347 "unable to read the content of the .reginfo section (" +
3348 describe(*RegInfoSec
) + "): " + toString(ContentsOrErr
.takeError()));
3352 if (ContentsOrErr
->size() < sizeof(Elf_Mips_RegInfo
<ELFT
>)) {
3353 this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
3354 Twine::utohexstr(ContentsOrErr
->size()) + ")");
3358 DictScope
GS(W
, "MIPS RegInfo");
3359 printMipsReginfoData(W
, *reinterpret_cast<const Elf_Mips_RegInfo
<ELFT
> *>(
3360 ContentsOrErr
->data()));
3363 template <class ELFT
>
3364 static Expected
<const Elf_Mips_Options
<ELFT
> *>
3365 readMipsOptions(const uint8_t *SecBegin
, ArrayRef
<uint8_t> &SecData
,
3366 bool &IsSupported
) {
3367 if (SecData
.size() < sizeof(Elf_Mips_Options
<ELFT
>))
3368 return createError("the .MIPS.options section has an invalid size (0x" +
3369 Twine::utohexstr(SecData
.size()) + ")");
3371 const Elf_Mips_Options
<ELFT
> *O
=
3372 reinterpret_cast<const Elf_Mips_Options
<ELFT
> *>(SecData
.data());
3373 const uint8_t Size
= O
->size
;
3374 if (Size
> SecData
.size()) {
3375 const uint64_t Offset
= SecData
.data() - SecBegin
;
3376 const uint64_t SecSize
= Offset
+ SecData
.size();
3377 return createError("a descriptor of size 0x" + Twine::utohexstr(Size
) +
3378 " at offset 0x" + Twine::utohexstr(Offset
) +
3379 " goes past the end of the .MIPS.options "
3380 "section of size 0x" +
3381 Twine::utohexstr(SecSize
));
3384 IsSupported
= O
->kind
== ODK_REGINFO
;
3385 const size_t ExpectedSize
=
3386 sizeof(Elf_Mips_Options
<ELFT
>) + sizeof(Elf_Mips_RegInfo
<ELFT
>);
3389 if (Size
< ExpectedSize
)
3391 "a .MIPS.options entry of kind " +
3392 Twine(getElfMipsOptionsOdkType(O
->kind
)) +
3393 " has an invalid size (0x" + Twine::utohexstr(Size
) +
3394 "), the expected size is 0x" + Twine::utohexstr(ExpectedSize
));
3396 SecData
= SecData
.drop_front(Size
);
3400 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsOptions() {
3401 const Elf_Shdr
*MipsOpts
= findSectionByName(".MIPS.options");
3403 W
.startLine() << "There is no .MIPS.options section in the file.\n";
3407 DictScope
GS(W
, "MIPS Options");
3409 ArrayRef
<uint8_t> Data
=
3410 unwrapOrError(ObjF
.getFileName(), Obj
.getSectionContents(*MipsOpts
));
3411 const uint8_t *const SecBegin
= Data
.begin();
3412 while (!Data
.empty()) {
3414 Expected
<const Elf_Mips_Options
<ELFT
> *> OptsOrErr
=
3415 readMipsOptions
<ELFT
>(SecBegin
, Data
, IsSupported
);
3417 reportUniqueWarning(OptsOrErr
.takeError());
3421 unsigned Kind
= (*OptsOrErr
)->kind
;
3422 const char *Type
= getElfMipsOptionsOdkType(Kind
);
3424 W
.startLine() << "Unsupported MIPS options tag: " << Type
<< " (" << Kind
3429 DictScope
GS(W
, Type
);
3430 if (Kind
== ODK_REGINFO
)
3431 printMipsReginfoData(W
, (*OptsOrErr
)->getRegInfo());
3433 llvm_unreachable("unexpected .MIPS.options section descriptor kind");
3437 template <class ELFT
> void ELFDumper
<ELFT
>::printStackMap() const {
3438 const Elf_Shdr
*StackMapSection
= findSectionByName(".llvm_stackmaps");
3439 if (!StackMapSection
)
3442 auto Warn
= [&](Error
&&E
) {
3443 this->reportUniqueWarning("unable to read the stack map from " +
3444 describe(*StackMapSection
) + ": " +
3445 toString(std::move(E
)));
3448 Expected
<ArrayRef
<uint8_t>> ContentOrErr
=
3449 Obj
.getSectionContents(*StackMapSection
);
3450 if (!ContentOrErr
) {
3451 Warn(ContentOrErr
.takeError());
3456 StackMapParser
<ELFT::Endianness
>::validateHeader(*ContentOrErr
)) {
3461 prettyPrintStackMap(W
, StackMapParser
<ELFT::Endianness
>(*ContentOrErr
));
3464 template <class ELFT
>
3465 void ELFDumper
<ELFT
>::printReloc(const Relocation
<ELFT
> &R
, unsigned RelIndex
,
3466 const Elf_Shdr
&Sec
, const Elf_Shdr
*SymTab
) {
3467 Expected
<RelSymbol
<ELFT
>> Target
= getRelocationTarget(R
, SymTab
);
3469 reportUniqueWarning("unable to print relocation " + Twine(RelIndex
) +
3470 " in " + describe(Sec
) + ": " +
3471 toString(Target
.takeError()));
3473 printRelRelaReloc(R
, *Target
);
3476 template <class ELFT
>
3477 std::vector
<EnumEntry
<unsigned>>
3478 ELFDumper
<ELFT
>::getOtherFlagsFromSymbol(const Elf_Ehdr
&Header
,
3479 const Elf_Sym
&Symbol
) const {
3480 std::vector
<EnumEntry
<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags
),
3481 std::end(ElfSymOtherFlags
));
3482 if (Header
.e_machine
== EM_MIPS
) {
3483 // Someone in their infinite wisdom decided to make STO_MIPS_MIPS16
3484 // flag overlap with other ST_MIPS_xxx flags. So consider both
3485 // cases separately.
3486 if ((Symbol
.st_other
& STO_MIPS_MIPS16
) == STO_MIPS_MIPS16
)
3487 SymOtherFlags
.insert(SymOtherFlags
.end(),
3488 std::begin(ElfMips16SymOtherFlags
),
3489 std::end(ElfMips16SymOtherFlags
));
3491 SymOtherFlags
.insert(SymOtherFlags
.end(),
3492 std::begin(ElfMipsSymOtherFlags
),
3493 std::end(ElfMipsSymOtherFlags
));
3494 } else if (Header
.e_machine
== EM_AARCH64
) {
3495 SymOtherFlags
.insert(SymOtherFlags
.end(),
3496 std::begin(ElfAArch64SymOtherFlags
),
3497 std::end(ElfAArch64SymOtherFlags
));
3498 } else if (Header
.e_machine
== EM_RISCV
) {
3499 SymOtherFlags
.insert(SymOtherFlags
.end(), std::begin(ElfRISCVSymOtherFlags
),
3500 std::end(ElfRISCVSymOtherFlags
));
3502 return SymOtherFlags
;
3505 static inline void printFields(formatted_raw_ostream
&OS
, StringRef Str1
,
3509 OS
.PadToColumn(37u);
3514 template <class ELFT
>
3515 static std::string
getSectionHeadersNumString(const ELFFile
<ELFT
> &Obj
,
3516 StringRef FileName
) {
3517 const typename
ELFT::Ehdr
&ElfHeader
= Obj
.getHeader();
3518 if (ElfHeader
.e_shnum
!= 0)
3519 return to_string(ElfHeader
.e_shnum
);
3521 Expected
<ArrayRef
<typename
ELFT::Shdr
>> ArrOrErr
= Obj
.sections();
3523 // In this case we can ignore an error, because we have already reported a
3524 // warning about the broken section header table earlier.
3525 consumeError(ArrOrErr
.takeError());
3529 if (ArrOrErr
->empty())
3531 return "0 (" + to_string((*ArrOrErr
)[0].sh_size
) + ")";
3534 template <class ELFT
>
3535 static std::string
getSectionHeaderTableIndexString(const ELFFile
<ELFT
> &Obj
,
3536 StringRef FileName
) {
3537 const typename
ELFT::Ehdr
&ElfHeader
= Obj
.getHeader();
3538 if (ElfHeader
.e_shstrndx
!= SHN_XINDEX
)
3539 return to_string(ElfHeader
.e_shstrndx
);
3541 Expected
<ArrayRef
<typename
ELFT::Shdr
>> ArrOrErr
= Obj
.sections();
3543 // In this case we can ignore an error, because we have already reported a
3544 // warning about the broken section header table earlier.
3545 consumeError(ArrOrErr
.takeError());
3549 if (ArrOrErr
->empty())
3550 return "65535 (corrupt: out of range)";
3551 return to_string(ElfHeader
.e_shstrndx
) + " (" +
3552 to_string((*ArrOrErr
)[0].sh_link
) + ")";
3555 static const EnumEntry
<unsigned> *getObjectFileEnumEntry(unsigned Type
) {
3556 auto It
= llvm::find_if(ElfObjectFileType
, [&](const EnumEntry
<unsigned> &E
) {
3557 return E
.Value
== Type
;
3559 if (It
!= ArrayRef(ElfObjectFileType
).end())
3564 template <class ELFT
>
3565 void GNUELFDumper
<ELFT
>::printFileSummary(StringRef FileStr
, ObjectFile
&Obj
,
3566 ArrayRef
<std::string
> InputFilenames
,
3568 if (InputFilenames
.size() > 1 || A
) {
3569 this->W
.startLine() << "\n";
3570 this->W
.printString("File", FileStr
);
3574 template <class ELFT
> void GNUELFDumper
<ELFT
>::printFileHeaders() {
3575 const Elf_Ehdr
&e
= this->Obj
.getHeader();
3576 OS
<< "ELF Header:\n";
3579 for (int i
= 0; i
< ELF::EI_NIDENT
; i
++)
3580 OS
<< format(" %02x", static_cast<int>(e
.e_ident
[i
]));
3582 Str
= enumToString(e
.e_ident
[ELF::EI_CLASS
], ArrayRef(ElfClass
));
3583 printFields(OS
, "Class:", Str
);
3584 Str
= enumToString(e
.e_ident
[ELF::EI_DATA
], ArrayRef(ElfDataEncoding
));
3585 printFields(OS
, "Data:", Str
);
3588 OS
.PadToColumn(37u);
3589 OS
<< utohexstr(e
.e_ident
[ELF::EI_VERSION
]);
3590 if (e
.e_version
== ELF::EV_CURRENT
)
3593 auto OSABI
= ArrayRef(ElfOSABI
);
3594 if (e
.e_ident
[ELF::EI_OSABI
] >= ELF::ELFOSABI_FIRST_ARCH
&&
3595 e
.e_ident
[ELF::EI_OSABI
] <= ELF::ELFOSABI_LAST_ARCH
) {
3596 switch (e
.e_machine
) {
3598 OSABI
= ArrayRef(ARMElfOSABI
);
3600 case ELF::EM_AMDGPU
:
3601 OSABI
= ArrayRef(AMDGPUElfOSABI
);
3607 Str
= enumToString(e
.e_ident
[ELF::EI_OSABI
], OSABI
);
3608 printFields(OS
, "OS/ABI:", Str
);
3610 "ABI Version:", std::to_string(e
.e_ident
[ELF::EI_ABIVERSION
]));
3612 if (const EnumEntry
<unsigned> *E
= getObjectFileEnumEntry(e
.e_type
)) {
3613 Str
= E
->AltName
.str();
3615 if (e
.e_type
>= ET_LOPROC
)
3616 Str
= "Processor Specific: (" + utohexstr(e
.e_type
, /*LowerCase=*/true) + ")";
3617 else if (e
.e_type
>= ET_LOOS
)
3618 Str
= "OS Specific: (" + utohexstr(e
.e_type
, /*LowerCase=*/true) + ")";
3620 Str
= "<unknown>: " + utohexstr(e
.e_type
, /*LowerCase=*/true);
3622 printFields(OS
, "Type:", Str
);
3624 Str
= enumToString(e
.e_machine
, ArrayRef(ElfMachineType
));
3625 printFields(OS
, "Machine:", Str
);
3626 Str
= "0x" + utohexstr(e
.e_version
);
3627 printFields(OS
, "Version:", Str
);
3628 Str
= "0x" + utohexstr(e
.e_entry
);
3629 printFields(OS
, "Entry point address:", Str
);
3630 Str
= to_string(e
.e_phoff
) + " (bytes into file)";
3631 printFields(OS
, "Start of program headers:", Str
);
3632 Str
= to_string(e
.e_shoff
) + " (bytes into file)";
3633 printFields(OS
, "Start of section headers:", Str
);
3634 std::string ElfFlags
;
3635 if (e
.e_machine
== EM_MIPS
)
3636 ElfFlags
= printFlags(
3637 e
.e_flags
, ArrayRef(ElfHeaderMipsFlags
), unsigned(ELF::EF_MIPS_ARCH
),
3638 unsigned(ELF::EF_MIPS_ABI
), unsigned(ELF::EF_MIPS_MACH
));
3639 else if (e
.e_machine
== EM_RISCV
)
3640 ElfFlags
= printFlags(e
.e_flags
, ArrayRef(ElfHeaderRISCVFlags
));
3641 else if (e
.e_machine
== EM_SPARC32PLUS
|| e
.e_machine
== EM_SPARCV9
)
3642 ElfFlags
= printFlags(e
.e_flags
, ArrayRef(ElfHeaderSPARCFlags
),
3643 unsigned(ELF::EF_SPARCV9_MM
));
3644 else if (e
.e_machine
== EM_AVR
)
3645 ElfFlags
= printFlags(e
.e_flags
, ArrayRef(ElfHeaderAVRFlags
),
3646 unsigned(ELF::EF_AVR_ARCH_MASK
));
3647 else if (e
.e_machine
== EM_LOONGARCH
)
3648 ElfFlags
= printFlags(e
.e_flags
, ArrayRef(ElfHeaderLoongArchFlags
),
3649 unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK
),
3650 unsigned(ELF::EF_LOONGARCH_OBJABI_MASK
));
3651 else if (e
.e_machine
== EM_XTENSA
)
3652 ElfFlags
= printFlags(e
.e_flags
, ArrayRef(ElfHeaderXtensaFlags
),
3653 unsigned(ELF::EF_XTENSA_MACH
));
3654 else if (e
.e_machine
== EM_CUDA
)
3655 ElfFlags
= printFlags(e
.e_flags
, ArrayRef(ElfHeaderNVPTXFlags
),
3656 unsigned(ELF::EF_CUDA_SM
));
3657 else if (e
.e_machine
== EM_AMDGPU
) {
3658 switch (e
.e_ident
[ELF::EI_ABIVERSION
]) {
3662 // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
3664 case ELF::ELFABIVERSION_AMDGPU_HSA_V3
:
3666 printFlags(e
.e_flags
, ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3
),
3667 unsigned(ELF::EF_AMDGPU_MACH
));
3669 case ELF::ELFABIVERSION_AMDGPU_HSA_V4
:
3670 case ELF::ELFABIVERSION_AMDGPU_HSA_V5
:
3672 printFlags(e
.e_flags
, ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4
),
3673 unsigned(ELF::EF_AMDGPU_MACH
),
3674 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4
),
3675 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4
));
3677 case ELF::ELFABIVERSION_AMDGPU_HSA_V6
: {
3679 printFlags(e
.e_flags
, ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4
),
3680 unsigned(ELF::EF_AMDGPU_MACH
),
3681 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4
),
3682 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4
));
3683 if (auto GenericV
= e
.e_flags
& ELF::EF_AMDGPU_GENERIC_VERSION
) {
3686 to_string(GenericV
>> ELF::EF_AMDGPU_GENERIC_VERSION_OFFSET
);
3691 Str
= "0x" + utohexstr(e
.e_flags
);
3692 if (!ElfFlags
.empty())
3693 Str
= Str
+ ", " + ElfFlags
;
3694 printFields(OS
, "Flags:", Str
);
3695 Str
= to_string(e
.e_ehsize
) + " (bytes)";
3696 printFields(OS
, "Size of this header:", Str
);
3697 Str
= to_string(e
.e_phentsize
) + " (bytes)";
3698 printFields(OS
, "Size of program headers:", Str
);
3699 Str
= to_string(e
.e_phnum
);
3700 printFields(OS
, "Number of program headers:", Str
);
3701 Str
= to_string(e
.e_shentsize
) + " (bytes)";
3702 printFields(OS
, "Size of section headers:", Str
);
3703 Str
= getSectionHeadersNumString(this->Obj
, this->FileName
);
3704 printFields(OS
, "Number of section headers:", Str
);
3705 Str
= getSectionHeaderTableIndexString(this->Obj
, this->FileName
);
3706 printFields(OS
, "Section header string table index:", Str
);
3709 template <class ELFT
> std::vector
<GroupSection
> ELFDumper
<ELFT
>::getGroups() {
3710 auto GetSignature
= [&](const Elf_Sym
&Sym
, unsigned SymNdx
,
3711 const Elf_Shdr
&Symtab
) -> StringRef
{
3712 Expected
<StringRef
> StrTableOrErr
= Obj
.getStringTableForSymtab(Symtab
);
3713 if (!StrTableOrErr
) {
3714 reportUniqueWarning("unable to get the string table for " +
3715 describe(Symtab
) + ": " +
3716 toString(StrTableOrErr
.takeError()));
3720 StringRef Strings
= *StrTableOrErr
;
3721 if (Sym
.st_name
>= Strings
.size()) {
3722 reportUniqueWarning("unable to get the name of the symbol with index " +
3723 Twine(SymNdx
) + ": st_name (0x" +
3724 Twine::utohexstr(Sym
.st_name
) +
3725 ") is past the end of the string table of size 0x" +
3726 Twine::utohexstr(Strings
.size()));
3730 return StrTableOrErr
->data() + Sym
.st_name
;
3733 std::vector
<GroupSection
> Ret
;
3735 for (const Elf_Shdr
&Sec
: cantFail(Obj
.sections())) {
3737 if (Sec
.sh_type
!= ELF::SHT_GROUP
)
3740 StringRef Signature
= "<?>";
3741 if (Expected
<const Elf_Shdr
*> SymtabOrErr
= Obj
.getSection(Sec
.sh_link
)) {
3742 if (Expected
<const Elf_Sym
*> SymOrErr
=
3743 Obj
.template getEntry
<Elf_Sym
>(**SymtabOrErr
, Sec
.sh_info
))
3744 Signature
= GetSignature(**SymOrErr
, Sec
.sh_info
, **SymtabOrErr
);
3746 reportUniqueWarning("unable to get the signature symbol for " +
3747 describe(Sec
) + ": " +
3748 toString(SymOrErr
.takeError()));
3750 reportUniqueWarning("unable to get the symbol table for " +
3751 describe(Sec
) + ": " +
3752 toString(SymtabOrErr
.takeError()));
3755 ArrayRef
<Elf_Word
> Data
;
3756 if (Expected
<ArrayRef
<Elf_Word
>> ContentsOrErr
=
3757 Obj
.template getSectionContentsAsArray
<Elf_Word
>(Sec
)) {
3758 if (ContentsOrErr
->empty())
3759 reportUniqueWarning("unable to read the section group flag from the " +
3760 describe(Sec
) + ": the section is empty");
3762 Data
= *ContentsOrErr
;
3764 reportUniqueWarning("unable to get the content of the " + describe(Sec
) +
3765 ": " + toString(ContentsOrErr
.takeError()));
3768 Ret
.push_back({getPrintableSectionName(Sec
),
3769 maybeDemangle(Signature
),
3774 Data
.empty() ? Elf_Word(0) : Data
[0],
3780 std::vector
<GroupMember
> &GM
= Ret
.back().Members
;
3781 for (uint32_t Ndx
: Data
.slice(1)) {
3782 if (Expected
<const Elf_Shdr
*> SecOrErr
= Obj
.getSection(Ndx
)) {
3783 GM
.push_back({getPrintableSectionName(**SecOrErr
), Ndx
});
3785 reportUniqueWarning("unable to get the section with index " +
3786 Twine(Ndx
) + " when dumping the " + describe(Sec
) +
3787 ": " + toString(SecOrErr
.takeError()));
3788 GM
.push_back({"<?>", Ndx
});
3795 static DenseMap
<uint64_t, const GroupSection
*>
3796 mapSectionsToGroups(ArrayRef
<GroupSection
> Groups
) {
3797 DenseMap
<uint64_t, const GroupSection
*> Ret
;
3798 for (const GroupSection
&G
: Groups
)
3799 for (const GroupMember
&GM
: G
.Members
)
3800 Ret
.insert({GM
.Index
, &G
});
3804 template <class ELFT
> void GNUELFDumper
<ELFT
>::printGroupSections() {
3805 std::vector
<GroupSection
> V
= this->getGroups();
3806 DenseMap
<uint64_t, const GroupSection
*> Map
= mapSectionsToGroups(V
);
3807 for (const GroupSection
&G
: V
) {
3809 << getGroupType(G
.Type
) << " group section ["
3810 << format_decimal(G
.Index
, 5) << "] `" << G
.Name
<< "' [" << G
.Signature
3811 << "] contains " << G
.Members
.size() << " sections:\n"
3812 << " [Index] Name\n";
3813 for (const GroupMember
&GM
: G
.Members
) {
3814 const GroupSection
*MainGroup
= Map
[GM
.Index
];
3815 if (MainGroup
!= &G
)
3816 this->reportUniqueWarning(
3817 "section with index " + Twine(GM
.Index
) +
3818 ", included in the group section with index " +
3819 Twine(MainGroup
->Index
) +
3820 ", was also found in the group section with index " +
3822 OS
<< " [" << format_decimal(GM
.Index
, 5) << "] " << GM
.Name
<< "\n";
3827 OS
<< "There are no section groups in this file.\n";
3830 template <class ELFT
>
3831 void GNUELFDumper
<ELFT
>::printRelRelaReloc(const Relocation
<ELFT
> &R
,
3832 const RelSymbol
<ELFT
> &RelSym
) {
3833 // First two fields are bit width dependent. The rest of them are fixed width.
3834 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
3835 Field Fields
[5] = {0, 10 + Bias
, 19 + 2 * Bias
, 42 + 2 * Bias
, 53 + 2 * Bias
};
3836 unsigned Width
= ELFT::Is64Bits
? 16 : 8;
3838 Fields
[0].Str
= to_string(format_hex_no_prefix(R
.Offset
, Width
));
3839 Fields
[1].Str
= to_string(format_hex_no_prefix(R
.Info
, Width
));
3841 SmallString
<32> RelocName
;
3842 this->Obj
.getRelocationTypeName(R
.Type
, RelocName
);
3843 Fields
[2].Str
= RelocName
.c_str();
3847 to_string(format_hex_no_prefix(RelSym
.Sym
->getValue(), Width
));
3848 if (RelSym
.Sym
&& RelSym
.Name
.empty())
3849 Fields
[4].Str
= "<null>";
3851 Fields
[4].Str
= std::string(RelSym
.Name
);
3853 for (const Field
&F
: Fields
)
3857 if (std::optional
<int64_t> A
= R
.Addend
) {
3858 int64_t RelAddend
= *A
;
3859 if (!Fields
[4].Str
.empty()) {
3860 if (RelAddend
< 0) {
3862 RelAddend
= -static_cast<uint64_t>(RelAddend
);
3867 Addend
+= utohexstr(RelAddend
, /*LowerCase=*/true);
3869 OS
<< Addend
<< "\n";
3872 template <class ELFT
>
3873 static void printRelocHeaderFields(formatted_raw_ostream
&OS
, unsigned SType
,
3874 const typename
ELFT::Ehdr
&EHeader
,
3875 uint64_t CrelHdr
= 0) {
3876 bool IsRela
= SType
== ELF::SHT_RELA
|| SType
== ELF::SHT_ANDROID_RELA
;
3878 OS
<< " Offset Info Type Symbol's "
3879 "Value Symbol's Name";
3881 OS
<< " Offset Info Type Sym. Value Symbol's Name";
3882 if (IsRela
|| (SType
== ELF::SHT_CREL
&& (CrelHdr
& CREL_HDR_ADDEND
)))
3887 template <class ELFT
>
3888 void GNUELFDumper
<ELFT
>::printDynamicRelocHeader(unsigned Type
, StringRef Name
,
3889 const DynRegionInfo
&Reg
) {
3890 uint64_t Offset
= Reg
.Addr
- this->Obj
.base();
3891 OS
<< "\n'" << Name
.str().c_str() << "' relocation section at offset 0x"
3892 << utohexstr(Offset
, /*LowerCase=*/true);
3893 if (Type
!= ELF::SHT_CREL
)
3894 OS
<< " contains " << Reg
.Size
<< " bytes";
3896 printRelocHeaderFields
<ELFT
>(OS
, Type
, this->Obj
.getHeader());
3899 template <class ELFT
>
3900 static bool isRelocationSec(const typename
ELFT::Shdr
&Sec
,
3901 const typename
ELFT::Ehdr
&EHeader
) {
3902 return Sec
.sh_type
== ELF::SHT_REL
|| Sec
.sh_type
== ELF::SHT_RELA
||
3903 Sec
.sh_type
== ELF::SHT_RELR
|| Sec
.sh_type
== ELF::SHT_CREL
||
3904 Sec
.sh_type
== ELF::SHT_ANDROID_REL
||
3905 Sec
.sh_type
== ELF::SHT_ANDROID_RELA
||
3906 Sec
.sh_type
== ELF::SHT_ANDROID_RELR
||
3907 (EHeader
.e_machine
== EM_AARCH64
&&
3908 Sec
.sh_type
== ELF::SHT_AARCH64_AUTH_RELR
);
3911 template <class ELFT
> void GNUELFDumper
<ELFT
>::printRelocations() {
3912 auto PrintAsRelr
= [&](const Elf_Shdr
&Sec
) {
3913 return Sec
.sh_type
== ELF::SHT_RELR
||
3914 Sec
.sh_type
== ELF::SHT_ANDROID_RELR
||
3915 (this->Obj
.getHeader().e_machine
== EM_AARCH64
&&
3916 Sec
.sh_type
== ELF::SHT_AARCH64_AUTH_RELR
);
3918 auto GetEntriesNum
= [&](const Elf_Shdr
&Sec
) -> Expected
<size_t> {
3919 // Android's packed relocation section needs to be unpacked first
3920 // to get the actual number of entries.
3921 if (Sec
.sh_type
== ELF::SHT_ANDROID_REL
||
3922 Sec
.sh_type
== ELF::SHT_ANDROID_RELA
) {
3923 Expected
<std::vector
<typename
ELFT::Rela
>> RelasOrErr
=
3924 this->Obj
.android_relas(Sec
);
3926 return RelasOrErr
.takeError();
3927 return RelasOrErr
->size();
3930 if (Sec
.sh_type
== ELF::SHT_CREL
) {
3931 Expected
<ArrayRef
<uint8_t>> ContentsOrErr
=
3932 this->Obj
.getSectionContents(Sec
);
3934 return ContentsOrErr
.takeError();
3935 auto NumOrErr
= this->Obj
.getCrelHeader(*ContentsOrErr
);
3937 return NumOrErr
.takeError();
3938 return *NumOrErr
/ 8;
3941 if (PrintAsRelr(Sec
)) {
3942 Expected
<Elf_Relr_Range
> RelrsOrErr
= this->Obj
.relrs(Sec
);
3944 return RelrsOrErr
.takeError();
3945 return this->Obj
.decode_relrs(*RelrsOrErr
).size();
3948 return Sec
.getEntityCount();
3951 bool HasRelocSections
= false;
3952 for (const Elf_Shdr
&Sec
: cantFail(this->Obj
.sections())) {
3953 if (!isRelocationSec
<ELFT
>(Sec
, this->Obj
.getHeader()))
3955 HasRelocSections
= true;
3957 std::string EntriesNum
= "<?>";
3958 if (Expected
<size_t> NumOrErr
= GetEntriesNum(Sec
))
3959 EntriesNum
= std::to_string(*NumOrErr
);
3961 this->reportUniqueWarning("unable to get the number of relocations in " +
3962 this->describe(Sec
) + ": " +
3963 toString(NumOrErr
.takeError()));
3965 uintX_t Offset
= Sec
.sh_offset
;
3966 StringRef Name
= this->getPrintableSectionName(Sec
);
3967 OS
<< "\nRelocation section '" << Name
<< "' at offset 0x"
3968 << utohexstr(Offset
, /*LowerCase=*/true) << " contains " << EntriesNum
3971 if (PrintAsRelr(Sec
)) {
3974 uint64_t CrelHdr
= 0;
3975 // For CREL, read the header and call printRelocationsHelper only if
3976 // GetEntriesNum(Sec) succeeded.
