[docs] Fix build-docs.sh
[llvm-project.git] / clang / lib / CodeGen / CGExpr.cpp
blobd512459051750f64b6f002f1ff826f2a4e24f255
1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
11 //===----------------------------------------------------------------------===//
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "llvm/ADT/Hashing.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/MatrixBuilder.h"
39 #include "llvm/Support/ConvertUTF.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/Path.h"
42 #include "llvm/Support/SaveAndRestore.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
45 #include <string>
47 using namespace clang;
48 using namespace CodeGen;
50 //===--------------------------------------------------------------------===//
51 // Miscellaneous Helper Methods
52 //===--------------------------------------------------------------------===//
54 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
55 unsigned addressSpace =
56 cast<llvm::PointerType>(value->getType())->getAddressSpace();
58 llvm::PointerType *destType = Int8PtrTy;
59 if (addressSpace)
60 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
62 if (value->getType() == destType) return value;
63 return Builder.CreateBitCast(value, destType);
66 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
67 /// block.
68 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
69 CharUnits Align,
70 const Twine &Name,
71 llvm::Value *ArraySize) {
72 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
73 Alloca->setAlignment(Align.getAsAlign());
74 return Address(Alloca, Ty, Align);
77 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
78 /// block. The alloca is casted to default address space if necessary.
79 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
80 const Twine &Name,
81 llvm::Value *ArraySize,
82 Address *AllocaAddr) {
83 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
84 if (AllocaAddr)
85 *AllocaAddr = Alloca;
86 llvm::Value *V = Alloca.getPointer();
87 // Alloca always returns a pointer in alloca address space, which may
88 // be different from the type defined by the language. For example,
89 // in C++ the auto variables are in the default address space. Therefore
90 // cast alloca to the default address space when necessary.
91 if (getASTAllocaAddressSpace() != LangAS::Default) {
92 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
93 llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
94 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
95 // otherwise alloca is inserted at the current insertion point of the
96 // builder.
97 if (!ArraySize)
98 Builder.SetInsertPoint(getPostAllocaInsertPoint());
99 V = getTargetHooks().performAddrSpaceCast(
100 *this, V, getASTAllocaAddressSpace(), LangAS::Default,
101 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
104 return Address(V, Ty, Align);
107 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
108 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
109 /// insertion point of the builder.
110 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
111 const Twine &Name,
112 llvm::Value *ArraySize) {
113 if (ArraySize)
114 return Builder.CreateAlloca(Ty, ArraySize, Name);
115 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
116 ArraySize, Name, AllocaInsertPt);
119 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
120 /// default alignment of the corresponding LLVM type, which is *not*
121 /// guaranteed to be related in any way to the expected alignment of
122 /// an AST type that might have been lowered to Ty.
123 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
124 const Twine &Name) {
125 CharUnits Align =
126 CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlignment(Ty));
127 return CreateTempAlloca(Ty, Align, Name);
130 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
131 CharUnits Align = getContext().getTypeAlignInChars(Ty);
132 return CreateTempAlloca(ConvertType(Ty), Align, Name);
135 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
136 Address *Alloca) {
137 // FIXME: Should we prefer the preferred type alignment here?
138 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
141 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
142 const Twine &Name, Address *Alloca) {
143 Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
144 /*ArraySize=*/nullptr, Alloca);
146 if (Ty->isConstantMatrixType()) {
147 auto *ArrayTy = cast<llvm::ArrayType>(Result.getElementType());
148 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
149 ArrayTy->getNumElements());
151 Result = Address(
152 Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()),
153 VectorTy, Result.getAlignment());
155 return Result;
158 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
159 const Twine &Name) {
160 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
163 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
164 const Twine &Name) {
165 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
166 Name);
169 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
170 /// expression and compare the result against zero, returning an Int1Ty value.
171 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
172 PGO.setCurrentStmt(E);
173 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
174 llvm::Value *MemPtr = EmitScalarExpr(E);
175 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
178 QualType BoolTy = getContext().BoolTy;
179 SourceLocation Loc = E->getExprLoc();
180 CGFPOptionsRAII FPOptsRAII(*this, E);
181 if (!E->getType()->isAnyComplexType())
182 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
184 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
185 Loc);
188 /// EmitIgnoredExpr - Emit code to compute the specified expression,
189 /// ignoring the result.
190 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
191 if (E->isPRValue())
192 return (void)EmitAnyExpr(E, AggValueSlot::ignored(), true);
194 // if this is a bitfield-resulting conditional operator, we can special case
195 // emit this. The normal 'EmitLValue' version of this is particularly
196 // difficult to codegen for, since creating a single "LValue" for two
197 // different sized arguments here is not particularly doable.
198 if (const auto *CondOp = dyn_cast<AbstractConditionalOperator>(
199 E->IgnoreParenNoopCasts(getContext()))) {
200 if (CondOp->getObjectKind() == OK_BitField)
201 return EmitIgnoredConditionalOperator(CondOp);
204 // Just emit it as an l-value and drop the result.
205 EmitLValue(E);
208 /// EmitAnyExpr - Emit code to compute the specified expression which
209 /// can have any type. The result is returned as an RValue struct.
210 /// If this is an aggregate expression, AggSlot indicates where the
211 /// result should be returned.
212 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
213 AggValueSlot aggSlot,
214 bool ignoreResult) {
215 switch (getEvaluationKind(E->getType())) {
216 case TEK_Scalar:
217 return RValue::get(EmitScalarExpr(E, ignoreResult));
218 case TEK_Complex:
219 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
220 case TEK_Aggregate:
221 if (!ignoreResult && aggSlot.isIgnored())
222 aggSlot = CreateAggTemp(E->getType(), "agg-temp");
223 EmitAggExpr(E, aggSlot);
224 return aggSlot.asRValue();
226 llvm_unreachable("bad evaluation kind");
229 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
230 /// always be accessible even if no aggregate location is provided.
231 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
232 AggValueSlot AggSlot = AggValueSlot::ignored();
234 if (hasAggregateEvaluationKind(E->getType()))
235 AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
236 return EmitAnyExpr(E, AggSlot);
239 /// EmitAnyExprToMem - Evaluate an expression into a given memory
240 /// location.
241 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
242 Address Location,
243 Qualifiers Quals,
244 bool IsInit) {
245 // FIXME: This function should take an LValue as an argument.
246 switch (getEvaluationKind(E->getType())) {
247 case TEK_Complex:
248 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
249 /*isInit*/ false);
250 return;
252 case TEK_Aggregate: {
253 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
254 AggValueSlot::IsDestructed_t(IsInit),
255 AggValueSlot::DoesNotNeedGCBarriers,
256 AggValueSlot::IsAliased_t(!IsInit),
257 AggValueSlot::MayOverlap));
258 return;
261 case TEK_Scalar: {
262 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
263 LValue LV = MakeAddrLValue(Location, E->getType());
264 EmitStoreThroughLValue(RV, LV);
265 return;
268 llvm_unreachable("bad evaluation kind");
271 static void
272 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
273 const Expr *E, Address ReferenceTemporary) {
274 // Objective-C++ ARC:
275 // If we are binding a reference to a temporary that has ownership, we
276 // need to perform retain/release operations on the temporary.
278 // FIXME: This should be looking at E, not M.
279 if (auto Lifetime = M->getType().getObjCLifetime()) {
280 switch (Lifetime) {
281 case Qualifiers::OCL_None:
282 case Qualifiers::OCL_ExplicitNone:
283 // Carry on to normal cleanup handling.
284 break;
286 case Qualifiers::OCL_Autoreleasing:
287 // Nothing to do; cleaned up by an autorelease pool.
288 return;
290 case Qualifiers::OCL_Strong:
291 case Qualifiers::OCL_Weak:
292 switch (StorageDuration Duration = M->getStorageDuration()) {
293 case SD_Static:
294 // Note: we intentionally do not register a cleanup to release
295 // the object on program termination.
296 return;
298 case SD_Thread:
299 // FIXME: We should probably register a cleanup in this case.
300 return;
302 case SD_Automatic:
303 case SD_FullExpression:
304 CodeGenFunction::Destroyer *Destroy;
305 CleanupKind CleanupKind;
306 if (Lifetime == Qualifiers::OCL_Strong) {
307 const ValueDecl *VD = M->getExtendingDecl();
308 bool Precise =
309 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
310 CleanupKind = CGF.getARCCleanupKind();
311 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
312 : &CodeGenFunction::destroyARCStrongImprecise;
313 } else {
314 // __weak objects always get EH cleanups; otherwise, exceptions
315 // could cause really nasty crashes instead of mere leaks.
316 CleanupKind = NormalAndEHCleanup;
317 Destroy = &CodeGenFunction::destroyARCWeak;
319 if (Duration == SD_FullExpression)
320 CGF.pushDestroy(CleanupKind, ReferenceTemporary,
321 M->getType(), *Destroy,
322 CleanupKind & EHCleanup);
323 else
324 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
325 M->getType(),
326 *Destroy, CleanupKind & EHCleanup);
327 return;
329 case SD_Dynamic:
330 llvm_unreachable("temporary cannot have dynamic storage duration");
332 llvm_unreachable("unknown storage duration");
336 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
337 if (const RecordType *RT =
338 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
339 // Get the destructor for the reference temporary.
340 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
341 if (!ClassDecl->hasTrivialDestructor())
342 ReferenceTemporaryDtor = ClassDecl->getDestructor();
345 if (!ReferenceTemporaryDtor)
346 return;
348 // Call the destructor for the temporary.
349 switch (M->getStorageDuration()) {
350 case SD_Static:
351 case SD_Thread: {
352 llvm::FunctionCallee CleanupFn;
353 llvm::Constant *CleanupArg;
354 if (E->getType()->isArrayType()) {
355 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
356 ReferenceTemporary, E->getType(),
357 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
358 dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
359 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
360 } else {
361 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
362 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
363 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
365 CGF.CGM.getCXXABI().registerGlobalDtor(
366 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
367 break;
370 case SD_FullExpression:
371 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
372 CodeGenFunction::destroyCXXObject,
373 CGF.getLangOpts().Exceptions);
374 break;
376 case SD_Automatic:
377 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
378 ReferenceTemporary, E->getType(),
379 CodeGenFunction::destroyCXXObject,
380 CGF.getLangOpts().Exceptions);
381 break;
383 case SD_Dynamic:
384 llvm_unreachable("temporary cannot have dynamic storage duration");
388 static Address createReferenceTemporary(CodeGenFunction &CGF,
389 const MaterializeTemporaryExpr *M,
390 const Expr *Inner,
391 Address *Alloca = nullptr) {
392 auto &TCG = CGF.getTargetHooks();
393 switch (M->getStorageDuration()) {
394 case SD_FullExpression:
395 case SD_Automatic: {
396 // If we have a constant temporary array or record try to promote it into a
397 // constant global under the same rules a normal constant would've been
398 // promoted. This is easier on the optimizer and generally emits fewer
399 // instructions.
400 QualType Ty = Inner->getType();
401 if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
402 (Ty->isArrayType() || Ty->isRecordType()) &&
403 CGF.CGM.isTypeConstant(Ty, true))
404 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
405 auto AS = CGF.CGM.GetGlobalConstantAddressSpace();
406 auto *GV = new llvm::GlobalVariable(
407 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
408 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
409 llvm::GlobalValue::NotThreadLocal,
410 CGF.getContext().getTargetAddressSpace(AS));
411 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
412 GV->setAlignment(alignment.getAsAlign());
413 llvm::Constant *C = GV;
414 if (AS != LangAS::Default)
415 C = TCG.performAddrSpaceCast(
416 CGF.CGM, GV, AS, LangAS::Default,
417 GV->getValueType()->getPointerTo(
418 CGF.getContext().getTargetAddressSpace(LangAS::Default)));
419 // FIXME: Should we put the new global into a COMDAT?
420 return Address(C, GV->getValueType(), alignment);
422 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
424 case SD_Thread:
425 case SD_Static:
426 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
428 case SD_Dynamic:
429 llvm_unreachable("temporary can't have dynamic storage duration");
431 llvm_unreachable("unknown storage duration");
434 /// Helper method to check if the underlying ABI is AAPCS
435 static bool isAAPCS(const TargetInfo &TargetInfo) {
436 return TargetInfo.getABI().startswith("aapcs");
439 LValue CodeGenFunction::
440 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
441 const Expr *E = M->getSubExpr();
443 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
444 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
445 "Reference should never be pseudo-strong!");
447 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
448 // as that will cause the lifetime adjustment to be lost for ARC
449 auto ownership = M->getType().getObjCLifetime();
450 if (ownership != Qualifiers::OCL_None &&
451 ownership != Qualifiers::OCL_ExplicitNone) {
452 Address Object = createReferenceTemporary(*this, M, E);
453 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
454 llvm::Type *Ty = ConvertTypeForMem(E->getType());
455 Object = Address(llvm::ConstantExpr::getBitCast(
456 Var, Ty->getPointerTo(Object.getAddressSpace())),
457 Ty, Object.getAlignment());
459 // createReferenceTemporary will promote the temporary to a global with a
460 // constant initializer if it can. It can only do this to a value of
461 // ARC-manageable type if the value is global and therefore "immune" to
462 // ref-counting operations. Therefore we have no need to emit either a
463 // dynamic initialization or a cleanup and we can just return the address
464 // of the temporary.
465 if (Var->hasInitializer())
466 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
468 Var->setInitializer(CGM.EmitNullConstant(E->getType()));
470 LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
471 AlignmentSource::Decl);
473 switch (getEvaluationKind(E->getType())) {
474 default: llvm_unreachable("expected scalar or aggregate expression");
475 case TEK_Scalar:
476 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
477 break;
478 case TEK_Aggregate: {
479 EmitAggExpr(E, AggValueSlot::forAddr(Object,
480 E->getType().getQualifiers(),
481 AggValueSlot::IsDestructed,
482 AggValueSlot::DoesNotNeedGCBarriers,
483 AggValueSlot::IsNotAliased,
484 AggValueSlot::DoesNotOverlap));
485 break;
489 pushTemporaryCleanup(*this, M, E, Object);
490 return RefTempDst;
493 SmallVector<const Expr *, 2> CommaLHSs;
494 SmallVector<SubobjectAdjustment, 2> Adjustments;
495 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
497 for (const auto &Ignored : CommaLHSs)
498 EmitIgnoredExpr(Ignored);
500 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
501 if (opaque->getType()->isRecordType()) {
502 assert(Adjustments.empty());
503 return EmitOpaqueValueLValue(opaque);
507 // Create and initialize the reference temporary.
508 Address Alloca = Address::invalid();
509 Address Object = createReferenceTemporary(*this, M, E, &Alloca);
510 if (auto *Var = dyn_cast<llvm::GlobalVariable>(
511 Object.getPointer()->stripPointerCasts())) {
512 llvm::Type *TemporaryType = ConvertTypeForMem(E->getType());
513 Object = Address(llvm::ConstantExpr::getBitCast(
514 cast<llvm::Constant>(Object.getPointer()),
515 TemporaryType->getPointerTo()),
516 TemporaryType,
517 Object.getAlignment());
518 // If the temporary is a global and has a constant initializer or is a
519 // constant temporary that we promoted to a global, we may have already
520 // initialized it.
521 if (!Var->hasInitializer()) {
522 Var->setInitializer(CGM.EmitNullConstant(E->getType()));
523 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
525 } else {
526 switch (M->getStorageDuration()) {
527 case SD_Automatic:
528 if (auto *Size = EmitLifetimeStart(
529 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
530 Alloca.getPointer())) {
531 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
532 Alloca, Size);
534 break;
536 case SD_FullExpression: {
537 if (!ShouldEmitLifetimeMarkers)
538 break;
540 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
541 // marker. Instead, start the lifetime of a conditional temporary earlier
542 // so that it's unconditional. Don't do this with sanitizers which need
543 // more precise lifetime marks.
544 ConditionalEvaluation *OldConditional = nullptr;
545 CGBuilderTy::InsertPoint OldIP;
546 if (isInConditionalBranch() && !E->getType().isDestructedType() &&
547 !SanOpts.has(SanitizerKind::HWAddress) &&
548 !SanOpts.has(SanitizerKind::Memory) &&
549 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
550 OldConditional = OutermostConditional;
551 OutermostConditional = nullptr;
553 OldIP = Builder.saveIP();
554 llvm::BasicBlock *Block = OldConditional->getStartingBlock();
555 Builder.restoreIP(CGBuilderTy::InsertPoint(
556 Block, llvm::BasicBlock::iterator(Block->back())));
559 if (auto *Size = EmitLifetimeStart(
560 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
561 Alloca.getPointer())) {
562 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
563 Size);
566 if (OldConditional) {
567 OutermostConditional = OldConditional;
568 Builder.restoreIP(OldIP);
570 break;
573 default:
574 break;
576 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
578 pushTemporaryCleanup(*this, M, E, Object);
580 // Perform derived-to-base casts and/or field accesses, to get from the
581 // temporary object we created (and, potentially, for which we extended
582 // the lifetime) to the subobject we're binding the reference to.
583 for (SubobjectAdjustment &Adjustment : llvm::reverse(Adjustments)) {
584 switch (Adjustment.Kind) {
585 case SubobjectAdjustment::DerivedToBaseAdjustment:
586 Object =
587 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
588 Adjustment.DerivedToBase.BasePath->path_begin(),
589 Adjustment.DerivedToBase.BasePath->path_end(),
590 /*NullCheckValue=*/ false, E->getExprLoc());
591 break;
593 case SubobjectAdjustment::FieldAdjustment: {
594 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
595 LV = EmitLValueForField(LV, Adjustment.Field);
596 assert(LV.isSimple() &&
597 "materialized temporary field is not a simple lvalue");
598 Object = LV.getAddress(*this);
599 break;
602 case SubobjectAdjustment::MemberPointerAdjustment: {
603 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
604 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
605 Adjustment.Ptr.MPT);
606 break;
611 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
614 RValue
615 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
616 // Emit the expression as an lvalue.
617 LValue LV = EmitLValue(E);
618 assert(LV.isSimple());
619 llvm::Value *Value = LV.getPointer(*this);
621 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
622 // C++11 [dcl.ref]p5 (as amended by core issue 453):
623 // If a glvalue to which a reference is directly bound designates neither
624 // an existing object or function of an appropriate type nor a region of
625 // storage of suitable size and alignment to contain an object of the
626 // reference's type, the behavior is undefined.
627 QualType Ty = E->getType();
628 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
631 return RValue::get(Value);
635 /// getAccessedFieldNo - Given an encoded value and a result number, return the
636 /// input field number being accessed.
637 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
638 const llvm::Constant *Elts) {
639 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
640 ->getZExtValue();
643 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
644 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
645 llvm::Value *High) {
646 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
647 llvm::Value *K47 = Builder.getInt64(47);
648 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
649 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
650 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
651 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
652 return Builder.CreateMul(B1, KMul);
655 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
656 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
657 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
660 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
661 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
662 return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
663 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
664 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
665 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
668 bool CodeGenFunction::sanitizePerformTypeCheck() const {
669 return SanOpts.has(SanitizerKind::Null) ||
670 SanOpts.has(SanitizerKind::Alignment) ||
671 SanOpts.has(SanitizerKind::ObjectSize) ||
672 SanOpts.has(SanitizerKind::Vptr);
675 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
676 llvm::Value *Ptr, QualType Ty,
677 CharUnits Alignment,
678 SanitizerSet SkippedChecks,
679 llvm::Value *ArraySize) {
680 if (!sanitizePerformTypeCheck())
681 return;
683 // Don't check pointers outside the default address space. The null check
684 // isn't correct, the object-size check isn't supported by LLVM, and we can't
685 // communicate the addresses to the runtime handler for the vptr check.
686 if (Ptr->getType()->getPointerAddressSpace())
687 return;
689 // Don't check pointers to volatile data. The behavior here is implementation-
690 // defined.
691 if (Ty.isVolatileQualified())
692 return;
694 SanitizerScope SanScope(this);
696 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
697 llvm::BasicBlock *Done = nullptr;
699 // Quickly determine whether we have a pointer to an alloca. It's possible
700 // to skip null checks, and some alignment checks, for these pointers. This
701 // can reduce compile-time significantly.
702 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
704 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
705 llvm::Value *IsNonNull = nullptr;
706 bool IsGuaranteedNonNull =
707 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
708 bool AllowNullPointers = isNullPointerAllowed(TCK);
709 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
710 !IsGuaranteedNonNull) {
711 // The glvalue must not be an empty glvalue.
712 IsNonNull = Builder.CreateIsNotNull(Ptr);
714 // The IR builder can constant-fold the null check if the pointer points to
715 // a constant.
716 IsGuaranteedNonNull = IsNonNull == True;
718 // Skip the null check if the pointer is known to be non-null.
719 if (!IsGuaranteedNonNull) {
720 if (AllowNullPointers) {
721 // When performing pointer casts, it's OK if the value is null.
722 // Skip the remaining checks in that case.
723 Done = createBasicBlock("null");
724 llvm::BasicBlock *Rest = createBasicBlock("not.null");
725 Builder.CreateCondBr(IsNonNull, Rest, Done);
726 EmitBlock(Rest);
727 } else {
728 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
733 if (SanOpts.has(SanitizerKind::ObjectSize) &&
734 !SkippedChecks.has(SanitizerKind::ObjectSize) &&
735 !Ty->isIncompleteType()) {
736 uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
737 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
738 if (ArraySize)
739 Size = Builder.CreateMul(Size, ArraySize);
741 // Degenerate case: new X[0] does not need an objectsize check.
742 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
743 if (!ConstantSize || !ConstantSize->isNullValue()) {
744 // The glvalue must refer to a large enough storage region.
745 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
746 // to check this.
