Break circular dependency between FIR dialect and utilities
[llvm-project.git] / flang / lib / Decimal / decimal-to-binary.cpp
blobf13f7cebb957dbed29dde87461490abe14199158
1 //===-- lib/Decimal/decimal-to-binary.cpp ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "big-radix-floating-point.h"
10 #include "flang/Common/bit-population-count.h"
11 #include "flang/Common/leading-zero-bit-count.h"
12 #include "flang/Decimal/binary-floating-point.h"
13 #include "flang/Decimal/decimal.h"
14 #include <cinttypes>
15 #include <cstring>
16 #include <ctype.h>
18 namespace Fortran::decimal {
20 template <int PREC, int LOG10RADIX>
21 bool BigRadixFloatingPointNumber<PREC, LOG10RADIX>::ParseNumber(
22 const char *&p, bool &inexact, const char *end) {
23 SetToZero();
24 if (end && p >= end) {
25 return false;
27 // Skip leading spaces
28 for (; p != end && *p == ' '; ++p) {
30 if (p == end) {
31 return false;
33 const char *q{p};
34 isNegative_ = *q == '-';
35 if (*q == '-' || *q == '+') {
36 ++q;
38 const char *start{q};
39 for (; q != end && *q == '0'; ++q) {
41 const char *firstDigit{q};
42 for (; q != end && *q >= '0' && *q <= '9'; ++q) {
44 const char *point{nullptr};
45 if (q != end && *q == '.') {
46 point = q;
47 for (++q; q != end && *q >= '0' && *q <= '9'; ++q) {
50 if (q == start || (q == start + 1 && start == point)) {
51 return false; // require at least one digit
53 // There's a valid number here; set the reference argument to point to
54 // the first character afterward, which might be an exponent part.
55 p = q;
56 // Strip off trailing zeroes
57 if (point) {
58 while (q[-1] == '0') {
59 --q;
61 if (q[-1] == '.') {
62 point = nullptr;
63 --q;
66 if (!point) {
67 while (q > firstDigit && q[-1] == '0') {
68 --q;
69 ++exponent_;
72 // Trim any excess digits
73 const char *limit{firstDigit + maxDigits * log10Radix + (point != nullptr)};
74 if (q > limit) {
75 inexact = true;
76 if (point >= limit) {
77 q = point;
78 point = nullptr;
80 if (!point) {
81 exponent_ += q - limit;
83 q = limit;
85 if (point) {
86 exponent_ -= static_cast<int>(q - point - 1);
88 if (q == firstDigit) {
89 exponent_ = 0; // all zeros
91 // Rack the decimal digits up into big Digits.
92 for (auto times{radix}; q-- > firstDigit;) {
93 if (*q != '.') {
94 if (times == radix) {
95 digit_[digits_++] = *q - '0';
96 times = 10;
97 } else {
98 digit_[digits_ - 1] += times * (*q - '0');
99 times *= 10;
103 // Look for an optional exponent field.
104 if (p == end) {
105 return true;
107 q = p;
108 switch (*q) {
109 case 'e':
110 case 'E':
111 case 'd':
112 case 'D':
113 case 'q':
114 case 'Q': {
115 if (++q == end) {
116 break;
118 bool negExpo{*q == '-'};
119 if (*q == '-' || *q == '+') {
120 ++q;
122 if (q != end && *q >= '0' && *q <= '9') {
123 int expo{0};
124 for (; q != end && *q == '0'; ++q) {
126 const char *expDig{q};
127 for (; q != end && *q >= '0' && *q <= '9'; ++q) {
128 expo = 10 * expo + *q - '0';
130 if (q >= expDig + 8) {
131 // There's a ridiculous number of nonzero exponent digits.
132 // The decimal->binary conversion routine will cope with
133 // returning 0 or Inf, but we must ensure that "expo" didn't
134 // overflow back around to something legal.