3977 if (Sec
.sh_type
== ELF::SHT_CREL
&& EntriesNum
!= "<?>") {
3978 CrelHdr
= cantFail(this->Obj
.getCrelHeader(
3979 cantFail(this->Obj
.getSectionContents(Sec
))));
3981 printRelocHeaderFields
<ELFT
>(OS
, Sec
.sh_type
, this->Obj
.getHeader(),
3983 if (Sec
.sh_type
!= ELF::SHT_CREL
|| EntriesNum
!= "<?>")
3984 this->printRelocationsHelper(Sec
);
3987 if (!HasRelocSections
)
3988 OS
<< "\nThere are no relocations in this file.\n";
3991 template <class ELFT
> void GNUELFDumper
<ELFT
>::printRelr(const Elf_Shdr
&Sec
) {
3992 Expected
<Elf_Relr_Range
> RangeOrErr
= this->Obj
.relrs(Sec
);
3994 this->reportUniqueWarning("unable to read relocations from " +
3995 this->describe(Sec
) + ": " +
3996 toString(RangeOrErr
.takeError()));
4000 OS
<< "Index: Entry Address Symbolic Address\n";
4002 OS
<< "Index: Entry Address Symbolic Address\n";
4004 // If .symtab is available, collect its defined symbols and sort them by
4006 SmallVector
<std::pair
<uint64_t, std::string
>, 0> Syms
;
4007 if (this->DotSymtabSec
) {
4008 Elf_Sym_Range Symtab
;
4009 std::optional
<StringRef
> Strtab
;
4010 std::tie(Symtab
, Strtab
) = this->getSymtabAndStrtab();
4011 if (Symtab
.size() && Strtab
) {
4012 for (auto [I
, Sym
] : enumerate(Symtab
)) {
4015 Syms
.emplace_back(Sym
.st_value
,
4016 this->getFullSymbolName(Sym
, I
, ArrayRef
<Elf_Word
>(),
4021 llvm::stable_sort(Syms
);
4023 typename
ELFT::uint Base
= 0;
4025 auto Print
= [&](uint64_t Where
) {
4026 OS
<< format_hex_no_prefix(Where
, ELFT::Is64Bits
? 16 : 8);
4027 for (; I
< Syms
.size() && Syms
[I
].first
<= Where
; ++I
)
4029 // Try symbolizing the address. Find the nearest symbol before or at the
4030 // address and print the symbol and the address difference.
4032 OS
<< " " << Syms
[I
- 1].second
;
4033 if (Syms
[I
- 1].first
< Where
)
4034 OS
<< " + 0x" << Twine::utohexstr(Where
- Syms
[I
- 1].first
);
4038 for (auto [Index
, R
] : enumerate(*RangeOrErr
)) {
4039 typename
ELFT::uint Entry
= R
;
4040 OS
<< formatv("{0:4}: ", Index
)
4041 << format_hex_no_prefix(Entry
, ELFT::Is64Bits
? 16 : 8) << ' ';
4042 if ((Entry
& 1) == 0) {
4044 Base
= Entry
+ sizeof(typename
ELFT::uint
);
4047 for (auto Where
= Base
; Entry
>>= 1;
4048 Where
+= sizeof(typename
ELFT::uint
)) {
4053 OS
.indent(ELFT::Is64Bits
? 24 : 16);
4057 Base
+= (CHAR_BIT
* sizeof(Entry
) - 1) * sizeof(typename
ELFT::uint
);
4062 // Print the offset of a particular section from anyone of the ranges:
4063 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
4064 // If 'Type' does not fall within any of those ranges, then a string is
4065 // returned as '<unknown>' followed by the type value.
4066 static std::string
getSectionTypeOffsetString(unsigned Type
) {
4067 if (Type
>= SHT_LOOS
&& Type
<= SHT_HIOS
)
4068 return "LOOS+0x" + utohexstr(Type
- SHT_LOOS
);
4069 else if (Type
>= SHT_LOPROC
&& Type
<= SHT_HIPROC
)
4070 return "LOPROC+0x" + utohexstr(Type
- SHT_LOPROC
);
4071 else if (Type
>= SHT_LOUSER
&& Type
<= SHT_HIUSER
)
4072 return "LOUSER+0x" + utohexstr(Type
- SHT_LOUSER
);
4073 return "0x" + utohexstr(Type
) + ": <unknown>";
4076 static std::string
getSectionTypeString(unsigned Machine
, unsigned Type
) {
4077 StringRef Name
= getELFSectionTypeName(Machine
, Type
);
4079 // Handle SHT_GNU_* type names.
4080 if (Name
.consume_front("SHT_GNU_")) {
4083 // E.g. SHT_GNU_verneed -> VERNEED.
4084 return Name
.upper();
4087 if (Name
== "SHT_SYMTAB_SHNDX")
4088 return "SYMTAB SECTION INDICES";
4090 if (Name
.consume_front("SHT_"))
4092 return getSectionTypeOffsetString(Type
);
4095 static void printSectionDescription(formatted_raw_ostream
&OS
,
4096 unsigned EMachine
) {
4097 OS
<< "Key to Flags:\n";
4098 OS
<< " W (write), A (alloc), X (execute), M (merge), S (strings), I "
4100 OS
<< " L (link order), O (extra OS processing required), G (group), T "
4102 OS
<< " C (compressed), x (unknown), o (OS specific), E (exclude),\n";
4103 OS
<< " R (retain)";
4105 if (EMachine
== EM_X86_64
)
4106 OS
<< ", l (large)";
4107 else if (EMachine
== EM_ARM
)
4108 OS
<< ", y (purecode)";
4110 OS
<< ", p (processor specific)\n";
4113 template <class ELFT
> void GNUELFDumper
<ELFT
>::printSectionHeaders() {
4114 ArrayRef
<Elf_Shdr
> Sections
= cantFail(this->Obj
.sections());
4115 if (Sections
.empty()) {
4116 OS
<< "\nThere are no sections in this file.\n";
4117 Expected
<StringRef
> SecStrTableOrErr
=
4118 this->Obj
.getSectionStringTable(Sections
, this->WarningHandler
);
4119 if (!SecStrTableOrErr
)
4120 this->reportUniqueWarning(SecStrTableOrErr
.takeError());
4123 unsigned Bias
= ELFT::Is64Bits
? 0 : 8;
4124 OS
<< "There are " << to_string(Sections
.size())
4125 << " section headers, starting at offset "
4126 << "0x" << utohexstr(this->Obj
.getHeader().e_shoff
, /*LowerCase=*/true) << ":\n\n";
4127 OS
<< "Section Headers:\n";
4128 Field Fields
[11] = {
4129 {"[Nr]", 2}, {"Name", 7}, {"Type", 25},
4130 {"Address", 41}, {"Off", 58 - Bias
}, {"Size", 65 - Bias
},
4131 {"ES", 72 - Bias
}, {"Flg", 75 - Bias
}, {"Lk", 79 - Bias
},
4132 {"Inf", 82 - Bias
}, {"Al", 86 - Bias
}};
4133 for (const Field
&F
: Fields
)
4137 StringRef SecStrTable
;
4138 if (Expected
<StringRef
> SecStrTableOrErr
=
4139 this->Obj
.getSectionStringTable(Sections
, this->WarningHandler
))
4140 SecStrTable
= *SecStrTableOrErr
;
4142 this->reportUniqueWarning(SecStrTableOrErr
.takeError());
4144 size_t SectionIndex
= 0;
4145 for (const Elf_Shdr
&Sec
: Sections
) {
4146 Fields
[0].Str
= to_string(SectionIndex
);
4147 if (SecStrTable
.empty())
4148 Fields
[1].Str
= "<no-strings>";
4150 Fields
[1].Str
= std::string(unwrapOrError
<StringRef
>(
4151 this->FileName
, this->Obj
.getSectionName(Sec
, SecStrTable
)));
4153 getSectionTypeString(this->Obj
.getHeader().e_machine
, Sec
.sh_type
);
4155 to_string(format_hex_no_prefix(Sec
.sh_addr
, ELFT::Is64Bits
? 16 : 8));
4156 Fields
[4].Str
= to_string(format_hex_no_prefix(Sec
.sh_offset
, 6));
4157 Fields
[5].Str
= to_string(format_hex_no_prefix(Sec
.sh_size
, 6));
4158 Fields
[6].Str
= to_string(format_hex_no_prefix(Sec
.sh_entsize
, 2));
4159 Fields
[7].Str
= getGNUFlags(this->Obj
.getHeader().e_ident
[ELF::EI_OSABI
],
4160 this->Obj
.getHeader().e_machine
, Sec
.sh_flags
);
4161 Fields
[8].Str
= to_string(Sec
.sh_link
);
4162 Fields
[9].Str
= to_string(Sec
.sh_info
);
4163 Fields
[10].Str
= to_string(Sec
.sh_addralign
);
4165 OS
.PadToColumn(Fields
[0].Column
);
4166 OS
<< "[" << right_justify(Fields
[0].Str
, 2) << "]";
4167 for (int i
= 1; i
< 7; i
++)
4168 printField(Fields
[i
]);
4169 OS
.PadToColumn(Fields
[7].Column
);
4170 OS
<< right_justify(Fields
[7].Str
, 3);
4171 OS
.PadToColumn(Fields
[8].Column
);
4172 OS
<< right_justify(Fields
[8].Str
, 2);
4173 OS
.PadToColumn(Fields
[9].Column
);
4174 OS
<< right_justify(Fields
[9].Str
, 3);
4175 OS
.PadToColumn(Fields
[10].Column
);
4176 OS
<< right_justify(Fields
[10].Str
, 2);
4180 printSectionDescription(OS
, this->Obj
.getHeader().e_machine
);
4183 template <class ELFT
>
4184 void GNUELFDumper
<ELFT
>::printSymtabMessage(const Elf_Shdr
*Symtab
,
4186 bool NonVisibilityBitsUsed
,
4187 bool ExtraSymInfo
) const {
4190 Name
= this->getPrintableSectionName(*Symtab
);
4192 OS
<< "\nSymbol table '" << Name
<< "'";
4194 OS
<< "\nSymbol table for image";
4195 OS
<< " contains " << Entries
<< " entries:\n";
4197 if (ELFT::Is64Bits
) {
4198 OS
<< " Num: Value Size Type Bind Vis";
4202 OS
<< " Num: Value Size Type Bind Vis";
4207 OS
.PadToColumn((ELFT::Is64Bits
? 56 : 48) + (NonVisibilityBitsUsed
? 13 : 0));
4209 OS
<< "Ndx(SecName) Name [+ Version Info]\n";
4214 template <class ELFT
>
4215 std::string GNUELFDumper
<ELFT
>::getSymbolSectionNdx(
4216 const Elf_Sym
&Symbol
, unsigned SymIndex
, DataRegion
<Elf_Word
> ShndxTable
,
4217 bool ExtraSymInfo
) const {
4218 unsigned SectionIndex
= Symbol
.st_shndx
;
4219 switch (SectionIndex
) {
4220 case ELF::SHN_UNDEF
:
4224 case ELF::SHN_COMMON
:
4226 case ELF::SHN_XINDEX
: {
4227 Expected
<uint32_t> IndexOrErr
=
4228 object::getExtendedSymbolTableIndex
<ELFT
>(Symbol
, SymIndex
, ShndxTable
);
4230 assert(Symbol
.st_shndx
== SHN_XINDEX
&&
4231 "getExtendedSymbolTableIndex should only fail due to an invalid "
4232 "SHT_SYMTAB_SHNDX table/reference");
4233 this->reportUniqueWarning(IndexOrErr
.takeError());
4234 return "RSV[0xffff]";
4236 SectionIndex
= *IndexOrErr
;
4241 // Processor specific
4242 if (SectionIndex
>= ELF::SHN_LOPROC
&& SectionIndex
<= ELF::SHN_HIPROC
)
4243 return std::string("PRC[0x") +
4244 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
4246 if (SectionIndex
>= ELF::SHN_LOOS
&& SectionIndex
<= ELF::SHN_HIOS
)
4247 return std::string("OS[0x") +
4248 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
4249 // Architecture reserved:
4250 if (SectionIndex
>= ELF::SHN_LORESERVE
&&
4251 SectionIndex
<= ELF::SHN_HIRESERVE
)
4252 return std::string("RSV[0x") +
4253 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
4259 auto Sec
= this->Obj
.getSection(SectionIndex
);
4261 this->reportUniqueWarning(Sec
.takeError());
4263 auto SecName
= this->Obj
.getSectionName(**Sec
);
4265 this->reportUniqueWarning(SecName
.takeError());
4267 Extra
= Twine(" (" + *SecName
+ ")").str();
4270 return to_string(format_decimal(SectionIndex
, 3)) + Extra
;
4273 template <class ELFT
>
4274 void GNUELFDumper
<ELFT
>::printSymbol(const Elf_Sym
&Symbol
, unsigned SymIndex
,
4275 DataRegion
<Elf_Word
> ShndxTable
,
4276 std::optional
<StringRef
> StrTable
,
4277 bool IsDynamic
, bool NonVisibilityBitsUsed
,
4278 bool ExtraSymInfo
) const {
4279 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
4280 Field Fields
[8] = {0, 8, 17 + Bias
, 23 + Bias
,
4281 31 + Bias
, 38 + Bias
, 48 + Bias
, 51 + Bias
};
4282 Fields
[0].Str
= to_string(format_decimal(SymIndex
, 6)) + ":";
4284 to_string(format_hex_no_prefix(Symbol
.st_value
, ELFT::Is64Bits
? 16 : 8));
4285 Fields
[2].Str
= to_string(format_decimal(Symbol
.st_size
, 5));
4287 unsigned char SymbolType
= Symbol
.getType();
4288 if (this->Obj
.getHeader().e_machine
== ELF::EM_AMDGPU
&&
4289 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
4290 Fields
[3].Str
= enumToString(SymbolType
, ArrayRef(AMDGPUSymbolTypes
));
4292 Fields
[3].Str
= enumToString(SymbolType
, ArrayRef(ElfSymbolTypes
));
4295 enumToString(Symbol
.getBinding(), ArrayRef(ElfSymbolBindings
));
4297 enumToString(Symbol
.getVisibility(), ArrayRef(ElfSymbolVisibilities
));
4299 if (Symbol
.st_other
& ~0x3) {
4300 if (this->Obj
.getHeader().e_machine
== ELF::EM_AARCH64
) {
4301 uint8_t Other
= Symbol
.st_other
& ~0x3;
4302 if (Other
& STO_AARCH64_VARIANT_PCS
) {
4303 Other
&= ~STO_AARCH64_VARIANT_PCS
;
4304 Fields
[5].Str
+= " [VARIANT_PCS";
4306 Fields
[5].Str
.append(" | " + utohexstr(Other
, /*LowerCase=*/true));
4307 Fields
[5].Str
.append("]");
4309 } else if (this->Obj
.getHeader().e_machine
== ELF::EM_RISCV
) {
4310 uint8_t Other
= Symbol
.st_other
& ~0x3;
4311 if (Other
& STO_RISCV_VARIANT_CC
) {
4312 Other
&= ~STO_RISCV_VARIANT_CC
;
4313 Fields
[5].Str
+= " [VARIANT_CC";
4315 Fields
[5].Str
.append(" | " + utohexstr(Other
, /*LowerCase=*/true));
4316 Fields
[5].Str
.append("]");
4320 " [<other: " + to_string(format_hex(Symbol
.st_other
, 2)) + ">]";
4324 Fields
[6].Column
+= NonVisibilityBitsUsed
? 13 : 0;
4326 getSymbolSectionNdx(Symbol
, SymIndex
, ShndxTable
, ExtraSymInfo
);
4328 Fields
[7].Column
+= ExtraSymInfo
? 10 : 0;
4329 Fields
[7].Str
= this->getFullSymbolName(Symbol
, SymIndex
, ShndxTable
,
4330 StrTable
, IsDynamic
);
4331 for (const Field
&Entry
: Fields
)
4336 template <class ELFT
>
4337 void GNUELFDumper
<ELFT
>::printHashedSymbol(const Elf_Sym
*Symbol
,
4339 DataRegion
<Elf_Word
> ShndxTable
,
4342 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
4343 Field Fields
[9] = {0, 6, 11, 20 + Bias
, 25 + Bias
,
4344 34 + Bias
, 41 + Bias
, 49 + Bias
, 53 + Bias
};
4345 Fields
[0].Str
= to_string(format_decimal(SymIndex
, 5));
4346 Fields
[1].Str
= to_string(format_decimal(Bucket
, 3)) + ":";
4348 Fields
[2].Str
= to_string(
4349 format_hex_no_prefix(Symbol
->st_value
, ELFT::Is64Bits
? 16 : 8));
4350 Fields
[3].Str
= to_string(format_decimal(Symbol
->st_size
, 5));
4352 unsigned char SymbolType
= Symbol
->getType();
4353 if (this->Obj
.getHeader().e_machine
== ELF::EM_AMDGPU
&&
4354 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
4355 Fields
[4].Str
= enumToString(SymbolType
, ArrayRef(AMDGPUSymbolTypes
));
4357 Fields
[4].Str
= enumToString(SymbolType
, ArrayRef(ElfSymbolTypes
));
4360 enumToString(Symbol
->getBinding(), ArrayRef(ElfSymbolBindings
));
4362 enumToString(Symbol
->getVisibility(), ArrayRef(ElfSymbolVisibilities
));
4363 Fields
[7].Str
= getSymbolSectionNdx(*Symbol
, SymIndex
, ShndxTable
);
4365 this->getFullSymbolName(*Symbol
, SymIndex
, ShndxTable
, StrTable
, true);
4367 for (const Field
&Entry
: Fields
)
4372 template <class ELFT
>
4373 void GNUELFDumper
<ELFT
>::printSymbols(bool PrintSymbols
,
4374 bool PrintDynamicSymbols
,
4375 bool ExtraSymInfo
) {
4376 if (!PrintSymbols
&& !PrintDynamicSymbols
)
4378 // GNU readelf prints both the .dynsym and .symtab with --symbols.
4379 this->printSymbolsHelper(true, ExtraSymInfo
);
4381 this->printSymbolsHelper(false, ExtraSymInfo
);
4384 template <class ELFT
>
4385 void GNUELFDumper
<ELFT
>::printHashTableSymbols(const Elf_Hash
&SysVHash
) {
4386 if (this->DynamicStringTable
.empty())
4390 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
4392 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
4395 Elf_Sym_Range DynSyms
= this->dynamic_symbols();
4396 const Elf_Sym
*FirstSym
= DynSyms
.empty() ? nullptr : &DynSyms
[0];
4398 this->reportUniqueWarning(
4399 Twine("unable to print symbols for the .hash table: the "
4400 "dynamic symbol table ") +
4401 (this->DynSymRegion
? "is empty" : "was not found"));
4405 DataRegion
<Elf_Word
> ShndxTable(
4406 (const Elf_Word
*)this->DynSymTabShndxRegion
.Addr
, this->Obj
.end());
4407 auto Buckets
= SysVHash
.buckets();
4408 auto Chains
= SysVHash
.chains();
4409 for (uint32_t Buc
= 0; Buc
< SysVHash
.nbucket
; Buc
++) {
4410 if (Buckets
[Buc
] == ELF::STN_UNDEF
)
4412 BitVector
Visited(SysVHash
.nchain
);
4413 for (uint32_t Ch
= Buckets
[Buc
]; Ch
< SysVHash
.nchain
; Ch
= Chains
[Ch
]) {
4414 if (Ch
== ELF::STN_UNDEF
)
4418 this->reportUniqueWarning(".hash section is invalid: bucket " +
4420 ": a cycle was detected in the linked chain");
4424 printHashedSymbol(FirstSym
+ Ch
, Ch
, ShndxTable
, this->DynamicStringTable
,
4431 template <class ELFT
>
4432 void GNUELFDumper
<ELFT
>::printGnuHashTableSymbols(const Elf_GnuHash
&GnuHash
) {
4433 if (this->DynamicStringTable
.empty())
4436 Elf_Sym_Range DynSyms
= this->dynamic_symbols();
4437 const Elf_Sym
*FirstSym
= DynSyms
.empty() ? nullptr : &DynSyms
[0];
4439 this->reportUniqueWarning(
4440 Twine("unable to print symbols for the .gnu.hash table: the "
4441 "dynamic symbol table ") +
4442 (this->DynSymRegion
? "is empty" : "was not found"));
4446 auto GetSymbol
= [&](uint64_t SymIndex
,
4447 uint64_t SymsTotal
) -> const Elf_Sym
* {
4448 if (SymIndex
>= SymsTotal
) {
4449 this->reportUniqueWarning(
4450 "unable to print hashed symbol with index " + Twine(SymIndex
) +
4451 ", which is greater than or equal to the number of dynamic symbols "
4453 Twine::utohexstr(SymsTotal
) + ")");
4456 return FirstSym
+ SymIndex
;
4459 Expected
<ArrayRef
<Elf_Word
>> ValuesOrErr
=
4460 getGnuHashTableChains
<ELFT
>(this->DynSymRegion
, &GnuHash
);
4461 ArrayRef
<Elf_Word
> Values
;
4463 this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
4465 toString(ValuesOrErr
.takeError()));
4467 Values
= *ValuesOrErr
;
4469 DataRegion
<Elf_Word
> ShndxTable(
4470 (const Elf_Word
*)this->DynSymTabShndxRegion
.Addr
, this->Obj
.end());
4471 ArrayRef
<Elf_Word
> Buckets
= GnuHash
.buckets();
4472 for (uint32_t Buc
= 0; Buc
< GnuHash
.nbuckets
; Buc
++) {
4473 if (Buckets
[Buc
] == ELF::STN_UNDEF
)
4475 uint32_t Index
= Buckets
[Buc
];
4476 // Print whole chain.
4478 uint32_t SymIndex
= Index
++;
4479 if (const Elf_Sym
*Sym
= GetSymbol(SymIndex
, DynSyms
.size()))
4480 printHashedSymbol(Sym
, SymIndex
, ShndxTable
, this->DynamicStringTable
,
4485 if (SymIndex
< GnuHash
.symndx
) {
4486 this->reportUniqueWarning(
4487 "unable to read the hash value for symbol with index " +
4489 ", which is less than the index of the first hashed symbol (" +
4490 Twine(GnuHash
.symndx
) + ")");
4494 // Chain ends at symbol with stopper bit.
4495 if ((Values
[SymIndex
- GnuHash
.symndx
] & 1) == 1)
4501 template <class ELFT
> void GNUELFDumper
<ELFT
>::printHashSymbols() {
4502 if (this->HashTable
) {
4503 OS
<< "\n Symbol table of .hash for image:\n";
4504 if (Error E
= checkHashTable
<ELFT
>(*this, this->HashTable
))
4505 this->reportUniqueWarning(std::move(E
));
4507 printHashTableSymbols(*this->HashTable
);
4510 // Try printing the .gnu.hash table.
4511 if (this->GnuHashTable
) {
4512 OS
<< "\n Symbol table of .gnu.hash for image:\n";
4514 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
4516 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
4519 if (Error E
= checkGNUHashTable
<ELFT
>(this->Obj
, this->GnuHashTable
))
4520 this->reportUniqueWarning(std::move(E
));
4522 printGnuHashTableSymbols(*this->GnuHashTable
);
4526 template <class ELFT
> void GNUELFDumper
<ELFT
>::printSectionDetails() {
4527 ArrayRef
<Elf_Shdr
> Sections
= cantFail(this->Obj
.sections());
4528 if (Sections
.empty()) {
4529 OS
<< "\nThere are no sections in this file.\n";
4530 Expected
<StringRef
> SecStrTableOrErr
=
4531 this->Obj
.getSectionStringTable(Sections
, this->WarningHandler
);
4532 if (!SecStrTableOrErr
)
4533 this->reportUniqueWarning(SecStrTableOrErr
.takeError());
4536 OS
<< "There are " << to_string(Sections
.size())
4537 << " section headers, starting at offset "
4538 << "0x" << utohexstr(this->Obj
.getHeader().e_shoff
, /*LowerCase=*/true) << ":\n\n";
4540 OS
<< "Section Headers:\n";
4542 auto PrintFields
= [&](ArrayRef
<Field
> V
) {
4543 for (const Field
&F
: V
)
4548 PrintFields({{"[Nr]", 2}, {"Name", 7}});
4550 constexpr bool Is64
= ELFT::Is64Bits
;
4551 PrintFields({{"Type", 7},
4552 {Is64
? "Address" : "Addr", 23},
4553 {"Off", Is64
? 40 : 32},
4554 {"Size", Is64
? 47 : 39},
4555 {"ES", Is64
? 54 : 46},
4556 {"Lk", Is64
? 59 : 51},
4557 {"Inf", Is64
? 62 : 54},
4558 {"Al", Is64
? 66 : 57}});
4559 PrintFields({{"Flags", 7}});
4561 StringRef SecStrTable
;
4562 if (Expected
<StringRef
> SecStrTableOrErr
=
4563 this->Obj
.getSectionStringTable(Sections
, this->WarningHandler
))
4564 SecStrTable
= *SecStrTableOrErr
;
4566 this->reportUniqueWarning(SecStrTableOrErr
.takeError());
4568 size_t SectionIndex
= 0;
4569 const unsigned AddrSize
= Is64
? 16 : 8;
4570 for (const Elf_Shdr
&S
: Sections
) {
4571 StringRef Name
= "<?>";
4572 if (Expected
<StringRef
> NameOrErr
=
4573 this->Obj
.getSectionName(S
, SecStrTable
))
4576 this->reportUniqueWarning(NameOrErr
.takeError());
4579 OS
<< "[" << right_justify(to_string(SectionIndex
), 2) << "]";
4580 PrintFields({{Name
, 7}});
4582 {{getSectionTypeString(this->Obj
.getHeader().e_machine
, S
.sh_type
), 7},
4583 {to_string(format_hex_no_prefix(S
.sh_addr
, AddrSize
)), 23},
4584 {to_string(format_hex_no_prefix(S
.sh_offset
, 6)), Is64
? 39 : 32},
4585 {to_string(format_hex_no_prefix(S
.sh_size
, 6)), Is64
? 47 : 39},
4586 {to_string(format_hex_no_prefix(S
.sh_entsize
, 2)), Is64
? 54 : 46},
4587 {to_string(S
.sh_link
), Is64
? 59 : 51},
4588 {to_string(S
.sh_info
), Is64
? 63 : 55},
4589 {to_string(S
.sh_addralign
), Is64
? 66 : 58}});
4592 OS
<< "[" << to_string(format_hex_no_prefix(S
.sh_flags
, AddrSize
)) << "]: ";
4594 DenseMap
<unsigned, StringRef
> FlagToName
= {
4595 {SHF_WRITE
, "WRITE"}, {SHF_ALLOC
, "ALLOC"},
4596 {SHF_EXECINSTR
, "EXEC"}, {SHF_MERGE
, "MERGE"},
4597 {SHF_STRINGS
, "STRINGS"}, {SHF_INFO_LINK
, "INFO LINK"},
4598 {SHF_LINK_ORDER
, "LINK ORDER"}, {SHF_OS_NONCONFORMING
, "OS NONCONF"},
4599 {SHF_GROUP
, "GROUP"}, {SHF_TLS
, "TLS"},
4600 {SHF_COMPRESSED
, "COMPRESSED"}, {SHF_EXCLUDE
, "EXCLUDE"}};
4602 uint64_t Flags
= S
.sh_flags
;
4603 uint64_t UnknownFlags
= 0;
4606 // Take the least significant bit as a flag.