747 // FIXME: Get object address space
748 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
749 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
750 llvm::Value *Min = Builder.getFalse();
751 llvm::Value *NullIsUnknown = Builder.getFalse();
752 llvm::Value *Dynamic = Builder.getFalse();
753 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
754 llvm::Value *LargeEnough = Builder.CreateICmpUGE(
755 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
756 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
760 llvm::MaybeAlign AlignVal;
761 llvm::Value *PtrAsInt = nullptr;
763 if (SanOpts.has(SanitizerKind::Alignment) &&
764 !SkippedChecks.has(SanitizerKind::Alignment)) {
765 AlignVal = Alignment.getAsMaybeAlign();
766 if (!Ty->isIncompleteType() && !AlignVal)
767 AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
768 /*ForPointeeType=*/true)
769 .getAsMaybeAlign();
771 // The glvalue must be suitably aligned.
772 if (AlignVal && *AlignVal > llvm::Align(1) &&
773 (!PtrToAlloca || PtrToAlloca->getAlign() < *AlignVal)) {
774 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
775 llvm::Value *Align = Builder.CreateAnd(
776 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal->value() - 1));
777 llvm::Value *Aligned =
778 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
779 if (Aligned != True)
780 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
784 if (Checks.size() > 0) {
785 llvm::Constant *StaticData[] = {
786 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
787 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2(*AlignVal) : 1),
788 llvm::ConstantInt::get(Int8Ty, TCK)};
789 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
790 PtrAsInt ? PtrAsInt : Ptr);
793 // If possible, check that the vptr indicates that there is a subobject of
794 // type Ty at offset zero within this object.
796 // C++11 [basic.life]p5,6:
797 // [For storage which does not refer to an object within its lifetime]
798 // The program has undefined behavior if:
799 // -- the [pointer or glvalue] is used to access a non-static data member
800 // or call a non-static member function
801 if (SanOpts.has(SanitizerKind::Vptr) &&
802 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
803 // Ensure that the pointer is non-null before loading it. If there is no
804 // compile-time guarantee, reuse the run-time null check or emit a new one.
805 if (!IsGuaranteedNonNull) {
806 if (!IsNonNull)
807 IsNonNull = Builder.CreateIsNotNull(Ptr);
808 if (!Done)
809 Done = createBasicBlock("vptr.null");
810 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
811 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
812 EmitBlock(VptrNotNull);
815 // Compute a hash of the mangled name of the type.
817 // FIXME: This is not guaranteed to be deterministic! Move to a
818 // fingerprinting mechanism once LLVM provides one. For the time
819 // being the implementation happens to be deterministic.
820 SmallString<64> MangledName;
821 llvm::raw_svector_ostream Out(MangledName);
822 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
823 Out);
825 // Contained in NoSanitizeList based on the mangled type.
826 if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr,
827 Out.str())) {
828 llvm::hash_code TypeHash = hash_value(Out.str());
830 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
831 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
832 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
833 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), IntPtrTy,
834 getPointerAlign());
835 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
836 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
838 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
839 Hash = Builder.CreateTrunc(Hash, IntPtrTy);
841 // Look the hash up in our cache.
842 const int CacheSize = 128;
843 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
844 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
845 "__ubsan_vptr_type_cache");
846 llvm::Value *Slot = Builder.CreateAnd(Hash,
847 llvm::ConstantInt::get(IntPtrTy,
848 CacheSize-1));
849 llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
850 llvm::Value *CacheVal = Builder.CreateAlignedLoad(
851 IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices),
852 getPointerAlign());
854 // If the hash isn't in the cache, call a runtime handler to perform the
855 // hard work of checking whether the vptr is for an object of the right
856 // type. This will either fill in the cache and return, or produce a
857 // diagnostic.
858 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
859 llvm::Constant *StaticData[] = {
860 EmitCheckSourceLocation(Loc),
861 EmitCheckTypeDescriptor(Ty),
862 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
863 llvm::ConstantInt::get(Int8Ty, TCK)
865 llvm::Value *DynamicData[] = { Ptr, Hash };
866 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
867 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
868 DynamicData);
872 if (Done) {
873 Builder.CreateBr(Done);
874 EmitBlock(Done);
878 /// Determine whether this expression refers to a flexible array member in a
879 /// struct. We disable array bounds checks for such members.
880 static bool isFlexibleArrayMemberExpr(const Expr *E,
881 unsigned StrictFlexArraysLevel) {
882 // For compatibility with existing code, we treat arrays of length 0 or
883 // 1 as flexible array members.
884 // FIXME: This is inconsistent with the warning code in SemaChecking. Unify
885 // the two mechanisms.
886 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
887 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
888 // FIXME: Sema doesn't treat [1] as a flexible array member if the bound
889 // was produced by macro expansion.
890 if (StrictFlexArraysLevel >= 2 && CAT->getSize().ugt(0))
891 return false;
892 // FIXME: While the default -fstrict-flex-arrays=0 permits Size>1 trailing
893 // arrays to be treated as flexible-array-members, we still emit ubsan
894 // checks as if they are not.
895 if (CAT->getSize().ugt(1))
896 return false;
897 } else if (!isa<IncompleteArrayType>(AT))
898 return false;
900 E = E->IgnoreParens();
902 // A flexible array member must be the last member in the class.
903 if (const auto *ME = dyn_cast<MemberExpr>(E)) {
904 // FIXME: If the base type of the member expr is not FD->getParent(),
905 // this should not be treated as a flexible array member access.
906 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
907 // FIXME: Sema doesn't treat a T[1] union member as a flexible array
908 // member, only a T[0] or T[] member gets that treatment.
909 if (FD->getParent()->isUnion())
910 return true;
911 RecordDecl::field_iterator FI(
912 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
913 return ++FI == FD->getParent()->field_end();
915 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
916 return IRE->getDecl()->getNextIvar() == nullptr;
919 return false;
922 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
923 QualType EltTy) {
924 ASTContext &C = getContext();
925 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
926 if (!EltSize)
927 return nullptr;
929 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
930 if (!ArrayDeclRef)
931 return nullptr;
933 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
934 if (!ParamDecl)
935 return nullptr;
937 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
938 if (!POSAttr)
939 return nullptr;
941 // Don't load the size if it's a lower bound.
942 int POSType = POSAttr->getType();
943 if (POSType != 0 && POSType != 1)
944 return nullptr;
946 // Find the implicit size parameter.
947 auto PassedSizeIt = SizeArguments.find(ParamDecl);
948 if (PassedSizeIt == SizeArguments.end())
949 return nullptr;
951 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
952 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
953 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
954 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
955 C.getSizeType(), E->getExprLoc());
956 llvm::Value *SizeOfElement =
957 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
958 return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
961 /// If Base is known to point to the start of an array, return the length of
962 /// that array. Return 0 if the length cannot be determined.
963 static llvm::Value *getArrayIndexingBound(CodeGenFunction &CGF,
964 const Expr *Base,
965 QualType &IndexedType,
966 unsigned StrictFlexArraysLevel) {
967 // For the vector indexing extension, the bound is the number of elements.
968 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
969 IndexedType = Base->getType();
970 return CGF.Builder.getInt32(VT->getNumElements());
973 Base = Base->IgnoreParens();
975 if (const auto *CE = dyn_cast<CastExpr>(Base)) {
976 if (CE->getCastKind() == CK_ArrayToPointerDecay &&
977 !isFlexibleArrayMemberExpr(CE->getSubExpr(), StrictFlexArraysLevel)) {
978 IndexedType = CE->getSubExpr()->getType();
979 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
980 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
981 return CGF.Builder.getInt(CAT->getSize());
982 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
983 return CGF.getVLASize(VAT).NumElts;
984 // Ignore pass_object_size here. It's not applicable on decayed pointers.
988 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
989 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
990 IndexedType = Base->getType();
991 return POS;
994 return nullptr;
997 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
998 llvm::Value *Index, QualType IndexType,
999 bool Accessed) {
1000 assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
1001 "should not be called unless adding bounds checks");
1002 SanitizerScope SanScope(this);
1004 const unsigned StrictFlexArraysLevel = getLangOpts().StrictFlexArrays;
1006 QualType IndexedType;
1007 llvm::Value *Bound =
1008 getArrayIndexingBound(*this, Base, IndexedType, StrictFlexArraysLevel);
1009 if (!Bound)
1010 return;
1012 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
1013 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
1014 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
1016 llvm::Constant *StaticData[] = {
1017 EmitCheckSourceLocation(E->getExprLoc()),
1018 EmitCheckTypeDescriptor(IndexedType),
1019 EmitCheckTypeDescriptor(IndexType)
1021 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1022 : Builder.CreateICmpULE(IndexVal, BoundVal);
1023 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1024 SanitizerHandler::OutOfBounds, StaticData, Index);
1028 CodeGenFunction::ComplexPairTy CodeGenFunction::
1029 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1030 bool isInc, bool isPre) {
1031 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1033 llvm::Value *NextVal;
1034 if (isa<llvm::IntegerType>(InVal.first->getType())) {
1035 uint64_t AmountVal = isInc ? 1 : -1;
1036 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1038 // Add the inc/dec to the real part.
1039 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1040 } else {
1041 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1042 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1043 if (!isInc)
1044 FVal.changeSign();
1045 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1047 // Add the inc/dec to the real part.
1048 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1051 ComplexPairTy IncVal(NextVal, InVal.second);
1053 // Store the updated result through the lvalue.
1054 EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1055 if (getLangOpts().OpenMP)
1056 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1057 E->getSubExpr());
1059 // If this is a postinc, return the value read from memory, otherwise use the
1060 // updated value.
1061 return isPre ? IncVal : InVal;
1064 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1065 CodeGenFunction *CGF) {
1066 // Bind VLAs in the cast type.
1067 if (CGF && E->getType()->isVariablyModifiedType())
1068 CGF->EmitVariablyModifiedType(E->getType());
1070 if (CGDebugInfo *DI = getModuleDebugInfo())
1071 DI->EmitExplicitCastType(E->getType());
1074 //===----------------------------------------------------------------------===//
1075 // LValue Expression Emission
1076 //===----------------------------------------------------------------------===//
1078 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1079 /// derive a more accurate bound on the alignment of the pointer.
1080 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1081 LValueBaseInfo *BaseInfo,
1082 TBAAAccessInfo *TBAAInfo) {
1083 // We allow this with ObjC object pointers because of fragile ABIs.
1084 assert(E->getType()->isPointerType() ||
1085 E->getType()->isObjCObjectPointerType());
1086 E = E->IgnoreParens();
1088 // Casts:
1089 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1090 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1091 CGM.EmitExplicitCastExprType(ECE, this);
1093 switch (CE->getCastKind()) {
1094 // Non-converting casts (but not C's implicit conversion from void*).
1095 case CK_BitCast:
1096 case CK_NoOp:
1097 case CK_AddressSpaceConversion:
1098 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1099 if (PtrTy->getPointeeType()->isVoidType())
1100 break;
1102 LValueBaseInfo InnerBaseInfo;
1103 TBAAAccessInfo InnerTBAAInfo;
1104 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1105 &InnerBaseInfo,
1106 &InnerTBAAInfo);
1107 if (BaseInfo) *BaseInfo = InnerBaseInfo;
1108 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1110 if (isa<ExplicitCastExpr>(CE)) {
1111 LValueBaseInfo TargetTypeBaseInfo;
1112 TBAAAccessInfo TargetTypeTBAAInfo;
1113 CharUnits Align = CGM.getNaturalPointeeTypeAlignment(
1114 E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
1115 if (TBAAInfo)
1116 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1117 TargetTypeTBAAInfo);
1118 // If the source l-value is opaque, honor the alignment of the
1119 // casted-to type.
1120 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1121 if (BaseInfo)
1122 BaseInfo->mergeForCast(TargetTypeBaseInfo);
1123 Addr = Address(Addr.getPointer(), Addr.getElementType(), Align);
1127 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1128 CE->getCastKind() == CK_BitCast) {
1129 if (auto PT = E->getType()->getAs<PointerType>())
1130 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr,
1131 /*MayBeNull=*/true,
1132 CodeGenFunction::CFITCK_UnrelatedCast,
1133 CE->getBeginLoc());
1136 llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType());
1137 Addr = Builder.CreateElementBitCast(Addr, ElemTy);
1138 if (CE->getCastKind() == CK_AddressSpaceConversion)
1139 Addr = Builder.CreateAddrSpaceCast(Addr, ConvertType(E->getType()));
1140 return Addr;
1142 break;
1144 // Array-to-pointer decay.
1145 case CK_ArrayToPointerDecay:
1146 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1148 // Derived-to-base conversions.
1149 case CK_UncheckedDerivedToBase:
1150 case CK_DerivedToBase: {
1151 // TODO: Support accesses to members of base classes in TBAA. For now, we
1152 // conservatively pretend that the complete object is of the base class
1153 // type.
1154 if (TBAAInfo)
1155 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1156 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1157 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1158 return GetAddressOfBaseClass(Addr, Derived,
1159 CE->path_begin(), CE->path_end(),
1160 ShouldNullCheckClassCastValue(CE),
1161 CE->getExprLoc());
1164 // TODO: Is there any reason to treat base-to-derived conversions
1165 // specially?
1166 default:
1167 break;
1171 // Unary &.
1172 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1173 if (UO->getOpcode() == UO_AddrOf) {
1174 LValue LV = EmitLValue(UO->getSubExpr());
1175 if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1176 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1177 return LV.getAddress(*this);
1181 // std::addressof and variants.
1182 if (auto *Call = dyn_cast<CallExpr>(E)) {
1183 switch (Call->getBuiltinCallee()) {
1184 default:
1185 break;
1186 case Builtin::BIaddressof:
1187 case Builtin::BI__addressof:
1188 case Builtin::BI__builtin_addressof: {
1189 LValue LV = EmitLValue(Call->getArg(0));
1190 if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1191 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1192 return LV.getAddress(*this);
1197 // TODO: conditional operators, comma.
1199 // Otherwise, use the alignment of the type.
1200 CharUnits Align =
1201 CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
1202 llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType());
1203 return Address(EmitScalarExpr(E), ElemTy, Align);
1206 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) {
1207 llvm::Value *V = RV.getScalarVal();
1208 if (auto MPT = T->getAs<MemberPointerType>())
1209 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT);
1210 return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
1213 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1214 if (Ty->isVoidType())
1215 return RValue::get(nullptr);
1217 switch (getEvaluationKind(Ty)) {
1218 case TEK_Complex: {
1219 llvm::Type *EltTy =
1220 ConvertType(Ty->castAs<ComplexType>()->getElementType());
1221 llvm::Value *U = llvm::UndefValue::get(EltTy);
1222 return RValue::getComplex(std::make_pair(U, U));
1225 // If this is a use of an undefined aggregate type, the aggregate must have an
1226 // identifiable address. Just because the contents of the value are undefined
1227 // doesn't mean that the address can't be taken and compared.
1228 case TEK_Aggregate: {
1229 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1230 return RValue::getAggregate(DestPtr);
1233 case TEK_Scalar:
1234 return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1236 llvm_unreachable("bad evaluation kind");
1239 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1240 const char *Name) {
1241 ErrorUnsupported(E, Name);
1242 return GetUndefRValue(E->getType());
1245 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1246 const char *Name) {
1247 ErrorUnsupported(E, Name);
1248 llvm::Type *ElTy = ConvertType(E->getType());
1249 llvm::Type *Ty = llvm::PointerType::getUnqual(ElTy);
1250 return MakeAddrLValue(
1251 Address(llvm::UndefValue::get(Ty), ElTy, CharUnits::One()), E->getType());
1254 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1255 const Expr *Base = Obj;
1256 while (!isa<CXXThisExpr>(Base)) {
1257 // The result of a dynamic_cast can be null.
1258 if (isa<CXXDynamicCastExpr>(Base))
1259 return false;
1261 if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1262 Base = CE->getSubExpr();
1263 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1264 Base = PE->getSubExpr();
1265 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1266 if (UO->getOpcode() == UO_Extension)
1267 Base = UO->getSubExpr();
1268 else
1269 return false;
1270 } else {
1271 return false;
1274 return true;
1277 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1278 LValue LV;
1279 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1280 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1281 else
1282 LV = EmitLValue(E);
1283 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1284 SanitizerSet SkippedChecks;
1285 if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1286 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1287 if (IsBaseCXXThis)
1288 SkippedChecks.set(SanitizerKind::Alignment, true);
1289 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1290 SkippedChecks.set(SanitizerKind::Null, true);
1292 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1293 LV.getAlignment(), SkippedChecks);
1295 return LV;
1298 /// EmitLValue - Emit code to compute a designator that specifies the location
1299 /// of the expression.
1301 /// This can return one of two things: a simple address or a bitfield reference.
1302 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1303 /// an LLVM pointer type.
1305 /// If this returns a bitfield reference, nothing about the pointee type of the
1306 /// LLVM value is known: For example, it may not be a pointer to an integer.
1308 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1309 /// this method guarantees that the returned pointer type will point to an LLVM
1310 /// type of the same size of the lvalue's type. If the lvalue has a variable
1311 /// length type, this is not possible.
1313 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1314 ApplyDebugLocation DL(*this, E);
1315 switch (E->getStmtClass()) {
1316 default: return EmitUnsupportedLValue(E, "l-value expression");
1318 case Expr::ObjCPropertyRefExprClass:
1319 llvm_unreachable("cannot emit a property reference directly");
1321 case Expr::ObjCSelectorExprClass:
1322 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1323 case Expr::ObjCIsaExprClass:
1324 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1325 case Expr::BinaryOperatorClass:
1326 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1327 case Expr::CompoundAssignOperatorClass: {
1328 QualType Ty = E->getType();
1329 if (const AtomicType *AT = Ty->getAs<AtomicType>())
1330 Ty = AT->getValueType();
1331 if (!Ty->isAnyComplexType())
1332 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1333 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1335 case Expr::CallExprClass:
1336 case Expr::CXXMemberCallExprClass:
1337 case Expr::CXXOperatorCallExprClass:
1338 case Expr::UserDefinedLiteralClass:
1339 return EmitCallExprLValue(cast<CallExpr>(E));
1340 case Expr::CXXRewrittenBinaryOperatorClass:
1341 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1342 case Expr::VAArgExprClass:
1343 return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1344 case Expr::DeclRefExprClass:
1345 return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1346 case Expr::ConstantExprClass: {
1347 const ConstantExpr *CE = cast<ConstantExpr>(E);
1348 if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
1349 QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit())
1350 ->getCallReturnType(getContext())
1351 ->getPointeeType();
1352 return MakeNaturalAlignAddrLValue(Result, RetType);
1354 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1356 case Expr::ParenExprClass:
1357 return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1358 case Expr::GenericSelectionExprClass:
1359 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1360 case Expr::PredefinedExprClass:
1361 return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1362 case Expr::StringLiteralClass:
1363 return EmitStringLiteralLValue(cast<StringLiteral>(E));
1364 case Expr::ObjCEncodeExprClass:
1365 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1366 case Expr::PseudoObjectExprClass:
1367 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1368 case Expr::InitListExprClass:
1369 return EmitInitListLValue(cast<InitListExpr>(E));
1370 case Expr::CXXTemporaryObjectExprClass:
1371 case Expr::CXXConstructExprClass:
1372 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1373 case Expr::CXXBindTemporaryExprClass:
1374 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1375 case Expr::CXXUuidofExprClass:
1376 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1377 case Expr::LambdaExprClass:
1378 return EmitAggExprToLValue(E);
1380 case Expr::ExprWithCleanupsClass: {
1381 const auto *cleanups = cast<ExprWithCleanups>(E);
1382 RunCleanupsScope Scope(*this);
1383 LValue LV = EmitLValue(cleanups->getSubExpr());
1384 if (LV.isSimple()) {
1385 // Defend against branches out of gnu statement expressions surrounded by
1386 // cleanups.
1387 Address Addr = LV.getAddress(*this);
1388 llvm::Value *V = Addr.getPointer();
1389 Scope.ForceCleanup({&V});
1390 return LValue::MakeAddr(Addr.withPointer(V), LV.getType(), getContext(),
1391 LV.getBaseInfo(), LV.getTBAAInfo());
1393 // FIXME: Is it possible to create an ExprWithCleanups that produces a
1394 // bitfield lvalue or some other non-simple lvalue?
1395 return LV;
1398 case Expr::CXXDefaultArgExprClass: {
1399 auto *DAE = cast<CXXDefaultArgExpr>(E);
1400 CXXDefaultArgExprScope Scope(*this, DAE);
1401 return EmitLValue(DAE->getExpr());
1403 case Expr::CXXDefaultInitExprClass: {
1404 auto *DIE = cast<CXXDefaultInitExpr>(E);
1405 CXXDefaultInitExprScope Scope(*this, DIE);
1406 return EmitLValue(DIE->getExpr());
1408 case Expr::CXXTypeidExprClass:
1409 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1411 case Expr::ObjCMessageExprClass:
1412 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1413 case Expr::ObjCIvarRefExprClass:
1414 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1415 case Expr::StmtExprClass:
1416 return EmitStmtExprLValue(cast<StmtExpr>(E));
1417 case Expr::UnaryOperatorClass:
1418 return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1419 case Expr::ArraySubscriptExprClass:
1420 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1421 case Expr::MatrixSubscriptExprClass:
1422 return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
1423 case Expr::OMPArraySectionExprClass:
1424 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1425 case Expr::ExtVectorElementExprClass:
1426 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1427 case Expr::MemberExprClass:
1428 return EmitMemberExpr(cast<MemberExpr>(E));
1429 case Expr::CompoundLiteralExprClass:
1430 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1431 case Expr::ConditionalOperatorClass:
1432 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1433 case Expr::BinaryConditionalOperatorClass:
1434 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1435 case Expr::ChooseExprClass:
1436 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1437 case Expr::OpaqueValueExprClass:
1438 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1439 case Expr::SubstNonTypeTemplateParmExprClass:
1440 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1441 case Expr::ImplicitCastExprClass:
1442 case Expr::CStyleCastExprClass:
1443 case Expr::CXXFunctionalCastExprClass:
1444 case Expr::CXXStaticCastExprClass:
1445 case Expr::CXXDynamicCastExprClass:
1446 case Expr::CXXReinterpretCastExprClass:
1447 case Expr::CXXConstCastExprClass:
1448 case Expr::CXXAddrspaceCastExprClass:
1449 case Expr::ObjCBridgedCastExprClass:
1450 return EmitCastLValue(cast<CastExpr>(E));
1452 case Expr::MaterializeTemporaryExprClass:
1453 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1455 case Expr::CoawaitExprClass:
1456 return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1457 case Expr::CoyieldExprClass:
1458 return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1462 /// Given an object of the given canonical type, can we safely copy a
1463 /// value out of it based on its initializer?