135 expo = 10 * Real::decimalRange;
136 exponent_ = 0;
138 p = q; // exponent is valid; advance the termination pointer
139 if (negExpo) {
140 exponent_ -= expo;
141 } else {
142 exponent_ += expo;
145 } break;
146 default:
147 break;
149 return true;
152 template <int PREC, int LOG10RADIX>
153 void BigRadixFloatingPointNumber<PREC,
154 LOG10RADIX>::LoseLeastSignificantDigit() {
155 Digit LSD{digit_[0]};
156 for (int j{0}; j < digits_ - 1; ++j) {
157 digit_[j] = digit_[j + 1];
159 digit_[digits_ - 1] = 0;
160 bool incr{false};
161 switch (rounding_) {
162 case RoundNearest:
163 incr = LSD > radix / 2 || (LSD == radix / 2 && digit_[0] % 2 != 0);
164 break;
165 case RoundUp:
166 incr = LSD > 0 && !isNegative_;
167 break;
168 case RoundDown:
169 incr = LSD > 0 && isNegative_;
170 break;
171 case RoundToZero:
172 break;
173 case RoundCompatible:
174 incr = LSD >= radix / 2;
175 break;
177 for (int j{0}; (digit_[j] += incr) == radix; ++j) {
178 digit_[j] = 0;
182 // This local utility class represents an unrounded nonnegative
183 // binary floating-point value with an unbiased (i.e., signed)
184 // binary exponent, an integer value (not a fraction) with an implied
185 // binary point to its *right*, and some guard bits for rounding.
186 template <int PREC> class IntermediateFloat {
187 public:
188 static constexpr int precision{PREC};
189 using IntType = common::HostUnsignedIntType<precision>;
190 static constexpr IntType topBit{IntType{1} << (precision - 1)};
191 static constexpr IntType mask{topBit + (topBit - 1)};
193 IntermediateFloat() {}
194 IntermediateFloat(const IntermediateFloat &) = default;
196 // Assumes that exponent_ is valid on entry, and may increment it.
197 // Returns the number of guard_ bits that have been determined.
198 template <typename UINT> bool SetTo(UINT n) {
199 static constexpr int nBits{CHAR_BIT * sizeof n};
200 if constexpr (precision >= nBits) {
201 value_ = n;
202 guard_ = 0;
203 return 0;
204 } else {
205 int shift{common::BitsNeededFor(n) - precision};
206 if (shift <= 0) {
207 value_ = n;
208 guard_ = 0;
209 return 0;
210 } else {
211 value_ = n >> shift;
212 exponent_ += shift;
213 n <<= nBits - shift;
214 guard_ = (n >> (nBits - guardBits)) | ((n << guardBits) != 0);
215 return shift;
220 void ShiftIn(int bit = 0) { value_ = value_ + value_ + bit; }
221 bool IsFull() const { return value_ >= topBit; }
222 void AdjustExponent(int by) { exponent_ += by; }
223 void SetGuard(int g) {
224 guard_ |= (static_cast<GuardType>(g & 6) << (guardBits - 3)) | (g & 1);
227 ConversionToBinaryResult<PREC> ToBinary(
228 bool isNegative, FortranRounding) const;
230 private:
231 static constexpr int guardBits{3}; // guard, round, sticky
232 using GuardType = int;
233 static constexpr GuardType oneHalf{GuardType{1} << (guardBits - 1)};
235 IntType value_{0};
236 GuardType guard_{0};
237 int exponent_{0};
240 template <int PREC>
241 ConversionToBinaryResult<PREC> IntermediateFloat<PREC>::ToBinary(
242 bool isNegative, FortranRounding rounding) const {
243 using Binary = BinaryFloatingPointNumber<PREC>;
244 // Create a fraction with a binary point to the left of the integer
245 // value_, and bias the exponent.
246 IntType fraction{value_};
247 GuardType guard{guard_};
248 int expo{exponent_ + Binary::exponentBias + (precision - 1)};
249 while (expo < 1 && (fraction > 0 || guard > oneHalf)) {
250 guard = (guard & 1) | (guard >> 1) |
251 ((static_cast<GuardType>(fraction) & 1) << (guardBits - 1));
252 fraction >>= 1;
253 ++expo;
255 int flags{Exact};
256 if (guard != 0) {
257 flags |= Inexact;
259 if (fraction == 0 && guard <= oneHalf) {
260 return {Binary{}, static_cast<enum ConversionResultFlags>(flags)};
262 // The value is nonzero; normalize it.