4607 uint64_t Flag
= Flags
& -Flags
;
4610 auto It
= FlagToName
.find(Flag
);
4611 if (It
!= FlagToName
.end())
4612 OS
<< LS
<< It
->second
;
4614 UnknownFlags
|= Flag
;
4617 auto PrintUnknownFlags
= [&](uint64_t Mask
, StringRef Name
) {
4618 uint64_t FlagsToPrint
= UnknownFlags
& Mask
;
4622 OS
<< LS
<< Name
<< " ("
4623 << to_string(format_hex_no_prefix(FlagsToPrint
, AddrSize
)) << ")";
4624 UnknownFlags
&= ~Mask
;
4627 PrintUnknownFlags(SHF_MASKOS
, "OS");
4628 PrintUnknownFlags(SHF_MASKPROC
, "PROC");
4629 PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
4634 if (!(S
.sh_flags
& SHF_COMPRESSED
))
4636 Expected
<ArrayRef
<uint8_t>> Data
= this->Obj
.getSectionContents(S
);
4637 if (!Data
|| Data
->size() < sizeof(Elf_Chdr
)) {
4638 consumeError(Data
.takeError());
4639 reportWarning(createError("SHF_COMPRESSED section '" + Name
+
4640 "' does not have an Elf_Chdr header"),
4643 OS
<< "[<corrupt>]";
4646 auto *Chdr
= reinterpret_cast<const Elf_Chdr
*>(Data
->data());
4647 if (Chdr
->ch_type
== ELFCOMPRESS_ZLIB
)
4649 else if (Chdr
->ch_type
== ELFCOMPRESS_ZSTD
)
4652 OS
<< format("[<unknown>: 0x%x]", unsigned(Chdr
->ch_type
));
4653 OS
<< ", " << format_hex_no_prefix(Chdr
->ch_size
, ELFT::Is64Bits
? 16 : 8)
4654 << ", " << Chdr
->ch_addralign
;
4660 static inline std::string
printPhdrFlags(unsigned Flag
) {
4662 Str
= (Flag
& PF_R
) ? "R" : " ";
4663 Str
+= (Flag
& PF_W
) ? "W" : " ";
4664 Str
+= (Flag
& PF_X
) ? "E" : " ";
4668 template <class ELFT
>
4669 static bool checkTLSSections(const typename
ELFT::Phdr
&Phdr
,
4670 const typename
ELFT::Shdr
&Sec
) {
4671 if (Sec
.sh_flags
& ELF::SHF_TLS
) {
4672 // .tbss must only be shown in the PT_TLS segment.
4673 if (Sec
.sh_type
== ELF::SHT_NOBITS
)
4674 return Phdr
.p_type
== ELF::PT_TLS
;
4676 // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4678 return (Phdr
.p_type
== ELF::PT_TLS
) || (Phdr
.p_type
== ELF::PT_LOAD
) ||
4679 (Phdr
.p_type
== ELF::PT_GNU_RELRO
);
4682 // PT_TLS must only have SHF_TLS sections.
4683 return Phdr
.p_type
!= ELF::PT_TLS
;
4686 template <class ELFT
>
4687 static bool checkPTDynamic(const typename
ELFT::Phdr
&Phdr
,
4688 const typename
ELFT::Shdr
&Sec
) {
4689 if (Phdr
.p_type
!= ELF::PT_DYNAMIC
|| Phdr
.p_memsz
== 0 || Sec
.sh_size
!= 0)
4692 // We get here when we have an empty section. Only non-empty sections can be
4693 // at the start or at the end of PT_DYNAMIC.
4694 // Is section within the phdr both based on offset and VMA?
4695 bool CheckOffset
= (Sec
.sh_type
== ELF::SHT_NOBITS
) ||
4696 (Sec
.sh_offset
> Phdr
.p_offset
&&
4697 Sec
.sh_offset
< Phdr
.p_offset
+ Phdr
.p_filesz
);
4698 bool CheckVA
= !(Sec
.sh_flags
& ELF::SHF_ALLOC
) ||
4699 (Sec
.sh_addr
> Phdr
.p_vaddr
&& Sec
.sh_addr
< Phdr
.p_memsz
);
4700 return CheckOffset
&& CheckVA
;
4703 template <class ELFT
>
4704 void GNUELFDumper
<ELFT
>::printProgramHeaders(
4705 bool PrintProgramHeaders
, cl::boolOrDefault PrintSectionMapping
) {
4706 const bool ShouldPrintSectionMapping
= (PrintSectionMapping
!= cl::BOU_FALSE
);
4707 // Exit early if no program header or section mapping details were requested.
4708 if (!PrintProgramHeaders
&& !ShouldPrintSectionMapping
)
4711 if (PrintProgramHeaders
) {
4712 const Elf_Ehdr
&Header
= this->Obj
.getHeader();
4713 if (Header
.e_phnum
== 0) {
4714 OS
<< "\nThere are no program headers in this file.\n";
4716 printProgramHeaders();
4720 if (ShouldPrintSectionMapping
)
4721 printSectionMapping();
4724 template <class ELFT
> void GNUELFDumper
<ELFT
>::printProgramHeaders() {
4725 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
4726 const Elf_Ehdr
&Header
= this->Obj
.getHeader();
4727 Field Fields
[8] = {2, 17, 26, 37 + Bias
,
4728 48 + Bias
, 56 + Bias
, 64 + Bias
, 68 + Bias
};
4729 OS
<< "\nElf file type is "
4730 << enumToString(Header
.e_type
, ArrayRef(ElfObjectFileType
)) << "\n"
4731 << "Entry point " << format_hex(Header
.e_entry
, 3) << "\n"
4732 << "There are " << Header
.e_phnum
<< " program headers,"
4733 << " starting at offset " << Header
.e_phoff
<< "\n\n"
4734 << "Program Headers:\n";
4736 OS
<< " Type Offset VirtAddr PhysAddr "
4737 << " FileSiz MemSiz Flg Align\n";
4739 OS
<< " Type Offset VirtAddr PhysAddr FileSiz "
4740 << "MemSiz Flg Align\n";
4742 unsigned Width
= ELFT::Is64Bits
? 18 : 10;
4743 unsigned SizeWidth
= ELFT::Is64Bits
? 8 : 7;
4745 Expected
<ArrayRef
<Elf_Phdr
>> PhdrsOrErr
= this->Obj
.program_headers();
4747 this->reportUniqueWarning("unable to dump program headers: " +
4748 toString(PhdrsOrErr
.takeError()));
4752 for (const Elf_Phdr
&Phdr
: *PhdrsOrErr
) {
4753 Fields
[0].Str
= getGNUPtType(Header
.e_machine
, Phdr
.p_type
);
4754 Fields
[1].Str
= to_string(format_hex(Phdr
.p_offset
, 8));
4755 Fields
[2].Str
= to_string(format_hex(Phdr
.p_vaddr
, Width
));
4756 Fields
[3].Str
= to_string(format_hex(Phdr
.p_paddr
, Width
));
4757 Fields
[4].Str
= to_string(format_hex(Phdr
.p_filesz
, SizeWidth
));
4758 Fields
[5].Str
= to_string(format_hex(Phdr
.p_memsz
, SizeWidth
));
4759 Fields
[6].Str
= printPhdrFlags(Phdr
.p_flags
);
4760 Fields
[7].Str
= to_string(format_hex(Phdr
.p_align
, 1));
4761 for (const Field
&F
: Fields
)
4763 if (Phdr
.p_type
== ELF::PT_INTERP
) {
4765 auto ReportBadInterp
= [&](const Twine
&Msg
) {
4766 this->reportUniqueWarning(
4767 "unable to read program interpreter name at offset 0x" +
4768 Twine::utohexstr(Phdr
.p_offset
) + ": " + Msg
);
4771 if (Phdr
.p_offset
>= this->Obj
.getBufSize()) {
4772 ReportBadInterp("it goes past the end of the file (0x" +
4773 Twine::utohexstr(this->Obj
.getBufSize()) + ")");
4778 reinterpret_cast<const char *>(this->Obj
.base()) + Phdr
.p_offset
;
4779 size_t MaxSize
= this->Obj
.getBufSize() - Phdr
.p_offset
;
4780 size_t Len
= strnlen(Data
, MaxSize
);
4781 if (Len
== MaxSize
) {
4782 ReportBadInterp("it is not null-terminated");
4786 OS
<< " [Requesting program interpreter: ";
4787 OS
<< StringRef(Data
, Len
) << "]";
4793 template <class ELFT
> void GNUELFDumper
<ELFT
>::printSectionMapping() {
4794 OS
<< "\n Section to Segment mapping:\n Segment Sections...\n";
4795 DenseSet
<const Elf_Shdr
*> BelongsToSegment
;
4798 Expected
<ArrayRef
<Elf_Phdr
>> PhdrsOrErr
= this->Obj
.program_headers();
4800 this->reportUniqueWarning(
4801 "can't read program headers to build section to segment mapping: " +
4802 toString(PhdrsOrErr
.takeError()));
4806 for (const Elf_Phdr
&Phdr
: *PhdrsOrErr
) {
4807 std::string Sections
;
4808 OS
<< format(" %2.2d ", Phnum
++);
4809 // Check if each section is in a segment and then print mapping.
4810 for (const Elf_Shdr
&Sec
: cantFail(this->Obj
.sections())) {
4811 if (Sec
.sh_type
== ELF::SHT_NULL
)
4814 // readelf additionally makes sure it does not print zero sized sections
4815 // at end of segments and for PT_DYNAMIC both start and end of section
4816 // .tbss must only be shown in PT_TLS section.
4817 if (isSectionInSegment
<ELFT
>(Phdr
, Sec
) &&
4818 checkTLSSections
<ELFT
>(Phdr
, Sec
) &&
4819 checkPTDynamic
<ELFT
>(Phdr
, Sec
)) {
4821 unwrapOrError(this->FileName
, this->Obj
.getSectionName(Sec
)).str() +
4823 BelongsToSegment
.insert(&Sec
);
4826 OS
<< Sections
<< "\n";
4830 // Display sections that do not belong to a segment.
4831 std::string Sections
;
4832 for (const Elf_Shdr
&Sec
: cantFail(this->Obj
.sections())) {
4833 if (BelongsToSegment
.find(&Sec
) == BelongsToSegment
.end())
4835 unwrapOrError(this->FileName
, this->Obj
.getSectionName(Sec
)).str() +
4838 if (!Sections
.empty()) {
4839 OS
<< " None " << Sections
<< '\n';
4846 template <class ELFT
>
4847 RelSymbol
<ELFT
> getSymbolForReloc(const ELFDumper
<ELFT
> &Dumper
,
4848 const Relocation
<ELFT
> &Reloc
) {
4849 using Elf_Sym
= typename
ELFT::Sym
;
4850 auto WarnAndReturn
= [&](const Elf_Sym
*Sym
,
4851 const Twine
&Reason
) -> RelSymbol
<ELFT
> {
4852 Dumper
.reportUniqueWarning(
4853 "unable to get name of the dynamic symbol with index " +
4854 Twine(Reloc
.Symbol
) + ": " + Reason
);
4855 return {Sym
, "<corrupt>"};
4858 ArrayRef
<Elf_Sym
> Symbols
= Dumper
.dynamic_symbols();
4859 const Elf_Sym
*FirstSym
= Symbols
.begin();
4861 return WarnAndReturn(nullptr, "no dynamic symbol table found");
4863 // We might have an object without a section header. In this case the size of
4864 // Symbols is zero, because there is no way to know the size of the dynamic
4865 // table. We should allow this case and not print a warning.
4866 if (!Symbols
.empty() && Reloc
.Symbol
>= Symbols
.size())
4867 return WarnAndReturn(
4869 "index is greater than or equal to the number of dynamic symbols (" +
4870 Twine(Symbols
.size()) + ")");
4872 const ELFFile
<ELFT
> &Obj
= Dumper
.getElfObject().getELFFile();
4873 const uint64_t FileSize
= Obj
.getBufSize();
4874 const uint64_t SymOffset
= ((const uint8_t *)FirstSym
- Obj
.base()) +
4875 (uint64_t)Reloc
.Symbol
* sizeof(Elf_Sym
);
4876 if (SymOffset
+ sizeof(Elf_Sym
) > FileSize
)
4877 return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset
) +
4878 " goes past the end of the file (0x" +
4879 Twine::utohexstr(FileSize
) + ")");
4881 const Elf_Sym
*Sym
= FirstSym
+ Reloc
.Symbol
;
4882 Expected
<StringRef
> ErrOrName
= Sym
->getName(Dumper
.getDynamicStringTable());
4884 return WarnAndReturn(Sym
, toString(ErrOrName
.takeError()));
4886 return {Sym
== FirstSym
? nullptr : Sym
, maybeDemangle(*ErrOrName
)};
4890 template <class ELFT
>
4891 static size_t getMaxDynamicTagSize(const ELFFile
<ELFT
> &Obj
,
4892 typename
ELFT::DynRange Tags
) {
4894 for (const typename
ELFT::Dyn
&Dyn
: Tags
)
4895 Max
= std::max(Max
, Obj
.getDynamicTagAsString(Dyn
.d_tag
).size());
4899 template <class ELFT
> void GNUELFDumper
<ELFT
>::printDynamicTable() {
4900 Elf_Dyn_Range Table
= this->dynamic_table();
4904 OS
<< "Dynamic section at offset "
4905 << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable
.Addr
) -
4908 << " contains " << Table
.size() << " entries:\n";
4910 // The type name is surrounded with round brackets, hence add 2.
4911 size_t MaxTagSize
= getMaxDynamicTagSize(this->Obj
, Table
) + 2;
4912 // The "Name/Value" column should be indented from the "Type" column by N
4913 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4915 OS
<< " Tag" + std::string(ELFT::Is64Bits
? 16 : 8, ' ') + "Type"
4916 << std::string(MaxTagSize
- 3, ' ') << "Name/Value\n";
4918 std::string ValueFmt
= " %-" + std::to_string(MaxTagSize
) + "s ";
4919 for (auto Entry
: Table
) {
4920 uintX_t Tag
= Entry
.getTag();
4922 std::string("(") + this->Obj
.getDynamicTagAsString(Tag
) + ")";
4923 std::string Value
= this->getDynamicEntry(Tag
, Entry
.getVal());
4924 OS
<< " " << format_hex(Tag
, ELFT::Is64Bits
? 18 : 10)
4925 << format(ValueFmt
.c_str(), Type
.c_str()) << Value
<< "\n";
4929 template <class ELFT
> void GNUELFDumper
<ELFT
>::printDynamicRelocations() {
4930 this->printDynamicRelocationsHelper();
4933 template <class ELFT
>
4934 void ELFDumper
<ELFT
>::printDynamicReloc(const Relocation
<ELFT
> &R
) {
4935 printRelRelaReloc(R
, getSymbolForReloc(*this, R
));
4938 template <class ELFT
>
4939 void ELFDumper
<ELFT
>::printRelocationsHelper(const Elf_Shdr
&Sec
) {
4940 this->forEachRelocationDo(
4941 Sec
, [&](const Relocation
<ELFT
> &R
, unsigned Ndx
, const Elf_Shdr
&Sec
,
4942 const Elf_Shdr
*SymTab
) { printReloc(R
, Ndx
, Sec
, SymTab
); });
4945 template <class ELFT
> void ELFDumper
<ELFT
>::printDynamicRelocationsHelper() {
4946 const bool IsMips64EL
= this->Obj
.isMips64EL();
4947 auto DumpCrelRegion
= [&](DynRegionInfo
&Region
) {
4948 // While the size is unknown, a valid CREL has at least one byte. We can
4949 // check whether Addr is in bounds, and then decode CREL until the file
4951 Region
.Size
= Region
.EntSize
= 1;
4952 if (!Region
.template getAsArrayRef
<uint8_t>().empty()) {
4953 const uint64_t Offset
=
4954 Region
.Addr
- reinterpret_cast<const uint8_t *>(
4955 ObjF
.getMemoryBufferRef().getBufferStart());
4956 const uint64_t ObjSize
= ObjF
.getMemoryBufferRef().getBufferSize();
4958 Obj
.decodeCrel(ArrayRef
<uint8_t>(Region
.Addr
, ObjSize
- Offset
));
4960 reportUniqueWarning(toString(RelsOrRelas
.takeError()));
4962 for (const Elf_Rel
&R
: RelsOrRelas
->first
)
4963 printDynamicReloc(Relocation
<ELFT
>(R
, false));
4964 for (const Elf_Rela
&R
: RelsOrRelas
->second
)
4965 printDynamicReloc(Relocation
<ELFT
>(R
, false));
4970 if (this->DynCrelRegion
.Addr
) {
4971 printDynamicRelocHeader(ELF::SHT_CREL
, "CREL", this->DynCrelRegion
);
4972 DumpCrelRegion(this->DynCrelRegion
);
4975 if (this->DynRelaRegion
.Size
> 0) {
4976 printDynamicRelocHeader(ELF::SHT_RELA
, "RELA", this->DynRelaRegion
);
4977 for (const Elf_Rela
&Rela
:
4978 this->DynRelaRegion
.template getAsArrayRef
<Elf_Rela
>())
4979 printDynamicReloc(Relocation
<ELFT
>(Rela
, IsMips64EL
));
4982 if (this->DynRelRegion
.Size
> 0) {
4983 printDynamicRelocHeader(ELF::SHT_REL
, "REL", this->DynRelRegion
);
4984 for (const Elf_Rel
&Rel
:
4985 this->DynRelRegion
.template getAsArrayRef
<Elf_Rel
>())
4986 printDynamicReloc(Relocation
<ELFT
>(Rel
, IsMips64EL
));
4989 if (this->DynRelrRegion
.Size
> 0) {
4990 printDynamicRelocHeader(ELF::SHT_REL
, "RELR", this->DynRelrRegion
);
4991 Elf_Relr_Range Relrs
=
4992 this->DynRelrRegion
.template getAsArrayRef
<Elf_Relr
>();
4993 for (const Elf_Rel
&Rel
: Obj
.decode_relrs(Relrs
))
4994 printDynamicReloc(Relocation
<ELFT
>(Rel
, IsMips64EL
));
4997 if (this->DynPLTRelRegion
.Size
) {
4998 if (this->DynPLTRelRegion
.EntSize
== sizeof(Elf_Rela
)) {
4999 printDynamicRelocHeader(ELF::SHT_RELA
, "PLT", this->DynPLTRelRegion
);
5000 for (const Elf_Rela
&Rela
:
5001 this->DynPLTRelRegion
.template getAsArrayRef
<Elf_Rela
>())
5002 printDynamicReloc(Relocation
<ELFT
>(Rela
, IsMips64EL
));
5003 } else if (this->DynPLTRelRegion
.EntSize
== 1) {
5004 DumpCrelRegion(this->DynPLTRelRegion
);
5006 printDynamicRelocHeader(ELF::SHT_REL
, "PLT", this->DynPLTRelRegion
);
5007 for (const Elf_Rel
&Rel
:
5008 this->DynPLTRelRegion
.template getAsArrayRef
<Elf_Rel
>())
5009 printDynamicReloc(Relocation
<ELFT
>(Rel
, IsMips64EL
));
5014 template <class ELFT
>
5015 void GNUELFDumper
<ELFT
>::printGNUVersionSectionProlog(
5016 const typename
ELFT::Shdr
&Sec
, const Twine
&Label
, unsigned EntriesNum
) {
5017 // Don't inline the SecName, because it might report a warning to stderr and
5018 // corrupt the output.
5019 StringRef SecName
= this->getPrintableSectionName(Sec
);
5020 OS
<< Label
<< " section '" << SecName
<< "' "
5021 << "contains " << EntriesNum
<< " entries:\n";
5023 StringRef LinkedSecName
= "<corrupt>";
5024 if (Expected
<const typename
ELFT::Shdr
*> LinkedSecOrErr
=
5025 this->Obj
.getSection(Sec
.sh_link
))
5026 LinkedSecName
= this->getPrintableSectionName(**LinkedSecOrErr
);
5028 this->reportUniqueWarning("invalid section linked to " +
5029 this->describe(Sec
) + ": " +
5030 toString(LinkedSecOrErr
.takeError()));
5032 OS
<< " Addr: " << format_hex_no_prefix(Sec
.sh_addr
, 16)
5033 << " Offset: " << format_hex(Sec
.sh_offset
, 8)
5034 << " Link: " << Sec
.sh_link
<< " (" << LinkedSecName
<< ")\n";
5037 template <class ELFT
>
5038 void GNUELFDumper
<ELFT
>::printVersionSymbolSection(const Elf_Shdr
*Sec
) {
5042 printGNUVersionSectionProlog(*Sec
, "Version symbols",
5043 Sec
->sh_size
/ sizeof(Elf_Versym
));
5044 Expected
<ArrayRef
<Elf_Versym
>> VerTableOrErr
=
5045 this->getVersionTable(*Sec
, /*SymTab=*/nullptr,
5046 /*StrTab=*/nullptr, /*SymTabSec=*/nullptr);
5047 if (!VerTableOrErr
) {
5048 this->reportUniqueWarning(VerTableOrErr
.takeError());
5052 SmallVector
<std::optional
<VersionEntry
>, 0> *VersionMap
= nullptr;
5053 if (Expected
<SmallVector
<std::optional
<VersionEntry
>, 0> *> MapOrErr
=
5054 this->getVersionMap())
5055 VersionMap
= *MapOrErr
;
5057 this->reportUniqueWarning(MapOrErr
.takeError());
5059 ArrayRef
<Elf_Versym
> VerTable
= *VerTableOrErr
;
5060 std::vector
<StringRef
> Versions
;
5061 for (size_t I
= 0, E
= VerTable
.size(); I
< E
; ++I
) {
5062 unsigned Ndx
= VerTable
[I
].vs_index
;
5063 if (Ndx
== VER_NDX_LOCAL
|| Ndx
== VER_NDX_GLOBAL
) {
5064 Versions
.emplace_back(Ndx
== VER_NDX_LOCAL
? "*local*" : "*global*");
5069 Versions
.emplace_back("<corrupt>");
5074 Expected
<StringRef
> NameOrErr
= this->Obj
.getSymbolVersionByIndex(
5075 Ndx
, IsDefault
, *VersionMap
, /*IsSymHidden=*/std::nullopt
);
5077 this->reportUniqueWarning("unable to get a version for entry " +
5078 Twine(I
) + " of " + this->describe(*Sec
) +
5079 ": " + toString(NameOrErr
.takeError()));
5080 Versions
.emplace_back("<corrupt>");
5083 Versions
.emplace_back(*NameOrErr
);
5086 // readelf prints 4 entries per line.