1464 static bool isConstantEmittableObjectType(QualType type) {
1465 assert(type.isCanonical());
1466 assert(!type->isReferenceType());
1468 // Must be const-qualified but non-volatile.
1469 Qualifiers qs = type.getLocalQualifiers();
1470 if (!qs.hasConst() || qs.hasVolatile()) return false;
1472 // Otherwise, all object types satisfy this except C++ classes with
1473 // mutable subobjects or non-trivial copy/destroy behavior.
1474 if (const auto *RT = dyn_cast<RecordType>(type))
1475 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1476 if (RD->hasMutableFields() || !RD->isTrivial())
1477 return false;
1479 return true;
1482 /// Can we constant-emit a load of a reference to a variable of the
1483 /// given type? This is different from predicates like
1484 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1485 /// in situations that don't necessarily satisfy the language's rules
1486 /// for this (e.g. C++'s ODR-use rules). For example, we want to able
1487 /// to do this with const float variables even if those variables
1488 /// aren't marked 'constexpr'.
1489 enum ConstantEmissionKind {
1490 CEK_None,
1491 CEK_AsReferenceOnly,
1492 CEK_AsValueOrReference,
1493 CEK_AsValueOnly
1495 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1496 type = type.getCanonicalType();
1497 if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1498 if (isConstantEmittableObjectType(ref->getPointeeType()))
1499 return CEK_AsValueOrReference;
1500 return CEK_AsReferenceOnly;
1502 if (isConstantEmittableObjectType(type))
1503 return CEK_AsValueOnly;
1504 return CEK_None;
1507 /// Try to emit a reference to the given value without producing it as
1508 /// an l-value. This is just an optimization, but it avoids us needing
1509 /// to emit global copies of variables if they're named without triggering
1510 /// a formal use in a context where we can't emit a direct reference to them,
1511 /// for instance if a block or lambda or a member of a local class uses a
1512 /// const int variable or constexpr variable from an enclosing function.
1513 CodeGenFunction::ConstantEmission
1514 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1515 ValueDecl *value = refExpr->getDecl();
1517 // The value needs to be an enum constant or a constant variable.
1518 ConstantEmissionKind CEK;
1519 if (isa<ParmVarDecl>(value)) {
1520 CEK = CEK_None;
1521 } else if (auto *var = dyn_cast<VarDecl>(value)) {
1522 CEK = checkVarTypeForConstantEmission(var->getType());
1523 } else if (isa<EnumConstantDecl>(value)) {
1524 CEK = CEK_AsValueOnly;
1525 } else {
1526 CEK = CEK_None;
1528 if (CEK == CEK_None) return ConstantEmission();
1530 Expr::EvalResult result;
1531 bool resultIsReference;
1532 QualType resultType;
1534 // It's best to evaluate all the way as an r-value if that's permitted.
1535 if (CEK != CEK_AsReferenceOnly &&
1536 refExpr->EvaluateAsRValue(result, getContext())) {
1537 resultIsReference = false;
1538 resultType = refExpr->getType();
1540 // Otherwise, try to evaluate as an l-value.
1541 } else if (CEK != CEK_AsValueOnly &&
1542 refExpr->EvaluateAsLValue(result, getContext())) {
1543 resultIsReference = true;
1544 resultType = value->getType();
1546 // Failure.
1547 } else {
1548 return ConstantEmission();
1551 // In any case, if the initializer has side-effects, abandon ship.
1552 if (result.HasSideEffects)
1553 return ConstantEmission();
1555 // In CUDA/HIP device compilation, a lambda may capture a reference variable
1556 // referencing a global host variable by copy. In this case the lambda should
1557 // make a copy of the value of the global host variable. The DRE of the
1558 // captured reference variable cannot be emitted as load from the host
1559 // global variable as compile time constant, since the host variable is not
1560 // accessible on device. The DRE of the captured reference variable has to be
1561 // loaded from captures.
1562 if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() &&
1563 refExpr->refersToEnclosingVariableOrCapture()) {
1564 auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl);
1565 if (MD && MD->getParent()->isLambda() &&
1566 MD->getOverloadedOperator() == OO_Call) {
1567 const APValue::LValueBase &base = result.Val.getLValueBase();
1568 if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) {
1569 if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) {
1570 if (!VD->hasAttr<CUDADeviceAttr>()) {
1571 return ConstantEmission();
1578 // Emit as a constant.
1579 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1580 result.Val, resultType);
1582 // Make sure we emit a debug reference to the global variable.
1583 // This should probably fire even for
1584 if (isa<VarDecl>(value)) {
1585 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1586 EmitDeclRefExprDbgValue(refExpr, result.Val);
1587 } else {
1588 assert(isa<EnumConstantDecl>(value));
1589 EmitDeclRefExprDbgValue(refExpr, result.Val);
1592 // If we emitted a reference constant, we need to dereference that.
1593 if (resultIsReference)
1594 return ConstantEmission::forReference(C);
1596 return ConstantEmission::forValue(C);
1599 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1600 const MemberExpr *ME) {
1601 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1602 // Try to emit static variable member expressions as DREs.
1603 return DeclRefExpr::Create(
1604 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1605 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1606 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1608 return nullptr;
1611 CodeGenFunction::ConstantEmission
1612 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1613 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1614 return tryEmitAsConstant(DRE);
1615 return ConstantEmission();
1618 llvm::Value *CodeGenFunction::emitScalarConstant(
1619 const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1620 assert(Constant && "not a constant");
1621 if (Constant.isReference())
1622 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1623 E->getExprLoc())
1624 .getScalarVal();
1625 return Constant.getValue();
1628 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1629 SourceLocation Loc) {
1630 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1631 lvalue.getType(), Loc, lvalue.getBaseInfo(),
1632 lvalue.getTBAAInfo(), lvalue.isNontemporal());
1635 static bool hasBooleanRepresentation(QualType Ty) {
1636 if (Ty->isBooleanType())
1637 return true;
1639 if (const EnumType *ET = Ty->getAs<EnumType>())
1640 return ET->getDecl()->getIntegerType()->isBooleanType();
1642 if (const AtomicType *AT = Ty->getAs<AtomicType>())
1643 return hasBooleanRepresentation(AT->getValueType());
1645 return false;
1648 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1649 llvm::APInt &Min, llvm::APInt &End,
1650 bool StrictEnums, bool IsBool) {
1651 const EnumType *ET = Ty->getAs<EnumType>();
1652 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1653 ET && !ET->getDecl()->isFixed();
1654 if (!IsBool && !IsRegularCPlusPlusEnum)
1655 return false;
1657 if (IsBool) {
1658 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1659 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1660 } else {
1661 const EnumDecl *ED = ET->getDecl();
1662 ED->getValueRange(End, Min);
1664 return true;
1667 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1668 llvm::APInt Min, End;
1669 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1670 hasBooleanRepresentation(Ty)))
1671 return nullptr;
1673 llvm::MDBuilder MDHelper(getLLVMContext());
1674 return MDHelper.createRange(Min, End);
1677 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1678 SourceLocation Loc) {
1679 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1680 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1681 if (!HasBoolCheck && !HasEnumCheck)
1682 return false;
1684 bool IsBool = hasBooleanRepresentation(Ty) ||
1685 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1686 bool NeedsBoolCheck = HasBoolCheck && IsBool;
1687 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1688 if (!NeedsBoolCheck && !NeedsEnumCheck)
1689 return false;
1691 // Single-bit booleans don't need to be checked. Special-case this to avoid
1692 // a bit width mismatch when handling bitfield values. This is handled by
1693 // EmitFromMemory for the non-bitfield case.
1694 if (IsBool &&
1695 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1696 return false;
1698 llvm::APInt Min, End;
1699 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1700 return true;
1702 auto &Ctx = getLLVMContext();
1703 SanitizerScope SanScope(this);
1704 llvm::Value *Check;
1705 --End;
1706 if (!Min) {
1707 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1708 } else {
1709 llvm::Value *Upper =
1710 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1711 llvm::Value *Lower =
1712 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1713 Check = Builder.CreateAnd(Upper, Lower);
1715 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1716 EmitCheckTypeDescriptor(Ty)};
1717 SanitizerMask Kind =
1718 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1719 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1720 StaticArgs, EmitCheckValue(Value));
1721 return true;
1724 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1725 QualType Ty,
1726 SourceLocation Loc,
1727 LValueBaseInfo BaseInfo,
1728 TBAAAccessInfo TBAAInfo,
1729 bool isNontemporal) {
1730 if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr.getPointer()))
1731 if (GV->isThreadLocal())
1732 Addr = Addr.withPointer(Builder.CreateThreadLocalAddress(GV));
1734 if (const auto *ClangVecTy = Ty->getAs<VectorType>()) {
1735 // Boolean vectors use `iN` as storage type.
1736 if (ClangVecTy->isExtVectorBoolType()) {
1737 llvm::Type *ValTy = ConvertType(Ty);
1738 unsigned ValNumElems =
1739 cast<llvm::FixedVectorType>(ValTy)->getNumElements();
1740 // Load the `iP` storage object (P is the padded vector size).
1741 auto *RawIntV = Builder.CreateLoad(Addr, Volatile, "load_bits");
1742 const auto *RawIntTy = RawIntV->getType();
1743 assert(RawIntTy->isIntegerTy() && "compressed iN storage for bitvectors");
1744 // Bitcast iP --> <P x i1>.
1745 auto *PaddedVecTy = llvm::FixedVectorType::get(
1746 Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits());
1747 llvm::Value *V = Builder.CreateBitCast(RawIntV, PaddedVecTy);
1748 // Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
1749 V = emitBoolVecConversion(V, ValNumElems, "extractvec");
1751 return EmitFromMemory(V, Ty);
1754 // Handle vectors of size 3 like size 4 for better performance.
1755 const llvm::Type *EltTy = Addr.getElementType();
1756 const auto *VTy = cast<llvm::FixedVectorType>(EltTy);
1758 if (!CGM.getCodeGenOpts().PreserveVec3Type && VTy->getNumElements() == 3) {
1760 // Bitcast to vec4 type.
1761 llvm::VectorType *vec4Ty =
1762 llvm::FixedVectorType::get(VTy->getElementType(), 4);
1763 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1764 // Now load value.
1765 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1767 // Shuffle vector to get vec3.
1768 V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2}, "extractVec");
1769 return EmitFromMemory(V, Ty);
1773 // Atomic operations have to be done on integral types.
1774 LValue AtomicLValue =
1775 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1776 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1777 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1780 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1781 if (isNontemporal) {
1782 llvm::MDNode *Node = llvm::MDNode::get(
1783 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1784 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1787 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1789 if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1790 // In order to prevent the optimizer from throwing away the check, don't
1791 // attach range metadata to the load.
1792 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1793 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1794 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1796 return EmitFromMemory(Load, Ty);
1799 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1800 // Bool has a different representation in memory than in registers.
1801 if (hasBooleanRepresentation(Ty)) {
1802 // This should really always be an i1, but sometimes it's already
1803 // an i8, and it's awkward to track those cases down.
1804 if (Value->getType()->isIntegerTy(1))
1805 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1806 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1807 "wrong value rep of bool");
1810 return Value;
1813 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1814 // Bool has a different representation in memory than in registers.
1815 if (hasBooleanRepresentation(Ty)) {
1816 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1817 "wrong value rep of bool");
1818 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1820 if (Ty->isExtVectorBoolType()) {
1821 const auto *RawIntTy = Value->getType();
1822 // Bitcast iP --> <P x i1>.
1823 auto *PaddedVecTy = llvm::FixedVectorType::get(
1824 Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits());
1825 auto *V = Builder.CreateBitCast(Value, PaddedVecTy);
1826 // Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
1827 llvm::Type *ValTy = ConvertType(Ty);
1828 unsigned ValNumElems = cast<llvm::FixedVectorType>(ValTy)->getNumElements();
1829 return emitBoolVecConversion(V, ValNumElems, "extractvec");
1832 return Value;
1835 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1836 // MatrixType), if it points to a array (the memory type of MatrixType).
1837 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
1838 bool IsVector = true) {
1839 auto *ArrayTy = dyn_cast<llvm::ArrayType>(Addr.getElementType());
1840 if (ArrayTy && IsVector) {
1841 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
1842 ArrayTy->getNumElements());
1844 return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy));
1846 auto *VectorTy = dyn_cast<llvm::VectorType>(Addr.getElementType());
1847 if (VectorTy && !IsVector) {
1848 auto *ArrayTy = llvm::ArrayType::get(
1849 VectorTy->getElementType(),
1850 cast<llvm::FixedVectorType>(VectorTy)->getNumElements());
1852 return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy));
1855 return Addr;
1858 // Emit a store of a matrix LValue. This may require casting the original
1859 // pointer to memory address (ArrayType) to a pointer to the value type
1860 // (VectorType).
1861 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
1862 bool isInit, CodeGenFunction &CGF) {
1863 Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
1864 value->getType()->isVectorTy());
1865 CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
1866 lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
1867 lvalue.isNontemporal());
1870 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1871 bool Volatile, QualType Ty,
1872 LValueBaseInfo BaseInfo,
1873 TBAAAccessInfo TBAAInfo,
1874 bool isInit, bool isNontemporal) {
1875 if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr.getPointer()))
1876 if (GV->isThreadLocal())
1877 Addr = Addr.withPointer(Builder.CreateThreadLocalAddress(GV));
1879 llvm::Type *SrcTy = Value->getType();
1880 if (const auto *ClangVecTy = Ty->getAs<VectorType>()) {
1881 auto *VecTy = dyn_cast<llvm::FixedVectorType>(SrcTy);
1882 if (VecTy && ClangVecTy->isExtVectorBoolType()) {
1883 auto *MemIntTy = cast<llvm::IntegerType>(Addr.getElementType());
1884 // Expand to the memory bit width.
1885 unsigned MemNumElems = MemIntTy->getPrimitiveSizeInBits();
1886 // <N x i1> --> <P x i1>.
1887 Value = emitBoolVecConversion(Value, MemNumElems, "insertvec");
1888 // <P x i1> --> iP.
1889 Value = Builder.CreateBitCast(Value, MemIntTy);
1890 } else if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1891 // Handle vec3 special.
1892 if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) {
1893 // Our source is a vec3, do a shuffle vector to make it a vec4.
1894 Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1},
1895 "extractVec");
1896 SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
1898 if (Addr.getElementType() != SrcTy) {
1899 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1904 Value = EmitToMemory(Value, Ty);
1906 LValue AtomicLValue =
1907 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1908 if (Ty->isAtomicType() ||
1909 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1910 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1911 return;
1914 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1915 if (isNontemporal) {
1916 llvm::MDNode *Node =
1917 llvm::MDNode::get(Store->getContext(),
1918 llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1919 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1922 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1925 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1926 bool isInit) {
1927 if (lvalue.getType()->isConstantMatrixType()) {
1928 EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
1929 return;
1932 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1933 lvalue.getType(), lvalue.getBaseInfo(),
1934 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1937 // Emit a load of a LValue of matrix type. This may require casting the pointer
1938 // to memory address (ArrayType) to a pointer to the value type (VectorType).
1939 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
1940 CodeGenFunction &CGF) {
1941 assert(LV.getType()->isConstantMatrixType());
1942 Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
1943 LV.setAddress(Addr);
1944 return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
1947 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1948 /// method emits the address of the lvalue, then loads the result as an rvalue,
1949 /// returning the rvalue.
1950 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1951 if (LV.isObjCWeak()) {
1952 // load of a __weak object.
1953 Address AddrWeakObj = LV.getAddress(*this);
1954 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1955 AddrWeakObj));
1957 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1958 // In MRC mode, we do a load+autorelease.
1959 if (!getLangOpts().ObjCAutoRefCount) {
1960 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1963 // In ARC mode, we load retained and then consume the value.
1964 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1965 Object = EmitObjCConsumeObject(LV.getType(), Object);
1966 return RValue::get(Object);
1969 if (LV.isSimple()) {
1970 assert(!LV.getType()->isFunctionType());
1972 if (LV.getType()->isConstantMatrixType())
1973 return EmitLoadOfMatrixLValue(LV, Loc, *this);
1975 // Everything needs a load.
1976 return RValue::get(EmitLoadOfScalar(LV, Loc));
1979 if (LV.isVectorElt()) {
1980 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1981 LV.isVolatileQualified());
1982 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1983 "vecext"));
1986 // If this is a reference to a subset of the elements of a vector, either
1987 // shuffle the input or extract/insert them as appropriate.
1988 if (LV.isExtVectorElt()) {
1989 return EmitLoadOfExtVectorElementLValue(LV);
1992 // Global Register variables always invoke intrinsics
1993 if (LV.isGlobalReg())
1994 return EmitLoadOfGlobalRegLValue(LV);
1996 if (LV.isMatrixElt()) {
1997 llvm::Value *Idx = LV.getMatrixIdx();
1998 if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
1999 const auto *const MatTy = LV.getType()->castAs<ConstantMatrixType>();
2000 llvm::MatrixBuilder MB(Builder);
2001 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
2003 llvm::LoadInst *Load =
2004 Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
2005 return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext"));
2008 assert(LV.isBitField() && "Unknown LValue type!");
2009 return EmitLoadOfBitfieldLValue(LV, Loc);
2012 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
2013 SourceLocation Loc) {
2014 const CGBitFieldInfo &Info = LV.getBitFieldInfo();
2016 // Get the output type.
2017 llvm::Type *ResLTy = ConvertType(LV.getType());
2019 Address Ptr = LV.getBitFieldAddress();
2020 llvm::Value *Val =
2021 Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
2023 bool UseVolatile = LV.isVolatileQualified() &&
2024 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2025 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2026 const unsigned StorageSize =
2027 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2028 if (Info.IsSigned) {
2029 assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize);
2030 unsigned HighBits = StorageSize - Offset - Info.Size;
2031 if (HighBits)
2032 Val = Builder.CreateShl(Val, HighBits, "bf.shl");
2033 if (Offset + HighBits)
2034 Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr");
2035 } else {
2036 if (Offset)
2037 Val = Builder.CreateLShr(Val, Offset, "bf.lshr");
2038 if (static_cast<unsigned>(Offset) + Info.Size < StorageSize)
2039 Val = Builder.CreateAnd(
2040 Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear");
2042 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
2043 EmitScalarRangeCheck(Val, LV.getType(), Loc);
2044 return RValue::get(Val);
2047 // If this is a reference to a subset of the elements of a vector, create an
2048 // appropriate shufflevector.
2049 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
2050 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
2051 LV.isVolatileQualified());
2053 const llvm::Constant *Elts = LV.getExtVectorElts();
2055 // If the result of the expression is a non-vector type, we must be extracting
2056 // a single element. Just codegen as an extractelement.
2057 const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
2058 if (!ExprVT) {
2059 unsigned InIdx = getAccessedFieldNo(0, Elts);
2060 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2061 return RValue::get(Builder.CreateExtractElement(Vec, Elt));
2064 // Always use shuffle vector to try to retain the original program structure
2065 unsigned NumResultElts = ExprVT->getNumElements();
2067 SmallVector<int, 4> Mask;
2068 for (unsigned i = 0; i != NumResultElts; ++i)
2069 Mask.push_back(getAccessedFieldNo(i, Elts));
2071 Vec = Builder.CreateShuffleVector(Vec, Mask);
2072 return RValue::get(Vec);
2075 /// Generates lvalue for partial ext_vector access.
2076 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
2077 Address VectorAddress = LV.getExtVectorAddress();
2078 QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
2079 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
2081 Address CastToPointerElement =
2082 Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
2083 "conv.ptr.element");
2085 const llvm::Constant *Elts = LV.getExtVectorElts();
2086 unsigned ix = getAccessedFieldNo(0, Elts);
2088 Address VectorBasePtrPlusIx =
2089 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
2090 "vector.elt");
2092 return VectorBasePtrPlusIx;
2095 /// Load of global gamed gegisters are always calls to intrinsics.
2096 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
2097 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
2098 "Bad type for register variable");
2099 llvm::MDNode *RegName = cast<llvm::MDNode>(
2100 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
2102 // We accept integer and pointer types only
2103 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
2104 llvm::Type *Ty = OrigTy;
2105 if (OrigTy->isPointerTy())
2106 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2107 llvm::Type *Types[] = { Ty };
2109 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
2110 llvm::Value *Call = Builder.CreateCall(
2111 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
2112 if (OrigTy->isPointerTy())
2113 Call = Builder.CreateIntToPtr(Call, OrigTy);
2114 return RValue::get(Call);
2117 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2118 /// lvalue, where both are guaranteed to the have the same type, and that type
2119 /// is 'Ty'.
2120 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2121 bool isInit) {
2122 if (!Dst.isSimple()) {
2123 if (Dst.isVectorElt()) {
2124 // Read/modify/write the vector, inserting the new element.
2125 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2126 Dst.isVolatileQualified());
2127 auto *IRStoreTy = dyn_cast<llvm::IntegerType>(Vec->getType());
2128 if (IRStoreTy) {
2129 auto *IRVecTy = llvm::FixedVectorType::get(
2130 Builder.getInt1Ty(), IRStoreTy->getPrimitiveSizeInBits());
2131 Vec = Builder.CreateBitCast(Vec, IRVecTy);
2132 // iN --> <N x i1>.
