Break circular dependency between FIR dialect and utilities
[llvm-project.git] / flang / lib / Decimal / big-radix-floating-point.h
blob7fabc7bb0fce25fcba708497f86e813a56060636
1 //===-- lib/Decimal/big-radix-floating-point.h ------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef FORTRAN_DECIMAL_BIG_RADIX_FLOATING_POINT_H_
10 #define FORTRAN_DECIMAL_BIG_RADIX_FLOATING_POINT_H_
12 // This is a helper class for use in floating-point conversions between
13 // binary and decimal representations. It holds a multiple-precision
14 // integer value using digits of a radix that is a large even power of ten
15 // (10,000,000,000,000,000 by default, 10**16). These digits are accompanied
16 // by a signed exponent that denotes multiplication by a power of ten.
17 // The effective radix point is to the right of the digits (i.e., they do
18 // not represent a fraction).
20 // The operations supported by this class are limited to those required
21 // for conversions between binary and decimal representations; it is not
22 // a general-purpose facility.
24 #include "flang/Common/bit-population-count.h"
25 #include "flang/Common/leading-zero-bit-count.h"
26 #include "flang/Common/uint128.h"
27 #include "flang/Decimal/binary-floating-point.h"
28 #include "flang/Decimal/decimal.h"
29 #include <cinttypes>
30 #include <limits>
31 #include <type_traits>
33 namespace Fortran::decimal {
35 static constexpr std::uint64_t TenToThe(int power) {
36 return power <= 0 ? 1 : 10 * TenToThe(power - 1);
39 // 10**(LOG10RADIX + 3) must be < 2**wordbits, and LOG10RADIX must be
40 // even, so that pairs of decimal digits do not straddle Digits.
41 // So LOG10RADIX must be 16 or 6.
42 template <int PREC, int LOG10RADIX = 16> class BigRadixFloatingPointNumber {
43 public:
44 using Real = BinaryFloatingPointNumber<PREC>;
45 static constexpr int log10Radix{LOG10RADIX};
47 private:
48 static constexpr std::uint64_t uint64Radix{TenToThe(log10Radix)};
49 static constexpr int minDigitBits{
50 64 - common::LeadingZeroBitCount(uint64Radix)};
51 using Digit = common::HostUnsignedIntType<minDigitBits>;
52 static constexpr Digit radix{uint64Radix};
53 static_assert(radix < std::numeric_limits<Digit>::max() / 1000,
54 "radix is somehow too big");
55 static_assert(radix > std::numeric_limits<Digit>::max() / 10000,
56 "radix is somehow too small");
58 // The base-2 logarithm of the least significant bit that can arise
59 // in a subnormal IEEE floating-point number.
60 static constexpr int minLog2AnyBit{
61 -Real::exponentBias - Real::binaryPrecision};
63 // The number of Digits needed to represent the smallest subnormal.
64 static constexpr int maxDigits{3 - minLog2AnyBit / log10Radix};
66 public:
67 explicit BigRadixFloatingPointNumber(
68 enum FortranRounding rounding = RoundNearest)
69 : rounding_{rounding} {}
71 // Converts a binary floating point value.
72 explicit BigRadixFloatingPointNumber(
73 Real, enum FortranRounding = RoundNearest);
75 BigRadixFloatingPointNumber &SetToZero() {
76 isNegative_ = false;
77 digits_ = 0;
78 exponent_ = 0;
79 return *this;
82 // Converts decimal floating-point to binary.
83 ConversionToBinaryResult<PREC> ConvertToBinary();
85 // Parses and converts to binary. Handles leading spaces,
86 // "NaN", & optionally-signed "Inf". Does not skip internal
87 // spaces.
88 // The argument is a reference to a pointer that is left
89 // pointing to the first character that wasn't parsed.
90 ConversionToBinaryResult<PREC> ConvertToBinary(
91 const char *&, const char *end = nullptr);
93 // Formats a decimal floating-point number to a user buffer.
94 // May emit "NaN" or "Inf", or an possibly-signed integer.
95 // No decimal point is written, but if it were, it would be
96 // after the last digit; the effective decimal exponent is
97 // returned as part of the result structure so that it can be
98 // formatted by the client.
99 ConversionToDecimalResult ConvertToDecimal(
100 char *, std::size_t, enum DecimalConversionFlags, int digits) const;
102 // Discard decimal digits not needed to distinguish this value
103 // from the decimal encodings of two others (viz., the nearest binary
104 // floating-point numbers immediately below and above this one).