5087 uint64_t Entries
= VerTable
.size();
5088 for (uint64_t VersymRow
= 0; VersymRow
< Entries
; VersymRow
+= 4) {
5089 OS
<< " " << format_hex_no_prefix(VersymRow
, 3) << ":";
5090 for (uint64_t I
= 0; (I
< 4) && (I
+ VersymRow
) < Entries
; ++I
) {
5091 unsigned Ndx
= VerTable
[VersymRow
+ I
].vs_index
;
5092 OS
<< format("%4x%c", Ndx
& VERSYM_VERSION
,
5093 Ndx
& VERSYM_HIDDEN
? 'h' : ' ');
5094 OS
<< left_justify("(" + std::string(Versions
[VersymRow
+ I
]) + ")", 13);
5101 static std::string
versionFlagToString(unsigned Flags
) {
5106 auto AddFlag
= [&Ret
, &Flags
](unsigned Flag
, StringRef Name
) {
5107 if (!(Flags
& Flag
))
5115 AddFlag(VER_FLG_BASE
, "BASE");
5116 AddFlag(VER_FLG_WEAK
, "WEAK");
5117 AddFlag(VER_FLG_INFO
, "INFO");
5118 AddFlag(~0, "<unknown>");
5122 template <class ELFT
>
5123 void GNUELFDumper
<ELFT
>::printVersionDefinitionSection(const Elf_Shdr
*Sec
) {
5127 printGNUVersionSectionProlog(*Sec
, "Version definition", Sec
->sh_info
);
5129 Expected
<std::vector
<VerDef
>> V
= this->Obj
.getVersionDefinitions(*Sec
);
5131 this->reportUniqueWarning(V
.takeError());
5135 for (const VerDef
&Def
: *V
) {
5136 OS
<< format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n",
5137 Def
.Offset
, Def
.Version
,
5138 versionFlagToString(Def
.Flags
).c_str(), Def
.Ndx
, Def
.Cnt
,
5141 for (const VerdAux
&Aux
: Def
.AuxV
)
5142 OS
<< format(" 0x%04x: Parent %u: %s\n", Aux
.Offset
, ++I
,
5149 template <class ELFT
>
5150 void GNUELFDumper
<ELFT
>::printVersionDependencySection(const Elf_Shdr
*Sec
) {
5154 unsigned VerneedNum
= Sec
->sh_info
;
5155 printGNUVersionSectionProlog(*Sec
, "Version needs", VerneedNum
);
5157 Expected
<std::vector
<VerNeed
>> V
=
5158 this->Obj
.getVersionDependencies(*Sec
, this->WarningHandler
);
5160 this->reportUniqueWarning(V
.takeError());
5164 for (const VerNeed
&VN
: *V
) {
5165 OS
<< format(" 0x%04x: Version: %u File: %s Cnt: %u\n", VN
.Offset
,
5166 VN
.Version
, VN
.File
.data(), VN
.Cnt
);
5167 for (const VernAux
&Aux
: VN
.AuxV
)
5168 OS
<< format(" 0x%04x: Name: %s Flags: %s Version: %u\n", Aux
.Offset
,
5169 Aux
.Name
.data(), versionFlagToString(Aux
.Flags
).c_str(),
5175 template <class ELFT
>
5176 void GNUELFDumper
<ELFT
>::printHashHistogramStats(size_t NBucket
,
5179 ArrayRef
<size_t> Count
,
5181 size_t CumulativeNonZero
= 0;
5182 OS
<< "Histogram for" << (IsGnu
? " `.gnu.hash'" : "")
5183 << " bucket list length (total of " << NBucket
<< " buckets)\n"
5184 << " Length Number % of total Coverage\n";
5185 for (size_t I
= 0; I
< MaxChain
; ++I
) {
5186 CumulativeNonZero
+= Count
[I
] * I
;
5187 OS
<< format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I
, Count
[I
],
5188 (Count
[I
] * 100.0) / NBucket
,
5189 (CumulativeNonZero
* 100.0) / TotalSyms
);
5193 template <class ELFT
> void GNUELFDumper
<ELFT
>::printCGProfile() {
5194 OS
<< "GNUStyle::printCGProfile not implemented\n";
5197 template <class ELFT
>
5198 void GNUELFDumper
<ELFT
>::printBBAddrMaps(bool /*PrettyPGOAnalysis*/) {
5199 OS
<< "GNUStyle::printBBAddrMaps not implemented\n";
5202 static Expected
<std::vector
<uint64_t>> toULEB128Array(ArrayRef
<uint8_t> Data
) {
5203 std::vector
<uint64_t> Ret
;
5204 const uint8_t *Cur
= Data
.begin();
5205 const uint8_t *End
= Data
.end();
5206 while (Cur
!= End
) {
5208 const char *Err
= nullptr;
5209 Ret
.push_back(decodeULEB128(Cur
, &Size
, End
, &Err
));
5211 return createError(Err
);
5217 template <class ELFT
>
5218 static Expected
<std::vector
<uint64_t>>
5219 decodeAddrsigSection(const ELFFile
<ELFT
> &Obj
, const typename
ELFT::Shdr
&Sec
) {
5220 Expected
<ArrayRef
<uint8_t>> ContentsOrErr
= Obj
.getSectionContents(Sec
);
5222 return ContentsOrErr
.takeError();
5224 if (Expected
<std::vector
<uint64_t>> SymsOrErr
=
5225 toULEB128Array(*ContentsOrErr
))
5228 return createError("unable to decode " + describe(Obj
, Sec
) + ": " +
5229 toString(SymsOrErr
.takeError()));
5232 template <class ELFT
> void GNUELFDumper
<ELFT
>::printAddrsig() {
5233 if (!this->DotAddrsigSec
)
5236 Expected
<std::vector
<uint64_t>> SymsOrErr
=
5237 decodeAddrsigSection(this->Obj
, *this->DotAddrsigSec
);
5239 this->reportUniqueWarning(SymsOrErr
.takeError());
5243 StringRef Name
= this->getPrintableSectionName(*this->DotAddrsigSec
);
5244 OS
<< "\nAddress-significant symbols section '" << Name
<< "'"
5245 << " contains " << SymsOrErr
->size() << " entries:\n";
5246 OS
<< " Num: Name\n";
5248 Field Fields
[2] = {0, 8};
5249 size_t SymIndex
= 0;
5250 for (uint64_t Sym
: *SymsOrErr
) {
5251 Fields
[0].Str
= to_string(format_decimal(++SymIndex
, 6)) + ":";
5252 Fields
[1].Str
= this->getStaticSymbolName(Sym
);
5253 for (const Field
&Entry
: Fields
)
5259 template <class ELFT
>
5260 static bool printAArch64PAuthABICoreInfo(raw_ostream
&OS
, uint32_t DataSize
,
5261 ArrayRef
<uint8_t> Desc
) {
5262 OS
<< " AArch64 PAuth ABI core info: ";
5263 // DataSize - size without padding, Desc.size() - size with padding
5264 if (DataSize
!= 16) {
5265 OS
<< format("<corrupted size: expected 16, got %d>", DataSize
);
5270 support::endian::read64
<ELFT::Endianness
>(Desc
.data() + 0);
5271 uint64_t Version
= support::endian::read64
<ELFT::Endianness
>(Desc
.data() + 8);
5273 const char *PlatformDesc
= [Platform
]() {
5275 case AARCH64_PAUTH_PLATFORM_INVALID
:
5277 case AARCH64_PAUTH_PLATFORM_BAREMETAL
:
5279 case AARCH64_PAUTH_PLATFORM_LLVM_LINUX
:
5280 return "llvm_linux";
5286 std::string VersionDesc
= [Platform
, Version
]() -> std::string
{
5287 if (Platform
!= AARCH64_PAUTH_PLATFORM_LLVM_LINUX
)
5289 if (Version
>= (1 << (AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST
+ 1)))
5292 std::array
<StringRef
, AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST
+ 1>
5294 Flags
[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS
] = "Intrinsics";
5295 Flags
[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS
] = "Calls";
5296 Flags
[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS
] = "Returns";
5297 Flags
[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS
] = "AuthTraps";
5298 Flags
[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR
] =
5299 "VTPtrAddressDiscrimination";
5300 Flags
[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR
] =
5301 "VTPtrTypeDiscrimination";
5302 Flags
[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI
] = "InitFini";
5303 Flags
[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINIADDRDISC
] =
5304 "InitFiniAddressDiscrimination";
5305 Flags
[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOT
] = "ELFGOT";
5306 Flags
[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOTOS
] = "IndirectGotos";
5307 Flags
[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_TYPEINFOVPTRDISCR
] =
5308 "TypeInfoVTPtrDiscrimination";
5309 Flags
[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR
] =
5310 "FPtrTypeDiscrimination";
5312 static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR
==
5313 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST
,
5314 "Update when new enum items are defined");
5317 for (uint32_t I
= 0, End
= Flags
.size(); I
< End
; ++I
) {
5318 if (!(Version
& (1ULL << I
)))
5321 Twine("PointerAuth" + Flags
[I
] + (I
== End
- 1 ? "" : ", ")).str();
5326 OS
<< format("platform 0x%" PRIx64
" (%s), version 0x%" PRIx64
, Platform
,
5327 PlatformDesc
, Version
);
5328 if (!VersionDesc
.empty())
5329 OS
<< format(" (%s)", VersionDesc
.c_str());
5334 template <typename ELFT
>
5335 static std::string
getGNUProperty(uint32_t Type
, uint32_t DataSize
,
5336 ArrayRef
<uint8_t> Data
) {
5338 raw_string_ostream
OS(str
);
5340 auto DumpBit
= [&](uint32_t Flag
, StringRef Name
) {
5341 if (PrData
& Flag
) {
5351 OS
<< format("<application-specific type 0x%x>", Type
);
5353 case GNU_PROPERTY_STACK_SIZE
: {
5354 OS
<< "stack size: ";
5355 if (DataSize
== sizeof(typename
ELFT::uint
))
5356 OS
<< formatv("{0:x}",
5357 (uint64_t)(*(const typename
ELFT::Addr
*)Data
.data()));
5359 OS
<< format("<corrupt length: 0x%x>", DataSize
);
5362 case GNU_PROPERTY_NO_COPY_ON_PROTECTED
:
5363 OS
<< "no copy on protected";
5365 OS
<< format(" <corrupt length: 0x%x>", DataSize
);
5367 case GNU_PROPERTY_AARCH64_FEATURE_1_AND
:
5368 case GNU_PROPERTY_X86_FEATURE_1_AND
:
5369 OS
<< ((Type
== GNU_PROPERTY_AARCH64_FEATURE_1_AND
) ? "aarch64 feature: "
5371 if (DataSize
!= 4) {
5372 OS
<< format("<corrupt length: 0x%x>", DataSize
);
5375 PrData
= endian::read32
<ELFT::Endianness
>(Data
.data());
5380 if (Type
== GNU_PROPERTY_AARCH64_FEATURE_1_AND
) {
5381 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI
, "BTI");
5382 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC
, "PAC");
5383 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_GCS
, "GCS");
5385 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT
, "IBT");
5386 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK
, "SHSTK");
5389 OS
<< format("<unknown flags: 0x%x>", PrData
);
5391 case GNU_PROPERTY_AARCH64_FEATURE_PAUTH
:
5392 printAArch64PAuthABICoreInfo
<ELFT
>(OS
, DataSize
, Data
);
5394 case GNU_PROPERTY_X86_FEATURE_2_NEEDED
:
5395 case GNU_PROPERTY_X86_FEATURE_2_USED
:
5396 OS
<< "x86 feature "
5397 << (Type
== GNU_PROPERTY_X86_FEATURE_2_NEEDED
? "needed: " : "used: ");
5398 if (DataSize
!= 4) {
5399 OS
<< format("<corrupt length: 0x%x>", DataSize
);
5402 PrData
= endian::read32
<ELFT::Endianness
>(Data
.data());
5407 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86
, "x86");
5408 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87
, "x87");
5409 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX
, "MMX");
5410 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM
, "XMM");
5411 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM
, "YMM");
5412 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM
, "ZMM");
5413 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR
, "FXSR");
5414 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE
, "XSAVE");
5415 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT
, "XSAVEOPT");
5416 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC
, "XSAVEC");
5418 OS
<< format("<unknown flags: 0x%x>", PrData
);
5420 case GNU_PROPERTY_X86_ISA_1_NEEDED
:
5421 case GNU_PROPERTY_X86_ISA_1_USED
:
5423 << (Type
== GNU_PROPERTY_X86_ISA_1_NEEDED
? "needed: " : "used: ");
5424 if (DataSize
!= 4) {
5425 OS
<< format("<corrupt length: 0x%x>", DataSize
);
5428 PrData
= endian::read32
<ELFT::Endianness
>(Data
.data());
5433 DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE
, "x86-64-baseline");
5434 DumpBit(GNU_PROPERTY_X86_ISA_1_V2
, "x86-64-v2");
5435 DumpBit(GNU_PROPERTY_X86_ISA_1_V3
, "x86-64-v3");
5436 DumpBit(GNU_PROPERTY_X86_ISA_1_V4
, "x86-64-v4");
5438 OS
<< format("<unknown flags: 0x%x>", PrData
);
5443 template <typename ELFT
>
5444 static SmallVector
<std::string
, 4> getGNUPropertyList(ArrayRef
<uint8_t> Arr
) {
5445 using Elf_Word
= typename
ELFT::Word
;
5447 SmallVector
<std::string
, 4> Properties
;
5448 while (Arr
.size() >= 8) {
5449 uint32_t Type
= *reinterpret_cast<const Elf_Word
*>(Arr
.data());
5450 uint32_t DataSize
= *reinterpret_cast<const Elf_Word
*>(Arr
.data() + 4);
5451 Arr
= Arr
.drop_front(8);
5453 // Take padding size into account if present.
5454 uint64_t PaddedSize
= alignTo(DataSize
, sizeof(typename
ELFT::uint
));
5456 raw_string_ostream
OS(str
);
5457 if (Arr
.size() < PaddedSize
) {
5458 OS
<< format("<corrupt type (0x%x) datasz: 0x%x>", Type
, DataSize
);
5459 Properties
.push_back(str
);
5462 Properties
.push_back(
5463 getGNUProperty
<ELFT
>(Type
, DataSize
, Arr
.take_front(PaddedSize
)));
5464 Arr
= Arr
.drop_front(PaddedSize
);
5468 Properties
.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
5479 template <typename ELFT
> static GNUAbiTag
getGNUAbiTag(ArrayRef
<uint8_t> Desc
) {
5480 typedef typename
ELFT::Word Elf_Word
;
5482 ArrayRef
<Elf_Word
> Words(reinterpret_cast<const Elf_Word
*>(Desc
.begin()),
5483 reinterpret_cast<const Elf_Word
*>(Desc
.end()));
5485 if (Words
.size() < 4)
5486 return {"", "", /*IsValid=*/false};
5488 static const char *OSNames
[] = {
5489 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
5491 StringRef OSName
= "Unknown";
5492 if (Words
[0] < std::size(OSNames
))
5493 OSName
= OSNames
[Words
[0]];
5494 uint32_t Major
= Words
[1], Minor
= Words
[2], Patch
= Words
[3];
5496 raw_string_ostream
ABI(str
);
5497 ABI
<< Major
<< "." << Minor
<< "." << Patch
;
5498 return {std::string(OSName
), str
, /*IsValid=*/true};
5501 static std::string
getGNUBuildId(ArrayRef
<uint8_t> Desc
) {
5503 raw_string_ostream
OS(str
);
5504 for (uint8_t B
: Desc
)
5505 OS
<< format_hex_no_prefix(B
, 2);
5509 static StringRef
getDescAsStringRef(ArrayRef
<uint8_t> Desc
) {
5510 return StringRef(reinterpret_cast<const char *>(Desc
.data()), Desc
.size());
5513 template <typename ELFT
>
5514 static bool printGNUNote(raw_ostream
&OS
, uint32_t NoteType
,
5515 ArrayRef
<uint8_t> Desc
) {
5516 // Return true if we were able to pretty-print the note, false otherwise.
5520 case ELF::NT_GNU_ABI_TAG
: {
5521 const GNUAbiTag
&AbiTag
= getGNUAbiTag
<ELFT
>(Desc
);
5522 if (!AbiTag
.IsValid
)
5523 OS
<< " <corrupt GNU_ABI_TAG>";
5525 OS
<< " OS: " << AbiTag
.OSName
<< ", ABI: " << AbiTag
.ABI
;
5528 case ELF::NT_GNU_BUILD_ID
: {
5529 OS
<< " Build ID: " << getGNUBuildId(Desc
);
5532 case ELF::NT_GNU_GOLD_VERSION
:
5533 OS
<< " Version: " << getDescAsStringRef(Desc
);
5535 case ELF::NT_GNU_PROPERTY_TYPE_0
:
5536 OS
<< " Properties:";
5537 for (const std::string
&Property
: getGNUPropertyList
<ELFT
>(Desc
))
5538 OS
<< " " << Property
<< "\n";
5545 using AndroidNoteProperties
= std::vector
<std::pair
<StringRef
, std::string
>>;
5546 static AndroidNoteProperties
getAndroidNoteProperties(uint32_t NoteType
,
5547 ArrayRef
<uint8_t> Desc
) {
5548 AndroidNoteProperties Props
;
5550 case ELF::NT_ANDROID_TYPE_MEMTAG
:
5552 Props
.emplace_back("Invalid .note.android.memtag", "");
5556 switch (Desc
[0] & NT_MEMTAG_LEVEL_MASK
) {
5557 case NT_MEMTAG_LEVEL_NONE
:
5558 Props
.emplace_back("Tagging Mode", "NONE");
5560 case NT_MEMTAG_LEVEL_ASYNC
:
5561 Props
.emplace_back("Tagging Mode", "ASYNC");
5563 case NT_MEMTAG_LEVEL_SYNC
:
5564 Props
.emplace_back("Tagging Mode", "SYNC");
5569 ("Unknown (" + Twine::utohexstr(Desc
[0] & NT_MEMTAG_LEVEL_MASK
) + ")")
5573 Props
.emplace_back("Heap",
5574 (Desc
[0] & NT_MEMTAG_HEAP
) ? "Enabled" : "Disabled");
5575 Props
.emplace_back("Stack",
5576 (Desc
[0] & NT_MEMTAG_STACK
) ? "Enabled" : "Disabled");
5584 static bool printAndroidNote(raw_ostream
&OS
, uint32_t NoteType
,
5585 ArrayRef
<uint8_t> Desc
) {
5586 // Return true if we were able to pretty-print the note, false otherwise.
5587 AndroidNoteProperties Props
= getAndroidNoteProperties(NoteType
, Desc
);
5590 for (const auto &KV
: Props
)
5591 OS
<< " " << KV
.first
<< ": " << KV
.second
<< '\n';
5595 template <class ELFT
>
5596 void GNUELFDumper
<ELFT
>::printMemtag(
5597 const ArrayRef
<std::pair
<std::string
, std::string
>> DynamicEntries
,
5598 const ArrayRef
<uint8_t> AndroidNoteDesc
,
5599 const ArrayRef
<std::pair
<uint64_t, uint64_t>> Descriptors
) {
5600 OS
<< "Memtag Dynamic Entries:\n";
5601 if (DynamicEntries
.empty())
5602 OS
<< " < none found >\n";
5603 for (const auto &DynamicEntryKV
: DynamicEntries
)
5604 OS
<< " " << DynamicEntryKV
.first
<< ": " << DynamicEntryKV
.second
5607 if (!AndroidNoteDesc
.empty()) {
5608 OS
<< "Memtag Android Note:\n";
5609 printAndroidNote(OS
, ELF::NT_ANDROID_TYPE_MEMTAG
, AndroidNoteDesc
);
5612 if (Descriptors
.empty())
5615 OS
<< "Memtag Global Descriptors:\n";
5616 for (const auto &[Addr
, BytesToTag
] : Descriptors
) {
5617 OS
<< " 0x" << utohexstr(Addr
, /*LowerCase=*/true) << ": 0x"
5618 << utohexstr(BytesToTag
, /*LowerCase=*/true) << "\n";
5622 template <typename ELFT
>
5623 static bool printLLVMOMPOFFLOADNote(raw_ostream
&OS
, uint32_t NoteType
,
5624 ArrayRef
<uint8_t> Desc
) {
5628 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION
:
5629 OS
<< " Version: " << getDescAsStringRef(Desc
);
5631 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER
:
5632 OS
<< " Producer: " << getDescAsStringRef(Desc
);
5634 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION
:
5635 OS
<< " Producer version: " << getDescAsStringRef(Desc
);
5642 const EnumEntry
<unsigned> FreeBSDFeatureCtlFlags
[] = {
5643 {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE
},
5644 {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE
},
5645 {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE
},
5646 {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED
},
5647 {"LA48", NT_FREEBSD_FCTL_LA48
},
5648 {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE
},
5651 struct FreeBSDNote
{
5656 template <typename ELFT
>
5657 static std::optional
<FreeBSDNote
>
5658 getFreeBSDNote(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
, bool IsCore
) {
5660 return std::nullopt
; // No pretty-printing yet.
5662 case ELF::NT_FREEBSD_ABI_TAG
:
5663 if (Desc
.size() != 4)
5664 return std::nullopt
;
5665 return FreeBSDNote
{"ABI tag",
5666 utostr(endian::read32
<ELFT::Endianness
>(Desc
.data()))};
5667 case ELF::NT_FREEBSD_ARCH_TAG
:
5668 return FreeBSDNote
{"Arch tag", toStringRef(Desc
).str()};
5669 case ELF::NT_FREEBSD_FEATURE_CTL
: {
5670 if (Desc
.size() != 4)
5671 return std::nullopt
;
5672 unsigned Value
= endian::read32
<ELFT::Endianness
>(Desc
.data());
5673 std::string FlagsStr
;
5674 raw_string_ostream
OS(FlagsStr
);
5675 printFlags(Value
, ArrayRef(FreeBSDFeatureCtlFlags
), OS
);
5676 if (FlagsStr
.empty())
5677 OS
<< "0x" << utohexstr(Value
);
5679 OS
<< "(0x" << utohexstr(Value
) << ")";
5680 return FreeBSDNote
{"Feature flags", FlagsStr
};
5683 return std::nullopt
;
5692 template <typename ELFT
>
5693 static AMDNote
getAMDNote(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
) {
5697 case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION
: {
5698 struct CodeObjectVersion
{
5699 support::aligned_ulittle32_t MajorVersion
;
5700 support::aligned_ulittle32_t MinorVersion
;
5702 if (Desc
.size() != sizeof(CodeObjectVersion
))
5703 return {"AMD HSA Code Object Version",
5704 "Invalid AMD HSA Code Object Version"};
5705 std::string VersionString
;
5706 raw_string_ostream
StrOS(VersionString
);
5707 auto Version
= reinterpret_cast<const CodeObjectVersion
*>(Desc
.data());
5708 StrOS
<< "[Major: " << Version
->MajorVersion
5709 << ", Minor: " << Version
->MinorVersion
<< "]";
5710 return {"AMD HSA Code Object Version", VersionString
};
5712 case ELF::NT_AMD_HSA_HSAIL
: {
5713 struct HSAILProperties
{
5714 support::aligned_ulittle32_t HSAILMajorVersion
;
5715 support::aligned_ulittle32_t HSAILMinorVersion
;
5717 uint8_t MachineModel
;
5718 uint8_t DefaultFloatRound
;
5720 if (Desc
.size() != sizeof(HSAILProperties
))
5721 return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"};
5722 auto Properties
= reinterpret_cast<const HSAILProperties
*>(Desc
.data());
5723 std::string HSAILPropetiesString
;
5724 raw_string_ostream
StrOS(HSAILPropetiesString
);
5725 StrOS
<< "[HSAIL Major: " << Properties
->HSAILMajorVersion
5726 << ", HSAIL Minor: " << Properties
->HSAILMinorVersion
5727 << ", Profile: " << uint32_t(Properties
->Profile
)
5728 << ", Machine Model: " << uint32_t(Properties
->MachineModel
)
5729 << ", Default Float Round: "
5730 << uint32_t(Properties
->DefaultFloatRound
) << "]";
5731 return {"AMD HSA HSAIL Properties", HSAILPropetiesString
};
5733 case ELF::NT_AMD_HSA_ISA_VERSION
: {
5735 support::aligned_ulittle16_t VendorNameSize
;
5736 support::aligned_ulittle16_t ArchitectureNameSize
;
5737 support::aligned_ulittle32_t Major
;
5738 support::aligned_ulittle32_t Minor
;
5739 support::aligned_ulittle32_t Stepping
;
5741 if (Desc
.size() < sizeof(IsaVersion
))
5742 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5743 auto Isa
= reinterpret_cast<const IsaVersion
*>(Desc
.data());
5744 if (Desc
.size() < sizeof(IsaVersion
) +
5745 Isa
->VendorNameSize
+ Isa
->ArchitectureNameSize
||
5746 Isa
->VendorNameSize
== 0 || Isa
->ArchitectureNameSize
== 0)
5747 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5748 std::string IsaString
;
5749 raw_string_ostream
StrOS(IsaString
);
5750 StrOS
<< "[Vendor: "
5751 << StringRef((const char*)Desc
.data() + sizeof(IsaVersion
), Isa
->VendorNameSize
- 1)
5752 << ", Architecture: "
5753 << StringRef((const char*)Desc
.data() + sizeof(IsaVersion
) + Isa
->VendorNameSize
,
5754 Isa
->ArchitectureNameSize
- 1)
5755 << ", Major: " << Isa
->Major
<< ", Minor: " << Isa
->Minor
5756 << ", Stepping: " << Isa
->Stepping
<< "]";
5757 return {"AMD HSA ISA Version", IsaString
};
5759 case ELF::NT_AMD_HSA_METADATA
: {
5760 if (Desc
.size() == 0)
5761 return {"AMD HSA Metadata", ""};
5764 std::string(reinterpret_cast<const char *>(Desc
.data()), Desc
.size() - 1)};
5766 case ELF::NT_AMD_HSA_ISA_NAME
: {
5767 if (Desc
.size() == 0)
5768 return {"AMD HSA ISA Name", ""};
5771 std::string(reinterpret_cast<const char *>(Desc
.data()), Desc
.size())};
5773 case ELF::NT_AMD_PAL_METADATA
: {
5774 struct PALMetadata
{
5775 support::aligned_ulittle32_t Key
;
5776 support::aligned_ulittle32_t Value
;
5778 if (Desc
.size() % sizeof(PALMetadata
) != 0)
5779 return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"};
5780 auto Isa
= reinterpret_cast<const PALMetadata
*>(Desc
.data());
5781 std::string MetadataString
;
5782 raw_string_ostream
StrOS(MetadataString
);
5783 for (size_t I
= 0, E
= Desc
.size() / sizeof(PALMetadata
); I
< E
; ++I
) {
5784 StrOS
<< "[" << Isa
[I
].Key
<< ": " << Isa
[I
].Value
<< "]";
5786 return {"AMD PAL Metadata", MetadataString
};
5796 template <typename ELFT
>
5797 static AMDGPUNote
getAMDGPUNote(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
) {
5801 case ELF::NT_AMDGPU_METADATA
: {
5802 StringRef MsgPackString
=
5803 StringRef(reinterpret_cast<const char *>(Desc
.data()), Desc
.size());
5804 msgpack::Document MsgPackDoc
;
5805 if (!MsgPackDoc
.readFromBlob(MsgPackString
, /*Multi=*/false))
5808 std::string MetadataString
;
5810 // FIXME: Metadata Verifier only works with AMDHSA.
5811 // This is an ugly workaround to avoid the verifier for other MD
5812 // formats (e.g. amdpal)
5813 if (MsgPackString
.contains("amdhsa.")) {
5814 AMDGPU::HSAMD::V3::MetadataVerifier
Verifier(true);
5815 if (!Verifier
.verify(MsgPackDoc
.getRoot()))
5816 MetadataString
= "Invalid AMDGPU Metadata\n";
5819 raw_string_ostream
StrOS(MetadataString
);
5820 if (MsgPackDoc
.getRoot().isScalar()) {
5821 // TODO: passing a scalar root to toYAML() asserts:
5822 // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar &&
5823 // "plain scalar documents are not supported")
5824 // To avoid this crash we print the raw data instead.
5827 MsgPackDoc
.toYAML(StrOS
);
5828 return {"AMDGPU Metadata", MetadataString
};
5833 struct CoreFileMapping
{
5834 uint64_t Start
, End
, Offset
;
5840 std::vector
<CoreFileMapping
> Mappings
;
5843 static Expected
<CoreNote
> readCoreNote(DataExtractor Desc
) {
5844 // Expected format of the NT_FILE note description:
5845 // 1. # of file mappings (call it N)
5847 // 3. N (start, end, offset) triples
5848 // 4. N packed filenames (null delimited)
5849 // Each field is an Elf_Addr, except for filenames which are char* strings.
5852 const int Bytes
= Desc
.getAddressSize();
5854 if (!Desc
.isValidOffsetForAddress(2))
5855 return createError("the note of size 0x" + Twine::utohexstr(Desc
.size()) +
5856 " is too short, expected at least 0x" +
5857 Twine::utohexstr(Bytes
* 2));
5858 if (Desc
.getData().back() != 0)
5859 return createError("the note is not NUL terminated");
5861 uint64_t DescOffset
= 0;
5862 uint64_t FileCount
= Desc
.getAddress(&DescOffset
);
5863 Ret
.PageSize
= Desc
.getAddress(&DescOffset
);
5865 if (!Desc
.isValidOffsetForAddress(3 * FileCount
* Bytes
))
5866 return createError("unable to read file mappings (found " +
5867 Twine(FileCount
) + "): the note of size 0x" +
5868 Twine::utohexstr(Desc
.size()) + " is too short");
5870 uint64_t FilenamesOffset
= 0;
5871 DataExtractor
Filenames(
5872 Desc
.getData().drop_front(DescOffset
+ 3 * FileCount
* Bytes
),
5873 Desc
.isLittleEndian(), Desc
.getAddressSize());
5875 Ret
.Mappings
.resize(FileCount
);
5877 for (CoreFileMapping
&Mapping
: Ret
.Mappings
) {
5879 if (!Filenames
.isValidOffsetForDataOfSize(FilenamesOffset
, 1))
5881 "unable to read the file name for the mapping with index " +
5882 Twine(I
) + ": the note of size 0x" + Twine::utohexstr(Desc
.size()) +
5884 Mapping
.Start
= Desc
.getAddress(&DescOffset
);
5885 Mapping
.End
= Desc
.getAddress(&DescOffset
);
5886 Mapping
.Offset
= Desc
.getAddress(&DescOffset
);
5887 Mapping
.Filename
= Filenames
.getCStrRef(&FilenamesOffset
);
5893 template <typename ELFT
>
5894 static void printCoreNote(raw_ostream
&OS
, const CoreNote
&Note
) {
5895 // Length of "0x<address>" string.