2134 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2135 Dst.getVectorIdx(), "vecins");
2136 if (IRStoreTy) {
2137 // <N x i1> --> <iN>.
2138 Vec = Builder.CreateBitCast(Vec, IRStoreTy);
2140 Builder.CreateStore(Vec, Dst.getVectorAddress(),
2141 Dst.isVolatileQualified());
2142 return;
2145 // If this is an update of extended vector elements, insert them as
2146 // appropriate.
2147 if (Dst.isExtVectorElt())
2148 return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2150 if (Dst.isGlobalReg())
2151 return EmitStoreThroughGlobalRegLValue(Src, Dst);
2153 if (Dst.isMatrixElt()) {
2154 llvm::Value *Idx = Dst.getMatrixIdx();
2155 if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
2156 const auto *const MatTy = Dst.getType()->castAs<ConstantMatrixType>();
2157 llvm::MatrixBuilder MB(Builder);
2158 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
2160 llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress());
2161 llvm::Value *Vec =
2162 Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins");
2163 Builder.CreateStore(Vec, Dst.getMatrixAddress(),
2164 Dst.isVolatileQualified());
2165 return;
2168 assert(Dst.isBitField() && "Unknown LValue type");
2169 return EmitStoreThroughBitfieldLValue(Src, Dst);
2172 // There's special magic for assigning into an ARC-qualified l-value.
2173 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2174 switch (Lifetime) {
2175 case Qualifiers::OCL_None:
2176 llvm_unreachable("present but none");
2178 case Qualifiers::OCL_ExplicitNone:
2179 // nothing special
2180 break;
2182 case Qualifiers::OCL_Strong:
2183 if (isInit) {
2184 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2185 break;
2187 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2188 return;
2190 case Qualifiers::OCL_Weak:
2191 if (isInit)
2192 // Initialize and then skip the primitive store.
2193 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2194 else
2195 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2196 /*ignore*/ true);
2197 return;
2199 case Qualifiers::OCL_Autoreleasing:
2200 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2201 Src.getScalarVal()));
2202 // fall into the normal path
2203 break;
2207 if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2208 // load of a __weak object.
2209 Address LvalueDst = Dst.getAddress(*this);
2210 llvm::Value *src = Src.getScalarVal();
2211 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2212 return;
2215 if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2216 // load of a __strong object.
2217 Address LvalueDst = Dst.getAddress(*this);
2218 llvm::Value *src = Src.getScalarVal();
2219 if (Dst.isObjCIvar()) {
2220 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2221 llvm::Type *ResultType = IntPtrTy;
2222 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2223 llvm::Value *RHS = dst.getPointer();
2224 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2225 llvm::Value *LHS =
2226 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2227 "sub.ptr.lhs.cast");
2228 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2229 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2230 BytesBetween);
2231 } else if (Dst.isGlobalObjCRef()) {
2232 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2233 Dst.isThreadLocalRef());
2235 else
2236 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2237 return;
2240 assert(Src.isScalar() && "Can't emit an agg store with this method");
2241 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2244 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2245 llvm::Value **Result) {
2246 const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2247 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2248 Address Ptr = Dst.getBitFieldAddress();
2250 // Get the source value, truncated to the width of the bit-field.
2251 llvm::Value *SrcVal = Src.getScalarVal();
2253 // Cast the source to the storage type and shift it into place.
2254 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2255 /*isSigned=*/false);
2256 llvm::Value *MaskedVal = SrcVal;
2258 const bool UseVolatile =
2259 CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() &&
2260 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2261 const unsigned StorageSize =
2262 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2263 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2264 // See if there are other bits in the bitfield's storage we'll need to load
2265 // and mask together with source before storing.
2266 if (StorageSize != Info.Size) {
2267 assert(StorageSize > Info.Size && "Invalid bitfield size.");
2268 llvm::Value *Val =
2269 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2271 // Mask the source value as needed.
2272 if (!hasBooleanRepresentation(Dst.getType()))
2273 SrcVal = Builder.CreateAnd(
2274 SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size),
2275 "bf.value");
2276 MaskedVal = SrcVal;
2277 if (Offset)
2278 SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl");
2280 // Mask out the original value.
2281 Val = Builder.CreateAnd(
2282 Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size),
2283 "bf.clear");
2285 // Or together the unchanged values and the source value.
2286 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2287 } else {
2288 assert(Offset == 0);
2289 // According to the AACPS:
2290 // When a volatile bit-field is written, and its container does not overlap
2291 // with any non-bit-field member, its container must be read exactly once
2292 // and written exactly once using the access width appropriate to the type
2293 // of the container. The two accesses are not atomic.
2294 if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2295 CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2296 Builder.CreateLoad(Ptr, true, "bf.load");
2299 // Write the new value back out.
2300 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2302 // Return the new value of the bit-field, if requested.
2303 if (Result) {
2304 llvm::Value *ResultVal = MaskedVal;
2306 // Sign extend the value if needed.
2307 if (Info.IsSigned) {
2308 assert(Info.Size <= StorageSize);
2309 unsigned HighBits = StorageSize - Info.Size;
2310 if (HighBits) {
2311 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2312 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2316 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2317 "bf.result.cast");
2318 *Result = EmitFromMemory(ResultVal, Dst.getType());
2322 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2323 LValue Dst) {
2324 // This access turns into a read/modify/write of the vector. Load the input
2325 // value now.
2326 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2327 Dst.isVolatileQualified());
2328 const llvm::Constant *Elts = Dst.getExtVectorElts();
2330 llvm::Value *SrcVal = Src.getScalarVal();
2332 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2333 unsigned NumSrcElts = VTy->getNumElements();
2334 unsigned NumDstElts =
2335 cast<llvm::FixedVectorType>(Vec->getType())->getNumElements();
2336 if (NumDstElts == NumSrcElts) {
2337 // Use shuffle vector is the src and destination are the same number of
2338 // elements and restore the vector mask since it is on the side it will be
2339 // stored.
2340 SmallVector<int, 4> Mask(NumDstElts);
2341 for (unsigned i = 0; i != NumSrcElts; ++i)
2342 Mask[getAccessedFieldNo(i, Elts)] = i;
2344 Vec = Builder.CreateShuffleVector(SrcVal, Mask);
2345 } else if (NumDstElts > NumSrcElts) {
2346 // Extended the source vector to the same length and then shuffle it
2347 // into the destination.
2348 // FIXME: since we're shuffling with undef, can we just use the indices
2349 // into that? This could be simpler.
2350 SmallVector<int, 4> ExtMask;
2351 for (unsigned i = 0; i != NumSrcElts; ++i)
2352 ExtMask.push_back(i);
2353 ExtMask.resize(NumDstElts, -1);
2354 llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask);
2355 // build identity
2356 SmallVector<int, 4> Mask;
2357 for (unsigned i = 0; i != NumDstElts; ++i)
2358 Mask.push_back(i);
2360 // When the vector size is odd and .odd or .hi is used, the last element
2361 // of the Elts constant array will be one past the size of the vector.
2362 // Ignore the last element here, if it is greater than the mask size.
2363 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2364 NumSrcElts--;
2366 // modify when what gets shuffled in
2367 for (unsigned i = 0; i != NumSrcElts; ++i)
2368 Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2369 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2370 } else {
2371 // We should never shorten the vector
2372 llvm_unreachable("unexpected shorten vector length");
2374 } else {
2375 // If the Src is a scalar (not a vector) it must be updating one element.
2376 unsigned InIdx = getAccessedFieldNo(0, Elts);
2377 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2378 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2381 Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2382 Dst.isVolatileQualified());
2385 /// Store of global named registers are always calls to intrinsics.
2386 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2387 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2388 "Bad type for register variable");
2389 llvm::MDNode *RegName = cast<llvm::MDNode>(
2390 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2391 assert(RegName && "Register LValue is not metadata");
2393 // We accept integer and pointer types only
2394 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2395 llvm::Type *Ty = OrigTy;
2396 if (OrigTy->isPointerTy())
2397 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2398 llvm::Type *Types[] = { Ty };
2400 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2401 llvm::Value *Value = Src.getScalarVal();
2402 if (OrigTy->isPointerTy())
2403 Value = Builder.CreatePtrToInt(Value, Ty);
2404 Builder.CreateCall(
2405 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2408 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2409 // generating write-barries API. It is currently a global, ivar,
2410 // or neither.
2411 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2412 LValue &LV,
2413 bool IsMemberAccess=false) {
2414 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2415 return;
2417 if (isa<ObjCIvarRefExpr>(E)) {
2418 QualType ExpTy = E->getType();
2419 if (IsMemberAccess && ExpTy->isPointerType()) {
2420 // If ivar is a structure pointer, assigning to field of
2421 // this struct follows gcc's behavior and makes it a non-ivar
2422 // writer-barrier conservatively.
2423 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2424 if (ExpTy->isRecordType()) {
2425 LV.setObjCIvar(false);
2426 return;
2429 LV.setObjCIvar(true);
2430 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2431 LV.setBaseIvarExp(Exp->getBase());
2432 LV.setObjCArray(E->getType()->isArrayType());
2433 return;
2436 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2437 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2438 if (VD->hasGlobalStorage()) {
2439 LV.setGlobalObjCRef(true);
2440 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2443 LV.setObjCArray(E->getType()->isArrayType());
2444 return;
2447 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2448 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2449 return;
2452 if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2453 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2454 if (LV.isObjCIvar()) {
2455 // If cast is to a structure pointer, follow gcc's behavior and make it
2456 // a non-ivar write-barrier.
2457 QualType ExpTy = E->getType();
2458 if (ExpTy->isPointerType())
2459 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2460 if (ExpTy->isRecordType())
2461 LV.setObjCIvar(false);
2463 return;
2466 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2467 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2468 return;
2471 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2472 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2473 return;
2476 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2477 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2478 return;
2481 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2482 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2483 return;
2486 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2487 setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2488 if (LV.isObjCIvar() && !LV.isObjCArray())
2489 // Using array syntax to assigning to what an ivar points to is not
2490 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2491 LV.setObjCIvar(false);
2492 else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2493 // Using array syntax to assigning to what global points to is not
2494 // same as assigning to the global itself. {id *G;} G[i] = 0;
2495 LV.setGlobalObjCRef(false);
2496 return;
2499 if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2500 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2501 // We don't know if member is an 'ivar', but this flag is looked at
2502 // only in the context of LV.isObjCIvar().
2503 LV.setObjCArray(E->getType()->isArrayType());
2504 return;
2508 static llvm::Value *
2509 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2510 llvm::Value *V, llvm::Type *IRType,
2511 StringRef Name = StringRef()) {
2512 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2513 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2516 static LValue EmitThreadPrivateVarDeclLValue(
2517 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2518 llvm::Type *RealVarTy, SourceLocation Loc) {
2519 if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
2520 Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2521 CGF, VD, Addr, Loc);
2522 else
2523 Addr =
2524 CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2526 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2527 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2530 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2531 const VarDecl *VD, QualType T) {
2532 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2533 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2534 // Return an invalid address if variable is MT_To and unified
2535 // memory is not enabled. For all other cases: MT_Link and
2536 // MT_To with unified memory, return a valid address.
2537 if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2538 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2539 return Address::invalid();
2540 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2541 (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2542 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2543 "Expected link clause OR to clause with unified memory enabled.");
2544 QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2545 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2546 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2549 Address
2550 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2551 LValueBaseInfo *PointeeBaseInfo,
2552 TBAAAccessInfo *PointeeTBAAInfo) {
2553 llvm::LoadInst *Load =
2554 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2555 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2557 QualType PointeeType = RefLVal.getType()->getPointeeType();
2558 CharUnits Align = CGM.getNaturalTypeAlignment(
2559 PointeeType, PointeeBaseInfo, PointeeTBAAInfo,
2560 /* forPointeeType= */ true);
2561 return Address(Load, ConvertTypeForMem(PointeeType), Align);
2564 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2565 LValueBaseInfo PointeeBaseInfo;
2566 TBAAAccessInfo PointeeTBAAInfo;
2567 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2568 &PointeeTBAAInfo);
2569 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2570 PointeeBaseInfo, PointeeTBAAInfo);
2573 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2574 const PointerType *PtrTy,
2575 LValueBaseInfo *BaseInfo,
2576 TBAAAccessInfo *TBAAInfo) {
2577 llvm::Value *Addr = Builder.CreateLoad(Ptr);
2578 return Address(Addr, ConvertTypeForMem(PtrTy->getPointeeType()),
2579 CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(), BaseInfo,
2580 TBAAInfo,
2581 /*forPointeeType=*/true));
2584 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2585 const PointerType *PtrTy) {
2586 LValueBaseInfo BaseInfo;
2587 TBAAAccessInfo TBAAInfo;
2588 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2589 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2592 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2593 const Expr *E, const VarDecl *VD) {
2594 QualType T = E->getType();
2596 // If it's thread_local, emit a call to its wrapper function instead.
2597 if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2598 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2599 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2600 // Check if the variable is marked as declare target with link clause in
2601 // device codegen.
2602 if (CGF.getLangOpts().OpenMPIsDevice) {
2603 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2604 if (Addr.isValid())
2605 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2608 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2610 if (VD->getTLSKind() != VarDecl::TLS_None)
2611 V = CGF.Builder.CreateThreadLocalAddress(V);
2613 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2614 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2615 CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2616 Address Addr(V, RealVarTy, Alignment);
2617 // Emit reference to the private copy of the variable if it is an OpenMP
2618 // threadprivate variable.
2619 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2620 VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2621 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2622 E->getExprLoc());
2624 LValue LV = VD->getType()->isReferenceType() ?
2625 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2626 AlignmentSource::Decl) :
2627 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2628 setObjCGCLValueClass(CGF.getContext(), E, LV);
2629 return LV;
2632 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2633 GlobalDecl GD) {
2634 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2635 if (FD->hasAttr<WeakRefAttr>()) {
2636 ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2637 return aliasee.getPointer();
2640 llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2641 if (!FD->hasPrototype()) {
2642 if (const FunctionProtoType *Proto =
2643 FD->getType()->getAs<FunctionProtoType>()) {
2644 // Ugly case: for a K&R-style definition, the type of the definition
2645 // isn't the same as the type of a use. Correct for this with a
2646 // bitcast.
2647 QualType NoProtoType =
2648 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2649 NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2650 V = llvm::ConstantExpr::getBitCast(V,
2651 CGM.getTypes().ConvertType(NoProtoType));
2654 return V;
2657 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2658 GlobalDecl GD) {
2659 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2660 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2661 CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2662 return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2663 AlignmentSource::Decl);
2666 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2667 llvm::Value *ThisValue) {
2668 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2669 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2670 return CGF.EmitLValueForField(LV, FD);
2673 /// Named Registers are named metadata pointing to the register name
2674 /// which will be read from/written to as an argument to the intrinsic
2675 /// @llvm.read/write_register.
2676 /// So far, only the name is being passed down, but other options such as
2677 /// register type, allocation type or even optimization options could be
2678 /// passed down via the metadata node.
2679 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2680 SmallString<64> Name("llvm.named.register.");
2681 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2682 assert(Asm->getLabel().size() < 64-Name.size() &&
2683 "Register name too big");
2684 Name.append(Asm->getLabel());
2685 llvm::NamedMDNode *M =
2686 CGM.getModule().getOrInsertNamedMetadata(Name);
2687 if (M->getNumOperands() == 0) {
2688 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2689 Asm->getLabel());
2690 llvm::Metadata *Ops[] = {Str};
2691 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2694 CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2696 llvm::Value *Ptr =
2697 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2698 return LValue::MakeGlobalReg(Ptr, Alignment, VD->getType());
2701 /// Determine whether we can emit a reference to \p VD from the current
2702 /// context, despite not necessarily having seen an odr-use of the variable in
2703 /// this context.
2704 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2705 const DeclRefExpr *E,
2706 const VarDecl *VD,
2707 bool IsConstant) {
2708 // For a variable declared in an enclosing scope, do not emit a spurious
2709 // reference even if we have a capture, as that will emit an unwarranted
2710 // reference to our capture state, and will likely generate worse code than
2711 // emitting a local copy.
2712 if (E->refersToEnclosingVariableOrCapture())
2713 return false;
2715 // For a local declaration declared in this function, we can always reference
2716 // it even if we don't have an odr-use.
2717 if (VD->hasLocalStorage()) {
2718 return VD->getDeclContext() ==
2719 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2722 // For a global declaration, we can emit a reference to it if we know
2723 // for sure that we are able to emit a definition of it.
2724 VD = VD->getDefinition(CGF.getContext());
2725 if (!VD)
2726 return false;
2728 // Don't emit a spurious reference if it might be to a variable that only
2729 // exists on a different device / target.
2730 // FIXME: This is unnecessarily broad. Check whether this would actually be a
2731 // cross-target reference.
2732 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2733 CGF.getLangOpts().OpenCL) {
2734 return false;
2737 // We can emit a spurious reference only if the linkage implies that we'll
2738 // be emitting a non-interposable symbol that will be retained until link
2739 // time.
2740 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2741 case llvm::GlobalValue::ExternalLinkage:
2742 case llvm::GlobalValue::LinkOnceODRLinkage:
2743 case llvm::GlobalValue::WeakODRLinkage:
2744 case llvm::GlobalValue::InternalLinkage:
2745 case llvm::GlobalValue::PrivateLinkage:
2746 return true;
2747 default:
2748 return false;
2752 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2753 const NamedDecl *ND = E->getDecl();
2754 QualType T = E->getType();
2756 assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2757 "should not emit an unevaluated operand");
2759 if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2760 // Global Named registers access via intrinsics only
2761 if (VD->getStorageClass() == SC_Register &&
2762 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2763 return EmitGlobalNamedRegister(VD, CGM);
2765 // If this DeclRefExpr does not constitute an odr-use of the variable,
2766 // we're not permitted to emit a reference to it in general, and it might
2767 // not be captured if capture would be necessary for a use. Emit the
2768 // constant value directly instead.
2769 if (E->isNonOdrUse() == NOUR_Constant &&
2770 (VD->getType()->isReferenceType() ||
2771 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2772 VD->getAnyInitializer(VD);
2773 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2774 E->getLocation(), *VD->evaluateValue(), VD->getType());
2775 assert(Val && "failed to emit constant expression");
2777 Address Addr = Address::invalid();
2778 if (!VD->getType()->isReferenceType()) {
2779 // Spill the constant value to a global.
2780 Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2781 getContext().getDeclAlign(VD));
2782 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2783 auto *PTy = llvm::PointerType::get(
2784 VarTy, getContext().getTargetAddressSpace(VD->getType()));
2785 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy, VarTy);
2786 } else {
2787 // Should we be using the alignment of the constant pointer we emitted?
2788 CharUnits Alignment =
2789 CGM.getNaturalTypeAlignment(E->getType(),
2790 /* BaseInfo= */ nullptr,
2791 /* TBAAInfo= */ nullptr,
2792 /* forPointeeType= */ true);
2793 Addr = Address(Val, ConvertTypeForMem(E->getType()), Alignment);
2795 return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2798 // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2800 // Check for captured variables.
2801 if (E->refersToEnclosingVariableOrCapture()) {
2802 VD = VD->getCanonicalDecl();
2803 if (auto *FD = LambdaCaptureFields.lookup(VD))
2804 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2805 if (CapturedStmtInfo) {
2806 auto I = LocalDeclMap.find(VD);
2807 if (I != LocalDeclMap.end()) {
2808 LValue CapLVal;
2809 if (VD->getType()->isReferenceType())
2810 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2811 AlignmentSource::Decl);
2812 else
2813 CapLVal = MakeAddrLValue(I->second, T);
2814 // Mark lvalue as nontemporal if the variable is marked as nontemporal
2815 // in simd context.
2816 if (getLangOpts().OpenMP &&
2817 CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2818 CapLVal.setNontemporal(/*Value=*/true);
2819 return CapLVal;
2821 LValue CapLVal =
2822 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2823 CapturedStmtInfo->getContextValue());
2824 Address LValueAddress = CapLVal.getAddress(*this);
2825 CapLVal = MakeAddrLValue(
2826 Address(LValueAddress.getPointer(), LValueAddress.getElementType(),
2827 getContext().getDeclAlign(VD)),
2828 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2829 CapLVal.getTBAAInfo());
2830 // Mark lvalue as nontemporal if the variable is marked as nontemporal
2831 // in simd context.
2832 if (getLangOpts().OpenMP &&
2833 CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2834 CapLVal.setNontemporal(/*Value=*/true);
2835 return CapLVal;
2838 assert(isa<BlockDecl>(CurCodeDecl));
2839 Address addr = GetAddrOfBlockDecl(VD);
2840 return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2844 // FIXME: We should be able to assert this for FunctionDecls as well!
2845 // FIXME: We should be able to assert this for all DeclRefExprs, not just
2846 // those with a valid source location.
2847 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2848 !E->getLocation().isValid()) &&
2849 "Should not use decl without marking it used!");
2851 if (ND->hasAttr<WeakRefAttr>()) {
2852 const auto *VD = cast<ValueDecl>(ND);
2853 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2854 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2857 if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2858 // Check if this is a global variable.
2859 if (VD->hasLinkage() || VD->isStaticDataMember())
2860 return EmitGlobalVarDeclLValue(*this, E, VD);
2862 Address addr = Address::invalid();
2864 // The variable should generally be present in the local decl map.
2865 auto iter = LocalDeclMap.find(VD);
2866 if (iter != LocalDeclMap.end()) {
2867 addr = iter->second;
2869 // Otherwise, it might be static local we haven't emitted yet for
2870 // some reason; most likely, because it's in an outer function.
2871 } else if (VD->isStaticLocal()) {
2872 llvm::Constant *var = CGM.getOrCreateStaticVarDecl(
2873 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false));
2874 addr = Address(
2875 var, ConvertTypeForMem(VD->getType()), getContext().getDeclAlign(VD));
2877 // No other cases for now.
2878 } else {
2879 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2882 // Handle threadlocal function locals.
