Break circular dependency between FIR dialect and utilities
[llvm-project.git] / flang / test / Fir / array-value-copy-3.fir
blob2840c3c68d701ac42934b9de5dff67422c644b23
1 // Test overlapping assignment of derived type arrays with allocatable components.
2 // This requires initializing the allocatable components to an unallocated status
3 // before they can be used in component assignments, and to deallocate the components
4 // that may have been allocated in the end.
6 // RUN: fir-opt --array-value-copy %s | FileCheck %s
7 // RUN: fir-opt --array-value-copy="optimize-conflicts=true" %s | FileCheck %s
10 !t_with_alloc_comp = !fir.type<t{i:!fir.box<!fir.heap<!fir.array<?xi32>>>}>
11 func.func private @custom_assign(!fir.ref<!t_with_alloc_comp>, !fir.ref<!t_with_alloc_comp>)
12 func.func @test_overlap_with_alloc_components(%arg0: !fir.ref<!fir.array<10x!t_with_alloc_comp>>) {
13   %0 = fir.alloca !fir.box<!t_with_alloc_comp>
14   %c10 = arith.constant 10 : index
15   %c9 = arith.constant 9 : index
16   %c1 = arith.constant 1 : index
17   %c-1 = arith.constant -1 : index
18   %c0 = arith.constant 0 : index
19   %1 = fir.shape %c10 : (index) -> !fir.shape<1>
20   %6 = fir.slice %c10, %c1, %c-1 : (index, index, index) -> !fir.slice<1>
21   %2 = fir.array_load %arg0(%1) : (!fir.ref<!fir.array<10x!t_with_alloc_comp>>, !fir.shape<1>) -> !fir.array<10x!t_with_alloc_comp>
22   %7 = fir.array_load %arg0(%1) [%6] : (!fir.ref<!fir.array<10x!t_with_alloc_comp>>, !fir.shape<1>, !fir.slice<1>) -> !fir.array<10x!t_with_alloc_comp>
23   %9 = fir.do_loop %arg1 = %c0 to %c9 step %c1 unordered iter_args(%arg2 = %2) -> (!fir.array<10x!t_with_alloc_comp>) {
24     %10 = fir.array_access %7, %arg1 : (!fir.array<10x!t_with_alloc_comp>, index) -> !fir.ref<!t_with_alloc_comp>
25     %11 = fir.array_access %arg2, %arg1 : (!fir.array<10x!t_with_alloc_comp>, index) -> !fir.ref<!t_with_alloc_comp>
26     fir.call @custom_assign(%11, %10) : (!fir.ref<!t_with_alloc_comp>, !fir.ref<!t_with_alloc_comp>) -> none
27     %19 = fir.array_amend %arg2, %11 : (!fir.array<10x!t_with_alloc_comp>, !fir.ref<!t_with_alloc_comp>) -> !fir.array<10x!t_with_alloc_comp>
28     fir.result %19 : !fir.array<10x!t_with_alloc_comp>
29   }
30   fir.array_merge_store %2, %9 to %arg0 : !fir.array<10x!t_with_alloc_comp>, !fir.array<10x!t_with_alloc_comp>, !fir.ref<!fir.array<10x!t_with_alloc_comp>>
31   return
34 // CHECK-LABEL: func @test_overlap_with_alloc_components(
35 // CHECK-SAME:  %[[VAL_0:.*]]: !fir.ref<!fir.array<10x!fir.type<t{i:!fir.box<!fir.heap<!fir.array<?xi32>>>}>>>) {
36 // CHECK:   %[[VAL_4:.*]] = arith.constant 10 : index
37 // CHECK:   %[[VAL_6:.*]] = arith.constant 1 : index
38 // CHECK:   %[[VAL_7:.*]] = arith.constant -1 : index
39 // CHECK:   %[[VAL_9:.*]] = fir.shape %[[VAL_4]] : (index) -> !fir.shape<1>
40 // CHECK:   %[[VAL_10:.*]] = fir.slice %[[VAL_4]], %[[VAL_6]], %[[VAL_7]] : (index, index, index) -> !fir.slice<1>
41 // CHECK:   %[[VAL_11:.*]] = fir.allocmem !fir.array<10x!fir.type<t{i:!fir.box<!fir.heap<!fir.array<?xi32>>>}>>
42 // CHECK:   %[[VAL_12:.*]] = fir.embox %[[VAL_11]](%[[VAL_9]]) : (!fir.heap<!fir.array<10x!fir.type<t{i:!fir.box<!fir.heap<!fir.array<?xi32>>>}>>>, !fir.shape<1>) -> !fir.box<!fir.heap<!fir.array<10x!fir.type<t{i:!fir.box<!fir.heap<!fir.array<?xi32>>>}>>>>
43 // CHECK:   %[[VAL_16:.*]] = fir.convert %[[VAL_12]] : (!fir.box<!fir.heap<!fir.array<10x!fir.type<t{i:!fir.box<!fir.heap<!fir.array<?xi32>>>}>>>>) -> !fir.box<none>
44 // CHECK:   fir.call @_FortranAInitialize(%[[VAL_16]], %{{.*}}, %{{.*}}) : (!fir.box<none>, !fir.ref<i8>, i32) -> none
45 // CHECK:   fir.do_loop {{.*}} {
46 // CHECK:     fir.call @_FortranAAssign
47 // CHECK:   }
48 // CHECK:   fir.do_loop {{.*}} {
49 // CHECK:     fir.call @custom_assign
50 // CHECK:   }
51 // CHECK:   fir.do_loop %{{.*}} {
52 // CHECK:     fir.call @_FortranAAssign
53 // CHECK:   }
54 // CHECK:   %[[VAL_72:.*]] = fir.convert %[[VAL_12]] : (!fir.box<!fir.heap<!fir.array<10x!fir.type<t{i:!fir.box<!fir.heap<!fir.array<?xi32>>>}>>>>) -> !fir.box<none>
55 // CHECK:   %[[VAL_73:.*]] = fir.call @_FortranADestroy(%[[VAL_72]]) : (!fir.box<none>) -> none
56 // CHECK:   fir.freemem %[[VAL_11]]