5896 const int FieldWidth
= ELFT::Is64Bits
? 18 : 10;
5898 OS
<< " Page size: " << format_decimal(Note
.PageSize
, 0) << '\n';
5899 OS
<< " " << right_justify("Start", FieldWidth
) << " "
5900 << right_justify("End", FieldWidth
) << " "
5901 << right_justify("Page Offset", FieldWidth
) << '\n';
5902 for (const CoreFileMapping
&Mapping
: Note
.Mappings
) {
5903 OS
<< " " << format_hex(Mapping
.Start
, FieldWidth
) << " "
5904 << format_hex(Mapping
.End
, FieldWidth
) << " "
5905 << format_hex(Mapping
.Offset
, FieldWidth
) << "\n "
5906 << Mapping
.Filename
<< '\n';
5910 const NoteType GenericNoteTypes
[] = {
5911 {ELF::NT_VERSION
, "NT_VERSION (version)"},
5912 {ELF::NT_ARCH
, "NT_ARCH (architecture)"},
5913 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN
, "OPEN"},
5914 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC
, "func"},
5917 const NoteType GNUNoteTypes
[] = {
5918 {ELF::NT_GNU_ABI_TAG
, "NT_GNU_ABI_TAG (ABI version tag)"},
5919 {ELF::NT_GNU_HWCAP
, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5920 {ELF::NT_GNU_BUILD_ID
, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5921 {ELF::NT_GNU_GOLD_VERSION
, "NT_GNU_GOLD_VERSION (gold version)"},
5922 {ELF::NT_GNU_PROPERTY_TYPE_0
, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5925 const NoteType FreeBSDCoreNoteTypes
[] = {
5926 {ELF::NT_FREEBSD_THRMISC
, "NT_THRMISC (thrmisc structure)"},
5927 {ELF::NT_FREEBSD_PROCSTAT_PROC
, "NT_PROCSTAT_PROC (proc data)"},
5928 {ELF::NT_FREEBSD_PROCSTAT_FILES
, "NT_PROCSTAT_FILES (files data)"},
5929 {ELF::NT_FREEBSD_PROCSTAT_VMMAP
, "NT_PROCSTAT_VMMAP (vmmap data)"},
5930 {ELF::NT_FREEBSD_PROCSTAT_GROUPS
, "NT_PROCSTAT_GROUPS (groups data)"},
5931 {ELF::NT_FREEBSD_PROCSTAT_UMASK
, "NT_PROCSTAT_UMASK (umask data)"},
5932 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT
, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5933 {ELF::NT_FREEBSD_PROCSTAT_OSREL
, "NT_PROCSTAT_OSREL (osreldate data)"},
5934 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS
,
5935 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5936 {ELF::NT_FREEBSD_PROCSTAT_AUXV
, "NT_PROCSTAT_AUXV (auxv data)"},
5939 const NoteType FreeBSDNoteTypes
[] = {
5940 {ELF::NT_FREEBSD_ABI_TAG
, "NT_FREEBSD_ABI_TAG (ABI version tag)"},
5941 {ELF::NT_FREEBSD_NOINIT_TAG
, "NT_FREEBSD_NOINIT_TAG (no .init tag)"},
5942 {ELF::NT_FREEBSD_ARCH_TAG
, "NT_FREEBSD_ARCH_TAG (architecture tag)"},
5943 {ELF::NT_FREEBSD_FEATURE_CTL
,
5944 "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"},
5947 const NoteType NetBSDCoreNoteTypes
[] = {
5948 {ELF::NT_NETBSDCORE_PROCINFO
,
5949 "NT_NETBSDCORE_PROCINFO (procinfo structure)"},
5950 {ELF::NT_NETBSDCORE_AUXV
, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"},
5951 {ELF::NT_NETBSDCORE_LWPSTATUS
, "PT_LWPSTATUS (ptrace_lwpstatus structure)"},
5954 const NoteType OpenBSDCoreNoteTypes
[] = {
5955 {ELF::NT_OPENBSD_PROCINFO
, "NT_OPENBSD_PROCINFO (procinfo structure)"},
5956 {ELF::NT_OPENBSD_AUXV
, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"},
5957 {ELF::NT_OPENBSD_REGS
, "NT_OPENBSD_REGS (regular registers)"},
5958 {ELF::NT_OPENBSD_FPREGS
, "NT_OPENBSD_FPREGS (floating point registers)"},
5959 {ELF::NT_OPENBSD_WCOOKIE
, "NT_OPENBSD_WCOOKIE (window cookie)"},
5962 const NoteType AMDNoteTypes
[] = {
5963 {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION
,
5964 "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"},
5965 {ELF::NT_AMD_HSA_HSAIL
, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"},
5966 {ELF::NT_AMD_HSA_ISA_VERSION
, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"},
5967 {ELF::NT_AMD_HSA_METADATA
, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"},
5968 {ELF::NT_AMD_HSA_ISA_NAME
, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"},
5969 {ELF::NT_AMD_PAL_METADATA
, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"},
5972 const NoteType AMDGPUNoteTypes
[] = {
5973 {ELF::NT_AMDGPU_METADATA
, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
5976 const NoteType LLVMOMPOFFLOADNoteTypes
[] = {
5977 {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION
,
5978 "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"},
5979 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER
,
5980 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"},
5981 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION
,
5982 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"},
5985 const NoteType AndroidNoteTypes
[] = {
5986 {ELF::NT_ANDROID_TYPE_IDENT
, "NT_ANDROID_TYPE_IDENT"},
5987 {ELF::NT_ANDROID_TYPE_KUSER
, "NT_ANDROID_TYPE_KUSER"},
5988 {ELF::NT_ANDROID_TYPE_MEMTAG
,
5989 "NT_ANDROID_TYPE_MEMTAG (Android memory tagging information)"},
5992 const NoteType CoreNoteTypes
[] = {
5993 {ELF::NT_PRSTATUS
, "NT_PRSTATUS (prstatus structure)"},
5994 {ELF::NT_FPREGSET
, "NT_FPREGSET (floating point registers)"},
5995 {ELF::NT_PRPSINFO
, "NT_PRPSINFO (prpsinfo structure)"},
5996 {ELF::NT_TASKSTRUCT
, "NT_TASKSTRUCT (task structure)"},
5997 {ELF::NT_AUXV
, "NT_AUXV (auxiliary vector)"},
5998 {ELF::NT_PSTATUS
, "NT_PSTATUS (pstatus structure)"},
5999 {ELF::NT_FPREGS
, "NT_FPREGS (floating point registers)"},
6000 {ELF::NT_PSINFO
, "NT_PSINFO (psinfo structure)"},
6001 {ELF::NT_LWPSTATUS
, "NT_LWPSTATUS (lwpstatus_t structure)"},
6002 {ELF::NT_LWPSINFO
, "NT_LWPSINFO (lwpsinfo_t structure)"},
6003 {ELF::NT_WIN32PSTATUS
, "NT_WIN32PSTATUS (win32_pstatus structure)"},
6005 {ELF::NT_PPC_VMX
, "NT_PPC_VMX (ppc Altivec registers)"},
6006 {ELF::NT_PPC_VSX
, "NT_PPC_VSX (ppc VSX registers)"},
6007 {ELF::NT_PPC_TAR
, "NT_PPC_TAR (ppc TAR register)"},
6008 {ELF::NT_PPC_PPR
, "NT_PPC_PPR (ppc PPR register)"},
6009 {ELF::NT_PPC_DSCR
, "NT_PPC_DSCR (ppc DSCR register)"},
6010 {ELF::NT_PPC_EBB
, "NT_PPC_EBB (ppc EBB registers)"},
6011 {ELF::NT_PPC_PMU
, "NT_PPC_PMU (ppc PMU registers)"},
6012 {ELF::NT_PPC_TM_CGPR
, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
6013 {ELF::NT_PPC_TM_CFPR
,
6014 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
6015 {ELF::NT_PPC_TM_CVMX
,
6016 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
6017 {ELF::NT_PPC_TM_CVSX
, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
6018 {ELF::NT_PPC_TM_SPR
, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
6019 {ELF::NT_PPC_TM_CTAR
, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
6020 {ELF::NT_PPC_TM_CPPR
, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
6021 {ELF::NT_PPC_TM_CDSCR
, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
6023 {ELF::NT_386_TLS
, "NT_386_TLS (x86 TLS information)"},
6024 {ELF::NT_386_IOPERM
, "NT_386_IOPERM (x86 I/O permissions)"},
6025 {ELF::NT_X86_XSTATE
, "NT_X86_XSTATE (x86 XSAVE extended state)"},
6027 {ELF::NT_S390_HIGH_GPRS
, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
6028 {ELF::NT_S390_TIMER
, "NT_S390_TIMER (s390 timer register)"},
6029 {ELF::NT_S390_TODCMP
, "NT_S390_TODCMP (s390 TOD comparator register)"},
6030 {ELF::NT_S390_TODPREG
, "NT_S390_TODPREG (s390 TOD programmable register)"},
6031 {ELF::NT_S390_CTRS
, "NT_S390_CTRS (s390 control registers)"},
6032 {ELF::NT_S390_PREFIX
, "NT_S390_PREFIX (s390 prefix register)"},
6033 {ELF::NT_S390_LAST_BREAK
,
6034 "NT_S390_LAST_BREAK (s390 last breaking event address)"},
6035 {ELF::NT_S390_SYSTEM_CALL
,
6036 "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
6037 {ELF::NT_S390_TDB
, "NT_S390_TDB (s390 transaction diagnostic block)"},
6038 {ELF::NT_S390_VXRS_LOW
,
6039 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
6040 {ELF::NT_S390_VXRS_HIGH
, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
6041 {ELF::NT_S390_GS_CB
, "NT_S390_GS_CB (s390 guarded-storage registers)"},
6042 {ELF::NT_S390_GS_BC
,
6043 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
6045 {ELF::NT_ARM_VFP
, "NT_ARM_VFP (arm VFP registers)"},
6046 {ELF::NT_ARM_TLS
, "NT_ARM_TLS (AArch TLS registers)"},
6047 {ELF::NT_ARM_HW_BREAK
,
6048 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
6049 {ELF::NT_ARM_HW_WATCH
,
6050 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
6051 {ELF::NT_ARM_SVE
, "NT_ARM_SVE (AArch64 SVE registers)"},
6052 {ELF::NT_ARM_PAC_MASK
,
6053 "NT_ARM_PAC_MASK (AArch64 Pointer Authentication code masks)"},
6054 {ELF::NT_ARM_TAGGED_ADDR_CTRL
,
6055 "NT_ARM_TAGGED_ADDR_CTRL (AArch64 Tagged Address Control)"},
6056 {ELF::NT_ARM_SSVE
, "NT_ARM_SSVE (AArch64 Streaming SVE registers)"},
6057 {ELF::NT_ARM_ZA
, "NT_ARM_ZA (AArch64 SME ZA registers)"},
6058 {ELF::NT_ARM_ZT
, "NT_ARM_ZT (AArch64 SME ZT registers)"},
6059 {ELF::NT_ARM_FPMR
, "NT_ARM_FPMR (AArch64 Floating Point Mode Register)"},
6061 {ELF::NT_FILE
, "NT_FILE (mapped files)"},
6062 {ELF::NT_PRXFPREG
, "NT_PRXFPREG (user_xfpregs structure)"},
6063 {ELF::NT_SIGINFO
, "NT_SIGINFO (siginfo_t data)"},
6066 template <class ELFT
>
6067 StringRef
getNoteTypeName(const typename
ELFT::Note
&Note
, unsigned ELFType
) {
6068 uint32_t Type
= Note
.getType();
6069 auto FindNote
= [&](ArrayRef
<NoteType
> V
) -> StringRef
{
6070 for (const NoteType
&N
: V
)
6076 StringRef Name
= Note
.getName();
6078 return FindNote(GNUNoteTypes
);
6079 if (Name
== "FreeBSD") {
6080 if (ELFType
== ELF::ET_CORE
) {
6081 // FreeBSD also places the generic core notes in the FreeBSD namespace.
6082 StringRef Result
= FindNote(FreeBSDCoreNoteTypes
);
6083 if (!Result
.empty())
6085 return FindNote(CoreNoteTypes
);
6087 return FindNote(FreeBSDNoteTypes
);
6090 if (ELFType
== ELF::ET_CORE
&& Name
.starts_with("NetBSD-CORE")) {
6091 StringRef Result
= FindNote(NetBSDCoreNoteTypes
);
6092 if (!Result
.empty())
6094 return FindNote(CoreNoteTypes
);
6096 if (ELFType
== ELF::ET_CORE
&& Name
.starts_with("OpenBSD")) {
6097 // OpenBSD also places the generic core notes in the OpenBSD namespace.
6098 StringRef Result
= FindNote(OpenBSDCoreNoteTypes
);
6099 if (!Result
.empty())
6101 return FindNote(CoreNoteTypes
);
6104 return FindNote(AMDNoteTypes
);
6105 if (Name
== "AMDGPU")
6106 return FindNote(AMDGPUNoteTypes
);
6107 if (Name
== "LLVMOMPOFFLOAD")
6108 return FindNote(LLVMOMPOFFLOADNoteTypes
);
6109 if (Name
== "Android")
6110 return FindNote(AndroidNoteTypes
);
6112 if (ELFType
== ELF::ET_CORE
)
6113 return FindNote(CoreNoteTypes
);
6114 return FindNote(GenericNoteTypes
);
6117 template <class ELFT
>
6118 static void processNotesHelper(
6119 const ELFDumper
<ELFT
> &Dumper
,
6120 llvm::function_ref
<void(std::optional
<StringRef
>, typename
ELFT::Off
,
6121 typename
ELFT::Addr
, size_t)>
6123 llvm::function_ref
<Error(const typename
ELFT::Note
&, bool)> ProcessNoteFn
,
6124 llvm::function_ref
<void()> FinishNotesFn
) {
6125 const ELFFile
<ELFT
> &Obj
= Dumper
.getElfObject().getELFFile();
6126 bool IsCoreFile
= Obj
.getHeader().e_type
== ELF::ET_CORE
;
6128 ArrayRef
<typename
ELFT::Shdr
> Sections
= cantFail(Obj
.sections());
6129 if (!IsCoreFile
&& !Sections
.empty()) {
6130 for (const typename
ELFT::Shdr
&S
: Sections
) {
6131 if (S
.sh_type
!= SHT_NOTE
)
6133 StartNotesFn(expectedToStdOptional(Obj
.getSectionName(S
)), S
.sh_offset
,
6134 S
.sh_size
, S
.sh_addralign
);
6135 Error Err
= Error::success();
6137 for (const typename
ELFT::Note Note
: Obj
.notes(S
, Err
)) {
6138 if (Error E
= ProcessNoteFn(Note
, IsCoreFile
))
6139 Dumper
.reportUniqueWarning(
6140 "unable to read note with index " + Twine(I
) + " from the " +
6141 describe(Obj
, S
) + ": " + toString(std::move(E
)));
6145 Dumper
.reportUniqueWarning("unable to read notes from the " +
6146 describe(Obj
, S
) + ": " +
6147 toString(std::move(Err
)));
6153 Expected
<ArrayRef
<typename
ELFT::Phdr
>> PhdrsOrErr
= Obj
.program_headers();
6155 Dumper
.reportUniqueWarning(
6156 "unable to read program headers to locate the PT_NOTE segment: " +
6157 toString(PhdrsOrErr
.takeError()));
6161 for (size_t I
= 0, E
= (*PhdrsOrErr
).size(); I
!= E
; ++I
) {
6162 const typename
ELFT::Phdr
&P
= (*PhdrsOrErr
)[I
];
6163 if (P
.p_type
!= PT_NOTE
)
6165 StartNotesFn(/*SecName=*/std::nullopt
, P
.p_offset
, P
.p_filesz
, P
.p_align
);
6166 Error Err
= Error::success();
6168 for (const typename
ELFT::Note Note
: Obj
.notes(P
, Err
)) {
6169 if (Error E
= ProcessNoteFn(Note
, IsCoreFile
))
6170 Dumper
.reportUniqueWarning("unable to read note with index " +
6172 " from the PT_NOTE segment with index " +
6173 Twine(I
) + ": " + toString(std::move(E
)));
6177 Dumper
.reportUniqueWarning(
6178 "unable to read notes from the PT_NOTE segment with index " +
6179 Twine(I
) + ": " + toString(std::move(Err
)));
6184 template <class ELFT
> void GNUELFDumper
<ELFT
>::printNotes() {
6186 bool IsFirstHeader
= true;
6187 auto PrintHeader
= [&](std::optional
<StringRef
> SecName
,
6188 const typename
ELFT::Off Offset
,
6189 const typename
ELFT::Addr Size
, size_t Al
) {
6190 Align
= std::max
<size_t>(Al
, 4);
6191 // Print a newline between notes sections to match GNU readelf.
6192 if (!IsFirstHeader
) {
6195 IsFirstHeader
= false;
6198 OS
<< "Displaying notes found ";
6201 OS
<< "in: " << *SecName
<< "\n";
6203 OS
<< "at file offset " << format_hex(Offset
, 10) << " with length "
6204 << format_hex(Size
, 10) << ":\n";
6206 OS
<< " Owner Data size \tDescription\n";
6209 auto ProcessNote
= [&](const Elf_Note
&Note
, bool IsCore
) -> Error
{
6210 StringRef Name
= Note
.getName();
6211 ArrayRef
<uint8_t> Descriptor
= Note
.getDesc(Align
);
6212 Elf_Word Type
= Note
.getType();
6214 // Print the note owner/type.
6215 OS
<< " " << left_justify(Name
, 20) << ' '
6216 << format_hex(Descriptor
.size(), 10) << '\t';
6218 StringRef NoteType
=
6219 getNoteTypeName
<ELFT
>(Note
, this->Obj
.getHeader().e_type
);
6220 if (!NoteType
.empty())
6221 OS
<< NoteType
<< '\n';
6223 OS
<< "Unknown note type: (" << format_hex(Type
, 10) << ")\n";
6225 // Print the description, or fallback to printing raw bytes for unknown
6226 // owners/if we fail to pretty-print the contents.
6227 if (Name
== "GNU") {
6228 if (printGNUNote
<ELFT
>(OS
, Type
, Descriptor
))
6229 return Error::success();
6230 } else if (Name
== "FreeBSD") {
6231 if (std::optional
<FreeBSDNote
> N
=
6232 getFreeBSDNote
<ELFT
>(Type
, Descriptor
, IsCore
)) {
6233 OS
<< " " << N
->Type
<< ": " << N
->Value
<< '\n';
6234 return Error::success();
6236 } else if (Name
== "AMD") {
6237 const AMDNote N
= getAMDNote
<ELFT
>(Type
, Descriptor
);
6238 if (!N
.Type
.empty()) {
6239 OS
<< " " << N
.Type
<< ":\n " << N
.Value
<< '\n';
6240 return Error::success();
6242 } else if (Name
== "AMDGPU") {
6243 const AMDGPUNote N
= getAMDGPUNote
<ELFT
>(Type
, Descriptor
);
6244 if (!N
.Type
.empty()) {
6245 OS
<< " " << N
.Type
<< ":\n " << N
.Value
<< '\n';
6246 return Error::success();
6248 } else if (Name
== "LLVMOMPOFFLOAD") {
6249 if (printLLVMOMPOFFLOADNote
<ELFT
>(OS
, Type
, Descriptor
))
6250 return Error::success();
6251 } else if (Name
== "CORE") {
6252 if (Type
== ELF::NT_FILE
) {
6253 DataExtractor
DescExtractor(
6254 Descriptor
, ELFT::Endianness
== llvm::endianness::little
,
6256 if (Expected
<CoreNote
> NoteOrErr
= readCoreNote(DescExtractor
)) {
6257 printCoreNote
<ELFT
>(OS
, *NoteOrErr
);
6258 return Error::success();
6260 return NoteOrErr
.takeError();
6263 } else if (Name
== "Android") {
6264 if (printAndroidNote(OS
, Type
, Descriptor
))
6265 return Error::success();
6267 if (!Descriptor
.empty()) {
6268 OS
<< " description data:";
6269 for (uint8_t B
: Descriptor
)
6270 OS
<< " " << format("%02x", B
);
6273 return Error::success();
6276 processNotesHelper(*this, /*StartNotesFn=*/PrintHeader
,
6277 /*ProcessNoteFn=*/ProcessNote
, /*FinishNotesFn=*/[]() {});
6280 template <class ELFT
>
6282 ELFDumper
<ELFT
>::getMemtagGlobalsSectionContents(uint64_t ExpectedAddr
) {
6283 for (const typename
ELFT::Shdr
&Sec
: cantFail(Obj
.sections())) {
6284 if (Sec
.sh_type
!= SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC
)
6286 if (Sec
.sh_addr
!= ExpectedAddr
) {
6287 reportUniqueWarning(
6288 "SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section was unexpectedly at 0x" +
6289 Twine::utohexstr(Sec
.sh_addr
) +
6290 ", when DT_AARCH64_MEMTAG_GLOBALS says it should be at 0x" +
6291 Twine::utohexstr(ExpectedAddr
));
6292 return ArrayRef
<uint8_t>();
6294 Expected
<ArrayRef
<uint8_t>> Contents
= Obj
.getSectionContents(Sec
);
6295 if (auto E
= Contents
.takeError()) {
6296 reportUniqueWarning(
6297 "couldn't get SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section contents: " +
6298 toString(std::move(E
)));
6299 return ArrayRef
<uint8_t>();
6301 return Contents
.get();
6303 return ArrayRef
<uint8_t>();
6306 // Reserve the lower three bits of the first byte of the step distance when
6307 // encoding the memtag descriptors. Found to be the best overall size tradeoff
6308 // when compiling Android T with full MTE globals enabled.
6309 constexpr uint64_t MemtagStepVarintReservedBits
= 3;
6310 constexpr uint64_t MemtagGranuleSize
= 16;
6312 template <typename ELFT
> void ELFDumper
<ELFT
>::printMemtag() {
6313 if (Obj
.getHeader().e_machine
!= EM_AARCH64
) return;
6314 std::vector
<std::pair
<std::string
, std::string
>> DynamicEntries
;
6315 uint64_t MemtagGlobalsSz
= 0;
6316 uint64_t MemtagGlobals
= 0;
6317 for (const typename
ELFT::Dyn
&Entry
: dynamic_table()) {
6318 uintX_t Tag
= Entry
.getTag();
6320 case DT_AARCH64_MEMTAG_GLOBALSSZ
:
6321 MemtagGlobalsSz
= Entry
.getVal();
6322 DynamicEntries
.emplace_back(Obj
.getDynamicTagAsString(Tag
),
6323 getDynamicEntry(Tag
, Entry
.getVal()));
6325 case DT_AARCH64_MEMTAG_GLOBALS
:
6326 MemtagGlobals
= Entry
.getVal();
6327 DynamicEntries
.emplace_back(Obj
.getDynamicTagAsString(Tag
),
6328 getDynamicEntry(Tag
, Entry
.getVal()));
6330 case DT_AARCH64_MEMTAG_MODE
:
6331 case DT_AARCH64_MEMTAG_HEAP
:
6332 case DT_AARCH64_MEMTAG_STACK
:
6333 DynamicEntries
.emplace_back(Obj
.getDynamicTagAsString(Tag
),
6334 getDynamicEntry(Tag
, Entry
.getVal()));
6339 ArrayRef
<uint8_t> AndroidNoteDesc
;
6340 auto FindAndroidNote
= [&](const Elf_Note
&Note
, bool IsCore
) -> Error
{
6341 if (Note
.getName() == "Android" &&
6342 Note
.getType() == ELF::NT_ANDROID_TYPE_MEMTAG
)
6343 AndroidNoteDesc
= Note
.getDesc(4);
6344 return Error::success();
6350 [](std::optional
<StringRef
>, const typename
ELFT::Off
,
6351 const typename
ELFT::Addr
, size_t) {},
6352 /*ProcessNoteFn=*/FindAndroidNote
, /*FinishNotesFn=*/[]() {});
6354 ArrayRef
<uint8_t> Contents
= getMemtagGlobalsSectionContents(MemtagGlobals
);
6355 if (Contents
.size() != MemtagGlobalsSz
) {
6356 reportUniqueWarning(
6357 "mismatch between DT_AARCH64_MEMTAG_GLOBALSSZ (0x" +
6358 Twine::utohexstr(MemtagGlobalsSz
) +
6359 ") and SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section size (0x" +
6360 Twine::utohexstr(Contents
.size()) + ")");
6361 Contents
= ArrayRef
<uint8_t>();
6364 std::vector
<std::pair
<uint64_t, uint64_t>> GlobalDescriptors
;
6365 uint64_t Address
= 0;
6366 // See the AArch64 MemtagABI document for a description of encoding scheme:
6367 // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#83encoding-of-sht_aarch64_memtag_globals_dynamic
6368 for (size_t I
= 0; I
< Contents
.size();) {
6369 const char *Error
= nullptr;
6370 unsigned DecodedBytes
= 0;
6371 uint64_t Value
= decodeULEB128(Contents
.data() + I
, &DecodedBytes
,
6372 Contents
.end(), &Error
);
6375 reportUniqueWarning(
6376 "error decoding distance uleb, " + Twine(DecodedBytes
) +
6377 " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error
));
6378 GlobalDescriptors
.clear();
6381 uint64_t Distance
= Value
>> MemtagStepVarintReservedBits
;
6382 uint64_t GranulesToTag
= Value
& ((1 << MemtagStepVarintReservedBits
) - 1);
6383 if (GranulesToTag
== 0) {
6384 GranulesToTag
= decodeULEB128(Contents
.data() + I
, &DecodedBytes
,
6385 Contents
.end(), &Error
) +
6389 reportUniqueWarning(
6390 "error decoding size-only uleb, " + Twine(DecodedBytes
) +
6391 " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error
));
6392 GlobalDescriptors
.clear();
6396 Address
+= Distance
* MemtagGranuleSize
;
6397 GlobalDescriptors
.emplace_back(Address
, GranulesToTag
* MemtagGranuleSize
);
6398 Address
+= GranulesToTag
* MemtagGranuleSize
;
6401 printMemtag(DynamicEntries
, AndroidNoteDesc
, GlobalDescriptors
);
6404 template <class ELFT
> void GNUELFDumper
<ELFT
>::printELFLinkerOptions() {
6405 OS
<< "printELFLinkerOptions not implemented!\n";
6408 template <class ELFT
>
6409 void ELFDumper
<ELFT
>::printDependentLibsHelper(
6410 function_ref
<void(const Elf_Shdr
&)> OnSectionStart
,
6411 function_ref
<void(StringRef
, uint64_t)> OnLibEntry
) {
6412 auto Warn
= [this](unsigned SecNdx
, StringRef Msg
) {
6413 this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
6414 Twine(SecNdx
) + " is broken: " + Msg
);
6418 for (const Elf_Shdr
&Shdr
: cantFail(Obj
.sections())) {
6420 if (Shdr
.sh_type
!= ELF::SHT_LLVM_DEPENDENT_LIBRARIES
)
6423 OnSectionStart(Shdr
);
6425 Expected
<ArrayRef
<uint8_t>> ContentsOrErr
= Obj
.getSectionContents(Shdr
);
6426 if (!ContentsOrErr
) {
6427 Warn(I
, toString(ContentsOrErr
.takeError()));
6431 ArrayRef
<uint8_t> Contents
= *ContentsOrErr
;
6432 if (!Contents
.empty() && Contents
.back() != 0) {
6433 Warn(I
, "the content is not null-terminated");
6437 for (const uint8_t *I
= Contents
.begin(), *E
= Contents
.end(); I
< E
;) {
6438 StringRef
Lib((const char *)I
);
6439 OnLibEntry(Lib
, I
- Contents
.begin());
6440 I
+= Lib
.size() + 1;
6445 template <class ELFT
>
6446 void ELFDumper
<ELFT
>::forEachRelocationDo(
6447 const Elf_Shdr
&Sec
,
6448 llvm::function_ref
<void(const Relocation
<ELFT
> &, unsigned,
6449 const Elf_Shdr
&, const Elf_Shdr
*)>
6451 auto Warn
= [&](Error
&&E
,
6452 const Twine
&Prefix
= "unable to read relocations from") {
6453 this->reportUniqueWarning(Prefix
+ " " + describe(Sec
) + ": " +
6454 toString(std::move(E
)));
6457 // SHT_RELR/SHT_ANDROID_RELR/SHT_AARCH64_AUTH_RELR sections do not have an
6458 // associated symbol table. For them we should not treat the value of the
6459 // sh_link field as an index of a symbol table.