2883 if (VD->getTLSKind() != VarDecl::TLS_None)
2884 addr =
2885 addr.withPointer(Builder.CreateThreadLocalAddress(addr.getPointer()));
2887 // Check for OpenMP threadprivate variables.
2888 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2889 VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2890 return EmitThreadPrivateVarDeclLValue(
2891 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2892 E->getExprLoc());
2895 // Drill into block byref variables.
2896 bool isBlockByref = VD->isEscapingByref();
2897 if (isBlockByref) {
2898 addr = emitBlockByrefAddress(addr, VD);
2901 // Drill into reference types.
2902 LValue LV = VD->getType()->isReferenceType() ?
2903 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2904 MakeAddrLValue(addr, T, AlignmentSource::Decl);
2906 bool isLocalStorage = VD->hasLocalStorage();
2908 bool NonGCable = isLocalStorage &&
2909 !VD->getType()->isReferenceType() &&
2910 !isBlockByref;
2911 if (NonGCable) {
2912 LV.getQuals().removeObjCGCAttr();
2913 LV.setNonGC(true);
2916 bool isImpreciseLifetime =
2917 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2918 if (isImpreciseLifetime)
2919 LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2920 setObjCGCLValueClass(getContext(), E, LV);
2921 return LV;
2924 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
2925 LValue LV = EmitFunctionDeclLValue(*this, E, FD);
2927 // Emit debuginfo for the function declaration if the target wants to.
2928 if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) {
2929 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) {
2930 auto *Fn =
2931 cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts());
2932 if (!Fn->getSubprogram())
2933 DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn);
2937 return LV;
2940 // FIXME: While we're emitting a binding from an enclosing scope, all other
2941 // DeclRefExprs we see should be implicitly treated as if they also refer to
2942 // an enclosing scope.
2943 if (const auto *BD = dyn_cast<BindingDecl>(ND)) {
2944 if (E->refersToEnclosingVariableOrCapture()) {
2945 auto *FD = LambdaCaptureFields.lookup(BD);
2946 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2948 return EmitLValue(BD->getBinding());
2951 // We can form DeclRefExprs naming GUID declarations when reconstituting
2952 // non-type template parameters into expressions.
2953 if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
2954 return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
2955 AlignmentSource::Decl);
2957 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND))
2958 return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T,
2959 AlignmentSource::Decl);
2961 llvm_unreachable("Unhandled DeclRefExpr");
2964 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2965 // __extension__ doesn't affect lvalue-ness.
2966 if (E->getOpcode() == UO_Extension)
2967 return EmitLValue(E->getSubExpr());
2969 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2970 switch (E->getOpcode()) {
2971 default: llvm_unreachable("Unknown unary operator lvalue!");
2972 case UO_Deref: {
2973 QualType T = E->getSubExpr()->getType()->getPointeeType();
2974 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2976 LValueBaseInfo BaseInfo;
2977 TBAAAccessInfo TBAAInfo;
2978 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2979 &TBAAInfo);
2980 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2981 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2983 // We should not generate __weak write barrier on indirect reference
2984 // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2985 // But, we continue to generate __strong write barrier on indirect write
2986 // into a pointer to object.
2987 if (getLangOpts().ObjC &&
2988 getLangOpts().getGC() != LangOptions::NonGC &&
2989 LV.isObjCWeak())
2990 LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2991 return LV;
2993 case UO_Real:
2994 case UO_Imag: {
2995 LValue LV = EmitLValue(E->getSubExpr());
2996 assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2998 // __real is valid on scalars. This is a faster way of testing that.
2999 // __imag can only produce an rvalue on scalars.
3000 if (E->getOpcode() == UO_Real &&
3001 !LV.getAddress(*this).getElementType()->isStructTy()) {
3002 assert(E->getSubExpr()->getType()->isArithmeticType());
3003 return LV;
3006 QualType T = ExprTy->castAs<ComplexType>()->getElementType();
3008 Address Component =
3009 (E->getOpcode() == UO_Real
3010 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
3011 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
3012 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
3013 CGM.getTBAAInfoForSubobject(LV, T));
3014 ElemLV.getQuals().addQualifiers(LV.getQuals());
3015 return ElemLV;
3017 case UO_PreInc:
3018 case UO_PreDec: {
3019 LValue LV = EmitLValue(E->getSubExpr());
3020 bool isInc = E->getOpcode() == UO_PreInc;
3022 if (E->getType()->isAnyComplexType())
3023 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
3024 else
3025 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
3026 return LV;
3031 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
3032 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
3033 E->getType(), AlignmentSource::Decl);
3036 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
3037 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
3038 E->getType(), AlignmentSource::Decl);
3041 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
3042 auto SL = E->getFunctionName();
3043 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
3044 StringRef FnName = CurFn->getName();
3045 if (FnName.startswith("\01"))
3046 FnName = FnName.substr(1);
3047 StringRef NameItems[] = {
3048 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
3049 std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
3050 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
3051 std::string Name = std::string(SL->getString());
3052 if (!Name.empty()) {
3053 unsigned Discriminator =
3054 CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
3055 if (Discriminator)
3056 Name += "_" + Twine(Discriminator + 1).str();
3057 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
3058 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3059 } else {
3060 auto C =
3061 CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
3062 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3065 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
3066 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3069 /// Emit a type description suitable for use by a runtime sanitizer library. The
3070 /// format of a type descriptor is
3072 /// \code
3073 /// { i16 TypeKind, i16 TypeInfo }
3074 /// \endcode
3076 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
3077 /// integer, 1 for a floating point value, and -1 for anything else.
3078 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
3079 // Only emit each type's descriptor once.
3080 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
3081 return C;
3083 uint16_t TypeKind = -1;
3084 uint16_t TypeInfo = 0;
3086 if (T->isIntegerType()) {
3087 TypeKind = 0;
3088 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
3089 (T->isSignedIntegerType() ? 1 : 0);
3090 } else if (T->isFloatingType()) {
3091 TypeKind = 1;
3092 TypeInfo = getContext().getTypeSize(T);
3095 // Format the type name as if for a diagnostic, including quotes and
3096 // optionally an 'aka'.
3097 SmallString<32> Buffer;
3098 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
3099 (intptr_t)T.getAsOpaquePtr(),
3100 StringRef(), StringRef(), None, Buffer,
3101 None);
3103 llvm::Constant *Components[] = {
3104 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
3105 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
3107 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
3109 auto *GV = new llvm::GlobalVariable(
3110 CGM.getModule(), Descriptor->getType(),
3111 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
3112 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3113 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
3115 // Remember the descriptor for this type.
3116 CGM.setTypeDescriptorInMap(T, GV);
3118 return GV;
3121 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
3122 llvm::Type *TargetTy = IntPtrTy;
3124 if (V->getType() == TargetTy)
3125 return V;
3127 // Floating-point types which fit into intptr_t are bitcast to integers
3128 // and then passed directly (after zero-extension, if necessary).
3129 if (V->getType()->isFloatingPointTy()) {
3130 unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize();
3131 if (Bits <= TargetTy->getIntegerBitWidth())
3132 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
3133 Bits));
3136 // Integers which fit in intptr_t are zero-extended and passed directly.
3137 if (V->getType()->isIntegerTy() &&
3138 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
3139 return Builder.CreateZExt(V, TargetTy);
3141 // Pointers are passed directly, everything else is passed by address.
3142 if (!V->getType()->isPointerTy()) {
3143 Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
3144 Builder.CreateStore(V, Ptr);
3145 V = Ptr.getPointer();
3147 return Builder.CreatePtrToInt(V, TargetTy);
3150 /// Emit a representation of a SourceLocation for passing to a handler
3151 /// in a sanitizer runtime library. The format for this data is:
3152 /// \code
3153 /// struct SourceLocation {
3154 /// const char *Filename;
3155 /// int32_t Line, Column;
3156 /// };
3157 /// \endcode
3158 /// For an invalid SourceLocation, the Filename pointer is null.
3159 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
3160 llvm::Constant *Filename;
3161 int Line, Column;
3163 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
3164 if (PLoc.isValid()) {
3165 StringRef FilenameString = PLoc.getFilename();
3167 int PathComponentsToStrip =
3168 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
3169 if (PathComponentsToStrip < 0) {
3170 assert(PathComponentsToStrip != INT_MIN);
3171 int PathComponentsToKeep = -PathComponentsToStrip;
3172 auto I = llvm::sys::path::rbegin(FilenameString);
3173 auto E = llvm::sys::path::rend(FilenameString);
3174 while (I != E && --PathComponentsToKeep)
3175 ++I;
3177 FilenameString = FilenameString.substr(I - E);
3178 } else if (PathComponentsToStrip > 0) {
3179 auto I = llvm::sys::path::begin(FilenameString);
3180 auto E = llvm::sys::path::end(FilenameString);
3181 while (I != E && PathComponentsToStrip--)
3182 ++I;
3184 if (I != E)
3185 FilenameString =
3186 FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3187 else
3188 FilenameString = llvm::sys::path::filename(FilenameString);
3191 auto FilenameGV =
3192 CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3193 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3194 cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
3195 Filename = FilenameGV.getPointer();
3196 Line = PLoc.getLine();
3197 Column = PLoc.getColumn();
3198 } else {
3199 Filename = llvm::Constant::getNullValue(Int8PtrTy);
3200 Line = Column = 0;
3203 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3204 Builder.getInt32(Column)};
3206 return llvm::ConstantStruct::getAnon(Data);
3209 namespace {
3210 /// Specify under what conditions this check can be recovered
3211 enum class CheckRecoverableKind {
3212 /// Always terminate program execution if this check fails.
3213 Unrecoverable,
3214 /// Check supports recovering, runtime has both fatal (noreturn) and
3215 /// non-fatal handlers for this check.
3216 Recoverable,
3217 /// Runtime conditionally aborts, always need to support recovery.
3218 AlwaysRecoverable
3222 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3223 assert(Kind.countPopulation() == 1);
3224 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
3225 return CheckRecoverableKind::AlwaysRecoverable;
3226 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3227 return CheckRecoverableKind::Unrecoverable;
3228 else
3229 return CheckRecoverableKind::Recoverable;
3232 namespace {
3233 struct SanitizerHandlerInfo {
3234 char const *const Name;
3235 unsigned Version;
3239 const SanitizerHandlerInfo SanitizerHandlers[] = {
3240 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3241 LIST_SANITIZER_CHECKS
3242 #undef SANITIZER_CHECK
3245 static void emitCheckHandlerCall(CodeGenFunction &CGF,
3246 llvm::FunctionType *FnType,
3247 ArrayRef<llvm::Value *> FnArgs,
3248 SanitizerHandler CheckHandler,
3249 CheckRecoverableKind RecoverKind, bool IsFatal,
3250 llvm::BasicBlock *ContBB) {
3251 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3252 Optional<ApplyDebugLocation> DL;
3253 if (!CGF.Builder.getCurrentDebugLocation()) {
3254 // Ensure that the call has at least an artificial debug location.
3255 DL.emplace(CGF, SourceLocation());
3257 bool NeedsAbortSuffix =
3258 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3259 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3260 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3261 const StringRef CheckName = CheckInfo.Name;
3262 std::string FnName = "__ubsan_handle_" + CheckName.str();
3263 if (CheckInfo.Version && !MinimalRuntime)
3264 FnName += "_v" + llvm::utostr(CheckInfo.Version);
3265 if (MinimalRuntime)
3266 FnName += "_minimal";
3267 if (NeedsAbortSuffix)
3268 FnName += "_abort";
3269 bool MayReturn =
3270 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3272 llvm::AttrBuilder B(CGF.getLLVMContext());
3273 if (!MayReturn) {
3274 B.addAttribute(llvm::Attribute::NoReturn)
3275 .addAttribute(llvm::Attribute::NoUnwind);
3277 B.addUWTableAttr(llvm::UWTableKind::Default);
3279 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3280 FnType, FnName,
3281 llvm::AttributeList::get(CGF.getLLVMContext(),
3282 llvm::AttributeList::FunctionIndex, B),
3283 /*Local=*/true);
3284 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3285 if (!MayReturn) {
3286 HandlerCall->setDoesNotReturn();
3287 CGF.Builder.CreateUnreachable();
3288 } else {
3289 CGF.Builder.CreateBr(ContBB);
3293 void CodeGenFunction::EmitCheck(
3294 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3295 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3296 ArrayRef<llvm::Value *> DynamicArgs) {
3297 assert(IsSanitizerScope);
3298 assert(Checked.size() > 0);
3299 assert(CheckHandler >= 0 &&
3300 size_t(CheckHandler) < std::size(SanitizerHandlers));
3301 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3303 llvm::Value *FatalCond = nullptr;
3304 llvm::Value *RecoverableCond = nullptr;
3305 llvm::Value *TrapCond = nullptr;
3306 for (int i = 0, n = Checked.size(); i < n; ++i) {
3307 llvm::Value *Check = Checked[i].first;
3308 // -fsanitize-trap= overrides -fsanitize-recover=.
3309 llvm::Value *&Cond =
3310 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3311 ? TrapCond
3312 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3313 ? RecoverableCond
3314 : FatalCond;
3315 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3318 if (TrapCond)
3319 EmitTrapCheck(TrapCond, CheckHandler);
3320 if (!FatalCond && !RecoverableCond)
3321 return;
3323 llvm::Value *JointCond;
3324 if (FatalCond && RecoverableCond)
3325 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3326 else
3327 JointCond = FatalCond ? FatalCond : RecoverableCond;
3328 assert(JointCond);
3330 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3331 assert(SanOpts.has(Checked[0].second));
3332 #ifndef NDEBUG
3333 for (int i = 1, n = Checked.size(); i < n; ++i) {
3334 assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3335 "All recoverable kinds in a single check must be same!");
3336 assert(SanOpts.has(Checked[i].second));
3338 #endif
3340 llvm::BasicBlock *Cont = createBasicBlock("cont");
3341 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3342 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3343 // Give hint that we very much don't expect to execute the handler
3344 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3345 llvm::MDBuilder MDHelper(getLLVMContext());
3346 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3347 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3348 EmitBlock(Handlers);
3350 // Handler functions take an i8* pointing to the (handler-specific) static
3351 // information block, followed by a sequence of intptr_t arguments
3352 // representing operand values.
3353 SmallVector<llvm::Value *, 4> Args;
3354 SmallVector<llvm::Type *, 4> ArgTypes;
3355 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3356 Args.reserve(DynamicArgs.size() + 1);
3357 ArgTypes.reserve(DynamicArgs.size() + 1);
3359 // Emit handler arguments and create handler function type.
3360 if (!StaticArgs.empty()) {
3361 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3362 auto *InfoPtr =
3363 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3364 llvm::GlobalVariable::PrivateLinkage, Info);
3365 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3366 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3367 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3368 ArgTypes.push_back(Int8PtrTy);
3371 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3372 Args.push_back(EmitCheckValue(DynamicArgs[i]));
3373 ArgTypes.push_back(IntPtrTy);
3377 llvm::FunctionType *FnType =
3378 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3380 if (!FatalCond || !RecoverableCond) {
3381 // Simple case: we need to generate a single handler call, either
3382 // fatal, or non-fatal.
3383 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3384 (FatalCond != nullptr), Cont);
3385 } else {
3386 // Emit two handler calls: first one for set of unrecoverable checks,
3387 // another one for recoverable.
3388 llvm::BasicBlock *NonFatalHandlerBB =
3389 createBasicBlock("non_fatal." + CheckName);
3390 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3391 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3392 EmitBlock(FatalHandlerBB);
3393 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3394 NonFatalHandlerBB);
3395 EmitBlock(NonFatalHandlerBB);
3396 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3397 Cont);
3400 EmitBlock(Cont);
3403 void CodeGenFunction::EmitCfiSlowPathCheck(
3404 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3405 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3406 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3408 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3409 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3411 llvm::MDBuilder MDHelper(getLLVMContext());
3412 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3413 BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3415 EmitBlock(CheckBB);
3417 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3419 llvm::CallInst *CheckCall;
3420 llvm::FunctionCallee SlowPathFn;
3421 if (WithDiag) {
3422 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3423 auto *InfoPtr =
3424 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3425 llvm::GlobalVariable::PrivateLinkage, Info);
3426 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3427 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3429 SlowPathFn = CGM.getModule().getOrInsertFunction(
3430 "__cfi_slowpath_diag",
3431 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3432 false));
3433 CheckCall = Builder.CreateCall(
3434 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3435 } else {
3436 SlowPathFn = CGM.getModule().getOrInsertFunction(
3437 "__cfi_slowpath",
3438 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3439 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3442 CGM.setDSOLocal(
3443 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3444 CheckCall->setDoesNotThrow();
3446 EmitBlock(Cont);
3449 // Emit a stub for __cfi_check function so that the linker knows about this
3450 // symbol in LTO mode.
3451 void CodeGenFunction::EmitCfiCheckStub() {
3452 llvm::Module *M = &CGM.getModule();
3453 auto &Ctx = M->getContext();
3454 llvm::Function *F = llvm::Function::Create(
3455 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3456 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3457 CGM.setDSOLocal(F);
3458 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3459 // FIXME: consider emitting an intrinsic call like
3460 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3461 // which can be lowered in CrossDSOCFI pass to the actual contents of
3462 // __cfi_check. This would allow inlining of __cfi_check calls.
3463 llvm::CallInst::Create(
3464 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3465 llvm::ReturnInst::Create(Ctx, nullptr, BB);
3468 // This function is basically a switch over the CFI failure kind, which is
3469 // extracted from CFICheckFailData (1st function argument). Each case is either
3470 // llvm.trap or a call to one of the two runtime handlers, based on
3471 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid
3472 // failure kind) traps, but this should really never happen. CFICheckFailData
3473 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3474 // check kind; in this case __cfi_check_fail traps as well.
3475 void CodeGenFunction::EmitCfiCheckFail() {
3476 SanitizerScope SanScope(this);
3477 FunctionArgList Args;
3478 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3479 ImplicitParamDecl::Other);
3480 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3481 ImplicitParamDecl::Other);
3482 Args.push_back(&ArgData);
3483 Args.push_back(&ArgAddr);
3485 const CGFunctionInfo &FI =
3486 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3488 llvm::Function *F = llvm::Function::Create(
3489 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3490 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3492 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false);
3493 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3494 F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3496 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3497 SourceLocation());
3499 // This function is not affected by NoSanitizeList. This function does
3500 // not have a source location, but "src:*" would still apply. Revert any
3501 // changes to SanOpts made in StartFunction.
3502 SanOpts = CGM.getLangOpts().Sanitize;
3504 llvm::Value *Data =
3505 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3506 CGM.getContext().VoidPtrTy, ArgData.getLocation());
3507 llvm::Value *Addr =
3508 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3509 CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3511 // Data == nullptr means the calling module has trap behaviour for this check.
3512 llvm::Value *DataIsNotNullPtr =
3513 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3514 EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail);
3516 llvm::StructType *SourceLocationTy =
3517 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3518 llvm::StructType *CfiCheckFailDataTy =
3519 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3521 llvm::Value *V = Builder.CreateConstGEP2_32(
3522 CfiCheckFailDataTy,
3523 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3526 Address CheckKindAddr(V, Int8Ty, getIntAlign());
3527 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3529 llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3530 CGM.getLLVMContext(),
3531 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3532 llvm::Value *ValidVtable = Builder.CreateZExt(
3533 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3534 {Addr, AllVtables}),
3535 IntPtrTy);
3537 const std::pair<int, SanitizerMask> CheckKinds[] = {
3538 {CFITCK_VCall, SanitizerKind::CFIVCall},
3539 {CFITCK_NVCall, SanitizerKind::CFINVCall},
3540 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3541 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3542 {CFITCK_ICall, SanitizerKind::CFIICall}};
3544 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3545 for (auto CheckKindMaskPair : CheckKinds) {
3546 int Kind = CheckKindMaskPair.first;
3547 SanitizerMask Mask = CheckKindMaskPair.second;
3548 llvm::Value *Cond =
3549 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3550 if (CGM.getLangOpts().Sanitize.has(Mask))
3551 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3552 {Data, Addr, ValidVtable});
3553 else
3554 EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail);
3557 FinishFunction();
3558 // The only reference to this function will be created during LTO link.
3559 // Make sure it survives until then.
3560 CGM.addUsedGlobal(F);
3563 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3564 if (SanOpts.has(SanitizerKind::Unreachable)) {
3565 SanitizerScope SanScope(this);
3566 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3567 SanitizerKind::Unreachable),
3568 SanitizerHandler::BuiltinUnreachable,
3569 EmitCheckSourceLocation(Loc), None);
3571 Builder.CreateUnreachable();
3574 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked,
3575 SanitizerHandler CheckHandlerID) {
3576 llvm::BasicBlock *Cont = createBasicBlock("cont");
3578 // If we're optimizing, collapse all calls to trap down to just one per
3579 // check-type per function to save on code size.
3580 if (TrapBBs.size() <= CheckHandlerID)
3581 TrapBBs.resize(CheckHandlerID + 1);
3582 llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID];
3584 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3585 TrapBB = createBasicBlock("trap");
3586 Builder.CreateCondBr(Checked, Cont, TrapBB);
3587 EmitBlock(TrapBB);
3589 llvm::CallInst *TrapCall =
3590 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap),
3591 llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID));
3593 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3594 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3595 CGM.getCodeGenOpts().TrapFuncName);
3596 TrapCall->addFnAttr(A);
3598 TrapCall->setDoesNotReturn();
3599 TrapCall->setDoesNotThrow();
3600 Builder.CreateUnreachable();
3601 } else {
3602 auto Call = TrapBB->begin();
3603 assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB");
3605 Call->applyMergedLocation(Call->getDebugLoc(),
3606 Builder.getCurrentDebugLocation());
3607 Builder.CreateCondBr(Checked, Cont, TrapBB);
3610 EmitBlock(Cont);
3613 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3614 llvm::CallInst *TrapCall =
3615 Builder.CreateCall(CGM.getIntrinsic(IntrID));
3617 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3618 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3619 CGM.getCodeGenOpts().TrapFuncName);
3620 TrapCall->addFnAttr(A);
3623 return TrapCall;
3626 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3627 LValueBaseInfo *BaseInfo,
3628 TBAAAccessInfo *TBAAInfo) {
3629 assert(E->getType()->isArrayType() &&
3630 "Array to pointer decay must have array source type!");
3632 // Expressions of array type can't be bitfields or vector elements.