105 // The last decimal digit may not be uniquely determined in all
106 // cases, and will be the mean value when that is so (e.g., if
107 // last decimal digit values 6-8 would all work, it'll be a 7).
108 // This minimization necessarily assumes that the value will be
109 // emitted and read back into the same (or less precise) format
110 // with default rounding to the nearest value.
111 void Minimize(
112 BigRadixFloatingPointNumber &&less, BigRadixFloatingPointNumber &&more);
114 template <typename STREAM> STREAM &Dump(STREAM &) const;
116 private:
117 BigRadixFloatingPointNumber(const BigRadixFloatingPointNumber &that)
118 : digits_{that.digits_}, exponent_{that.exponent_},
119 isNegative_{that.isNegative_}, rounding_{that.rounding_} {
120 for (int j{0}; j < digits_; ++j) {
121 digit_[j] = that.digit_[j];
125 bool IsZero() const {
126 // Don't assume normalization.
127 for (int j{0}; j < digits_; ++j) {
128 if (digit_[j] != 0) {
129 return false;
132 return true;
135 // Predicate: true when 10*value would cause a carry.
136 // (When this happens during decimal-to-binary conversion,
137 // there are more digits in the input string than can be
138 // represented precisely.)
139 bool IsFull() const {
140 return digits_ == digitLimit_ && digit_[digits_ - 1] >= radix / 10;
143 // Sets *this to an unsigned integer value.
144 // Returns any remainder.
145 template <typename UINT> UINT SetTo(UINT n) {
146 static_assert(
147 std::is_same_v<UINT, common::uint128_t> || std::is_unsigned_v<UINT>);
148 SetToZero();
149 while (n != 0) {
150 auto q{n / 10u};
151 if (n != q * 10) {
152 break;
154 ++exponent_;
155 n = q;
157 if constexpr (sizeof n < sizeof(Digit)) {
158 if (n != 0) {
159 digit_[digits_++] = n;
161 return 0;
162 } else {
163 while (n != 0 && digits_ < digitLimit_) {
164 auto q{n / radix};
165 digit_[digits_++] = static_cast<Digit>(n - q * radix);
166 n = q;
168 return n;
172 int RemoveLeastOrderZeroDigits() {
173 int remove{0};
174 if (digits_ > 0 && digit_[0] == 0) {
175 while (remove < digits_ && digit_[remove] == 0) {
176 ++remove;
178 if (remove >= digits_) {
179 digits_ = 0;
180 } else if (remove > 0) {
181 #if defined __GNUC__ && __GNUC__ < 8
182 // (&& j + remove < maxDigits) was added to avoid GCC < 8 build failure
183 // on -Werror=array-bounds. This can be removed if -Werror is disable.
184 for (int j{0}; j + remove < digits_ && (j + remove < maxDigits); ++j) {
185 #else
186 for (int j{0}; j + remove < digits_; ++j) {
187 #endif
188 digit_[j] = digit_[j + remove];
190 digits_ -= remove;
193 return remove;
196 void RemoveLeadingZeroDigits() {
197 while (digits_ > 0 && digit_[digits_ - 1] == 0) {
198 --digits_;
202 void Normalize() {
203 RemoveLeadingZeroDigits();
204 exponent_ += RemoveLeastOrderZeroDigits() * log10Radix;
207 // This limited divisibility test only works for even divisors of the radix,
208 // which is fine since it's only ever used with 2 and 5.