6460 const Elf_Shdr
*SymTab
;
6461 if (Sec
.sh_type
!= ELF::SHT_RELR
&& Sec
.sh_type
!= ELF::SHT_ANDROID_RELR
&&
6462 !(Obj
.getHeader().e_machine
== EM_AARCH64
&&
6463 Sec
.sh_type
== ELF::SHT_AARCH64_AUTH_RELR
)) {
6464 Expected
<const Elf_Shdr
*> SymTabOrErr
= Obj
.getSection(Sec
.sh_link
);
6466 Warn(SymTabOrErr
.takeError(), "unable to locate a symbol table for");
6469 SymTab
= *SymTabOrErr
;
6472 unsigned RelNdx
= 0;
6473 const bool IsMips64EL
= this->Obj
.isMips64EL();
6474 switch (Sec
.sh_type
) {
6476 if (Expected
<Elf_Rel_Range
> RangeOrErr
= Obj
.rels(Sec
)) {
6477 for (const Elf_Rel
&R
: *RangeOrErr
)
6478 RelRelaFn(Relocation
<ELFT
>(R
, IsMips64EL
), RelNdx
++, Sec
, SymTab
);
6480 Warn(RangeOrErr
.takeError());
6484 if (Expected
<Elf_Rela_Range
> RangeOrErr
= Obj
.relas(Sec
)) {
6485 for (const Elf_Rela
&R
: *RangeOrErr
)
6486 RelRelaFn(Relocation
<ELFT
>(R
, IsMips64EL
), RelNdx
++, Sec
, SymTab
);
6488 Warn(RangeOrErr
.takeError());
6491 case ELF::SHT_AARCH64_AUTH_RELR
:
6492 if (Obj
.getHeader().e_machine
!= EM_AARCH64
)
6496 case ELF::SHT_ANDROID_RELR
: {
6497 Expected
<Elf_Relr_Range
> RangeOrErr
= Obj
.relrs(Sec
);
6499 Warn(RangeOrErr
.takeError());
6503 for (const Elf_Rel
&R
: Obj
.decode_relrs(*RangeOrErr
))
6504 RelRelaFn(Relocation
<ELFT
>(R
, IsMips64EL
), RelNdx
++, Sec
,
6505 /*SymTab=*/nullptr);
6508 case ELF::SHT_CREL
: {
6509 if (auto RelsOrRelas
= Obj
.crels(Sec
)) {
6510 for (const Elf_Rel
&R
: RelsOrRelas
->first
)
6511 RelRelaFn(Relocation
<ELFT
>(R
, false), RelNdx
++, Sec
, SymTab
);
6512 for (const Elf_Rela
&R
: RelsOrRelas
->second
)
6513 RelRelaFn(Relocation
<ELFT
>(R
, false), RelNdx
++, Sec
, SymTab
);
6515 Warn(RelsOrRelas
.takeError());
6519 case ELF::SHT_ANDROID_REL
:
6520 case ELF::SHT_ANDROID_RELA
:
6521 if (Expected
<std::vector
<Elf_Rela
>> RelasOrErr
= Obj
.android_relas(Sec
)) {
6522 for (const Elf_Rela
&R
: *RelasOrErr
)
6523 RelRelaFn(Relocation
<ELFT
>(R
, IsMips64EL
), RelNdx
++, Sec
, SymTab
);
6525 Warn(RelasOrErr
.takeError());
6531 template <class ELFT
>
6532 StringRef ELFDumper
<ELFT
>::getPrintableSectionName(const Elf_Shdr
&Sec
) const {
6533 StringRef Name
= "<?>";
6534 if (Expected
<StringRef
> SecNameOrErr
=
6535 Obj
.getSectionName(Sec
, this->WarningHandler
))
6536 Name
= *SecNameOrErr
;
6538 this->reportUniqueWarning("unable to get the name of " + describe(Sec
) +
6539 ": " + toString(SecNameOrErr
.takeError()));
6543 template <class ELFT
> void GNUELFDumper
<ELFT
>::printDependentLibs() {
6544 bool SectionStarted
= false;
6549 std::vector
<NameOffset
> SecEntries
;
6551 auto PrintSection
= [&]() {
6552 OS
<< "Dependent libraries section " << Current
.Name
<< " at offset "
6553 << format_hex(Current
.Offset
, 1) << " contains " << SecEntries
.size()
6555 for (NameOffset Entry
: SecEntries
)
6556 OS
<< " [" << format("%6" PRIx64
, Entry
.Offset
) << "] " << Entry
.Name
6562 auto OnSectionStart
= [&](const Elf_Shdr
&Shdr
) {
6565 SectionStarted
= true;
6566 Current
.Offset
= Shdr
.sh_offset
;
6567 Current
.Name
= this->getPrintableSectionName(Shdr
);
6569 auto OnLibEntry
= [&](StringRef Lib
, uint64_t Offset
) {
6570 SecEntries
.push_back(NameOffset
{Lib
, Offset
});
6573 this->printDependentLibsHelper(OnSectionStart
, OnLibEntry
);
6578 template <class ELFT
>
6579 SmallVector
<uint32_t> ELFDumper
<ELFT
>::getSymbolIndexesForFunctionAddress(
6580 uint64_t SymValue
, std::optional
<const Elf_Shdr
*> FunctionSec
) {
6581 SmallVector
<uint32_t> SymbolIndexes
;
6582 if (!this->AddressToIndexMap
) {
6583 // Populate the address to index map upon the first invocation of this
6585 this->AddressToIndexMap
.emplace();
6586 if (this->DotSymtabSec
) {
6587 if (Expected
<Elf_Sym_Range
> SymsOrError
=
6588 Obj
.symbols(this->DotSymtabSec
)) {
6589 uint32_t Index
= (uint32_t)-1;
6590 for (const Elf_Sym
&Sym
: *SymsOrError
) {
6593 if (Sym
.st_shndx
== ELF::SHN_UNDEF
|| Sym
.getType() != ELF::STT_FUNC
)
6596 Expected
<uint64_t> SymAddrOrErr
=
6597 ObjF
.toSymbolRef(this->DotSymtabSec
, Index
).getAddress();
6598 if (!SymAddrOrErr
) {
6599 std::string Name
= this->getStaticSymbolName(Index
);
6600 reportUniqueWarning("unable to get address of symbol '" + Name
+
6601 "': " + toString(SymAddrOrErr
.takeError()));
6602 return SymbolIndexes
;
6605 (*this->AddressToIndexMap
)[*SymAddrOrErr
].push_back(Index
);
6608 reportUniqueWarning("unable to read the symbol table: " +
6609 toString(SymsOrError
.takeError()));
6614 auto Symbols
= this->AddressToIndexMap
->find(SymValue
);
6615 if (Symbols
== this->AddressToIndexMap
->end())
6616 return SymbolIndexes
;
6618 for (uint32_t Index
: Symbols
->second
) {
6619 // Check if the symbol is in the right section. FunctionSec == None
6620 // means "any section".
6622 const Elf_Sym
&Sym
= *cantFail(Obj
.getSymbol(this->DotSymtabSec
, Index
));
6623 if (Expected
<const Elf_Shdr
*> SecOrErr
=
6624 Obj
.getSection(Sym
, this->DotSymtabSec
,
6625 this->getShndxTable(this->DotSymtabSec
))) {
6626 if (*FunctionSec
!= *SecOrErr
)
6629 std::string Name
= this->getStaticSymbolName(Index
);
6630 // Note: it is impossible to trigger this error currently, it is
6632 reportUniqueWarning("unable to get section of symbol '" + Name
+
6633 "': " + toString(SecOrErr
.takeError()));
6634 return SymbolIndexes
;
6638 SymbolIndexes
.push_back(Index
);
6641 return SymbolIndexes
;
6644 template <class ELFT
>
6645 bool ELFDumper
<ELFT
>::printFunctionStackSize(
6646 uint64_t SymValue
, std::optional
<const Elf_Shdr
*> FunctionSec
,
6647 const Elf_Shdr
&StackSizeSec
, DataExtractor Data
, uint64_t *Offset
) {
6648 SmallVector
<uint32_t> FuncSymIndexes
=
6649 this->getSymbolIndexesForFunctionAddress(SymValue
, FunctionSec
);
6650 if (FuncSymIndexes
.empty())
6651 reportUniqueWarning(
6652 "could not identify function symbol for stack size entry in " +
6653 describe(StackSizeSec
));
6655 // Extract the size. The expectation is that Offset is pointing to the right
6656 // place, i.e. past the function address.
6657 Error Err
= Error::success();
6658 uint64_t StackSize
= Data
.getULEB128(Offset
, &Err
);
6660 reportUniqueWarning("could not extract a valid stack size from " +
6661 describe(StackSizeSec
) + ": " +
6662 toString(std::move(Err
)));
6666 if (FuncSymIndexes
.empty()) {
6667 printStackSizeEntry(StackSize
, {"?"});
6669 SmallVector
<std::string
> FuncSymNames
;
6670 for (uint32_t Index
: FuncSymIndexes
)
6671 FuncSymNames
.push_back(this->getStaticSymbolName(Index
));
6672 printStackSizeEntry(StackSize
, FuncSymNames
);
6678 template <class ELFT
>
6679 void GNUELFDumper
<ELFT
>::printStackSizeEntry(uint64_t Size
,
6680 ArrayRef
<std::string
> FuncNames
) {
6682 OS
<< format_decimal(Size
, 11);
6685 OS
<< join(FuncNames
.begin(), FuncNames
.end(), ", ") << "\n";
6688 template <class ELFT
>
6689 void ELFDumper
<ELFT
>::printStackSize(const Relocation
<ELFT
> &R
,
6690 const Elf_Shdr
&RelocSec
, unsigned Ndx
,
6691 const Elf_Shdr
*SymTab
,
6692 const Elf_Shdr
*FunctionSec
,
6693 const Elf_Shdr
&StackSizeSec
,
6694 const RelocationResolver
&Resolver
,
6695 DataExtractor Data
) {
6696 // This function ignores potentially erroneous input, unless it is directly
6697 // related to stack size reporting.
6698 const Elf_Sym
*Sym
= nullptr;
6699 Expected
<RelSymbol
<ELFT
>> TargetOrErr
= this->getRelocationTarget(R
, SymTab
);
6701 reportUniqueWarning("unable to get the target of relocation with index " +
6702 Twine(Ndx
) + " in " + describe(RelocSec
) + ": " +
6703 toString(TargetOrErr
.takeError()));
6705 Sym
= TargetOrErr
->Sym
;
6707 uint64_t RelocSymValue
= 0;
6709 Expected
<const Elf_Shdr
*> SectionOrErr
=
6710 this->Obj
.getSection(*Sym
, SymTab
, this->getShndxTable(SymTab
));
6711 if (!SectionOrErr
) {
6712 reportUniqueWarning(
6713 "cannot identify the section for relocation symbol '" +
6714 (*TargetOrErr
).Name
+ "': " + toString(SectionOrErr
.takeError()));
6715 } else if (*SectionOrErr
!= FunctionSec
) {
6716 reportUniqueWarning("relocation symbol '" + (*TargetOrErr
).Name
+
6717 "' is not in the expected section");
6718 // Pretend that the symbol is in the correct section and report its
6719 // stack size anyway.
6720 FunctionSec
= *SectionOrErr
;
6723 RelocSymValue
= Sym
->st_value
;
6726 uint64_t Offset
= R
.Offset
;
6727 if (!Data
.isValidOffsetForDataOfSize(Offset
, sizeof(Elf_Addr
) + 1)) {
6728 reportUniqueWarning("found invalid relocation offset (0x" +
6729 Twine::utohexstr(Offset
) + ") into " +
6730 describe(StackSizeSec
) +
6731 " while trying to extract a stack size entry");
6735 uint64_t SymValue
= Resolver(R
.Type
, Offset
, RelocSymValue
,
6736 Data
.getAddress(&Offset
), R
.Addend
.value_or(0));
6737 this->printFunctionStackSize(SymValue
, FunctionSec
, StackSizeSec
, Data
,
6741 template <class ELFT
>
6742 void ELFDumper
<ELFT
>::printNonRelocatableStackSizes(
6743 std::function
<void()> PrintHeader
) {
6744 // This function ignores potentially erroneous input, unless it is directly
6745 // related to stack size reporting.
6746 for (const Elf_Shdr
&Sec
: cantFail(Obj
.sections())) {
6747 if (this->getPrintableSectionName(Sec
) != ".stack_sizes")
6750 ArrayRef
<uint8_t> Contents
=
6751 unwrapOrError(this->FileName
, Obj
.getSectionContents(Sec
));
6752 DataExtractor
Data(Contents
, Obj
.isLE(), sizeof(Elf_Addr
));
6753 uint64_t Offset
= 0;
6754 while (Offset
< Contents
.size()) {
6755 // The function address is followed by a ULEB representing the stack
6756 // size. Check for an extra byte before we try to process the entry.
6757 if (!Data
.isValidOffsetForDataOfSize(Offset
, sizeof(Elf_Addr
) + 1)) {
6758 reportUniqueWarning(
6760 " ended while trying to extract a stack size entry");
6763 uint64_t SymValue
= Data
.getAddress(&Offset
);
6764 if (!printFunctionStackSize(SymValue
, /*FunctionSec=*/std::nullopt
, Sec
,
6771 template <class ELFT
>
6772 void ELFDumper
<ELFT
>::printRelocatableStackSizes(
6773 std::function
<void()> PrintHeader
) {
6774 // Build a map between stack size sections and their corresponding relocation
6776 auto IsMatch
= [&](const Elf_Shdr
&Sec
) -> bool {
6777 StringRef SectionName
;
6778 if (Expected
<StringRef
> NameOrErr
= Obj
.getSectionName(Sec
))
6779 SectionName
= *NameOrErr
;
6781 consumeError(NameOrErr
.takeError());
6783 return SectionName
== ".stack_sizes";
6786 Expected
<MapVector
<const Elf_Shdr
*, const Elf_Shdr
*>>
6787 StackSizeRelocMapOrErr
= Obj
.getSectionAndRelocations(IsMatch
);
6788 if (!StackSizeRelocMapOrErr
) {
6789 reportUniqueWarning("unable to get stack size map section(s): " +
6790 toString(StackSizeRelocMapOrErr
.takeError()));
6794 for (const auto &StackSizeMapEntry
: *StackSizeRelocMapOrErr
) {
6796 const Elf_Shdr
*StackSizesELFSec
= StackSizeMapEntry
.first
;
6797 const Elf_Shdr
*RelocSec
= StackSizeMapEntry
.second
;
6799 // Warn about stack size sections without a relocation section.
6801 reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec
) +
6802 ") does not have a corresponding "
6803 "relocation section"),
6808 // A .stack_sizes section header's sh_link field is supposed to point
6809 // to the section that contains the functions whose stack sizes are
6811 const Elf_Shdr
*FunctionSec
= unwrapOrError(
6812 this->FileName
, Obj
.getSection(StackSizesELFSec
->sh_link
));
6814 SupportsRelocation IsSupportedFn
;
6815 RelocationResolver Resolver
;
6816 std::tie(IsSupportedFn
, Resolver
) = getRelocationResolver(this->ObjF
);
6817 ArrayRef
<uint8_t> Contents
=
6818 unwrapOrError(this->FileName
, Obj
.getSectionContents(*StackSizesELFSec
));
6819 DataExtractor
Data(Contents
, Obj
.isLE(), sizeof(Elf_Addr
));
6821 forEachRelocationDo(
6822 *RelocSec
, [&](const Relocation
<ELFT
> &R
, unsigned Ndx
,
6823 const Elf_Shdr
&Sec
, const Elf_Shdr
*SymTab
) {
6824 if (!IsSupportedFn
|| !IsSupportedFn(R
.Type
)) {
6825 reportUniqueWarning(
6826 describe(*RelocSec
) +
6827 " contains an unsupported relocation with index " + Twine(Ndx
) +
6828 ": " + Obj
.getRelocationTypeName(R
.Type
));
6832 this->printStackSize(R
, *RelocSec
, Ndx
, SymTab
, FunctionSec
,
6833 *StackSizesELFSec
, Resolver
, Data
);
6838 template <class ELFT
>
6839 void GNUELFDumper
<ELFT
>::printStackSizes() {
6840 bool HeaderHasBeenPrinted
= false;
6841 auto PrintHeader
= [&]() {
6842 if (HeaderHasBeenPrinted
)
6844 OS
<< "\nStack Sizes:\n";
6848 OS
<< "Functions\n";
6849 HeaderHasBeenPrinted
= true;
6852 // For non-relocatable objects, look directly for sections whose name starts
6853 // with .stack_sizes and process the contents.
6854 if (this->Obj
.getHeader().e_type
== ELF::ET_REL
)
6855 this->printRelocatableStackSizes(PrintHeader
);
6857 this->printNonRelocatableStackSizes(PrintHeader
);
6860 template <class ELFT
>
6861 void GNUELFDumper
<ELFT
>::printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) {
6862 size_t Bias
= ELFT::Is64Bits
? 8 : 0;
6863 auto PrintEntry
= [&](const Elf_Addr
*E
, StringRef Purpose
) {
6865 OS
<< format_hex_no_prefix(Parser
.getGotAddress(E
), 8 + Bias
);
6866 OS
.PadToColumn(11 + Bias
);
6867 OS
<< format_decimal(Parser
.getGotOffset(E
), 6) << "(gp)";
6868 OS
.PadToColumn(22 + Bias
);
6869 OS
<< format_hex_no_prefix(*E
, 8 + Bias
);
6870 OS
.PadToColumn(31 + 2 * Bias
);
6871 OS
<< Purpose
<< "\n";
6874 OS
<< (Parser
.IsStatic
? "Static GOT:\n" : "Primary GOT:\n");
6875 OS
<< " Canonical gp value: "
6876 << format_hex_no_prefix(Parser
.getGp(), 8 + Bias
) << "\n\n";
6878 OS
<< " Reserved entries:\n";
6880 OS
<< " Address Access Initial Purpose\n";
6882 OS
<< " Address Access Initial Purpose\n";
6883 PrintEntry(Parser
.getGotLazyResolver(), "Lazy resolver");
6884 if (Parser
.getGotModulePointer())
6885 PrintEntry(Parser
.getGotModulePointer(), "Module pointer (GNU extension)");
6887 if (!Parser
.getLocalEntries().empty()) {
6889 OS
<< " Local entries:\n";
6891 OS
<< " Address Access Initial\n";
6893 OS
<< " Address Access Initial\n";
6894 for (auto &E
: Parser
.getLocalEntries())
6898 if (Parser
.IsStatic
)
6901 if (!Parser
.getGlobalEntries().empty()) {
6903 OS
<< " Global entries:\n";
6905 OS
<< " Address Access Initial Sym.Val."
6906 << " Type Ndx Name\n";
6908 OS
<< " Address Access Initial Sym.Val. Type Ndx Name\n";
6910 DataRegion
<Elf_Word
> ShndxTable(
6911 (const Elf_Word
*)this->DynSymTabShndxRegion
.Addr
, this->Obj
.end());
6912 for (auto &E
: Parser
.getGlobalEntries()) {
6913 const Elf_Sym
&Sym
= *Parser
.getGotSym(&E
);
6914 const Elf_Sym
&FirstSym
= this->dynamic_symbols()[0];
6915 std::string SymName
= this->getFullSymbolName(
6916 Sym
, &Sym
- &FirstSym
, ShndxTable
, this->DynamicStringTable
, false);
6919 OS
<< to_string(format_hex_no_prefix(Parser
.getGotAddress(&E
), 8 + Bias
));
6920 OS
.PadToColumn(11 + Bias
);
6921 OS
<< to_string(format_decimal(Parser
.getGotOffset(&E
), 6)) + "(gp)";
6922 OS
.PadToColumn(22 + Bias
);
6923 OS
<< to_string(format_hex_no_prefix(E
, 8 + Bias
));
6924 OS
.PadToColumn(31 + 2 * Bias
);
6925 OS
<< to_string(format_hex_no_prefix(Sym
.st_value
, 8 + Bias
));
6926 OS
.PadToColumn(40 + 3 * Bias
);
6927 OS
<< enumToString(Sym
.getType(), ArrayRef(ElfSymbolTypes
));
6928 OS
.PadToColumn(48 + 3 * Bias
);
6929 OS
<< getSymbolSectionNdx(Sym
, &Sym
- this->dynamic_symbols().begin(),
6931 OS
.PadToColumn(52 + 3 * Bias
);
6932 OS
<< SymName
<< "\n";
6936 if (!Parser
.getOtherEntries().empty())
6937 OS
<< "\n Number of TLS and multi-GOT entries "
6938 << Parser
.getOtherEntries().size() << "\n";
6941 template <class ELFT
>
6942 void GNUELFDumper
<ELFT
>::printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) {
6943 size_t Bias
= ELFT::Is64Bits
? 8 : 0;
6944 auto PrintEntry
= [&](const Elf_Addr
*E
, StringRef Purpose
) {
6946 OS
<< format_hex_no_prefix(Parser
.getPltAddress(E
), 8 + Bias
);
6947 OS
.PadToColumn(11 + Bias
);
6948 OS
<< format_hex_no_prefix(*E
, 8 + Bias
);
6949 OS
.PadToColumn(20 + 2 * Bias
);
6950 OS
<< Purpose
<< "\n";
6953 OS
<< "PLT GOT:\n\n";
6955 OS
<< " Reserved entries:\n";
6956 OS
<< " Address Initial Purpose\n";
6957 PrintEntry(Parser
.getPltLazyResolver(), "PLT lazy resolver");
6958 if (Parser
.getPltModulePointer())
6959 PrintEntry(Parser
.getPltModulePointer(), "Module pointer");
6961 if (!Parser
.getPltEntries().empty()) {
6963 OS
<< " Entries:\n";
6964 OS
<< " Address Initial Sym.Val. Type Ndx Name\n";
6965 DataRegion
<Elf_Word
> ShndxTable(
6966 (const Elf_Word
*)this->DynSymTabShndxRegion
.Addr
, this->Obj
.end());
6967 for (auto &E
: Parser
.getPltEntries()) {
6968 const Elf_Sym
&Sym
= *Parser
.getPltSym(&E
);
6969 const Elf_Sym
&FirstSym
= *cantFail(
6970 this->Obj
.template getEntry
<Elf_Sym
>(*Parser
.getPltSymTable(), 0));
6971 std::string SymName
= this->getFullSymbolName(
6972 Sym
, &Sym
- &FirstSym
, ShndxTable
, this->DynamicStringTable
, false);
6975 OS
<< to_string(format_hex_no_prefix(Parser
.getPltAddress(&E
), 8 + Bias
));
6976 OS
.PadToColumn(11 + Bias
);
6977 OS
<< to_string(format_hex_no_prefix(E
, 8 + Bias
));
6978 OS
.PadToColumn(20 + 2 * Bias
);
6979 OS
<< to_string(format_hex_no_prefix(Sym
.st_value
, 8 + Bias
));
6980 OS
.PadToColumn(29 + 3 * Bias
);
6981 OS
<< enumToString(Sym
.getType(), ArrayRef(ElfSymbolTypes
));
6982 OS
.PadToColumn(37 + 3 * Bias
);
6983 OS
<< getSymbolSectionNdx(Sym
, &Sym
- this->dynamic_symbols().begin(),
6985 OS
.PadToColumn(41 + 3 * Bias
);
6986 OS
<< SymName
<< "\n";
6991 template <class ELFT
>
6992 Expected
<const Elf_Mips_ABIFlags
<ELFT
> *>
6993 getMipsAbiFlagsSection(const ELFDumper
<ELFT
> &Dumper
) {
6994 const typename
ELFT::Shdr
*Sec
= Dumper
.findSectionByName(".MIPS.abiflags");
6998 constexpr StringRef ErrPrefix
= "unable to read the .MIPS.abiflags section: ";
6999 Expected
<ArrayRef
<uint8_t>> DataOrErr
=
7000 Dumper
.getElfObject().getELFFile().getSectionContents(*Sec
);
7002 return createError(ErrPrefix
+ toString(DataOrErr
.takeError()));
7004 if (DataOrErr
->size() != sizeof(Elf_Mips_ABIFlags
<ELFT
>))
7005 return createError(ErrPrefix
+ "it has a wrong size (" +
7006 Twine(DataOrErr
->size()) + ")");
7007 return reinterpret_cast<const Elf_Mips_ABIFlags
<ELFT
> *>(DataOrErr
->data());
7010 template <class ELFT
> void GNUELFDumper
<ELFT
>::printMipsABIFlags() {
7011 const Elf_Mips_ABIFlags
<ELFT
> *Flags
= nullptr;
7012 if (Expected
<const Elf_Mips_ABIFlags
<ELFT
> *> SecOrErr
=
7013 getMipsAbiFlagsSection(*this))
7016 this->reportUniqueWarning(SecOrErr
.takeError());
7020 OS
<< "MIPS ABI Flags Version: " << Flags
->version
<< "\n\n";
7021 OS
<< "ISA: MIPS" << int(Flags
->isa_level
);
7022 if (Flags
->isa_rev
> 1)
7023 OS
<< "r" << int(Flags
->isa_rev
);
7025 OS
<< "GPR size: " << getMipsRegisterSize(Flags
->gpr_size
) << "\n";
7026 OS
<< "CPR1 size: " << getMipsRegisterSize(Flags
->cpr1_size
) << "\n";
7027 OS
<< "CPR2 size: " << getMipsRegisterSize(Flags
->cpr2_size
) << "\n";
7028 OS
<< "FP ABI: " << enumToString(Flags
->fp_abi
, ArrayRef(ElfMipsFpABIType
))
7030 OS
<< "ISA Extension: "
7031 << enumToString(Flags
->isa_ext
, ArrayRef(ElfMipsISAExtType
)) << "\n";
7032 if (Flags
->ases
== 0)
7033 OS
<< "ASEs: None\n";
7035 // FIXME: Print each flag on a separate line.
7036 OS
<< "ASEs: " << printFlags(Flags
->ases
, ArrayRef(ElfMipsASEFlags
))
7038 OS
<< "FLAGS 1: " << format_hex_no_prefix(Flags
->flags1
, 8, false) << "\n";
7039 OS
<< "FLAGS 2: " << format_hex_no_prefix(Flags
->flags2
, 8, false) << "\n";
7043 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printFileHeaders() {
7044 const Elf_Ehdr
&E
= this->Obj
.getHeader();
7046 DictScope
D(W
, "ElfHeader");
7048 DictScope
D(W
, "Ident");
7049 W
.printBinary("Magic",
7050 ArrayRef
<unsigned char>(E
.e_ident
).slice(ELF::EI_MAG0
, 4));
7051 W
.printEnum("Class", E
.e_ident
[ELF::EI_CLASS
], ArrayRef(ElfClass
));
7052 W
.printEnum("DataEncoding", E
.e_ident
[ELF::EI_DATA
],
7053 ArrayRef(ElfDataEncoding
));
7054 W
.printNumber("FileVersion", E
.e_ident
[ELF::EI_VERSION
]);
7056 auto OSABI
= ArrayRef(ElfOSABI
);
7057 if (E
.e_ident
[ELF::EI_OSABI
] >= ELF::ELFOSABI_FIRST_ARCH
&&
7058 E
.e_ident
[ELF::EI_OSABI
] <= ELF::ELFOSABI_LAST_ARCH
) {
7059 switch (E
.e_machine
) {
7060 case ELF::EM_AMDGPU
:
7061 OSABI
= ArrayRef(AMDGPUElfOSABI
);
7064 OSABI
= ArrayRef(ARMElfOSABI
);
7066 case ELF::EM_TI_C6000
:
7067 OSABI
= ArrayRef(C6000ElfOSABI
);
7071 W
.printEnum("OS/ABI", E
.e_ident
[ELF::EI_OSABI
], OSABI
);
7072 W
.printNumber("ABIVersion", E
.e_ident
[ELF::EI_ABIVERSION
]);
7073 W
.printBinary("Unused",
7074 ArrayRef
<unsigned char>(E
.e_ident
).slice(ELF::EI_PAD
));
7077 std::string TypeStr
;
7078 if (const EnumEntry
<unsigned> *Ent
= getObjectFileEnumEntry(E
.e_type
)) {
7079 TypeStr
= Ent
->Name
.str();
7081 if (E
.e_type
>= ET_LOPROC
)
7082 TypeStr
= "Processor Specific";
7083 else if (E
.e_type
>= ET_LOOS
)
7084 TypeStr
= "OS Specific";
7086 TypeStr
= "Unknown";
7088 W
.printString("Type", TypeStr
+ " (0x" + utohexstr(E
.e_type
) + ")");
7090 W
.printEnum("Machine", E
.e_machine
, ArrayRef(ElfMachineType
));
7091 W
.printNumber("Version", E
.e_version
);
7092 W
.printHex("Entry", E
.e_entry
);
7093 W
.printHex("ProgramHeaderOffset", E
.e_phoff
);
7094 W
.printHex("SectionHeaderOffset", E
.e_shoff
);
7095 if (E
.e_machine
== EM_MIPS
)
7096 W
.printFlags("Flags", E
.e_flags
, ArrayRef(ElfHeaderMipsFlags
),
7097 unsigned(ELF::EF_MIPS_ARCH
), unsigned(ELF::EF_MIPS_ABI
),
7098 unsigned(ELF::EF_MIPS_MACH
));
7099 else if (E
.e_machine
== EM_AMDGPU
) {
7100 switch (E
.e_ident
[ELF::EI_ABIVERSION
]) {
7102 W
.printHex("Flags", E
.e_flags
);
7105 // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
7107 case ELF::ELFABIVERSION_AMDGPU_HSA_V3
:
7108 W
.printFlags("Flags", E
.e_flags
,
7109 ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3
),
7110 unsigned(ELF::EF_AMDGPU_MACH
));
7112 case ELF::ELFABIVERSION_AMDGPU_HSA_V4
:
7113 case ELF::ELFABIVERSION_AMDGPU_HSA_V5
:
7114 W
.printFlags("Flags", E
.e_flags
,
7115 ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4
),
7116 unsigned(ELF::EF_AMDGPU_MACH
),
7117 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4
),
7118 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4
));
7120 case ELF::ELFABIVERSION_AMDGPU_HSA_V6
: {
7121 std::optional
<FlagEntry
> VerFlagEntry
;
7122 // The string needs to remain alive from the moment we create a
7123 // FlagEntry until printFlags is done.