3633 LValue LV = EmitLValue(E);
3634 Address Addr = LV.getAddress(*this);
3636 // If the array type was an incomplete type, we need to make sure
3637 // the decay ends up being the right type.
3638 llvm::Type *NewTy = ConvertType(E->getType());
3639 Addr = Builder.CreateElementBitCast(Addr, NewTy);
3641 // Note that VLA pointers are always decayed, so we don't need to do
3642 // anything here.
3643 if (!E->getType()->isVariableArrayType()) {
3644 assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3645 "Expected pointer to array");
3646 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3649 // The result of this decay conversion points to an array element within the
3650 // base lvalue. However, since TBAA currently does not support representing
3651 // accesses to elements of member arrays, we conservatively represent accesses
3652 // to the pointee object as if it had no any base lvalue specified.
3653 // TODO: Support TBAA for member arrays.
3654 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3655 if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3656 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3658 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3661 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3662 /// array to pointer, return the array subexpression.
3663 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3664 // If this isn't just an array->pointer decay, bail out.
3665 const auto *CE = dyn_cast<CastExpr>(E);
3666 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3667 return nullptr;
3669 // If this is a decay from variable width array, bail out.
3670 const Expr *SubExpr = CE->getSubExpr();
3671 if (SubExpr->getType()->isVariableArrayType())
3672 return nullptr;
3674 return SubExpr;
3677 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3678 llvm::Type *elemType,
3679 llvm::Value *ptr,
3680 ArrayRef<llvm::Value*> indices,
3681 bool inbounds,
3682 bool signedIndices,
3683 SourceLocation loc,
3684 const llvm::Twine &name = "arrayidx") {
3685 if (inbounds) {
3686 return CGF.EmitCheckedInBoundsGEP(elemType, ptr, indices, signedIndices,
3687 CodeGenFunction::NotSubtraction, loc,
3688 name);
3689 } else {
3690 return CGF.Builder.CreateGEP(elemType, ptr, indices, name);
3694 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3695 llvm::Value *idx,
3696 CharUnits eltSize) {
3697 // If we have a constant index, we can use the exact offset of the
3698 // element we're accessing.
3699 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3700 CharUnits offset = constantIdx->getZExtValue() * eltSize;
3701 return arrayAlign.alignmentAtOffset(offset);
3703 // Otherwise, use the worst-case alignment for any element.
3704 } else {
3705 return arrayAlign.alignmentOfArrayElement(eltSize);
3709 static QualType getFixedSizeElementType(const ASTContext &ctx,
3710 const VariableArrayType *vla) {
3711 QualType eltType;
3712 do {
3713 eltType = vla->getElementType();
3714 } while ((vla = ctx.getAsVariableArrayType(eltType)));
3715 return eltType;
3718 /// Given an array base, check whether its member access belongs to a record
3719 /// with preserve_access_index attribute or not.
3720 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3721 if (!ArrayBase || !CGF.getDebugInfo())
3722 return false;
3724 // Only support base as either a MemberExpr or DeclRefExpr.
3725 // DeclRefExpr to cover cases like:
3726 // struct s { int a; int b[10]; };
3727 // struct s *p;
3728 // p[1].a
3729 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3730 // p->b[5] is a MemberExpr example.
3731 const Expr *E = ArrayBase->IgnoreImpCasts();
3732 if (const auto *ME = dyn_cast<MemberExpr>(E))
3733 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3735 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3736 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3737 if (!VarDef)
3738 return false;
3740 const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3741 if (!PtrT)
3742 return false;
3744 const auto *PointeeT = PtrT->getPointeeType()
3745 ->getUnqualifiedDesugaredType();
3746 if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3747 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3748 return false;
3751 return false;
3754 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3755 ArrayRef<llvm::Value *> indices,
3756 QualType eltType, bool inbounds,
3757 bool signedIndices, SourceLocation loc,
3758 QualType *arrayType = nullptr,
3759 const Expr *Base = nullptr,
3760 const llvm::Twine &name = "arrayidx") {
3761 // All the indices except that last must be zero.
3762 #ifndef NDEBUG
3763 for (auto *idx : indices.drop_back())
3764 assert(isa<llvm::ConstantInt>(idx) &&
3765 cast<llvm::ConstantInt>(idx)->isZero());
3766 #endif
3768 // Determine the element size of the statically-sized base. This is
3769 // the thing that the indices are expressed in terms of.
3770 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3771 eltType = getFixedSizeElementType(CGF.getContext(), vla);
3774 // We can use that to compute the best alignment of the element.
3775 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3776 CharUnits eltAlign =
3777 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3779 llvm::Value *eltPtr;
3780 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3781 if (!LastIndex ||
3782 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3783 eltPtr = emitArraySubscriptGEP(
3784 CGF, addr.getElementType(), addr.getPointer(), indices, inbounds,
3785 signedIndices, loc, name);
3786 } else {
3787 // Remember the original array subscript for bpf target
3788 unsigned idx = LastIndex->getZExtValue();
3789 llvm::DIType *DbgInfo = nullptr;
3790 if (arrayType)
3791 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3792 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3793 addr.getPointer(),
3794 indices.size() - 1,
3795 idx, DbgInfo);
3798 return Address(eltPtr, CGF.ConvertTypeForMem(eltType), eltAlign);
3801 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3802 bool Accessed) {
3803 // The index must always be an integer, which is not an aggregate. Emit it
3804 // in lexical order (this complexity is, sadly, required by C++17).
3805 llvm::Value *IdxPre =
3806 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3807 bool SignedIndices = false;
3808 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3809 auto *Idx = IdxPre;
3810 if (E->getLHS() != E->getIdx()) {
3811 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3812 Idx = EmitScalarExpr(E->getIdx());
3815 QualType IdxTy = E->getIdx()->getType();
3816 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3817 SignedIndices |= IdxSigned;
3819 if (SanOpts.has(SanitizerKind::ArrayBounds))
3820 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3822 // Extend or truncate the index type to 32 or 64-bits.
3823 if (Promote && Idx->getType() != IntPtrTy)
3824 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3826 return Idx;
3828 IdxPre = nullptr;
3830 // If the base is a vector type, then we are forming a vector element lvalue
3831 // with this subscript.
3832 if (E->getBase()->getType()->isVectorType() &&
3833 !isa<ExtVectorElementExpr>(E->getBase())) {
3834 // Emit the vector as an lvalue to get its address.
3835 LValue LHS = EmitLValue(E->getBase());
3836 auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3837 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3838 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3839 E->getBase()->getType(), LHS.getBaseInfo(),
3840 TBAAAccessInfo());
3843 // All the other cases basically behave like simple offsetting.
3845 // Handle the extvector case we ignored above.
3846 if (isa<ExtVectorElementExpr>(E->getBase())) {
3847 LValue LV = EmitLValue(E->getBase());
3848 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3849 Address Addr = EmitExtVectorElementLValue(LV);
3851 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3852 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3853 SignedIndices, E->getExprLoc());
3854 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3855 CGM.getTBAAInfoForSubobject(LV, EltType));
3858 LValueBaseInfo EltBaseInfo;
3859 TBAAAccessInfo EltTBAAInfo;
3860 Address Addr = Address::invalid();
3861 if (const VariableArrayType *vla =
3862 getContext().getAsVariableArrayType(E->getType())) {
3863 // The base must be a pointer, which is not an aggregate. Emit
3864 // it. It needs to be emitted first in case it's what captures
3865 // the VLA bounds.
3866 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3867 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3869 // The element count here is the total number of non-VLA elements.
3870 llvm::Value *numElements = getVLASize(vla).NumElts;
3872 // Effectively, the multiply by the VLA size is part of the GEP.
3873 // GEP indexes are signed, and scaling an index isn't permitted to
3874 // signed-overflow, so we use the same semantics for our explicit
3875 // multiply. We suppress this if overflow is not undefined behavior.
3876 if (getLangOpts().isSignedOverflowDefined()) {
3877 Idx = Builder.CreateMul(Idx, numElements);
3878 } else {
3879 Idx = Builder.CreateNSWMul(Idx, numElements);
3882 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3883 !getLangOpts().isSignedOverflowDefined(),
3884 SignedIndices, E->getExprLoc());
3886 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3887 // Indexing over an interface, as in "NSString *P; P[4];"
3889 // Emit the base pointer.
3890 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3891 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3893 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3894 llvm::Value *InterfaceSizeVal =
3895 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3897 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3899 // We don't necessarily build correct LLVM struct types for ObjC
3900 // interfaces, so we can't rely on GEP to do this scaling
3901 // correctly, so we need to cast to i8*. FIXME: is this actually
3902 // true? A lot of other things in the fragile ABI would break...
3903 llvm::Type *OrigBaseElemTy = Addr.getElementType();
3904 Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3906 // Do the GEP.
3907 CharUnits EltAlign =
3908 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3909 llvm::Value *EltPtr =
3910 emitArraySubscriptGEP(*this, Addr.getElementType(), Addr.getPointer(),
3911 ScaledIdx, false, SignedIndices, E->getExprLoc());
3912 Addr = Address(EltPtr, Addr.getElementType(), EltAlign);
3914 // Cast back.
3915 Addr = Builder.CreateElementBitCast(Addr, OrigBaseElemTy);
3916 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3917 // If this is A[i] where A is an array, the frontend will have decayed the
3918 // base to be a ArrayToPointerDecay implicit cast. While correct, it is
3919 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3920 // "gep x, i" here. Emit one "gep A, 0, i".
3921 assert(Array->getType()->isArrayType() &&
3922 "Array to pointer decay must have array source type!");
3923 LValue ArrayLV;
3924 // For simple multidimensional array indexing, set the 'accessed' flag for
3925 // better bounds-checking of the base expression.
3926 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3927 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3928 else
3929 ArrayLV = EmitLValue(Array);
3930 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3932 // Propagate the alignment from the array itself to the result.
3933 QualType arrayType = Array->getType();
3934 Addr = emitArraySubscriptGEP(
3935 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3936 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3937 E->getExprLoc(), &arrayType, E->getBase());
3938 EltBaseInfo = ArrayLV.getBaseInfo();
3939 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3940 } else {
3941 // The base must be a pointer; emit it with an estimate of its alignment.
3942 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3943 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3944 QualType ptrType = E->getBase()->getType();
3945 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3946 !getLangOpts().isSignedOverflowDefined(),
3947 SignedIndices, E->getExprLoc(), &ptrType,
3948 E->getBase());
3951 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3953 if (getLangOpts().ObjC &&
3954 getLangOpts().getGC() != LangOptions::NonGC) {
3955 LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3956 setObjCGCLValueClass(getContext(), E, LV);
3958 return LV;
3961 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
3962 assert(
3963 !E->isIncomplete() &&
3964 "incomplete matrix subscript expressions should be rejected during Sema");
3965 LValue Base = EmitLValue(E->getBase());
3966 llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
3967 llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
3968 llvm::Value *NumRows = Builder.getIntN(
3969 RowIdx->getType()->getScalarSizeInBits(),
3970 E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
3971 llvm::Value *FinalIdx =
3972 Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
3973 return LValue::MakeMatrixElt(
3974 MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx,
3975 E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
3978 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3979 LValueBaseInfo &BaseInfo,
3980 TBAAAccessInfo &TBAAInfo,
3981 QualType BaseTy, QualType ElTy,
3982 bool IsLowerBound) {
3983 LValue BaseLVal;
3984 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3985 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3986 if (BaseTy->isArrayType()) {
3987 Address Addr = BaseLVal.getAddress(CGF);
3988 BaseInfo = BaseLVal.getBaseInfo();
3990 // If the array type was an incomplete type, we need to make sure
3991 // the decay ends up being the right type.
3992 llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3993 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3995 // Note that VLA pointers are always decayed, so we don't need to do
3996 // anything here.
3997 if (!BaseTy->isVariableArrayType()) {
3998 assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3999 "Expected pointer to array");
4000 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
4003 return CGF.Builder.CreateElementBitCast(Addr,
4004 CGF.ConvertTypeForMem(ElTy));
4006 LValueBaseInfo TypeBaseInfo;
4007 TBAAAccessInfo TypeTBAAInfo;
4008 CharUnits Align =
4009 CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
4010 BaseInfo.mergeForCast(TypeBaseInfo);
4011 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
4012 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)),
4013 CGF.ConvertTypeForMem(ElTy), Align);
4015 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
4018 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
4019 bool IsLowerBound) {
4020 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
4021 QualType ResultExprTy;
4022 if (auto *AT = getContext().getAsArrayType(BaseTy))
4023 ResultExprTy = AT->getElementType();
4024 else
4025 ResultExprTy = BaseTy->getPointeeType();
4026 llvm::Value *Idx = nullptr;
4027 if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
4028 // Requesting lower bound or upper bound, but without provided length and
4029 // without ':' symbol for the default length -> length = 1.
4030 // Idx = LowerBound ?: 0;
4031 if (auto *LowerBound = E->getLowerBound()) {
4032 Idx = Builder.CreateIntCast(
4033 EmitScalarExpr(LowerBound), IntPtrTy,
4034 LowerBound->getType()->hasSignedIntegerRepresentation());
4035 } else
4036 Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
4037 } else {
4038 // Try to emit length or lower bound as constant. If this is possible, 1
4039 // is subtracted from constant length or lower bound. Otherwise, emit LLVM
4040 // IR (LB + Len) - 1.
4041 auto &C = CGM.getContext();
4042 auto *Length = E->getLength();
4043 llvm::APSInt ConstLength;
4044 if (Length) {
4045 // Idx = LowerBound + Length - 1;
4046 if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) {
4047 ConstLength = CL->zextOrTrunc(PointerWidthInBits);
4048 Length = nullptr;
4050 auto *LowerBound = E->getLowerBound();
4051 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
4052 if (LowerBound) {
4053 if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) {
4054 ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits);
4055 LowerBound = nullptr;
4058 if (!Length)
4059 --ConstLength;
4060 else if (!LowerBound)
4061 --ConstLowerBound;
4063 if (Length || LowerBound) {
4064 auto *LowerBoundVal =
4065 LowerBound
4066 ? Builder.CreateIntCast(
4067 EmitScalarExpr(LowerBound), IntPtrTy,
4068 LowerBound->getType()->hasSignedIntegerRepresentation())
4069 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
4070 auto *LengthVal =
4071 Length
4072 ? Builder.CreateIntCast(
4073 EmitScalarExpr(Length), IntPtrTy,
4074 Length->getType()->hasSignedIntegerRepresentation())
4075 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
4076 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
4077 /*HasNUW=*/false,
4078 !getLangOpts().isSignedOverflowDefined());
4079 if (Length && LowerBound) {
4080 Idx = Builder.CreateSub(
4081 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
4082 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4084 } else
4085 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
4086 } else {
4087 // Idx = ArraySize - 1;
4088 QualType ArrayTy = BaseTy->isPointerType()
4089 ? E->getBase()->IgnoreParenImpCasts()->getType()
4090 : BaseTy;
4091 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
4092 Length = VAT->getSizeExpr();
4093 if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) {
4094 ConstLength = *L;
4095 Length = nullptr;
4097 } else {
4098 auto *CAT = C.getAsConstantArrayType(ArrayTy);
4099 ConstLength = CAT->getSize();
4101 if (Length) {
4102 auto *LengthVal = Builder.CreateIntCast(
4103 EmitScalarExpr(Length), IntPtrTy,
4104 Length->getType()->hasSignedIntegerRepresentation());
4105 Idx = Builder.CreateSub(
4106 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
4107 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4108 } else {
4109 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
4110 --ConstLength;
4111 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
4115 assert(Idx);
4117 Address EltPtr = Address::invalid();
4118 LValueBaseInfo BaseInfo;
4119 TBAAAccessInfo TBAAInfo;
4120 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
4121 // The base must be a pointer, which is not an aggregate. Emit
4122 // it. It needs to be emitted first in case it's what captures
4123 // the VLA bounds.
4124 Address Base =
4125 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
4126 BaseTy, VLA->getElementType(), IsLowerBound);
4127 // The element count here is the total number of non-VLA elements.
4128 llvm::Value *NumElements = getVLASize(VLA).NumElts;
4130 // Effectively, the multiply by the VLA size is part of the GEP.
4131 // GEP indexes are signed, and scaling an index isn't permitted to
4132 // signed-overflow, so we use the same semantics for our explicit
4133 // multiply. We suppress this if overflow is not undefined behavior.
4134 if (getLangOpts().isSignedOverflowDefined())
4135 Idx = Builder.CreateMul(Idx, NumElements);
4136 else
4137 Idx = Builder.CreateNSWMul(Idx, NumElements);
4138 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
4139 !getLangOpts().isSignedOverflowDefined(),
4140 /*signedIndices=*/false, E->getExprLoc());
4141 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
4142 // If this is A[i] where A is an array, the frontend will have decayed the
4143 // base to be a ArrayToPointerDecay implicit cast. While correct, it is
4144 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
4145 // "gep x, i" here. Emit one "gep A, 0, i".
4146 assert(Array->getType()->isArrayType() &&
4147 "Array to pointer decay must have array source type!");
4148 LValue ArrayLV;
4149 // For simple multidimensional array indexing, set the 'accessed' flag for
4150 // better bounds-checking of the base expression.
4151 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
4152 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
4153 else
4154 ArrayLV = EmitLValue(Array);
4156 // Propagate the alignment from the array itself to the result.
4157 EltPtr = emitArraySubscriptGEP(
4158 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
4159 ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
4160 /*signedIndices=*/false, E->getExprLoc());
4161 BaseInfo = ArrayLV.getBaseInfo();
4162 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
4163 } else {
4164 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
4165 TBAAInfo, BaseTy, ResultExprTy,
4166 IsLowerBound);
4167 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
4168 !getLangOpts().isSignedOverflowDefined(),
4169 /*signedIndices=*/false, E->getExprLoc());
4172 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
4175 LValue CodeGenFunction::
4176 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
4177 // Emit the base vector as an l-value.
4178 LValue Base;
4180 // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4181 if (E->isArrow()) {
4182 // If it is a pointer to a vector, emit the address and form an lvalue with
4183 // it.
4184 LValueBaseInfo BaseInfo;
4185 TBAAAccessInfo TBAAInfo;
4186 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
4187 const auto *PT = E->getBase()->getType()->castAs<PointerType>();
4188 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
4189 Base.getQuals().removeObjCGCAttr();
4190 } else if (E->getBase()->isGLValue()) {
4191 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4192 // emit the base as an lvalue.
4193 assert(E->getBase()->getType()->isVectorType());
4194 Base = EmitLValue(E->getBase());
4195 } else {
4196 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4197 assert(E->getBase()->getType()->isVectorType() &&
4198 "Result must be a vector");
4199 llvm::Value *Vec = EmitScalarExpr(E->getBase());
4201 // Store the vector to memory (because LValue wants an address).
4202 Address VecMem = CreateMemTemp(E->getBase()->getType());
4203 Builder.CreateStore(Vec, VecMem);
4204 Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
4205 AlignmentSource::Decl);
4208 QualType type =
4209 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
4211 // Encode the element access list into a vector of unsigned indices.
4212 SmallVector<uint32_t, 4> Indices;
4213 E->getEncodedElementAccess(Indices);
4215 if (Base.isSimple()) {
4216 llvm::Constant *CV =
4217 llvm::ConstantDataVector::get(getLLVMContext(), Indices);
4218 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
4219 Base.getBaseInfo(), TBAAAccessInfo());
4221 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4223 llvm::Constant *BaseElts = Base.getExtVectorElts();
4224 SmallVector<llvm::Constant *, 4> CElts;
4226 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4227 CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4228 llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4229 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4230 Base.getBaseInfo(), TBAAAccessInfo());
4233 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4234 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4235 EmitIgnoredExpr(E->getBase());
4236 return EmitDeclRefLValue(DRE);
4239 Expr *BaseExpr = E->getBase();
4240 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
4241 LValue BaseLV;
4242 if (E->isArrow()) {
4243 LValueBaseInfo BaseInfo;
4244 TBAAAccessInfo TBAAInfo;
4245 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4246 QualType PtrTy = BaseExpr->getType()->getPointeeType();
4247 SanitizerSet SkippedChecks;
4248 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4249 if (IsBaseCXXThis)
4250 SkippedChecks.set(SanitizerKind::Alignment, true);
4251 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4252 SkippedChecks.set(SanitizerKind::Null, true);
4253 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4254 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4255 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4256 } else
4257 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4259 NamedDecl *ND = E->getMemberDecl();
4260 if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4261 LValue LV = EmitLValueForField(BaseLV, Field);
4262 setObjCGCLValueClass(getContext(), E, LV);
4263 if (getLangOpts().OpenMP) {
4264 // If the member was explicitly marked as nontemporal, mark it as
4265 // nontemporal. If the base lvalue is marked as nontemporal, mark access
4266 // to children as nontemporal too.
4267 if ((IsWrappedCXXThis(BaseExpr) &&
4268 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4269 BaseLV.isNontemporal())
4270 LV.setNontemporal(/*Value=*/true);
4272 return LV;
4275 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4276 return EmitFunctionDeclLValue(*this, E, FD);
4278 llvm_unreachable("Unhandled member declaration!");
4281 /// Given that we are currently emitting a lambda, emit an l-value for
4282 /// one of its members.