263 while (fraction < topBit && expo > 1) {
264 --expo;
265 fraction = fraction * 2 + (guard >> (guardBits - 2));
266 guard = (((guard >> (guardBits - 2)) & 1) << (guardBits - 1)) | (guard & 1);
268 // Apply rounding
269 bool incr{false};
270 switch (rounding) {
271 case RoundNearest:
272 incr = guard > oneHalf || (guard == oneHalf && (fraction & 1));
273 break;
274 case RoundUp:
275 incr = guard != 0 && !isNegative;
276 break;
277 case RoundDown:
278 incr = guard != 0 && isNegative;
279 break;
280 case RoundToZero:
281 break;
282 case RoundCompatible:
283 incr = guard >= oneHalf;
284 break;
286 if (incr) {
287 if (fraction == mask) {
288 // rounding causes a carry
289 ++expo;
290 fraction = topBit;
291 } else {
292 ++fraction;
295 if (expo == 1 && fraction < topBit) {
296 expo = 0; // subnormal
298 if (expo >= Binary::maxExponent) {
299 expo = Binary::maxExponent; // Inf
300 flags |= Overflow;
301 fraction = 0;
303 using Raw = typename Binary::RawType;
304 Raw raw = static_cast<Raw>(isNegative) << (Binary::bits - 1);
305 raw |= static_cast<Raw>(expo) << Binary::significandBits;
306 if constexpr (Binary::isImplicitMSB) {
307 fraction &= ~topBit;
309 raw |= fraction;
310 return {Binary(raw), static_cast<enum ConversionResultFlags>(flags)};
313 template <int PREC, int LOG10RADIX>
314 ConversionToBinaryResult<PREC>
315 BigRadixFloatingPointNumber<PREC, LOG10RADIX>::ConvertToBinary() {
316 // On entry, *this holds a multi-precision integer value in a radix of a
317 // large power of ten. Its radix point is defined to be to the right of its
318 // digits, and "exponent_" is the power of ten by which it is to be scaled.
319 Normalize();
320 if (digits_ == 0) { // zero value
321 return {Real{SignBit()}};
323 // The value is not zero: x = D. * 10.**E
324 // Shift our perspective on the radix (& decimal) point so that
325 // it sits to the *left* of the digits: i.e., x = .D * 10.**E
326 exponent_ += digits_ * log10Radix;
327 // Sanity checks for ridiculous exponents
328 static constexpr int crazy{2 * Real::decimalRange + log10Radix};
329 if (exponent_ < -crazy) { // underflow to +/-0.
330 return {Real{SignBit()}, Inexact};
331 } else if (exponent_ > crazy) { // overflow to +/-Inf.
332 return {Real{Infinity()}, Overflow};
334 // Apply any negative decimal exponent by multiplication
335 // by a power of two, adjusting the binary exponent to compensate.
336 IntermediateFloat<PREC> f;
337 while (exponent_ < log10Radix) {
338 // x = 0.D * 10.**E * 2.**(f.ex) -> 512 * 0.D * 10.**E * 2.**(f.ex-9)
339 f.AdjustExponent(-9);
340 digitLimit_ = digits_;
341 if (int carry{MultiplyWithoutNormalization<512>()}) {
342 // x = c.D * 10.**E * 2.**(f.ex) -> .cD * 10.**(E+16) * 2.**(f.ex)
343 PushCarry(carry);
344 exponent_ += log10Radix;
347 // Apply any positive decimal exponent greater than
348 // is needed to treat the topmost digit as an integer
349 // part by multiplying by 10 or 10000 repeatedly.
350 while (exponent_ > log10Radix) {
351 digitLimit_ = digits_;
352 int carry;
353 if (exponent_ >= log10Radix + 4) {
354 // x = 0.D * 10.**E * 2.**(f.ex) -> 625 * .D * 10.**(E-4) * 2.**(f.ex+4)
355 exponent_ -= 4;
356 carry = MultiplyWithoutNormalization<(5 * 5 * 5 * 5)>();
357 f.AdjustExponent(4);
358 } else {
359 // x = 0.D * 10.**E * 2.**(f.ex) -> 5 * .D * 10.**(E-1) * 2.**(f.ex+1)
360 --exponent_;
361 carry = MultiplyWithoutNormalization<5>();
362 f.AdjustExponent(1);
364 if (carry != 0) {
365 // x = c.D * 10.**E * 2.**(f.ex) -> .cD * 10.**(E+16) * 2.**(f.ex)
366 PushCarry(carry);
367 exponent_ += log10Radix;
370 // So exponent_ is now log10Radix, meaning that the
371 // MSD can be taken as an integer part and transferred
372 // to the binary result.
373 // x = .jD * 10.**16 * 2.**(f.ex) -> .D * j * 2.**(f.ex)
374 int guardShift{f.SetTo(digit_[--digits_])};
375 // Transfer additional bits until the result is normal.
376 digitLimit_ = digits_;
377 while (!f.IsFull()) {
378 // x = ((b.D)/2) * j * 2.**(f.ex) -> .D * (2j + b) * 2.**(f.ex-1)
379 f.AdjustExponent(-1);
380 std::uint32_t carry = MultiplyWithoutNormalization<2>();
381 f.ShiftIn(carry);
383 // Get the next few bits for rounding. Allow for some guard bits
384 // that may have already been set in f.SetTo() above.