7124 std::string FlagStr
;
7125 if (auto VersionFlag
= E
.e_flags
& ELF::EF_AMDGPU_GENERIC_VERSION
) {
7127 VersionFlag
>> ELF::EF_AMDGPU_GENERIC_VERSION_OFFSET
;
7128 FlagStr
= "EF_AMDGPU_GENERIC_VERSION_V" + std::to_string(Version
);
7129 VerFlagEntry
= FlagEntry(FlagStr
, VersionFlag
);
7132 "Flags", E
.e_flags
, ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4
),
7133 unsigned(ELF::EF_AMDGPU_MACH
),
7134 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4
),
7135 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4
),
7136 VerFlagEntry
? ArrayRef(*VerFlagEntry
) : ArrayRef
<FlagEntry
>());
7140 } else if (E
.e_machine
== EM_RISCV
)
7141 W
.printFlags("Flags", E
.e_flags
, ArrayRef(ElfHeaderRISCVFlags
));
7142 else if (E
.e_machine
== EM_SPARC32PLUS
|| E
.e_machine
== EM_SPARCV9
)
7143 W
.printFlags("Flags", E
.e_flags
, ArrayRef(ElfHeaderSPARCFlags
),
7144 unsigned(ELF::EF_SPARCV9_MM
));
7145 else if (E
.e_machine
== EM_AVR
)
7146 W
.printFlags("Flags", E
.e_flags
, ArrayRef(ElfHeaderAVRFlags
),
7147 unsigned(ELF::EF_AVR_ARCH_MASK
));
7148 else if (E
.e_machine
== EM_LOONGARCH
)
7149 W
.printFlags("Flags", E
.e_flags
, ArrayRef(ElfHeaderLoongArchFlags
),
7150 unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK
),
7151 unsigned(ELF::EF_LOONGARCH_OBJABI_MASK
));
7152 else if (E
.e_machine
== EM_XTENSA
)
7153 W
.printFlags("Flags", E
.e_flags
, ArrayRef(ElfHeaderXtensaFlags
),
7154 unsigned(ELF::EF_XTENSA_MACH
));
7155 else if (E
.e_machine
== EM_CUDA
)
7156 W
.printFlags("Flags", E
.e_flags
, ArrayRef(ElfHeaderNVPTXFlags
),
7157 unsigned(ELF::EF_CUDA_SM
));
7159 W
.printFlags("Flags", E
.e_flags
);
7160 W
.printNumber("HeaderSize", E
.e_ehsize
);
7161 W
.printNumber("ProgramHeaderEntrySize", E
.e_phentsize
);
7162 W
.printNumber("ProgramHeaderCount", E
.e_phnum
);
7163 W
.printNumber("SectionHeaderEntrySize", E
.e_shentsize
);
7164 W
.printString("SectionHeaderCount",
7165 getSectionHeadersNumString(this->Obj
, this->FileName
));
7166 W
.printString("StringTableSectionIndex",
7167 getSectionHeaderTableIndexString(this->Obj
, this->FileName
));
7171 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printGroupSections() {
7172 DictScope
Lists(W
, "Groups");
7173 std::vector
<GroupSection
> V
= this->getGroups();
7174 DenseMap
<uint64_t, const GroupSection
*> Map
= mapSectionsToGroups(V
);
7175 for (const GroupSection
&G
: V
) {
7176 DictScope
D(W
, "Group");
7177 W
.printNumber("Name", G
.Name
, G
.ShName
);
7178 W
.printNumber("Index", G
.Index
);
7179 W
.printNumber("Link", G
.Link
);
7180 W
.printNumber("Info", G
.Info
);
7181 W
.printHex("Type", getGroupType(G
.Type
), G
.Type
);
7182 W
.printString("Signature", G
.Signature
);
7184 ListScope
L(W
, getGroupSectionHeaderName());
7185 for (const GroupMember
&GM
: G
.Members
) {
7186 const GroupSection
*MainGroup
= Map
[GM
.Index
];
7187 if (MainGroup
!= &G
)
7188 this->reportUniqueWarning(
7189 "section with index " + Twine(GM
.Index
) +
7190 ", included in the group section with index " +
7191 Twine(MainGroup
->Index
) +
7192 ", was also found in the group section with index " +
7194 printSectionGroupMembers(GM
.Name
, GM
.Index
);
7199 printEmptyGroupMessage();
7202 template <class ELFT
>
7203 std::string LLVMELFDumper
<ELFT
>::getGroupSectionHeaderName() const {
7204 return "Section(s) in group";
7207 template <class ELFT
>
7208 void LLVMELFDumper
<ELFT
>::printSectionGroupMembers(StringRef Name
,
7209 uint64_t Idx
) const {
7210 W
.startLine() << Name
<< " (" << Idx
<< ")\n";
7213 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printRelocations() {
7214 ListScope
D(W
, "Relocations");
7216 for (const Elf_Shdr
&Sec
: cantFail(this->Obj
.sections())) {
7217 if (!isRelocationSec
<ELFT
>(Sec
, this->Obj
.getHeader()))
7220 StringRef Name
= this->getPrintableSectionName(Sec
);
7221 unsigned SecNdx
= &Sec
- &cantFail(this->Obj
.sections()).front();
7222 printRelocationSectionInfo(Sec
, Name
, SecNdx
);
7226 template <class ELFT
>
7227 void LLVMELFDumper
<ELFT
>::printExpandedRelRelaReloc(const Relocation
<ELFT
> &R
,
7228 StringRef SymbolName
,
7229 StringRef RelocName
) {
7230 DictScope
Group(W
, "Relocation");
7231 W
.printHex("Offset", R
.Offset
);
7232 W
.printNumber("Type", RelocName
, R
.Type
);
7233 W
.printNumber("Symbol", !SymbolName
.empty() ? SymbolName
: "-", R
.Symbol
);
7235 W
.printHex("Addend", (uintX_t
)*R
.Addend
);
7238 template <class ELFT
>
7239 void LLVMELFDumper
<ELFT
>::printDefaultRelRelaReloc(const Relocation
<ELFT
> &R
,
7240 StringRef SymbolName
,
7241 StringRef RelocName
) {
7242 raw_ostream
&OS
= W
.startLine();
7243 OS
<< W
.hex(R
.Offset
) << " " << RelocName
<< " "
7244 << (!SymbolName
.empty() ? SymbolName
: "-");
7246 OS
<< " " << W
.hex((uintX_t
)*R
.Addend
);
7250 template <class ELFT
>
7251 void LLVMELFDumper
<ELFT
>::printRelocationSectionInfo(const Elf_Shdr
&Sec
,
7253 const unsigned SecNdx
) {
7254 DictScope
D(W
, (Twine("Section (") + Twine(SecNdx
) + ") " + Name
).str());
7255 this->printRelocationsHelper(Sec
);
7258 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printEmptyGroupMessage() const {
7259 W
.startLine() << "There are no group sections in the file.\n";
7262 template <class ELFT
>
7263 void LLVMELFDumper
<ELFT
>::printRelRelaReloc(const Relocation
<ELFT
> &R
,
7264 const RelSymbol
<ELFT
> &RelSym
) {
7265 StringRef SymbolName
= RelSym
.Name
;
7266 if (RelSym
.Sym
&& RelSym
.Name
.empty())
7267 SymbolName
= "<null>";
7268 SmallString
<32> RelocName
;
7269 this->Obj
.getRelocationTypeName(R
.Type
, RelocName
);
7271 if (opts::ExpandRelocs
) {
7272 printExpandedRelRelaReloc(R
, SymbolName
, RelocName
);
7274 printDefaultRelRelaReloc(R
, SymbolName
, RelocName
);
7278 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printSectionHeaders() {
7279 ListScope
SectionsD(W
, "Sections");
7281 int SectionIndex
= -1;
7282 std::vector
<EnumEntry
<unsigned>> FlagsList
=
7283 getSectionFlagsForTarget(this->Obj
.getHeader().e_ident
[ELF::EI_OSABI
],
7284 this->Obj
.getHeader().e_machine
);
7285 for (const Elf_Shdr
&Sec
: cantFail(this->Obj
.sections())) {
7286 DictScope
SectionD(W
, "Section");
7287 W
.printNumber("Index", ++SectionIndex
);
7288 W
.printNumber("Name", this->getPrintableSectionName(Sec
), Sec
.sh_name
);
7290 object::getELFSectionTypeName(this->Obj
.getHeader().e_machine
,
7293 W
.printFlags("Flags", Sec
.sh_flags
, ArrayRef(FlagsList
));
7294 W
.printHex("Address", Sec
.sh_addr
);
7295 W
.printHex("Offset", Sec
.sh_offset
);
7296 W
.printNumber("Size", Sec
.sh_size
);
7297 W
.printNumber("Link", Sec
.sh_link
);
7298 W
.printNumber("Info", Sec
.sh_info
);
7299 W
.printNumber("AddressAlignment", Sec
.sh_addralign
);
7300 W
.printNumber("EntrySize", Sec
.sh_entsize
);
7302 if (opts::SectionRelocations
) {
7303 ListScope
D(W
, "Relocations");
7304 this->printRelocationsHelper(Sec
);
7307 if (opts::SectionSymbols
) {
7308 ListScope
D(W
, "Symbols");
7309 if (this->DotSymtabSec
) {
7310 StringRef StrTable
= unwrapOrError(
7312 this->Obj
.getStringTableForSymtab(*this->DotSymtabSec
));
7313 ArrayRef
<Elf_Word
> ShndxTable
= this->getShndxTable(this->DotSymtabSec
);
7315 typename
ELFT::SymRange Symbols
= unwrapOrError(
7316 this->FileName
, this->Obj
.symbols(this->DotSymtabSec
));
7317 for (const Elf_Sym
&Sym
: Symbols
) {
7318 const Elf_Shdr
*SymSec
= unwrapOrError(
7320 this->Obj
.getSection(Sym
, this->DotSymtabSec
, ShndxTable
));
7322 printSymbol(Sym
, &Sym
- &Symbols
[0], ShndxTable
, StrTable
, false,
7323 /*NonVisibilityBitsUsed=*/false,
7324 /*ExtraSymInfo=*/false);
7329 if (opts::SectionData
&& Sec
.sh_type
!= ELF::SHT_NOBITS
) {
7330 ArrayRef
<uint8_t> Data
=
7331 unwrapOrError(this->FileName
, this->Obj
.getSectionContents(Sec
));
7334 StringRef(reinterpret_cast<const char *>(Data
.data()), Data
.size()));
7339 template <class ELFT
>
7340 void LLVMELFDumper
<ELFT
>::printSymbolSection(
7341 const Elf_Sym
&Symbol
, unsigned SymIndex
,
7342 DataRegion
<Elf_Word
> ShndxTable
) const {
7343 auto GetSectionSpecialType
= [&]() -> std::optional
<StringRef
> {
7344 if (Symbol
.isUndefined())
7345 return StringRef("Undefined");
7346 if (Symbol
.isProcessorSpecific())
7347 return StringRef("Processor Specific");
7348 if (Symbol
.isOSSpecific())
7349 return StringRef("Operating System Specific");
7350 if (Symbol
.isAbsolute())
7351 return StringRef("Absolute");
7352 if (Symbol
.isCommon())
7353 return StringRef("Common");
7354 if (Symbol
.isReserved() && Symbol
.st_shndx
!= SHN_XINDEX
)
7355 return StringRef("Reserved");
7356 return std::nullopt
;
7359 if (std::optional
<StringRef
> Type
= GetSectionSpecialType()) {
7360 W
.printHex("Section", *Type
, Symbol
.st_shndx
);
7364 Expected
<unsigned> SectionIndex
=
7365 this->getSymbolSectionIndex(Symbol
, SymIndex
, ShndxTable
);
7366 if (!SectionIndex
) {
7367 assert(Symbol
.st_shndx
== SHN_XINDEX
&&
7368 "getSymbolSectionIndex should only fail due to an invalid "
7369 "SHT_SYMTAB_SHNDX table/reference");
7370 this->reportUniqueWarning(SectionIndex
.takeError());
7371 W
.printHex("Section", "Reserved", SHN_XINDEX
);
7375 Expected
<StringRef
> SectionName
=
7376 this->getSymbolSectionName(Symbol
, *SectionIndex
);
7378 // Don't report an invalid section name if the section headers are missing.
7379 // In such situations, all sections will be "invalid".
7380 if (!this->ObjF
.sections().empty())
7381 this->reportUniqueWarning(SectionName
.takeError());
7383 consumeError(SectionName
.takeError());
7384 W
.printHex("Section", "<?>", *SectionIndex
);
7386 W
.printHex("Section", *SectionName
, *SectionIndex
);
7390 template <class ELFT
>
7391 void LLVMELFDumper
<ELFT
>::printSymbolOtherField(const Elf_Sym
&Symbol
) const {
7392 std::vector
<EnumEntry
<unsigned>> SymOtherFlags
=
7393 this->getOtherFlagsFromSymbol(this->Obj
.getHeader(), Symbol
);
7394 W
.printFlags("Other", Symbol
.st_other
, ArrayRef(SymOtherFlags
), 0x3u
);
7397 template <class ELFT
>
7398 void LLVMELFDumper
<ELFT
>::printZeroSymbolOtherField(
7399 const Elf_Sym
&Symbol
) const {
7400 assert(Symbol
.st_other
== 0 && "non-zero Other Field");
7401 // Usually st_other flag is zero. Do not pollute the output
7402 // by flags enumeration in that case.
7403 W
.printNumber("Other", 0);
7406 template <class ELFT
>
7407 void LLVMELFDumper
<ELFT
>::printSymbol(const Elf_Sym
&Symbol
, unsigned SymIndex
,
7408 DataRegion
<Elf_Word
> ShndxTable
,
7409 std::optional
<StringRef
> StrTable
,
7411 bool /*NonVisibilityBitsUsed*/,
7412 bool /*ExtraSymInfo*/) const {
7413 std::string FullSymbolName
= this->getFullSymbolName(
7414 Symbol
, SymIndex
, ShndxTable
, StrTable
, IsDynamic
);
7415 unsigned char SymbolType
= Symbol
.getType();
7417 DictScope
D(W
, "Symbol");
7418 W
.printNumber("Name", FullSymbolName
, Symbol
.st_name
);
7419 W
.printHex("Value", Symbol
.st_value
);
7420 W
.printNumber("Size", Symbol
.st_size
);
7421 W
.printEnum("Binding", Symbol
.getBinding(), ArrayRef(ElfSymbolBindings
));
7422 if (this->Obj
.getHeader().e_machine
== ELF::EM_AMDGPU
&&
7423 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
7424 W
.printEnum("Type", SymbolType
, ArrayRef(AMDGPUSymbolTypes
));
7426 W
.printEnum("Type", SymbolType
, ArrayRef(ElfSymbolTypes
));
7427 if (Symbol
.st_other
== 0)
7428 printZeroSymbolOtherField(Symbol
);
7430 printSymbolOtherField(Symbol
);
7431 printSymbolSection(Symbol
, SymIndex
, ShndxTable
);
7434 template <class ELFT
>
7435 void LLVMELFDumper
<ELFT
>::printSymbols(bool PrintSymbols
,
7436 bool PrintDynamicSymbols
,
7437 bool ExtraSymInfo
) {
7439 ListScope
Group(W
, "Symbols");
7440 this->printSymbolsHelper(false, ExtraSymInfo
);
7442 if (PrintDynamicSymbols
) {
7443 ListScope
Group(W
, "DynamicSymbols");
7444 this->printSymbolsHelper(true, ExtraSymInfo
);
7448 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printDynamicTable() {
7449 Elf_Dyn_Range Table
= this->dynamic_table();
7453 W
.startLine() << "DynamicSection [ (" << Table
.size() << " entries)\n";
7455 size_t MaxTagSize
= getMaxDynamicTagSize(this->Obj
, Table
);
7456 // The "Name/Value" column should be indented from the "Type" column by N
7457 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
7459 W
.startLine() << " Tag" << std::string(ELFT::Is64Bits
? 16 : 8, ' ')
7460 << "Type" << std::string(MaxTagSize
- 3, ' ') << "Name/Value\n";
7462 std::string ValueFmt
= "%-" + std::to_string(MaxTagSize
) + "s ";
7463 for (auto Entry
: Table
) {
7464 uintX_t Tag
= Entry
.getTag();
7465 std::string Value
= this->getDynamicEntry(Tag
, Entry
.getVal());
7466 W
.startLine() << " " << format_hex(Tag
, ELFT::Is64Bits
? 18 : 10, true)
7468 << format(ValueFmt
.c_str(),
7469 this->Obj
.getDynamicTagAsString(Tag
).c_str())
7472 W
.startLine() << "]\n";
7475 template <class ELFT
>
7476 void JSONELFDumper
<ELFT
>::printAuxillaryDynamicTableEntryInfo(
7477 const Elf_Dyn
&Entry
) {
7478 auto FormatFlags
= [this, Value
= Entry
.getVal()](auto Flags
) {
7479 ListScope
L(this->W
, "Flags");
7480 for (const auto &Flag
: Flags
) {
7481 if (Flag
.Value
!= 0 && (Value
& Flag
.Value
) == Flag
.Value
)
7482 this->W
.printString(Flag
.Name
);
7485 switch (Entry
.getTag()) {
7487 this->W
.printString("Name", this->getDynamicString(Entry
.getVal()));
7492 this->W
.printString("Library", this->getDynamicString(Entry
.getVal()));
7495 this->W
.printString("Object", this->getDynamicString(Entry
.getVal()));
7499 StringRef Value
= this->getDynamicString(Entry
.getVal());
7500 ListScope
L(this->W
, "Path");
7501 while (!Value
.empty()) {
7502 auto [Front
, Back
] = Value
.split(':');
7503 this->W
.printString(Front
);
7509 FormatFlags(ArrayRef(ElfDynamicDTFlags
));
7512 FormatFlags(ArrayRef(ElfDynamicDTFlags1
));
7519 template <class ELFT
> void JSONELFDumper
<ELFT
>::printDynamicTable() {
7520 Elf_Dyn_Range Table
= this->dynamic_table();
7521 ListScope
L(this->W
, "DynamicSection");
7522 for (const auto &Entry
: Table
) {
7523 DictScope
D(this->W
);
7524 uintX_t Tag
= Entry
.getTag();
7525 this->W
.printHex("Tag", Tag
);
7526 this->W
.printString("Type", this->Obj
.getDynamicTagAsString(Tag
));
7527 this->W
.printHex("Value", Entry
.getVal());
7528 this->printAuxillaryDynamicTableEntryInfo(Entry
);
7532 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printDynamicRelocations() {
7533 W
.startLine() << "Dynamic Relocations {\n";
7535 this->printDynamicRelocationsHelper();
7537 W
.startLine() << "}\n";
7540 template <class ELFT
>
7541 void LLVMELFDumper
<ELFT
>::printProgramHeaders(
7542 bool PrintProgramHeaders
, cl::boolOrDefault PrintSectionMapping
) {
7543 if (PrintProgramHeaders
)
7544 printProgramHeaders();
7545 if (PrintSectionMapping
== cl::BOU_TRUE
)
7546 printSectionMapping();
7549 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printProgramHeaders() {
7550 ListScope
L(W
, "ProgramHeaders");
7552 Expected
<ArrayRef
<Elf_Phdr
>> PhdrsOrErr
= this->Obj
.program_headers();
7554 this->reportUniqueWarning("unable to dump program headers: " +
7555 toString(PhdrsOrErr
.takeError()));
7559 for (const Elf_Phdr
&Phdr
: *PhdrsOrErr
) {
7560 DictScope
P(W
, "ProgramHeader");
7562 segmentTypeToString(this->Obj
.getHeader().e_machine
, Phdr
.p_type
);
7564 W
.printHex("Type", Type
.empty() ? "Unknown" : Type
, Phdr
.p_type
);
7565 W
.printHex("Offset", Phdr
.p_offset
);
7566 W
.printHex("VirtualAddress", Phdr
.p_vaddr
);
7567 W
.printHex("PhysicalAddress", Phdr
.p_paddr
);
7568 W
.printNumber("FileSize", Phdr
.p_filesz
);
7569 W
.printNumber("MemSize", Phdr
.p_memsz
);
7570 W
.printFlags("Flags", Phdr
.p_flags
, ArrayRef(ElfSegmentFlags
));
7571 W
.printNumber("Alignment", Phdr
.p_align
);
7575 template <class ELFT
>
7576 void LLVMELFDumper
<ELFT
>::printVersionSymbolSection(const Elf_Shdr
*Sec
) {
7577 ListScope
SS(W
, "VersionSymbols");
7582 ArrayRef
<Elf_Sym
> Syms
;
7583 const Elf_Shdr
*SymTabSec
;
7584 Expected
<ArrayRef
<Elf_Versym
>> VerTableOrErr
=
7585 this->getVersionTable(*Sec
, &Syms
, &StrTable
, &SymTabSec
);
7586 if (!VerTableOrErr
) {
7587 this->reportUniqueWarning(VerTableOrErr
.takeError());
7591 if (StrTable
.empty() || Syms
.empty() || Syms
.size() != VerTableOrErr
->size())
7594 ArrayRef
<Elf_Word
> ShNdxTable
= this->getShndxTable(SymTabSec
);
7595 for (size_t I
= 0, E
= Syms
.size(); I
< E
; ++I
) {
7596 DictScope
S(W
, "Symbol");
7597 W
.printNumber("Version", (*VerTableOrErr
)[I
].vs_index
& VERSYM_VERSION
);
7598 W
.printString("Name",
7599 this->getFullSymbolName(Syms
[I
], I
, ShNdxTable
, StrTable
,
7600 /*IsDynamic=*/true));
7604 const EnumEntry
<unsigned> SymVersionFlags
[] = {
7605 {"Base", "BASE", VER_FLG_BASE
},
7606 {"Weak", "WEAK", VER_FLG_WEAK
},
7607 {"Info", "INFO", VER_FLG_INFO
}};
7609 template <class ELFT
>
7610 void LLVMELFDumper
<ELFT
>::printVersionDefinitionSection(const Elf_Shdr
*Sec
) {
7611 ListScope
SD(W
, "VersionDefinitions");
7615 Expected
<std::vector
<VerDef
>> V
= this->Obj
.getVersionDefinitions(*Sec
);
7617 this->reportUniqueWarning(V
.takeError());
7621 for (const VerDef
&D
: *V
) {
7622 DictScope
Def(W
, "Definition");
7623 W
.printNumber("Version", D
.Version
);
7624 W
.printFlags("Flags", D
.Flags
, ArrayRef(SymVersionFlags
));
7625 W
.printNumber("Index", D
.Ndx
);
7626 W
.printNumber("Hash", D
.Hash
);
7627 W
.printString("Name", D
.Name
.c_str());
7629 "Predecessors", D
.AuxV
,
7630 [](raw_ostream
&OS
, const VerdAux
&Aux
) { OS
<< Aux
.Name
.c_str(); });
7634 template <class ELFT
>
7635 void LLVMELFDumper
<ELFT
>::printVersionDependencySection(const Elf_Shdr
*Sec
) {
7636 ListScope
SD(W
, "VersionRequirements");
7640 Expected
<std::vector
<VerNeed
>> V
=
7641 this->Obj
.getVersionDependencies(*Sec
, this->WarningHandler
);
7643 this->reportUniqueWarning(V
.takeError());
7647 for (const VerNeed
&VN
: *V
) {
7648 DictScope
Entry(W
, "Dependency");
7649 W
.printNumber("Version", VN
.Version
);
7650 W
.printNumber("Count", VN
.Cnt
);
7651 W
.printString("FileName", VN
.File
.c_str());
7653 ListScope
L(W
, "Entries");
7654 for (const VernAux
&Aux
: VN
.AuxV
) {
7655 DictScope
Entry(W
, "Entry");
7656 W
.printNumber("Hash", Aux
.Hash
);
7657 W
.printFlags("Flags", Aux
.Flags
, ArrayRef(SymVersionFlags
));
7658 W
.printNumber("Index", Aux
.Other
);
7659 W
.printString("Name", Aux
.Name
.c_str());
7664 template <class ELFT
>
7665 void LLVMELFDumper
<ELFT
>::printHashHistogramStats(size_t NBucket
,
7668 ArrayRef
<size_t> Count
,
7670 StringRef HistName
= IsGnu
? "GnuHashHistogram" : "HashHistogram";
7671 StringRef BucketName
= IsGnu
? "Bucket" : "Chain";
7672 StringRef ListName
= IsGnu
? "Buckets" : "Chains";
7673 DictScope
Outer(W
, HistName
);
7674 W
.printNumber("TotalBuckets", NBucket
);
7675 ListScope
Buckets(W
, ListName
);
7676 size_t CumulativeNonZero
= 0;
7677 for (size_t I
= 0; I
< MaxChain
; ++I
) {
7678 CumulativeNonZero
+= Count
[I
] * I
;
7679 DictScope
Bucket(W
, BucketName
);
7680 W
.printNumber("Length", I
);
7681 W
.printNumber("Count", Count
[I
]);
7682 W
.printNumber("Percentage", (float)(Count
[I
] * 100.0) / NBucket
);
7683 W
.printNumber("Coverage", (float)(CumulativeNonZero
* 100.0) / TotalSyms
);
7687 // Returns true if rel/rela section exists, and populates SymbolIndices.
7688 // Otherwise returns false.