4283 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4284 if (CurCodeDecl) {
4285 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
4286 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
4288 QualType LambdaTagType =
4289 getContext().getTagDeclType(Field->getParent());
4290 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
4291 return EmitLValueForField(LambdaLV, Field);
4294 /// Get the field index in the debug info. The debug info structure/union
4295 /// will ignore the unnamed bitfields.
4296 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4297 unsigned FieldIndex) {
4298 unsigned I = 0, Skipped = 0;
4300 for (auto *F : Rec->getDefinition()->fields()) {
4301 if (I == FieldIndex)
4302 break;
4303 if (F->isUnnamedBitfield())
4304 Skipped++;
4305 I++;
4308 return FieldIndex - Skipped;
4311 /// Get the address of a zero-sized field within a record. The resulting
4312 /// address doesn't necessarily have the right type.
4313 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4314 const FieldDecl *Field) {
4315 CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4316 CGF.getContext().getFieldOffset(Field));
4317 if (Offset.isZero())
4318 return Base;
4319 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4320 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4323 /// Drill down to the storage of a field without walking into
4324 /// reference types.
4326 /// The resulting address doesn't necessarily have the right type.
4327 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4328 const FieldDecl *field) {
4329 if (field->isZeroSize(CGF.getContext()))
4330 return emitAddrOfZeroSizeField(CGF, base, field);
4332 const RecordDecl *rec = field->getParent();
4334 unsigned idx =
4335 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4337 return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4340 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4341 Address addr, const FieldDecl *field) {
4342 const RecordDecl *rec = field->getParent();
4343 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4344 base.getType(), rec->getLocation());
4346 unsigned idx =
4347 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4349 return CGF.Builder.CreatePreserveStructAccessIndex(
4350 addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4353 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4354 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4355 if (!RD)
4356 return false;
4358 if (RD->isDynamicClass())
4359 return true;
4361 for (const auto &Base : RD->bases())
4362 if (hasAnyVptr(Base.getType(), Context))
4363 return true;
4365 for (const FieldDecl *Field : RD->fields())
4366 if (hasAnyVptr(Field->getType(), Context))
4367 return true;
4369 return false;
4372 LValue CodeGenFunction::EmitLValueForField(LValue base,
4373 const FieldDecl *field) {
4374 LValueBaseInfo BaseInfo = base.getBaseInfo();
4376 if (field->isBitField()) {
4377 const CGRecordLayout &RL =
4378 CGM.getTypes().getCGRecordLayout(field->getParent());
4379 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4380 const bool UseVolatile = isAAPCS(CGM.getTarget()) &&
4381 CGM.getCodeGenOpts().AAPCSBitfieldWidth &&
4382 Info.VolatileStorageSize != 0 &&
4383 field->getType()
4384 .withCVRQualifiers(base.getVRQualifiers())
4385 .isVolatileQualified();
4386 Address Addr = base.getAddress(*this);
4387 unsigned Idx = RL.getLLVMFieldNo(field);
4388 const RecordDecl *rec = field->getParent();
4389 if (!UseVolatile) {
4390 if (!IsInPreservedAIRegion &&
4391 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4392 if (Idx != 0)
4393 // For structs, we GEP to the field that the record layout suggests.
4394 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4395 } else {
4396 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4397 getContext().getRecordType(rec), rec->getLocation());
4398 Addr = Builder.CreatePreserveStructAccessIndex(
4399 Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()),
4400 DbgInfo);
4403 const unsigned SS =
4404 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
4405 // Get the access type.
4406 llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS);
4407 if (Addr.getElementType() != FieldIntTy)
4408 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4409 if (UseVolatile) {
4410 const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity();
4411 if (VolatileOffset)
4412 Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset);
4415 QualType fieldType =
4416 field->getType().withCVRQualifiers(base.getVRQualifiers());
4417 // TODO: Support TBAA for bit fields.
4418 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4419 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4420 TBAAAccessInfo());
4423 // Fields of may-alias structures are may-alias themselves.
4424 // FIXME: this should get propagated down through anonymous structs
4425 // and unions.
4426 QualType FieldType = field->getType();
4427 const RecordDecl *rec = field->getParent();
4428 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4429 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4430 TBAAAccessInfo FieldTBAAInfo;
4431 if (base.getTBAAInfo().isMayAlias() ||
4432 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4433 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4434 } else if (rec->isUnion()) {
4435 // TODO: Support TBAA for unions.
4436 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4437 } else {
4438 // If no base type been assigned for the base access, then try to generate
4439 // one for this base lvalue.
4440 FieldTBAAInfo = base.getTBAAInfo();
4441 if (!FieldTBAAInfo.BaseType) {
4442 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4443 assert(!FieldTBAAInfo.Offset &&
4444 "Nonzero offset for an access with no base type!");
4447 // Adjust offset to be relative to the base type.
4448 const ASTRecordLayout &Layout =
4449 getContext().getASTRecordLayout(field->getParent());
4450 unsigned CharWidth = getContext().getCharWidth();
4451 if (FieldTBAAInfo.BaseType)
4452 FieldTBAAInfo.Offset +=
4453 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4455 // Update the final access type and size.
4456 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4457 FieldTBAAInfo.Size =
4458 getContext().getTypeSizeInChars(FieldType).getQuantity();
4461 Address addr = base.getAddress(*this);
4462 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4463 if (CGM.getCodeGenOpts().StrictVTablePointers &&
4464 ClassDef->isDynamicClass()) {
4465 // Getting to any field of dynamic object requires stripping dynamic
4466 // information provided by invariant.group. This is because accessing
4467 // fields may leak the real address of dynamic object, which could result
4468 // in miscompilation when leaked pointer would be compared.
4469 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4470 addr = Address(stripped, addr.getElementType(), addr.getAlignment());
4474 unsigned RecordCVR = base.getVRQualifiers();
4475 if (rec->isUnion()) {
4476 // For unions, there is no pointer adjustment.
4477 if (CGM.getCodeGenOpts().StrictVTablePointers &&
4478 hasAnyVptr(FieldType, getContext()))
4479 // Because unions can easily skip invariant.barriers, we need to add
4480 // a barrier every time CXXRecord field with vptr is referenced.
4481 addr = Builder.CreateLaunderInvariantGroup(addr);
4483 if (IsInPreservedAIRegion ||
4484 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4485 // Remember the original union field index
4486 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4487 rec->getLocation());
4488 addr = Address(
4489 Builder.CreatePreserveUnionAccessIndex(
4490 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4491 addr.getElementType(), addr.getAlignment());
4494 if (FieldType->isReferenceType())
4495 addr = Builder.CreateElementBitCast(
4496 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4497 } else {
4498 if (!IsInPreservedAIRegion &&
4499 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4500 // For structs, we GEP to the field that the record layout suggests.
4501 addr = emitAddrOfFieldStorage(*this, addr, field);
4502 else
4503 // Remember the original struct field index
4504 addr = emitPreserveStructAccess(*this, base, addr, field);
4507 // If this is a reference field, load the reference right now.
4508 if (FieldType->isReferenceType()) {
4509 LValue RefLVal =
4510 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4511 if (RecordCVR & Qualifiers::Volatile)
4512 RefLVal.getQuals().addVolatile();
4513 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4515 // Qualifiers on the struct don't apply to the referencee.
4516 RecordCVR = 0;
4517 FieldType = FieldType->getPointeeType();
4520 // Make sure that the address is pointing to the right type. This is critical
4521 // for both unions and structs. A union needs a bitcast, a struct element
4522 // will need a bitcast if the LLVM type laid out doesn't match the desired
4523 // type.
4524 addr = Builder.CreateElementBitCast(
4525 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4527 if (field->hasAttr<AnnotateAttr>())
4528 addr = EmitFieldAnnotations(field, addr);
4530 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4531 LV.getQuals().addCVRQualifiers(RecordCVR);
4533 // __weak attribute on a field is ignored.
4534 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4535 LV.getQuals().removeObjCGCAttr();
4537 return LV;
4540 LValue
4541 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4542 const FieldDecl *Field) {
4543 QualType FieldType = Field->getType();
4545 if (!FieldType->isReferenceType())
4546 return EmitLValueForField(Base, Field);
4548 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4550 // Make sure that the address is pointing to the right type.
4551 llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4552 V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4554 // TODO: Generate TBAA information that describes this access as a structure
4555 // member access and not just an access to an object of the field's type. This
4556 // should be similar to what we do in EmitLValueForField().
4557 LValueBaseInfo BaseInfo = Base.getBaseInfo();
4558 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4559 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4560 return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4561 CGM.getTBAAInfoForSubobject(Base, FieldType));
4564 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4565 if (E->isFileScope()) {
4566 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4567 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4569 if (E->getType()->isVariablyModifiedType())
4570 // make sure to emit the VLA size.
4571 EmitVariablyModifiedType(E->getType());
4573 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4574 const Expr *InitExpr = E->getInitializer();
4575 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4577 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4578 /*Init*/ true);
4580 // Block-scope compound literals are destroyed at the end of the enclosing
4581 // scope in C.
4582 if (!getLangOpts().CPlusPlus)
4583 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4584 pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4585 E->getType(), getDestroyer(DtorKind),
4586 DtorKind & EHCleanup);
4588 return Result;
4591 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4592 if (!E->isGLValue())
4593 // Initializing an aggregate temporary in C++11: T{...}.
4594 return EmitAggExprToLValue(E);
4596 // An lvalue initializer list must be initializing a reference.
4597 assert(E->isTransparent() && "non-transparent glvalue init list");
4598 return EmitLValue(E->getInit(0));
4601 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4602 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4603 /// LValue is returned and the current block has been terminated.
4604 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4605 const Expr *Operand) {
4606 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4607 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4608 return None;
4611 return CGF.EmitLValue(Operand);
4614 namespace {
4615 // Handle the case where the condition is a constant evaluatable simple integer,
4616 // which means we don't have to separately handle the true/false blocks.
4617 llvm::Optional<LValue> HandleConditionalOperatorLValueSimpleCase(
4618 CodeGenFunction &CGF, const AbstractConditionalOperator *E) {
4619 const Expr *condExpr = E->getCond();
4620 bool CondExprBool;
4621 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4622 const Expr *Live = E->getTrueExpr(), *Dead = E->getFalseExpr();
4623 if (!CondExprBool)
4624 std::swap(Live, Dead);
4626 if (!CGF.ContainsLabel(Dead)) {
4627 // If the true case is live, we need to track its region.
4628 if (CondExprBool)
4629 CGF.incrementProfileCounter(E);
4630 // If a throw expression we emit it and return an undefined lvalue
4631 // because it can't be used.
4632 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Live->IgnoreParens())) {
4633 CGF.EmitCXXThrowExpr(ThrowExpr);
4634 llvm::Type *ElemTy = CGF.ConvertType(Dead->getType());
4635 llvm::Type *Ty = llvm::PointerType::getUnqual(ElemTy);
4636 return CGF.MakeAddrLValue(
4637 Address(llvm::UndefValue::get(Ty), ElemTy, CharUnits::One()),
4638 Dead->getType());
4640 return CGF.EmitLValue(Live);
4643 return llvm::None;
4645 struct ConditionalInfo {
4646 llvm::BasicBlock *lhsBlock, *rhsBlock;
4647 Optional<LValue> LHS, RHS;
4650 // Create and generate the 3 blocks for a conditional operator.
4651 // Leaves the 'current block' in the continuation basic block.
4652 template<typename FuncTy>
4653 ConditionalInfo EmitConditionalBlocks(CodeGenFunction &CGF,
4654 const AbstractConditionalOperator *E,
4655 const FuncTy &BranchGenFunc) {
4656 ConditionalInfo Info{CGF.createBasicBlock("cond.true"),
4657 CGF.createBasicBlock("cond.false"), llvm::None,
4658 llvm::None};
4659 llvm::BasicBlock *endBlock = CGF.createBasicBlock("cond.end");
4661 CodeGenFunction::ConditionalEvaluation eval(CGF);
4662 CGF.EmitBranchOnBoolExpr(E->getCond(), Info.lhsBlock, Info.rhsBlock,
4663 CGF.getProfileCount(E));
4665 // Any temporaries created here are conditional.
4666 CGF.EmitBlock(Info.lhsBlock);
4667 CGF.incrementProfileCounter(E);
4668 eval.begin(CGF);
4669 Info.LHS = BranchGenFunc(CGF, E->getTrueExpr());
4670 eval.end(CGF);
4671 Info.lhsBlock = CGF.Builder.GetInsertBlock();
4673 if (Info.LHS)
4674 CGF.Builder.CreateBr(endBlock);
4676 // Any temporaries created here are conditional.
4677 CGF.EmitBlock(Info.rhsBlock);
4678 eval.begin(CGF);
4679 Info.RHS = BranchGenFunc(CGF, E->getFalseExpr());
4680 eval.end(CGF);
4681 Info.rhsBlock = CGF.Builder.GetInsertBlock();
4682 CGF.EmitBlock(endBlock);
4684 return Info;
4686 } // namespace
4688 void CodeGenFunction::EmitIgnoredConditionalOperator(
4689 const AbstractConditionalOperator *E) {
4690 if (!E->isGLValue()) {
4691 // ?: here should be an aggregate.
4692 assert(hasAggregateEvaluationKind(E->getType()) &&
4693 "Unexpected conditional operator!");
4694 return (void)EmitAggExprToLValue(E);
4697 OpaqueValueMapping binding(*this, E);
4698 if (HandleConditionalOperatorLValueSimpleCase(*this, E))
4699 return;
4701 EmitConditionalBlocks(*this, E, [](CodeGenFunction &CGF, const Expr *E) {
4702 CGF.EmitIgnoredExpr(E);
4703 return LValue{};
4706 LValue CodeGenFunction::EmitConditionalOperatorLValue(
4707 const AbstractConditionalOperator *expr) {
4708 if (!expr->isGLValue()) {
4709 // ?: here should be an aggregate.
4710 assert(hasAggregateEvaluationKind(expr->getType()) &&
4711 "Unexpected conditional operator!");
4712 return EmitAggExprToLValue(expr);
4715 OpaqueValueMapping binding(*this, expr);
4716 if (llvm::Optional<LValue> Res =
4717 HandleConditionalOperatorLValueSimpleCase(*this, expr))
4718 return *Res;
4720 ConditionalInfo Info = EmitConditionalBlocks(
4721 *this, expr, [](CodeGenFunction &CGF, const Expr *E) {
4722 return EmitLValueOrThrowExpression(CGF, E);
4725 if ((Info.LHS && !Info.LHS->isSimple()) ||
4726 (Info.RHS && !Info.RHS->isSimple()))
4727 return EmitUnsupportedLValue(expr, "conditional operator");
4729 if (Info.LHS && Info.RHS) {
4730 Address lhsAddr = Info.LHS->getAddress(*this);
4731 Address rhsAddr = Info.RHS->getAddress(*this);
4732 llvm::PHINode *phi = Builder.CreatePHI(lhsAddr.getType(), 2, "cond-lvalue");
4733 phi->addIncoming(lhsAddr.getPointer(), Info.lhsBlock);
4734 phi->addIncoming(rhsAddr.getPointer(), Info.rhsBlock);
4735 Address result(phi, lhsAddr.getElementType(),
4736 std::min(lhsAddr.getAlignment(), rhsAddr.getAlignment()));
4737 AlignmentSource alignSource =
4738 std::max(Info.LHS->getBaseInfo().getAlignmentSource(),
4739 Info.RHS->getBaseInfo().getAlignmentSource());
4740 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4741 Info.LHS->getTBAAInfo(), Info.RHS->getTBAAInfo());
4742 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4743 TBAAInfo);
4744 } else {
4745 assert((Info.LHS || Info.RHS) &&
4746 "both operands of glvalue conditional are throw-expressions?");
4747 return Info.LHS ? *Info.LHS : *Info.RHS;
4751 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4752 /// type. If the cast is to a reference, we can have the usual lvalue result,
4753 /// otherwise if a cast is needed by the code generator in an lvalue context,
4754 /// then it must mean that we need the address of an aggregate in order to
4755 /// access one of its members. This can happen for all the reasons that casts
4756 /// are permitted with aggregate result, including noop aggregate casts, and
4757 /// cast from scalar to union.
4758 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4759 switch (E->getCastKind()) {
4760 case CK_ToVoid:
4761 case CK_BitCast:
4762 case CK_LValueToRValueBitCast:
4763 case CK_ArrayToPointerDecay:
4764 case CK_FunctionToPointerDecay:
4765 case CK_NullToMemberPointer:
4766 case CK_NullToPointer:
4767 case CK_IntegralToPointer:
4768 case CK_PointerToIntegral:
4769 case CK_PointerToBoolean:
4770 case CK_VectorSplat:
4771 case CK_IntegralCast:
4772 case CK_BooleanToSignedIntegral:
4773 case CK_IntegralToBoolean:
4774 case CK_IntegralToFloating:
4775 case CK_FloatingToIntegral:
4776 case CK_FloatingToBoolean:
4777 case CK_FloatingCast:
4778 case CK_FloatingRealToComplex:
4779 case CK_FloatingComplexToReal:
4780 case CK_FloatingComplexToBoolean:
4781 case CK_FloatingComplexCast:
4782 case CK_FloatingComplexToIntegralComplex:
4783 case CK_IntegralRealToComplex:
4784 case CK_IntegralComplexToReal:
4785 case CK_IntegralComplexToBoolean:
4786 case CK_IntegralComplexCast:
4787 case CK_IntegralComplexToFloatingComplex:
4788 case CK_DerivedToBaseMemberPointer:
4789 case CK_BaseToDerivedMemberPointer:
4790 case CK_MemberPointerToBoolean:
4791 case CK_ReinterpretMemberPointer:
4792 case CK_AnyPointerToBlockPointerCast:
4793 case CK_ARCProduceObject:
4794 case CK_ARCConsumeObject:
4795 case CK_ARCReclaimReturnedObject:
4796 case CK_ARCExtendBlockObject:
4797 case CK_CopyAndAutoreleaseBlockObject:
4798 case CK_IntToOCLSampler:
4799 case CK_FloatingToFixedPoint:
4800 case CK_FixedPointToFloating:
4801 case CK_FixedPointCast:
4802 case CK_FixedPointToBoolean:
4803 case CK_FixedPointToIntegral:
4804 case CK_IntegralToFixedPoint:
4805 case CK_MatrixCast:
4806 return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4808 case CK_Dependent:
4809 llvm_unreachable("dependent cast kind in IR gen!");
4811 case CK_BuiltinFnToFnPtr:
4812 llvm_unreachable("builtin functions are handled elsewhere");
4814 // These are never l-values; just use the aggregate emission code.
4815 case CK_NonAtomicToAtomic:
4816 case CK_AtomicToNonAtomic:
4817 return EmitAggExprToLValue(E);
4819 case CK_Dynamic: {
4820 LValue LV = EmitLValue(E->getSubExpr());
4821 Address V = LV.getAddress(*this);
4822 const auto *DCE = cast<CXXDynamicCastExpr>(E);
4823 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4826 case CK_ConstructorConversion:
4827 case CK_UserDefinedConversion:
4828 case CK_CPointerToObjCPointerCast:
4829 case CK_BlockPointerToObjCPointerCast:
4830 case CK_LValueToRValue:
4831 return EmitLValue(E->getSubExpr());
4833 case CK_NoOp: {
4834 // CK_NoOp can model a qualification conversion, which can remove an array
4835 // bound and change the IR type.
4836 // FIXME: Once pointee types are removed from IR, remove this.
4837 LValue LV = EmitLValue(E->getSubExpr());
4838 if (LV.isSimple()) {
4839 Address V = LV.getAddress(*this);
4840 if (V.isValid()) {
4841 llvm::Type *T = ConvertTypeForMem(E->getType());
4842 if (V.getElementType() != T)
4843 LV.setAddress(Builder.CreateElementBitCast(V, T));
4846 return LV;
4849 case CK_UncheckedDerivedToBase:
4850 case CK_DerivedToBase: {
4851 const auto *DerivedClassTy =
4852 E->getSubExpr()->getType()->castAs<RecordType>();
4853 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4855 LValue LV = EmitLValue(E->getSubExpr());
4856 Address This = LV.getAddress(*this);
4858 // Perform the derived-to-base conversion
4859 Address Base = GetAddressOfBaseClass(
4860 This, DerivedClassDecl, E->path_begin(), E->path_end(),
4861 /*NullCheckValue=*/false, E->getExprLoc());
4863 // TODO: Support accesses to members of base classes in TBAA. For now, we
4864 // conservatively pretend that the complete object is of the base class
4865 // type.
4866 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4867 CGM.getTBAAInfoForSubobject(LV, E->getType()));
4869 case CK_ToUnion:
4870 return EmitAggExprToLValue(E);
4871 case CK_BaseToDerived: {
4872 const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4873 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4875 LValue LV = EmitLValue(E->getSubExpr());
4877 // Perform the base-to-derived conversion
4878 Address Derived = GetAddressOfDerivedClass(
4879 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4880 /*NullCheckValue=*/false);
4882 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4883 // performed and the object is not of the derived type.
4884 if (sanitizePerformTypeCheck())
4885 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4886 Derived.getPointer(), E->getType());
4888 if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4889 EmitVTablePtrCheckForCast(E->getType(), Derived,
4890 /*MayBeNull=*/false, CFITCK_DerivedCast,
4891 E->getBeginLoc());
4893 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4894 CGM.getTBAAInfoForSubobject(LV, E->getType()));
4896 case CK_LValueBitCast: {
4897 // This must be a reinterpret_cast (or c-style equivalent).