385 int guard{0};
386 if (guardShift == 0) {
387 guard = MultiplyWithoutNormalization<4>();
388 } else if (guardShift == 1) {
389 guard = MultiplyWithoutNormalization<2>();
391 guard = guard + guard + !IsZero();
392 f.SetGuard(guard);
393 return f.ToBinary(isNegative_, rounding_);
396 template <int PREC, int LOG10RADIX>
397 ConversionToBinaryResult<PREC>
398 BigRadixFloatingPointNumber<PREC, LOG10RADIX>::ConvertToBinary(
399 const char *&p, const char *limit) {
400 bool inexact{false};
401 if (ParseNumber(p, inexact, limit)) {
402 auto result{ConvertToBinary()};
403 if (inexact) {
404 result.flags =
405 static_cast<enum ConversionResultFlags>(result.flags | Inexact);
407 return result;
408 } else {
409 // Could not parse a decimal floating-point number. p has been
410 // advanced over any leading spaces.
411 if ((!limit || limit >= p + 3) && toupper(p[0]) == 'N' &&
412 toupper(p[1]) == 'A' && toupper(p[2]) == 'N') {
413 // NaN
414 p += 3;
415 if ((!limit || p < limit) && *p == '(') {
416 int depth{1};
417 do {
418 ++p;
419 if (limit && p >= limit) {
420 // Invalid input
421 return {Real{NaN()}, Invalid};
422 } else if (*p == '(') {
423 ++depth;
424 } else if (*p == ')') {
425 --depth;
427 } while (depth > 0);
428 ++p;
430 return {Real{NaN()}};
431 } else {
432 // Try to parse Inf, maybe with a sign
433 const char *q{p};
434 if (!limit || q < limit) {
435 isNegative_ = *q == '-';
436 if (isNegative_ || *q == '+') {
437 ++q;
440 if ((!limit || limit >= q + 3) && toupper(q[0]) == 'I' &&
441 toupper(q[1]) == 'N' && toupper(q[2]) == 'F') {
442 if ((!limit || limit >= q + 8) && toupper(q[3]) == 'I' &&
443 toupper(q[4]) == 'N' && toupper(q[5]) == 'I' &&
444 toupper(q[6]) == 'T' && toupper(q[7]) == 'Y') {
445 p = q + 8;
446 } else {
447 p = q + 3;
449 return {Real{Infinity()}};
450 } else {
451 // Invalid input
452 return {Real{NaN()}, Invalid};
458 template <int PREC>
459 ConversionToBinaryResult<PREC> ConvertToBinary(
460 const char *&p, enum FortranRounding rounding, const char *end) {
461 return BigRadixFloatingPointNumber<PREC>{rounding}.ConvertToBinary(p, end);
464 template ConversionToBinaryResult<8> ConvertToBinary<8>(
465 const char *&, enum FortranRounding, const char *end);
466 template ConversionToBinaryResult<11> ConvertToBinary<11>(
467 const char *&, enum FortranRounding, const char *end);
468 template ConversionToBinaryResult<24> ConvertToBinary<24>(
469 const char *&, enum FortranRounding, const char *end);
470 template ConversionToBinaryResult<53> ConvertToBinary<53>(
471 const char *&, enum FortranRounding, const char *end);
472 template ConversionToBinaryResult<64> ConvertToBinary<64>(
473 const char *&, enum FortranRounding, const char *end);
474 template ConversionToBinaryResult<113> ConvertToBinary<113>(
475 const char *&, enum FortranRounding, const char *end);
477 extern "C" {
478 enum ConversionResultFlags ConvertDecimalToFloat(
479 const char **p, float *f, enum FortranRounding rounding) {
480 auto result{Fortran::decimal::ConvertToBinary<24>(*p, rounding)};
481 std::memcpy(reinterpret_cast<void *>(f),
482 reinterpret_cast<const void *>(&result.binary), sizeof *f);
483 return result.flags;
485 enum ConversionResultFlags ConvertDecimalToDouble(
486 const char **p, double *d, enum FortranRounding rounding) {
487 auto result{Fortran::decimal::ConvertToBinary<53>(*p, rounding)};
488 std::memcpy(reinterpret_cast<void *>(d),
489 reinterpret_cast<const void *>(&result.binary), sizeof *d);
490 return result.flags;
492 enum ConversionResultFlags ConvertDecimalToLongDouble(
493 const char **p, long double *ld, enum FortranRounding rounding) {
494 auto result{Fortran::decimal::ConvertToBinary<64>(*p, rounding)};
495 std::memcpy(reinterpret_cast<void *>(ld),
496 reinterpret_cast<const void *>(&result.binary), sizeof *ld);
497 return result.flags;
500 } // namespace Fortran::decimal