7689 template <class ELFT
>
7690 static bool getSymbolIndices(const typename
ELFT::Shdr
*CGRelSection
,
7691 const ELFFile
<ELFT
> &Obj
,
7692 const LLVMELFDumper
<ELFT
> *Dumper
,
7693 SmallVector
<uint32_t, 128> &SymbolIndices
) {
7694 if (!CGRelSection
) {
7695 Dumper
->reportUniqueWarning(
7696 "relocation section for a call graph section doesn't exist");
7700 if (CGRelSection
->sh_type
== SHT_REL
) {
7701 typename
ELFT::RelRange CGProfileRel
;
7702 Expected
<typename
ELFT::RelRange
> CGProfileRelOrError
=
7703 Obj
.rels(*CGRelSection
);
7704 if (!CGProfileRelOrError
) {
7705 Dumper
->reportUniqueWarning("unable to load relocations for "
7706 "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7707 toString(CGProfileRelOrError
.takeError()));
7711 CGProfileRel
= *CGProfileRelOrError
;
7712 for (const typename
ELFT::Rel
&Rel
: CGProfileRel
)
7713 SymbolIndices
.push_back(Rel
.getSymbol(Obj
.isMips64EL()));
7715 // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert
7716 // the format to SHT_RELA
7717 // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035)
7718 typename
ELFT::RelaRange CGProfileRela
;
7719 Expected
<typename
ELFT::RelaRange
> CGProfileRelaOrError
=
7720 Obj
.relas(*CGRelSection
);
7721 if (!CGProfileRelaOrError
) {
7722 Dumper
->reportUniqueWarning("unable to load relocations for "
7723 "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7724 toString(CGProfileRelaOrError
.takeError()));
7728 CGProfileRela
= *CGProfileRelaOrError
;
7729 for (const typename
ELFT::Rela
&Rela
: CGProfileRela
)
7730 SymbolIndices
.push_back(Rela
.getSymbol(Obj
.isMips64EL()));
7736 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printCGProfile() {
7737 auto IsMatch
= [](const Elf_Shdr
&Sec
) -> bool {
7738 return Sec
.sh_type
== ELF::SHT_LLVM_CALL_GRAPH_PROFILE
;
7741 Expected
<MapVector
<const Elf_Shdr
*, const Elf_Shdr
*>> SecToRelocMapOrErr
=
7742 this->Obj
.getSectionAndRelocations(IsMatch
);
7743 if (!SecToRelocMapOrErr
) {
7744 this->reportUniqueWarning("unable to get CG Profile section(s): " +
7745 toString(SecToRelocMapOrErr
.takeError()));
7749 for (const auto &CGMapEntry
: *SecToRelocMapOrErr
) {
7750 const Elf_Shdr
*CGSection
= CGMapEntry
.first
;
7751 const Elf_Shdr
*CGRelSection
= CGMapEntry
.second
;
7753 Expected
<ArrayRef
<Elf_CGProfile
>> CGProfileOrErr
=
7754 this->Obj
.template getSectionContentsAsArray
<Elf_CGProfile
>(*CGSection
);
7755 if (!CGProfileOrErr
) {
7756 this->reportUniqueWarning(
7757 "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7758 toString(CGProfileOrErr
.takeError()));
7762 SmallVector
<uint32_t, 128> SymbolIndices
;
7764 getSymbolIndices
<ELFT
>(CGRelSection
, this->Obj
, this, SymbolIndices
);
7765 if (UseReloc
&& SymbolIndices
.size() != CGProfileOrErr
->size() * 2) {
7766 this->reportUniqueWarning(
7767 "number of from/to pairs does not match number of frequencies");
7771 ListScope
L(W
, "CGProfile");
7772 for (uint32_t I
= 0, Size
= CGProfileOrErr
->size(); I
!= Size
; ++I
) {
7773 const Elf_CGProfile
&CGPE
= (*CGProfileOrErr
)[I
];
7774 DictScope
D(W
, "CGProfileEntry");
7776 uint32_t From
= SymbolIndices
[I
* 2];
7777 uint32_t To
= SymbolIndices
[I
* 2 + 1];
7778 W
.printNumber("From", this->getStaticSymbolName(From
), From
);
7779 W
.printNumber("To", this->getStaticSymbolName(To
), To
);
7781 W
.printNumber("Weight", CGPE
.cgp_weight
);
7786 template <class ELFT
>
7787 void LLVMELFDumper
<ELFT
>::printBBAddrMaps(bool PrettyPGOAnalysis
) {
7788 bool IsRelocatable
= this->Obj
.getHeader().e_type
== ELF::ET_REL
;
7789 using Elf_Shdr
= typename
ELFT::Shdr
;
7790 auto IsMatch
= [](const Elf_Shdr
&Sec
) -> bool {
7791 return Sec
.sh_type
== ELF::SHT_LLVM_BB_ADDR_MAP
;
7793 Expected
<MapVector
<const Elf_Shdr
*, const Elf_Shdr
*>> SecRelocMapOrErr
=
7794 this->Obj
.getSectionAndRelocations(IsMatch
);
7795 if (!SecRelocMapOrErr
) {
7796 this->reportUniqueWarning(
7797 "failed to get SHT_LLVM_BB_ADDR_MAP section(s): " +
7798 toString(SecRelocMapOrErr
.takeError()));
7801 for (auto const &[Sec
, RelocSec
] : *SecRelocMapOrErr
) {
7802 std::optional
<const Elf_Shdr
*> FunctionSec
;
7805 unwrapOrError(this->FileName
, this->Obj
.getSection(Sec
->sh_link
));
7806 ListScope
L(W
, "BBAddrMap");
7807 if (IsRelocatable
&& !RelocSec
) {
7808 this->reportUniqueWarning("unable to get relocation section for " +
7809 this->describe(*Sec
));
7812 std::vector
<PGOAnalysisMap
> PGOAnalyses
;
7813 Expected
<std::vector
<BBAddrMap
>> BBAddrMapOrErr
=
7814 this->Obj
.decodeBBAddrMap(*Sec
, RelocSec
, &PGOAnalyses
);
7815 if (!BBAddrMapOrErr
) {
7816 this->reportUniqueWarning("unable to dump " + this->describe(*Sec
) +
7817 ": " + toString(BBAddrMapOrErr
.takeError()));
7820 for (const auto &[AM
, PAM
] : zip_equal(*BBAddrMapOrErr
, PGOAnalyses
)) {
7821 DictScope
D(W
, "Function");
7822 W
.printHex("At", AM
.getFunctionAddress());
7823 SmallVector
<uint32_t> FuncSymIndex
=
7824 this->getSymbolIndexesForFunctionAddress(AM
.getFunctionAddress(),
7826 std::string FuncName
= "<?>";
7827 if (FuncSymIndex
.empty())
7828 this->reportUniqueWarning(
7829 "could not identify function symbol for address (0x" +
7830 Twine::utohexstr(AM
.getFunctionAddress()) + ") in " +
7831 this->describe(*Sec
));
7833 FuncName
= this->getStaticSymbolName(FuncSymIndex
.front());
7834 W
.printString("Name", FuncName
);
7836 ListScope
BBRL(W
, "BB Ranges");
7837 for (const BBAddrMap::BBRangeEntry
&BBR
: AM
.BBRanges
) {
7839 W
.printHex("Base Address", BBR
.BaseAddress
);
7840 ListScope
BBEL(W
, "BB Entries");
7841 for (const BBAddrMap::BBEntry
&BBE
: BBR
.BBEntries
) {
7843 W
.printNumber("ID", BBE
.ID
);
7844 W
.printHex("Offset", BBE
.Offset
);
7845 W
.printHex("Size", BBE
.Size
);
7846 W
.printBoolean("HasReturn", BBE
.hasReturn());
7847 W
.printBoolean("HasTailCall", BBE
.hasTailCall());
7848 W
.printBoolean("IsEHPad", BBE
.isEHPad());
7849 W
.printBoolean("CanFallThrough", BBE
.canFallThrough());
7850 W
.printBoolean("HasIndirectBranch", BBE
.hasIndirectBranch());
7855 if (PAM
.FeatEnable
.hasPGOAnalysis()) {
7856 DictScope
PD(W
, "PGO analyses");
7858 if (PAM
.FeatEnable
.FuncEntryCount
)
7859 W
.printNumber("FuncEntryCount", PAM
.FuncEntryCount
);
7861 if (PAM
.FeatEnable
.hasPGOAnalysisBBData()) {
7862 ListScope
L(W
, "PGO BB entries");
7863 for (const PGOAnalysisMap::PGOBBEntry
&PBBE
: PAM
.BBEntries
) {
7866 if (PAM
.FeatEnable
.BBFreq
) {
7867 if (PrettyPGOAnalysis
) {
7868 std::string BlockFreqStr
;
7869 raw_string_ostream
SS(BlockFreqStr
);
7870 printRelativeBlockFreq(SS
, PAM
.BBEntries
.front().BlockFreq
,
7872 W
.printString("Frequency", BlockFreqStr
);
7874 W
.printNumber("Frequency", PBBE
.BlockFreq
.getFrequency());
7878 if (PAM
.FeatEnable
.BrProb
) {
7879 ListScope
L(W
, "Successors");
7880 for (const auto &Succ
: PBBE
.Successors
) {
7882 W
.printNumber("ID", Succ
.ID
);
7883 if (PrettyPGOAnalysis
) {
7884 W
.printObject("Probability", Succ
.Prob
);
7886 W
.printHex("Probability", Succ
.Prob
.getNumerator());
7897 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printAddrsig() {
7898 ListScope
L(W
, "Addrsig");
7899 if (!this->DotAddrsigSec
)
7902 Expected
<std::vector
<uint64_t>> SymsOrErr
=
7903 decodeAddrsigSection(this->Obj
, *this->DotAddrsigSec
);
7905 this->reportUniqueWarning(SymsOrErr
.takeError());
7909 for (uint64_t Sym
: *SymsOrErr
)
7910 W
.printNumber("Sym", this->getStaticSymbolName(Sym
), Sym
);
7913 template <typename ELFT
>
7914 static bool printGNUNoteLLVMStyle(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
,
7916 // Return true if we were able to pretty-print the note, false otherwise.
7920 case ELF::NT_GNU_ABI_TAG
: {
7921 const GNUAbiTag
&AbiTag
= getGNUAbiTag
<ELFT
>(Desc
);
7922 if (!AbiTag
.IsValid
) {
7923 W
.printString("ABI", "<corrupt GNU_ABI_TAG>");
7926 W
.printString("OS", AbiTag
.OSName
);
7927 W
.printString("ABI", AbiTag
.ABI
);
7931 case ELF::NT_GNU_BUILD_ID
: {
7932 W
.printString("Build ID", getGNUBuildId(Desc
));
7935 case ELF::NT_GNU_GOLD_VERSION
:
7936 W
.printString("Version", getDescAsStringRef(Desc
));
7938 case ELF::NT_GNU_PROPERTY_TYPE_0
:
7939 ListScope
D(W
, "Property");
7940 for (const std::string
&Property
: getGNUPropertyList
<ELFT
>(Desc
))
7941 W
.printString(Property
);
7947 static bool printAndroidNoteLLVMStyle(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
,
7949 // Return true if we were able to pretty-print the note, false otherwise.
7950 AndroidNoteProperties Props
= getAndroidNoteProperties(NoteType
, Desc
);
7953 for (const auto &KV
: Props
)
7954 W
.printString(KV
.first
, KV
.second
);
7958 template <class ELFT
>
7959 void LLVMELFDumper
<ELFT
>::printMemtag(
7960 const ArrayRef
<std::pair
<std::string
, std::string
>> DynamicEntries
,
7961 const ArrayRef
<uint8_t> AndroidNoteDesc
,
7962 const ArrayRef
<std::pair
<uint64_t, uint64_t>> Descriptors
) {
7964 ListScope
L(W
, "Memtag Dynamic Entries:");
7965 if (DynamicEntries
.empty())
7966 W
.printString("< none found >");
7967 for (const auto &DynamicEntryKV
: DynamicEntries
)
7968 W
.printString(DynamicEntryKV
.first
, DynamicEntryKV
.second
);
7971 if (!AndroidNoteDesc
.empty()) {
7972 ListScope
L(W
, "Memtag Android Note:");
7973 printAndroidNoteLLVMStyle(ELF::NT_ANDROID_TYPE_MEMTAG
, AndroidNoteDesc
, W
);
7976 if (Descriptors
.empty())
7980 ListScope
L(W
, "Memtag Global Descriptors:");
7981 for (const auto &[Addr
, BytesToTag
] : Descriptors
) {
7982 W
.printHex("0x" + utohexstr(Addr
), BytesToTag
);
7987 template <typename ELFT
>
7988 static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType
,
7989 ArrayRef
<uint8_t> Desc
,
7994 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION
:
7995 W
.printString("Version", getDescAsStringRef(Desc
));
7997 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER
:
7998 W
.printString("Producer", getDescAsStringRef(Desc
));
8000 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION
:
8001 W
.printString("Producer version", getDescAsStringRef(Desc
));
8007 static void printCoreNoteLLVMStyle(const CoreNote
&Note
, ScopedPrinter
&W
) {
8008 W
.printNumber("Page Size", Note
.PageSize
);
8009 ListScope
D(W
, "Mappings");
8010 for (const CoreFileMapping
&Mapping
: Note
.Mappings
) {
8012 W
.printHex("Start", Mapping
.Start
);
8013 W
.printHex("End", Mapping
.End
);
8014 W
.printHex("Offset", Mapping
.Offset
);
8015 W
.printString("Filename", Mapping
.Filename
);
8019 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printNotes() {
8020 ListScope
L(W
, "NoteSections");
8022 std::unique_ptr
<DictScope
> NoteSectionScope
;
8023 std::unique_ptr
<ListScope
> NotesScope
;
8025 auto StartNotes
= [&](std::optional
<StringRef
> SecName
,
8026 const typename
ELFT::Off Offset
,
8027 const typename
ELFT::Addr Size
, size_t Al
) {
8028 Align
= std::max
<size_t>(Al
, 4);
8029 NoteSectionScope
= std::make_unique
<DictScope
>(W
, "NoteSection");
8030 W
.printString("Name", SecName
? *SecName
: "<?>");
8031 W
.printHex("Offset", Offset
);
8032 W
.printHex("Size", Size
);
8033 NotesScope
= std::make_unique
<ListScope
>(W
, "Notes");
8036 auto EndNotes
= [&] {
8038 NoteSectionScope
.reset();
8041 auto ProcessNote
= [&](const Elf_Note
&Note
, bool IsCore
) -> Error
{
8043 StringRef Name
= Note
.getName();
8044 ArrayRef
<uint8_t> Descriptor
= Note
.getDesc(Align
);
8045 Elf_Word Type
= Note
.getType();
8047 // Print the note owner/type.
8048 W
.printString("Owner", Name
);
8049 W
.printHex("Data size", Descriptor
.size());
8051 StringRef NoteType
=
8052 getNoteTypeName
<ELFT
>(Note
, this->Obj
.getHeader().e_type
);
8053 if (!NoteType
.empty())
8054 W
.printString("Type", NoteType
);
8056 W
.printString("Type",
8057 "Unknown (" + to_string(format_hex(Type
, 10)) + ")");
8059 // Print the description, or fallback to printing raw bytes for unknown
8060 // owners/if we fail to pretty-print the contents.
8061 if (Name
== "GNU") {
8062 if (printGNUNoteLLVMStyle
<ELFT
>(Type
, Descriptor
, W
))
8063 return Error::success();
8064 } else if (Name
== "FreeBSD") {
8065 if (std::optional
<FreeBSDNote
> N
=
8066 getFreeBSDNote
<ELFT
>(Type
, Descriptor
, IsCore
)) {
8067 W
.printString(N
->Type
, N
->Value
);
8068 return Error::success();
8070 } else if (Name
== "AMD") {
8071 const AMDNote N
= getAMDNote
<ELFT
>(Type
, Descriptor
);
8072 if (!N
.Type
.empty()) {
8073 W
.printString(N
.Type
, N
.Value
);
8074 return Error::success();
8076 } else if (Name
== "AMDGPU") {
8077 const AMDGPUNote N
= getAMDGPUNote
<ELFT
>(Type
, Descriptor
);
8078 if (!N
.Type
.empty()) {
8079 W
.printString(N
.Type
, N
.Value
);
8080 return Error::success();
8082 } else if (Name
== "LLVMOMPOFFLOAD") {
8083 if (printLLVMOMPOFFLOADNoteLLVMStyle
<ELFT
>(Type
, Descriptor
, W
))
8084 return Error::success();
8085 } else if (Name
== "CORE") {
8086 if (Type
== ELF::NT_FILE
) {
8087 DataExtractor
DescExtractor(
8088 Descriptor
, ELFT::Endianness
== llvm::endianness::little
,
8090 if (Expected
<CoreNote
> N
= readCoreNote(DescExtractor
)) {
8091 printCoreNoteLLVMStyle(*N
, W
);
8092 return Error::success();
8094 return N
.takeError();
8097 } else if (Name
== "Android") {
8098 if (printAndroidNoteLLVMStyle(Type
, Descriptor
, W
))
8099 return Error::success();
8101 if (!Descriptor
.empty()) {
8102 W
.printBinaryBlock("Description data", Descriptor
);
8104 return Error::success();
8107 processNotesHelper(*this, /*StartNotesFn=*/StartNotes
,
8108 /*ProcessNoteFn=*/ProcessNote
, /*FinishNotesFn=*/EndNotes
);
8111 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printELFLinkerOptions() {
8112 ListScope
L(W
, "LinkerOptions");
8115 for (const Elf_Shdr
&Shdr
: cantFail(this->Obj
.sections())) {
8117 if (Shdr
.sh_type
!= ELF::SHT_LLVM_LINKER_OPTIONS
)
8120 Expected
<ArrayRef
<uint8_t>> ContentsOrErr
=
8121 this->Obj
.getSectionContents(Shdr
);
8122 if (!ContentsOrErr
) {
8123 this->reportUniqueWarning("unable to read the content of the "
8124 "SHT_LLVM_LINKER_OPTIONS section: " +
8125 toString(ContentsOrErr
.takeError()));
8128 if (ContentsOrErr
->empty())
8131 if (ContentsOrErr
->back() != 0) {
8132 this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
8135 "content is not null-terminated");
8139 SmallVector
<StringRef
, 16> Strings
;
8140 toStringRef(ContentsOrErr
->drop_back()).split(Strings
, '\0');
8141 if (Strings
.size() % 2 != 0) {
8142 this->reportUniqueWarning(
8143 "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I
) +
8144 " is broken: an incomplete "
8145 "key-value pair was found. The last possible key was: \"" +
8146 Strings
.back() + "\"");
8150 for (size_t I
= 0; I
< Strings
.size(); I
+= 2)
8151 W
.printString(Strings
[I
], Strings
[I
+ 1]);
8155 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printDependentLibs() {
8156 ListScope
L(W
, "DependentLibs");
8157 this->printDependentLibsHelper(
8158 [](const Elf_Shdr
&) {},
8159 [this](StringRef Lib
, uint64_t) { W
.printString(Lib
); });
8162 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printStackSizes() {
8163 ListScope
L(W
, "StackSizes");
8164 if (this->Obj
.getHeader().e_type
== ELF::ET_REL
)
8165 this->printRelocatableStackSizes([]() {});
8167 this->printNonRelocatableStackSizes([]() {});
8170 template <class ELFT
>
8171 void LLVMELFDumper
<ELFT
>::printStackSizeEntry(uint64_t Size
,
8172 ArrayRef
<std::string
> FuncNames
) {
8173 DictScope
D(W
, "Entry");
8174 W
.printList("Functions", FuncNames
);
8175 W
.printHex("Size", Size
);
8178 template <class ELFT
>
8179 void LLVMELFDumper
<ELFT
>::printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) {
8180 auto PrintEntry
= [&](const Elf_Addr
*E
) {
8181 W
.printHex("Address", Parser
.getGotAddress(E
));
8182 W
.printNumber("Access", Parser
.getGotOffset(E
));
8183 W
.printHex("Initial", *E
);
8186 DictScope
GS(W
, Parser
.IsStatic
? "Static GOT" : "Primary GOT");
8188 W
.printHex("Canonical gp value", Parser
.getGp());
8190 ListScope
RS(W
, "Reserved entries");
8192 DictScope
D(W
, "Entry");
8193 PrintEntry(Parser
.getGotLazyResolver());
8194 W
.printString("Purpose", StringRef("Lazy resolver"));
8197 if (Parser
.getGotModulePointer()) {
8198 DictScope
D(W
, "Entry");
8199 PrintEntry(Parser
.getGotModulePointer());
8200 W
.printString("Purpose", StringRef("Module pointer (GNU extension)"));
8204 ListScope
LS(W
, "Local entries");
8205 for (auto &E
: Parser
.getLocalEntries()) {
8206 DictScope
D(W
, "Entry");
8211 if (Parser
.IsStatic
)
8215 ListScope
GS(W
, "Global entries");
8216 for (auto &E
: Parser
.getGlobalEntries()) {
8217 DictScope
D(W
, "Entry");
8221 const Elf_Sym
&Sym
= *Parser
.getGotSym(&E
);
8222 W
.printHex("Value", Sym
.st_value
);
8223 W
.printEnum("Type", Sym
.getType(), ArrayRef(ElfSymbolTypes
));
8225 const unsigned SymIndex
= &Sym
- this->dynamic_symbols().begin();
8226 DataRegion
<Elf_Word
> ShndxTable(
8227 (const Elf_Word
*)this->DynSymTabShndxRegion
.Addr
, this->Obj
.end());
8228 printSymbolSection(Sym
, SymIndex
, ShndxTable
);
8230 std::string SymName
= this->getFullSymbolName(
8231 Sym
, SymIndex
, ShndxTable
, this->DynamicStringTable
, true);
8232 W
.printNumber("Name", SymName
, Sym
.st_name
);
8236 W
.printNumber("Number of TLS and multi-GOT entries",
8237 uint64_t(Parser
.getOtherEntries().size()));
8240 template <class ELFT
>
8241 void LLVMELFDumper
<ELFT
>::printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) {
8242 auto PrintEntry
= [&](const Elf_Addr
*E
) {
8243 W
.printHex("Address", Parser
.getPltAddress(E
));
8244 W
.printHex("Initial", *E
);
8247 DictScope
GS(W
, "PLT GOT");
8250 ListScope
RS(W
, "Reserved entries");
8252 DictScope
D(W
, "Entry");
8253 PrintEntry(Parser
.getPltLazyResolver());
8254 W
.printString("Purpose", StringRef("PLT lazy resolver"));
8257 if (auto E
= Parser
.getPltModulePointer()) {
8258 DictScope
D(W
, "Entry");
8260 W
.printString("Purpose", StringRef("Module pointer"));
8264 ListScope
LS(W
, "Entries");
8265 DataRegion
<Elf_Word
> ShndxTable(
8266 (const Elf_Word
*)this->DynSymTabShndxRegion
.Addr
, this->Obj
.end());
8267 for (auto &E
: Parser
.getPltEntries()) {
8268 DictScope
D(W
, "Entry");
8271 const Elf_Sym
&Sym
= *Parser
.getPltSym(&E
);
8272 W
.printHex("Value", Sym
.st_value
);
8273 W
.printEnum("Type", Sym
.getType(), ArrayRef(ElfSymbolTypes
));
8274 printSymbolSection(Sym
, &Sym
- this->dynamic_symbols().begin(),
8277 const Elf_Sym
*FirstSym
= cantFail(
8278 this->Obj
.template getEntry
<Elf_Sym
>(*Parser
.getPltSymTable(), 0));
8279 std::string SymName
= this->getFullSymbolName(
8280 Sym
, &Sym
- FirstSym
, ShndxTable
, Parser
.getPltStrTable(), true);
8281 W
.printNumber("Name", SymName
, Sym
.st_name
);
8286 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printMipsABIFlags() {
8287 const Elf_Mips_ABIFlags
<ELFT
> *Flags
;
8288 if (Expected
<const Elf_Mips_ABIFlags
<ELFT
> *> SecOrErr
=
8289 getMipsAbiFlagsSection(*this)) {
8292 W
.startLine() << "There is no .MIPS.abiflags section in the file.\n";
8296 this->reportUniqueWarning(SecOrErr
.takeError());
8300 raw_ostream
&OS
= W
.getOStream();
8301 DictScope
GS(W
, "MIPS ABI Flags");
8303 W
.printNumber("Version", Flags
->version
);
8304 W
.startLine() << "ISA: ";
8305 if (Flags
->isa_rev
<= 1)
8306 OS
<< format("MIPS%u", Flags
->isa_level
);
8308 OS
<< format("MIPS%ur%u", Flags
->isa_level
, Flags
->isa_rev
);
8310 W
.printEnum("ISA Extension", Flags
->isa_ext
, ArrayRef(ElfMipsISAExtType
));
8311 W
.printFlags("ASEs", Flags
->ases
, ArrayRef(ElfMipsASEFlags
));
8312 W
.printEnum("FP ABI", Flags
->fp_abi
, ArrayRef(ElfMipsFpABIType
));
8313 W
.printNumber("GPR size", getMipsRegisterSize(Flags
->gpr_size
));
8314 W
.printNumber("CPR1 size", getMipsRegisterSize(Flags
->cpr1_size
));
8315 W
.printNumber("CPR2 size", getMipsRegisterSize(Flags
->cpr2_size
));
8316 W
.printFlags("Flags 1", Flags
->flags1
, ArrayRef(ElfMipsFlags1
));
8317 W
.printHex("Flags 2", Flags
->flags2
);
8320 template <class ELFT
>
8321 void JSONELFDumper
<ELFT
>::printFileSummary(StringRef FileStr
, ObjectFile
&Obj
,
8322 ArrayRef
<std::string
> InputFilenames
,
8324 FileScope
= std::make_unique
<DictScope
>(this->W
);
8325 DictScope
D(this->W
, "FileSummary");
8326 this->W
.printString("File", FileStr
);
8327 this->W
.printString("Format", Obj
.getFileFormatName());
8328 this->W
.printString("Arch", Triple::getArchTypeName(Obj
.getArch()));
8329 this->W
.printString(
8331 std::string(formatv("{0}bit", 8 * Obj
.getBytesInAddress())));
8332 this->printLoadName();
8335 template <class ELFT
>
8336 void JSONELFDumper
<ELFT
>::printZeroSymbolOtherField(
8337 const Elf_Sym
&Symbol
) const {
8338 // We want the JSON format to be uniform, since it is machine readable, so
8339 // always print the `Other` field the same way.
8340 this->printSymbolOtherField(Symbol
);
8343 template <class ELFT
>
8344 void JSONELFDumper
<ELFT
>::printDefaultRelRelaReloc(const Relocation
<ELFT
> &R
,
8345 StringRef SymbolName
,
8346 StringRef RelocName
) {
8347 this->printExpandedRelRelaReloc(R
, SymbolName
, RelocName
);
8350 template <class ELFT
>
8351 void JSONELFDumper
<ELFT
>::printRelocationSectionInfo(const Elf_Shdr
&Sec
,
8353 const unsigned SecNdx
) {
8354 DictScope
Group(this->W
);
8355 this->W
.printNumber("SectionIndex", SecNdx
);
8356 ListScope
D(this->W
, "Relocs");
8357 this->printRelocationsHelper(Sec
);
8360 template <class ELFT
>
8361 std::string JSONELFDumper
<ELFT
>::getGroupSectionHeaderName() const {
8362 return "GroupSections";
8365 template <class ELFT
>
8366 void JSONELFDumper
<ELFT
>::printSectionGroupMembers(StringRef Name
,
8367 uint64_t Idx
) const {
8368 DictScope
Grp(this->W
);
8369 this->W
.printString("Name", Name
);
8370 this->W
.printNumber("Index", Idx
);
8373 template <class ELFT
> void JSONELFDumper
<ELFT
>::printEmptyGroupMessage() const {
8374 // JSON output does not need to print anything for empty groups