4898 const auto *CE = cast<ExplicitCastExpr>(E);
4900 CGM.EmitExplicitCastExprType(CE, this);
4901 LValue LV = EmitLValue(E->getSubExpr());
4902 Address V = Builder.CreateElementBitCast(
4903 LV.getAddress(*this),
4904 ConvertTypeForMem(CE->getTypeAsWritten()->getPointeeType()));
4906 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4907 EmitVTablePtrCheckForCast(E->getType(), V,
4908 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4909 E->getBeginLoc());
4911 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4912 CGM.getTBAAInfoForSubobject(LV, E->getType()));
4914 case CK_AddressSpaceConversion: {
4915 LValue LV = EmitLValue(E->getSubExpr());
4916 QualType DestTy = getContext().getPointerType(E->getType());
4917 llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4918 *this, LV.getPointer(*this),
4919 E->getSubExpr()->getType().getAddressSpace(),
4920 E->getType().getAddressSpace(), ConvertType(DestTy));
4921 return MakeAddrLValue(Address(V, ConvertTypeForMem(E->getType()),
4922 LV.getAddress(*this).getAlignment()),
4923 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4925 case CK_ObjCObjectLValueCast: {
4926 LValue LV = EmitLValue(E->getSubExpr());
4927 Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4928 ConvertType(E->getType()));
4929 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4930 CGM.getTBAAInfoForSubobject(LV, E->getType()));
4932 case CK_ZeroToOCLOpaqueType:
4933 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4936 llvm_unreachable("Unhandled lvalue cast kind?");
4939 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4940 assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4941 return getOrCreateOpaqueLValueMapping(e);
4944 LValue
4945 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4946 assert(OpaqueValueMapping::shouldBindAsLValue(e));
4948 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4949 it = OpaqueLValues.find(e);
4951 if (it != OpaqueLValues.end())
4952 return it->second;
4954 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4955 return EmitLValue(e->getSourceExpr());
4958 RValue
4959 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4960 assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4962 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4963 it = OpaqueRValues.find(e);
4965 if (it != OpaqueRValues.end())
4966 return it->second;
4968 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4969 return EmitAnyExpr(e->getSourceExpr());
4972 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4973 const FieldDecl *FD,
4974 SourceLocation Loc) {
4975 QualType FT = FD->getType();
4976 LValue FieldLV = EmitLValueForField(LV, FD);
4977 switch (getEvaluationKind(FT)) {
4978 case TEK_Complex:
4979 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4980 case TEK_Aggregate:
4981 return FieldLV.asAggregateRValue(*this);
4982 case TEK_Scalar:
4983 // This routine is used to load fields one-by-one to perform a copy, so
4984 // don't load reference fields.
4985 if (FD->getType()->isReferenceType())
4986 return RValue::get(FieldLV.getPointer(*this));
4987 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4988 // primitive load.
4989 if (FieldLV.isBitField())
4990 return EmitLoadOfLValue(FieldLV, Loc);
4991 return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4993 llvm_unreachable("bad evaluation kind");
4996 //===--------------------------------------------------------------------===//
4997 // Expression Emission
4998 //===--------------------------------------------------------------------===//
5000 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
5001 ReturnValueSlot ReturnValue) {
5002 // Builtins never have block type.
5003 if (E->getCallee()->getType()->isBlockPointerType())
5004 return EmitBlockCallExpr(E, ReturnValue);
5006 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
5007 return EmitCXXMemberCallExpr(CE, ReturnValue);
5009 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
5010 return EmitCUDAKernelCallExpr(CE, ReturnValue);
5012 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
5013 if (const CXXMethodDecl *MD =
5014 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
5015 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
5017 CGCallee callee = EmitCallee(E->getCallee());
5019 if (callee.isBuiltin()) {
5020 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
5021 E, ReturnValue);
5024 if (callee.isPseudoDestructor()) {
5025 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
5028 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
5031 /// Emit a CallExpr without considering whether it might be a subclass.
5032 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
5033 ReturnValueSlot ReturnValue) {
5034 CGCallee Callee = EmitCallee(E->getCallee());
5035 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
5038 // Detect the unusual situation where an inline version is shadowed by a
5039 // non-inline version. In that case we should pick the external one
5040 // everywhere. That's GCC behavior too.
5041 static bool OnlyHasInlineBuiltinDeclaration(const FunctionDecl *FD) {
5042 for (const FunctionDecl *PD = FD; PD; PD = PD->getPreviousDecl())
5043 if (!PD->isInlineBuiltinDeclaration())
5044 return false;
5045 return true;
5048 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
5049 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
5051 if (auto builtinID = FD->getBuiltinID()) {
5052 std::string NoBuiltinFD = ("no-builtin-" + FD->getName()).str();
5053 std::string NoBuiltins = "no-builtins";
5054 std::string FDInlineName = (FD->getName() + ".inline").str();
5056 bool IsPredefinedLibFunction =
5057 CGF.getContext().BuiltinInfo.isPredefinedLibFunction(builtinID);
5058 bool HasAttributeNoBuiltin =
5059 CGF.CurFn->getAttributes().hasFnAttr(NoBuiltinFD) ||
5060 CGF.CurFn->getAttributes().hasFnAttr(NoBuiltins);
5062 // When directing calling an inline builtin, call it through it's mangled
5063 // name to make it clear it's not the actual builtin.
5064 if (CGF.CurFn->getName() != FDInlineName &&
5065 OnlyHasInlineBuiltinDeclaration(FD)) {
5066 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
5067 llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr);
5068 llvm::Module *M = Fn->getParent();
5069 llvm::Function *Clone = M->getFunction(FDInlineName);
5070 if (!Clone) {
5071 Clone = llvm::Function::Create(Fn->getFunctionType(),
5072 llvm::GlobalValue::InternalLinkage,
5073 Fn->getAddressSpace(), FDInlineName, M);
5074 Clone->addFnAttr(llvm::Attribute::AlwaysInline);
5076 return CGCallee::forDirect(Clone, GD);
5079 // Replaceable builtins provide their own implementation of a builtin. If we
5080 // are in an inline builtin implementation, avoid trivial infinite
5081 // recursion. Honor __attribute__((no_builtin("foo"))) or
5082 // __attribute__((no_builtin)) on the current function unless foo is
5083 // not a predefined library function which means we must generate the
5084 // builtin no matter what.
5085 else if (!IsPredefinedLibFunction || !HasAttributeNoBuiltin)
5086 return CGCallee::forBuiltin(builtinID, FD);
5089 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
5090 if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice &&
5091 FD->hasAttr<CUDAGlobalAttr>())
5092 CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub(
5093 cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts()));
5095 return CGCallee::forDirect(CalleePtr, GD);
5098 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
5099 E = E->IgnoreParens();
5101 // Look through function-to-pointer decay.
5102 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
5103 if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
5104 ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
5105 return EmitCallee(ICE->getSubExpr());
5108 // Resolve direct calls.
5109 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
5110 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
5111 return EmitDirectCallee(*this, FD);
5113 } else if (auto ME = dyn_cast<MemberExpr>(E)) {
5114 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
5115 EmitIgnoredExpr(ME->getBase());
5116 return EmitDirectCallee(*this, FD);
5119 // Look through template substitutions.
5120 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
5121 return EmitCallee(NTTP->getReplacement());
5123 // Treat pseudo-destructor calls differently.
5124 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
5125 return CGCallee::forPseudoDestructor(PDE);
5128 // Otherwise, we have an indirect reference.
5129 llvm::Value *calleePtr;
5130 QualType functionType;
5131 if (auto ptrType = E->getType()->getAs<PointerType>()) {
5132 calleePtr = EmitScalarExpr(E);
5133 functionType = ptrType->getPointeeType();
5134 } else {
5135 functionType = E->getType();
5136 calleePtr = EmitLValue(E).getPointer(*this);
5138 assert(functionType->isFunctionType());
5140 GlobalDecl GD;
5141 if (const auto *VD =
5142 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
5143 GD = GlobalDecl(VD);
5145 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
5146 CGCallee callee(calleeInfo, calleePtr);
5147 return callee;
5150 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
5151 // Comma expressions just emit their LHS then their RHS as an l-value.
5152 if (E->getOpcode() == BO_Comma) {
5153 EmitIgnoredExpr(E->getLHS());
5154 EnsureInsertPoint();
5155 return EmitLValue(E->getRHS());
5158 if (E->getOpcode() == BO_PtrMemD ||
5159 E->getOpcode() == BO_PtrMemI)
5160 return EmitPointerToDataMemberBinaryExpr(E);
5162 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
5164 // Note that in all of these cases, __block variables need the RHS
5165 // evaluated first just in case the variable gets moved by the RHS.
5167 switch (getEvaluationKind(E->getType())) {
5168 case TEK_Scalar: {
5169 switch (E->getLHS()->getType().getObjCLifetime()) {
5170 case Qualifiers::OCL_Strong:
5171 return EmitARCStoreStrong(E, /*ignored*/ false).first;
5173 case Qualifiers::OCL_Autoreleasing:
5174 return EmitARCStoreAutoreleasing(E).first;
5176 // No reason to do any of these differently.
5177 case Qualifiers::OCL_None:
5178 case Qualifiers::OCL_ExplicitNone:
5179 case Qualifiers::OCL_Weak:
5180 break;
5183 RValue RV = EmitAnyExpr(E->getRHS());
5184 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
5185 if (RV.isScalar())
5186 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
5187 EmitStoreThroughLValue(RV, LV);
5188 if (getLangOpts().OpenMP)
5189 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
5190 E->getLHS());
5191 return LV;
5194 case TEK_Complex:
5195 return EmitComplexAssignmentLValue(E);
5197 case TEK_Aggregate:
5198 return EmitAggExprToLValue(E);
5200 llvm_unreachable("bad evaluation kind");
5203 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
5204 RValue RV = EmitCallExpr(E);
5206 if (!RV.isScalar())
5207 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5208 AlignmentSource::Decl);
5210 assert(E->getCallReturnType(getContext())->isReferenceType() &&
5211 "Can't have a scalar return unless the return type is a "
5212 "reference type!");
5214 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5217 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
5218 // FIXME: This shouldn't require another copy.
5219 return EmitAggExprToLValue(E);
5222 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
5223 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
5224 && "binding l-value to type which needs a temporary");
5225 AggValueSlot Slot = CreateAggTemp(E->getType());
5226 EmitCXXConstructExpr(E, Slot);
5227 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5230 LValue
5231 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
5232 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
5235 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
5236 return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()),
5237 ConvertType(E->getType()));
5240 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
5241 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
5242 AlignmentSource::Decl);
5245 LValue
5246 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
5247 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
5248 Slot.setExternallyDestructed();
5249 EmitAggExpr(E->getSubExpr(), Slot);
5250 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
5251 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5254 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
5255 RValue RV = EmitObjCMessageExpr(E);
5257 if (!RV.isScalar())
5258 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5259 AlignmentSource::Decl);
5261 assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
5262 "Can't have a scalar return unless the return type is a "
5263 "reference type!");
5265 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5268 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
5269 Address V =
5270 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
5271 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
5274 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
5275 const ObjCIvarDecl *Ivar) {
5276 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
5279 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
5280 llvm::Value *BaseValue,
5281 const ObjCIvarDecl *Ivar,
5282 unsigned CVRQualifiers) {
5283 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
5284 Ivar, CVRQualifiers);
5287 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
5288 // FIXME: A lot of the code below could be shared with EmitMemberExpr.
5289 llvm::Value *BaseValue = nullptr;
5290 const Expr *BaseExpr = E->getBase();
5291 Qualifiers BaseQuals;
5292 QualType ObjectTy;
5293 if (E->isArrow()) {
5294 BaseValue = EmitScalarExpr(BaseExpr);
5295 ObjectTy = BaseExpr->getType()->getPointeeType();
5296 BaseQuals = ObjectTy.getQualifiers();
5297 } else {
5298 LValue BaseLV = EmitLValue(BaseExpr);
5299 BaseValue = BaseLV.getPointer(*this);
5300 ObjectTy = BaseExpr->getType();
5301 BaseQuals = ObjectTy.getQualifiers();
5304 LValue LV =
5305 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
5306 BaseQuals.getCVRQualifiers());
5307 setObjCGCLValueClass(getContext(), E, LV);
5308 return LV;
5311 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
5312 // Can only get l-value for message expression returning aggregate type
5313 RValue RV = EmitAnyExprToTemp(E);
5314 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5315 AlignmentSource::Decl);
5318 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
5319 const CallExpr *E, ReturnValueSlot ReturnValue,
5320 llvm::Value *Chain) {
5321 // Get the actual function type. The callee type will always be a pointer to
5322 // function type or a block pointer type.
5323 assert(CalleeType->isFunctionPointerType() &&
5324 "Call must have function pointer type!");
5326 const Decl *TargetDecl =
5327 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
5329 CalleeType = getContext().getCanonicalType(CalleeType);
5331 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
5333 CGCallee Callee = OrigCallee;
5335 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
5336 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5337 if (llvm::Constant *PrefixSig =
5338 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
5339 SanitizerScope SanScope(this);
5340 // Remove any (C++17) exception specifications, to allow calling e.g. a
5341 // noexcept function through a non-noexcept pointer.
5342 auto ProtoTy =
5343 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
5344 llvm::Constant *FTRTTIConst =
5345 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
5346 llvm::Type *PrefixSigType = PrefixSig->getType();
5347 llvm::StructType *PrefixStructTy = llvm::StructType::get(
5348 CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true);
5350 llvm::Value *CalleePtr = Callee.getFunctionPointer();
5352 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
5353 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
5354 llvm::Value *CalleeSigPtr =
5355 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
5356 llvm::Value *CalleeSig =
5357 Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign());
5358 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5360 llvm::BasicBlock *Cont = createBasicBlock("cont");
5361 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5362 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5364 EmitBlock(TypeCheck);
5365 llvm::Value *CalleeRTTIPtr =
5366 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
5367 llvm::Value *CalleeRTTIEncoded =
5368 Builder.CreateAlignedLoad(Int32Ty, CalleeRTTIPtr, getPointerAlign());
5369 llvm::Value *CalleeRTTI =
5370 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
5371 llvm::Value *CalleeRTTIMatch =
5372 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
5373 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5374 EmitCheckTypeDescriptor(CalleeType)};
5375 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
5376 SanitizerHandler::FunctionTypeMismatch, StaticData,
5377 {CalleePtr, CalleeRTTI, FTRTTIConst});
5379 Builder.CreateBr(Cont);
5380 EmitBlock(Cont);
5384 const auto *FnType = cast<FunctionType>(PointeeType);
5386 // If we are checking indirect calls and this call is indirect, check that the
5387 // function pointer is a member of the bit set for the function type.
5388 if (SanOpts.has(SanitizerKind::CFIICall) &&
5389 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5390 SanitizerScope SanScope(this);
5391 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5393 llvm::Metadata *MD;
5394 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5395 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5396 else
5397 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5399 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5401 llvm::Value *CalleePtr = Callee.getFunctionPointer();
5402 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
5403 llvm::Value *TypeTest = Builder.CreateCall(
5404 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
5406 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5407 llvm::Constant *StaticData[] = {
5408 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5409 EmitCheckSourceLocation(E->getBeginLoc()),
5410 EmitCheckTypeDescriptor(QualType(FnType, 0)),
5412 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5413 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5414 CastedCallee, StaticData);
5415 } else {
5416 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5417 SanitizerHandler::CFICheckFail, StaticData,
5418 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
5422 CallArgList Args;
5423 if (Chain)
5424 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
5425 CGM.getContext().VoidPtrTy);
5427 // C++17 requires that we evaluate arguments to a call using assignment syntax
5428 // right-to-left, and that we evaluate arguments to certain other operators
5429 // left-to-right. Note that we allow this to override the order dictated by
5430 // the calling convention on the MS ABI, which means that parameter
5431 // destruction order is not necessarily reverse construction order.
5432 // FIXME: Revisit this based on C++ committee response to unimplementability.
5433 EvaluationOrder Order = EvaluationOrder::Default;
5434 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5435 if (OCE->isAssignmentOp())
5436 Order = EvaluationOrder::ForceRightToLeft;
5437 else {
5438 switch (OCE->getOperator()) {
5439 case OO_LessLess:
5440 case OO_GreaterGreater:
5441 case OO_AmpAmp:
5442 case OO_PipePipe:
5443 case OO_Comma:
5444 case OO_ArrowStar:
5445 Order = EvaluationOrder::ForceLeftToRight;
5446 break;
5447 default:
5448 break;
5453 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5454 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5456 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5457 Args, FnType, /*ChainCall=*/Chain);
5459 // C99 6.5.2.2p6:
5460 // If the expression that denotes the called function has a type
5461 // that does not include a prototype, [the default argument
5462 // promotions are performed]. If the number of arguments does not
5463 // equal the number of parameters, the behavior is undefined. If
5464 // the function is defined with a type that includes a prototype,
5465 // and either the prototype ends with an ellipsis (, ...) or the
5466 // types of the arguments after promotion are not compatible with
5467 // the types of the parameters, the behavior is undefined. If the
5468 // function is defined with a type that does not include a
5469 // prototype, and the types of the arguments after promotion are
5470 // not compatible with those of the parameters after promotion,
5471 // the behavior is undefined [except in some trivial cases].
5472 // That is, in the general case, we should assume that a call
5473 // through an unprototyped function type works like a *non-variadic*
5474 // call. The way we make this work is to cast to the exact type
5475 // of the promoted arguments.
5477 // Chain calls use this same code path to add the invisible chain parameter
5478 // to the function type.
5479 if (isa<FunctionNoProtoType>(FnType) || Chain) {
5480 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5481 int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5482 CalleeTy = CalleeTy->getPointerTo(AS);
5484 llvm::Value *CalleePtr = Callee.getFunctionPointer();
5485 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5486 Callee.setFunctionPointer(CalleePtr);
5489 // HIP function pointer contains kernel handle when it is used in triple
5490 // chevron. The kernel stub needs to be loaded from kernel handle and used
5491 // as callee.
5492 if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice &&
5493 isa<CUDAKernelCallExpr>(E) &&
5494 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5495 llvm::Value *Handle = Callee.getFunctionPointer();
5496 auto *Cast =
5497 Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo());
5498 auto *Stub = Builder.CreateLoad(
5499 Address(Cast, Handle->getType(), CGM.getPointerAlign()));
5500 Callee.setFunctionPointer(Stub);
5502 llvm::CallBase *CallOrInvoke = nullptr;
5503 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5504 E == MustTailCall, E->getExprLoc());
5506 // Generate function declaration DISuprogram in order to be used
5507 // in debug info about call sites.
5508 if (CGDebugInfo *DI = getDebugInfo()) {
5509 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
5510 FunctionArgList Args;
5511 QualType ResTy = BuildFunctionArgList(CalleeDecl, Args);
5512 DI->EmitFuncDeclForCallSite(CallOrInvoke,
5513 DI->getFunctionType(CalleeDecl, ResTy, Args),
5514 CalleeDecl);
5518 return Call;
5521 LValue CodeGenFunction::
5522 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5523 Address BaseAddr = Address::invalid();
5524 if (E->getOpcode() == BO_PtrMemI) {
5525 BaseAddr = EmitPointerWithAlignment(E->getLHS());
5526 } else {
5527 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5530 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5531 const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5533 LValueBaseInfo BaseInfo;
5534 TBAAAccessInfo TBAAInfo;
5535 Address MemberAddr =
5536 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5537 &TBAAInfo);
5539 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5542 /// Given the address of a temporary variable, produce an r-value of
5543 /// its type.
5544 RValue CodeGenFunction::convertTempToRValue(Address addr,
5545 QualType type,
5546 SourceLocation loc) {
5547 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5548 switch (getEvaluationKind(type)) {
5549 case TEK_Complex:
5550 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5551 case TEK_Aggregate:
5552 return lvalue.asAggregateRValue(*this);
5553 case TEK_Scalar:
5554 return RValue::get(EmitLoadOfScalar(lvalue, loc));
5556 llvm_unreachable("bad evaluation kind");
5559 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5560 assert(Val->getType()->isFPOrFPVectorTy());
5561 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5562 return;
5564 llvm::MDBuilder MDHelper(getLLVMContext());
5565 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5567 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5570 namespace {
5571 struct LValueOrRValue {
5572 LValue LV;
5573 RValue RV;
5577 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5578 const PseudoObjectExpr *E,
5579 bool forLValue,
5580 AggValueSlot slot) {
5581 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5583 // Find the result expression, if any.
5584 const Expr *resultExpr = E->getResultExpr();
5585 LValueOrRValue result;
5587 for (PseudoObjectExpr::const_semantics_iterator
5588 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5589 const Expr *semantic = *i;
5591 // If this semantic expression is an opaque value, bind it
5592 // to the result of its source expression.
5593 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5594 // Skip unique OVEs.
5595 if (ov->isUnique()) {
5596 assert(ov != resultExpr &&
5597 "A unique OVE cannot be used as the result expression");
5598 continue;
5601 // If this is the result expression, we may need to evaluate
5602 // directly into the slot.
5603 typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5604 OVMA opaqueData;
5605 if (ov == resultExpr && ov->isPRValue() && !forLValue &&
5606 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5607 CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5608 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5609 AlignmentSource::Decl);
5610 opaqueData = OVMA::bind(CGF, ov, LV);
5611 result.RV = slot.asRValue();
5613 // Otherwise, emit as normal.
5614 } else {
5615 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5617 // If this is the result, also evaluate the result now.
5618 if (ov == resultExpr) {
5619 if (forLValue)
5620 result.LV = CGF.EmitLValue(ov);
5621 else
5622 result.RV = CGF.EmitAnyExpr(ov, slot);
5626 opaques.push_back(opaqueData);
5628 // Otherwise, if the expression is the result, evaluate it
5629 // and remember the result.
5630 } else if (semantic == resultExpr) {
5631 if (forLValue)
5632 result.LV = CGF.EmitLValue(semantic);
5633 else
5634 result.RV = CGF.EmitAnyExpr(semantic, slot);
5636 // Otherwise, evaluate the expression in an ignored context.
5637 } else {
5638 CGF.EmitIgnoredExpr(semantic);
5642 // Unbind all the opaques now.
5643 for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5644 opaques[i].unbind(CGF);
5646 return result;
5649 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5650 AggValueSlot slot) {
5651 return emitPseudoObjectExpr(*this, E, false, slot).RV;
5654 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5655 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;