209 template <int N> bool IsDivisibleBy() const {
210 static_assert(N > 1 && radix % N == 0, "bad modulus");
211 return digits_ == 0 || (digit_[0] % N) == 0;
214 template <unsigned DIVISOR> int DivideBy() {
215 Digit remainder{0};
216 for (int j{digits_ - 1}; j >= 0; --j) {
217 Digit q{digit_[j] / DIVISOR};
218 Digit nrem{digit_[j] - DIVISOR * q};
219 digit_[j] = q + (radix / DIVISOR) * remainder;
220 remainder = nrem;
222 return remainder;
225 void DivideByPowerOfTwo(int twoPow) { // twoPow <= log10Radix
226 Digit remainder{0};
227 auto mask{(Digit{1} << twoPow) - 1};
228 auto coeff{radix >> twoPow};
229 for (int j{digits_ - 1}; j >= 0; --j) {
230 auto nrem{digit_[j] & mask};
231 digit_[j] = (digit_[j] >> twoPow) + coeff * remainder;
232 remainder = nrem;
236 // Returns true on overflow
237 bool DivideByPowerOfTwoInPlace(int twoPow) {
238 if (digits_ > 0) {
239 while (twoPow > 0) {
240 int chunk{twoPow > log10Radix ? log10Radix : twoPow};
241 if ((digit_[0] & ((Digit{1} << chunk) - 1)) == 0) {
242 DivideByPowerOfTwo(chunk);
243 twoPow -= chunk;
244 continue;
246 twoPow -= chunk;
247 if (digit_[digits_ - 1] >> chunk != 0) {
248 if (digits_ == digitLimit_) {
249 return true; // overflow
251 digit_[digits_++] = 0;
253 auto remainder{digit_[digits_ - 1]};
254 exponent_ -= log10Radix;
255 auto coeff{radix >> chunk}; // precise; radix is (5*2)**log10Radix
256 auto mask{(Digit{1} << chunk) - 1};
257 for (int j{digits_ - 1}; j >= 1; --j) {
258 digit_[j] = (digit_[j - 1] >> chunk) + coeff * remainder;
259 remainder = digit_[j - 1] & mask;
261 digit_[0] = coeff * remainder;
264 return false; // no overflow
267 int AddCarry(int position = 0, int carry = 1) {
268 for (; position < digits_; ++position) {
269 Digit v{digit_[position] + carry};
270 if (v < radix) {
271 digit_[position] = v;
272 return 0;
274 digit_[position] = v - radix;
275 carry = 1;
277 if (digits_ < digitLimit_) {
278 digit_[digits_++] = carry;
279 return 0;
281 Normalize();
282 if (digits_ < digitLimit_) {
283 digit_[digits_++] = carry;
284 return 0;
286 return carry;
289 void Decrement() {
290 for (int j{0}; digit_[j]-- == 0; ++j) {
291 digit_[j] = radix - 1;
295 template <int N> int MultiplyByHelper(int carry = 0) {
296 for (int j{0}; j < digits_; ++j) {
297 auto v{N * digit_[j] + carry};
298 carry = v / radix;
299 digit_[j] = v - carry * radix; // i.e., v % radix
301 return carry;
304 template <int N> int MultiplyBy(int carry = 0) {
305 if (int newCarry{MultiplyByHelper<N>(carry)}) {
306 return AddCarry(digits_, newCarry);
307 } else {
308 return 0;
312 template <int N> int MultiplyWithoutNormalization() {
313 if (int carry{MultiplyByHelper<N>(0)}) {
314 if (digits_ < digitLimit_) {
315 digit_[digits_++] = carry;
316 return 0;
317 } else {
318 return carry;
320 } else {
321 return 0;
325 void LoseLeastSignificantDigit(); // with rounding
327 void PushCarry(int carry) {
328 if (digits_ == maxDigits && RemoveLeastOrderZeroDigits() == 0) {
329 LoseLeastSignificantDigit();
330 digit_[digits_ - 1] += carry;
331 } else {
332 digit_[digits_++] = carry;
336 // Adds another number and then divides by two.
337 // Assumes same exponent and sign.
338 // Returns true when the the result has effectively been rounded down.
339 bool Mean(const BigRadixFloatingPointNumber &);
341 // Parses a floating-point number; leaves the pointer reference
342 // argument pointing at the next character after what was recognized.
343 // The "end" argument can be left null if the caller is sure that the
344 // string is properly terminated with an addressable character that
345 // can't be in a valid floating-point character.
346 bool ParseNumber(const char *&, bool &inexact, const char *end);
348 using Raw = typename Real::RawType;
349 constexpr Raw SignBit() const { return Raw{isNegative_} << (Real::bits - 1); }
350 constexpr Raw Infinity() const {
351 return (Raw{Real::maxExponent} << Real::significandBits) | SignBit();
353 static constexpr Raw NaN() {
354 return (Raw{Real::maxExponent} << Real::significandBits) |
355 (Raw{1} << (Real::significandBits - 2));
358 Digit digit_[maxDigits]; // in little-endian order: digit_[0] is LSD
359 int digits_{0}; // # of elements in digit_[] array; zero when zero
360 int digitLimit_{maxDigits}; // precision clamp
361 int exponent_{0}; // signed power of ten
362 bool isNegative_{false};
363 enum FortranRounding rounding_ { RoundNearest };
365 } // namespace Fortran::decimal
366 #endif